# PCTEST ENGINEERING LABORATORY, INC.



7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctestlab.com



# SAR EVALUATION REPORT

**Applicant Name:** 

LG Electronics MobileComm U.S.A., Inc. 1000 Sylvan Avenue Englewood Cliffs, NJ 07632

**United States** 

**Date of Testing:** 11/11/13 – 11/26/13 **Test Site/Location:** 

PCTEST Lab, Columbia, MD, USA

Document Serial No.: 0Y1311192196-R1.ZNF

FCC ID: ZNFLS995

APPLICANT: LG ELECTRONICS MOBILECOMM U.S.A., INC.

**DUT Type:** Portable Handset

Application Type: Class II Permissive Change

FCC Rule Part(s): CFR §2.1093

Model(s): LG-LS995, LS995, LGLS995
Class II Permissive Change: See FCC Change Document

Original Grant Date: November 20, 2013

| Equipment                                  | Band & Mode                                                    | Tx Frequency          | Measured<br>Conducted | SAR                 |                           |                        |                           |
|--------------------------------------------|----------------------------------------------------------------|-----------------------|-----------------------|---------------------|---------------------------|------------------------|---------------------------|
| Class                                      | 24.14 4.11.040                                                 | .xrroquonoy           | Power [dBm]           | 1 gm Head<br>(W/kg) | 1 gm Body-<br>Worn (W/kg) | 1 gm Hotspot<br>(W/kg) | 10 gm Extremity<br>(W/kg) |
| PCE                                        | CDMA/EVDO BC10 (§90S)                                          | 817.90 - 822.75 MHz   | 25.04                 | 0.66                | 0.74                      | 0.73                   |                           |
| PCE                                        | CDMA/EVDO BC0 (§22H)                                           | 824.70 - 848.31 MHz   | 24.98                 | 0.56                | 0.65                      | 0.71                   |                           |
| PCE                                        | PCS CDMA/EVDO                                                  | 1851.25 - 1908.75 MHz | 23.99                 | 0.44                | 1.16                      | 1.20                   |                           |
| PCE                                        | GSWGPRS/EDGE 850                                               | 824.20 - 848.80 MHz   | 33.12                 | 0.73                | 0.75                      | 0.84                   |                           |
| PCE                                        | GSM/GPRS/EDGE 1900                                             | 1850.20 - 1909.80 MHz | 29.44                 | 0.21                | 0.63                      | 0.63                   |                           |
| PCE                                        | UMTS 850                                                       | 826.40 - 846.60 MHz   | 23.60                 | 0.44                | 0.45                      | 0.71                   |                           |
| PCE                                        | UMTS 1900                                                      | 1852.4 - 1907.6 MHz   | 23.10                 | 0.15                | 0.59                      | 0.72                   |                           |
| PCE                                        | LTE Band 26                                                    | 814.7 - 848.3 MHz     | 24.12                 | 0.51                | 0.56                      | 0.59                   |                           |
| PCE                                        | LTE Band 25 (PCS)                                              | 1851.5 - 1913.5 MHz   | 23.66                 | 0.26                | 0.77                      | 0.91                   |                           |
| PCE                                        | LTE Band 41                                                    | 2501 - 2685 MHz       | 23.00                 | 0.36                | 0.40                      | 0.86                   |                           |
| DTS                                        | 2.4 GHz WLAN                                                   | 2412 - 2462 MHz       | 16.48                 | 0.44                | 0.21                      | 0.21                   |                           |
| DTS/NII                                    | 5.8 GHz WLAN                                                   | 5745 - 5825 MHz       | 10.91                 | < 0.1               | < 0.1                     | < 0.1                  |                           |
| NII                                        | 5.2 GHz WLAN                                                   | 5180 - 5240 MHz       | 11.19                 | 0.16                | 0.13                      |                        | 0.25                      |
| NII                                        | 5.3 GHz WLAN                                                   | 5260 - 5320 MHz       | 11.61                 | 0.16                | 0.13                      |                        | 0.24                      |
| NII                                        | 5.5 GHz WLAN                                                   | 5500 - 5700 MHz       | 11.38                 | 0.15                | 0.11                      |                        | 0.14                      |
| DSS/DTS Bluetooth 2402 - 2480 MHz 8.12 N/A |                                                                |                       | /A                    |                     |                           |                        |                           |
| Simultaneous                               | Simultaneous SAR per KDB 690783 D01v01r02: 1.06 1.39 1.41 0.25 |                       |                       |                     |                           | 0.25                   |                           |

Note: Powers in the above table represent output powers for the SAR test configurations and may not represent the highest output powers for all configurations for each mode.

This revised Test Report (S/N: 0Y1311192196-R1.ZNF) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.9 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.





| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             | Page 1 of 79                 |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      | Faye 10179                   |

# TABLE OF CONTENTS

| 1     | DEVICE   | UNDER TEST                                | 3    |
|-------|----------|-------------------------------------------|------|
| 2     | LTE INFO | DRMATION                                  | . 11 |
| 3     | INTROD   | UCTION                                    | . 12 |
| 4     | DOSIME   | TRIC ASSESSMENT                           | . 13 |
| 5     | DEFINIT  | ION OF REFERENCE POINTS                   | . 14 |
| 6     | TEST CO  | ONFIGURATION POSITIONS FOR HANDSETS       | . 15 |
| 7     | RF EXP   | OSURE LIMITS                              | . 19 |
| 8     | FCC ME   | ASUREMENT PROCEDURES                      | . 20 |
| 9     | RF CON   | DUCTED POWERS                             | . 26 |
| 10    | SYSTEM   | VERIFICATION                              | . 43 |
| 11    | SAR DA   | TA SUMMARY                                | . 47 |
| 12    | FCC MU   | LTI-TX AND ANTENNA SAR CONSIDERATIONS     | . 64 |
| 13    | SAR ME   | ASUREMENT VARIABILITY                     | . 73 |
| 14    | EQUIPM   | ENT LIST                                  | . 74 |
| 15    | MEASUF   | REMENT UNCERTAINTIES                      | . 75 |
| 16    | CONCLU   | JSION                                     | . 77 |
| 17    | REFERE   | NCES                                      | . 78 |
| APPEN | NDIX A:  | SAR TEST PLOTS                            |      |
| APPEN | NDIX B:  | SAR DIPOLE VERIFICATION PLOTS             |      |
| APPEN | NDIX C:  | PROBE AND DIPOLE CALIBRATION CERTIFICATES |      |
| APPEN | NDIX D:  | SAR TISSUE SPECIFICATIONS                 |      |
| APPEN | NDIX E:  | SAR SYSTEM VALIDATION                     |      |
| APPEN | NDIX F:  | SAR TEST SETUP PHOTOGRAPHS                |      |

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT | LG | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|----|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             |    | Page 2 of 79                 |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      |    | Fage 2 01 79                 |

# 1 DEVICE UNDER TEST

# 1.1 Device Overview

| Band & Mode           | Operating Modes | Tx Frequency          |
|-----------------------|-----------------|-----------------------|
| CDMA/EVDO BC10 (§90S) | Voice/Data      | 817.90 - 822.75 MHz   |
| CDMA/EVDO BC0 (§22H)  | Voice/Data      | 824.70 - 848.31 MHz   |
| PCS CDMA/EVDO         | Voice/Data      | 1851.25 - 1908.75 MHz |
| GSMGPRS/EDGE 850      | Voice/Data      | 824.20 - 848.80 MHz   |
| GSM/GPRS/EDGE 1900    | Voice/Data      | 1850.20 - 1909.80 MHz |
| UMTS 850              | Voice/Data      | 826.40 - 846.60 MHz   |
| UMTS 1900             | Voice/Data      | 1852.4 - 1907.6 MHz   |
| LTE Band 26           | Data            | 814.7 - 848.3 MHz     |
| LTE Band 25 (PCS)     | Data            | 1851.5 - 1913.5 MHz   |
| LTE Band 41           | Data            | 2501 - 2685 MHz       |
| 2.4 GHz WLAN          | Data            | 2412 - 2462 MHz       |
| 5.8 GHz WLAN          | Data            | 5745 - 5825 MHz       |
| 5.2 GHz WLAN          | Data            | 5180 - 5240 MHz       |
| 5.3 GHz WLAN          | Data            | 5260 - 5320 MHz       |
| 5.5 GHz WLAN          | Data            | 5500 - 5700 MHz       |
| Bluetooth             | Data            | 2402 - 2480 MHz       |
| NFC                   | Data            | 13.56 MHz             |

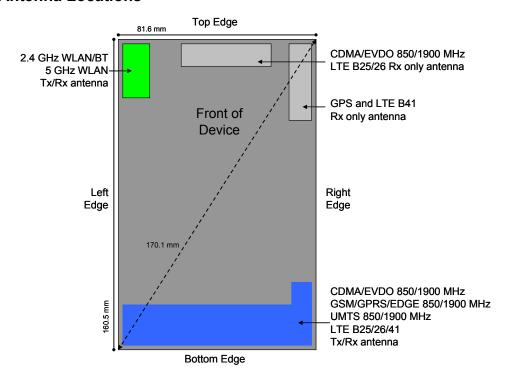
# 1.2 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v05.

| Mode / Band               | Modulated Average<br>(dBm) |      |
|---------------------------|----------------------------|------|
| CDMA/EVDO BC10 (§90S)     | Maximum                    | 25.2 |
| CDIVIA/ EVDO BC10 (9903)  | Nominal                    | 24.7 |
| CDMA (E) (DO DCO (\$2211) | Maximum                    | 25.2 |
| CDMA/EVDO BC0 (§22H)      | Nominal                    | 24.7 |
| PCS CDMA/EVDO             | Maximum                    | 24.2 |
| PC3 CDIVIA/EVDO           | Nominal                    | 23.7 |

| FCC  | ID: ZNFLS995    | PCTEST.             | SAR EVALUATION REPORT LG | Reviewed by: Quality Manager |
|------|-----------------|---------------------|--------------------------|------------------------------|
| Docu | ıment S/N:      | Test Dates:         | DUT Type:                | Page 3 of 79                 |
| 0Y13 | 11192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset         | rage 3 of 79                 |

| Mada / Dand          |         | Voice | Burst A | verage | Burst Av | erage 8- |
|----------------------|---------|-------|---------|--------|----------|----------|
|                      |         | (dBm) | GMSK    | (dBm)  | PSK (    | dBm)     |
| Mode / Band          |         |       | 1 TX    | 2 TX   | 1 TX     | 2 TX     |
|                      |         | Slot  | Slots   | Slots  | Slots    | Slots    |
| GSM/GPRS/EDGE 850    | Maximum | 33.2  | 33.2    | 31.2   | 27.2     | 27.2     |
| GSIVI/GPR3/EDGE 830  | Nominal | 32.7  | 32.7    | 30.7   | 26.7     | 26.7     |
| GSM/GPRS/EDGE 1900   | Maximum | 30.2  | 30.2    | 28.2   | 26.2     | 26.2     |
| GSIVI/GFNS/EDGE 1900 | Nominal | 29.7  | 29.7    | 27.7   | 25.7     | 25.7     |


|                              |         |                 | Modulated Average |               |  |  |
|------------------------------|---------|-----------------|-------------------|---------------|--|--|
| Mode / Band                  |         | 3GPP<br>RMC/AMR | 3GPP<br>HSDPA     | 3GPP<br>HSUPA |  |  |
| UMTS Band 5 (850 MHz)        | Maximum | 23.7            | 23.7              | 23.7          |  |  |
| Olvi13 Ballu 3 (830 lvinz)   | Nominal | 23.2            | 23.2              | 23.2          |  |  |
| UMTS Band 2 (1900 MHz)       | Maximum | 23.2            | 23.2              | 23.2          |  |  |
| OIVITS Balla 2 (1900 IVITIZ) | Nominal | 22.7            | 22.7              | 22.7          |  |  |

| Mode / Band       | Modulated Average (dBm) |      |
|-------------------|-------------------------|------|
| LTE Band 26       | Maximum                 | 24.2 |
| LTE Ballu 20      | Nominal                 | 23.7 |
| LTE Dand 3E (DCS) | Maximum                 | 23.7 |
| LTE Band 25 (PCS) | Nominal                 | 23.2 |
| LTE Band 41       | Maximum                 | 23.2 |
| LIE Dallu 41      | Nominal                 | 22.7 |

| Mode / Band                       | Modulated Average<br>(dBm) |      |
|-----------------------------------|----------------------------|------|
| IEEE 802.11b (2.4 GHz)            | Maximum                    | 17.0 |
| TEEE 802.11D (2.4 GHZ)            | Nominal                    | 16.0 |
| IEEE 802.11g (2.4 GHz)            | Maximum                    | 14.3 |
| ILLE 802.11g (2.4 GHz)            | Nominal                    | 13.3 |
| IEEE 802.11n (2.4 GHz)            | Maximum                    | 13.4 |
| TEEE 802.1111 (2.4 GHZ)           | Nominal                    | 12.4 |
| IEEE 802.11a (5 GHz)              | Maximum                    | 12.0 |
| 1EEE 802.11a (3 GHZ)              | Nominal                    | 11.0 |
| IEEE 902 115 /E CH2 20 MH2 DM/\   | Maximum                    | 12.0 |
| IEEE 802.11n (5 GHz - 20 MHz BW)  | Nominal                    | 11.0 |
| IFFF 003 11 × /F CH = 40 MH= DM/  | Maximum                    | 12.0 |
| IEEE 802.11n (5 GHz - 40 MHz BW)  | Nominal                    | 11.0 |
| IEEE 902 1100 /E CUI- 90 MII- DW/ | Maximum                    | 11.5 |
| IEEE 802.11ac (5 GHz - 80 MHz BW) | Nominal                    | 10.5 |
| Dlustooth                         | Maximum                    | 9.5  |
| Bluetooth                         | Nominal                    | 8.0  |
| Bluetooth LE                      | Maximum                    | 6.0  |
| BluetOOth LE                      | Nominal                    | 3.0  |

| FCC ID: ZNFLS995    | PCTEST*             | SAR EVALUATION REPORT LG | Reviewed by: Quality Manager |
|---------------------|---------------------|--------------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:                | Page 4 of 79                 |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset         | Faye + Ul /9                 |

### 1.3 DUT Antenna Locations



### Notes:

- 1. Exact antenna dimensions and separation distances are shown in the Technical Descriptions in the FCC Filing.
- 2. Since the diagonal dimension of this device is > 160mm but < 200mm, it is considered a "phablet."

Figure 1-1
DUT Antenna Locations

Table 1-1 Sides for SAR Testing

| Mode              | Configuration   | Back | Front | Top | Bottom | Right | Left |
|-------------------|-----------------|------|-------|-----|--------|-------|------|
| EVDO BC10 (§90S)  | Wireless Router | Yes  | Yes   | No  | Yes    | Yes   | Yes  |
| EVDO BC0 (§22H)   | Wireless Router | Yes  | Yes   | No  | Yes    | Yes   | Yes  |
| PCS EVDO          | Wireless Router | Yes  | Yes   | No  | Yes    | Yes   | Yes  |
| GPRS 850          | Wireless Router | Yes  | Yes   | No  | Yes    | Yes   | Yes  |
| UMTS 850          | Wireless Router | Yes  | Yes   | No  | Yes    | Yes   | Yes  |
| GPRS 1900         | Wireless Router | Yes  | Yes   | No  | Yes    | Yes   | Yes  |
| UMTS 1900         | Wireless Router | Yes  | Yes   | No  | Yes    | Yes   | Yes  |
| LTE Band 26       | Wireless Router | Yes  | Yes   | No  | Yes    | Yes   | Yes  |
| LTE Band 25 (PCS) | Wireless Router | Yes  | Yes   | No  | Yes    | Yes   | Yes  |
| LTE Band 41       | Wireless Router | Yes  | Yes   | No  | Yes    | Yes   | Yes  |
| 2.4 GHz WLAN      | Wireless Router | Yes  | Yes   | Yes | No     | No    | Yes  |
| 5.2-5.7 GHz WLAN  | Extremity       | Yes  | Yes   | Yes | No     | No    | Yes  |
| 5.8 GHz WLAN      | Wireless Router | Yes  | Yes   | Yes | No     | No    | Yes  |

### Notes:

- Particular DUT edges were not required to be evaluated for Wireless Router and/or Extremity SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v01 guidance, page 2. When Hotspot is enabled, all 5 GHz bands are disabled. Therefore no 5 GHz WIFI Hotspot SAR Data was required.
- 5 GHz Wifi Direct GO is supported in the 5.8 GHz band only. The manufacturer expects 5.8 GHz Wifi Direct GO may be used similar to wireless router usage. Therefore, 5.8 GHz Wifi Direct GO was evaluated for SAR similar to wireless router SAR procedures in FCC KDB Publication 941225.

| FCC ID: ZNFLS995    | PCTEST*             | SAR EVALUATION REPORT | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             | Page 5 of 79                 |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      | rage 5 of 79                 |

#### 1.4 **Near Field Communications (NFC) Antenna**

This DUT has NFC operations. The NFC antenna is integrated into the battery cover. The SAR tests were performed with the battery cover containing the NFC antenna.

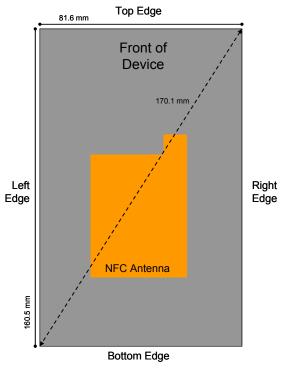



Figure 1-2 **NFC Antenna Locations** 

#### 1.5 **Simultaneous Transmission Capabilities**

According to FCC KDB Publication 447498 D05v01, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths for the DUT are shown in Figure 1-3 and are color-coded to indicate communication modes which share the same path. Modes which share the same transmission path cannot transmit simultaneously with one another.



Figure 1-3 Simultaneous Transmission Paths

| FCC ID: ZNFLS995    | PCTEST SUBSTRIBUTE INC. | SAR EVALUATION REPORT | <b>LG</b> | Reviewed by: Quality Manager |  |
|---------------------|-------------------------|-----------------------|-----------|------------------------------|--|
| Document S/N:       | Test Dates:             | DUT Type:             |           | Dago 6 of 70                 |  |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13     | Portable Handset      |           | Page 6 of 79                 |  |
|                     | DEV 40 5 M              |                       |           |                              |  |

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v05 3) procedures.

> Table 1-2 **Simultaneous Transmission Scenarios**

|     | Omiaitant                         | s transmission scenarios |                     |                           |                  |                                                  |
|-----|-----------------------------------|--------------------------|---------------------|---------------------------|------------------|--------------------------------------------------|
| No. | Capable TX Configration           | Head<br>SAR              | Body<br>Worn<br>SAR | Wireless<br>Router<br>SAR | Extremity<br>SAR | Note                                             |
| 1   | CDMA BC0 voice + WiFi 2.4GHz      | yes                      | yes                 | no                        | yes              |                                                  |
| 2   | CDMA BC1 voice + WiFi 2.4GHz      | yes                      | yes                 | no                        | yes              | CDMA voice + WiFi 2.4GHz                         |
| 3   | CDMA BC10 voice + WiFi 2.4GHz     | yes                      | yes                 | no                        | yes              |                                                  |
| 4   | CDMA BC0 voice + WiFi 5GHz        | yes                      | yes                 | no                        | yes              |                                                  |
| 5   | CDMA BC1 voice + WiFi 5GHz        | yes                      | yes                 | no                        | yes              | CDMA voice + WiFi 5GHz                           |
| 6   | CDMA BC10 voice + WiFi 5GHz       | yes                      | yes                 | no                        | yes              |                                                  |
| 7   | CDMA/EVDO BC0 data + WiFi 2.4GHz  | yes*                     | yes*                | yes                       | yes              |                                                  |
| 8   | CDMA/EVDO BC1 data + WiFi 2.4GHz  | yes*                     | yes*                | yes                       | yes              | CDMA/EVDO data + WiFi 2.4GHz                     |
| 9   | CDMA/EVDO BC10 data + WiFi 2.4GHz | yes*                     | yes*                | yes                       | yes              |                                                  |
| 10  | CDMA/EVDO BC0 data + WiFi 5GHz    | yes*                     | yes*                | yes                       | yes              |                                                  |
| 11  | CDMA/EVDO BC1 data + WiFi 5GHz    | yes*                     | yes*                | yes                       | yes              | CDMA/EVDO data + WiFi 5GHz<br>(WiFi 5GHz Direct) |
| 12  | CDMA/EVDO BC10 data + WiFi 5GHz   | yes*                     | yes*                | yes                       | yes              | (WIFI SQIIZ DIFECT)                              |
| 13  | GSM 850 Voice + WiFi 2.4GHz       | yes                      | yes                 | no                        | yes              |                                                  |
| 14  | GSM 1900 Voice + WiFi 2.4GHz      | yes                      | yes                 | no                        | yes              | GSM voice + WiFi 2.4GHz                          |
| 15  | GSM 850 Voice + WiFi 5GHz         | yes                      | yes                 | no                        | yes              |                                                  |
| 16  | GSM 1900 Voice + WiFi 5GHz        | yes                      | yes                 | no                        | yes              | GSM voice + WiFi 5GHz                            |
| 17  | GSM 850 GPRS/EDGE + WiFi 2.4GHz   | yes*                     | yes*                | yes                       | yes              |                                                  |
| 18  | GSM 1900 GPRS/EDGE + WiFi 2.4GHz  | yes*                     | yes*                | yes                       | yes              | GPRS/EDGE + WiFi 2.4GHz                          |
| 19  | GSM 850 GPRS/EDGE + WiFi 5GHz     | yes*                     | yes*                | yes                       | yes              | GPRS/EDGE + WiFi 5GHz                            |
| 20  | GSM 1900 GPRS/EDGE + WiFi 5GHz    | yes*                     | yes*                | yes                       | yes              | (WiFi 5GHz Direct)                               |
| 21  | UMTS 850 + WiFi 2.4GHz            | yes                      | yes                 | yes                       | yes              |                                                  |
| 22  | UMTS 1900 + WiFi 2.4GHz           | yes                      | yes                 | yes                       | yes              | WCDMA + WiFi 2.4GHz                              |
| 23  | UMTS 850 + WiFi 5GHz              | yes                      | yes                 | yes                       | yes              | WCDMA + WiFi 5GHz                                |
| 24  | UMTS 1900 + WiFi 5GHz             | yes                      | yes                 | yes                       | yes              | (WiFi 5GHz Direct)                               |
| 25  | LTE B25 + WiFi 2.4GHz             | yes*                     | yes*                | yes                       | yes              |                                                  |
| 26  | LTE B26 + WiFi 2.4GHz             | yes*                     | yes*                | yes                       | yes              | LTE + WiFi 2.4GHz                                |
| 27  | LTE B41 + WiFi 2.4GHz             | yes*                     | yes*                | yes                       | yes              |                                                  |
| 28  | LTE B25 + WiFi 5GHz               | yes*                     | yes*                | yes                       | yes              |                                                  |
| 29  | LTE B26 + WiFi 5GHz               | yes*                     | yes*                | yes                       | yes              | LTE + WiFi 5GHz<br>(WiFi 5GHz Direct)            |
| 30  | LTE B41 + WiFi 5GHz               | yes*                     | yes*                | yes                       | yes              | (Will I Suite Direct)                            |
| 31  | CDMA BC0 voice + Bluetooth        | no                       | yes                 | no                        | yes              |                                                  |
| 32  | CDMA BC1 voice + Bluetooth        | no                       | yes                 | no                        | yes              |                                                  |
| 33  | CDMA BC10 voice + Bluetooth       | no                       | yes                 | no                        | yes              |                                                  |
| 34  | GSM 850 Voice + Bluetooth         | no                       | yes                 | no                        | yes              |                                                  |
| 35  | GSM 1900 Voice + Bluetooth        | no                       | yes                 | no                        | yes              |                                                  |
| 19  | GSM 850 GPRS/EDGE + Bluetooth     | no                       | yes*                | no                        | yes              |                                                  |
| 20  | GSM 1900 GPRS/EDGE + Bluetooth    | no                       | yes*                | no                        | yes              |                                                  |
| 36  | UMTS 850 + Bluetooth              | no                       | yes                 | no                        | yes              |                                                  |
| 37  | UMTS 1900 + Bluetooth             | no                       | yes                 | no                        | yes              |                                                  |
| 38  | LTE B25 + Bluetooth               | no                       | yes*                | no                        | yes              |                                                  |
| 39  | LTE B26 + Bluetooth               | no                       | yes*                | no                        | yes              |                                                  |
| 40  | LTE B41 + Bluetooth               | no                       | yes*                | no                        | yes              |                                                  |
|     |                                   |                          |                     |                           |                  |                                                  |

- 1. Hotspot and WiFi-Direct(GO/GC) are supported for WiFi 2.4 GHz.
- 1. Hotspot and WiFi-Direct(GO/GC) are supported for WiFi 2.4 GHz.

  2. Hotspot is not supported for WiFi 5 GHz. WiFi-Direct GC is supported for WiFi 5 GHz. WiFi-Direct GO is supported for 5.8 GHz only.

  3. EVDO, LTE, WCDMA, GPRS/EDGE is supported Hotspot.

  4. VoIP is supported in EVDO, LTE, UMTS, GPRS (e.g. 3rd party VoIP)

  5. Bluetooth and WiFi can not transmit simultaneously since they share the same chip.

  6. CDMA, GSM, UMTS and LTE can not transmit simultaneously since they share the same chip.

- (\*) = for VOIP 3<sup>rd</sup> party applications possibly installed and used by the end-user
- When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.
- Per the manufacturer, WIFI Direct is expected to be used in conjunction with a held-to-ear or body-worn accessory voice call. Simultaneous transmission scenarios involving WIFI direct are specified above.

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             | Page 7 of 79                 |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      | Faye / Ul /9                 |

#### 1.6 **SAR Test Exclusions Applied**

### (A) WIFI/BT

Since Wireless Router operations are not allowed by the chipset firmware using 5.2 – 5.7 GHz NII WIFI, only 2.4 GHz WIFI Hotspot and 5.8 GHz Wifi Direct GO SAR tests and combinations are considered for SAR with respect to Wireless Router configurations according to FCC KDB 941225 D06v01.

5 GHz Wifi Direct GO is supported in the 5.8 GHz band only. The manufacturer expects 5.8 GHz Wifi Direct GO may be used similar to wireless router usage. Therefore, 5.8 GHz Wifi Direct GO was evaluated for SAR similar to wireless router SAR procedures in FCC KDB Publication 941225.

Per FCC KDB Publication 648474 D04v01r01, this device is considered a "phablet" since the diagonal dimension is greater than 160mm and less than 200 mm. Therefore, extremity SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg. Because WIFI Direct GO is supported for 5.8 GHz WLAN, but not for all other 5 GHz WIFI bands, extremity SAR was evaluated for 5.2-5.7 GHz WIFI. Extremity SAR was not evaluated for 2.4 GHz WIFI since Hotspot SAR for 2.4 GHz WIFI < 1.2 W/kg.

Per FCC KDB 447498 D01v05, the 1g SAR exclusion threshold for distances <50mm is defined by the following equation:

$$\frac{\textit{Max Power of Channel (mW)}}{\textit{Test Separation Dist (mm)}} * \sqrt{\textit{Frequency(GHz)}} \le 3.0$$

Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, Bluetooth 1g SAR was not required; [(9/10)\* √2.441] = 1.4< 3.0. Per KDB Publication 447498 D01v05, the maximum power of the channel was rounded to the nearest mW before calculation.

Based on the maximum conducted power of Bluetooth LE (rounded to the nearest mW) and the antenna to user separation distance, Bluetooth LE 1g SAR was not required; [(4/10)\* √2.440] = 0.6< 3.0. Per KDB Publication 447498 D01v05, the maximum power of the channel was rounded to the nearest mW before calculation.

Per FCC KDB 447498 D01v05, the 10g SAR exclusion threshold for distances <50mm is defined by the following equation:

$$\frac{Max\ Power\ of\ Channel\ (mW)}{Test\ Separation\ Dist\ (mm)}*\sqrt{Frequency\ (GHz)} \le 7.5$$

Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, Bluetooth 10g SAR was not required;  $[(9/5)^* \sqrt{2.441}] = 2.8 < 7.5$ . Per KDB Publication 447498 D01v05, the maximum power of the channel was rounded to the nearest mW before calculation.

Based on the maximum conducted power of Bluetooth LE (rounded to the nearest mW) and the antenna to user separation distance, Bluetooth LE 10g SAR was not required; [(4/5)\* \( \sqrt{2.440} \)] = 1.2< 7.5. Per KDB Publication 447498 D01v05, the maximum power of the channel was rounded to the nearest mW before calculation.

This device supports IEEE 802.11ac for 2.4 GHz WIFI. IEEE 802.11ac was not evaluated for SAR since the average output power of was not more than 0.25 dB higher than the average output power of IEEE 802.11b

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT LG | Reviewed by: Quality Manager |
|---------------------|---------------------|--------------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:                | Page 8 of 79                 |
| 0Y1311192196-R1.ZNF | 11/11/13 – 11/26/13 | Portable Handset         | rage 6 01 79                 |

This device supports 20 MHz and 40 MHz Bandwidths for IEEE 802.11n for 5 GHz WIFI only. IEEE 802.11n was not evaluated for SAR since the average output power of 20 MHz and 40 MHz bandwidths was not more than 0.25 dB higher than the average output power of IEEE 802.11a.

This device supports IEEE 802.11ac with the following features:

- a) Up to 80 MHz Bandwidth only
- b) No aggregate channel configurations
- c) 1 Tx antenna output
- d) 256 QAM is supported

Full SAR evaluations for all IEEE 802.11ac configurations were not required since the average output power was not more than 0.25 dB higher than IEEE 802.11a mode. IEEE 802.11ac was evaluated for the highest IEEE 802.11a position in each 5 GHz band and exposure condition.

### (B) Licensed Transmitter(s)

GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data.

Per KDB Publication 941225 D03v01 EDGE testing was excluded for SAR testing because the frame-averaged output powers were lower than the frame-averaged output powers for GPRS.

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v02.

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02.

CDMA 1X Advanced technology was not required for SAR since the maximum output powers for 1x Advanced was not more than 0.25 dB higher than the maximum measured powers for 1x and the reported SAR in any 1x mode exposure conditions was not greater than 1.2 W/kg.

Per FCC KDB Publication 648474 D04 Handset SAR v01r01, since this device is a "phablet" and all hotspot SAR was < 1.2 W/kg, hand SAR was not required for licensed transmitters.

## 1.7 SAR Test Positioning Based on Form Factor

Due to the embowed design of the device, Body SAR was configured per FCC Guidance.

### 1q SAR:

For Back side, the device was tested at a distance of 8 mm at the center of the device. For Front side, the device was tested at a distance of 8 mm from the outer ends of the device. The remaining surface or edges within 25 mm of a Tx antenna were tested at a distance of 10 mm.

