
FCC PART 15.247 TEST REPORT

For

B Mobile HK Limited

G/F., 144 UN CHAU STREET, SHAM SHUI PO, KOWLOON, HONG KONG

FCC ID: ZSW-QW130

Report Type: Original Report	Product Type: GSM mobile phone
Test Engineer: <u>Henry Ding</u>	
Report Number: <u>RSZ120629003-00B</u>	
Report Date: <u>2012-07-24</u>	
Reviewed By: <u>RF Leader</u>	
Test Laboratory: Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F, the 3rd Phase of WanLi Industrial Building ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn	

Note: This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP*, or any agency of the Federal Government.

* This report contains data that are not covered by the NVLAP accreditation and are marked with an asterisk “★” (Rev.2)

TABLE OF CONTENTS

GENERAL INFORMATION.....	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
OBJECTIVE	4
RELATED SUBMITTAL(S)/GRANT(S).....	4
TEST METHODOLOGY	4
TEST FACILITY	5
SYSTEM TEST CONFIGURATION.....	6
DESCRIPTION OF TEST CONFIGURATION	6
EQUIPMENT MODIFICATIONS	6
TEST SOFTWARE	6
EXTERNAL I/O CABLE.....	6
BLOCK DIAGRAM OF TEST SETUP	6
SUMMARY OF TEST RESULTS	7
FCC §15.247 (i) & §2.1093 – RF EXPOSURE.....	8
APPLICABLE STANDARD	8
RESULT:	9
FCC §15.203 – ANTENNA REQUIREMENT.....	10
APPLICABLE STANDARD	10
ANTENNA CONNECTOR CONSTRUCTION	10
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	11
APPLICABLE STANDARD	11
MEASUREMENT UNCERTAINTY.....	11
EUT SETUP	11
EMI TEST RECEIVER SETUP.....	12
TEST EQUIPMENT LIST AND DETAILS.....	12
TEST PROCEDURE	12
TEST RESULTS SUMMARY	12
TEST DATA	12
FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS.....	15
APPLICABLE STANDARD	15
MEASUREMENT UNCERTAINTY.....	15
EUT SETUP	15
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	16
TEST PROCEDURE	16
CORRECTED AMPLITUDE & MARGIN CALCULATION	16
TEST EQUIPMENT LIST AND DETAILS.....	17
TEST RESULTS SUMMARY	17
TEST DATA	17
FCC §15.247(a) (1)-CHANNEL SEPARATION TEST	19
APPLICABLE STANDARD	19
TEST PROCEDURE	19
TEST EQUIPMENT LIST AND DETAILS.....	19
TEST DATA	19
FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH TESTING	22

APPLICABLE STANDARD	22
TEST PROCEDURE	22
TEST EQUIPMENT LIST AND DETAILS.....	22
TEST DATA	22
FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST	25
APPLICABLE STANDARD	25
TEST PROCEDURE	25
TEST EQUIPMENT LIST AND DETAILS.....	25
TEST DATA	25
FCC §15.247(a) (1) (iii) -TIME OF OCCUPANCY (DWELL TIME).....	27
APPLICABLE STANDARD	27
TEST PROCEDURE	27
TEST EQUIPMENT LIST AND DETAILS.....	27
TEST DATA	27
FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT	33
APPLICABLE STANDARD	33
TEST PROCEDURE	33
TEST EQUIPMENT LIST AND DETAILS.....	33
TEST DATA	33
FCC §15.247(d) - BAND EDGES TESTING	36
APPLICABLE STANDARD	36
TEST PROCEDURE	36
TEST EQUIPMENT LIST AND DETAILS.....	36
TEST DATA	37

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *B Mobile HK Limited*'s product, model number: *QW130 (FCC ID: ZSW-QW130)* or the "EUT" in this report was a *GSM mobile phone*, which was measured approximately: 11.0 cm (L) x 6.0 cm (W) x 1.5 cm (H), rated input voltage: DC 3.7 V from battery or DC 5 V charging from adapter.

Adapter information

Model: QW130

Input: 100-240V~ 50/60 Hz 0.1 A

Output: DC 5.0 V 500 mA

**All measurement and test data in this report was gathered from production sample serial number: 1206138 (Assigned by Shenzhen BACL). The EUT was received on 2012-06-29.*

Objective

This test report is prepared on behalf of *B Mobile HK Limited* in accordance with Part 2-Subpart J, Part 15-Subparts A, B and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

FCC Part 22H/24E PCE and part 15B JBP submissions with FCC ID: ZSW-QW130

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2009, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on December 06, 2010. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2009.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Laboratories Corp. (Shenzhen) is an ISO/IEC 17025 accredited laboratory, and is accredited by National Voluntary Laboratory Accredited Program (Lab Code 200707-0).

The current scope of accreditations can be found at <http://ts.nist.gov/Standards/scopes/2007070.htm>

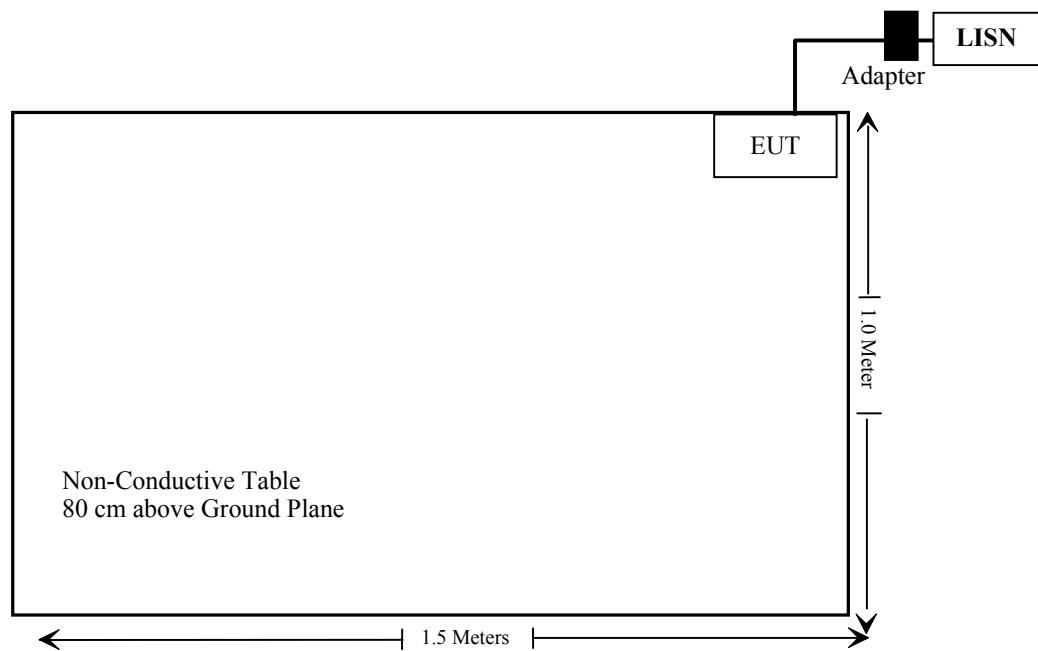
SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in a testing mode.

Equipment Modifications

No modification was made to the EUT tested.


Test Software

Test software supplied by client

External I/O Cable

Cable Description	Length (m)	From Port	To
Unshielded Detachable DC Power Cable	1.0	EUT	LISN

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §2.1093	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.207(a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209 & §15.247(d)	Radiated Emissions	Compliance
§15.247(a)(1)	20 dB Emission Bandwidth	Compliance
§15.247(a)(1)	Channel Separation Test	Compliance
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliance
§15.247(b)(1)	Peak Output Power Measurement	Compliance
§15.247(d)	Band edges	Compliance

FCC §15.247 (i) & §2.1093 – RF EXPOSURE

Applicable Standard

According to §15.247 (i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Table 2 – Summary of SAR Evaluation Requirements for a Cell Phone with Multiple Transmitters

	Individual Transmitter	Simultaneous Transmission
Licensed Transmitters	<u>Routine evaluation required</u>	<u>SAR not required:</u> <u>Unlicensed only</u> <ul style="list-style-type: none"> ○ when stand-alone 1-g SAR is not required and antenna is ≥ 5 cm from other antennas <u>Licensed & Unlicensed</u> <ul style="list-style-type: none"> ○ when the sum of the 1-g SAR is < 1.6 W/kg for all simultaneous transmitting antennas ○ when SAR to peak location separation ratio of simultaneous transmitting antenna pair is < 0.3 <u>SAR required:</u> <u>Licensed & Unlicensed</u> <p>antenna pairs with SAR to peak location separation ratio ≥ 0.3; test is only required for the configuration that results in the highest SAR in stand-alone configuration for each wireless mode and exposure condition</p> <p>Note: simultaneous transmission exposure conditions for head and body can be different for different style phones; therefore, different test requirements may apply</p>
Jaw, Mouth and Nose	<u>Flat phantom SAR required</u> <ul style="list-style-type: none"> ○ when measurement is required in tight regions of SAM and it is not feasible or the results can be questionable due to probe tilt, calibration, positioning and orientation issues ○ position rectangular and clam-shell phones according to flat phantom procedures and conduct SAR measurements for these specific locations 	When simultaneous transmission SAR testing is required, contact the FCC Laboratory for interim guidance.

Routine SAR evaluation refers to that specifically required by § 2.1093, using measurements or computer simulation. When routine SAR evaluation is not required, portable transmitters with output power greater than the applicable low threshold require SAR evaluation to qualify for TCB approval.