### 10g SAR:

For Back side, the device was tested at a distance of 0mm at the center. If the 10g SAR > 2.5 W/kg, the device was additionally tested bottom end touching the phantom as well as the top end touching the phantom. The remaining surface or edges within 25 mm of a Tx antenna were tested at a distance of 0 mm.

| FCC ID: ZNFLS995    | PCTEST*             | SAR EVALUATION REPORT LG | Reviewed by: Quality Manager |
|---------------------|---------------------|--------------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:                | Page 9 of 79                 |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset         | rage 9 01 79                 |

### 1.8 Power Reduction for SAR

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

# 1.9 Guidance Applied

- FCC OET Bulletin 65 Supplement C [June 2001]
- IEEE 1528-2003
- FCC KDB Publication 941225 D01-D06 (2G/3G/4G, 1x Advanced and Hotspot)
- FCC KDB Publication 248227 D01v01r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v05 (General SAR Guidance)
- FCC KDB Publication 865664 D01-D02 (SAR Measurements up to 6 GHz)
- FCC KDB Publication 648474 D03-D04 (Phablet Procedures)
- April 2013 TCB Workshop Notes (IEEE 802.11ac)
- October 2013 TCB Workshop Notes

### 1.10 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.

| Mode/Band             | Head Serial<br>Number | Body-Worn<br>Serial Number | Wireless<br>RouterSerial<br>Number | Extremity<br>Serial Number |
|-----------------------|-----------------------|----------------------------|------------------------------------|----------------------------|
| CDMA/EVDO BC10 (§90S) | 1881                  | 1881                       | 1881                               | -                          |
| CDMA/EVDO BC0 (§22H)  | 1881                  | 1881                       | 1881                               | -                          |
| PCS CDMA/EVDO         | 1881                  | 1881                       | 1881                               | -                          |
| GSMGPRS/EDGE 850      | 1880                  | 1880                       | 1880                               | -                          |
| GSWGPRS/EDGE 1900     | 1880                  | 1880                       | 1880                               | -                          |
| UMTS 850              | 1876                  | 1876                       | 1876                               | -                          |
| UMTS 1900             | 1876                  | 1876                       | 1876                               | -                          |
| LTE Band 26           | 1877                  | 1877                       | 1877                               | -                          |
| LTE Band 25 (PCS)     | 1879                  | 1879                       | 1879                               | -                          |
| LTE Band 41           | 1875                  | 1875                       | 1875                               | -                          |
| 2.4 GHz WLAN          | 1890                  | 1890                       | 1890                               | -                          |
| 5.2 - 5.7 GHz WLAN    | 1890                  | 1890                       | -                                  | 1890                       |
| 5.8 GHz WLAN          | 1890                  | 1890                       | 1890                               | -                          |

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             | Page 10 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      | raye 10 01 79                |

# 2 LTE INFORMATION

| LTE Information                                       |                                         |                |                       |                |                |  |
|-------------------------------------------------------|-----------------------------------------|----------------|-----------------------|----------------|----------------|--|
| FCC ID                                                |                                         |                | ZNFLS995              |                |                |  |
| Form Factor                                           | Portable Handset                        |                |                       |                |                |  |
| Frequency Range of each LTE transmission band         |                                         | LTE B          | and 26 (814.7 - 848.3 | 3 MHz)         |                |  |
|                                                       |                                         | LTE Band 2     | 25 (PCS) (1851.5 - 1  | 913.5 MHz)     |                |  |
|                                                       | LTE Band 41 (2501 - 2685 MHz)           |                |                       |                |                |  |
| Channel Bandwidths                                    |                                         | LTE Band 26    | : 1.4 MHz, 3 MHz, 5   | MHz, 10 MHz    |                |  |
|                                                       | LTE Band 25 (PCS): 3 MHz, 5 MHz, 10 MHz |                |                       |                |                |  |
|                                                       | LTE Band 41: 10 MHz, 15 MHz, 20 MHz     |                |                       |                |                |  |
| Channel Numbers and Frequencies (MHz)                 | Low                                     | Low-Mid        | Mid                   | Mid-High       | High           |  |
| LTE Band 26: 1.4 MHz                                  | 814.7 (26697)                           | N/A            | 831.5 (26865)         | N/A            | 848.3 (27033)  |  |
| LTE Band 26: 3 MHz                                    | 815.5 (26705)                           | N/A            | 831.5 (26865)         | N/A            | 847.5 (27025)  |  |
| LTE Band 26: 5 MHz                                    | 816.5 (26715)                           | N/A            | 831.5 (26865)         | N/A            | 846.5 (27015)  |  |
| LTE Band 26: 10 MHz                                   | 819 (26740)                             | N/A            | 831.5 (26865)         | N/A            | 844 (26990)    |  |
| LTE Band 25 (PCS): 3 MHz                              | 1851.5 (26055)                          | N/A            | 1882.5 (26365)        | N/A            | 1913.5 (26675) |  |
| LTE Band 25 (PCS): 5 MHz                              | 1852.5 (26065)                          | N/A            | 1882.5 (26365)        | N/A            | 1912.5 (26665) |  |
| LTE Band 25 (PCS): 10 MHz                             | 1855 (26090)                            | N/A            | 1882.5 (26365)        | N/A            | 1910 (26640)   |  |
| LTE Band 41: 10 MHz                                   | 2501 (39700)                            | 2547 (40160)   | 2593 (40620)          | 2639 (41080)   | 2685 (41540)   |  |
| LTE Band 41: 15 MHz                                   | 2503.5 (39725)                          | 2548.3 (40173) | 2593 (40620)          | 2637.8 (41068) | 2682.5 (41515) |  |
| LTE Band 41: 20 MHz                                   | 2506 (39750)                            | 2549.5 (40185) | 2593 (40620)          | 2636.5 (41055) | 2680 (41490)   |  |
| UE Category                                           |                                         |                | 3                     |                |                |  |
| Modulations Supported in UL                           | QPSK, 16QAM                             |                |                       |                |                |  |
| LTE MPR Permanently implemented per 3GPP TS           |                                         |                |                       |                |                |  |
| 36.101 section 6.2.3~6.2.5? (manufacturer attestation | YES                                     |                |                       |                |                |  |
| to be provided)                                       |                                         |                |                       |                |                |  |
| A-MPR (Additional MPR) disabled for SAR Testing?      |                                         |                | YES                   |                |                |  |

| FCC ID: ZNFLS995    | PCTEST*             | SAR EVALUATION REPORT | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             | Page 11 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      | Page 11 01 79                |

#### 3 INTRODUCTION

The FCC and Industry Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [24]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for quidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

#### 3.1 **SAR Definition**

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density ( $\rho$ ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

### Equation 3-1 **SAR Mathematical Equation**

$$SAR = \frac{d}{dt} \left( \frac{dU}{dm} \right) = \frac{d}{dt} \left( \frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 $\sigma$  = conductivity of the tissue-simulating material (S/m)  $\rho$  = mass density of the tissue-simulating material (kg/m<sup>3</sup>)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

| FCC ID: ZNFLS995    | PCTEST:             | SAR EVALUATION REPORT | (LG | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|-----|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             |     | Page 12 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      |     | Fage 12 01 79                |

# 4 DOSIMETRIC ASSESSMENT

### 4.1 Measurement Procedure

The evaluation was performed using the following procedure:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01 (See Table 4-1).
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

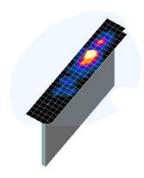



Figure 4-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01 (See Table 4-1). On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
  - a. The data was extrapolated to the surface of the outer-shell of the phantom. The combined distance extrapolated was the combined distance from the center of the dipoles 2.7mm away from the tip of the probe housing plus the 1.2 mm distance between the surface and the lowest measuring point. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
  - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
  - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 4-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01

|           | Maximum Area Scan<br>Resolution (mm)       | Maximum Zoom Scan<br>Resolution (mm)       | Max                    | imum Zoom So<br>Resolution ( | •                               | Minimum Zoom Scan      |
|-----------|--------------------------------------------|--------------------------------------------|------------------------|------------------------------|---------------------------------|------------------------|
| Frequency | (Δx <sub>area</sub> , Δy <sub>area</sub> ) | (Δx <sub>200m</sub> , Δy <sub>200m</sub> ) | Uniform Grid           | G                            | raded Grid                      | Volume (mm)<br>(x,y,z) |
|           | , dica- raicar                             | 72000                                      | Δz <sub>zoom</sub> (n) | Δz <sub>zoom</sub> (1)*      | Δz <sub>zoom</sub> (n>1)*       | , ,,, ,                |
| ≤ 2 GHz   | ≤ 15                                       | ≤8                                         | ≤5                     | ≤4                           | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 30                   |
| 2-3 GHz   | ≤ 12                                       | ≤5                                         | ≤5                     | ≤4                           | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 30                   |
| 3-4 GHz   | ≤ 12                                       | ≤5                                         | ≤4                     | ≤3                           | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 28                   |
| 4-5 GHz   | ≤ 10                                       | ≤4                                         | ≤3                     | ≤ 2.5                        | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 25                   |
| 5-6 GHz   | ≤ 10                                       | ≤4                                         | ≤ 2                    | ≤2                           | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 22                   |

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             | Page 13 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      | raye 13 01 79                |

# 5 DEFINITION OF REFERENCE POINTS

### 5.1 EAR REFERENCE POINT

Figure 5-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 5-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

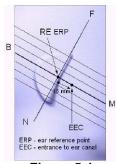



Figure 5-1 Close-Up Side view of ERP

### 5.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 5-3). The "test device reference point" was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.



Figure 5-2 Front, back and side view of SAM Twin Phantom

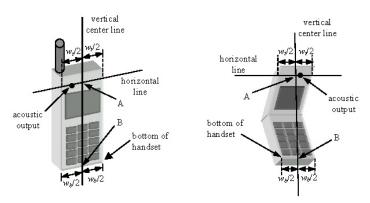



Figure 5-3
Handset Vertical Center & Horizontal Line Reference Points

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT LG | Reviewed by: Quality Manager |
|---------------------|---------------------|--------------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:                | Page 14 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset         | Faye 14 01 79                |

#### 6 TEST CONFIGURATION POSITIONS FOR HANDSETS

#### 6.1 **Device Holder**

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity  $\varepsilon = 3$  and loss tangent  $\delta = 0.02$ .

#### 6.2 **Positioning for Cheek**

The test device was positioned with the device close to the surface of the phantom such that 1. point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.



Figure 6-1 Front, Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the ear.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the plane normal to MB-NF including the line MB (reference plane).
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 6-2).

#### 6.3 Positioning for Ear / 15° Tilt

With the test device aligned in the "Cheek Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- 2. The phone was then rotated around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. The tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6-2).

| FCC ID: ZNFLS995    | PCTEST*             | SAR EVALUATION REPORT | (LG | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|-----|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             |     | Page 15 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      |     | Fage 13 01 /9                |



Figure 6-2 Front, Side and Top View of Ear/15° Tilt
Position

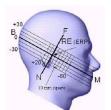



Figure 6-3
Side view w/ relevant markings

# 6.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones.

Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document FCC KDB Publication 648474 D04\_v01. The SAR required in these regions of SAM should be measured using a flat phantom. The phone should be positioned with a separation distance of 4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell. While maintaining this distance at the ERP location, the low (bottom) edge of the phone should be lowered from the phantom to establish the same separation distance between the peak SAR location identified by the truncated partial SAR distribution measured with the SAM phantom. The distance from the peak SAR location to the phone is determined by the straight line passing perpendicularly through the phantom surface. When it is not feasible to maintain 4 mm separation at the ERP while also establishing the required separation at the peak SAR location, the top edge of the phone will be allowed to touch the phantom with a separation < 4 mm at the ERP. The phone should not be tilted to the left or right while placed in this inclined position to the flat phantom.

The latest IEEE 1528 committee developments propose the usage of a tilted phantom when the antenna of the phone is mounted at the bottom or in all cases the peak absorption is in the chin region. Both SAM heads of the TwinSAM-Chin20 are rotated 20 degrees around the NF line. Each head can be removed individually from the table for emptying and cleaning.



Figure 6-4 Twin SAM Chin20

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             | Page 16 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 – 11/26/13 | Portable Handset      | rage 10 01 79                |

## 6.5 Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-5). Per FCC KDB Publication 648474 D04v01, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v05 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater

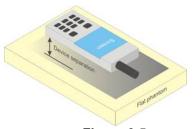



Figure 6-5
Sample Body-Worn Diagram

than or equal to that required for hotspot mode, when applicable. When the reported SAR for a bodyworn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that bodyworn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

# 6.6 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1-g body and 10-g extremity SAR Exclusion Thresholds found in KDB Publication 44798 D01v05 should be applied to determine SAR test requirements.

For smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC minitablets that support voice calls next to the ear, the phablets procedures outlined in KDB Publication 648474 D04 v01r01DR04 should be applied to evaluate SAR compliance. A device marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance. In addition to the normally required head and body-worn accessory SAR test procedures required for handsets, the UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna <=25 mm from that surface or edge, in direct contact with the phantom, for 10-g SAR. The UMPC mini-tablet 1-g SAR at 5 mm is not required. When hotspot mode applies, 10-g SAR is required only for the surfaces and edges with hotspot mode 1-g SAR > 1.2 W/kg.

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             | Page 17 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 – 11/26/13 | Portable Handset      | rage 17 01 79                |

# 6.7 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 v01 where SAR test considerations for handsets (L x W  $\geq$  9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v05 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

| FCC ID: ZNFLS995    | PCTEST*             | SAR EVALUATION REPORT LG | Reviewed by: Quality Manager |
|---------------------|---------------------|--------------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:                | Page 18 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset         | rage 10 01 79                |

### RF EXPOSURE LIMITS

#### 7.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

#### 7.2 **Controlled Environment**

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 7-1 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

| HUN                                                          | MAN EXPOSURE LIMITS                                                   |                                                               |
|--------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|
|                                                              | UNCONTROLLED<br>ENVIRONMENT<br>General Population<br>(W/kg) or (mW/g) | CONTROLLED<br>ENVIRONMENT<br>Occupational<br>(W/kg) or (mW/g) |
| Peak Spatial Average SAR<br>Head                             | 1.6                                                                   | 8.0                                                           |
| Whole Body SAR                                               | 0.08                                                                  | 0.4                                                           |
| Peak Spatial Average SAR<br>Hands, Feet, Ankle, Wrists, etc. | 4.0                                                                   | 20                                                            |

<sup>1.</sup> The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

| FCC ID: ZNFLS995    | PCTEST.             | SAR EVALUATION REPORT | LG | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|----|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             |    | Page 19 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      |    | Page 19 01 79                |

<sup>2.</sup> The Spatial Average value of the SAR averaged over the whole body.

<sup>3.</sup> The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

#### 8 FCC MEASUREMENT PROCEDURES

Power measurements were performed using a base station simulator under digital average power.

#### 8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v05, When SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as reported SAR. The highest reported SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r02.

#### 8.2 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01 "SAR Measurement Procedures for 3G Devices" v02, October 2007.

The device was placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test were evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device was tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation. to assess for any power drifts during the evaluation. If the power drift deviated by more than 5%, the SAR test and drift measurements were repeated.

#### **SAR Measurement Conditions for CDMA2000** 8.3

The following procedures were performed according to FCC KDB Publication 941225 D01 "SAR Measurement Procedures for 3G Devices" v02, October 2007.

#### 8.3.1 **Output Power Verification**

See 3GPP2 C.S0011/TIA-98-E as recommended by "SAR Measurement Procedures for 3G Devices" v02, October 2007. Maximum output power is verified on the High, Middle and Low channels according to procedures in section 4.4.5.2 of 3GPP2 C.S0011/TIA-98-E. SO55 tests were measured with power control bits in the "All Up" condition.

- 1. If the mobile station (MS) supports Reverse TCH RC 1 and Forward TCH RC 1, set up a call using Fundamental Channel Test Mode 1 (RC=1/1) with 9600 bps data rate only.
- 2. Under RC1, C.S0011 Table 4.4.5.2-1, Table 8-1 parameters were applied.
- 3. If the MS supports the RC 3 Reverse FCH, RC3 Reverse SCH₀ and demodulation of RC 3.4. or 5. set up a call using Supplemental Channel Test Mode 3 (RC 3/3) with 9600 bps Fundamental Channel and 9600 bps SCH0 data rate.
- 4. Under RC3, C.S0011 Table 4.4.5.2-2, Table 8-2 was applied.

| FCC ID: ZNFLS995    | PCTEST*             | SAR EVALUATION REPORT LG | Reviewed by: Quality Manager |
|---------------------|---------------------|--------------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:                | Page 20 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset         | Fage 20 01 79                |

Table 8-1 Parameters for Max. Power for RC1

| Parameter              | Units        | Value |
|------------------------|--------------|-------|
| I <sub>or</sub>        | dBm/1.23 MHz | -104  |
| Pilot E <sub>c</sub>   | dB           | -7    |
| Traffic E <sub>c</sub> | dB           | -7.4  |

Table 8-2 Parameters for Max. Power for RC3

| Parameter              | Units        | Value |
|------------------------|--------------|-------|
| Îor                    | dBm/1.23 MHz | -86   |
| Pilot E <sub>c</sub>   | dB           | -7    |
| Traffic E <sub>c</sub> | dB           | -7.4  |

5. FCHs were configured at full rate for maximum SAR with "All Up" power control bits.

#### 8.3.2 CDMA2000 1x Advanced

This device additionally supports 1x Advanced. Conducted powers were measured using SO75 with RC8 on the uplink and RC11 on the downlink per April 2013 TCB Workshop notes. Smart blanking was disabled for all measurements. The EUT was configured with forward power control Mode 000 and reverse power control at 400 bps. Conducted powers were measured on an Agilent 8960 Series 10 Wireless Communications Test Set, Model E5515C using the CDMA2000 1x Advanced application, Option E1962B-410.

Based on the maximum output power measured for 1x Advanced. SAR is required for 1x advanced when if the maximum output for 1x Advanced is more than 0.25 dB higher than the maximum measured for 1x. Also, if the reported SAR in any 1x mode exposure conditions (head, body etc.) is larger than 1.2 W/kg, the highest of those configurations above 1.2 W/kg for each exposure condition in 1x Advanced has to be repeated. All measured SAR in 1x mode higher than 1.5 W/kg must be repeated for 1x Advanced.

#### 8.3.3 **Head SAR Measurements**

SAR for head exposure configurations is measured in RC3 with the DUT configured to transmit at full rate using Loopback Service Option SO55. SAR for RC1 is not required when the maximum average output of each channel is less than ¼ dB higher than that measured in RC3. Otherwise, SAR is measured on the maximum output channel in RC1 using the exposure configuration that results in the highest SAR for that channel in RC3.

Head SAR was additionally evaluated using EVDO Rev. A to support compliance for VoIP operations. See Section 8.3.5 for EVDO Rev. A configuration parameters.

#### 8.3.4 **Body SAR Measurements**

SAR for body exposure configurations is measured in RC3 with the DUT configured to transmit at full rate on FCH with all other code channels disabled using TDSO / SO32. SAR for multiple code channels (FCH + SCH<sub>n</sub>) is not required when the maximum average output of each RF channel is less than 1/4 dB higher than that measured with FCH only. Otherwise, SAR is measured on the maximum output channel (FCH + SCH<sub>o</sub>) with FCH at full rate and SCH<sub>o</sub> enabled at 9600 bps using the exposure configuration that results in the highest SAR for that channel with FCH only. When multiple code channels are enabled, the DUT output may shift by more than 0.5 dB and lead to higher SAR drifts and SCH dropouts. Body SAR was measured using TDSO / SO32 with power control bits in the "All Up"

Body SAR in RC1 is not required when the maximum average output of each channel is less than 1/4 dB higher than that measured in RC3. Otherwise, SAR is measured on the maximum output channel in RC1; with Loopback Service Option SO55, at full rate, using the body exposure configuration that results in the highest SAR for that channel in RC3.

| FCC ID: ZNFLS995    | PCTEST*             | SAR EVALUATION REPORT | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             | Page 21 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      | Fage 21 01 79                |

#### 8.3.5 Handsets with EVDO

For handsets with Ev-Do capabilities, when the maximum average output of each channel in Rev. 0 is less than ¼ dB higher than that measured in RC3 (1x RTT), body SAR for EV-DO is not required. Otherwise, SAR for Rev. 0 is measured on the maximum output channel at 153.6 kbps using the body exposure configuration that results in the highest SAR for that channel in RC3. SAR for Rev. A is not required when the maximum average output of each channel is less than that measured in Rev. 0 or less than ¼ dB higher than that measured in RC3. Otherwise, SAR is measured on the maximum output channel for Rev. A using a Reverse Data Channel payload size of 4096 bits and a Termination Target of 16 slots defined for Subtype 2 Physical Layer configurations. A Forward Traffic Channel data rate corresponding to the 2-slot version of 307.2 kbps with the ACK Channel transmitting in all slots would be configured in the downlink for both Rev. 0 and Rev. A.

# 8.3.6 Body SAR Measurements for EVDO Hotspot

Hotspot Body SAR is measured using Subtype 0/1 Physical Layer configurations for Rev. 0 per KDB Publication 941225 D01 procedures for "1x Ev-Do data Devices". SAR for Subtype 2. Physical layer configurations is not required for Rev. A when the maximum average output of each RF channels is less than that measured in Subtype 0/1 Physical layer configurations. Otherwise, SAR is measured on the maximum output channel for Rev. A using the exposure configuration that results in the highest SAR for the RF channels in Rev. 0. The AT is tested with a Reverse Data Channel rate of 153.6 kbps in Subtype 0/1 Physical Layer configurations; and a Reverse Data Channel payload size of 4096 bits and Termination Target of 16 slots in Subtype 2 Physical Layer configurations.

SAR is not required for 1x RTT for Ev-Do devices that also support 1x RTT voice and/or data operations, when the maximum average output of each channel is less than 1/4 dB higher than that measured in Subtype 0/1 Physical Layer configurations for Rev. 0. Otherwise, CDMA "Body-SAR Measurement" procedures for "CDMA 2000 1x Handsets" were applied.

#### 8.4 **SAR Measurement Conditions for UMTS**

#### 8.4.1 **Output Power Verification**

Maximum output power is measured on the High, Middle and Low channels for each applicable transmission band according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1s".

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121 (release 5), using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

#### 8.4.2 **Head SAR Measurements for Handsets**

SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than 0.25 dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signaling radio bearer) using the exposure configuration that resulted in the highest SAR for that RF channel in the 12.2 kbps RMC mode.

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             | Page 22 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      | Fage 22 01 79                |

# 8.4.3 Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s".

### 8.4.4 SAR Measurements for Handsets with Rel 5 HSDPA

Body SAR for HSDPA is not required for handsets with HSDPA capabilities when the maximum average output power of each RF channel with HSDPA active is less than 0.25 dB higher than that measured without HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is  $\leq 75\%$  of the SAR limit. Otherwise, SAR is measured for HSDPA, using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration measured in 12.2 kbps RMC without HSDPA, on the maximum output channel with the body exposure configuration that resulted in the highest SAR in 12.2 kbps RMC mode for that RF channel.

The H-set used in FRC for HSDPA should be configured according to the UE category of a test device. The number of HS-DSCH/HSPDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the applicable H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the FRC for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 2 ms to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors of  $\beta c$ =9 and  $\beta d$ =15, and power offset parameters of  $\Delta$ ACK=  $\Delta$ NACK=5 and  $\Delta$ CQI=2 is used. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the FRC.

| Sub-<br>Test       | β <sub>c</sub>                                                             | $\beta_d$                                              | β <sub>d</sub><br>(SF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\beta_c/\beta_d$                                      | β <sub>HS</sub><br>(Note1,<br>Note 2)                | CM (dB)<br>(Note 3)                                          | MPR (dB)<br>(Note 3)       |
|--------------------|----------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|----------------------------|
| 1                  | 2/15                                                                       | 15/15                                                  | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2/15                                                   | 4/15                                                 | 0.0                                                          | 0.0                        |
| 2                  | 12/15<br>(Note 4)                                                          | 15/15<br>(Note 4)                                      | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12/15<br>(Note 4)                                      | 24/15                                                | 1.0                                                          | 0.0                        |
| 3                  | 15/15                                                                      | 8/15                                                   | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15/8                                                   | 30/15                                                | 1.5                                                          | 0.5                        |
| 4                  | 15/15                                                                      | 4/15                                                   | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15/4                                                   | 30/15                                                | 1.5                                                          | 0.5                        |
| Note 1:<br>Note 2: | For the HS-I<br>Magnitude ()<br>discontinuity<br>$\Delta_{CQI} = 7 (A_{I}$ | DPCCH pow<br>EVM) with<br>in clause 5<br>is = 24/15) v | ver mask requested the mask requested to the mask requested the mask requested the mask requested to the mask |                                                        | lause 5.2C, 5.<br>3.1A, and HS<br>$(A_{hs} = 30/15)$ | 7A, and the Erro<br>DPA EVM with<br>with $\beta_{hs} = 30/3$ | phase $15 * \beta_c$ , and |
| Note 3:            |                                                                            | MPR is base                                            | ed on the rela                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5. For all other c<br>ntive CM differen<br>r releases. |                                                      |                                                              |                            |

Figure 8-1 Table C.10.1.4 of TS 234.121-1

### 8.4.5 SAR Measurements for Handsets with Rel 6 HSUPA

Body SAR for HSUPA is not required when the maximum average output of each RF channel with HSUPA/HSDPA active is less than 0.25 dB higher than as measured without HSUPA/HSDPA using 12.2 kbps RMC and maximum SAR for 12.2 kbps RMC is  $\leq$  75 % of the SAR limit. Otherwise SAR is measured on the maximum output channel for the body exposure configuration produced highest SAR in 12.2 kbps RMC for that RF channel, using the additional procedures under "Release 6 HSPA data devices"

Head SAR for VOIP operations under HSPA is not required when maximum average output of each RF channel with HSPA is less than 0.25 dB higher than as measured using 12.2 kbps RMC. Otherwise SAR is measured using same HSPA configuration as used for body SAR.

| FCC ID: ZNFLS995    | PCTEST*             | SAR EVALUATION REPORT | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             | Page 23 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      | Fage 23 01 79                |

| Sub-<br>test | βς                   | βα                   | β <sub>d</sub><br>(SF) | $\beta_c/\beta_d$    | $\beta_{hs}^{(1)}$ | β <sub>ec</sub> | $\beta_{\rm ed}$                                     | β <sub>ed</sub><br>(SF) | β <sub>ed</sub><br>(codes) | CM <sup>(2)</sup><br>(dB) | MPR<br>(dB) | AG <sup>(4)</sup><br>Index | E-<br>TFCI |
|--------------|----------------------|----------------------|------------------------|----------------------|--------------------|-----------------|------------------------------------------------------|-------------------------|----------------------------|---------------------------|-------------|----------------------------|------------|
| 1            | 11/15 <sup>(3)</sup> | 15/15 <sup>(3)</sup> | 64                     | 11/15(3)             | 22/15              | 209/225         | 1039/225                                             | 4                       | 1                          | 1.0                       | 0.0         | 20                         | 75         |
| 2            | 6/15                 | 15/15                | 64                     | 6/15                 | 12/15              | 12/15           | 94/75                                                | 4                       | 1                          | 3.0                       | 2.0         | 12                         | 67         |
| 3            | 15/15                | 9/15                 | 64                     | 15/9                 | 30/15              | 30/15           | β <sub>ed1</sub> : 47/15<br>β <sub>ed2</sub> : 47/15 | 4                       | 2                          | 2.0                       | 1.0         | 15                         | 92         |
| 4            | 2/15                 | 15/15                | 64                     | 2/15                 | 4/15               | 2/15            | 56/75                                                | 4                       | 1                          | 3.0                       | 2.0         | 17                         | 71         |
| 5            | 15/15 <sup>(4)</sup> | 15/15 <sup>(4)</sup> | 64                     | 15/15 <sup>(4)</sup> | 30/15              | 24/15           | 134/15                                               | 4                       | 1                          | 1.0                       | 0.0         | 21                         | 81         |

- Note 1:  $\Delta_{ACK}$ ,  $\Delta_{NACK}$  and  $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 *\beta_c$ .
- Note 2: CM = 1 for  $\beta_A/\beta_B = 12/15$ ,  $\beta_{bb}/\beta_c = 24/15$ . For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.
- Note 3: For subtest 1 the  $\beta_c/\beta_d$  ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to  $\beta_c=10/15$  and  $\beta_d=15/15$ .
- Note 4: For subtest 5 the β<sub>c</sub>/β<sub>d</sub> ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the
- signaled gain factors for the reference TFC (TF1, TF1) to  $\beta_c=14/15$  and  $\beta_d=15/15$ . Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g.
- Note 6:  $\beta_{ed}$  can not be set directly; it is set by Absolute Grant Value.

#### 8.5 **SAR Measurement Conditions for LTE**

LTE modes were tested according to FCC KDB 941225 D05v02 publication. Please see notes after the tabulated SAR data for required test configurations. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 was used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing.

#### 8.5.1 **Spectrum Plots for RB Configurations**

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

#### 8.5.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 - 6.2.5 under Table 6.2.3-1.

#### 8.5.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

#### 8.5.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r01:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
  - i. The required channel and offset combination with the highest maximum output power is required for SAR.
  - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
  - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT LG | Reviewed by: Quality Manager |
|---------------------|---------------------|--------------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:                | Page 24 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset         | Faye 24 01 79                |

- power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.

### 8.5.5 TDD

LTE TDD is tested at the highest duty factor using UL-DL configuration 0 with special subframe configuration 6 and applying the FDD LTE procedures in KDB 941225. SAR testing was performed using the normal cyclic prefix and then scaling up the measured SAR result to the extended cyclic prefix listed in 3GPP TS 36.211 Section 4.

# 8.6 SAR Testing with 802.11 Transmitters

Normal network operating configurations are not suitable for measuring the SAR of 802.11 a/b/g/n/ac transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v01r02 for more details.

# 8.6.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

## 8.6.2 Frequency Channel Configurations [27]

For 2.4 GHz, the highest average RF output power channel between the low, mid and high channel at the lowest data rate was selected for SAR evaluation in 802.11b mode. 802.11g/n/ac modes and higher data rates for 802.11b were additionally evaluated for SAR if the output power of the respective mode was 0.25 dB or higher than the powers of the SAR configurations tested in the 802.11b mode.

For 5 GHz, the highest average RF output power channel across the default test channels at the lowest data rate was selected for SAR evaluation in 802.11a. When the adjacent channels are higher in power then the default channels, these "required channels" were considered instead of the default channels for SAR testing. 802.11n modes and higher data rates for 802.11a/n were evaluated only if the respective mode was 0.25 dB or higher than the 802.11a mode. 802.11ac SAR was evaluated for highest 802.11a configuration in each 5 GHz band and each exposure condition. 802.11ac modes were additionally evaluated for SAR if the output power for the respective mode was more than 0.25 dB higher than powers of 802.11a modes.

If the maximum extrapolated peak SAR of the zoom scan for the highest output channel was less than 1.6 W/kg and if the 1g averaged SAR was less than 0.8 W/kg, SAR testing was not required for the other test channels in the band.

| FCC ID: ZNFLS995    | PCTEST*             | SAR EVALUATION REPORT | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             | Page 25 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      | Page 25 01 79                |

### RF CONDUCTED POWERS

#### 9.1 CDMA Conducted Powers

| Band  | Channel | Rule Part | Frequency | SO55<br>[dBm] | SO55<br>[dBm] | SO75<br>[dBm] | TDSO SO32<br>[dBm] | TDSO SO32<br>[dBm] | 1x EvDO<br>Rev. 0<br>[dBm] | 1x EvDO<br>Rev. A<br>[dBm] |
|-------|---------|-----------|-----------|---------------|---------------|---------------|--------------------|--------------------|----------------------------|----------------------------|
|       | F-RC    |           | MHz       | RC1           | RC3           | RC11          | FCH+SCH            | FCH                | (RTAP)                     | (RETAP)                    |
| BC 10 | 564     | 90S       | 820.1     | 25.01         | 24.98         | 25.10         | 25.04              | 25.02              | 25.04                      | 25.01                      |
|       | 1013    | 22H       | 824.7     | 24.88         | 24.90         | 25.07         | 24.93              | 24.93              | 25.01                      | 24.95                      |
| BC 0  | 384     | 22H       | 836.52    | 24.89         | 24.85         | 25.02         | 24.91              | 24.92              | 24.98                      | 24.96                      |
|       | 777     | 22H       | 848.31    | 24.97         | 24.95         | 25.14         | 25.03              | 24.97              | 24.99                      | 24.95                      |
|       | 25      | 24E       | 1851.25   | 23.96         | 23.92         | 24.00         | 23.94              | 23.95              | 23.95                      | 23.94                      |
| BC 1  | 600     | 24E       | 1880      | 23.92         | 23.93         | 23.85         | 23.92              | 23.93              | 23.99                      | 23.96                      |
|       | 1175    | 24E       | 1908.75   | 23.97         | 23.93         | 24.02         | 23.92              | 23.92              | 23.96                      | 23.92                      |

### General Notes:

9

- 1. RC1 is only applicable for IS-95 compatibility.
- 2. For FCC Rule Part 90S, Per FCC KDB Publication 447498 D01v05 4.1.6, only one channel is required since the device operates within the transmission range of 817.90 - 822.75 MHz.

### Per KDB Publication 941225 D01v02:

- 1. Head SAR was tested with SO55 RC3. SO55 RC1 was not required since the average output power was not more than 0.25 dB than the SO55 RC3 powers.
- 2. Body-Worn SAR was tested with 1x RTT with TDSO / SO32 FCH Only. Ev-Do and TDSO / SO32 FCH+SCH SAR tests were not required since the average output power was not more than 0.25 dB higher than the TDSO / SO32 FCH only powers.
- 3. Hotspot SAR was measured using Subtype 0/1 Physical Layer configurations for Rev. 0. Since the average output power of Subtype 2 for Rev. A is less than the Rev. 0 power levels, Rev. A SAR is not required. SAR is not required for 1x RTT for Ev-Do hotspot devices since the maximum average output of each channel is less than 1/4 dB higher than that measured in Subtype 0/1 Physical Layer configurations for Rev. 0
- 4. Head SAR was additionally evaluated with EVDO Rev. A to determine compliance for held-to-ear VoIP operations.

### 1x Advanced Considerations per FCC KDB publication 941225 D02 v02r02:

1. CDMA 1X Advanced technology was not required for SAR since the maximum output powers for 1x Advanced was not more than 0.25 dB higher than the maximum measured powers for 1x and the reported SAR in any 1x mode exposure conditions was not greater than 1.2 W/kg. See Section 8.3.2 for 1x Advanced test set up.



Figure 9-1 **Power Measurement Setup** 

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             | Page 26 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      | Faye 20 01 /9                |

### 9.2 GSM Conducted Powers

|                     |            | Maxim                                          | um Burst-                     | Averaged                      | Output P                      | ower                          |  |  |
|---------------------|------------|------------------------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|--|--|
|                     |            | Voice                                          |                               | DGE Data<br>(SK)              |                               | Data (8-<br>SK)               |  |  |
| Band Channel        |            | GSM<br>[dBm]<br>CS<br>(1 Slot)                 | GPRS<br>[dBm]<br>1 Tx<br>Slot | GPRS<br>[dBm]<br>2 Tx<br>Slot | EDGE<br>[dBm]<br>1 Tx<br>Slot | EDGE<br>[dBm]<br>2 Tx<br>Slot |  |  |
|                     | 128        | 33.20                                          | 33.20                         | 30.66                         | 27.20                         | 26.43                         |  |  |
| GSM 850             | 190        | 33.12                                          | 33.14                         | 30.80                         | 27.13                         | 26.40                         |  |  |
|                     | 251        | 33.19                                          | 33.19                         | 30.77                         | 27.05                         | 26.37                         |  |  |
|                     | 512        | 29.84                                          | 29.89                         | 28.02                         | 26.05                         | 25.55                         |  |  |
| GSM 1900            | 661        | 29.44                                          | 29.49                         | 27.61                         | 25.75                         | 25.15                         |  |  |
|                     | 810        | 29.81                                          | 29.85                         | 27.86                         | 25.75                         | 25.06                         |  |  |
|                     |            | Calculated Maximum Frame-Averaged Output Power |                               |                               |                               |                               |  |  |
|                     |            | Voice                                          |                               | DGE Data<br>(ISK)             |                               | Data (8-<br>SK)               |  |  |
| Band                | Channel    | GSM<br>[dBm]                                   | GPRS<br>[dBm]                 | GPRS<br>[dBm]                 | EDGE<br>[dBm]                 | EDGE<br>[dBm]                 |  |  |
|                     |            | CS<br>(1 Slot)                                 | 1 Tx<br>Slot                  | 2 Tx<br>Slot                  | 1 Tx<br>Slot                  | 2 Tx<br>Slot                  |  |  |
|                     | 128        |                                                |                               |                               |                               |                               |  |  |
| GSM 850             | 128<br>190 | (1 Slot)                                       | Slot                          | Slot                          | Slot                          | Slot                          |  |  |
| GSM 850             | 1=0        | (1 Slot)<br>24.17                              | <b>Slot</b> 24.17             | Slot<br>24.64                 | <b>Slot</b> 18.17             | Slot<br>20.41                 |  |  |
| GSM 850             | 190        | (1 Slot)<br>24.17<br>24.09                     | 24.17<br>24.11                | 24.64<br>24.78                | 18.17<br>18.10                | 20.41<br>20.38                |  |  |
| GSM 850<br>GSM 1900 | 190<br>251 | 24.17<br>24.09<br>24.16                        | 24.17<br>24.11<br>24.16       | 24.64<br>24.78<br>24.75       | 18.17<br>18.10<br>18.02       | 20.41<br>20.38<br>20.35       |  |  |

### Note:

- 1. Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.
- 2. The bolded GPRS modes were selected for SAR testing according to the highest frame-averaged output power table according to KDB 941225 D03v01 and October 2013 TCB Workshop notes.
- 3. GPRS/EDGE (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 - CS4 settings do not have any impact on the output levels or modulation in the GPRS modes.
- 4. EDGE (8-PSK) output powers were measured with MCS7 on the base station simulator. MCS7 coding scheme was used to measure the output powers for EDGE since investigation has shown that choosing MCS7 coding scheme will ensure 8-PSK modulation. It has been shown that MCS levels that produce 8PSK modulation do not have an impact on output power.

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             | Page 27 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      | Faye 21 01 19                |

GSM Class: B

GPRS Multislot class: 10 (Max 2 Tx uplink slots) EDGE Multislot class: 10 (Max 2 Tx uplink slots)

**DTM Multislot Class:** N/A



Figure 9-2 Power Measurement Setup

# 9.3 UMTS Conducted Powers

| 3GPP<br>Release | elease Mode | 3GPP 34.121<br>Subtest | Cellu | lar Band | [dBm] | PCS   | Band [d | Bm]   | 3GPP<br>MPR [dB] |
|-----------------|-------------|------------------------|-------|----------|-------|-------|---------|-------|------------------|
| Version         |             | Gubicst                | 4132  | 4183     | 4233  | 9262  | 9400    | 9538  | iiii it [ab]     |
| 99              | WCDMA       | 12.2 kbps RMC          | 23.34 | 23.60    | 23.39 | 23.00 | 23.10   | 22.97 | -                |
| 99              | VVCDIVIA    | 12.2 kbps AMR          | 23.22 | 23.30    | 23.33 | 22.98 | 23.05   | 22.88 | -                |
| 6               |             | Subtest 1              | 23.25 | 23.40    | 23.15 | 22.90 | 23.00   | 22.96 | 0                |
| 6               | HSDPA       | Subtest 2              | 23.17 | 23.38    | 23.10 | 22.84 | 22.97   | 22.90 | 0                |
| 6               | TISDEA      | Subtest 3              | 22.36 | 22.89    | 22.74 | 22.57 | 22.68   | 22.47 | 0.5              |
| 6               |             | Subtest 4              | 22.88 | 22.84    | 22.60 | 22.48 | 22.59   | 22.40 | 0.5              |
| 6               |             | Subtest 1              | 22.78 | 22.70    | 22.79 | 22.58 | 22.51   | 22.79 | 0                |
| 6               |             | Subtest 2              | 20.84 | 20.92    | 21.08 | 20.41 | 20.40   | 20.39 | 2                |
| 6               | HSUPA       | Subtest 3              | 21.79 | 22.00    | 21.85 | 21.52 | 21.65   | 21.47 | 1                |
| 6               |             | Subtest 4              | 21.26 | 21.37    | 21.32 | 20.72 | 20.71   | 20.78 | 2                |
| 6               |             | Subtest 5              | 22.71 | 22.80    | 22.74 | 22.74 | 22.61   | 22.74 | 0                |

UMTS SAR was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v02. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg.

This device does not support DC-HSDPA.



Figure 9-3
Power Measurement Setup

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT LG | Reviewed by: Quality Manager |
|---------------------|---------------------|--------------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:                | Page 28 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset         | Faye 20 01 79                |

# 9.4 LTE Conducted Powers

9.4.1 LTE Band 26

Table 9-1 LTE Band 26 Conducted Powers - 10 MHz Bandwidth

|            | [MHz]<br>819<br>819 | Channel<br>26740 | [ <b>MHz</b> ]<br>10 | Modulation | RB Size | RB Offset | Power [dBm] | [dB] | 3GPP [dB] |
|------------|---------------------|------------------|----------------------|------------|---------|-----------|-------------|------|-----------|
|            |                     |                  |                      | ODCK       | 4       | 0         | 22.00       | 0    |           |
|            | 819                 | 00740            | -                    | QPSK       | 1       | 0         | 23.90       | 0    | 0         |
|            | 040                 | 26740            | 10                   | QPSK       | 1       | 25        | 24.08       |      | 0         |
| -          | 819                 | 26740            | 10                   | QPSK       | 1       | 49        | 24.05       | 0    | 0         |
|            | 819                 | 26740            | 10                   | QPSK       | 25      | 0         | 22.85       | 1    | 0-1       |
| 1 <b>L</b> | 819                 | 26740            | 10                   | QPSK       | 25      | 12        | 22.93       | 1    | 0-1       |
| l L        | 819                 | 26740            | 10                   | QPSK       | 25      | 25        | 22.94       | 1    | 0-1       |
| Low —      | 819                 | 26740            | 10                   | QPSK       | 50      | 0         | 22.72       | 1    | 0-1       |
| ľ¹L        | 819                 | 26740            | 10                   | 16QAM      | 1       | 0         | 22.84       | 1    | 0-1       |
| l L        | 819                 | 26740            | 10                   | 16QAM      | 1       | 25        | 23.10       | 1    | 0-1       |
|            | 819                 | 26740            | 10                   | 16QAM      | 1       | 49        | 22.74       | 1    | 0-1       |
| ΙL         | 819                 | 26740            | 10                   | 16QAM      | 25      | 0         | 21.81       | 2    | 0-2       |
| ΙL         | 819                 | 26740            | 10                   | 16QAM      | 25      | 12        | 21.82       | 2    | 0-2       |
|            | 819                 | 26740            | 10                   | 16QAM      | 25      | 25        | 21.89       | 2    | 0-2       |
|            | 819                 | 26740            | 10                   | 16QAM      | 50      | 0         | 21.76       | 2    | 0-2       |
|            | 831.5               | 26865            | 10                   | QPSK       | 1       | 0         | 24.12       | 0    | 0         |
|            | 831.5               | 26865            | 10                   | QPSK       | 1       | 25        | 24.04       | 0    | 0         |
|            | 831.5               | 26865            | 10                   | QPSK       | 1       | 49        | 24.05       | 0    | 0         |
|            | 831.5               | 26865            | 10                   | QPSK       | 25      | 0         | 22.98       | 1    | 0-1       |
|            | 831.5               | 26865            | 10                   | QPSK       | 25      | 12        | 22.85       | 1    | 0-1       |
|            | 831.5               | 26865            | 10                   | QPSK       | 25      | 25        | 22.94       | 1    | 0-1       |
| Mid        | 831.5               | 26865            | 10                   | QPSK       | 50      | 0         | 22.87       | 1    | 0-1       |
| ≥ T        | 831.5               | 26865            | 10                   | 16QAM      | 1       | 0         | 22.93       | 1    | 0-1       |
|            | 831.5               | 26865            | 10                   | 16QAM      | 1       | 25        | 22.82       | 1    | 0-1       |
|            | 831.5               | 26865            | 10                   | 16QAM      | 1       | 49        | 22.98       | 1    | 0-1       |
|            | 831.5               | 26865            | 10                   | 16QAM      | 25      | 0         | 21.99       | 2    | 0-2       |
|            | 831.5               | 26865            | 10                   | 16QAM      | 25      | 12        | 21.98       | 2    | 0-2       |
|            | 831.5               | 26865            | 10                   | 16QAM      | 25      | 25        | 21.92       | 2    | 0-2       |
|            | 831.5               | 26865            | 10                   | 16QAM      | 50      | 0         | 21.88       | 2    | 0-2       |
|            | 844                 | 26990            | 10                   | QPSK       | 1       | 0         | 24.10       | 0    | 0         |
|            | 844                 | 26990            | 10                   | QPSK       | 1       | 25        | 24.08       | 0    | 0         |
|            | 844                 | 26990            | 10                   | QPSK       | 1       | 49        | 24.00       | 0    | 0         |
|            | 844                 | 26990            | 10                   | QPSK       | 25      | 0         | 22.94       | 1    | 0-1       |
|            | 844                 | 26990            | 10                   | QPSK       | 25      | 12        | 22.94       | 1    | 0-1       |
|            | 844                 | 26990            | 10                   | QPSK       | 25      | 25        | 22.96       | 1    | 0-1       |
| چ          | 844                 | 26990            | 10                   | QPSK       | 50      | 0         | 22.90       | 1    | 0-1       |
| High       | 844                 | 26990            | 10                   | 16QAM      | 1       | 0         | 23.20       | 1    | 0-1       |
|            | 844                 | 26990            | 10                   | 16QAM      | 1       | 25        | 23.08       | 1    | 0-1       |
|            | 844                 | 26990            | 10                   | 16QAM      | 1       | 49        | 22.82       | 1    | 0-1       |
|            | 844                 | 26990            | 10                   | 16QAM      | 25      | 0         | 22.04       | 2    | 0-2       |
|            | 844                 | 26990            | 10                   | 16QAM      | 25      | 12        | 22.00       | 2    | 0-2       |
|            | 844                 | 26990            | 10                   | 16QAM      | 25      | 25        | 22.13       | 2    | 0-2       |
|            | 844                 | 26990            | 10                   | 16QAM      | 50      | 0         | 21.88       | 2    | 0-2       |

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             | Page 29 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      | Faye 23 01 /9                |

Table 9-2 LTE Band 26 Conducted Powers - 5 MHz Bandwidth

|      |                    |         |                    | u 20 Condi | ICIEU FOW | CI2 - 2 IAII | 12 Bandwidt              |                    |                              |
|------|--------------------|---------|--------------------|------------|-----------|--------------|--------------------------|--------------------|------------------------------|
|      | Frequency<br>[MHz] | Channel | Bandwidth<br>[MHz] | Modulation | RB Size   | RB Offset    | Conducted<br>Power [dBm] | Target MPR<br>[dB] | MPR Allowed per<br>3GPP [dB] |
|      | 816.5              | 26715   | 5                  | QPSK       | 1         | 0            | 23.99                    | 0                  | 0                            |
|      | 816.5              | 26715   | 5                  | QPSK       | 1         | 12           | 24.04                    | 0                  | 0                            |
|      | 816.5              | 26715   | 5                  | QPSK       | 1         | 24           | 24.06                    | 0                  | 0                            |
|      | 816.5              | 26715   | 5                  | QPSK       | 12        | 0            | 22.89                    | 1                  | 0-1                          |
|      | 816.5              | 26715   | 5                  | QPSK       | 12        | 6            | 22.94                    | 1                  | 0-1                          |
|      | 816.5              | 26715   | 5                  | QPSK       | 12        | 13           | 23.00                    | 1                  | 0-1                          |
| Low  | 816.5              | 26715   | 5                  | QPSK       | 25        | 0            | 22.82                    | 1                  | 0-1                          |
| 의    | 816.5              | 26715   | 5                  | 16-QAM     | 1         | 0            | 23.11                    | 1                  | 0-1                          |
|      | 816.5              | 26715   | 5                  | 16-QAM     | 1         | 12           | 22.95                    | 1                  | 0-1                          |
|      | 816.5              | 26715   | 5                  | 16-QAM     | 1         | 24           | 22.91                    | 1                  | 0-1                          |
|      | 816.5              | 26715   | 5                  | 16-QAM     | 12        | 0            | 21.86                    | 2                  | 0-2                          |
|      | 816.5              | 26715   | 5                  | 16-QAM     | 12        | 6            | 21.92                    | 2                  | 0-2                          |
|      | 816.5              | 26715   | 5                  | 16-QAM     | 12        | 13           | 21.94                    | 2                  | 0-2                          |
|      | 816.5              | 26715   | 5                  | 16-QAM     | 25        | 0            | 21.84                    | 2                  | 0-2                          |
|      | 831.5              | 26865   | 5                  | QPSK       | 1         | 0            | 24.10                    | 0                  | 0                            |
|      | 831.5              | 26865   | 5                  | QPSK       | 1         | 12           | 24.14                    | 0                  | 0                            |
|      | 831.5              | 26865   | 5                  | QPSK       | 1         | 24           | 23.98                    | 0                  | 0                            |
|      | 831.5              | 26865   | 5                  | QPSK       | 12        | 0            | 23.04                    | 1                  | 0-1                          |
|      | 831.5              | 26865   | 5                  | QPSK       | 12        | 6            | 22.93                    | 1                  | 0-1                          |
|      | 831.5              | 26865   | 5                  | QPSK       | 12        | 13           | 22.95                    | 1                  | 0-1                          |
| Mid  | 831.5              | 26865   | 5                  | QPSK       | 25        | 0            | 22.83                    | 1                  | 0-1                          |
| Σ    | 831.5              | 26865   | 5                  | 16-QAM     | 1         | 0            | 22.82                    | 1                  | 0-1                          |
|      | 831.5              | 26865   | 5                  | 16-QAM     | 1         | 12           | 22.93                    | 1                  | 0-1                          |
|      | 831.5              | 26865   | 5                  | 16-QAM     | 1         | 24           | 23.06                    | 1                  | 0-1                          |
|      | 831.5              | 26865   | 5                  | 16-QAM     | 12        | 0            | 21.92                    | 2                  | 0-2                          |
|      | 831.5              | 26865   | 5                  | 16-QAM     | 12        | 6            | 22.06                    | 2                  | 0-2                          |
|      | 831.5              | 26865   | 5                  | 16-QAM     | 12        | 13           | 22.12                    | 2                  | 0-2                          |
|      | 831.5              | 26865   | 5                  | 16-QAM     | 25        | 0            | 21.95                    | 2                  | 0-2                          |
|      | 846.5              | 27015   | 5                  | QPSK       | 1         | 0            | 24.04                    | 0                  | 0                            |
|      | 846.5              | 27015   | 5                  | QPSK       | 1         | 12           | 24.10                    | 0                  | 0                            |
|      | 846.5              | 27015   | 5                  | QPSK       | 1         | 24           | 23.77                    | 0                  | 0                            |
|      | 846.5              | 27015   | 5                  | QPSK       | 12        | 0            | 23.15                    | 1                  | 0-1                          |
|      | 846.5              | 27015   | 5                  | QPSK       | 12        | 6            | 23.07                    | 1                  | 0-1                          |
|      | 846.5              | 27015   | 5                  | QPSK       | 12        | 13           | 22.91                    | 1                  | 0-1                          |
| High | 846.5              | 27015   | 5                  | QPSK       | 25        | 0            | 22.96                    | 1                  | 0-1                          |
| Ŧ    | 846.5              | 27015   | 5                  | 16-QAM     | 1         | 0            | 23.10                    | 1                  | 0-1                          |
|      | 846.5              | 27015   | 5                  | 16-QAM     | 1         | 12           | 23.16                    | 1                  | 0-1                          |
|      | 846.5              | 27015   | 5                  | 16-QAM     | 1         | 24           | 22.91                    | 1                  | 0-1                          |
|      | 846.5              | 27015   | 5                  | 16-QAM     | 12        | 0            | 22.19                    | 2                  | 0-2                          |
|      | 846.5              | 27015   | 5                  | 16-QAM     | 12        | 6            | 22.20                    | 2                  | 0-2                          |
|      | 846.5              | 27015   | 5                  | 16-QAM     | 12        | 13           | 22.14                    | 2                  | 0-2                          |
| Ш    | 846.5              | 27015   | 5                  | 16-QAM     | 25        | 0            | 22.09                    | 2                  | 0-2                          |

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT LG | Reviewed by: Quality Manager |
|---------------------|---------------------|--------------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:                | Page 30 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset         | rage 30 of 79                |

Table 9-3
LTE Band 26 Conducted Powers - 3 MHz Bandwidth

|      | LTE Band 26 Conducted Powers - 3 MHz Bandwidth |         |                    |            |         |           |                          |                    |                              |  |
|------|------------------------------------------------|---------|--------------------|------------|---------|-----------|--------------------------|--------------------|------------------------------|--|
|      | Frequency<br>[MHz]                             | Channel | Bandwidth<br>[MHz] | Modulation | RB Size | RB Offset | Conducted<br>Power [dBm] | Target MPR<br>[dB] | MPR Allowed per<br>3GPP [dB] |  |
|      | 815.5                                          | 26705   | 3                  | QPSK       | 1       | 0         | 24.00                    | 0                  | 0                            |  |
|      | 815.5                                          | 26705   | 3                  | QPSK       | 1       | 7         | 24.02                    | 0                  | 0                            |  |
|      | 815.5                                          | 26705   | 3                  | QPSK       | 1       | 14        | 24.03                    | 0                  | 0                            |  |
|      | 815.5                                          | 26705   | 3                  | QPSK       | 8       | 0         | 22.88                    | 1                  | 0-1                          |  |
|      | 815.5                                          | 26705   | 3                  | QPSK       | 8       | 4         | 22.85                    | 1                  | 0-1                          |  |
|      | 815.5                                          | 26705   | 3                  | QPSK       | 8       | 7         | 22.89                    | 1                  | 0-1                          |  |
| Low  | 815.5                                          | 26705   | 3                  | QPSK       | 15      | 0         | 22.82                    | 1                  | 0-1                          |  |
| P    | 815.5                                          | 26705   | 3                  | 16-QAM     | 1       | 0         | 22.94                    | 1                  | 0-1                          |  |
|      | 815.5                                          | 26705   | 3                  | 16-QAM     | 1       | 7         | 23.07                    | 1                  | 0-1                          |  |
|      | 815.5                                          | 26705   | 3                  | 16-QAM     | 1       | 14        | 23.03                    | 1                  | 0-1                          |  |
|      | 815.5                                          | 26705   | 3                  | 16-QAM     | 8       | 0         | 21.80                    | 2                  | 0-2                          |  |
|      | 815.5                                          | 26705   | 3                  | 16-QAM     | 8       | 4         | 21.92                    | 2                  | 0-2                          |  |
|      | 815.5                                          | 26705   | 3                  | 16-QAM     | 8       | 7         | 21.81                    | 2                  | 0-2                          |  |
|      | 815.5                                          | 26705   | 3                  | 16-QAM     | 15      | 0         | 21.77                    | 2                  | 0-2                          |  |
|      | 831.5                                          | 26865   | 3                  | QPSK       | 1       | 0         | 24.02                    | 0                  | 0                            |  |
|      | 831.5                                          | 26865   | 3                  | QPSK       | 1       | 7         | 23.99                    | 0                  | 0                            |  |
|      | 831.5                                          | 26865   | 3                  | QPSK       | 1       | 14        | 23.97                    | 0                  | 0                            |  |
|      | 831.5                                          | 26865   | 3                  | QPSK       | 8       | 0         | 22.91                    | 1                  | 0-1                          |  |
|      | 831.5                                          | 26865   | 3                  | QPSK       | 8       | 4         | 22.98                    | 1                  | 0-1                          |  |
|      | 831.5                                          | 26865   | 3                  | QPSK       | 8       | 7         | 22.92                    | 1                  | 0-1                          |  |
| Mid  | 831.5                                          | 26865   | 3                  | QPSK       | 15      | 0         | 22.95                    | 1                  | 0-1                          |  |
| 2    | 831.5                                          | 26865   | 3                  | 16-QAM     | 1       | 0         | 22.79                    | 1                  | 0-1                          |  |
|      | 831.5                                          | 26865   | 3                  | 16-QAM     | 1       | 7         | 22.84                    | 1                  | 0-1                          |  |
|      | 831.5                                          | 26865   | 3                  | 16-QAM     | 1       | 14        | 22.90                    | 1                  | 0-1                          |  |
|      | 831.5                                          | 26865   | 3                  | 16-QAM     | 8       | 0         | 21.87                    | 2                  | 0-2                          |  |
|      | 831.5                                          | 26865   | 3                  | 16-QAM     | 8       | 4         | 21.96                    | 2                  | 0-2                          |  |
|      | 831.5                                          | 26865   | 3                  | 16-QAM     | 8       | 7         | 21.90                    | 2                  | 0-2                          |  |
|      | 831.5                                          | 26865   | 3                  | 16-QAM     | 15      | 0         | 21.88                    | 2                  | 0-2                          |  |
|      | 847.5                                          | 27025   | 3                  | QPSK       | 1       | 0         | 24.12                    | 0                  | 0                            |  |
|      | 847.5                                          | 27025   | 3                  | QPSK       | 1       | 7         | 24.01                    | 0                  | 0                            |  |
|      | 847.5                                          | 27025   | 3                  | QPSK       | 1       | 14        | 23.77                    | 0                  | 0                            |  |
|      | 847.5                                          | 27025   | 3                  | QPSK       | 8       | 0         | 23.08                    | 1                  | 0-1                          |  |
|      | 847.5                                          | 27025   | 3                  | QPSK       | 8       | 4         | 22.97                    | 1                  | 0-1                          |  |
|      | 847.5                                          | 27025   | 3                  | QPSK       | 8       | 7         | 22.85                    | 1                  | 0-1                          |  |
| High | 847.5                                          | 27025   | 3                  | QPSK       | 15      | 0         | 22.95                    | 1                  | 0-1                          |  |
| I    | 847.5                                          | 27025   | 3                  | 16-QAM     | 1       | 0         | 23.11                    | 1                  | 0-1                          |  |
|      | 847.5                                          | 27025   | 3                  | 16-QAM     | 1       | 7         | 22.93                    | 1                  | 0-1                          |  |
|      | 847.5                                          | 27025   | 3                  | 16-QAM     | 1       | 14        | 22.79                    | 1                  | 0-1                          |  |
|      | 847.5                                          | 27025   | 3                  | 16-QAM     | 8       | 0         | 21.99                    | 2                  | 0-2                          |  |
|      | 847.5                                          | 27025   | 3                  | 16-QAM     | 8       | 4         | 21.90                    | 2                  | 0-2                          |  |
|      | 847.5                                          | 27025   | 3                  | 16-QAM     | 8       | 7         | 21.77                    | 2                  | 0-2                          |  |
|      | 847.5                                          | 27025   | 3                  | 16-QAM     | 15      | 0         | 21.80                    | 2                  | 0-2                          |  |

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT LG | Reviewed by: Quality Manager |
|---------------------|---------------------|--------------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:                | Page 31 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset         | rage 31 01 79                |

Table 9-4
LTE Band 26 Conducted Powers -1.4 MHz Bandwidth

|      | LTE Balla 20 Colladeted Fowers -1.4 MITZ Ballawiath |         |                    |            |         |           |                          |                    |                              |
|------|-----------------------------------------------------|---------|--------------------|------------|---------|-----------|--------------------------|--------------------|------------------------------|
|      | Frequency<br>[MHz]                                  | Channel | Bandwidth<br>[MHz] | Modulation | RB Size | RB Offset | Conducted<br>Power [dBm] | Target MPR<br>[dB] | MPR Allowed per<br>3GPP [dB] |
|      | 814.7                                               | 26697   | 1.4                | QPSK       | 1       | 0         | 24.11                    | 0                  | 0                            |
|      | 814.7                                               | 26697   | 1.4                | QPSK       | 1       | 2         | 24.02                    | 0                  | 0                            |
|      | 814.7                                               | 26697   | 1.4                | QPSK       | 1       | 5         | 23.89                    | 0                  | 0                            |
|      | 814.7                                               | 26697   | 1.4                | QPSK       | 3       | 0         | 23.88                    | 0                  | 0                            |
|      | 814.7                                               | 26697   | 1.4                | QPSK       | 3       | 2         | 23.81                    | 0                  | 0                            |
|      | 814.7                                               | 26697   | 1.4                | QPSK       | 3       | 3         | 23.94                    | 0                  | 0                            |
| Low  | 814.7                                               | 26697   | 1.4                | QPSK       | 6       | 0         | 23.02                    | 1                  | 0-1                          |
| 2    | 814.7                                               | 26697   | 1.4                | 16-QAM     | 1       | 0         | 23.06                    | 1                  | 0-1                          |
|      | 814.7                                               | 26697   | 1.4                | 16-QAM     | 1       | 2         | 23.01                    | 1                  | 0-1                          |
|      | 814.7                                               | 26697   | 1.4                | 16-QAM     | 1       | 5         | 22.99                    | 1                  | 0-1                          |
|      | 814.7                                               | 26697   | 1.4                | 16-QAM     | 3       | 0         | 22.84                    | 1                  | 0-1                          |
|      | 814.7                                               | 26697   | 1.4                | 16-QAM     | 3       | 2         | 22.89                    | 1                  | 0-1                          |
|      | 814.7                                               | 26697   | 1.4                | 16-QAM     | 3       | 3         | 22.88                    | 1                  | 0-1                          |
|      | 814.7                                               | 26697   | 1.4                | 16-QAM     | 6       | 0         | 21.97                    | 2                  | 0-2                          |
|      | 831.5                                               | 26865   | 1.4                | QPSK       | 1       | 0         | 24.05                    | 0                  | 0                            |
|      | 831.5                                               | 26865   | 1.4                | QPSK       | 1       | 2         | 23.98                    | 0                  | 0                            |
|      | 831.5                                               | 26865   | 1.4                | QPSK       | 1       | 5         | 23.99                    | 0                  | 0                            |
|      | 831.5                                               | 26865   | 1.4                | QPSK       | 3       | 0         | 23.91                    | 0                  | 0                            |
|      | 831.5                                               | 26865   | 1.4                | QPSK       | 3       | 2         | 23.88                    | 0                  | 0                            |
|      | 831.5                                               | 26865   | 1.4                | QPSK       | 3       | 3         | 23.90                    | 0                  | 0                            |
| Mid  | 831.5                                               | 26865   | 1.4                | QPSK       | 6       | 0         | 22.93                    | 1                  | 0-1                          |
| Σ    | 831.5                                               | 26865   | 1.4                | 16-QAM     | 1       | 0         | 23.06                    | 1                  | 0-1                          |
|      | 831.5                                               | 26865   | 1.4                | 16-QAM     | 1       | 2         | 22.75                    | 1                  | 0-1                          |
|      | 831.5                                               | 26865   | 1.4                | 16-QAM     | 1       | 5         | 22.77                    | 1                  | 0-1                          |
|      | 831.5                                               | 26865   | 1.4                | 16-QAM     | 3       | 0         | 22.95                    | 1                  | 0-1                          |
|      | 831.5                                               | 26865   | 1.4                | 16-QAM     | 3       | 2         | 23.10                    | 1                  | 0-1                          |
|      | 831.5                                               | 26865   | 1.4                | 16-QAM     | 3       | 3         | 22.99                    | 1                  | 0-1                          |
|      | 831.5                                               | 26865   | 1.4                | 16-QAM     | 6       | 0         | 22.02                    | 2                  | 0-2                          |
|      | 848.3                                               | 27033   | 1.4                | QPSK       | 1       | 0         | 24.02                    | 0                  | 0                            |
|      | 848.3                                               | 27033   | 1.4                | QPSK       | 1       | 2         | 24.00                    | 0                  | 0                            |
|      | 848.3                                               | 27033   | 1.4                | QPSK       | 1       | 5         | 23.94                    | 0                  | 0                            |
|      | 848.3                                               | 27033   | 1.4                | QPSK       | 3       | 0         | 23.99                    | 0                  | 0                            |
|      | 848.3                                               | 27033   | 1.4                | QPSK       | 3       | 2         | 23.78                    | 0                  | 0                            |
|      | 848.3                                               | 27033   | 1.4                | QPSK       | 3       | 3         | 23.84                    | 0                  | 0                            |
| High | 848.3                                               | 27033   | 1.4                | QPSK       | 6       | 0         | 23.03                    | 1                  | 0-1                          |
| Ξ̈́  | 848.3                                               | 27033   | 1.4                | 16-QAM     | 1       | 0         | 22.89                    | 1                  | 0-1                          |
|      | 848.3                                               | 27033   | 1.4                | 16-QAM     | 1       | 2         | 22.93                    | 1                  | 0-1                          |
|      | 848.3                                               | 27033   | 1.4                | 16-QAM     | 1       | 5         | 22.91                    | 1                  | 0-1                          |
|      | 848.3                                               | 27033   | 1.4                | 16-QAM     | 3       | 0         | 22.89                    | 1                  | 0-1                          |
|      | 848.3                                               | 27033   | 1.4                | 16-QAM     | 3       | 2         | 22.80                    | 1                  | 0-1                          |
|      | 848.3                                               | 27033   | 1.4                | 16-QAM     | 3       | 3         | 22.85                    | 1                  | 0-1                          |
|      | 848.3                                               | 27033   | 1.4                | 16-QAM     | 6       | 0         | 22.00                    | 2                  | 0-2                          |

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT LG | Reviewed by: Quality Manager |
|---------------------|---------------------|--------------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:                | Page 32 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset         | Fage 32 01 79                |

# 9.4.2 LTE Band 25 (PCS)

Table 9-5
LTE Band 25 (PCS) Conducted Powers - 10 MHz Bandwidth

|      | LTE Band 25 (PC5) Conducted Powers - 10 MHz Bandwidth |         |                    |            |         |           |                          |                    |                              |  |  |
|------|-------------------------------------------------------|---------|--------------------|------------|---------|-----------|--------------------------|--------------------|------------------------------|--|--|
|      | Frequency<br>[MHz]                                    | Channel | Bandwidth<br>[MHz] | Modulation | RB Size | RB Offset | Conducted<br>Power [dBm] | Target MPR<br>[dB] | MPR Allowed per<br>3GPP [dB] |  |  |
|      | 1855                                                  | 26090   | 10                 | QPSK       | 1       | 0         | 23.52                    | 0                  | 0                            |  |  |
|      | 1855                                                  | 26090   | 10                 | QPSK       | 1       | 25        | 23.43                    | 0                  | 0                            |  |  |
|      | 1855                                                  | 26090   | 10                 | QPSK       | 1       | 49        | 23.40                    | 0                  | 0                            |  |  |
|      | 1855                                                  | 26090   | 10                 | QPSK       | 25      | 0         | 22.44                    | 1                  | 0-1                          |  |  |
|      | 1855                                                  | 26090   | 10                 | QPSK       | 25      | 12        | 22.53                    | 1                  | 0-1                          |  |  |
|      | 1855                                                  | 26090   | 10                 | QPSK       | 25      | 25        | 22.49                    | 1                  | 0-1                          |  |  |
| Low  | 1855                                                  | 26090   | 10                 | QPSK       | 50      | 0         | 22.43                    | 1                  | 0-1                          |  |  |
| 2    | 1855                                                  | 26090   | 10                 | 16QAM      | 1       | 0         | 22.26                    | 1                  | 0-1                          |  |  |
|      | 1855                                                  | 26090   | 10                 | 16QAM      | 1       | 25        | 22.23                    | 1                  | 0-1                          |  |  |
|      | 1855                                                  | 26090   | 10                 | 16QAM      | 1       | 49        | 22.27                    | 1                  | 0-1                          |  |  |
|      | 1855                                                  | 26090   | 10                 | 16QAM      | 25      | 0         | 21.62                    | 2                  | 0-2                          |  |  |
|      | 1855                                                  | 26090   | 10                 | 16QAM      | 25      | 12        | 21.50                    | 2                  | 0-2                          |  |  |
|      | 1855                                                  | 26090   | 10                 | 16QAM      | 25      | 25        | 21.48                    | 2                  | 0-2                          |  |  |
|      | 1855                                                  | 26090   | 10                 | 16QAM      | 50      | 0         | 21.60                    | 2                  | 0-2                          |  |  |
|      | 1882.5                                                | 26365   | 10                 | QPSK       | 1       | 0         | 23.59                    | 0                  | 0                            |  |  |
|      | 1882.5                                                | 26365   | 10                 | QPSK       | 1       | 25        | 23.43                    | 0                  | 0                            |  |  |
|      | 1882.5                                                | 26365   | 10                 | QPSK       | 1       | 49        | 23.66                    | 0                  | 0                            |  |  |
|      | 1882.5                                                | 26365   | 10                 | QPSK       | 25      | 0         | 22.52                    | 1                  | 0-1                          |  |  |
|      | 1882.5                                                | 26365   | 10                 | QPSK       | 25      | 12        | 22.54                    | 1                  | 0-1                          |  |  |
|      | 1882.5                                                | 26365   | 10                 | QPSK       | 25      | 25        | 22.57                    | 1                  | 0-1                          |  |  |
| Mid  | 1882.5                                                | 26365   | 10                 | QPSK       | 50      | 0         | 22.52                    | 1                  | 0-1                          |  |  |
| Σ    | 1882.5                                                | 26365   | 10                 | 16QAM      | 1       | 0         | 22.55                    | 1                  | 0-1                          |  |  |
|      | 1882.5                                                | 26365   | 10                 | 16QAM      | 1       | 25        | 22.53                    | 1                  | 0-1                          |  |  |
|      | 1882.5                                                | 26365   | 10                 | 16QAM      | 1       | 49        | 22.55                    | 1                  | 0-1                          |  |  |
|      | 1882.5                                                | 26365   | 10                 | 16QAM      | 25      | 0         | 21.54                    | 2                  | 0-2                          |  |  |
|      | 1882.5                                                | 26365   | 10                 | 16QAM      | 25      | 12        | 21.59                    | 2                  | 0-2                          |  |  |
|      | 1882.5                                                | 26365   | 10                 | 16QAM      | 25      | 25        | 21.63                    | 2                  | 0-2                          |  |  |
|      | 1882.5                                                | 26365   | 10                 | 16QAM      | 50      | 0         | 21.56                    | 2                  | 0-2                          |  |  |
|      | 1910                                                  | 26640   | 10                 | QPSK       | 1       | 0         | 23.51                    | 0                  | 0                            |  |  |
|      | 1910                                                  | 26640   | 10                 | QPSK       | 1       | 25        | 23.43                    | 0                  | 0                            |  |  |
|      | 1910                                                  | 26640   | 10                 | QPSK       | 1       | 49        | 23.20                    | 0                  | 0                            |  |  |
|      | 1910                                                  | 26640   | 10                 | QPSK       | 25      | 0         | 22.53                    | 1                  | 0-1                          |  |  |
|      | 1910                                                  | 26640   | 10                 | QPSK       | 25      | 12        | 22.36                    | 1                  | 0-1                          |  |  |
|      | 1910                                                  | 26640   | 10                 | QPSK       | 25      | 25        | 22.40                    | 1                  | 0-1                          |  |  |
| High | 1910                                                  | 26640   | 10                 | QPSK       | 50      | 0         | 22.41                    | 1                  | 0-1                          |  |  |
| Η̈́  | 1910                                                  | 26640   | 10                 | 16QAM      | 1       | 0         | 22.32                    | 1                  | 0-1                          |  |  |
|      | 1910                                                  | 26640   | 10                 | 16QAM      | 1       | 25        | 22.36                    | 1                  | 0-1                          |  |  |
|      | 1910                                                  | 26640   | 10                 | 16QAM      | 1       | 49        | 22.51                    | 1                  | 0-1                          |  |  |
|      | 1910                                                  | 26640   | 10                 | 16QAM      | 25      | 0         | 21.42                    | 2                  | 0-2                          |  |  |
|      | 1910                                                  | 26640   | 10                 | 16QAM      | 25      | 12        | 21.50                    | 2                  | 0-2                          |  |  |
|      | 1910                                                  | 26640   | 10                 | 16QAM      | 25      | 25        | 21.32                    | 2                  | 0-2                          |  |  |
|      | 1910                                                  | 26640   | 10                 | 16QAM      | 50      | 0         | 21.47                    | 2                  | 0-2                          |  |  |

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             | Page 33 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      | Page 33 01 79                |