- 1) GSM/WCDMA can transmit simultaneously with Bluetooth.
- 2) The distance between BT and GSM/WCDMA antenna is 5.9 cm > 5 cm. The max output power of Bluetooth antenna is (2.98dBm) 1.98mW $< 2*P_{Ref}$ (24 mW) . According to KDB648474, stand-alone SAR is not required for BT antenna.
- 3) When the sum of the 1-g SAR is <1.6 W/kg for GSM and Bluetooth, the simultaneous SAR is not required.
- 4) P_{Ref} is defined as the maximum conducted power available at the antenna according to source-based time-averaging requirements of Section 2.1093(d) (5).

Result:

The SAR measurement is exempt.

FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

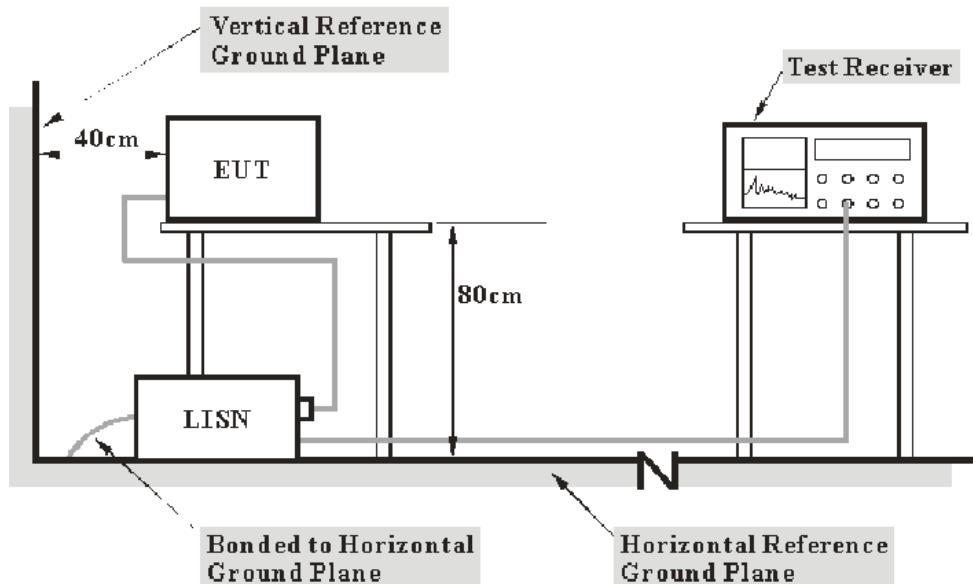
Antenna Connector Construction

The EUT has 2 spring contact leg antennas, one is for Bluetooth, the gain is 0dBi; one is for GSM/WCDMA, the gain is -1.0dBi; All antennas are permanently attached.

Result: Compliance.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard


FCC §15.207

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

Based on CISPR 16-4-4, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at Bay Area Compliance Laboratory Corp. (Shenzhen) is 2.4 dB (k=2, 95% level of confidence).

EUT Setup

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.4-2009 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm

The adapter was connected to a 120 VAC/60 Hz power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCS30	100176	2011-11-24	2012-11-23
Rohde & Schwarz	L.I.S.N.	ESH2-Z5	892107/021	2011-11-17	2012-11-16
Rohde & Schwarz	Pulse limiter	ESH3Z2	DE25985	2011-07-08	2012-07-07
BACL	CE Test software	BACL-CE	V1.0	N/A	N/A

* **Statement of Traceability:** Bay Area Compliance Laboratory Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

During the conducted emission test, the adapter was connected to the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

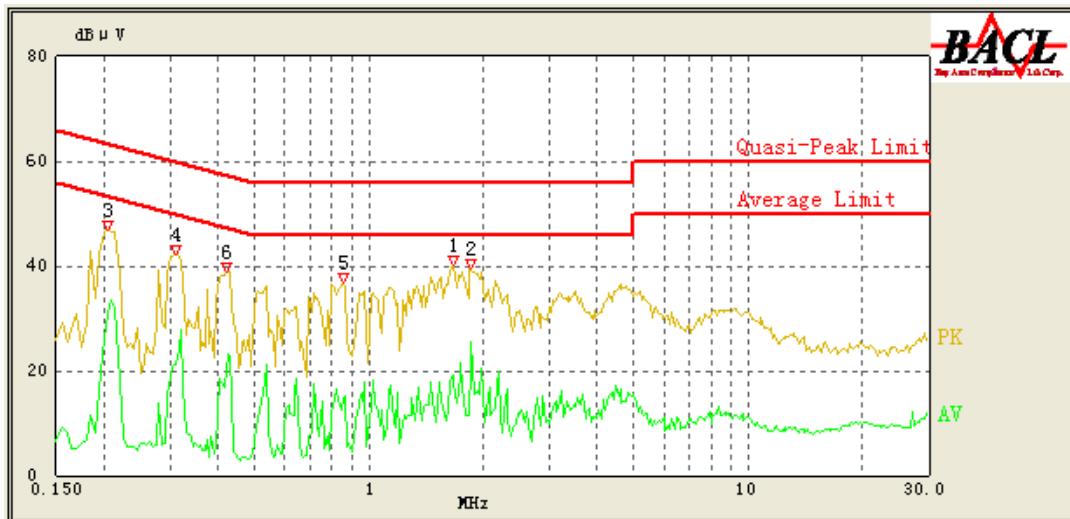
All data was recorded in the Quasi-peak and average detection mode.

Test Results Summary

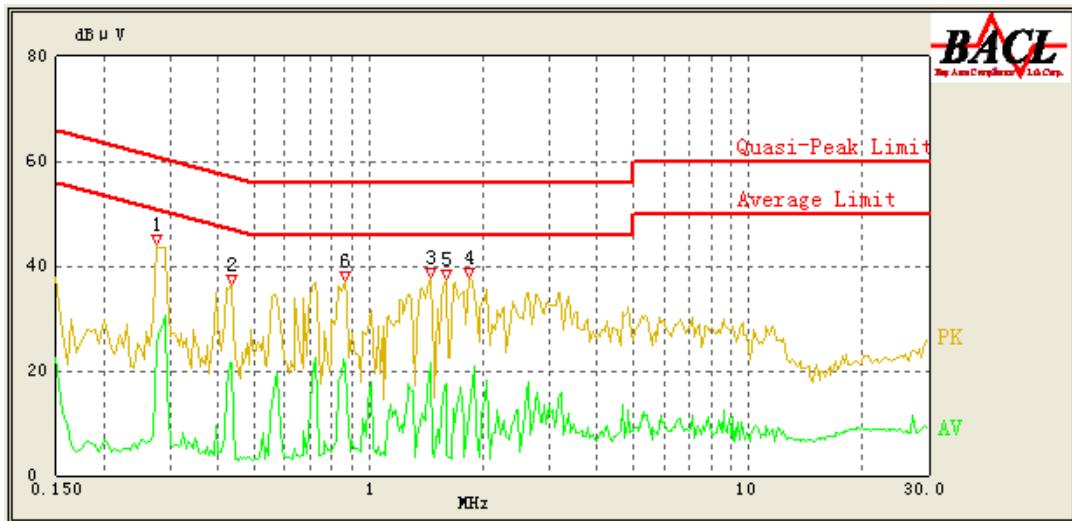
According to the recorded data in following table, the EUT complied with the [FCC Part 15.207](#), with the worst margin reading of:

20.66 dB at 1.865 MHz in the **Line** conducted mode

Test Data


Environmental Conditions

Temperature:	25°C
Relative Humidity:	56 %
ATM Pressure:	100.0 kPa


The testing was performed by Henry Ding on 2012-07-05

Test Mode: Charging & Transmitting

AC 120 V, 60 Hz, Line:

Frequency (MHz)	Corrected Amplitude (dB μ V)	Correction Factor (dB)	Limit (dB μ V)	Margin (dB)	Detector (PK/Ave./QP)
1.865	25.34	9.90	46.00	20.66	Ave.
0.205	30.67	9.67	54.43	23.76	Ave.
1.670	32.03	9.89	56.00	23.97	QP
0.420	33.54	9.67	58.29	24.75	QP
1.670	19.33	9.89	46.00	26.67	Ave.
0.420	20.03	9.67	48.29	28.26	Ave.
1.865	26.71	9.90	56.00	29.29	QP
0.310	21.27	9.66	51.43	30.16	Ave.
0.860	14.82	9.82	46.00	31.18	Ave.
0.205	32.01	9.67	64.43	32.42	QP
0.310	26.88	9.66	61.43	34.55	QP
0.855	18.48	9.82	56.00	37.52	QP

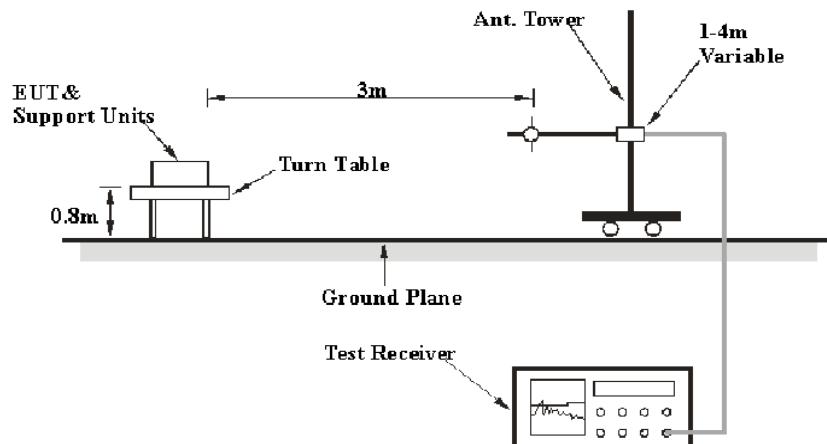
AC 120V, 60 Hz, Neutral:

Frequency (MHz)	Corrected Amplitude (dB μ V)	Correction Factor (dB)	Limit (dB μ V)	Margin (dB)	Detector (PK/Ave./QP)
1.600	33.53	9.89	56.00	22.47	QP
0.865	21.60	9.82	46.00	24.40	Ave.
1.450	21.47	9.88	46.00	24.53	Ave.
0.435	21.34	9.67	47.86	26.52	Ave.
1.450	29.24	9.88	56.00	26.76	QP
1.830	29.24	9.89	56.00	26.76	QP
0.275	24.88	9.65	52.43	27.55	Ave.
1.600	17.49	9.89	46.00	28.51	Ave.
0.435	25.70	9.67	57.86	32.16	QP
0.275	28.42	9.65	62.43	34.01	QP
1.830	11.90	9.89	46.00	34.10	Ave.
0.870	18.95	9.82	56.00	37.05	QP

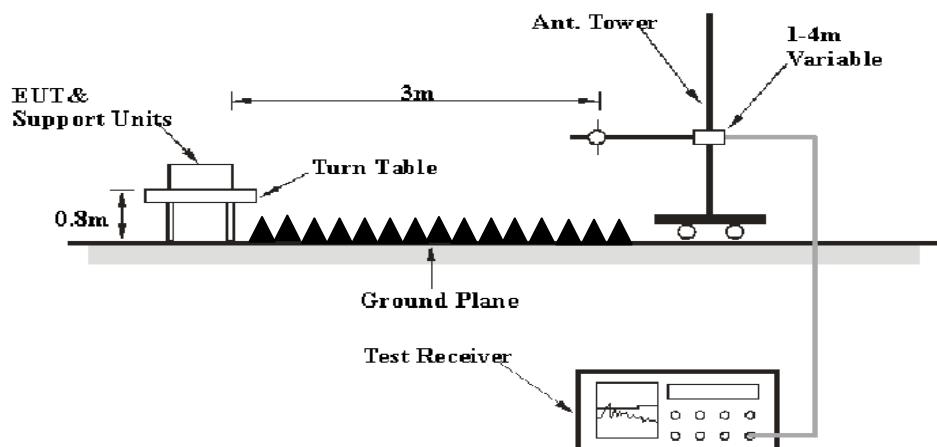
FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS

Applicable Standard

FCC §15.205; §15.209; §15.247(d)


Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.


Based on CISPR 16-4-4, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at Bay Area Compliance Laboratories Corp. (Shenzhen) is 4.0 dB. ($k=2$, 95% level of confidence).

EUT Setup

Below 1 GHz:

Above 1 GHz:

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI C63.4-2009. The specification used was the FCC 15.209 and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm

The adapter was connected to a 120 VAC/60 Hz power source.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

<i>Frequency Range</i>	<i>RBW</i>	<i>Video B/W</i>	<i>Detector</i>
30 MHz – 1000 MHz	120 kHz	300 kHz	QP
1000 MHz – 25 GHz	1 MHz	3 MHz	PK
1000 MHz – 25 GHz	1 MHz	10 Hz	Ave.

Test Procedure

For radiated emissions, the adapter was connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

$$\text{Corrected Amplitude} = \text{Meter Reading} + \text{Antenna Factor} + \text{Cable Loss} - \text{Amplifier Gain}$$

The “Margin” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Limit} - \text{Corrected Amplitude}$$

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
HP	Amplifier	8447E	1937A01057	2011-11-24	2012-11-23
Rohde & Schwarz	EMI Test Receiver	ESCI	101122	2011-11-17	2012-11-16
Sunol Sciences	Broadband Antenna	JB1	A040904-2	2011-11-28	2012-11-27
Mini-Circuits	Amplifier	ZVA-213+	N/A	2011-11-24	2012-11-23
Sunol Sciences	Horn Antenna	DRH-118	A052304	2011-12-01	2012-11-30
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2011-11-24	2012-11-23
Agilent	Spectrum Analyzer	8564E	3943A01781	2012-05-17	2013-05-16
the electro-Mechanics Co.	Horn Antenna	3116	9510-2270	2011-10-14	2012-10-13

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements.

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.247, with the worst margin reading of:

3.53 dB at 4960 MHz in the **Horizontal** polarization

Test Data

Environmental Conditions

Temperature:	25°C
Relative Humidity:	56 %
ATM Pressure:	100 kPa

The testing was performed by Henry Ding on 2012-07-05.

Test mode: Transmitting

30 MHz ~25 GHz:

Frequency (MHz)	Meter Reading (dB μ V/m)	Detector (PK/QP/Ave.)	Direction (Degree)	Height (m)	Polar (H/V)	Antenna Loss (dB)	Cable loss (dB)	Amplifier Gain (dB)	FCC Part 15.247/15.205/15.209		
									Limit (dB μ V/m)	Margin (dB)	
Low Channel (2402 MHz)											
2402.0	85.47	PK	76	1.4	H	29.6	3.03	26.50	91.60	/	/
2402.0	55.91	Ave.	76	1.4	H	29.6	3.03	26.50	62.04	/	/
2402.0	83.21	PK	215	1.2	V	29.6	3.03	26.50	89.34	/	/
2402.0	51.20	Ave.	215	1.2	V	29.6	3.03	26.50	57.33	/	/
4804.0	53.71	PK	35	1.3	H	34.6	4.30	26.50	66.11	74	7.89
4804.0	30.02	Ave.	35	1.3	H	34.6	4.30	26.50	42.42	54	11.58
9608.0	30.38	PK	227	1.5	V	39.8	5.98	26.50	49.66	74	24.34
7206.0	31.56	PK	158	1.6	H	38.4	5.16	26.50	48.62	74	25.38
2315.2	36.82	PK	224	1.3	V	29.0	2.98	26.50	42.30	74	31.70
2493.2	33.54	PK	60	1.2	H	30.8	3.29	26.50	41.13	74	32.87
2383.2	34.06	PK	135	1.2	V	29.6	3.03	26.50	40.19	74	33.81
Middle Channel (2441 MHz)											
2441.0	82.04	PK	45	1.6	H	30.6	3.11	26.50	89.25	/	/
2441.0	50.04	Ave.	45	1.6	H	30.6	3.11	26.50	57.25	/	/
2441.0	80.35	PK	360	1.5	V	30.6	3.11	26.50	87.56	/	/
2441.0	49.62	Ave.	360	1.5	V	30.6	3.11	26.50	56.83	/	/
4882.0	55.78	PK	224	1.1	H	34.6	4.36	26.50	68.24	74	5.76
4882.0	30.25	Ave.	224	1.1	H	34.6	4.36	26.50	42.71	54	11.29
9764.0	33.85	PK	57	1.3	V	39.8	6.1	26.50	53.25	74	20.75
7323.0	32.59	PK	32	1.3	H	37.9	5.09	26.50	49.08	74	24.92
2486.5	32.63	PK	31	1.2	H	30.6	3.11	26.50	39.84	74	34.16
2376.3	33.47	PK	135	1.2	V	29.0	2.98	26.50	38.95	74	35.05
2324.6	32.56	PK	254	1.3	H	29.0	2.98	26.50	38.04	74	35.96
High Channel (2480 MHz)											
2480	84.67	PK	54	1.3	H	30.6	3.11	26.50	91.88	/	/
2480	54.56	Ave.	54	1.3	H	30.6	3.11	26.50	61.77	/	/
2480	82.67	PK	0	1.3	V	30.6	3.11	26.50	89.88	/	/
2480	50.56	Ave.	0	1.3	V	30.6	3.11	26.50	57.77	/	/
4960.0	57.97	PK	235	1.5	H	34.6	4.4	26.50	70.47	74	3.53*
4960.0	30.98	Ave.	235	1.5	H	34.6	4.4	26.50	43.48	54	10.52
9220.0	35.34	PK	87	1.2	H	38.6	5.86	26.50	53.3	74	20.7
7440.0	34.38	PK	169	1.3	H	37.2	5.2	26.50	50.28	74	23.72
2489.6	34.31	PK	125	1.1	H	30.6	3.11	26.50	41.52	74	32.48
2491.2	33.68	PK	35	1.3	V	30.2	3.11	26.50	40.49	74	33.51
2358.3	32.69	PK	125	1.2	H	29.0	2.98	26.50	38.17	74	35.83

FCC §15.247(a) (1)-CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW.