Table 9-6 LTE Band 25 (PCS) Conducted Powers - 5 MHz Bandwidth

|      | _                  |         | LTE Balld 23 (FCS) Colludated Fowers - 3 MHz Balldwidth |            |         |           |                          |                    |                              |
|------|--------------------|---------|---------------------------------------------------------|------------|---------|-----------|--------------------------|--------------------|------------------------------|
|      | Frequency<br>[MHz] | Channel | Bandwidth<br>[MHz]                                      | Modulation | RB Size | RB Offset | Conducted<br>Power [dBm] | Target MPR<br>[dB] | MPR Allowed per<br>3GPP [dB] |
|      | 1852.5             | 26065   | 5                                                       | QPSK       | 1       | 0         | 23.43                    | 0                  | 0                            |
|      | 1852.5             | 26065   | 5                                                       | QPSK       | 1       | 12        | 23.55                    | 0                  | 0                            |
|      | 1852.5             | 26065   | 5                                                       | QPSK       | 1       | 24        | 23.66                    | 0                  | 0                            |
|      | 1852.5             | 26065   | 5                                                       | QPSK       | 12      | 0         | 22.48                    | 1                  | 0-1                          |
|      | 1852.5             | 26065   | 5                                                       | QPSK       | 12      | 6         | 22.54                    | 1                  | 0-1                          |
|      | 1852.5             | 26065   | 5                                                       | QPSK       | 12      | 13        | 22.45                    | 1                  | 0-1                          |
| Low  | 1852.5             | 26065   | 5                                                       | QPSK       | 25      | 0         | 22.34                    | 1                  | 0-1                          |
| 2    | 1852.5             | 26065   | 5                                                       | 16-QAM     | 1       | 0         | 22.43                    | 1                  | 0-1                          |
|      | 1852.5             | 26065   | 5                                                       | 16-QAM     | 1       | 12        | 22.58                    | 1                  | 0-1                          |
|      | 1852.5             | 26065   | 5                                                       | 16-QAM     | 1       | 24        | 22.64                    | 1                  | 0-1                          |
|      | 1852.5             | 26065   | 5                                                       | 16-QAM     | 12      | 0         | 21.48                    | 2                  | 0-2                          |
|      | 1852.5             | 26065   | 5                                                       | 16-QAM     | 12      | 6         | 21.51                    | 2                  | 0-2                          |
|      | 1852.5             | 26065   | 5                                                       | 16-QAM     | 12      | 13        | 21.49                    | 2                  | 0-2                          |
|      | 1852.5             | 26065   | 5                                                       | 16-QAM     | 25      | 0         | 21.41                    | 2                  | 0-2                          |
|      | 1882.5             | 26365   | 5                                                       | QPSK       | 1       | 0         | 23.61                    | 0                  | 0                            |
|      | 1882.5             | 26365   | 5                                                       | QPSK       | 1       | 12        | 23.53                    | 0                  | 0                            |
|      | 1882.5             | 26365   | 5                                                       | QPSK       | 1       | 24        | 23.51                    | 0                  | 0                            |
|      | 1882.5             | 26365   | 5                                                       | QPSK       | 12      | 0         | 22.57                    | 1                  | 0-1                          |
|      | 1882.5             | 26365   | 5                                                       | QPSK       | 12      | 6         | 22.62                    | 1                  | 0-1                          |
|      | 1882.5             | 26365   | 5                                                       | QPSK       | 12      | 13        | 22.57                    | 1                  | 0-1                          |
| Mid  | 1882.5             | 26365   | 5                                                       | QPSK       | 25      | 0         | 22.41                    | 1                  | 0-1                          |
| Σ    | 1882.5             | 26365   | 5                                                       | 16-QAM     | 1       | 0         | 22.46                    | 1                  | 0-1                          |
|      | 1882.5             | 26365   | 5                                                       | 16-QAM     | 1       | 12        | 22.34                    | 1                  | 0-1                          |
|      | 1882.5             | 26365   | 5                                                       | 16-QAM     | 1       | 24        | 22.44                    | 1                  | 0-1                          |
|      | 1882.5             | 26365   | 5                                                       | 16-QAM     | 12      | 0         | 21.30                    | 2                  | 0-2                          |
|      | 1882.5             | 26365   | 5                                                       | 16-QAM     | 12      | 6         | 21.64                    | 2                  | 0-2                          |
|      | 1882.5             | 26365   | 5                                                       | 16-QAM     | 12      | 13        | 21.47                    | 2                  | 0-2                          |
|      | 1882.5             | 26365   | 5                                                       | 16-QAM     | 25      | 0         | 21.63                    | 2                  | 0-2                          |
|      | 1912.5             | 26665   | 5                                                       | QPSK       | 1       | 0         | 23.64                    | 0                  | 0                            |
|      | 1912.5             | 26665   | 5                                                       | QPSK       | 1       | 12        | 23.60                    | 0                  | 0                            |
|      | 1912.5             | 26665   | 5                                                       | QPSK       | 1       | 24        | 23.20                    | 0                  | 0                            |
|      | 1912.5             | 26665   | 5                                                       | QPSK       | 12      | 0         | 22.38                    | 1                  | 0-1                          |
|      | 1912.5             | 26665   | 5                                                       | QPSK       | 12      | 6         | 22.25                    | 1                  | 0-1                          |
|      | 1912.5             | 26665   | 5                                                       | QPSK       | 12      | 13        | 22.36                    | 1                  | 0-1                          |
| High | 1912.5             | 26665   | 5                                                       | QPSK       | 25      | 0         | 22.24                    | 1                  | 0-1                          |
| Ξ̈́  | 1912.5             | 26665   | 5                                                       | 16-QAM     | 1       | 0         | 22.42                    | 1                  | 0-1                          |
|      | 1912.5             | 26665   | 5                                                       | 16-QAM     | 1       | 12        | 22.25                    | 1                  | 0-1                          |
|      | 1912.5             | 26665   | 5                                                       | 16-QAM     | 1       | 24        | 22.20                    | 1                  | 0-1                          |
|      | 1912.5             | 26665   | 5                                                       | 16-QAM     | 12      | 0         | 21.47                    | 2                  | 0-2                          |
|      | 1912.5             | 26665   | 5                                                       | 16-QAM     | 12      | 6         | 21.29                    | 2                  | 0-2                          |
|      | 1912.5             | 26665   | 5                                                       | 16-QAM     | 12      | 13        | 21.42                    | 2                  | 0-2                          |
| 1 [  | 1912.5             | 26665   | 5                                                       | 16-QAM     | 25      | 0         | 21.27                    | 2                  | 0-2                          |

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT LG | Reviewed by: Quality Manager |
|---------------------|---------------------|--------------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:                | Page 34 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset         | Fage 34 01 79                |

Table 9-7
LTE Band 25 (PCS) Conducted Powers - 3 MHz Bandwidth

|      | LTE Band 25 (PCS) Conducted Powers - 3 MHZ Bandwidth |         |                    |            |         |           |                          |                    |                              |
|------|------------------------------------------------------|---------|--------------------|------------|---------|-----------|--------------------------|--------------------|------------------------------|
|      | Frequency<br>[MHz]                                   | Channel | Bandwidth<br>[MHz] | Modulation | RB Size | RB Offset | Conducted<br>Power [dBm] | Target MPR<br>[dB] | MPR Allowed per<br>3GPP [dB] |
|      | 1851.5                                               | 26055   | 3                  | QPSK       | 1       | 0         | 23.52                    | 0                  | 0                            |
|      | 1851.5                                               | 26055   | 3                  | QPSK       | 1       | 7         | 23.57                    | 0                  | 0                            |
|      | 1851.5                                               | 26055   | 3                  | QPSK       | 1       | 14        | 23.62                    | 0                  | 0                            |
|      | 1851.5                                               | 26055   | 3                  | QPSK       | 8       | 0         | 22.65                    | 1                  | 0-1                          |
|      | 1851.5                                               | 26055   | 3                  | QPSK       | 8       | 4         | 22.63                    | 1                  | 0-1                          |
|      | 1851.5                                               | 26055   | 3                  | QPSK       | 8       | 7         | 22.64                    | 1                  | 0-1                          |
| Low  | 1851.5                                               | 26055   | 3                  | QPSK       | 15      | 0         | 22.62                    | 1                  | 0-1                          |
| Z    | 1851.5                                               | 26055   | 3                  | 16-QAM     | 1       | 0         | 22.37                    | 1                  | 0-1                          |
|      | 1851.5                                               | 26055   | 3                  | 16-QAM     | 1       | 7         | 22.42                    | 1                  | 0-1                          |
|      | 1851.5                                               | 26055   | 3                  | 16-QAM     | 1       | 14        | 22.52                    | 1                  | 0-1                          |
|      | 1851.5                                               | 26055   | 3                  | 16-QAM     | 8       | 0         | 21.67                    | 2                  | 0-2                          |
|      | 1851.5                                               | 26055   | 3                  | 16-QAM     | 8       | 4         | 21.57                    | 2                  | 0-2                          |
|      | 1851.5                                               | 26055   | 3                  | 16-QAM     | 8       | 7         | 21.55                    | 2                  | 0-2                          |
|      | 1851.5                                               | 26055   | 3                  | 16-QAM     | 15      | 0         | 21.64                    | 2                  | 0-2                          |
|      | 1882.5                                               | 26365   | 3                  | QPSK       | 1       | 0         | 23.70                    | 0                  | 0                            |
|      | 1882.5                                               | 26365   | 3                  | QPSK       | 1       | 7         | 23.58                    | 0                  | 0                            |
|      | 1882.5                                               | 26365   | 3                  | QPSK       | 1       | 14        | 23.60                    | 0                  | 0                            |
|      | 1882.5                                               | 26365   | 3                  | QPSK       | 8       | 0         | 22.61                    | 1                  | 0-1                          |
|      | 1882.5                                               | 26365   | 3                  | QPSK       | 8       | 4         | 22.59                    | 1                  | 0-1                          |
|      | 1882.5                                               | 26365   | 3                  | QPSK       | 8       | 7         | 22.62                    | 1                  | 0-1                          |
| Mid  | 1882.5                                               | 26365   | 3                  | QPSK       | 15      | 0         | 22.62                    | 1                  | 0-1                          |
| 2    | 1882.5                                               | 26365   | 3                  | 16-QAM     | 1       | 0         | 22.54                    | 1                  | 0-1                          |
|      | 1882.5                                               | 26365   | 3                  | 16-QAM     | 1       | 7         | 22.35                    | 1                  | 0-1                          |
|      | 1882.5                                               | 26365   | 3                  | 16-QAM     | 1       | 14        | 22.55                    | 1                  | 0-1                          |
|      | 1882.5                                               | 26365   | 3                  | 16-QAM     | 8       | 0         | 21.42                    | 2                  | 0-2                          |
|      | 1882.5                                               | 26365   | 3                  | 16-QAM     | 8       | 4         | 21.39                    | 2                  | 0-2                          |
|      | 1882.5                                               | 26365   | 3                  | 16-QAM     | 8       | 7         | 21.44                    | 2                  | 0-2                          |
|      | 1882.5                                               | 26365   | 3                  | 16-QAM     | 15      | 0         | 21.57                    | 2                  | 0-2                          |
|      | 1913.5                                               | 26675   | 3                  | QPSK       | 1       | 0         | 23.47                    | 0                  | 0                            |
|      | 1913.5                                               | 26675   | 3                  | QPSK       | 1       | 7         | 23.46                    | 0                  | 0                            |
|      | 1913.5                                               | 26675   | 3                  | QPSK       | 1       | 14        | 23.47                    | 0                  | 0                            |
|      | 1913.5                                               | 26675   | 3                  | QPSK       | 8       | 0         | 22.51                    | 1                  | 0-1                          |
|      | 1913.5                                               | 26675   | 3                  | QPSK       | 8       | 4         | 22.48                    | 1                  | 0-1                          |
|      | 1913.5                                               | 26675   | 3                  | QPSK       | 8       | 7         | 22.53                    | 1                  | 0-1                          |
| High | 1913.5                                               | 26675   | 3                  | QPSK       | 15      | 0         | 22.42                    | 1                  | 0-1                          |
| Ī    | 1913.5                                               | 26675   | 3                  | 16-QAM     | 1       | 0         | 22.44                    | 1                  | 0-1                          |
|      | 1913.5                                               | 26675   | 3                  | 16-QAM     | 1       | 7         | 22.65                    | 1                  | 0-1                          |
|      | 1913.5                                               | 26675   | 3                  | 16-QAM     | 1       | 14        | 22.59                    | 1                  | 0-1                          |
|      | 1913.5                                               | 26675   | 3                  | 16-QAM     | 8       | 0         | 21.41                    | 2                  | 0-2                          |
|      | 1913.5                                               | 26675   | 3                  | 16-QAM     | 8       | 4         | 21.42                    | 2                  | 0-2                          |
|      | 1913.5                                               | 26675   | 3                  | 16-QAM     | 8       | 7         | 21.45                    | 2                  | 0-2                          |
|      | 1913.5                                               | 26675   | 3                  | 16-QAM     | 15      | 0         | 21.59                    | 2                  | 0-2                          |

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT LG | Reviewed by: Quality Manager |
|---------------------|---------------------|--------------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:                | Page 35 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset         | rage 35 of 79                |

# 9.4.3 LTE Band 41

Table 9-8
LTE Band 41 Conducted Powers - 20 MHz Bandwidth

|          |                  |                | I E Dallu 4     | Conducti     | ed Powers | - ZU WITZ |                       |                 |                              |
|----------|------------------|----------------|-----------------|--------------|-----------|-----------|-----------------------|-----------------|------------------------------|
|          | Frequency [MHz]  | Channel        | Bandwidth [MHz] | Modulation   | RB Size   | RB Offset | Conducted Power [dBm] | Target MPR [dB] | MPR Allowed per<br>3GPP [dB] |
|          | 2506             | 39750          | 20              | QPSK         | 1         | 0         | 22.47                 | 0               | 0                            |
|          | 2506             | 39750          | 20              | QPSK         | 1         | 50        | 22.79                 | 0               | 0                            |
|          | 2506             | 39750          | 20              | QPSK         | 1         | 99        | 22.79                 | 0               | 0                            |
|          | 2506             | 39750          | 20              | QPSK         | 50        | 0         | 21.63                 | 1               | 0-1                          |
|          | 2506             | 39750          | 20              | QPSK         | 50        | 25        | 21.67                 | 1               | 0-1                          |
|          | 2506             | 39750          | 20              | QPSK         | 50        | 50        | 21.74                 | 1               | 0-1                          |
| Low      | 2506             | 39750          | 20              | QPSK         | 100       | 0         | 21.62                 | 1               | 0-1                          |
| Ľ        | 2506             | 39750          | 20              | 16QAM        | 1         | 0         | 21.72                 | 1               | 0-1                          |
|          | 2506             | 39750          | 20              | 16QAM        | 1         | 50        | 21.52                 | 1               | 0-1                          |
|          | 2506             | 39750          | 20              | 16QAM        | 1         | 99        | 21.52                 | 1               | 0-1                          |
|          | 2506             | 39750          | 20              | 16QAM        | 50        | 0         | 20.52                 | 2               | 0-2                          |
|          | 2506             | 39750          | 20              | 16QAM        | 50        | 25        | 20.59                 | 2               | 0-2                          |
|          | 2506             | 39750          | 20              | 16QAM        | 50        | 50        | 20.61                 | 2               | 0-2                          |
|          | 2506             | 39750          | 20              | 16QAM        | 100       | 0         | 20.53                 | 2               | 0-2                          |
|          | 2549.5           | 40185          | 20              | QPSK         | 1         | 0         | 22.70                 | 0               | 0                            |
|          | 2549.5           | 40185          | 20              | QPSK         | 1         | 50        | 22.67                 | 0               | 0                            |
|          | 2549.5           | 40185          | 20              | QPSK         | 1         | 99        | 22.74                 | 0               | 0                            |
|          | 2549.5           | 40185          | 20              | QPSK         | 50        | 0<br>25   | 21.65                 | 1               | 0-1<br>0-1                   |
|          | 2549.5<br>2549.5 | 40185<br>40185 | 20              | QPSK<br>QPSK | 50<br>50  | 50        | 21.57<br>21.60        | 1               | 0-1                          |
| ١id      | 2549.5           | 40185          | 20              | QPSK         | 100       | 0         | 21.58                 |                 | 0-1                          |
| Low Mid  | 2549.5<br>2549.5 | 40185          | 20              | 16-QAM       | 100       | 0         | 21.58                 | 1               | 0-1                          |
| Ó        | 2549.5           | 40185          | 20              | 16-QAM       | 1         | 50        | 21.98                 | 1               | 0-1                          |
|          | 2549.5           | 40185          | 20              | 16-QAM       | 1         | 99        | 22.07                 | 1               | 0-1                          |
|          | 2549.5           | 40185          | 20              | 16-QAM       | 50        | 0         | 20.50                 | 2               | 0-2                          |
|          | 2549.5           | 40185          | 20              | 16-QAM       | 50        | 25        | 20.46                 | 2               | 0-2                          |
|          | 2549.5           | 40185          | 20              | 16-QAM       | 50        | 50        | 20.45                 | 2               | 0-2                          |
|          | 2549.5           | 40185          | 20              | 16-QAM       | 100       | 0         | 20.62                 | 2               | 0-2                          |
|          | 2593             | 40620          | 20              | QPSK         | 1         | 0         | 22.82                 | 0               | 0                            |
|          | 2593             | 40620          | 20              | QPSK         | 1         | 50        | 22.76                 | 0               | 0                            |
|          | 2593             | 40620          | 20              | QPSK         | 1         | 99        | 22.70                 | 0               | 0                            |
|          | 2593             | 40620          | 20              | QPSK         | 50        | 0         | 21.67                 | 1               | 0-1                          |
|          | 2593             | 40620          | 20              | QPSK         | 50        | 25        | 21.65                 | 1               | 0-1                          |
|          | 2593             | 40620          | 20              | QPSK         | 50        | 50        | 21.68                 | 1               | 0-1                          |
| Mid      | 2593             | 40620          | 20              | QPSK         | 100       | 0         | 21.67                 | 1               | 0-1                          |
| Σ        | 2593             | 40620          | 20              | 16-QAM       | 1         | 0         | 22.16                 | 1               | 0-1                          |
|          | 2593             | 40620          | 20              | 16-QAM       | 1         | 50        | 22.10                 | 1               | 0-1                          |
|          | 2593             | 40620          | 20              | 16-QAM       | 1         | 99        | 22.05                 | 1               | 0-1                          |
|          | 2593             | 40620          | 20              | 16-QAM       | 50        | 0         | 20.70                 | 2               | 0-2                          |
|          | 2593             | 40620          | 20              | 16-QAM       | 50        | 25        | 20.72                 | 2               | 0-2                          |
|          | 2593             | 40620          | 20              | 16-QAM       | 50        | 50        | 20.74                 | 2               | 0-2                          |
|          | 2593             | 40620          | 20              | 16-QAM       | 100       | 0         | 20.66                 | 2               | 0-2                          |
|          | 2636.5           | 41055          | 20              | QPSK         | 1         | 0         | 22.93                 | 0               | 0                            |
|          | 2636.5           | 41055          | 20              | QPSK         | 1         | 50        | 23.00                 | 0               | 0                            |
|          | 2636.5           | 41055          | 20              | QPSK         | 1         | 99        | 22.90                 | 0               | 0                            |
|          | 2636.5           | 41055          | 20              | QPSK         | 50        | 0         | 21.71                 | 1               | 0-1                          |
|          | 2636.5<br>2636.5 | 41055<br>41055 | 20              | QPSK<br>QPSK | 50<br>50  | 25<br>50  | <b>21.78</b><br>21.72 | 1               | 0-1<br>0-1                   |
| gh       | 2636.5           | 41055          | 20              | QPSK         | 100       | 0         | 21.72                 | 1               | 0-1                          |
| Mid High | 2636.5           | 41055          | 20              | 16-QAM       | 1         | 0         | 21.73                 | 1               | 0-1                          |
| ž        | 2636.5           | 41055          | 20              | 16-QAM       | 1         | 50        | 21.62                 | 1               | 0-1                          |
|          | 2636.5           | 41055          | 20              | 16-QAM       | 1         | 99        | 21.51                 | 1               | 0-1                          |
|          | 2636.5           | 41055          | 20              | 16-QAM       | 50        | 0         | 20.69                 | 2               | 0-2                          |
|          | 2636.5           | 41055          | 20              | 16-QAM       | 50        | 25        | 20.73                 | 2               | 0-2                          |
|          | 2636.5           | 41055          | 20              | 16-QAM       | 50        | 50        | 20.72                 | 2               | 0-2                          |
|          | 2636.5           | 41055          | 20              | 16-QAM       | 100       | 0         | 20.79                 | 2               | 0-2                          |
|          | 2680             | 41490          | 20              | QPSK         | 1         | 0         | 22.77                 | 0               | 0                            |
|          | 2680             | 41490          | 20              | QPSK         | 1         | 50        | 22.76                 | 0               | 0                            |
|          | 2680             | 41490          | 20              | QPSK         | 1         | 99        | 22.34                 | 0               | 0                            |
|          | 2680             | 41490          | 20              | QPSK         | 50        | 0         | 21.70                 | 1               | 0-1                          |
|          | 2680             | 41490          | 20              | QPSK         | 50        | 25        | 21.66                 | 1               | 0-1                          |
|          | 2680             | 41490          | 20              | QPSK         | 50        | 50        | 21.60                 | 1               | 0-1                          |
| ş,       | 2680             | 41490          | 20              | QPSK         | 100       | 0         | 21.64                 | 1               | 0-1                          |
| High     | 2680             | 41490          | 20              | 16-QAM       | 1         | 0         | 22.06                 | 1               | 0-1                          |
|          | 2680             | 41490          | 20              | 16-QAM       | 1         | 50        | 22.11                 | 1               | 0-1                          |
|          | 2680             | 41490          | 20              | 16-QAM       | 1         | 99        | 21.70                 | 1               | 0-1                          |
|          | 2680             | 41490          | 20              | 16-QAM       | 50        | 0         | 20.57                 | 2               | 0-2                          |
|          | 2680             | 41490          | 20              | 16-QAM       | 50        | 25        | 20.53                 | 2               | 0-2                          |
|          | 2680             | 41490          | 20              | 16-QAM       | 50        | 50        | 20.50                 | 2               | 0-2                          |
|          | 2680             | 41490          | 20              | 16-QAM       | 100       | 0         | 20.70                 | 2               | 0-2                          |
|          |                  |                | Dand 44 has 5   |              |           |           |                       |                 |                              |

Note: LTE Band 41 has 5 required test channels per FCC KDB Publication 447498 D01.

|                     |                              |                       | Reviewed by: |                 |
|---------------------|------------------------------|-----------------------|--------------|-----------------|
| FCC ID: ZNFLS995    | SHOUNDERING LABORATORY, INC. | SAR EVALUATION REPORT | LG LG        | Quality Manager |
| Document S/N:       | Test Dates:                  | DUT Type:             |              | Page 36 of 79   |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13          | Portable Handset      |              | Fage 30 01 79   |

Table 9-9
LTE Band 41 Conducted Powers - 15 MHz Bandwidth

|          |                    |                | I E Dallu 4     | i Conducti       | ed Powers | - IO WITZ |                       |                 |                              |
|----------|--------------------|----------------|-----------------|------------------|-----------|-----------|-----------------------|-----------------|------------------------------|
|          | Frequency [MHz]    | Channel        | Bandwidth [MHz] | Modulation       | RB Size   | RB Offset | Conducted Power [dBm] | Target MPR [dB] | MPR Allowed per<br>3GPP [dB] |
|          | 2503.5             | 39725          | 15              | QPSK             | 1         | 0         | 22.40                 | 0               | 0                            |
|          | 2503.5             | 39725          | 15              | QPSK             | 1         | 36        | 22.75                 | 0               | 0                            |
|          | 2503.5             | 39725          | 15              | QPSK             | 1         | 74        | 22.86                 | 0               | 0                            |
|          | 2503.5             | 39725          | 15              | QPSK             | 36        | 0         | 21.52                 | 1               | 0-1                          |
|          | 2503.5             | 39725          | 15              | QPSK             | 36        | 18        | 21.66                 | 1               | 0-1                          |
|          | 2503.5<br>2503.5   | 39725<br>39725 | 15<br>15        | QPSK<br>QPSK     | 36<br>75  | 37<br>0   | 21.50<br>21.54        | 1               | 0-1<br>0-1                   |
| Low      | 2503.5             | 39725          | 15              | 16QAM            | 1         | 0         | 21.63                 | 1               | 0-1                          |
| _        | 2503.5             | 39725          | 15              | 16QAM            | 1         | 36        | 22.20                 | 1               | 0-1                          |
|          | 2503.5             | 39725          | 15              | 16QAM            | 1         | 74        | 22.12                 | 1               | 0-1                          |
|          | 2503.5             | 39725          | 15              | 16QAM            | 36        | 0         | 20.48                 | 2               | 0-2                          |
|          | 2503.5             | 39725          | 15              | 16QAM            | 36        | 18        | 20.57                 | 2               | 0-2                          |
|          | 2503.5             | 39725          | 15              | 16QAM            | 36        | 37        | 20.62                 | 2               | 0-2                          |
|          | 2503.5             | 39725          | 15              | 16QAM            | 75        | 0         | 20.58                 | 2               | 0-2                          |
|          | 2548.25            | 40173          | 15              | QPSK             | 1         | 0         | 22.67                 | 0               | 0                            |
|          | 2548.25            | 40173          | 15              | QPSK             | 1         | 36        | 22.73                 | 0               | 0                            |
|          | 2548.25            | 40173          | 15              | QPSK             | 1         | 74        | 22.79                 | 0               | 0                            |
|          | 2548.25            | 40173          | 15              | QPSK             | 36        | 0         | 21.57                 | 1               | 0-1                          |
|          | 2548.25            | 40173          | 15              | QPSK             | 36        | 18        | 21.57                 | 1               | 0-1                          |
| lid      | 2548.25            | 40173          | 15              | QPSK             | 36        | 37        | 21.56                 | 1               | 0-1                          |
| Low Mid  | 2548.25<br>2548.25 | 40173<br>40173 | 15<br>15        | QPSK<br>16-QAM   | 75<br>1   | 0         | 21.57<br>21.73        | 1               | 0-1<br>0-1                   |
| ΓO       | 2548.25<br>2548.25 | 40173          | 15              | 16-QAM           | 1         | 36        | 21.73                 | 1               | 0-1                          |
|          | 2548.25            | 40173          | 15              | 16-QAM           | 1         | 74        | 22.08                 | 1               | 0-1                          |
|          | 2548.25            | 40173          | 15              | 16-QAM           | 36        | 0         | 20.65                 | 2               | 0-2                          |
|          | 2548.25            | 40173          | 15              | 16-QAM           | 36        | 18        | 20.59                 | 2               | 0-2                          |
|          | 2548.25            | 40173          | 15              | 16-QAM           | 36        | 37        | 20.57                 | 2               | 0-2                          |
|          | 2548.25            | 40173          | 15              | 16-QAM           | 75        | 0         | 20.59                 | 2               | 0-2                          |
|          | 2593               | 40620          | 15              | QPSK             | 1         | 0         | 22.93                 | 0               | 0                            |
|          | 2593               | 40620          | 15              | QPSK             | 1         | 36        | 22.98                 | 0               | 0                            |
|          | 2593               | 40620          | 15              | QPSK             | 1         | 74        | 22.95                 | 0               | 0                            |
|          | 2593               | 40620          | 15              | QPSK             | 36        | 0         | 21.61                 | 1               | 0-1                          |
|          | 2593               | 40620          | 15              | QPSK             | 36        | 18        | 21.66                 | 1               | 0-1                          |
|          | 2593               | 40620          | 15              | QPSK             | 36        | 37        | 21.63                 | 1               | 0-1                          |
| Mid      | 2593               | 40620          | 15              | QPSK             | 75        | 0         | 21.61                 | 1               | 0-1                          |
| _        | 2593<br>2593       | 40620<br>40620 | 15<br>15        | 16-QAM<br>16-QAM | 1         | 0<br>36   | 21.37<br>21.43        | 1               | 0-1<br>0-1                   |
|          | 2593               | 40620          | 15              | 16-QAM           | 1         | 74        | 21.43                 | 1               | 0-1                          |
|          | 2593               | 40620          | 15              | 16-QAM           | 36        | 0         | 20.65                 | 2               | 0-1                          |
|          | 2593               | 40620          | 15              | 16-QAM           | 36        | 18        | 20.72                 | 2               | 0-2                          |
|          | 2593               | 40620          | 15              | 16-QAM           | 36        | 37        | 20.76                 | 2               | 0-2                          |
|          | 2593               | 40620          | 15              | 16-QAM           | 75        | 0         | 20.66                 | 2               | 0-2                          |
|          | 2637.75            | 41068          | 15              | QPSK             | 1         | 0         | 22.75                 | 0               | 0                            |
|          | 2637.75            | 41068          | 15              | QPSK             | 1         | 36        | 22.84                 | 0               | 0                            |
|          | 2637.75            | 41068          | 15              | QPSK             | 1         | 74        | 22.72                 | 0               | 0                            |
|          | 2637.75            | 41068          | 15              | QPSK             | 36        | 0         | 21.66                 | 1               | 0-1                          |
|          | 2637.75            | 41068          | 15              | QPSK             | 36        | 18        | 21.75                 | 1               | 0-1                          |
| ų,       | 2637.75            | 41068          | 15              | QPSK             | 36        | 37        | 21.68                 | 1               | 0-1                          |
| Mid High | 2637.75            | 41068          | 15              | QPSK             | 75        | 0         | 21.72                 | 1               | 0-1                          |
| Mic      | 2637.75<br>2637.75 | 41068<br>41068 | 15<br>15        | 16-QAM<br>16-QAM | 1         | 0<br>36   | 22.10<br>22.18        | 1               | 0-1<br>0-1                   |
|          | 2637.75            | 41068          | 15              | 16-QAM           | 1         | 74        | 21.92                 | 1               | 0-1                          |
|          | 2637.75            | 41068          | 15              | 16-QAM           | 36        | 0         | 20.67                 | 2               | 0-2                          |
|          | 2637.75            | 41068          | 15              | 16-QAM           | 36        | 18        | 20.73                 | 2               | 0-2                          |
|          | 2637.75            | 41068          | 15              | 16-QAM           | 36        | 37        | 20.72                 | 2               | 0-2                          |
|          | 2637.75            | 41068          | 15              | 16-QAM           | 75        | 0         | 20.71                 | 2               | 0-2                          |
|          | 2682.5             | 41515          | 15              | QPSK             | 1         | 0         | 22.78                 | 0               | 0                            |
|          | 2682.5             | 41515          | 15              | QPSK             | 1         | 36        | 22.80                 | 0               | 0                            |
|          | 2682.5             | 41515          | 15              | QPSK             | 1         | 74        | 22.33                 | 0               | 0                            |
|          | 2682.5             | 41515          | 15              | QPSK             | 36        | 0         | 21.66                 | 1               | 0-1                          |
|          | 2682.5             | 41515          | 15              | QPSK             | 36        | 18        | 21.63                 | 1               | 0-1                          |
|          | 2682.5             | 41515          | 15              | QPSK             | 36        | 37        | 21.47                 | 1               | 0-1                          |
| High     | 2682.5             | 41515          | 15              | QPSK             | 75        | 0         | 21.54                 | 1               | 0-1                          |
| Ĭ        | 2682.5             | 41515          | 15              | 16-QAM           | 1         | 0         | 22.07                 | 1               | 0-1                          |
|          | 2682.5<br>2682.5   | 41515          | 15              | 16-QAM           | 1         | 36        | 22.05                 | 1               | 0-1                          |
|          |                    | 41515          | 15              | 16-QAM           | 1         | 74        | 21.91                 | 1               | 0-1                          |
|          | 2682.5<br>2682.5   | 41515<br>41515 | 15<br>15        | 16-QAM<br>16-QAM | 36<br>36  | 0<br>18   | 20.70<br>20.65        | 2               | 0-2<br>0-2                   |
|          | 2682.5<br>2682.5   | 41515          | 15              | 16-QAM           | 36        | 37        | 20.55                 | 2               | 0-2                          |
|          | 2682.5             | 41515          | 15              | 16-QAM           | 75        | 0         | 20.61                 | 2               | 0-2                          |
| Ш        | 2002.5             |                |                 |                  | /5        |           |                       |                 | ∪-∠                          |

Note: LTE Band 41 has 5 required test channels per FCC KDB Publication 447498 D01.

| FCC ID: ZNFLS995    | PCTEST*             | SAR EVALUATION REPORT LG | Reviewed by: Quality Manager |
|---------------------|---------------------|--------------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:                | Page 37 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset         | Fage 37 Ol 79                |

Table 9-10 LTE Band 41 Conducted Powers - 10 MHz Bandwidth

|          |                 |                | I E Dallu 4     | i Conducti       | ed Powers | - IU WITZ |                       |                 |                              |
|----------|-----------------|----------------|-----------------|------------------|-----------|-----------|-----------------------|-----------------|------------------------------|
|          | Frequency [MHz] | Channel        | Bandwidth [MHz] | Modulation       | RB Size   | RB Offset | Conducted Power [dBm] | Target MPR [dB] | MPR Allowed per<br>3GPP [dB] |
|          | 2501            | 39700          | 10              | QPSK             | 1         | 0         | 22.56                 | 0               | 0                            |
|          | 2501            | 39700          | 10              | QPSK             | 1         | 25        | 22.88                 | 0               | 0                            |
|          | 2501            | 39700          | 10              | QPSK             | 1         | 49        | 22.96                 | 0               | 0                            |
|          | 2501            | 39700          | 10              | QPSK             | 25        | 0         | 21.51                 | 1               | 0-1                          |
|          | 2501            | 39700          | 10              | QPSK             | 25        | 12        | 21.61                 | 1               | 0-1                          |
|          | 2501<br>2501    | 39700<br>39700 | 10<br>10        | QPSK<br>QPSK     | 25<br>50  | 25<br>0   | 21.73<br>21.54        | 1               | 0-1<br>0-1                   |
| Low      | 2501            | 39700          | 10              | 16QAM            | 1         | 0         | 21.67                 | 1               | 0-1                          |
| _        | 2501            | 39700          | 10              | 16QAM            | 1         | 25        | 21.40                 | 1               | 0-1                          |
|          | 2501            | 39700          | 10              | 16QAM            | 1         | 49        | 21.43                 | 1               | 0-1                          |
|          | 2501            | 39700          | 10              | 16QAM            | 25        | 0         | 20.45                 | 2               | 0-2                          |
|          | 2501            | 39700          | 10              | 16QAM            | 25        | 12        | 20.53                 | 2               | 0-2                          |
|          | 2501            | 39700          | 10              | 16QAM            | 25        | 25        | 20.69                 | 2               | 0-2                          |
|          | 2501            | 39700          | 10              | 16QAM            | 50        | 0         | 20.48                 | 2               | 0-2                          |
|          | 2547            | 40160          | 10              | QPSK             | 1         | 0         | 22.72                 | 0               | 0                            |
|          | 2547            | 40160          | 10              | QPSK             | 1         | 25        | 22.75                 | 0               | 0                            |
|          | 2547            | 40160          | 10              | QPSK             | 1         | 49        | 22.75                 | 0               | 0                            |
|          | 2547            | 40160          | 10              | QPSK             | 25        | 0         | 21.66                 | 1               | 0-1                          |
|          | 2547            | 40160          | 10              | QPSK             | 25        | 12        | 21.66                 | 1               | 0-1                          |
| рį       | 2547            | 40160          | 10              | QPSK             | 25        | 25        | 21.69                 | 1               | 0-1                          |
| Low Mid  | 2547<br>2547    | 40160<br>40160 | 10<br>10        | QPSK             | 50<br>1   | 0         | 21.59<br>22.13        | 1               | 0-1<br>0-1                   |
| ю́       | 2547            | 40160          | 10              | 16-QAM<br>16-QAM | 1         | 25        | 22.13                 | 1               | 0-1                          |
|          | 2547            | 40160          | 10              | 16-QAM           | 1         | 49        | 22.12                 | 1               | 0-1                          |
|          | 2547            | 40160          | 10              | 16-QAM           | 25        | 0         | 20.65                 | 2               | 0-2                          |
|          | 2547            | 40160          | 10              | 16-QAM           | 25        | 12        | 20.62                 | 2               | 0-2                          |
|          | 2547            | 40160          | 10              | 16-QAM           | 25        | 25        | 20.64                 | 2               | 0-2                          |
|          | 2547            | 40160          | 10              | 16-QAM           | 50        | 0         | 20.58                 | 2               | 0-2                          |
|          | 2593            | 40620          | 10              | QPSK             | 1         | 0         | 22.85                 | 0               | 0                            |
|          | 2593            | 40620          | 10              | QPSK             | 1         | 25        | 22.88                 | 0               | 0                            |
|          | 2593            | 40620          | 10              | QPSK             | 1         | 49        | 22.83                 | 0               | 0                            |
|          | 2593            | 40620          | 10              | QPSK             | 25        | 0         | 21.85                 | 1               | 0-1                          |
|          | 2593            | 40620          | 10              | QPSK             | 25        | 12        | 21.76                 | 1               | 0-1                          |
|          | 2593            | 40620          | 10              | QPSK             | 25        | 25        | 21.76                 | 1               | 0-1                          |
| Mid      | 2593            | 40620          | 10              | QPSK             | 50        | 0         | 21.70                 | 1               | 0-1                          |
| 2        | 2593            | 40620          | 10              | 16-QAM           | 1         | 0         | 22.08                 | 1               | 0-1                          |
|          | 2593            | 40620          | 10              | 16-QAM           | 1         | 25        | 22.20                 | 1               | 0-1                          |
|          | 2593<br>2593    | 40620<br>40620 | 10<br>10        | 16-QAM<br>16-QAM | 1<br>25   | 49<br>0   | 22.19<br>20.85        | 2               | 0-1<br>0-2                   |
|          | 2593            | 40620          | 10              | 16-QAM           | 25        | 12        | 20.88                 | 2               | 0-2                          |
|          | 2593            | 40620          | 10              | 16-QAM           | 25        | 25        | 20.80                 | 2               | 0-2                          |
|          | 2593            | 40620          | 10              | 16-QAM           | 50        | 0         | 20.80                 | 2               | 0-2                          |
|          | 2639            | 41080          | 10              | QPSK             | 1         | 0         | 22.81                 | 0               | 0                            |
|          | 2639            | 41080          | 10              | QPSK             | 1         | 25        | 22.82                 | 0               | 0                            |
|          | 2639            | 41080          | 10              | QPSK             | 1         | 49        | 22.79                 | 0               | 0                            |
|          | 2639            | 41080          | 10              | QPSK             | 25        | 0         | 21.81                 | 1               | 0-1                          |
|          | 2639            | 41080          | 10              | QPSK             | 25        | 12        | 21.80                 | 1               | 0-1                          |
| ب        | 2639            | 41080          | 10              | QPSK             | 25        | 25        | 21.72                 | 1               | 0-1                          |
| Mid High | 2639            | 41080          | 10              | QPSK             | 50        | 0         | 21.80                 | 1               | 0-1                          |
| Mid      | 2639            | 41080          | 10              | 16-QAM           | 1         | 0         | 22.05                 | 1               | 0-1                          |
| _        | 2639<br>2639    | 41080          | 10<br>10        | 16-QAM           | 1         | 25<br>49  | 22.18<br>22.14        | 1               | 0-1<br>0-1                   |
|          | 2639            | 41080<br>41080 | 10              | 16-QAM<br>16-QAM | 25        | 0         | 22.14                 | 2               | 0-1                          |
|          | 2639            | 41080          | 10              | 16-QAM           | 25<br>25  | 12        | 20.92                 | 2               | 0-2                          |
|          | 2639            | 41080          | 10              | 16-QAM           | 25        | 25        | 20.94                 | 2               | 0-2                          |
|          | 2639            | 41080          | 10              | 16-QAM           | 50        | 0         | 20.83                 | 2               | 0-2                          |
|          | 2685            | 41540          | 10              | QPSK             | 1         | 0         | 23.05                 | 0               | 0                            |
|          | 2685            | 41540          | 10              | QPSK             | 1         | 25        | 22.93                 | 0               | 0                            |
|          | 2685            | 41540          | 10              | QPSK             | 1         | 49        | 22.53                 | 0               | 0                            |
|          | 2685            | 41540          | 10              | QPSK             | 25        | 0         | 21.65                 | 1               | 0-1                          |
|          | 2685            | 41540          | 10              | QPSK             | 25        | 12        | 21.63                 | 1               | 0-1                          |
|          | 2685            | 41540          | 10              | QPSK             | 25        | 25        | 21.44                 | 1               | 0-1                          |
| High     | 2685            | 41540          | 10              | QPSK             | 50        | 0         | 21.56                 | 1               | 0-1                          |
| Ξ        | 2685            | 41540          | 10              | 16-QAM           | 1         | 0         | 21.58                 | 1               | 0-1                          |
|          | 2685            | 41540          | 10              | 16-QAM           | 1         | 25        | 21.48                 | 1               | 0-1                          |
|          | 2685            | 41540          | 10              | 16-QAM           | 1         | 49        | 21.55                 | 1               | 0-1                          |
|          | 2685            | 41540          | 10              | 16-QAM           | 25        | 0         | 20.66                 | 2               | 0-2                          |
|          | 2685            | 41540          | 10              | 16-QAM           | 25        | 12        | 20.60                 | 2               | 0-2                          |
|          | 2685            | 41540          | 10              | 16-QAM           | 25        | 25        | 20.48                 | 2               | 0-2                          |
|          | 2685            | 41540          | 10              | 16-QAM           | 50        | 0         | 20.58                 | 2               | 0-2                          |

Note: LTE Band 41 has 5 required test channels per FCC KDB Publication 447498 D01.

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             | Page 38 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      | raye 30 01 /9                |

#### 9.5 **WLAN Conducted Powers**

**Table 9-11** IEEE 802.11b Average RF Power

|         | Freq  |         | 802.11b ( | 2.4 GHz) Co      | nducted Pow | ver [dBm] |  |  |  |  |  |
|---------|-------|---------|-----------|------------------|-------------|-----------|--|--|--|--|--|
| Mode    | 1 109 | Channel |           | Data Rate [Mbps] |             |           |  |  |  |  |  |
|         | [MHz] |         | 1         | 2                | 5.5         | 11        |  |  |  |  |  |
| 802.11b | 2412  | 1*      | 15.59     | 15.51            | 15.52       | 15.58     |  |  |  |  |  |
| 802.11b | 2437  | 6*      | 16.48     | 16.51            | 16.52       | 16.54     |  |  |  |  |  |
| 802.11b | 2462  | 11*     | 16.48     | 16.46            | 16.45       | 16.52     |  |  |  |  |  |

**Table 9-12** IEEE 802.11g Average RF Power

| Mode    | Freq  | Freq Channel [MHz] |       | 802.11g (2.4 GHz) Conducted Power [dBm] |       |       |       |       |       |       |  |
|---------|-------|--------------------|-------|-----------------------------------------|-------|-------|-------|-------|-------|-------|--|
|         |       |                    |       | Data Rate [Mbps]                        |       |       |       |       |       |       |  |
|         | [MHz] |                    | 6     | 9                                       | 12    | 18    | 24    | 36    | 48    | 54    |  |
| 802.11g | 2412  | 1                  | 12.99 | 13.08                                   | 13.13 | 13.15 | 13.14 | 13.07 | 13.26 | 13.12 |  |
| 802.11g | 2437  | 6                  | 13.80 | 13.89                                   | 13.89 | 13.94 | 13.91 | 13.95 | 14.06 | 13.75 |  |
| 802.11g | 2462  | 11                 | 13.65 | 13.85                                   | 13.81 | 13.92 | 13.86 | 13.95 | 14.11 | 13.74 |  |

**Table 9-13** IEEE 802.11n Average RF Power

|         | Freq  |         |       | 802.11n (2.4 GHz) Conducted Power [dBm] |       |       |       |       |       |       |  |  |
|---------|-------|---------|-------|-----------------------------------------|-------|-------|-------|-------|-------|-------|--|--|
| Mode    | rieq  | Channel |       | Data Rate [Mbps]                        |       |       |       |       |       |       |  |  |
|         | [MHz] |         | 6.5   | 13                                      | 20    | 26    | 39    | 52    | 58    | 65    |  |  |
| 802.11n | 2412  | 1       | 12.33 | 12.16                                   | 12.30 | 12.34 | 12.37 | 12.44 | 12.44 | 12.39 |  |  |
| 802.11n | 2437  | 6       | 13.04 | 13.16                                   | 13.15 | 13.23 | 13.21 | 13.13 | 13.32 | 13.09 |  |  |
| 802.11n | 2462  | 11      | 12.91 | 12.97                                   | 12.92 | 12.85 | 13.03 | 13.04 | 13.03 | 13.05 |  |  |

| FCC ID: ZNFLS995    | PCTEST*             | SAR EVALUATION REPORT | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             | Page 39 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      | rage 39 01 79                |

**Table 9-14** IEEE 802.11a Average RF Power

|       |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 802.11a (50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SHz) Conduc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tea Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [aBm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Freq  | Channel                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Data Rate [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mbps]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| [MHz] |                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5180  | 36*                                                                                                            | 9.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5200  | 40                                                                                                             | 10.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5220  | 44                                                                                                             | 10.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5240  | 48*                                                                                                            | 11.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5260  | 52*                                                                                                            | 11.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5280  | 56                                                                                                             | 11.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5300  | 60                                                                                                             | 11.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5320  | 64*                                                                                                            | 11.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5500  | 100                                                                                                            | 10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5520  | 104*                                                                                                           | 11.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5540  | 108                                                                                                            | 11.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5560  | 112                                                                                                            | 11.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5580  | 116*                                                                                                           | 11.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5600  | 120                                                                                                            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5620  | 124                                                                                                            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5640  | 128                                                                                                            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5660  | 132                                                                                                            | 11.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5680  | 136*                                                                                                           | 10.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5700  | 140                                                                                                            | 10.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5720  | 144                                                                                                            | 10.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5745  | 149*                                                                                                           | 10.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5765  | 153                                                                                                            | 10.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5785  | 157*                                                                                                           | 10.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5805  | 161*                                                                                                           | 10.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5825  | 165                                                                                                            | 10.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | 5180 5200 5220 5240 5260 5280 5320 55300 5520 5540 5560 5580 5620 5660 5660 5700 5720 5745 5765 5785 5805 5825 | [MHz]         5180         36*           5200         40         5220         44           5240         48*         5260         52*           5280         56         5300         60           5320         64*         5500         100           5520         104*         5540         108           5560         112         5580         116*           5600         120         5620         124           5640         128         5660         132           5680         136*         5700         140           5720         144         5745         149*           5765         153         5785         157*           5805         161*         5825         165 | [MHz]         6           5180         36*         9.43           5200         40         10.29           5220         44         10.41           5240         48*         11.19           5260         52*         11.61           5280         56         11.39           5300         60         11.31           5320         64*         11.26           5500         100         10.52           5520         104*         11.38           5540         108         11.28           5560         112         11.35           5580         116*         11.08           5600         120         N/A           5620         124         N/A           5640         128         N/A           5660         132         11.00           5680         136*         10.82           5700         140         10.71           5720         144         10.57           5745         149*         10.79           5765         153         10.91           5785         157*         10.80           5805 | Image         6         9           5180         36*         9.43         9.49           5200         40         10.29         10.29           5220         44         10.41         10.36           5240         48*         11.19         11.20           5260         52*         11.61         11.62           5280         56         11.39         11.30           5300         60         11.31         11.50           5320         64*         11.26         11.30           5500         100         10.52         10.56           5520         104*         11.38         11.28           5540         108         11.28         11.35           5560         112         11.35         11.26           5580         116*         11.08         11.16           5600         120         N/A         N/A           5620         124         N/A         N/A           5640         128         N/A         N/A           5660         132         11.00         10.99           5680         136*         10.82         10.93           5700 | [MHz]         6         9         12           5180         36*         9.43         9.49         9.48           5200         40         10.29         10.29         10.35           5220         44         10.41         10.36         10.42           5240         48*         11.19         11.20         11.26           5260         52*         11.61         11.62         11.60           5280         56         11.39         11.30         11.41           5300         60         11.31         11.50         11.41           5320         64*         11.26         11.30         11.15           5500         100         10.52         10.56         10.55           5520         104*         11.38         11.28         11.24           5540         108         11.28         11.35         11.34           5560         112         11.35         11.26         11.38           5580         116*         11.08         11.16         11.24           5600         120         N/A         N/A         N/A           5640         128         N/A         N/A         N/A </td <td>IMHz         6         9         12         18           5180         36*         9.43         9.49         9.48         9.43           5200         40         10.29         10.29         10.35         10.44           5220         44         10.41         10.36         10.42         10.41           5240         48*         11.19         11.20         11.26         11.22           5260         52*         11.61         11.62         11.60         11.55           5280         56         11.39         11.30         11.41         11.49           5300         60         11.31         11.50         11.41         11.49           5320         64*         11.26         11.30         11.15         11.43           5500         100         10.52         10.56         10.55         10.52           5520         104*         11.38         11.28         11.24         11.30           5540         108         11.28         11.35         11.34         11.26           5580         116*         11.08         11.16         11.24         11.14           5600         120         N/A         <t< td=""><td>[MHz]         6         9         12         18         24           5180         36*         9.43         9.49         9.48         9.43         9.44           5200         40         10.29         10.29         10.35         10.44         10.26           5220         44         10.41         10.36         10.42         10.41         10.39           5240         48*         11.19         11.20         11.26         11.22         11.18           5260         52*         11.61         11.62         11.60         11.55         11.40           5280         56         11.39         11.30         11.41         11.44         11.30           5300         60         11.31         11.50         11.41         11.49         11.43           5320         64*         11.26         11.30         11.15         11.43         11.33           5500         100         10.52         10.56         10.55         10.52         10.54           5520         104*         11.38         11.28         11.24         11.30         11.32           5540         108         11.28         11.35         11.34         11.26<td>[MHz]         6         9         12         18         24         36           5180         36*         9.43         9.49         9.48         9.43         9.44         9.33           5200         40         10.29         10.29         10.35         10.44         10.26         10.32           5220         44         10.41         10.36         10.42         10.41         10.39         10.25           5240         48*         11.19         11.20         11.26         11.22         11.18         11.16           5260         52*         11.61         11.62         11.60         11.55         11.40         11.58           5280         56         11.39         11.30         11.41         11.44         11.30         11.49           5300         60         11.31         11.50         11.41         11.49         11.43         11.44           5320         64*         11.26         11.30         11.15         11.43         11.37         11.16           5500         100         10.52         10.56         10.55         10.52         10.54         10.37           5520         104*         11.38         11.28&lt;</td><td>  MHz    6   9   12   18   24   36   48   5180   36*   9.43   9.49   9.48   9.43   9.44   9.33   9.46   5200   40   10.29   10.29   10.35   10.44   10.26   10.32   10.27   5220   44   10.41   10.36   10.42   10.41   10.39   10.25   10.40   5240   48*   11.19   11.20   11.26   11.22   11.18   11.16   11.10   5260   52*   11.61   11.62   11.60   11.55   11.40   11.58   11.45   5280   56   11.39   11.30   11.41   11.44   11.30   11.49   11.45   5300   60   11.31   11.50   11.41   11.49   11.43   11.44   11.44   11.30   11.49   11.45   5320   64*   11.26   11.30   11.15   11.43   11.37   11.16   11.28   5500   100   10.52   10.56   10.55   10.52   10.54   10.37   10.46   5520   104*   11.38   11.28   11.24   11.30   11.32   11.23   11.28   5540   108   11.28   11.35   11.36   11.38   11.28   11.23   11.23   11.28   11.28   5580   116*   11.08   11.16   11.24   11.14   11.23   11.24   11.25   11.66   11.38   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   1</td></td></t<></td> | IMHz         6         9         12         18           5180         36*         9.43         9.49         9.48         9.43           5200         40         10.29         10.29         10.35         10.44           5220         44         10.41         10.36         10.42         10.41           5240         48*         11.19         11.20         11.26         11.22           5260         52*         11.61         11.62         11.60         11.55           5280         56         11.39         11.30         11.41         11.49           5300         60         11.31         11.50         11.41         11.49           5320         64*         11.26         11.30         11.15         11.43           5500         100         10.52         10.56         10.55         10.52           5520         104*         11.38         11.28         11.24         11.30           5540         108         11.28         11.35         11.34         11.26           5580         116*         11.08         11.16         11.24         11.14           5600         120         N/A <t< td=""><td>[MHz]         6         9         12         18         24           5180         36*         9.43         9.49         9.48         9.43         9.44           5200         40         10.29         10.29         10.35         10.44         10.26           5220         44         10.41         10.36         10.42         10.41         10.39           5240         48*         11.19         11.20         11.26         11.22         11.18           5260         52*         11.61         11.62         11.60         11.55         11.40           5280         56         11.39         11.30         11.41         11.44         11.30           5300         60         11.31         11.50         11.41         11.49         11.43           5320         64*         11.26         11.30         11.15         11.43         11.33           5500         100         10.52         10.56         10.55         10.52         10.54           5520         104*         11.38         11.28         11.24         11.30         11.32           5540         108         11.28         11.35         11.34         11.26<td>[MHz]         6         9         12         18         24         36           5180         36*         9.43         9.49         9.48         9.43         9.44         9.33           5200         40         10.29         10.29         10.35         10.44         10.26         10.32           5220         44         10.41         10.36         10.42         10.41         10.39         10.25           5240         48*         11.19         11.20         11.26         11.22         11.18         11.16           5260         52*         11.61         11.62         11.60         11.55         11.40         11.58           5280         56         11.39         11.30         11.41         11.44         11.30         11.49           5300         60         11.31         11.50         11.41         11.49         11.43         11.44           5320         64*         11.26         11.30         11.15         11.43         11.37         11.16           5500         100         10.52         10.56         10.55         10.52         10.54         10.37           5520         104*         11.38         11.28&lt;</td><td>  MHz    6   9   12   18   24   36   48   5180   36*   9.43   9.49   9.48   9.43   9.44   9.33   9.46   5200   40   10.29   10.29   10.35   10.44   10.26   10.32   10.27   5220   44   10.41   10.36   10.42   10.41   10.39   10.25   10.40   5240   48*   11.19   11.20   11.26   11.22   11.18   11.16   11.10   5260   52*   11.61   11.62   11.60   11.55   11.40   11.58   11.45   5280   56   11.39   11.30   11.41   11.44   11.30   11.49   11.45   5300   60   11.31   11.50   11.41   11.49   11.43   11.44   11.44   11.30   11.49   11.45   5320   64*   11.26   11.30   11.15   11.43   11.37   11.16   11.28   5500   100   10.52   10.56   10.55   10.52   10.54   10.37   10.46   5520   104*   11.38   11.28   11.24   11.30   11.32   11.23   11.28   5540   108   11.28   11.35   11.36   11.38   11.28   11.23   11.23   11.28   11.28   5580   116*   11.08   11.16   11.24   11.14   11.23   11.24   11.25   11.66   11.38   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   1</td></td></t<> | [MHz]         6         9         12         18         24           5180         36*         9.43         9.49         9.48         9.43         9.44           5200         40         10.29         10.29         10.35         10.44         10.26           5220         44         10.41         10.36         10.42         10.41         10.39           5240         48*         11.19         11.20         11.26         11.22         11.18           5260         52*         11.61         11.62         11.60         11.55         11.40           5280         56         11.39         11.30         11.41         11.44         11.30           5300         60         11.31         11.50         11.41         11.49         11.43           5320         64*         11.26         11.30         11.15         11.43         11.33           5500         100         10.52         10.56         10.55         10.52         10.54           5520         104*         11.38         11.28         11.24         11.30         11.32           5540         108         11.28         11.35         11.34         11.26 <td>[MHz]         6         9         12         18         24         36           5180         36*         9.43         9.49         9.48         9.43         9.44         9.33           5200         40         10.29         10.29         10.35         10.44         10.26         10.32           5220         44         10.41         10.36         10.42         10.41         10.39         10.25           5240         48*         11.19         11.20         11.26         11.22         11.18         11.16           5260         52*         11.61         11.62         11.60         11.55         11.40         11.58           5280         56         11.39         11.30         11.41         11.44         11.30         11.49           5300         60         11.31         11.50         11.41         11.49         11.43         11.44           5320         64*         11.26         11.30         11.15         11.43         11.37         11.16           5500         100         10.52         10.56         10.55         10.52         10.54         10.37           5520         104*         11.38         11.28&lt;</td> <td>  MHz    6   9   12   18   24   36   48   5180   36*   9.43   9.49   9.48   9.43   9.44   9.33   9.46   5200   40   10.29   10.29   10.35   10.44   10.26   10.32   10.27   5220   44   10.41   10.36   10.42   10.41   10.39   10.25   10.40   5240   48*   11.19   11.20   11.26   11.22   11.18   11.16   11.10   5260   52*   11.61   11.62   11.60   11.55   11.40   11.58   11.45   5280   56   11.39   11.30   11.41   11.44   11.30   11.49   11.45   5300   60   11.31   11.50   11.41   11.49   11.43   11.44   11.44   11.30   11.49   11.45   5320   64*   11.26   11.30   11.15   11.43   11.37   11.16   11.28   5500   100   10.52   10.56   10.55   10.52   10.54   10.37   10.46   5520   104*   11.38   11.28   11.24   11.30   11.32   11.23   11.28   5540   108   11.28   11.35   11.36   11.38   11.28   11.23   11.23   11.28   11.28   5580   116*   11.08   11.16   11.24   11.14   11.23   11.24   11.25   11.66   11.38   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   1</td> | [MHz]         6         9         12         18         24         36           5180         36*         9.43         9.49         9.48         9.43         9.44         9.33           5200         40         10.29         10.29         10.35         10.44         10.26         10.32           5220         44         10.41         10.36         10.42         10.41         10.39         10.25           5240         48*         11.19         11.20         11.26         11.22         11.18         11.16           5260         52*         11.61         11.62         11.60         11.55         11.40         11.58           5280         56         11.39         11.30         11.41         11.44         11.30         11.49           5300         60         11.31         11.50         11.41         11.49         11.43         11.44           5320         64*         11.26         11.30         11.15         11.43         11.37         11.16           5500         100         10.52         10.56         10.55         10.52         10.54         10.37           5520         104*         11.38         11.28< | MHz    6   9   12   18   24   36   48   5180   36*   9.43   9.49   9.48   9.43   9.44   9.33   9.46   5200   40   10.29   10.29   10.35   10.44   10.26   10.32   10.27   5220   44   10.41   10.36   10.42   10.41   10.39   10.25   10.40   5240   48*   11.19   11.20   11.26   11.22   11.18   11.16   11.10   5260   52*   11.61   11.62   11.60   11.55   11.40   11.58   11.45   5280   56   11.39   11.30   11.41   11.44   11.30   11.49   11.45   5300   60   11.31   11.50   11.41   11.49   11.43   11.44   11.44   11.30   11.49   11.45   5320   64*   11.26   11.30   11.15   11.43   11.37   11.16   11.28   5500   100   10.52   10.56   10.55   10.52   10.54   10.37   10.46   5520   104*   11.38   11.28   11.24   11.30   11.32   11.23   11.28   5540   108   11.28   11.35   11.36   11.38   11.28   11.23   11.23   11.28   11.28   5580   116*   11.08   11.16   11.24   11.14   11.23   11.24   11.25   11.66   11.38   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   11.28   1 |

Per FCC KDB Publication 443999 and RSS-210 A9.2(3), transmission on channels which overlap the 5600-5650 MHz is prohibited as a client. This device does not transmit any beacons or initiate any transmissions in 5.3 and 5.5 GHz Band.

(\*) – indicates default channels per KDB Publication 248227 D01v01r02. When the adjacent channels are higher in power then the default channels, these "required channels" are considered for SAR testing instead of the default channels.

| FCC ID: ZNFLS995    | PCTEST*             | SAR EVALUATION REPORT LG | Reviewed by: Quality Manager |
|---------------------|---------------------|--------------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:                | Page 40 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset         | Faye 40 01 79                |

Table 9-15
IEEE 802.11n Average RF Power – 20 MHz Bandwidth

|         | Frea  |         |       | 20M   | Hz BW 802.1 | 1n (5GHz) C  | onducted | Power [dB | m]    |       |
|---------|-------|---------|-------|-------|-------------|--------------|----------|-----------|-------|-------|
| Mode    | rieq  | Channel |       |       |             | Data Rate [I | Mbps]    |           |       |       |
|         | [MHz] |         | 6.5   | 13    | 19.5        | 26           | 39       | 52        | 58.5  | 65    |
| 802.11n | 5180  | 36      | 9.37  | 9.41  | 9.34        | 9.36         | 9.34     | 9.28      | 9.30  | 9.23  |
| 802.11n | 5200  | 40      | 10.38 | 10.30 | 10.33       | 10.27        | 10.20    | 10.28     | 10.35 | 10.30 |
| 802.11n | 5220  | 44      | 10.30 | 10.35 | 10.19       | 10.13        | 10.17    | 10.24     | 10.14 | 10.20 |
| 802.11n | 5240  | 48      | 11.13 | 11.19 | 11.11       | 11.11        | 11.09    | 11.13     | 11.13 | 11.15 |
| 802.11n | 5260  | 52      | 11.52 | 11.50 | 11.39       | 11.45        | 11.40    | 11.35     | 11.39 | 11.34 |
| 802.11n | 5280  | 56      | 11.32 | 11.39 | 11.34       | 11.35        | 11.31    | 11.31     | 11.34 | 11.37 |
| 802.11n | 5300  | 60      | 11.41 | 11.37 | 11.40       | 11.31        | 11.32    | 11.22     | 11.28 | 11.20 |
| 802.11n | 5320  | 64      | 11.27 | 11.33 | 11.35       | 11.35        | 11.16    | 11.14     | 11.13 | 11.28 |
| 802.11n | 5500  | 100     | 10.42 | 10.44 | 10.42       | 10.33        | 10.46    | 10.40     | 10.44 | 10.33 |
| 802.11n | 5520  | 104     | 11.32 | 11.37 | 11.39       | 11.29        | 11.27    | 11.29     | 11.37 | 11.22 |
| 802.11n | 5540  | 108     | 11.21 | 11.23 | 11.21       | 11.08        | 11.30    | 11.14     | 11.14 | 11.22 |
| 802.11n | 5560  | 112     | 10.99 | 11.00 | 11.04       | 11.23        | 11.20    | 11.12     | 11.14 | 11.26 |
| 802.11n | 5580  | 116     | 11.07 | 11.11 | 11.18       | 11.22        | 11.08    | 10.96     | 11.12 | 11.11 |
| 802.11n | 5600  | 120     | N/A   | N/A   | N/A         | N/A          | N/A      | N/A       | N/A   | N/A   |
| 802.11n | 5620  | 124     | N/A   | N/A   | N/A         | N/A          | N/A      | N/A       | N/A   | N/A   |
| 802.11n | 5640  | 128     | N/A   | N/A   | N/A         | N/A          | N/A      | N/A       | N/A   | N/A   |
| 802.11n | 5660  | 132     | 10.97 | 10.93 | 11.00       | 10.87        | 11.00    | 10.88     | 10.87 | 10.88 |
| 802.11n | 5680  | 136     | 10.83 | 10.78 | 10.60       | 10.77        | 10.69    | 10.79     | 10.85 | 10.76 |
| 802.11n | 5700  | 140     | 10.76 | 10.72 | 10.79       | 10.74        | 10.72    | 10.63     | 10.58 | 10.63 |
| 802.11n | 5720  | 144     | 10.72 | 10.71 | 10.65       | 10.74        | 10.76    | 10.71     | 10.56 | 10.66 |
| 802.11n | 5745  | 149     | 10.84 | 10.72 | 10.84       | 10.89        | 10.71    | 10.78     | 10.75 | 10.71 |
| 802.11n | 5765  | 153     | 10.80 | 10.73 | 10.69       | 10.73        | 10.72    | 10.64     | 10.63 | 10.66 |
| 802.11n | 5785  | 157     | 10.66 | 10.71 | 10.66       | 10.68        | 10.65    | 10.56     | 10.68 | 10.63 |
| 802.11n | 5805  | 161     | 10.50 | 10.44 | 10.43       | 10.55        | 10.44    | 10.32     | 10.43 | 10.49 |
| 802.11n | 5825  | 165     | 10.46 | 10.49 | 10.44       | 10.49        | 10.54    | 10.46     | 10.42 | 10.37 |

Per FCC KDB Publication 443999 and RSS-210 A9.2(3), transmission on channels which overlap the 5600-5650 MHz is prohibited as a client. This device does not transmit any beacons or initiate any transmissions in 5.3 and 5.5 GHz Band.

Table 9-16
IEEE 802.11n Average RF Power – 40 MHz Bandwidth

|         | Freq  |         |       | 40M              | Hz BW 802.1 | 1n (5GHz) C | onducted I | Power [dB | m]    |       |  |  |
|---------|-------|---------|-------|------------------|-------------|-------------|------------|-----------|-------|-------|--|--|
| Mode    | Пец   | Channel |       | Data Rate [Mbps] |             |             |            |           |       |       |  |  |
|         | [MHz] |         | 13.5  | 27               | 40.5        | 54          | 81         | 108       | 121.5 | 135   |  |  |
| 802.11n | 5190  | 38      | 9.73  | 9.39             | 9.84        | 9.37        | 9.32       | 9.71      | 9.49  | 9.31  |  |  |
| 802.11n | 5230  | 46      | 11.08 | 11.41            | 11.29       | 11.42       | 11.00      | 10.79     | 10.97 | 11.27 |  |  |
| 802.11n | 5270  | 54      | 11.78 | 11.49            | 11.35       | 11.27       | 11.48      | 11.32     | 11.40 | 11.29 |  |  |
| 802.11n | 5310  | 62      | 11.68 | 11.59            | 11.65       | 11.20       | 11.27      | 11.18     | 11.27 | 11.16 |  |  |
| 802.11n | 5510  | 102     | 10.41 | 10.34            | 10.37       | 10.40       | 10.29      | 10.10     | 10.29 | 10.27 |  |  |
| 802.11n | 5550  | 110     | 11.28 | 11.39            | 11.33       | 11.42       | 11.41      | 11.44     | 11.42 | 11.18 |  |  |
| 802.11n | 5590  | 118     | N/A   | N/A              | N/A         | N/A         | N/A        | N/A       | N/A   | N/A   |  |  |
| 802.11n | 5630  | 126     | N/A   | N/A              | N/A         | N/A         | N/A        | N/A       | N/A   | N/A   |  |  |
| 802.11n | 5670  | 134     | 10.91 | 10.77            | 10.98       | 10.78       | 10.58      | 10.71     | 10.94 | 10.73 |  |  |
| 802.11n | 5710  | 142     | 10.78 | 10.98            | 10.66       | 10.72       | 10.67      | 10.75     | 10.64 | 10.64 |  |  |
| 802.11n | 5755  | 151     | 10.30 | 10.33            | 10.49       | 10.24       | 10.03      | 10.32     | 10.42 | 10.43 |  |  |
| 802.11n | 5795  | 159     | 10.82 | 10.50            | 10.00       | 9.89        | 9.97       | 10.57     | 10.51 | 9.94  |  |  |

Per FCC KDB Publication 443999 and RSS-210 A9.2(3), transmission on channels which overlap the 5600-5650 MHz is prohibited as a client. This device does not transmit any beacons or initiate any transmissions in 5.3 and 5.5 GHz Band.

| FCC ID: ZNFLS995    | PCTEST*             | SAR EVALUATION REPORT | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             | Page 41 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      | Fage 41 01 79                |

**Table 9-17** IEEE 802.11ac Average RF Power - 80 MHz Bandwidth

|          |       |          |       |       | 80MHz | BW 802.11a | c (5GHz) C  | onducted | Power [dBm | ]     |       |       |
|----------|-------|----------|-------|-------|-------|------------|-------------|----------|------------|-------|-------|-------|
| Mode     | Freq  | Channel  |       |       |       | D          | ata Rate [I | /lbps]   |            |       |       |       |
| Wode     | [MHz] | Chamilei | 29.3  | 58.5  | 87.8  | 117        | 175.5       | 234      | 263.3      | 292.5 | 351   | 390   |
|          |       |          | MCS0  | MCS1  | MCS2  | MCS3       | MCS4        | MCS5     | MCS6       | MCS7  | MCS8  | MCS9  |
| 802.11ac | 5210  | 42       | 9.74  | 9.47  | 9.31  | 9.25       | 9.46        | 9.37     | 9.26       | 9.34  | 9.30  | 9.37  |
| 802.11ac | 5290  | 58       | 11.26 | 11.28 | 11.32 | 11.19      | 11.06       | 11.21    | 11.01      | 11.24 | 11.28 | 11.24 |
| 802.11ac | 5530  | 106      | 10.40 | 10.32 | 10.31 | 10.27      | 10.21       | 10.29    | 10.12      | 10.30 | 10.36 | 10.35 |
| 802.11ac | 5690  | 138      | 10.89 | 10.99 | 10.61 | 10.68      | 10.69       | 10.58    | 10.51      | 10.71 | 10.87 | 10.60 |
| 802.11ac | 5775  | 155      | 10.82 | 10.90 | 11.00 | 10.73      | 10.95       | 11.00    | 10.62      | 10.75 | 10.89 | 10.83 |

Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v01r02 and October 2012/April 2013 FCC/TCB Meeting Notes:

- For 2.4 GHz, highest average RF output power channel for the lowest data rate for IEEE 802.11b were selected for SAR evaluation. Other IEEE 802.11 modes (including 802.11g/n/ac) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode.
- For 5 GHz, highest average RF output power channel for the lowest data rate for IEEE 802.11a were selected for SAR evaluation. Other IEEE 802.11 modes (including 802.11n 20 MHz and 40 MHz) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11a mode.
- Full SAR tests for all IEEE 802.11ac configurations were not required because the average output power was not more than 0.25 dB higher than IEEE 802.11a mode. IEEE 802.11ac was evaluated for the highest IEEE 802.11a position in each 5 GHz band and exposure condition.
- When the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg and the reported 1g averaged SAR is <0.8 W/kg. SAR testing on other channels is not required. Otherwise, the other default (or corresponding required) test channels were additionally tested using the lowest data rate.
- The bolded data rate and channel above were tested for SAR.