Test Procedure

1. Set the EUT in transmitting mode, RBW of spectrum was set at 10 kHz, maxhold the channel.
2. Set the adjacent channel of the EUT maxhold another trace
3. Measure the channel separation.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2011-11-24	2012-11-23

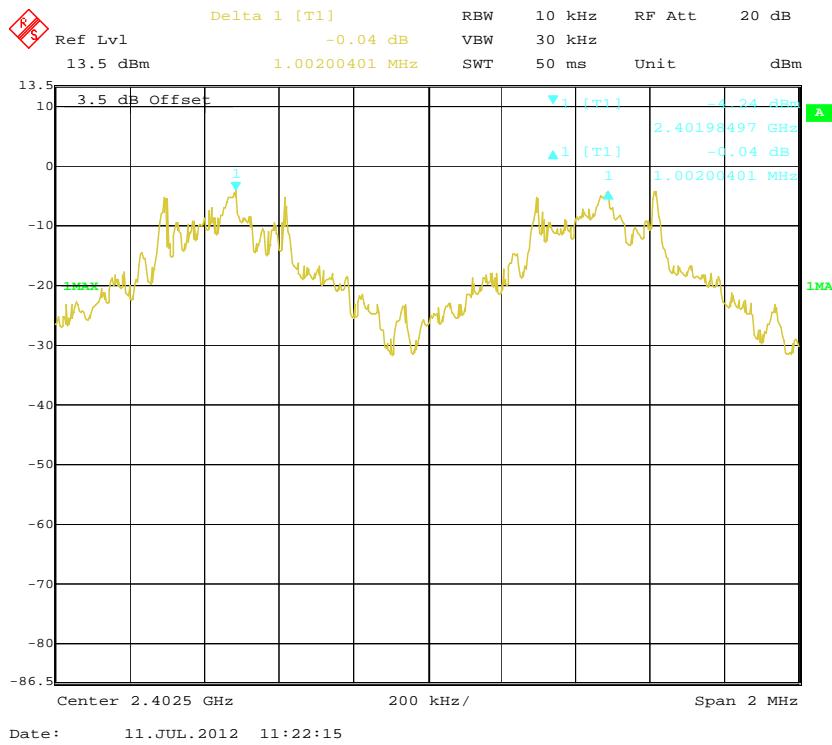
* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements.

Test Data

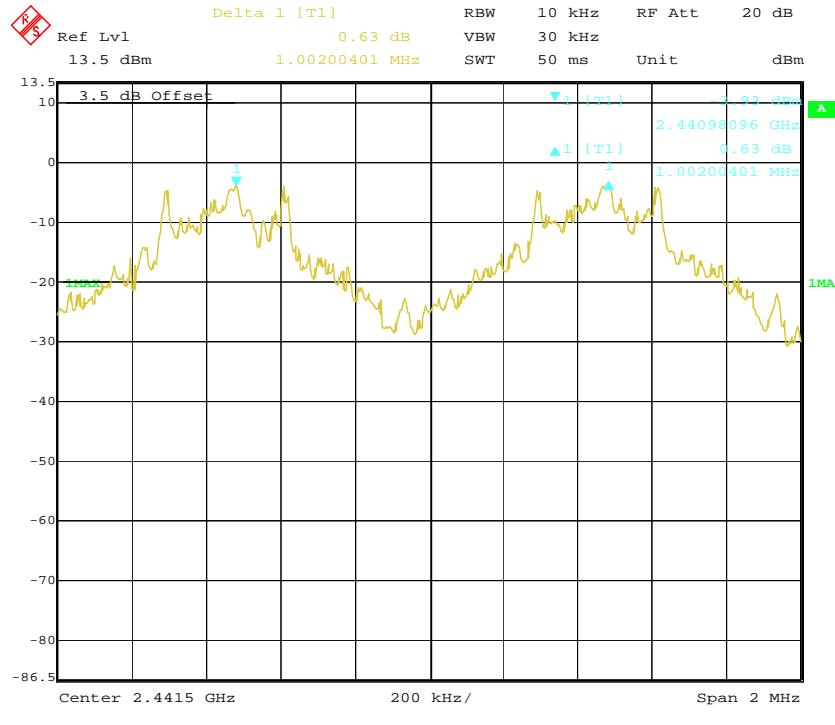
Environmental Conditions

Temperature:	25°C
Relative Humidity:	56 %
ATM Pressure:	100 kPa

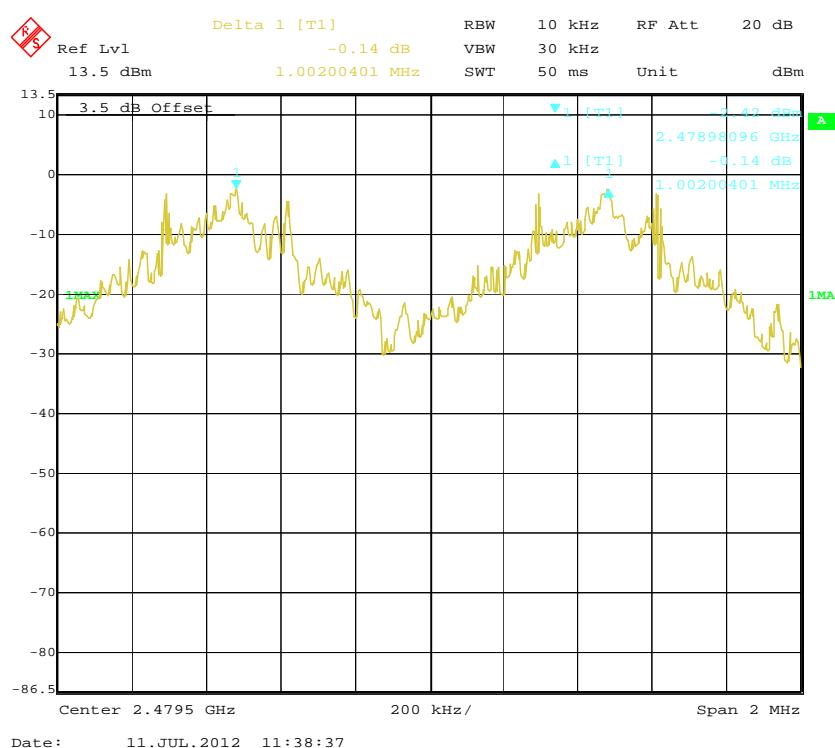
* The testing was performed by Henry Ding on 2012-07-11.


Test Mode: Transmitting

Test Result: Compliance. Please refer to following tables and plots


Mode	Channel	Frequency (MHz)	Channel Separation (MHz)	≥Limit (MHz)	Result
BDR (GFSK)	Low	2402	1.002	0.625	Pass
	Adjacent	2403			
	Middle	2441	1.002	0.625	Pass
	Adjacent	2442			
	High	2480	1.002	0.625	Pass
	Adjacent	2479			

Note: Limit = 20 dB bandwidth *2/3


BDR (GFSK): Low Channel

BDR (GFSK): Middle Channel

BDR (GFSK): High Channel

FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH TESTING

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
4. Repeat above procedures until all frequencies measured were complete.

Test Equipment List and Details

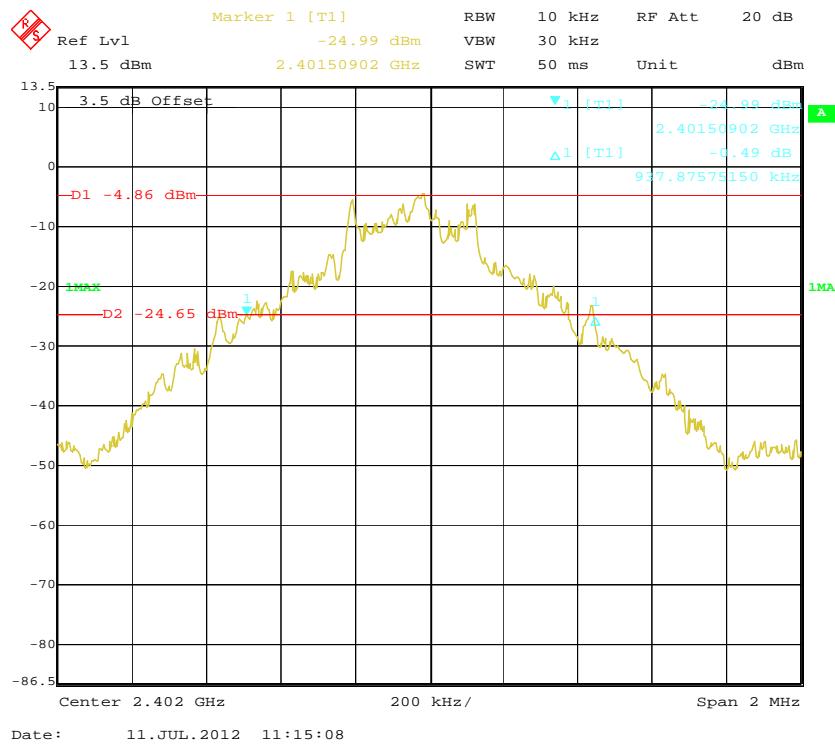
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2011-11-24	2012-11-23