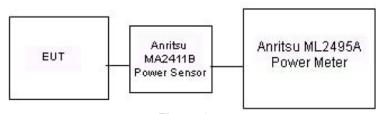



Figure 9-4 **Power Measurement Setup for Bandwidths < 50 MHz** 

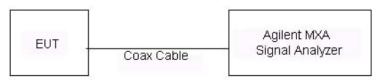



Figure 9-5 **Power Measurement Setup for Bandwidths > 50 MHz** 

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT LG | Reviewed by: Quality Manager |
|---------------------|---------------------|--------------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:                | Page 42 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset         | Faye 42 01 /9                |

# 10 SYSTEM VERIFICATION

## 10.1 Tissue Verification

Table 10-1 Head Measured Tissue Properties

| Calibrated for<br>Tests Performed<br>on: | Tissue Type   | Tissue Temp<br>During<br>Calibration (C°) | Measured<br>Frequency<br>(MHz) | Measured<br>Conductivity, σ<br>(S/m) | Measured<br>Dielectric<br>Constant, ε | TARGET<br>Conductivity, σ<br>(S/m) | TARGET<br>Dielectric<br>Constant, ε | %dev σ | % dev ε |
|------------------------------------------|---------------|-------------------------------------------|--------------------------------|--------------------------------------|---------------------------------------|------------------------------------|-------------------------------------|--------|---------|
|                                          |               |                                           | 820                            | 0.863                                | 40.274                                | 0.899                              | 41.578                              | -4.00% | -3.14%  |
| 11/14/2013                               | 835H          | 21.2                                      | 835                            | 0.877                                | 40.224                                | 0.900                              | 41.500                              | -2.56% | -3.07%  |
|                                          |               |                                           | 850                            | 0.892                                | 40.090                                | 0.916                              | 41.500                              | -2.62% | -3.40%  |
|                                          |               |                                           | 1850                           | 1.397                                | 40.805                                | 1.400                              | 40.000                              | -0.21% | 2.01%   |
| 11/13/2013                               | 1900H         | 21.4                                      | 1880                           | 1.436                                | 40.639                                | 1.400                              | 40.000                              | 2.57%  | 1.60%   |
|                                          |               |                                           | 1910                           | 1.456                                | 40.513                                | 1.400                              | 40.000                              | 4.00%  | 1.28%   |
|                                          |               |                                           | 1850                           | 1.375                                | 39.748                                | 1.400                              | 40.000                              | -1.79% | -0.63%  |
| 11/19/2013                               | 1900H         | 21.9                                      | 1880                           | 1.401                                | 39.642                                | 1.400                              | 40.000                              | 0.07%  | -0.89%  |
|                                          |               |                                           | 1910                           | 1.432                                | 39.424                                | 1.400                              | 40.000                              | 2.29%  | -1.44%  |
|                                          |               |                                           | 2401                           | 1.779                                | 40.256                                | 1.756                              | 39.287                              | 1.31%  | 2.47%   |
| 11/12/2013                               | 2450H         | 22.3                                      | 2450                           | 1.832                                | 40.058                                | 1.800                              | 39.200                              | 1.78%  | 2.19%   |
|                                          |               |                                           | 2499                           | 1.894                                | 39.862                                | 1.853                              | 39.138                              | 2.21%  | 1.85%   |
|                                          |               | 21.3                                      | 2600                           | 1.981                                | 39.176                                | 1.964                              | 39.009                              | 0.87%  | 0.43%   |
| 11/18/2013                               | 2600H         |                                           | 2650                           | 2.030                                | 39.027                                | 2.018                              | 38.945                              | 0.59%  | 0.21%   |
|                                          |               |                                           | 2700                           | 2.089                                | 38.847                                | 2.073                              | 38.882                              | 0.77%  | -0.09%  |
|                                          |               |                                           | 5200                           | 4.500                                | 35.078                                | 4.655                              | 35.986                              | -3.33% | -2.52%  |
|                                          |               |                                           | 5220                           | 4.521                                | 35.048                                | 4.676                              | 35.963                              | -3.31% | -2.54%  |
|                                          |               |                                           | 5240                           | 4.556                                | 35.023                                | 4.696                              | 35.940                              | -2.98% | -2.55%  |
|                                          |               |                                           | 5260                           | 4.570                                | 35.053                                | 4.717                              | 35.917                              | -3.12% | -2.41%  |
|                                          |               |                                           | 5280                           | 4.578                                | 35.031                                | 4.737                              | 35.894                              | -3.36% | -2.40%  |
|                                          |               |                                           | 5300                           | 4.587                                | 34.954                                | 4.758                              | 35.871                              | -3.59% | -2.56%  |
| 11/26/2013                               | 5200H - 5800H | 22.1                                      | 5500                           | 4.809                                | 34.681                                | 4.963                              | 35.643                              | -3.10% | -2.70%  |
| 11/20/2013                               | 320011-300011 | 22.1                                      | 5520                           | 4.825                                | 34.702                                | 4.983                              | 35.620                              | -3.17% | -2.58%  |
|                                          |               |                                           | 5600                           | 4.905                                | 34.516                                | 5.065                              | 35.529                              | -3.16% | -2.85%  |
|                                          |               |                                           | 5680                           | 4.977                                | 34.448                                | 5.147                              | 35.437                              | -3.30% | -2.79%  |
|                                          |               |                                           | 5700                           | 4.996                                | 34.406                                | 5.168                              | 35.414                              | -3.33% | -2.85%  |
|                                          |               |                                           | 5765                           | 5.087                                | 34.379                                | 5.234                              | 35.340                              | -2.81% | -2.72%  |
|                                          |               |                                           | 5785                           | 5.085                                | 34.375                                | 5.255                              | 35.317                              | -3.24% | -2.67%  |
|                                          |               |                                           | 5800                           | 5.088                                | 34.302                                | 5.270                              | 35.300                              | -3.45% | -2.83%  |

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             | Page 43 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      | Fage 43 01 79                |

Table 10-2
Body Measured Tissue Properties

| 11/12/2013 835B  11/14/2013 835B  11/14/2013 1900B  11/19/2013 1900B  11/11/2013 2450B  11/18/2013 2450 - 260 | 22.6    | (MHz) | Conductivity, σ<br>(S/m) | Dielectric<br>Constant, ε | Conductivity, σ<br>(S/m) | Dielectric<br>Constant, ε | % dev σ | % dev ε |
|---------------------------------------------------------------------------------------------------------------|---------|-------|--------------------------|---------------------------|--------------------------|---------------------------|---------|---------|
| 11/14/2013 835B  11/14/2013 1900B  11/19/2013 1900B  11/11/2013 2450B                                         | 22.6    | 820   | 0.962                    | 53.858                    | 0.969                    | 55.258                    | -0.72%  | -2.53%  |
| 11/14/2013 1900B  11/19/2013 1900B  11/11/2013 2450B  11/18/2013 2450 - 260                                   |         | 835   | 0.977                    | 53.690                    | 0.970                    | 55.200                    | 0.72%   | -2.74%  |
| 11/14/2013 1900B  11/19/2013 1900B  11/11/2013 2450B  11/18/2013 2450 - 260                                   |         | 850   | 0.990                    | 53.597                    | 0.988                    | 55.154                    | 0.20%   | -2.82%  |
| 11/14/2013 1900B  11/19/2013 1900B  11/11/2013 2450B  11/18/2013 2450 - 260                                   |         | 820   | 0.972                    | 55.582                    | 0.969                    | 55.258                    | 0.31%   | 0.59%   |
| 11/19/2013 1900B<br>11/11/2013 2450B<br>11/18/2013 2450 - 260                                                 | 23.5    | 835   | 0.989                    | 55.428                    | 0.970                    | 55.200                    | 1.96%   | 0.41%   |
| 11/19/2013 1900B<br>11/11/2013 2450B<br>11/18/2013 2450 - 260                                                 |         | 850   | 1.001                    | 55.348                    | 0.988                    | 55.154                    | 1.32%   | 0.35%   |
| 11/19/2013 1900B<br>11/11/2013 2450B<br>11/18/2013 2450 - 260                                                 |         | 1850  | 1.509                    | 54.578                    | 1.520                    | 53.300                    | -0.72%  | 2.40%   |
| 11/11/2013 <b>2450B</b> 11/18/2013 <b>2450 - 260</b>                                                          | 21.0    | 1880  | 1.544                    | 54.492                    | 1.520                    | 53.300                    | 1.58%   | 2.24%   |
| 11/11/2013 <b>2450B</b> 11/18/2013 <b>2450 - 260</b>                                                          |         | 1910  | 1.585                    | 54.283                    | 1.520                    | 53.300                    | 4.28%   | 1.84%   |
| 11/11/2013 <b>2450B</b> 11/18/2013 <b>2450 - 260</b>                                                          |         | 1850  | 1.533                    | 51.579                    | 1.520                    | 53.300                    | 0.86%   | -3.23%  |
| 11/18/2013 2450 - 260                                                                                         | 23.7    | 1880  | 1.564                    | 51.539                    | 1.520                    | 53.300                    | 2.89%   | -3.30%  |
| 11/18/2013 2450 - 260                                                                                         |         | 1910  | 1.594                    | 51.411                    | 1.520                    | 53.300                    | 4.87%   | -3.54%  |
| 11/18/2013 2450 - 260                                                                                         |         | 2401  | 1.936                    | 53.595                    | 1.903                    | 52.765                    | 1.73%   | 1.57%   |
|                                                                                                               | 23.0    | 2450  | 1.991                    | 53.360                    | 1.950                    | 52.700                    | 2.10%   | 1.25%   |
|                                                                                                               |         | 2499  | 2.050                    | 53.215                    | 2.019                    | 52.638                    | 1.54%   | 1.10%   |
|                                                                                                               |         | 2401  | 1.943                    | 52.600                    | 1.903                    | 52.765                    | 2.10%   | -0.31%  |
|                                                                                                               |         | 2450  | 2.003                    | 52.362                    | 1.950                    | 52.700                    | 2.72%   | -0.64%  |
|                                                                                                               |         | 2499  | 2.082                    | 52.259                    | 2.019                    | 52.638                    | 3.12%   | -0.72%  |
|                                                                                                               | в 23.6  | 2500  | 2.086                    | 52.228                    | 2.021                    | 52.636                    | 3.22%   | -0.78%  |
| 11/12/2013 <b>5200B</b> - <b>58</b> 0                                                                         | 23.0    | 2550  | 2.160                    | 52.024                    | 2.092                    | 52.573                    | 3.25%   | -1.04%  |
| 11/12/2013 <b>5200B</b> - <b>58</b> 0                                                                         |         | 2600  | 2.220                    | 51.836                    | 2.163                    | 52.509                    | 2.64%   | -1.28%  |
| 11/12/2013 <b>5200B</b> - <b>58</b> 0                                                                         |         | 2650  | 2.293                    | 51.743                    | 2.234                    | 52.445                    | 2.64%   | -1.34%  |
| 11/12/2013 <b>5200</b> B - <b>58</b> 0                                                                        |         | 2700  | 2.361                    | 51.442                    | 2.305                    | 52.382                    | 2.43%   | -1.79%  |
| 11/12/2013 <b>5200</b> B - <b>58</b> 0                                                                        |         | 5200  | 5.468                    | 46.966                    | 5.299                    | 49.014                    | 3.19%   | -4.18%  |
| 11/12/2013 <b>5200</b> B - <b>58</b> 0                                                                        |         | 5220  | 5.500                    | 46.938                    | 5.323                    | 48.987                    | 3.33%   | -4.18%  |
| 11/12/2013 <b>5200</b> B - <b>58</b> 0                                                                        |         | 5240  | 5.525                    | 46.862                    | 5.346                    | 48.960                    | 3.35%   | -4.29%  |
| 11/12/2013 <b>5200B</b> - <b>58</b> 0                                                                         |         | 5260  | 5.558                    | 46.854                    | 5.369                    | 48.933                    | 3.52%   | -4.25%  |
| 11/12/2013 <b>5200B</b> - <b>58</b> 0                                                                         |         | 5280  | 5.575                    | 46.806                    | 5.393                    | 48.906                    | 3.37%   | -4.29%  |
| 11/12/2013 <b>5200B</b> - <b>580</b>                                                                          |         | 5300  | 5.598                    | 46.773                    | 5.416                    | 48.879                    | 3.36%   | -4.31%  |
| 11/12/2013 5200B - 580                                                                                        |         | 5500  | 5.866                    | 46.391                    | 5.650                    | 48.607                    | 3.82%   | -4.56%  |
|                                                                                                               | DB 21.3 | 5520  | 5.887                    | 46.372                    | 5.673                    | 48.580                    | 3.77%   | -4.55%  |
|                                                                                                               |         | 5600  | 6.007                    | 46.227                    | 5.766                    | 48.471                    | 4.18%   | -4.63%  |
|                                                                                                               |         | 5680  | 6.116                    | 46.099                    | 5.860                    | 48.363                    | 4.37%   | -4.68%  |
|                                                                                                               |         | 5700  | 6.145                    | 46.051                    | 5.883                    | 48.336                    | 4.45%   | -4.73%  |
|                                                                                                               |         | 5765  | 6.227                    | 45.954                    | 5.959                    | 48.248                    | 4.50%   | -4.75%  |
|                                                                                                               |         | 5785  | 6.252                    | 45.938                    | 5.982                    | 48.220                    | 4.51%   | -4.73%  |
|                                                                                                               |         | 5800  | 6.281                    | 45.926                    | 6.000                    | 48.200                    | 4.68%   | -4.72%  |

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per IEEE 1528 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT LG | Reviewed by: Quality Manager |
|---------------------|---------------------|--------------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:                | Page 44 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset         | Faye 44 01 79                |

# 10.2 Test System Verification

Prior to SAR assessment, the system is verified to  $\pm 10\%$  of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.

Table 10-3
System Verification Results – 1 g

|                 |                              |                |            |                   | S                   | ystem Ve              | rification   |             |                                      |                                           |                                            |                                |
|-----------------|------------------------------|----------------|------------|-------------------|---------------------|-----------------------|--------------|-------------|--------------------------------------|-------------------------------------------|--------------------------------------------|--------------------------------|
|                 |                              |                |            |                   | TA                  | RGET & N              | IEASURE      | D           |                                      |                                           |                                            |                                |
| SAR<br>System # | Tissue<br>Frequency<br>(MHz) | Tissue<br>Type | Date:      | Amb.<br>Temp (°C) | Liquid<br>Temp (°C) | Input<br>Power<br>(W) | Dipole<br>SN | Probe<br>SN | Measured<br>SAR <sub>1g</sub> (W/kg) | 1 W Target<br>SAR <sub>1g</sub><br>(W/kg) | 1 W Normalized<br>SAR <sub>1g</sub> (W/kg) | Deviation <sub>1g</sub><br>(%) |
| D               | 835                          | HEAD           | 11/14/2013 | 24.0              | 21.2                | 0.100                 | 4d119        | 3022        | 0.978                                | 9.680                                     | 9.780                                      | 1.03%                          |
| Н               | 1900                         | HEAD           | 11/13/2013 | 22.2              | 21.5                | 0.100                 | 5d148        | 3318        | 4.080                                | 39.700                                    | 40.800                                     | 2.77%                          |
| F               | 1900                         | HEAD           | 11/19/2013 | 24.0              | 21.5                | 0.040                 | 5d148        | 3213        | 1.710                                | 39.700                                    | 42.750                                     | 7.68%                          |
| G               | 2450                         | HEAD           | 11/12/2013 | 22.6              | 22.3                | 0.100                 | 797          | 3209        | 4.960                                | 52.500                                    | 49.600                                     | -5.52%                         |
| Е               | 2600                         | HEAD           | 11/18/2013 | 23.6              | 22.1                | 0.100                 | 1004         | 3914        | 6.020                                | 58.200                                    | 60.200                                     | 3.44%                          |
| E               | 5200                         | HEAD           | 11/26/2013 | 22.1              | 21.7                | 0.040                 | 1120         | 3914        | 3.020                                | 76.000                                    | 75.500                                     | -0.66%                         |
| Е               | 5300                         | HEAD           | 11/26/2013 | 22.1              | 21.7                | 0.040                 | 1120         | 3914        | 3.040                                | 78.700                                    | 76.000                                     | -3.43%                         |
| E               | 5500                         | HEAD           | 11/26/2013 | 22.1              | 21.7                | 0.040                 | 1120         | 3914        | 3.180                                | 80.100                                    | 79.500                                     | -0.75%                         |
| Е               | 5600                         | HEAD           | 11/26/2013 | 22.1              | 21.7                | 0.040                 | 1120         | 3914        | 3.440                                | 79.900                                    | 86.000                                     | 7.63%                          |
| E               | 5800                         | HEAD           | 11/26/2013 | 22.1              | 21.7                | 0.040                 | 1120         | 3914        | 3.050                                | 74.900                                    | 76.250                                     | 1.80%                          |
| G               | 835                          | BODY           | 11/12/2013 | 24.5              | 22.9                | 0.100                 | 4d119        | 3209        | 0.956                                | 9.540                                     | 9.560                                      | 0.21%                          |
| G               | 835                          | BODY           | 11/14/2013 | 24.5              | 23.8                | 0.100                 | 4d119        | 3209        | 0.979                                | 9.540                                     | 9.790                                      | 2.62%                          |
| I               | 1900                         | BODY           | 11/14/2013 | 21.1              | 21.0                | 0.100                 | 5d148        | 3319        | 4.040                                | 40.800                                    | 40.400                                     | -0.98%                         |
| G               | 1900                         | BODY           | 11/19/2013 | 23.7              | 23.6                | 0.100                 | 5d148        | 3209        | 4.350                                | 40.800                                    | 43.500                                     | 6.62%                          |
| С               | 2450                         | BODY           | 11/11/2013 | 24.1              | 21.5                | 0.100                 | 882          | 3263        | 4.970                                | 49.900                                    | 49.700                                     | -0.40%                         |
| D               | 2450                         | BODY           | 11/18/2013 | 24.1              | 23.7                | 0.100                 | 797          | 3022        | 5.150                                | 49.600                                    | 51.500                                     | 3.83%                          |
| D               | 2600                         | BODY           | 11/18/2013 | 23.9              | 23.6                | 0.100                 | 1004         | 3022        | 6.100                                | 57.500                                    | 61.000                                     | 6.09%                          |
| Α               | 5200                         | BODY           | 11/12/2013 | 21.5              | 20.4                | 0.100                 | 1057         | 3589        | 7.500                                | 75.500                                    | 75.000                                     | -0.66%                         |
| Α               | 5300                         | BODY           | 11/12/2013 | 21.5              | 20.4                | 0.100                 | 1057         | 3589        | 7.950                                | 75.300                                    | 79.500                                     | 5.58%                          |
| Α               | 5500                         | BODY           | 11/12/2013 | 21.5              | 20.4                | 0.100                 | 1057         | 3589        | 7.960                                | 80.800                                    | 79.600                                     | -1.49%                         |
| Α               | 5600                         | BODY           | 11/12/2013 | 21.5              | 20.4                | 0.100                 | 1057         | 3589        | 8.320                                | 80.300                                    | 83.200                                     | 3.61%                          |
| Α               | 5800                         | BODY           | 11/12/2013 | 21.5              | 20.4                | 0.100                 | 1057         | 3589        | 7.480                                | 75.100                                    | 74.800                                     | -0.40%                         |

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT LG | Reviewed by: Quality Manager |
|---------------------|---------------------|--------------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:                | Page 45 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset         | Fage 45 01 79                |

Table 10-4
System Verification Results – Extremity

|                 | System verification Results – Extremity                 |      |            |      |      |       |      |      |                                 |        |        |        |
|-----------------|---------------------------------------------------------|------|------------|------|------|-------|------|------|---------------------------------|--------|--------|--------|
|                 | System Verification TARGET & MEASURED                   |      |            |      |      |       |      |      |                                 |        |        |        |
| SAR<br>System # | I Frequency   Date:     Power       SAK100   NOTHIGIZEU |      |            |      |      |       |      |      | Deviation <sub>10g</sub><br>(%) |        |        |        |
| Α               | 5200                                                    | BODY | 11/12/2013 | 21.5 | 20.4 | 0.100 | 1057 | 3589 | 2.100                           | 21.100 | 21.000 | -0.47% |
| Α               | 5300                                                    | BODY | 11/12/2013 | 21.5 | 20.4 | 0.100 | 1057 | 3589 | 2.210                           | 21.100 | 22.100 | 4.74%  |
| Α               | 5500                                                    | BODY | 11/12/2013 | 21.5 | 20.4 | 0.100 | 1057 | 3589 | 2.210                           | 22.400 | 22.100 | -1.34% |
| Α               | 5600                                                    | BODY | 11/12/2013 | 21.5 | 20.4 | 0.100 | 1057 | 3589 | 2.300                           | 22.300 | 23.000 | 3.14%  |

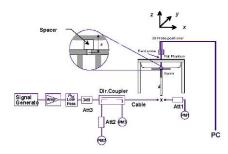



Figure 10-1 System Verification Setup Diagram



Figure 10-2 System Verification Setup Photo

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             | Page 46 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      | Faye 40 01 79                |

# 11 SAR DATA SUMMARY

## 11.1 Standalone Head SAR Data

Table 11-1 CDMA BC10 (§90S) Head SAR

|        |                                                                                             |                  |             |                    | MEASUR    | EMENT I    | RESULTS | 3        |                  |       |                               |         |                    |        |
|--------|---------------------------------------------------------------------------------------------|------------------|-------------|--------------------|-----------|------------|---------|----------|------------------|-------|-------------------------------|---------|--------------------|--------|
| FREQUE | NCY                                                                                         | Mode/Band        | Service     | Maximum<br>Allowed | Conducted | Power      | Side    | Test     | Device<br>Serial | Duty  | SAR (1g)                      | Scaling | Scaled SAR<br>(1g) | Plot # |
| MHz    | Ch.                                                                                         |                  |             | Power<br>[dBm]     | [dBm]     | Drift [dB] |         | Position | Number           | Cycle | (W/kg)                        | Factor  | (W/kg)             |        |
| 820.10 | 564                                                                                         | CDMA BC10 (§90S) | RC3 / SO55  | 25.2               | 24.98     | -0.01      | Right   | Cheek    | 1881             | 1:1   | 0.494                         | 1.052   | 0.520              |        |
| 820.10 | 564                                                                                         | CDMA BC10 (§90S) | RC3 / SO55  | 25.2               | 24.98     | 0.02       | Right   | Tilt     | 1881             | 1:1   | 0.312                         | 1.052   | 0.328              |        |
| 820.10 | 564                                                                                         | CDMA BC10 (§90S) | RC3 / SO55  | 25.2               | 24.98     | -0.01      | Left    | Cheek    | 1881             | 1:1   | 0.597                         | 1.052   | 0.628              |        |
| 820.10 | 564                                                                                         | CDMA BC10 (§90S) | RC3 / SO55  | 25.2               | 24.98     | -0.07      | Left    | Tilt     | 1881             | 1:1   | 0.347                         | 1.052   | 0.365              |        |
| 820.10 | 564                                                                                         | CDMA BC10 (§90S) | EVDO Rev. A | 25.2               | 25.01     | -0.11      | Right   | Cheek    | 1881             | 1:1   | 0.486                         | 1.045   | 0.508              |        |
| 820.10 | 564                                                                                         | CDMA BC10 (§90S) | EVDO Rev. A | 25.2               | 25.01     | 0.09       | Right   | Tilt     | 1881             | 1:1   | 0.337                         | 1.045   | 0.352              |        |
| 820.10 | 564                                                                                         | CDMA BC10 (§90S) | EVDO Rev. A | 25.2               | 25.01     | -0.03      | Left    | Cheek    | 1881             | 1:1   | 0.628                         | 1.045   | 0.656              | A1     |
| 820.10 | 564                                                                                         | CDMA BC10 (§90S) | EVDO Rev. A | 25.2               | 25.01     | 0.03       | Left    | Tilt     | 1881             | 1:1   | 0.356                         | 1.045   | 0.372              |        |
|        | ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population |                  |             |                    |           |            |         |          |                  | _     | ad<br>  (mW/g)<br> ver 1 gram |         |                    |        |

Table 11-2 CDMA BC0 (§22H) Head SAR

|        |     |                 |                 |                    | MEASU     | REMENT      | •     |          |                  |           |                         |          |                    |        |
|--------|-----|-----------------|-----------------|--------------------|-----------|-------------|-------|----------|------------------|-----------|-------------------------|----------|--------------------|--------|
| FREQUE | NCY | Mode/Band       | Service         | Maximum<br>Allowed | Conducted | Power Drift | Side  | Test     | Device<br>Serial | Duty      | SAR (1g)                | Scaling  | Scaled SAR<br>(1g) | Plot # |
| MHz    | Ch. |                 |                 | Power<br>[dBm]     | [dBm]     | [dB]        |       | Position | Number           | Cycle     | (W/kg)                  | Factor   | (W/kg)             |        |
| 836.52 | 384 | CDMA BC0 (§22H) | RC3 / SO55      | 25.2               | 24.85     | 0.03        | Right | Cheek    | 1881             | 1:1       | 0.450                   | 1.084    | 0.488              |        |
| 836.52 | 384 | CDMA BC0 (§22H) | RC3 / SO55      | 25.2               | 24.85     | -0.04       | Right | Tilt     | 1881             | 1:1       | 0.273                   | 1.084    | 0.296              |        |
| 836.52 | 384 | CDMA BC0 (§22H) | RC3 / SO55      | 25.2               | 24.85     | -0.06       | Left  | Cheek    | 1881             | 1:1       | 0.512                   | 1.084    | 0.555              | A2     |
| 836.52 | 384 | CDMA BC0 (§22H) | RC3 / SO55      | 25.2               | 24.85     | -0.02       | Left  | Tilt     | 1881             | 1:1       | 0.286                   | 1.084    | 0.310              |        |
| 836.52 | 384 | CDMA BC0 (§22H) | EVDO Rev. A     | 25.2               | 24.96     | -0.05       | Right | Cheek    | 1881             | 1:1       | 0.419                   | 1.057    | 0.443              |        |
| 836.52 | 384 | CDMA BC0 (§22H) | EVDO Rev. A     | 25.2               | 24.96     | -0.01       | Right | Tilt     | 1881             | 1:1       | 0.270                   | 1.057    | 0.285              |        |
| 836.52 | 384 | CDMA BC0 (§22H) | EVDO Rev. A     | 25.2               | 24.96     | -0.08       | Left  | Cheek    | 1881             | 1:1       | 0.508                   | 1.057    | 0.537              |        |
| 836.52 | 384 | CDMA BC0 (§22H) | EVDO Rev. A     | 25.2               | 24.96     | -0.01       | Left  | Tilt     | 1881             | 1:1       | 0.265                   | 1.057    | 0.280              |        |
|        |     |                 | 95.1 1992 - SAF | ETY LIMIT          |           |             |       |          |                  |           | ad                      | <u>-</u> |                    | _      |
|        |     | Uncontrolled Ex | Spatial Peak    | l Populatio        | n         |             |       |          |                  |           | y (mW/g)<br>over 1 gram |          |                    |        |
|        |     | Uncontrolled Ex | posure/Genera   | i Populatio        | n         |             |       |          | a                | veraged d | ver i gram              |          |                    |        |

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT LG | Reviewed by: Quality Manager |
|---------------------|---------------------|--------------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:                | Page 47 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset         | Faye 47 01 79                |

# Table 11-3 PCS CDMA Head SAR

|          |                                          |                |                 | PCS CDMA Head SAR           |                    |                     |       |                  |                  |               |             |                   |                    |        |  |  |  |
|----------|------------------------------------------|----------------|-----------------|-----------------------------|--------------------|---------------------|-------|------------------|------------------|---------------|-------------|-------------------|--------------------|--------|--|--|--|
|          | MEASUREMENT RESULTS  Maximum  Scaled SAD |                |                 |                             |                    |                     |       |                  |                  |               |             |                   |                    |        |  |  |  |
| FREQUENC | CY                                       | Mode/Band      | Service         | Maximum<br>Allowed<br>Power | Conducted<br>Power | Power<br>Drift [dB] | Side  | Test<br>Position | Device<br>Serial | Duty<br>Cycle | SAR (1g)    | Scaling<br>Factor | Scaled SAR<br>(1g) | Plot # |  |  |  |
| MHz      | Ch.                                      |                |                 | [dBm]                       | [dBm]              | Drift [db]          |       | Position         | Number           | Cycle         | (W/kg)      | ractor            | (W/kg)             |        |  |  |  |
| 1880.00  | 600                                      | PCS CDMA       | RC3 / SO55      | 24.2                        | 23.93              | 0.03                | Right | Cheek            | 1881             | 1:1           | 0.240       | 1.064             | 0.255              |        |  |  |  |
| 1880.00  | 600                                      | PCS CDMA       | RC3 / SO55      | 24.2                        | 23.93              | 0.07                | Right | Tilt             | 1881             | 1:1           | 0.239       | 1.064             | 0.254              |        |  |  |  |
| 1880.00  | 600                                      | PCS CDMA       | RC3 / SO55      | 24.2                        | 23.93              | 0.07                | Left  | Cheek            | 1881             | 1:1           | 0.415       | 1.064             | 0.442              | A3     |  |  |  |
| 1880.00  | 600                                      | PCS CDMA       | RC3 / SO55      | 24.2                        | 23.93              | -0.15               | Left  | Tilt             | 1881             | 1:1           | 0.173       | 1.064             | 0.184              |        |  |  |  |
| 1880.00  | 600                                      | PCS CDMA       | EVDO Rev. A     | 24.2                        | 23.96              | -0.05               | Right | Cheek            | 1881             | 1:1           | 0.252       | 1.057             | 0.266              |        |  |  |  |
| 1880.00  | 600                                      | PCS CDMA       | EVDO Rev. A     | 24.2                        | 23.96              | -0.11               | Right | Tilt             | 1881             | 1:1           | 0.189       | 1.057             | 0.200              |        |  |  |  |
| 1880.00  | 600                                      | PCS CDMA       | EVDO Rev. A     | 24.2                        | 23.96              | 0.11                | Left  | Cheek            | 1881             | 1:1           | 0.293       | 1.057             | 0.310              |        |  |  |  |
| 1880.00  | 600                                      | PCS CDMA       | EVDO Rev. A     | 24.2                        | 23.96              | -0.15               | Left  | Tilt             | 1881             | 1:1           | 0.131       | 1.057             | 0.138              |        |  |  |  |
|          |                                          | ANSI / IEEE    | C95.1 1992 - SA | FETY LIMI                   | Т                  |                     |       |                  |                  | Н             | ead         |                   |                    |        |  |  |  |
|          |                                          |                | Spatial Peak    |                             |                    |                     |       |                  |                  | 1.6 W/        | kg (mW/g)   |                   |                    |        |  |  |  |
|          | ı                                        | Uncontrolled E | Exposure/Gene   | ral Populat                 | ion                |                     |       |                  |                  | averaged      | over 1 gram |                   |                    |        |  |  |  |

### Table 11-4 GSM 850 Head SAR

|        |                                          |               |             |                    |                    | JOINI O    | эи пе | au JA    | .13              |           |            |          |         |                    |       |
|--------|------------------------------------------|---------------|-------------|--------------------|--------------------|------------|-------|----------|------------------|-----------|------------|----------|---------|--------------------|-------|
|        |                                          |               |             |                    | N                  | IEASUR     | EMENT | RESUL    | TS               |           |            |          |         |                    |       |
| FREQUE | NCY                                      | Mode/Band     | Service     | Maximum<br>Allowed | Conducted<br>Power | Power      | Side  | Test     | Device<br>Serial | # of Time | Duty       | SAR (1g) | Scaling | Scaled SAR<br>(1g) | Plot# |
| M Hz   | Ch.                                      |               |             | Power<br>[dBm]     | [dBm]              | Drift [dB] |       | Position | Number           | Slots     | Cycle      | (W/kg)   | Factor  | (W/kg)             |       |
| 836.60 | 190                                      | GSM 850       | GSM         | 33.2               | 33.12              | 0.04       | Right | Cheek    | 1880             | 1         | 1:8.3      | 0.442    | 1.019   | 0.450              |       |
| 836.60 | 190                                      | GSM 850       | GSM         | 33.2               | 33.12              | 0.00       | Right | Tilt     | 1880             | 1         | 1:8.3      | 0.333    | 1.019   | 0.339              |       |
| 836.60 | 190                                      | GSM 850       | GSM         | 33.2               | 33.12              | -0.12      | Left  | Cheek    | 1880             | 1         | 1:8.3      | 0.490    | 1.019   | 0.499              |       |
| 836.60 | 190                                      | GSM 850       | GSM         | 33.2               | 33.12              | -0.01      | Left  | Tilt     | 1880             | 1         | 1:8.3      | 0.299    | 1.019   | 0.305              |       |
| 836.60 | 190                                      | GSM 850       | GPRS        | 31.2               | 30.80              | -0.07      | Right | Cheek    | 1880             | 2         | 1:4.15     | 0.567    | 1.096   | 0.621              |       |
| 836.60 | 190                                      | GSM 850       | GPRS        | 31.2               | 30.80              | -0.04      | Right | Tilt     | 1880             | 2         | 1:4.15     | 0.379    | 1.096   | 0.415              |       |
| 836.60 | 190                                      | GSM 850       | GPRS        | 31.2               | 30.80              | 0.04       | Left  | Cheek    | 1880             | 2         | 1:4.15     | 0.669    | 1.096   | 0.733              | A4    |
| 836.60 | 190                                      | GSM 850       | GPRS        | 31.2               | 30.80              | -0.01      | Left  | Tilt     | 1880             | 2         | 1:4.15     | 0.390    | 1.096   | 0.427              |       |
|        |                                          | ANSI / IEEE C |             |                    | MIT                |            |       |          |                  |           | Head       |          |         | <u> </u>           |       |
|        |                                          |               | Spatial Pea |                    |                    |            |       |          |                  |           | N/kg (mW   |          |         |                    |       |
|        | Uncontrolled Exposure/General Population |               |             |                    |                    |            |       |          |                  | averag    | ged over 1 | gram     |         |                    |       |

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             | Page 48 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      | Fage 46 01 79                |

#### Table 11-5 GSM 1900 Head SAR

|         | GSIM 1900 Head SAN |               |             |                             |                    |                     |       |                  |                   |               |               |          |                   |                    |        |
|---------|--------------------|---------------|-------------|-----------------------------|--------------------|---------------------|-------|------------------|-------------------|---------------|---------------|----------|-------------------|--------------------|--------|
|         |                    |               |             |                             | М                  | EASURE              | EMENT | RESULT           | S                 |               |               |          |                   |                    |        |
| FREQUE  | NCY                | Mode/Band     | Service     | Maximum<br>Allowed<br>Power | Conducted<br>Power | Power<br>Drift [dB] | Side  | Test<br>Position | De vice<br>Serial | # of<br>Tim e | Duty<br>Cycle | SAR (1g) | Scaling<br>Factor | Scaled SAR<br>(1g) | Plot # |
| MHz     | Ch.                |               |             | [dBm]                       | [dBm]              | Drift [GB]          |       | Position         | Number            | Slots         | Cycle         | (W/kg)   | ractor            | (W/kg)             |        |
| 1880.00 | 661                | GSM 1900      | GSM         | 30.2                        | 29.44              | 0.06                | Right | Cheek            | 1880              | 1             | 1:8.3         | 0.106    | 1.191             | 0.126              |        |
| 1880.00 | 661                | GSM 1900      | GSM         | 30.2                        | 29.44              | 0.02                | Right | Tilt             | 1880              | 1             | 1:8.3         | 0.075    | 1.191             | 0.089              |        |
| 1880.00 | 661                | GSM 1900      | GSM         | 30.2                        | 29.44              | 0.01                | Left  | Cheek            | 1880              | 1             | 1:8.3         | 0.127    | 1.191             | 0.151              |        |
| 1880.00 | 661                | GSM 1900      | GSM         | 30.2                        | 29.44              | 0.05                | Left  | Tilt             | 1880              | 1             | 1:8.3         | 0.049    | 1.191             | 0.058              |        |
| 1880.00 | 661                | GSM 1900      | GPRS        | 28.2                        | 27.61              | -0.03               | Right | Cheek            | 1880              | 2             | 1:4.15        | 0.186    | 1.146             | 0.213              | A5     |
| 1880.00 | 661                | GSM 1900      | GPRS        | 28.2                        | 27.61              | 0.05                | Right | Tilt             | 1880              | 2             | 1:4.15        | 0.111    | 1.146             | 0.127              |        |
| 1880.00 | 661                | GSM 1900      | GPRS        | 28.2                        | 27.61              | 0.07                | Left  | Cheek            | 1880              | 2             | 1:4.15        | 0.146    | 1.146             | 0.167              |        |
| 1880.00 | 661                | GSM 1900      | GPRS        | 28.2                        | 27.61              | -0.04               | Left  | Tilt             | 1880              | 2             | 1:4.15        | 0.066    | 1.146             | 0.076              |        |
|         |                    | ANSI / IEEE C | 95.1 1992 - | SAFETY LIN                  | TIN                |                     |       |                  |                   |               | Head          |          |                   |                    |        |
|         |                    | 5             | Spatial Pea | k                           |                    |                     |       |                  |                   | 1.6           | W/kg (mW      | //g)     |                   |                    |        |
|         | Ur                 | controlled Ex | posure/Ger  | neral Popul                 | ation              |                     |       |                  |                   |               | ged over 1    |          |                   |                    |        |
|         |                    |               |             |                             |                    |                     |       |                  |                   |               | -             | -        |                   |                    |        |