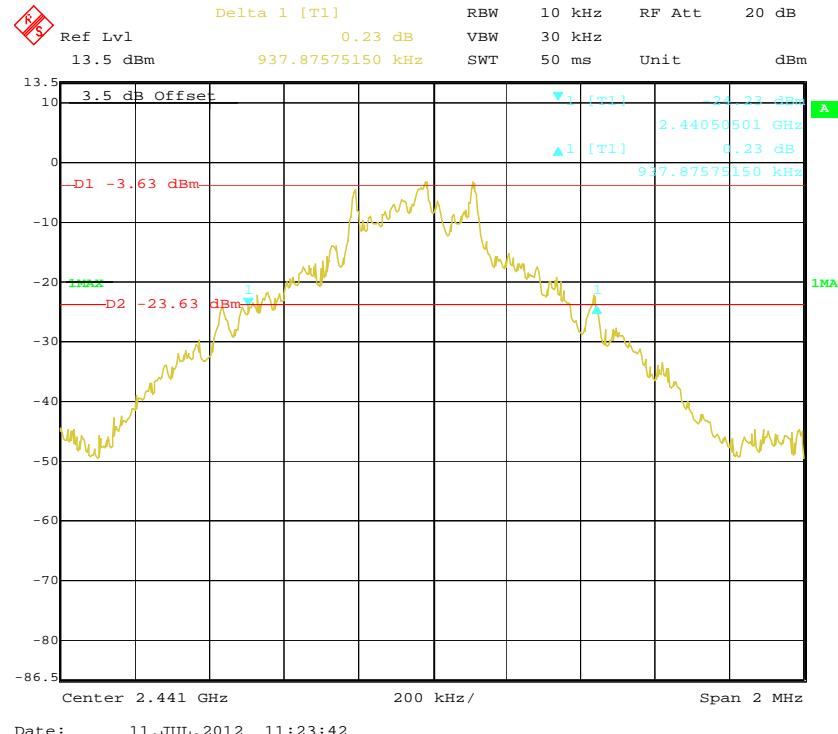
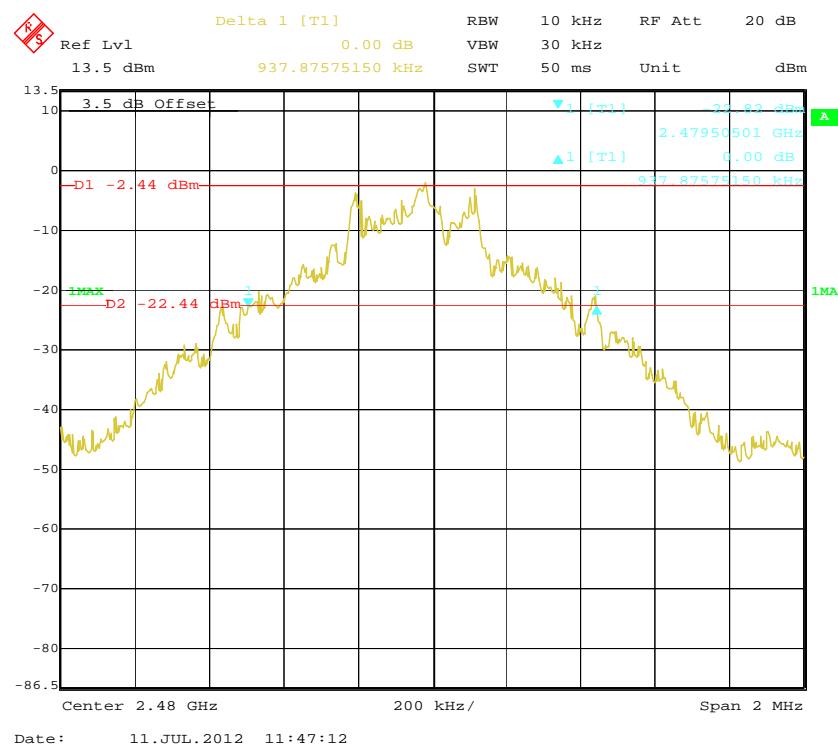
* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Data

Environmental Conditions

Temperature:	25°C
Relative Humidity:	56 %
ATM Pressure:	100 kPa


* The testing was performed by Henry Ding on 2012-07-11.



Test Mode: Transmitting

Test Result: Compliance. Please refer to following tables and plots

Mode	Channel	Frequency (MHz)	20 dB Bandwidth (MHz)
BDR (GFSK)	Low	2402	0.938
	Middle	2441	0.938
	High	2480	0.938

BDR (GFSK): Low Channel

BDR (GFSK): Middle Channel**BDR (GFSK): High Channel**

FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
2. Set the EUT in hopping mode from first channel to last.
3. By using the Max-Hold function record the Quantity of the channel.

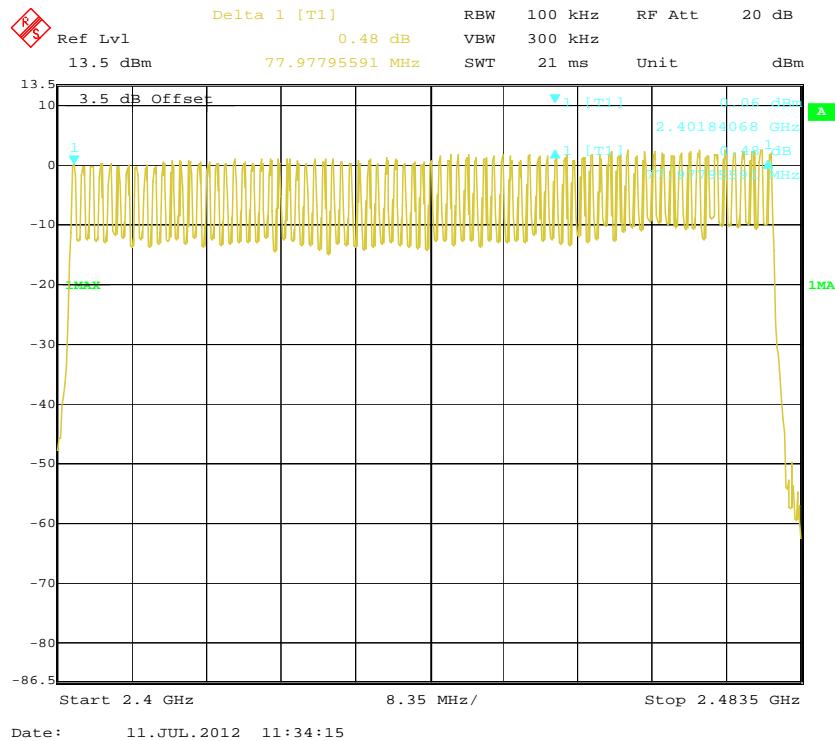
Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2011-11-24	2012-11-23

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Data

Environmental Conditions


Temperature:	25°C
Relative Humidity:	56 %
ATM Pressure:	100 kPa

The testing was performed by Henry Ding on 2012-07-11.

Test Mode: Transmitting

Test Result: Compliance. Please refer to following tables and plots

Mode	Frequency Range (MHz)	Number of Hopping Channel (CH)	Limit (CH)
BDR (GFSK)	2402-2480	79	≥15

BDR (GFSK): Number of Hopping Channels

FCC §15.247(a) (1) (iii) -TIME OF OCCUPANCY (DWELL TIME)**Applicable Standard**

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

The EUT was worked in channel hopping; Spectrum SPAN was set as 0. Sweep was set as 0.4 X channel no. (s), the quantity of pulse was get from single sweep. In addition, the time of single pulses was tested.

Dwell time = Pulse time*hop rate/number of hopping channels*31.6S
Hop rate=1600/S

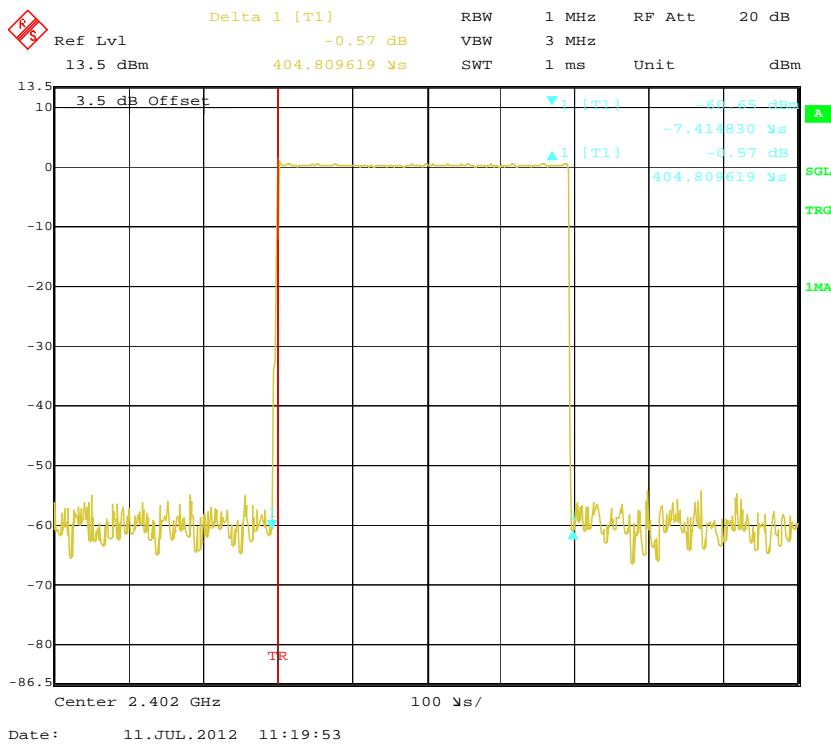
Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2011-11-24	2012-11-23

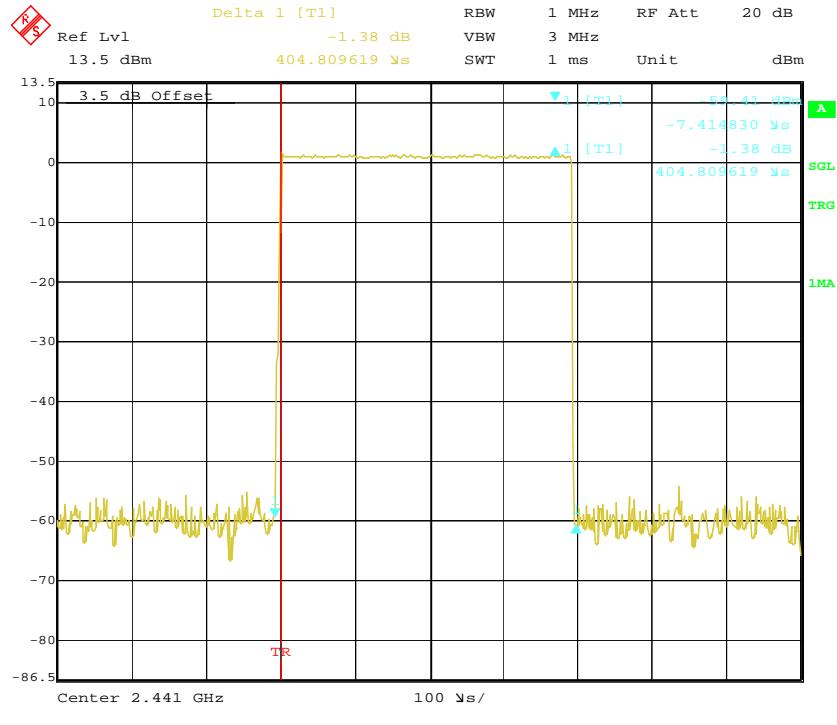
* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements.

Test Data**Environmental Conditions**

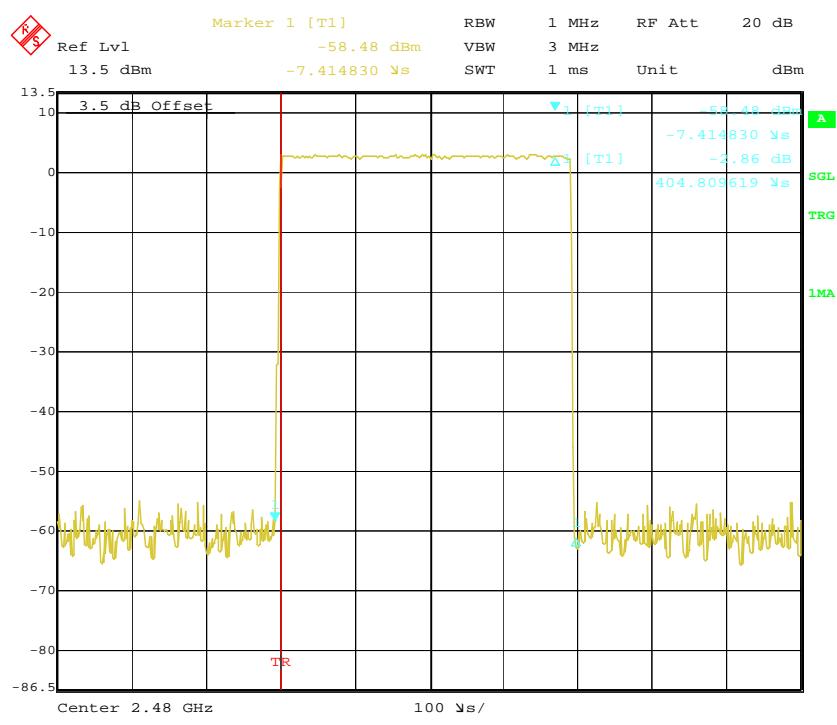
Temperature:	25°C
Relative Humidity:	56 %
ATM Pressure:	100 kPa