## Table 11-6 UMTS 850 Head SAR

|        |      |                 |                           |                    | MEAS               | UREME      | NT RES | ULTS     |                  |                         |          |         |                    |       |
|--------|------|-----------------|---------------------------|--------------------|--------------------|------------|--------|----------|------------------|-------------------------|----------|---------|--------------------|-------|
| FREQUE | ENCY | Mode/Band       | Service                   | Maximum<br>Allowed | Conducted<br>Power | Power      | Side   | Test     | Device<br>Serial | Duty                    | SAR (1g) | Scaling | Scaled SAR<br>(1g) | Plot# |
| MHz    | Ch.  |                 |                           | Power [dBm]        | [dBm]              | Drift [dB] |        | Position | Number           | Cycle                   | (W/kg)   | Factor  | (W/kg)             |       |
| 836.60 | 4183 | UMTS 850        | RMC                       | 23.7               | 23.60              | 0.09       | Right  | Cheek    | 1876             | 1:1                     | 0.366    | 1.023   | 0.374              |       |
| 836.60 | 4183 | UMTS 850        | RMC                       | 23.7               | 23.60              | 0.00       | Right  | Tilt     | 1876             | 1:1                     | 0.233    | 1.023   | 0.238              |       |
| 836.60 | 4183 | UMTS 850        | RMC                       | 23.7               | 23.60              | -0.01      | Left   | Cheek    | 1876             | 1:1                     | 0.427    | 1.023   | 0.437              | A6    |
| 836.60 | 4183 | UMTS 850        | RMC                       | 23.7               | 23.60              | 0.05       | Left   | Tilt     | 1876             | 1:1                     | 0.241    | 1.023   | 0.247              |       |
|        |      | ANSI / IEEE C   | 95.1 1992 -               | SAFETY LIM         |                    |            |        |          | He               | ead                     |          |         |                    |       |
|        | U    | Incontrolled Ex | Spatial Pea<br>kposure/Ge |                    |                    |            |        | á        |                  | g (mW/g)<br>over 1 gram |          |         |                    |       |

#### Table 11-7 UMTS 1900 Head SAR

|         | OM13 1900 Head SAK  |                 |              |                     |                    |            |       |          |                   |          |             |         |                    |        |  |
|---------|---------------------|-----------------|--------------|---------------------|--------------------|------------|-------|----------|-------------------|----------|-------------|---------|--------------------|--------|--|
|         | MEASUREMENT RESULTS |                 |              |                     |                    |            |       |          |                   |          |             |         |                    |        |  |
| FREQUE  | ENCY                | Mode/Band       | Service      | Maxim um<br>Allowed | Conducted<br>Power | Power      | Side  | Test     | De vice<br>Serial | Duty     | SAR (1g)    | Scaling | Scaled SAR<br>(1g) | Plot # |  |
| MHz     | Ch.                 |                 |              | Power [dBm]         | [dBm]              | Drift [dB] |       | Position | Number            | Cycle    | (W/kg)      | Factor  | (W/kg)             |        |  |
| 1880.00 | 9400                | UMTS 1900       | RMC          | 23.2                | 23.10              | -0.06      | Right | Cheek    | 1876              | 1:1      | 0.116       | 1.023   | 0.119              |        |  |
| 1880.00 | 9400                | UMTS 1900       | RMC          | 23.2                | 23.10              | -0.08      | Right | Tilt     | 1876              | 1:1      | 0.085       | 1.023   | 0.087              |        |  |
| 1880.00 | 9400                | UMTS 1900       | RMC          | 23.2                | 23.10              | 0.17       | Left  | Cheek    | 1876              | 1:1      | 0.142       | 1.023   | 0.145              | A7     |  |
| 1880.00 | 9400                | UMTS 1900       | RMC          | 23.2                | 23.10              | 0.06       | Left  | Tilt     | 1876              | 1:1      | 0.058       | 1.023   | 0.059              |        |  |
|         | <u> </u>            | ANSI / IEEE C   | 095.1 1992 - | SAFETY LIMI         |                    |            |       |          | Н                 | ead      |             |         |                    |        |  |
|         |                     |                 | Spatial Pea  | ık                  |                    |            |       |          | 1.6 W/k           | g (mW/g) |             |         |                    |        |  |
|         | U                   | Incontrolled Ex | x posure/Ge  | neral Popula        | tion               |            |       |          |                   | averaged | over 1 gram |         |                    |        |  |

| FCC ID: ZNFLS995    | PCTEST INCIDENTIAL INC. | SAR EVALUATION REPORT | Reviewed by:  Quality Manager |
|---------------------|-------------------------|-----------------------|-------------------------------|
| Document S/N:       | Test Dates:             | DUT Type:             | Page 49 of 79                 |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13     | Portable Handset      | Faye 43 01 79                 |

#### Table 11-8 LTE Band 26 Head SAR

| LIE DAIIU 20 NEAU SAR |                                          |     |               |                    |                    |                    |                     |             |        |                  |            |            |              |                  |               |          |                   |                    |        |
|-----------------------|------------------------------------------|-----|---------------|--------------------|--------------------|--------------------|---------------------|-------------|--------|------------------|------------|------------|--------------|------------------|---------------|----------|-------------------|--------------------|--------|
|                       |                                          |     |               |                    |                    |                    | MEAS                | UREN        | IENT R | ESULT            | 3          |            |              |                  |               |          |                   |                    |        |
| FR                    | EQUENCY                                  |     | Mode          | Bandwidth<br>[MHz] | Maximum<br>Allowed | Conducted<br>Power | Power<br>Drift [dB] | MPR<br>[dB] | Side   | Test<br>Position | Modulation | RB<br>Size | RB<br>Offset | Device<br>Serial | Duty<br>Cycle | SAR (1g) | Scaling<br>Factor | Scaled<br>SAR (1g) | Plot # |
| MHz                   | Ch                                       |     |               | [MHZ]              | Power<br>[dBm]     | [dBm]              | Drift (aB)          | [aB]        |        | Position         |            | Size       | Offset       | Number           | Cycle         | (W/kg)   | Factor            | (W/kg)             |        |
| 831.50                | 26865                                    | Mid | LTE Band 26   | 10                 | 24.2               | 24.12              | 0.07                | 0           | Right  | Cheek            | QPSK       | 1          | 0            | 1877             | 1:1           | 0.395    | 1.019             | 0.403              |        |
| 831.50                | 26865                                    | Mid | LTE Band 26   | 10                 | 23.2               | 22.98              | 0.09                | 1           | Right  | Cheek            | QPSK       | 25         | 0            | 1877             | 1:1           | 0.299    | 1.052             | 0.315              |        |
| 831.50                | 26865                                    | Mid | LTE Band 26   | 10                 | 24.2               | 24.12              | 0.08                | 0           | Right  | Tilt             | QPSK       | 1          | 0            | 1877             | 1:1           | 0.252    | 1.019             | 0.257              |        |
| 831.50                | 26865                                    | Mid | LTE Band 26   | 10                 | 23.2               | 22.98              | 0.03                | 1           | Right  | Tilt             | QPSK       | 25         | 0            | 1877             | 1:1           | 0.195    | 1.052             | 0.205              |        |
| 831.50                | 26865                                    | Mid | LTE Band 26   | 10                 | 24.2               | 24.12              | 0.03                | 0           | Left   | Cheek            | QPSK       | 1          | 0            | 1877             | 1:1           | 0.499    | 1.019             | 0.508              | A8     |
| 831.50                | 26865                                    | Mid | LTE Band 26   | 10                 | 23.2               | 22.98              | 0.02                | 1           | Left   | Cheek            | QPSK       | 25         | 0            | 1877             | 1:1           | 0.376    | 1.052             | 0.396              |        |
| 831.50                | 26865                                    | Mid | LTE Band 26   | 10                 | 24.2               | 24.12              | -0.06               | 0           | Left   | Tilt             | QPSK       | 1          | 0            | 1877             | 1:1           | 0.297    | 1.019             | 0.303              |        |
| 831.50                | 26865                                    | Mid | LTE Band 26   | 10                 | 23.2               | 22.98              | -0.17               | 1           | Left   | Tilt             | QPSK       | 25         | 0            | 1877             | 1:1           | 0.223    | 1.052             | 0.235              |        |
|                       |                                          |     | ANSI / IEEE C |                    |                    | MIT                |                     |             |        |                  |            |            |              | Head             |               |          |                   |                    |        |
|                       |                                          |     |               | Spatial Pea        |                    |                    |                     |             |        |                  |            |            |              | //kg (mW/        |               |          |                   |                    |        |
|                       | Uncontrolled Exposure/General Population |     |               |                    |                    |                    |                     |             |        |                  |            |            | average      | ed over 1 g      | ram           |          |                   |                    |        |

Table 11-9 LTE Band 25 (PCS) Head SAR

|         |         |     |                      |                    |                             |                    |                     |             |         | ,                | 0,         |            |              |                  |               |          |                   |                    |        |
|---------|---------|-----|----------------------|--------------------|-----------------------------|--------------------|---------------------|-------------|---------|------------------|------------|------------|--------------|------------------|---------------|----------|-------------------|--------------------|--------|
|         |         |     |                      |                    |                             |                    | MEASU               | JREN        | IENT R  | ESULT            | S          |            |              |                  |               |          |                   |                    |        |
| FR      | EQUENCY |     | Mode                 | Bandwidth<br>[MHz] | Maximum<br>Allowed<br>Power | Conducted<br>Power | Power<br>Drift [dB] | MPR<br>[dB] | Side    | Test<br>Position | Modulation | RB<br>Size | RB<br>Offset | Device<br>Serial | Duty<br>Cycle | SAR (1g) | Scaling<br>Factor | Scaled<br>SAR (1g) | Plot # |
| MHz     | Ch      |     |                      | [MT2]              | [dBm]                       | [dBm]              | Di iit [ub]         | [ub]        |         | FOSILIOII        |            | Size       | Oliset       | Number           | Cycle         | (W/kg)   | ractor            | (W/kg)             |        |
| 1882.50 | 26365   | Mid | LTE Band 25<br>(PCS) | 10                 | 23.7                        | 23.66              | 0.08                | 0           | Right   | Cheek            | QPSK       | 1          | 49           | 1879             | 1:1           | 0.236    | 1.009             | 0.238              |        |
| 1882.50 | 26365   | Mid | LTE Band 25<br>(PCS) | 10                 | 22.7                        | 22.57              | 0.05                | 1           | Right   | Cheek            | QPSK       | 25         | 25           | 1879             | 1:1           | 0.188    | 1.030             | 0.194              |        |
| 1882.50 | 26365   | Mid | LTE Band 25<br>(PCS) | 10                 | 23.7                        | 23.66              | -0.16               | 0           | Right   | Tilt             | QPSK       | 1          | 49           | 1879             | 1:1           | 0.163    | 1.009             | 0.164              |        |
| 1882.50 | 26365   | Mid | LTE Band 25<br>(PCS) | 10                 | 22.7                        | 22.57              | 0.10                | 1           | Right   | Tilt             | QPSK       | 25         | 25           | 1879             | 1:1           | 0.129    | 1.030             | 0.133              |        |
| 1882.50 | 26365   | Mid | LTE Band 25<br>(PCS) | 10                 | 23.7                        | 23.66              | 0.02                | 0           | Left    | Cheek            | QPSK       | 1          | 49           | 1879             | 1:1           | 0.254    | 1.009             | 0.256              | A9     |
| 1882.50 | 26365   | Mid | LTE Band 25<br>(PCS) | 10                 | 22.7                        | 22.57              | -0.02               | 1           | Left    | Cheek            | QPSK       | 25         | 25           | 1879             | 1:1           | 0.204    | 1.030             | 0.210              |        |
| 1882.50 | 26365   | Mid | LTE Band 25<br>(PCS) | 10                 | 23.7                        | 23.66              | 0.09                | 0           | Left    | Tilt             | QPSK       | 1          | 49           | 1879             | 1:1           | 0.103    | 1.009             | 0.104              |        |
| 1882.50 | 26365   | Mid | LTE Band 25<br>(PCS) | 10                 | 22.7                        | 22.57              | 0.03                | 1           | Left    | Tilt             | QPSK       | 25         | 25           | 1879             | 1:1           | 0.074    | 1.030             | 0.076              |        |
|         |         |     | ANSI / IEEE C9       | 5.1 1992 - S       | AFETY LIM                   | IT                 |                     |             |         |                  |            |            |              | Head             |               |          |                   |                    |        |
|         |         |     | Sı                   | patial Peak        |                             |                    |                     |             |         |                  |            |            | 1.6 \        | N/kg (mW         | /g)           |          |                   |                    |        |
|         |         | Ur  | ncontrolled Exp      |                    | ral Popula                  | ation              |                     |             |         |                  |            |            |              | ed over 1        |               |          |                   |                    |        |
|         |         | •   |                      |                    |                             |                    |                     |             | J O. Ug | ,                | g          |            |              |                  |               |          |                   |                    |        |

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             | Page 50 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 – 11/26/13 | Portable Handset      | rage 50 01 79                |

## Table 11-10 LTE Band 41 Head SAR

|         |         |          |                 |                    |                             | _                  |                |             |       |                  |            |            |              |                  |               |          |                                 |                   |                    |        |
|---------|---------|----------|-----------------|--------------------|-----------------------------|--------------------|----------------|-------------|-------|------------------|------------|------------|--------------|------------------|---------------|----------|---------------------------------|-------------------|--------------------|--------|
|         |         |          |                 |                    |                             |                    | ME             | ASU         | REME  | NT RES           | BULTS      |            |              |                  |               |          |                                 |                   |                    |        |
| F       | REQUENC | Υ        | Mode            | Bandwidth<br>[MHz] | Maximum<br>Allowed<br>Power | Conducted<br>Power | Power<br>Drift | MPR<br>[dB] | Side  | Test<br>Position | Modulation | RB<br>Size | RB<br>Offset | Device<br>Serial | Duty<br>Cycle | SAR (1g) | Scaling<br>Factor<br>(Conducted | Scaling<br>Factor | Scaled<br>SAR (1g) | Plot # |
| MHz     |         | Ch.      |                 | [111.12]           | [dBm]                       | [dBm]              | [dB]           | [ub]        |       | 1 osition        |            | Oize       | Oliset       | Number           | Oycle         | (W/kg)   | Power)                          | (CP Duty)         | (W/kg)             |        |
| 2636.50 | 41055   | Mid-High | LTE Band 41     | 20                 | 23.2                        | 23.00              | -0.02          | 0           | Right | Cheek            | QPSK       | 1          | 50           | 1875             | 1:1.59        | 0.344    | 1.047                           | 1.01              | 0.364              | A10    |
| 2636.50 | 41055   | Mid-High | LTE Band 41     | 0.05               | 1                           | Right              | Cheek          | QPSK        | 50    | 25               | 1875       | 1:1.59     | 0.262        | 1.102            | 1.01          | 0.292    |                                 |                   |                    |        |
| 2636.50 | 41055   | Mid-High | LTE Band 41     | 20                 | 23.2                        | 23.00              | 0.04           | 0           | Right | Tilt             | QPSK       | 1          | 50           | 1875             | 1:1.59        | 0.106    | 1.047                           | 1.01              | 0.112              |        |
| 2636.50 | 41055   | Mid-High | LTE Band 41     | 20                 | 22.2                        | 21.78              | 0.11           | 1           | Right | Tilt             | QPSK       | 50         | 25           | 1875             | 1:1.59        | 0.079    | 1.102                           | 1.01              | 0.088              |        |
| 2636.50 | 41055   | Mid-High | LTE Band 41     | 20                 | 23.2                        | 23.00              | 0.07           | 0           | Left  | Cheek            | QPSK       | 1          | 50           | 1875             | 1:1.59        | 0.166    | 1.047                           | 1.01              | 0.176              |        |
| 2636.50 | 41055   | Mid-High | LTE Band 41     | 20                 | 22.2                        | 21.78              | 0.02           | 1           | Left  | Cheek            | QPSK       | 50         | 25           | 1875             | 1:1.59        | 0.130    | 1.102                           | 1.01              | 0.144              |        |
| 2636.50 | 41055   | Mid-High | LTE Band 41     | 20                 | 23.2                        | 23.00              | 0.02           | 0           | Left  | Tilt             | QPSK       | 1          | 50           | 1875             | 1:1.59        | 0.185    | 1.047                           | 1.01              | 0.196              |        |
| 2636.50 |         |          |                 |                    |                             |                    |                |             |       | Tilt             | QPSK       | 50         | 25           | 1875             | 1:1.59        | 0.132    | 1.102                           | 1.01              | 0.146              |        |
|         |         | AN       | ISI / IEEE C95. | 1 1992 - SA        |                             |                    |                |             |       |                  |            | Head       |              |                  |               |          |                                 |                   |                    |        |
|         |         |          | Spa             |                    |                             |                    |                |             |       | 1.6 W            | /kg (mV    | //g)       |              |                  |               |          |                                 |                   |                    |        |
|         |         | Unco     | ntrolled Expo   | sure/Gener         | al Popula                   | tion               |                |             |       |                  |            |            |              | average          | d over 1      | gram     |                                 |                   |                    |        |

## Table 11-11 DTS Head SAR

|       |      |                                               |         |                    | ME                       | ASURE               | MENT RI | ESULTS           |                   |                                 |       |          |                   |                    |        |
|-------|------|-----------------------------------------------|---------|--------------------|--------------------------|---------------------|---------|------------------|-------------------|---------------------------------|-------|----------|-------------------|--------------------|--------|
| FREQU | ENCY | Mode                                          | Service | Maximum<br>Allowed | Conducted<br>Power [dBm] | Power<br>Drift [dB] | Side    | Test<br>Position | De vice<br>Serial | Data Rate<br>(Mbps)             | Duty  | SAR (1g) | Scaling<br>Factor | Scaled<br>SAR (1g) | Plot # |
| MHz   | Ch.  |                                               |         | Power [dBm]        | Power [dbm]              | Drift [GB]          |         | Position         | Number            | (MDPS)                          | Cycle | (W/kg)   | ractor            | (W/kg)             |        |
| 2462  | 11   | IEEE 802.11b                                  | DSSS    | 17.0               | 16.48                    | -0.03               | Right   | Cheek            | 1890              | 1                               | 1:1   | 0.388    | 1.127             | 0.437              | A11    |
| 2462  | 11   | IEEE 802.11b                                  | DSSS    | 17.0               | 16.48                    | 0.20                | Right   | Tilt             | 1890              | 1                               | 1:1   | 0.231    | 1.127             | 0.260              |        |
| 2462  | 11   | IEEE 802.11b                                  | DSSS    | 17.0               | 16.48                    | 0.14                | Left    | Cheek            | 1890              | 1                               | 1:1   | 0.141    | 1.127             | 0.159              |        |
| 2462  | 11   | IEEE 802.11b                                  | DSSS    | 17.0               | 16.48                    | 0.19                | Left    | Tilt             | 1890              | 1                               | 1:1   | 0.105    | 1.127             | 0.118              |        |
| 5765  | 153  | IEEE 802.11a                                  | OFDM    | 12.0               | 10.91                    | 0.14                | Right   | Cheek            | 1890              | 6                               | 1:1   | 0.019    | 1.285             | 0.024              | A12    |
| 5775  | 155  | IEEE 802.11ac                                 | OFDM    | 11.5               | 10.82                    | 0.18                | Right   | Cheek            | 1890              | 29.3                            | 1:1   | 0.009    | 1.169             | 0.011              |        |
| 5765  | 153  | IEEE 802.11a                                  | OFDM    | 12.0               | 10.91                    | 0.06                | Right   | Tilt             | 1890              | 6                               | 1:1   | 0.011    | 1.285             | 0.014              |        |
| 5765  | 153  | IEEE 802.11a                                  | OFDM    | 12.0               | 10.91                    | 0.19                | Left    | Cheek            | 1890              | 6                               | 1:1   | 0.008    | 1.285             | 0.010              |        |
| 5765  |      |                                               |         |                    |                          |                     |         | Tilt             | 1890              | 6                               | 1:1   | 0.008    | 1.285             | 0.010              |        |
|       |      | NSI / IEEE C95.1<br>Spati<br>ontrolled Exposi | al Peak |                    |                          |                     |         |                  | 1.6 W/I           | lead<br>kg (mW/g)<br>over 1 gra |       |          |                   |                    |        |

| FCC ID: ZNFLS995    | PCTEST*             | SAR EVALUATION REPORT LG | Reviewed by: Quality Manager |
|---------------------|---------------------|--------------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:                | Page 51 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset         | rage 51 01 79                |

### Table 11-12 NII Head SAR

|        |                                                       |                 |             |                    |                    | 1411 1     | ieau s  | ZAIN     |                  |           |          |          |         |                    |        |
|--------|-------------------------------------------------------|-----------------|-------------|--------------------|--------------------|------------|---------|----------|------------------|-----------|----------|----------|---------|--------------------|--------|
|        |                                                       |                 |             |                    | N                  | IEASURE    | EMENT I | RESULT   | S                |           |          |          |         |                    |        |
| FREQUE | ENCY                                                  | Mode            | Service     | Maximum<br>Allowed | Conducted<br>Power | Power      | Side    | Test     | Device<br>Serial | Data Rate | Duty     | SAR (1g) | Scaling | Scaled SAR<br>(1g) | Plot # |
| MHz    | Ch.                                                   | mout            | 0011100     | Power [dBm]        |                    | Drift [dB] | 0.00    | Position | Number           | (Mbps)    | Cycle    | (W/kg)   | Factor  | (W/kg)             |        |
| 5240   | 48                                                    | IEEE 802.11a    | OFDM        | 12.0               | 11.19              | -0.02      | Right   | Cheek    | 1890             | 6         | 1:1      | 0.131    | 1.205   | 0.158              |        |
| 5210   | 42                                                    | IEEE 802.11ac   | OFDM        | 11.5               | 9.74               | 0.04       | Right   | Cheek    | 1890             | 29.3      | 1:1      | 0.058    | 1.500   | 0.087              |        |
| 5240   | 48                                                    | IEEE 802.11a    | OFDM        | 12.0               | 11.19              | 0.14       | Right   | Tilt     | 1890             | 6         | 1:1      | 0.060    | 1.205   | 0.072              |        |
| 5240   | 48                                                    | IEEE 802.11a    | OFDM        | 12.0               | 11.19              | -0.09      | Left    | Cheek    | 1890             | 6         | 1:1      | 0.017    | 1.205   | 0.020              |        |
| 5240   | 48                                                    | IEEE 802.11a    | OFDM        | 12.0               | 11.19              | 0.20       | Left    | Tilt     | 1890             | 6         | 1:1      | 0.042    | 1.205   | 0.051              |        |
| 5260   | 52                                                    | IEEE 802.11a    | OFDM        | 12.0               | 11.61              | -0.10      | Right   | Cheek    | 1890             | 6         | 1:1      | 0.142    | 1.094   | 0.155              | A13    |
| 5290   | 58                                                    | IEEE 802.11ac   | OFDM        | 11.5               | 11.26              | 0.15       | Right   | Cheek    | 1890             | 29.3      | 1:1      | 0.062    | 1.057   | 0.066              |        |
| 5260   | 52                                                    | IEEE 802.11a    | OFDM        | 12.0               | 11.61              | 0.13       | Right   | Tilt     | 1890             | 6         | 1:1      | 0.141    | 1.094   | 0.154              |        |
| 5260   | 52                                                    | IEEE 802.11a    | OFDM        | 12.0               | 11.61              | 0.05       | Left    | Cheek    | 1890             | 6         | 1:1      | 0.022    | 1.094   | 0.024              |        |
| 5260   | 52                                                    | IEEE 802.11a    | OFDM        | 12.0               | 11.61              | 0.04       | Left    | Tilt     | 1890             | 6         | 1:1      | 0.024    | 1.094   | 0.026              |        |
| 5520   | 104                                                   | IEEE 802.11a    | OFDM        | 12.0               | 11.38              | 0.06       | Right   | Cheek    | 1890             | 6         | 1:1      | 0.131    | 1.153   | 0.151              |        |
| 5690   | 138                                                   | IEEE 802.11ac   | OFDM        | 11.5               | 10.89              | 0.04       | Right   | Cheek    | 1890             | 29.3      | 1:1      | 0.006    | 1.151   | 0.007              |        |
| 5520   | 104                                                   | IEEE 802.11a    | OFDM        | 12.0               | 11.38              | -0.09      | Right   | Tilt     | 1890             | 6         | 1:1      | 0.123    | 1.153   | 0.142              |        |
| 5520   | 104                                                   | IEEE 802.11a    | OFDM        | 12.0               | 11.38              | 0.08       | Left    | Cheek    | 1890             | 6         | 1:1      | 0.032    | 1.153   | 0.037              |        |
| 5520   | 104                                                   | IEEE 802.11a    | OFDM        | 12.0               | 11.38              | 0.05       | Left    | Tilt     | 1890             | 6         | 1:1      | 0.025    | 1.153   | 0.029              |        |
|        |                                                       | ANSI / IEEE C   | 95.1 1992 - | SAFETY LIM         | IIT                |            |         |          |                  |           | Head     |          |         |                    |        |
|        | Spatial Peak Uncontrolled Exposure/General Population |                 |             |                    |                    |            |         |          |                  |           | W/kg (m  |          |         |                    |        |
|        |                                                       | Uncontrolled Ex | xposure/Ge  | neral Popula       | ation              |            |         |          |                  | avera     | ged over | 1 gram   |         |                    |        |

| FCC ID: ZNFLS995    | PCTEST SECRETARY, INC. | SAR EVALUATION REPORT | <b>L</b> G | Reviewed by: Quality Manager |
|---------------------|------------------------|-----------------------|------------|------------------------------|
| Document S/N:       | Test Dates:            | DUT Type:             |            | Page 52 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13    | Portable Handset      |            | Fage 52 01 79                |

# 11.2 Standalone Body-Worn SAR Data

Table 11-13
CDMA/GSM/UMTS Body-Worn SAR Data

|         |      |                  | -                | DIVIA              |                          | IREMEN              |         |                  |           |               |            |          |                   |                    |       |
|---------|------|------------------|------------------|--------------------|--------------------------|---------------------|---------|------------------|-----------|---------------|------------|----------|-------------------|--------------------|-------|
| FREQUE  | NCY  | Mode             | Service          | Maximum<br>Allowed | Conducted<br>Power [dBm] | Power<br>Drift [dB] | Spacing | Device<br>Serial | # of Time | Duty<br>Cycle | Side       | SAR (1g) | Scaling<br>Factor | Scaled SAR<br>(1g) | Plot# |
| MHz     | Ch.  |                  |                  | Power [dBm]        | rower [ubin]             | Drift [GB]          |         | Number           | 31013     | Cycle         |            | (W/kg)   | ractor            | (W/kg)             |       |
| 820.10  | 564  | CDMA BC10 (§90S) | TDSO / SO32      | 25.2               | 25.02                    | -0.04               | 8 mm    | 1881             | N/A       | 1:1           | back       | 0.707    | 1.042             | 0.737              | A14   |
| 836.52  | 384  | CDMA BC0 (§22H)  | TDSO / SO32      | 25.2               | 24.92                    | 0.00                | 8 mm    | 1881             | N/A       | 1:1           | back       | 0.611    | 1.067             | 0.652              | A16   |
| 1851.25 | 25   | PCS CDMA         | TDSO / SO32      | 24.2               | 23.95                    | 0.00                | 8 mm    | 1881             | N/A       | 1:1           | back       | 0.925    | 1.059             | 0.980              |       |
| 1880.00 | 600  | PCS CDMA         | TDSO / SO32      | 24.2               | 23.93                    | -0.02               | 8 mm    | 1881             | N/A       | 1:1           | back       | 1.090    | 1.064             | 1.160              | A18   |
| 1908.75 | 1175 | PCS CDMA         | TDSO / SO32      | 24.2               | 23.92                    | 0.00                | 8 mm    | 1881             | N/A       | 1:1           | back       | 1.080    | 1.067             | 1.152              |       |
| 836.60  | 190  | GSM 850          | GSM              | 33.2               | 33.12                    | 0.00                | 8 mm    | 1880             | 1         | 1:8.3         | back       | 0.569    | 1.019             | 0.580              |       |
| 836.60  | 190  | GSM 850          | GPRS             | 31.2               | 30.80                    | 0.00                | 8 mm    | 1880             | 2         | 1:4.15        | back       | 0.684    | 1.096             | 0.750              | A20   |
| 1880.00 | 661  | GSM 1900         | GSM              | 30.2               | 29.44                    | 0.07                | 8 mm    | 1880             | 1         | 1:8.3         | back       | 0.396    | 1.191             | 0.472              |       |
| 1880.00 | 661  | GSM 1900         | GPRS             | 28.2               | 27.61                    | 0.00                | 8 mm    | 1880             | 2         | 1:4.15        | back       | 0.545    | 1.146             | 0.625              | A22   |
| 836.60  | 4183 | UMTS 850         | RMC              | 23.7               | 23.60                    | 0.02                | 8 mm    | 1876             | N/A       | 1:1           | back       | 0.442    | 1.023             | 0.452              | A23   |
| 1880.00 | 9400 | UMTS 1900        | RMC              | 23.2               | 23.10                    | -0.03               | 8 mm    | 1876             | N/A       | 1:1           | back       | 0.579    | 1.023             | 0.592              | A25   |
|         |      | ANSI / IEEE      | C95.1 1992 - SAF | ETY LIMIT          |                          |                     |         |                  |           | Body          |            | •        |                   |                    |       |
|         |      |                  | Spatial Peak     | 15                 |                          |                     |         |                  |           | W/kg (mV      |            |          |                   |                    |       |
|         |      | Uncontrolled E   | xposure/Genera   | ai Population      |                          |                     |         |                  |           | averag        | ged over 1 | gram     |                   |                    |       |

Table 11-14 LTE Band 26 / Band 25 Body-Worn SAR

|         |                     |     |                      |              |                    |                    | <del></del> | <u> </u> |                    | ouy i      | • • • • | <u> </u> | <del></del> |          |        |          |         |                    |        |
|---------|---------------------|-----|----------------------|--------------|--------------------|--------------------|-------------|----------|--------------------|------------|---------|----------|-------------|----------|--------|----------|---------|--------------------|--------|
|         | MEASUREMENT RESULTS |     |                      |              |                    |                    |             |          |                    |            |         |          |             |          |        |          |         |                    |        |
| FF      | REQUENCY            | Y   | Mode                 | Bandwidth    | Maximum<br>Allowed | Conducted<br>Power | Power       | MPR      | De vice<br>Se rial | Modulation | RB      | RB       | Spacing     | Side     | Duty   | SAR (1g) | Scaling | Scaled<br>SAR (1g) | Plot # |
| MHz     | С                   | h.  | mode                 | [MHz]        | Power<br>[dBm]     | [dBm]              | Drift [dB]  | [dB]     | Number             | Modulation | Size    | Offset   | opacing     | olue     | Cycle  | (W/kg)   | Factor  | (W/kg)             | 1101#  |
| 831.50  | 26865               | Mid | LTE Band 26          | 10           | 24.2               | 24.12              | 0.01        | 0        | 1877               | QPSK       | 1       | 0        | 8 mm        | back     | 1:1    | 0.552    | 1.019   | 0.562              | A27    |
| 831.50  | 26865               | Mid | LTE Band 26          | 0.05         | 1                  | 1877               | QPSK        | 25       | 0                  | 8 mm       | back    | 1:1      | 0.406       | 1.052    | 0.427  |          |         |                    |        |
| 1882.50 | 26365               | Mid | LTE Band 25<br>(PCS) | 10           | 23.7               | 23.66              | -0.05       | 0        | 1879               | QPSK       | 1       | 49       | 8 mm        | back     | 1:1    | 0.767    | 1.009   | 0.774              | A29    |
| 1882.50 | 26365               | Mid | LTE Band 25<br>(PCS) | -0.01        | 1                  | 1879               | QPSK        | 25       | 25                 | 8 mm       | back    | 1:1      | 0.625       | 1.030    | 0.644  |          |         |                    |        |
|         |                     |     | ANSI / IEEE C9       | 5.1 1992 - 8 | AFETY LIM          |                    |             |          |                    |            | •       |          | Body        |          |        |          |         |                    |        |
|         |                     |     | S                    |              |                    |                    |             |          |                    | 1.6        | W/kg (m | W/g)     |             |          |        |          |         |                    |        |
|         |                     | Un  | controlled Exp       | osure/Gen    | eral Popula        | ition              |             |          |                    |            |         |          | averag      | jed over | 1 gram |          |         |                    |        |

Table 11-15 LTE Band 41 Body-Worn SAR

|         |                                                                                             |      |              |                    |            |                             | _ ~.                   |      | – .                        | oy         | •          |              |         |         |                |             |                                 |                                |        |        |
|---------|---------------------------------------------------------------------------------------------|------|--------------|--------------------|------------|-----------------------------|------------------------|------|----------------------------|------------|------------|--------------|---------|---------|----------------|-------------|---------------------------------|--------------------------------|--------|--------|
|         |                                                                                             |      |              |                    |            |                             | ME                     | ASU  | REMEN                      | IT RESU    | LTS        |              |         |         |                |             |                                 |                                |        |        |
| FRI     | EQUENCY                                                                                     | ,    | Mode         | Bandwidth<br>[MHz] | Power      | Conducted<br>Power<br>[dBm] | Power<br>Drift<br>[dB] | [dB] | Device<br>Serial<br>Number | Modulation | RB<br>Size | RB<br>Offset | Spacing | Side    | Duty<br>Cycle  | SAR<br>(1g) | Scaling<br>Factor<br>(Conducted | Scaling<br>Factor<br>(CP Duty) |        | Plot # |
| MHz     | CI                                                                                          | h.   |              |                    | [dBm]      | [05]                        | [0.5]                  |      |                            |            |            |              |         |         |                | (W/kg)      | Power)                          | (o. Daty)                      | (W/kg) | i I    |
| 2636.50 | 36.50 41055 Mid-<br>High LTE Band 41 20 23.2 23.00 0.06                                     |      |              |                    |            |                             |                        |      |                            | QPSK       | 1          | 50           | 8 mm    | back    | 1:1.59         | 0.374       | 1.047                           | 1.01                           | 0.396  | A31    |
| 2636.50 | 36.50 41055 Mid-<br>High LTE Band 41 20 22.2 21.78 -0.02                                    |      |              |                    |            |                             |                        |      |                            | QPSK       | 50         | 25           | 8 mm    | back    | 1:1.59         | 0.287       | 1.102                           | 1.01                           | 0.319  |        |
|         | ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population |      |              |                    |            |                             |                        |      |                            |            |            |              |         | 1.6 W/  | Body<br>kg (mW |             |                                 |                                | ,      |        |
|         |                                                                                             | Unco | mironea Expo | sure/Gene          | rai Popula | 111011                      |                        |      |                            |            |            |              | a       | veraged | l over 1       | yıaın       |                                 |                                |        |        |

| FCC ID: ZNFLS995    | PCTEST INCIDENTIAL INC. | SAR EVALUATION REPORT | Reviewed by: Quality Manager |
|---------------------|-------------------------|-----------------------|------------------------------|
| Document S/N:       | Test Dates:             | DUT Type:             | Page 53 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13     | Portable Handset      | Fage 33 01 79                |