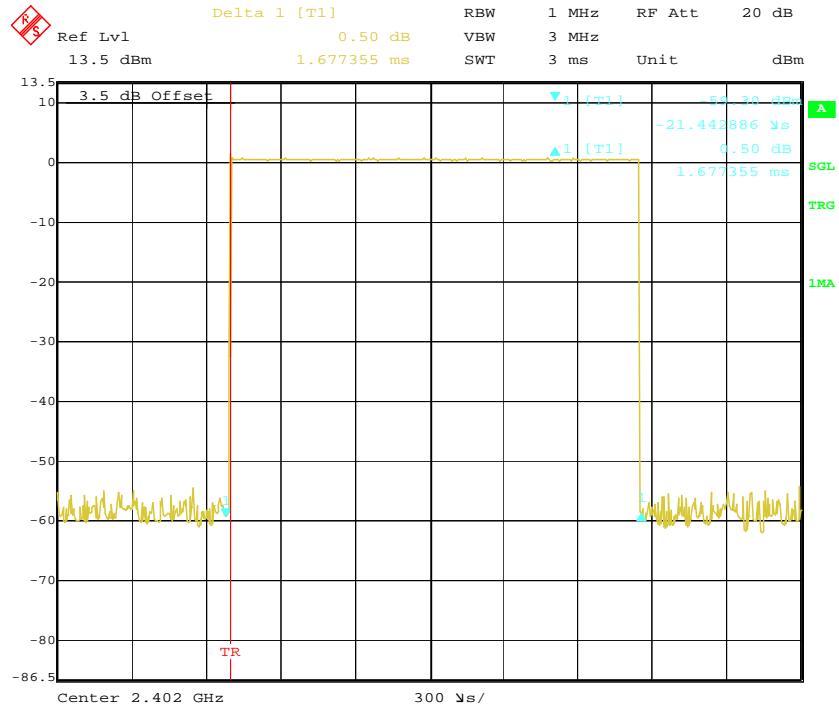

The testing was performed by Henry Ding on 2012-07-11

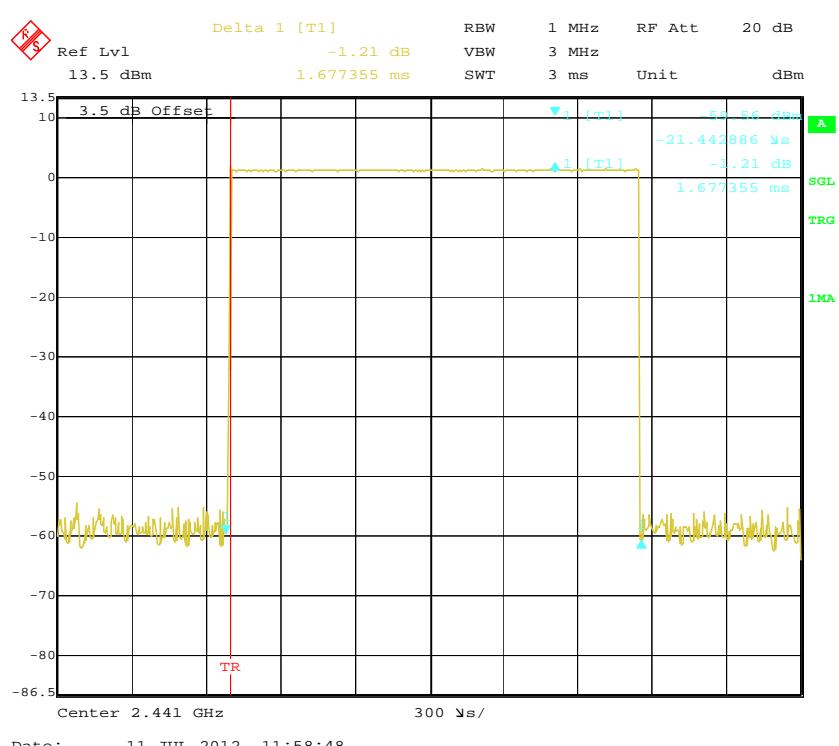
Test Mode: Transmitting

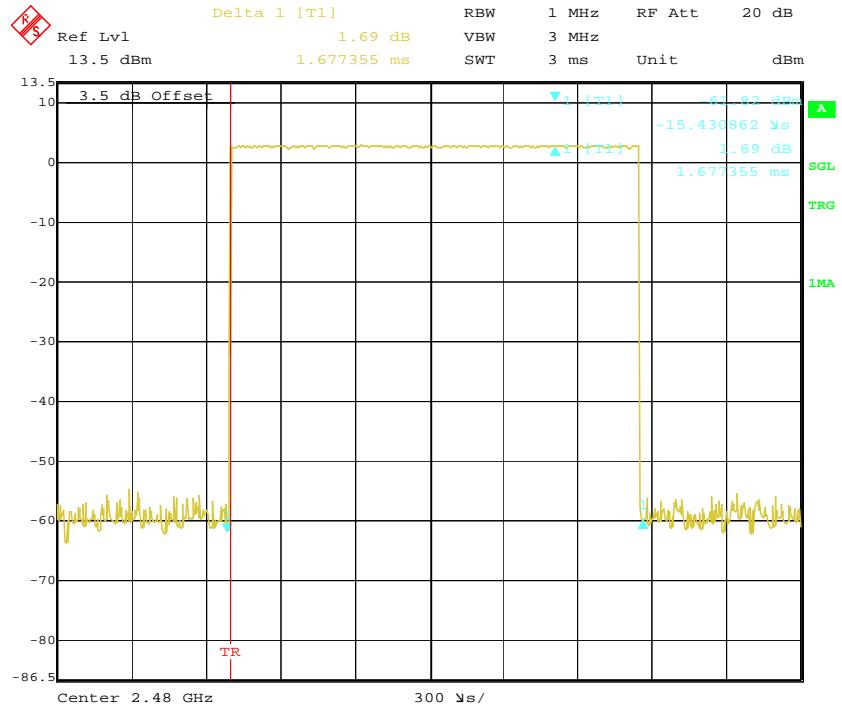

Test Result: Compliance. Please refer to following tables and plots

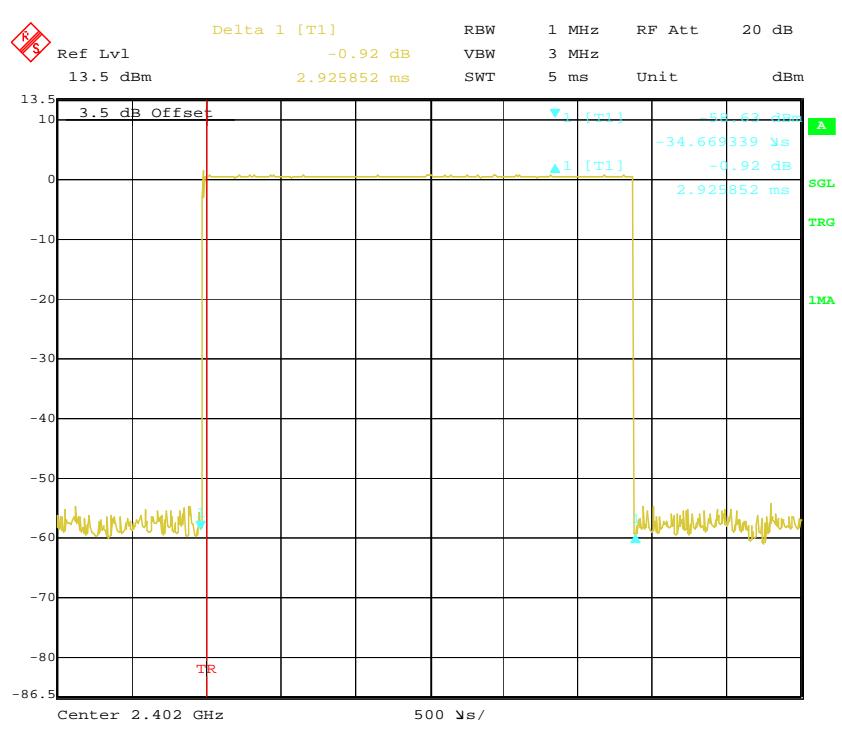
Mode		Channel	Pulse Width (ms)	Dwell Time (S)	Limit (S)	Result
BDR (GFSK)	DH 1	Low	0.405	0.1296	0.4	Pass
		Middle	0.405	0.1296	0.4	Pass
		High	0.405	0.1296	0.4	Pass
	Note: DH1:Dwell time = Pulse time*(1600/2/79)*31.6S					
	DH 3	Low	1.677	0.2683	0.4	Pass
		Middle	1.677	0.2683	0.4	Pass
		High	1.677	0.2683	0.4	Pass
	Note: DH3:Dwell time = Pulse time*(1600/4/79)*31.6S					
	DH 5	Low	2.926	0.3121	0.4	Pass
		Middle	2.936	0.3132	0.4	Pass
		High	2.926	0.3121	0.4	Pass
Note: DH5:Dwell time = Pulse time*(1600/6/79)*31.6S						

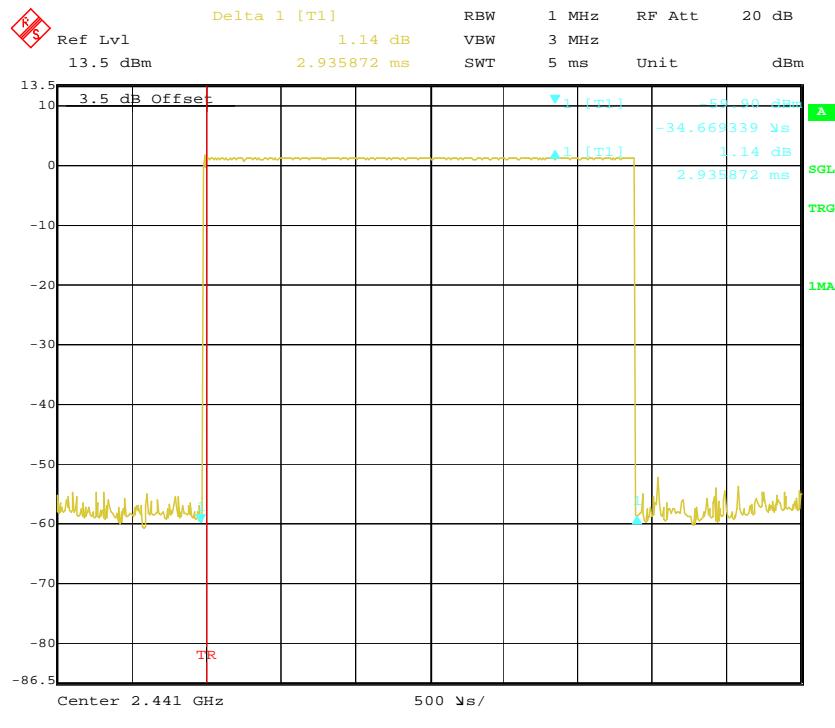

Pulse time, Low Channel, DH1

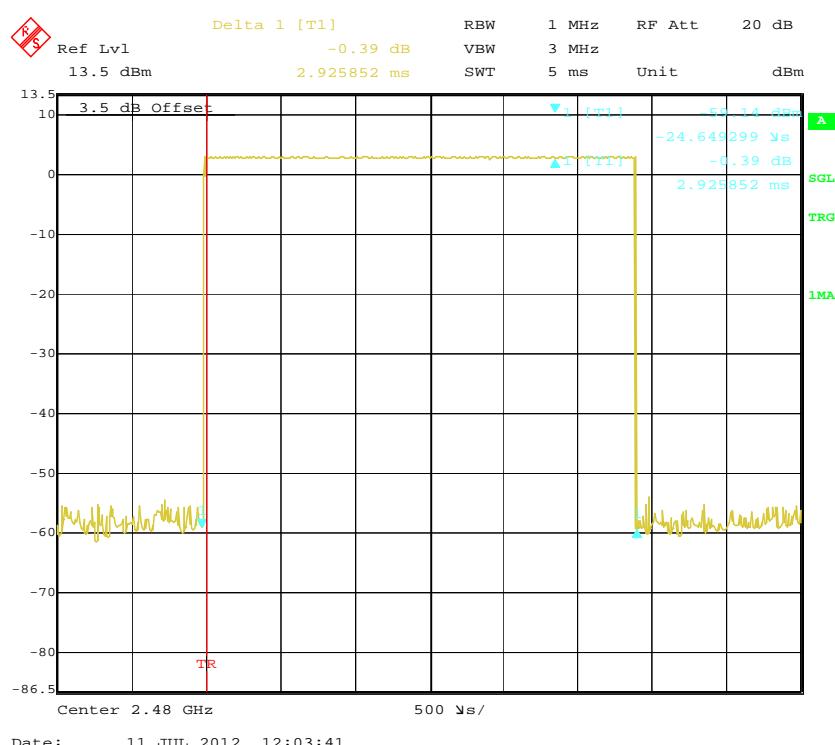

Pulse time, Middle Channel, DH1


Pulse time, High Channel, DH1


Pulse time, Low Channel, DH3

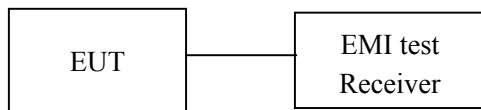

Pulse time, Middle Channel, DH3


Pulse time, High Channel, DH3


Pulse time, Low Channel, DH5

Pulse time, Middle Channel, DH5

Pulse time, High Channel, DH5


FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Test Procedure

1. Place the EUT on a bench and set in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to an EMI test receiver.
3. Add a correction factor to the display.

Test Equipment List and Details

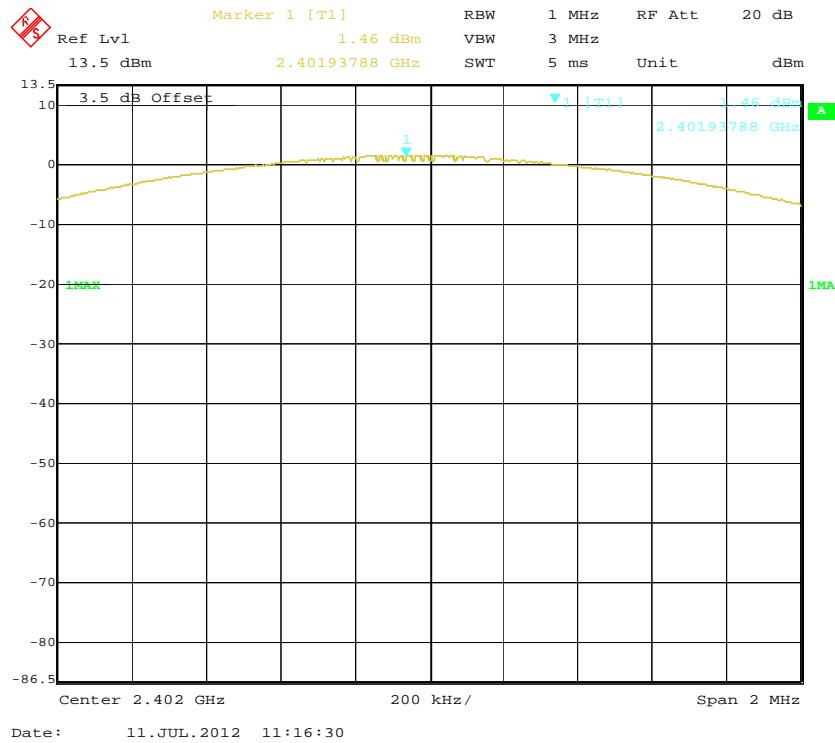
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2011-11-24	2012-11-23

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements.

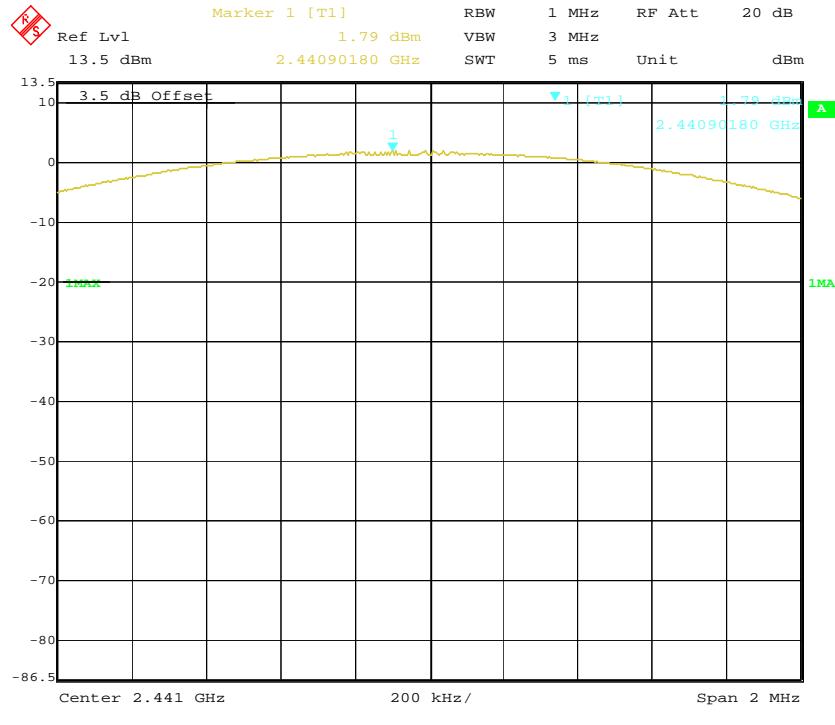
Test Data

Environmental Conditions

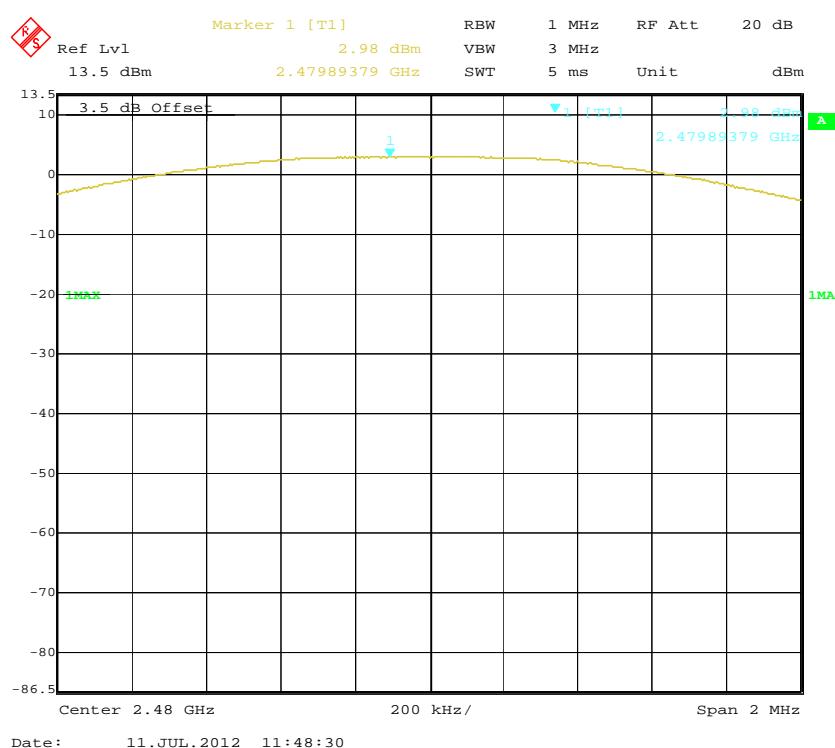
Temperature:	25°C
Relative Humidity:	56 %
ATM Pressure:	100 kPa


The testing was performed by Henry Ding on 2012-07-11.

Test Mode: Transmitting


Test Result: Compliance. Please refer to following tables and plots

Mode	Channel	Frequency (MHz)	Conducted Output Power		Limit (mW)
			(dBm)	(mW)	
BDR (GFSK)	Low	2402	1.46	1.3996	1000
	Middle	2441	1.79	1.5101	1000
	High	2480	2.98	1.9861	1000


Low Channel

Middle Channel

High Chanel

FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
3. Set RBW of spectrum analyzer to 1 MHz with a convenient frequency span including 100 kHz bandwidth from band edge, for Radiated emissions restricted band RBW=1 MHz, VBW=3 MHz.
4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
5. Repeat above procedures until all measured frequencies were complete.

Test Equipment List and Details

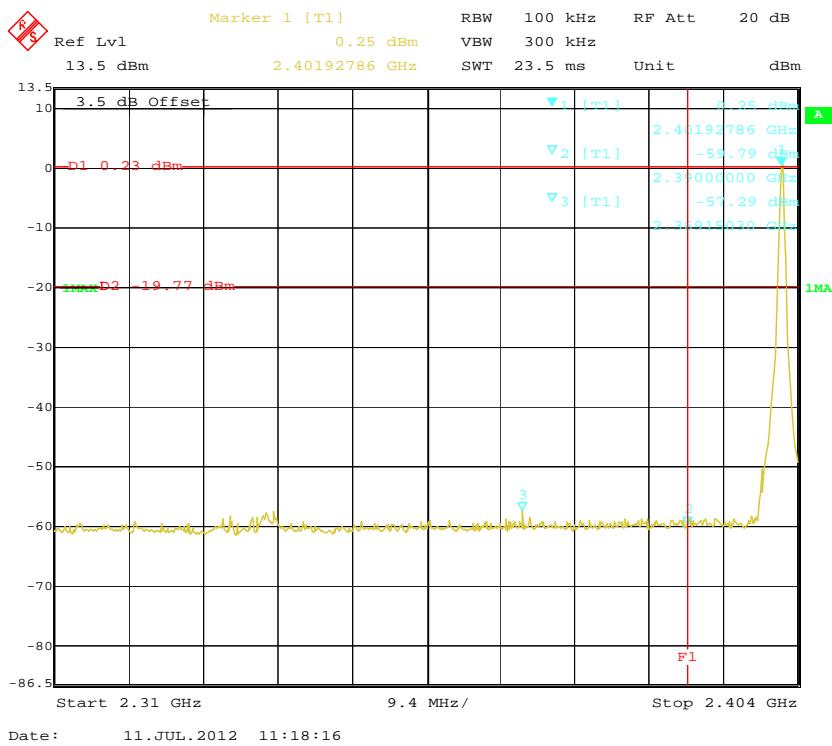
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum analyzer	FSEM 30	10798500	2011-10-09	2012-10-08

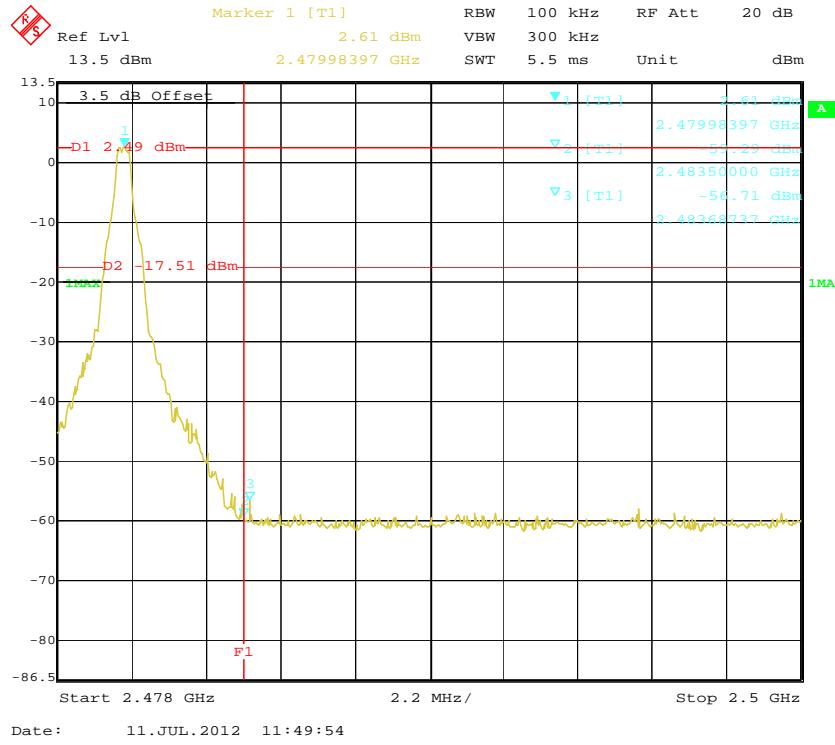
* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Data

Environmental Conditions

Temperature:	25°C
Relative Humidity:	56 %
ATM Pressure:	100 kPa


The testing was performed by Henry Ding on 2012-07-11.


Test Mode: Transmitting

Test Result: Compliance. Please refer to following table and plots

Mode	Frequency	Delta Peak to Band Emission (dBc)	Limit (dBc)
BDR (GFSK)	2369.150	57.54	>20
	2483.687	59.32	>20

Band Edge-Left Side

Band Edge-Right Side******* END OF REPORT *******