### Table 11-16 DTS Body-Worn SAR

|        |      |                |            |                    |                    | O DOU       | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | . 07.11          |           |        |           |          |         |                    |        |
|--------|------|----------------|------------|--------------------|--------------------|-------------|-----------------------------------------|------------------|-----------|--------|-----------|----------|---------|--------------------|--------|
|        |      |                |            |                    | ME                 | ASUREM      | ENT RE                                  | SULTS            |           |        |           |          |         |                    |        |
| FREQUI | ENCY | Mode           | Service    | Maximum<br>Allowed | Conducted<br>Power | Power Drift | Spacing                                 | Device<br>Serial | Data Rate | Side   | Duty      | SAR (1g) | Scaling | Scaled SAR<br>(1g) | Plot # |
| MHz    | Ch.  |                |            | Power [dBm]        | [dBm]              | [dB]        |                                         | Number           | (Mbps)    |        | Cycle     | (W/kg)   | Factor  | (W/kg)             |        |
| 2462   | 11   | IEEE 802.11b   | DSSS       | 17.0               | 16.48              | 0.10        | 8 mm                                    | 1890             | 1         | back   | 1:1       | 0.187    | 1.127   | 0.211              | A33    |
| 5765   | 153  | IEEE 802.11a   | OFDM       | 12.0               | 10.91              | -0.08       | 8 mm                                    | 1890             | 6         | back   | 1:1       | 0.026    | 1.285   | 0.033              | A34    |
| 5775   | 155  | IEEE 802.11ac  | OFDM       | 11.5               | 10.82              | 0.05        | 8 mm                                    | 1890             | 29.3      | back   | 1:1       | 0.026    | 1.169   | 0.030              |        |
|        |      | ANSI / IEEE (  | C95.1 1992 | - SAFETY LIN       | ИIT                |             |                                         |                  |           |        | Body      |          |         |                    |        |
|        |      |                | Spatial Po |                    |                    |             |                                         |                  |           |        | V/kg (m\  | •        |         |                    |        |
|        |      | Uncontrolled E | xposure/G  | eneral Popul       | ation              |             |                                         |                  |           | averag | ed over 1 | gram     |         |                    |        |

## Table 11-17 NII Body-Worn SAR

|        |      |               |           |                    | ME                 | EASUREN     | IENT R  | ESULTS             | 3                           |      |       |          |                   |                    |        |
|--------|------|---------------|-----------|--------------------|--------------------|-------------|---------|--------------------|-----------------------------|------|-------|----------|-------------------|--------------------|--------|
| FREQUI | ENCY | Mode          | Service   | Maximum<br>Allowed | Conducted<br>Power | Power Drift | Spacing | De vice<br>Se rial | Data Rate                   | Side | Duty  | SAR (1g) | Scaling<br>Factor | Scaled SAR<br>(1g) | Plot # |
| MHz    | Ch.  |               |           | Power [dBm]        | [dBm]              | [dB]        |         | Number             | (Mbps)                      |      | Cycle | (W/kg)   | ractor            | (W/kg)             |        |
| 5240   | 48   | IEEE 802.11a  | OFDM      | 12.0               | 11.19              | 0.02        | 8 mm    | 1890               | 6                           | back | 1:1   | 0.108    | 1.205             | 0.130              |        |
| 5210   | 42   | IEEE 802.11ac | OFDM      | 11.5               | 9.74               | 0.06        | 8 mm    | 1890               | 29.3                        | back | 1:1   | 0.062    | 1.500             | 0.093              |        |
| 5260   | 52   | IEEE 802.11a  | OFDM      | 12.0               | 11.61              | 0.04        | 8 mm    | 1890               | 6                           | back | 1:1   | 0.116    | 1.094             | 0.127              | A35    |
| 5290   | 58   | IEEE 802.11ac | OFDM      | 11.5               | 11.26              | -0.05       | 8 mm    | 1890               | 29.3                        | back | 1:1   | 0.095    | 1.057             | 0.100              |        |
| 5520   | 104  | IEEE 802.11a  | OFDM      | 12.0               | 11.38              | 0.09        | 8 mm    | 1890               | 6                           | back | 1:1   | 0.092    | 1.153             | 0.106              |        |
| 5690   | 138  | IEEE 802.11ac | OFDM      | 11.5               | 10.89              | 0.03        | 8 mm    | 1890               | 29.3                        | back | 1:1   | 0.058    | 1.151             | 0.067              |        |
|        |      | ANSI / IEEE ( | Spatial P |                    |                    |             |         |                    | Body<br>W/kg (m<br>ged over | •    |       |          |                   |                    |        |

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT LG | Reviewed by: Quality Manager |
|---------------------|---------------------|--------------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:                | Page 54 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset         | Faye 34 01 79                |

## 11.3 Standalone Wireless Router SAR Data

## Table 11-18 CDMA Hotspot SAR Data

|         |                                       |                     |                |                    | MEASUR             |            |         |               |       |            |                  |         |                    |        |
|---------|---------------------------------------|---------------------|----------------|--------------------|--------------------|------------|---------|---------------|-------|------------|------------------|---------|--------------------|--------|
| FREQUE  | NCY                                   | Mode                | Service        | Maximum<br>Allowed | Conducted<br>Power | Power      | Spacing | Device Serial | Duty  | Side       | SAR (1g)         | Scaling | Scaled<br>SAR (1g) | Plot # |
| MHz     | Ch.                                   | Wode                | Service        | Power [dBm]        | [dBm]              | Drift [dB] | Spacing | Number        | Cycle | Side       | (W/kg)           | Factor  | (W/kg)             | PIOT#  |
| 820.10  | 564                                   | CDMA BC10<br>(§90S) | EVDO Rev. 0    | 25.2               | 25.04              | 0.01       | 8 mm    | 1881          | 1:1   | back       | 0.702            | 1.038   | 0.729              | A15    |
| 820.10  | 564                                   | CDMA BC10<br>(§90S) | EVDO Rev. 0    | 25.2               | 25.04              | -0.03      | 8 mm    | 1881          | 1:1   | front      | 0.694            | 1.038   | 0.720              |        |
| 820.10  | 564                                   | CDMA BC10<br>(§90S) | EVDO Rev. 0    | 25.2               | 25.04              | -0.02      | 10 mm   | 1881          | 1:1   | bottom     | 0.325            | 1.038   | 0.337              |        |
| 820.10  | 564                                   | CDMA BC10<br>(§90S) | EVDO Rev. 0    | 25.2               | 25.04              | 0.08       | 10 mm   | 1881          | 1:1   | right      | 0.456            | 1.038   | 0.473              |        |
| 820.10  | 564                                   | CDMA BC10<br>(§90S) | EVDO Rev. 0    | 25.2               | 25.04              | -0.01      | 10 mm   | 1881          | 1:1   | left       | 0.636            | 1.038   | 0.660              |        |
| 836.52  | 384                                   | CDMA BC0<br>(§22H)  | EVDO Rev. 0    | 25.2               | 24.98              | -0.01      | 8 mm    | 1881          | 1:1   | back       | 0.608            | 1.052   | 0.640              |        |
| 836.52  | 384                                   | CDMA BC0<br>(§22H)  | EVDO Rev. 0    | 25.2               | 24.98              | 0.00       | 8 mm    | 1881          | 1:1   | front      | 0.674            | 1.052   | 0.709              | A17    |
| 836.52  | 384                                   | CDMA BC0<br>(§22H)  | EVDO Rev. 0    | 25.2               | 24.98              | 0.00       | 10 mm   | 1881          | 1:1   | bottom     | 0.323            | 1.052   | 0.340              |        |
| 836.52  | 384                                   | CDMA BC0<br>(§22H)  | EVDO Rev. 0    | 25.2               | 24.98              | -0.05      | 10 mm   | 1881          | 1:1   | right      | 0.368            | 1.052   | 0.387              |        |
| 836.52  | 384                                   | CDMA BC0<br>(§22H)  | EVDO Rev. 0    | 25.2               | 24.98              | -0.02      | 10 mm   | 1881          | 1:1   | left       | 0.524            | 1.052   | 0.551              |        |
| 1851.25 | 25                                    | PCS CDMA            | EVDO Rev. 0    | 24.2               | 23.95              | -0.01      | 8 mm    | 1881          | 1:1   | back       | 0.962            | 1.059   | 1.019              |        |
| 1880.00 | 600                                   | PCS CDMA            | EVDO Rev. 0    | 24.2               | 23.99              | -0.01      | 8 mm    | 1881          | 1:1   | back       | 1.140            | 1.050   | 1.197              | A19    |
| 1908.75 | 1175                                  | PCS CDMA            | EVDO Rev. 0    | 24.2               | 23.96              | -0.05      | 8 mm    | 1881          | 1:1   | back       | 1.130            | 1.057   | 1.194              |        |
| 1851.25 | 25                                    | PCS CDMA            | EVDO Rev. 0    | 24.2               | 23.95              | -0.02      | 8 mm    | 1881          | 1:1   | front      | 0.912            | 1.059   | 0.966              |        |
| 1880.00 | 600                                   | PCS CDMA            | EVDO Rev. 0    | 24.2               | 23.99              | -0.04      | 8 mm    | 1881          | 1:1   | front      | 1.040            | 1.050   | 1.092              |        |
| 1908.75 | 1175                                  | PCS CDMA            | EVDO Rev. 0    | 24.2               | 23.96              | -0.03      | 8 mm    | 1881          | 1:1   | front      | 0.979            | 1.057   | 1.035              |        |
| 1851.25 | 25                                    | PCS CDMA            | EVDO Rev. 0    | 24.2               | 23.95              | -0.03      | 10 mm   | 1881          | 1:1   | bottom     | 0.795            | 1.059   | 0.842              |        |
| 1880.00 | 600                                   | PCS CDMA            | EVDO Rev. 0    | 24.2               | 23.99              | -0.02      | 10 mm   | 1881          | 1:1   | bottom     | 0.975            | 1.050   | 1.024              |        |
| 1908.75 | 1175                                  | PCS CDMA            | EVDO Rev. 0    | 24.2               | 23.96              | -0.01      | 10 mm   | 1881          | 1:1   | bottom     | 0.895            | 1.057   | 0.946              |        |
| 1880.00 | 600                                   | PCS CDMA            | EVDO Rev. 0    | 24.2               | 23.99              | -0.01      | 10 mm   | 1881          | 1:1   | right      | 0.255            | 1.050   | 0.268              |        |
| 1880.00 | 600                                   | PCS CDMA            | EVDO Rev. 0    | 24.2               | 23.99              | -0.05      | 10 mm   | 1881          | 1:1   | left       | 0.272            | 1.050   | 0.286              |        |
| 1880.00 | 600                                   | PCS CDMA            | EVDO Rev. 0    | 24.2               | 23.99              | -0.06      | 8 mm    | 1881          | 1:1   | back       | 1.090            | 1.050   | 1.145              |        |
|         | ANSI / IEEE C95.1 1992 - SAFETY LIMIT |                     |                |                    |                    |            |         |               |       | Boo        | •                |         |                    |        |
|         |                                       | Ungantrallant       | Spatial Peak   | nl Bonulation      |                    |            |         |               |       | 1.6 W/kg   |                  |         |                    |        |
|         |                                       | Uncontrolled        | Exposure/Gener | ai Population      |                    |            | 1       |               | a     | veraged ov | <i>r</i> e⊨igiam |         |                    |        |

Note: Blue entry represents variability measurement.

| FCC ID: ZNFLS995    | PCTEST*             | SAR EVALUATION REPORT LG | Reviewed by: Quality Manager |
|---------------------|---------------------|--------------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:                | Page 55 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset         | Fage 55 of 79                |

# Table 11-19 GPRS/UMTS Hotspot SAR Data

|         |                                                                                                   |           |         |                        | ME/            |            |         | ESULTS           | Dala      |        |                               |          |         |                    |        |
|---------|---------------------------------------------------------------------------------------------------|-----------|---------|------------------------|----------------|------------|---------|------------------|-----------|--------|-------------------------------|----------|---------|--------------------|--------|
| FREQUE  | ENCY                                                                                              |           |         | Maximum                | Conducted      | Power      |         | Device           | # of GPRS | Duty   |                               | SAR (1g) | Scaling | Scaled<br>SAR (1g) |        |
| MHz     | Ch.                                                                                               | Mode      | Service | Allowed<br>Power [dBm] | Power<br>[dBm] | Drift [dB] | Spacing | Serial<br>Number | Slots     | Cycle  | Side                          | (W/kg)   | Factor  | (W/kg)             | Plot # |
| 836.60  | 190                                                                                               | GSM 850   | GPRS    | 31.2                   | 30.80          | 0.00       | 8 mm    | 1880             | 2         | 1:4.15 | back                          | 0.684    | 1.096   | 0.750              |        |
| 824.20  | 128                                                                                               | GSM 850   | GPRS    | 31.2                   | 30.66          | -0.04      | 8 mm    | 1880             | 2         | 1:4.15 | front                         | 0.678    | 1.132   | 0.767              |        |
| 836.60  | 190                                                                                               | GSM 850   | GPRS    | 31.2                   | 30.80          | 0.02       | 8 mm    | 1880             | 2         | 1:4.15 | front                         | 0.765    | 1.096   | 0.838              | A21    |
| 848.80  | 251                                                                                               | GSM 850   | GPRS    | 31.2                   | 30.77          | 0.01       | 8 mm    | 1880             | 2         | 1:4.15 | front                         | 0.655    | 1.104   | 0.723              |        |
| 836.60  | 190                                                                                               | GSM 850   | GPRS    | 31.2                   | 30.80          | -0.18      | 10 mm   | 1880             | 2         | 1:4.15 | bottom                        | 0.442    | 1.096   | 0.484              |        |
| 836.60  | 190                                                                                               | GSM 850   | GPRS    | 31.2                   | 30.80          | -0.15      | 10 mm   | 1880             | 2         | 1:4.15 | right                         | 0.495    | 1.096   | 0.543              |        |
| 836.60  | 190                                                                                               | GSM 850   | GPRS    | 31.2                   | 30.80          | 0.07       | 10 mm   | 1880             | 2         | 1:4.15 | left                          | 0.650    | 1.096   | 0.712              |        |
| 1880.00 | 661                                                                                               | GSM 1900  | GPRS    | 28.2                   | 27.61          | 0.00       | 8 mm    | 1880             | 2         | 1:4.15 | back                          | 0.545    | 1.146   | 0.625              | A22    |
| 1880.00 | 661                                                                                               | GSM 1900  | GPRS    | 28.2                   | 27.61          | 0.01       | 8 mm    | 1880             | 2         | 1:4.15 | front                         | 0.519    | 1.146   | 0.595              |        |
| 1880.00 | 661                                                                                               | GSM 1900  | GPRS    | 28.2                   | 27.61          | -0.02      | 10 mm   | 1880             | 2         | 1:4.15 | bottom                        | 0.425    | 1.146   | 0.487              |        |
| 1880.00 | 661                                                                                               | GSM 1900  | GPRS    | 28.2                   | 27.61          | 0.04       | 10 mm   | 1880             | 2         | 1:4.15 | right                         | 0.123    | 1.146   | 0.141              |        |
| 1880.00 | 661                                                                                               | GSM 1900  | GPRS    | 28.2                   | 27.61          | 0.08       | 10 mm   | 1880             | 2         | 1:4.15 | left                          | 0.121    | 1.146   | 0.139              |        |
| 836.60  | 4183                                                                                              | UMTS 850  | RMC     | 23.7                   | 23.60          | 0.02       | 8 mm    | 1876             | N/A       | 1:1    | back                          | 0.442    | 1.023   | 0.452              |        |
| 836.60  | 4183                                                                                              | UMTS 850  | RMC     | 23.7                   | 23.60          | -0.01      | 8 mm    | 1876             | N/A       | 1:1    | front                         | 0.696    | 1.023   | 0.712              | A24    |
| 836.60  | 4183                                                                                              | UMTS 850  | RMC     | 23.7                   | 23.60          | -0.01      | 10 mm   | 1876             | N/A       | 1:1    | bottom                        | 0.258    | 1.023   | 0.264              |        |
| 836.60  | 4183                                                                                              | UMTS 850  | RMC     | 23.7                   | 23.60          | 0.00       | 10 mm   | 1876             | N/A       | 1:1    | right                         | 0.286    | 1.023   | 0.293              |        |
| 836.60  | 4183                                                                                              | UMTS 850  | RMC     | 23.7                   | 23.60          | -0.09      | 10 mm   | 1876             | N/A       | 1:1    | left                          | 0.414    | 1.023   | 0.424              |        |
| 1880.00 | 9400                                                                                              | UMTS 1900 | RMC     | 23.2                   | 23.10          | -0.03      | 8 mm    | 1876             | N/A       | 1:1    | back                          | 0.579    | 1.023   | 0.592              |        |
| 1880.00 | 9400                                                                                              | UMTS 1900 | RMC     | 23.2                   | 23.10          | -0.07      | 8 mm    | 1876             | N/A       | 1:1    | front                         | 0.702    | 1.023   | 0.718              | A26    |
| 1880.00 | 9400                                                                                              | UMTS 1900 | RMC     | 23.2                   | 23.10          | 0.07       | 10 mm   | 1876             | N/A       | 1:1    | bottom                        | 0.580    | 1.023   | 0.593              |        |
| 1880.00 | 9400                                                                                              | UMTS 1900 | RMC     | 23.2                   | 23.10          | 0.13       | 10 mm   | 1876             | N/A       | 1:1    | right                         | 0.119    | 1.023   | 0.122              |        |
| 1880.00 | 9400                                                                                              | UMTS 1900 | RMC     | 23.2                   | 23.10          | -0.04      | 10 mm   | 1876             | N/A       | 1:1    | left                          | 0.144    | 1.023   | 0.147              |        |
|         | ANSI / IEEE C95.1 1992 - SAFETY LIMIT<br>Spatial Peak<br>Uncontrolled Exposure/General Population |           |         |                        |                |            |         |                  |           |        | Body<br>V/kg (mW<br>ed over 1 |          |         |                    |        |

| FCC ID: ZNFLS995    | PCTEST'             | SAR EVALUATION REPORT | LG | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|----|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             |    | Page 56 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 – 11/26/13 | Portable Handset      |    | Faye 50 01 79                |

### **Table 11-20** LTE Band 26 Hotspot SAR

|        | LTE Ballu 20 Hotspot SAR                 |     |             |           |                             |                    |                     |             |        |            |            |              |           |           |               |          |                   |                    |        |
|--------|------------------------------------------|-----|-------------|-----------|-----------------------------|--------------------|---------------------|-------------|--------|------------|------------|--------------|-----------|-----------|---------------|----------|-------------------|--------------------|--------|
|        |                                          |     |             |           |                             | I                  | MEASU               | REME        | ENT RE | SULTS      |            |              |           |           |               |          |                   |                    |        |
| FRE    | EQUENCY                                  |     | Mode        | Bandwidth | Maximum<br>Allowed<br>Power | Conducted<br>Power | Power<br>Drift [dB] | MPR<br>[dB] |        | Modulation | RB<br>Size | RB<br>Offset | Spacing   | Side      | Duty<br>Cycle | SAR (1g) | Scaling<br>Factor | Scaled<br>SAR (1g) | Plot # |
| M Hz   | Ch                                       | ۱.  |             | [MTZ]     | [dBm]                       | [dBm]              | Driit [db]          | [ub]        | Number |            | Size       | Oliset       |           |           | Cycle         | (W/kg)   | ractor            | (W/kg)             |        |
| 831.50 | 26865                                    | Mid | LTE Band 26 | 10        | 24.2                        | 24.12              | 0.01                | 0           | 1877   | QPSK       | 1          | 0            | 8 mm      | back      | 1:1           | 0.552    | 1.019             | 0.562              |        |
| 831.50 | 26865                                    | Mid | LTE Band 26 | 10        | 23.2                        | 22.98              | 0.05                | 1           | 1877   | QPSK       | 25         | 0            | 8 mm      | back      | 1:1           | 0.406    | 1.052             | 0.427              |        |
| 831.50 | 26865                                    | Mid | LTE Band 26 | 10        | 24.2                        | 24.12              | -0.03               | 0           | 1877   | QPSK       | 1          | 0            | 8 mm      | front     | 1:1           | 0.577    | 1.019             | 0.588              | A28    |
| 831.50 | 26865                                    | Mid | LTE Band 26 | 10        | 23.2                        | 22.98              | 0.01                | 1           | 1877   | QPSK       | 25         | 0            | 8 mm      | front     | 1:1           | 0.431    | 1.052             | 0.453              |        |
| 831.50 | 26865                                    | Mid | LTE Band 26 | 10        | 24.2                        | 24.12              | -0.17               | 0           | 1877   | QPSK       | 1          | 0            | 10 mm     | bottom    | 1:1           | 0.267    | 1.019             | 0.272              |        |
| 831.50 | 26865                                    | Mid | LTE Band 26 | 10        | 23.2                        | 22.98              | 0.04                | 1           | 1877   | QPSK       | 25         | 0            | 10 mm     | bottom    | 1:1           | 0.208    | 1.052             | 0.219              |        |
| 831.50 | 26865                                    | Mid | LTE Band 26 | 10        | 24.2                        | 24.12              | 0.02                | 0           | 1877   | QPSK       | 1          | 0            | 10 mm     | right     | 1:1           | 0.400    | 1.019             | 0.408              |        |
| 831.50 | 26865                                    | Mid | LTE Band 26 | 10        | 23.2                        | 22.98              | 0.04                | 1           | 1877   | QPSK       | 25         | 0            | 10 mm     | right     | 1:1           | 0.291    | 1.052             | 0.306              |        |
| 831.50 | 26865                                    | Mid | LTE Band 26 | 10        | 24.2                        | 24.12              | -0.07               | 0           | 1877   | QPSK       | 1          | 0            | 10 mm     | left      | 1:1           | 0.548    | 1.019             | 0.558              |        |
| 831.50 | 26865                                    | Mid | LTE Band 26 | 10        | 23.2                        | 22.98              | -0.01               | 1           | 1877   | QPSK       | 25         | 0            | 10 mm     | left      | 1:1           | 0.410    | 1.052             | 0.431              |        |
|        | ANSI / IEEE C95.1 1992 - SAFETY LIMIT    |     |             |           |                             |                    |                     |             |        |            |            |              | Во        | dy        |               |          |                   |                    |        |
|        | Spatial Peak                             |     |             |           |                             |                    |                     |             |        |            |            |              | 1.6 W/kg  |           | •             |          |                   |                    |        |
|        | Uncontrolled Exposure/General Population |     |             |           |                             |                    |                     |             |        |            |            | a            | veraged o | ver 1 gra | ım            |          |                   |                    |        |

## **Table 11-21** LTE Band 25 (PCS) Hotspot SAR

|         |                                          |      |                      |                    |                             | IE Ba              | na z                | ) (P    | (CS) F                                       | totspo     | <u>π 5</u> | <u>AR</u>    |            |            |               |          |                   |                    |        |
|---------|------------------------------------------|------|----------------------|--------------------|-----------------------------|--------------------|---------------------|---------|----------------------------------------------|------------|------------|--------------|------------|------------|---------------|----------|-------------------|--------------------|--------|
|         |                                          |      |                      |                    |                             |                    | MEASU               | REM     | ENT RE                                       | SULTS      |            |              |            |            |               |          |                   |                    |        |
| FF      | REQUENCY                                 |      | Mode                 | Bandwidth<br>[MHz] | Maximum<br>Allowed<br>Power | Conducted<br>Power | Power<br>Drift [dB] | IPR [dl |                                              | Modulation | RB<br>Size | RB<br>Offset | Spacing    | Side       | Duty<br>Cycle | SAR (1g) | Scaling<br>Factor | Scaled<br>SAR (1g) | Plot # |
| MHz     | Ch                                       |      |                      | [2]                | [dBm]                       | [dBm]              | Sint [ab]           |         | Number                                       |            | OLEO       | 0001         |            |            | 0,0.0         | (W/kg)   | ruotoi            | (W/kg)             |        |
| 1882.50 | 26365                                    | Mid  | LTE Band 25<br>(PCS) | 10                 | 23.7                        | 23.66              | -0.05               | 0       | 1879                                         | QPSK       | 1          | 49           | 8 mm       | back       | 1:1           | 0.767    | 1.009             | 0.774              |        |
| 1882.50 | 26365                                    | Mid  | LTE Band 25<br>(PCS) | 10                 | 22.7                        | 22.57              | -0.01               | 1       | 1879                                         | QPSK       | 25         | 25           | 8 mm       | back       | 1:1           | 0.625    | 1.030             | 0.644              |        |
| 1855.00 | 26090                                    | Low  | LTE Band 25<br>(PCS) | 10                 | 23.7                        | 23.52              | 0.10                | 0       | 1879                                         | QPSK       | 1          | 0            | 8 mm       | front      | 1:1           | 0.857    | 1.042             | 0.893              |        |
| 1882.50 | 26365                                    | Mid  | LTE Band 25<br>(PCS) | 10                 | 23.7                        | 23.66              | 0.05                | 0       | 1879                                         | QPSK       | 1          | 49           | 8 mm       | front      | 1:1           | 0.850    | 1.009             | 0.858              |        |
| 1910.00 | 26640                                    | High | LTE Band 25<br>(PCS) | 10                 | 23.7                        | 23.51              | 0.06                | 0       | 1879                                         | QPSK       | 1          | 0            | 8 mm       | front      | 1:1           | 0.873    | 1.045             | 0.912              | A30    |
| 1882.50 | 26365                                    | Mid  | LTE Band 25<br>(PCS) | 10                 | 22.7                        | 22.57              | -0.04               | 1       | 1 1879 QPSK 25 25 8 mm front 1:1 0.694 1.030 |            |            |              |            |            | 0.715         |          |                   |                    |        |
| 1882.50 | 26365                                    | Mid  | LTE Band 25<br>(PCS) | 10                 | 22.7                        | 22.52              | 0.14                | 1       | 1879                                         | QPSK       | 50         | 0            | 8 mm       | front      | 1:1           | 0.707    | 1.042             | 0.737              |        |
| 1855.00 | 26090                                    | Low  | LTE Band 25<br>(PCS) | 10                 | 23.7                        | 23.52              | 0.01                | 0       | 1879                                         | QPSK       | 1          | 0            | 10 mm      | bottom     | 1:1           | 0.695    | 1.042             | 0.724              |        |
| 1882.50 | 26365                                    | Mid  | LTE Band 25<br>(PCS) | 10                 | 23.7                        | 23.66              | 0.02                | 0       | 1879                                         | QPSK       | 1          | 49           | 10 mm      | bottom     | 1:1           | 0.807    | 1.009             | 0.814              |        |
| 1910.00 | 26640                                    | High | LTE Band 25<br>(PCS) | 10                 | 23.7                        | 23.51              | 0.03                | 0       | 1879                                         | QPSK       | 1          | 0            | 10 mm      | bottom     | 1:1           | 0.845    | 1.045             | 0.883              |        |
| 1882.50 | 26365                                    | Mid  | LTE Band 25<br>(PCS) | 10                 | 22.7                        | 22.57              | 0.03                | 1       | 1879                                         | QPSK       | 25         | 25           | 10 mm      | bottom     | 1:1           | 0.660    | 1.030             | 0.680              |        |
| 1882.50 | 26365                                    | Mid  | LTE Band 25<br>(PCS) | 10                 | 22.7                        | 22.52              | -0.02               | 1       | 1879                                         | QPSK       | 50         | 0            | 10 mm      | bottom     | 1:1           | 0.695    | 1.042             | 0.724              |        |
| 1882.50 | 26365                                    | Mid  | LTE Band 25<br>(PCS) | 10                 | 23.7                        | 23.66              | 0.03                | 0       | 1879                                         | QPSK       | 1          | 49           | 10 mm      | right      | 1:1           | 0.239    | 1.009             | 0.241              |        |
| 1882.50 | 26365                                    | Mid  | LTE Band 25<br>(PCS) | 10                 | 22.7                        | 22.57              | -0.01               | 1       | 1879                                         | QPSK       | 25         | 25           | 10 mm      | right      | 1:1           | 0.193    | 1.030             | 0.199              |        |
| 1882.50 | 26365                                    | Mid  | LTE Band 25<br>(PCS) | 10                 | 23.7                        | 23.66              | -0.09               | 0       | 1879                                         | QPSK       | 1          | 49           | 10 mm      | left       | 1:1           | 0.223    | 1.009             | 0.225              |        |
| 1882.50 | 26365                                    | Mid  | LTE Band 25<br>(PCS) | 10                 | 22.7                        | 22.57              | -0.05               | 1       | 1879                                         | QPSK       | 25         | 25           | 10 mm      | left       | 1:1           | 0.182    | 1.030             | 0.187              |        |
|         | ANSI / IEEE C95.1 1992 - SAFETY LIMIT    |      |                      |                    |                             |                    |                     |         |                                              |            |            |              | В          | ody        |               | _        |                   |                    |        |
|         | Spatial Peak                             |      |                      |                    |                             |                    |                     |         |                                              |            |            | 1.6 W/kg     | g (mW/g)   |            |               |          |                   |                    |        |
|         | Uncontrolled Exposure/General Population |      |                      |                    |                             |                    |                     |         |                                              |            |            |              | averaged o | over 1 gra | n             |          |                   |                    |        |

| FCC ID: ZNFLS995                | PCTEST NO CREATAN LABORATORY, INC. | SAR EVALUATION REPORT | LG | Reviewed by: Quality Manager |
|---------------------------------|------------------------------------|-----------------------|----|------------------------------|
| Document S/N:                   | Test Dates:                        | DUT Type:             |    | Dogo 57 of 70                |
| 0Y1311192196-R1.ZNF             | 11/11/13 - 11/26/13                | Portable Handset      |    | Page 57 of 79                |
| © 2013 PCTEST Engineering Labor | atory, Inc.                        |                       |    | REV 12.5 M                   |

## Table 11-22 LTE Band 41 Hotspot SAR

|         | MEASUREMENT RESULTS                                   |          |             |                    |                             |                             |                        |                                                      |                               |            |            |              |         |                     |               |             |                                 |                          |                        |        |
|---------|-------------------------------------------------------|----------|-------------|--------------------|-----------------------------|-----------------------------|------------------------|------------------------------------------------------|-------------------------------|------------|------------|--------------|---------|---------------------|---------------|-------------|---------------------------------|--------------------------|------------------------|--------|
| F       | REQUENC                                               | Y        | Mode        | Bandwidth<br>[MHz] | Maximum<br>Allowed<br>Power | Conducted<br>Power<br>[dBm] | Power<br>Drift<br>[dB] | MPR<br>[dB]                                          | De vice<br>Se rial<br>Numbe r | Modulation | RB<br>Size | RB<br>Offset | Spacing | Side                | Duty<br>Cycle | SAR<br>(1g) | Scaling<br>Factor<br>(Conducted | Scaling<br>Factor<br>(CP | Scale d<br>SAR<br>(1g) | Plot # |
| M Hz    | C                                                     | Ch.      |             |                    | [dBm]                       | [aBm]                       | [aB]                   |                                                      | Num be r                      |            |            |              |         |                     | ,             | (W/kg)      | Power)                          | Duty)                    | (W/kg)                 |        |
| 2636.50 | 41055                                                 | Mid-high | LTE Band 41 | 20                 | 23.2                        | 23.00                       | 0.06                   | 0                                                    | 1875                          | QPSK       | 1          | 50           | 8 mm    | back                | 1:1.59        | 0.374       | 1.047                           | 1.01                     | 0.396                  |        |
| 2636.50 | 41055                                                 | Mid-high | LTE Band 41 | 20                 | 22.2                        | 21.78                       | -0.02                  | 1                                                    | 1875                          | QPSK       | 50         | 25           | 8 mm    | back                | 1:1.59        | 0.287       | 1.102                           | 1.01                     | 0.319                  |        |
| 2506.00 | 39750                                                 | Low      | LTE Band 41 | 20                 | 23.2                        | 22.79                       | 0.07                   | 0                                                    | 1875                          | QPSK       | 1          | 50           | 8 mm    | front               | 1:1.59        | 0.771       | 1.099                           | 1.01                     | 0.855                  | A32    |
| 2549.50 | 40185                                                 | Low-mid  | LTE Band 41 | 20                 | 23.2                        | 22.74                       | -0.12                  | 0                                                    | 1875                          | QPSK       | 1          | 99           | 8 mm    | front               | 1:1.59        | 0.708       | 1.112                           | 1.01                     | 0.795                  |        |
| 2593.00 | 40620                                                 | Mid      | LTE Band 41 | 20                 | 23.2                        | 22.82                       | -0.03                  | 0                                                    | 1875                          | QPSK       | 1          | 0            | 8 mm    | front               | 1:1.59        | 0.633       | 1.091                           | 1.01                     | 0.698                  |        |
| 2636.50 | 41055                                                 | Mid-high | LTE Band 41 | 20                 | 23.2                        | 23.00                       | 0.01                   | 0                                                    | 1875                          | QPSK       | 1          | 50           | 8 mm    | front               | 1:1.59        | 0.678       | 1.047                           | 1.01                     | 0.717                  |        |
| 2680.00 | 41490                                                 | High     | LTE Band 41 | 20                 | 23.2                        | 22.77                       | -0.03                  | 0                                                    | 1875                          | QPSK       | 1          | 0            | 8 mm    | front               | 1:1.59        | 0.603       | 1.104                           | 1.01                     | 0.673                  |        |
| 2636.50 | 41055                                                 | Mid-high | LTE Band 41 | 20                 | 22.2                        | 21.78                       | 0.00                   | 1                                                    | 1875                          | QPSK       | 50         | 25           | 8 mm    | front               | 1:1.59        | 0.507       | 1.102                           | 1.01                     | 0.565                  |        |
| 2636.50 | 41055                                                 | Mid-high | LTE Band 41 | 20                 | 22.2                        | 21.73                       | -0.01                  | 1 1875 QPSK 100 0 8 mm front 1:1.59 0.541 1.114 1.01 |                               |            |            |              |         |                     | 0.609         |             |                                 |                          |                        |        |
| 2506.00 | 39750                                                 | Low      | LTE Band 41 | 20                 | 23.2                        | 22.79                       | -0.06                  | 0                                                    | 1875                          | QPSK       | 1          | 50           | 10 mm   | bottom              | 1:1.59        | 0.438       | 1.099                           | 1.01                     | 0.486                  |        |
| 2549.50 | 40185                                                 | Low-mid  | LTE Band 41 | 20                 | 23.2                        | 22.74                       | -0.03                  | 0                                                    | 1875                          | QPSK       | 1          | 99           | 10 mm   | bottom              | 1:1.59        | 0.610       | 1.112                           | 1.01                     | 0.685                  |        |
| 2593.00 | 40620                                                 | Mid      | LTE Band 41 | 20                 | 23.2                        | 22.82                       | 0.03                   | 0                                                    | 1875                          | QPSK       | 1          | 0            | 10 mm   | bottom              | 1:1.59        | 0.701       | 1.091                           | 1.01                     | 0.773                  |        |
| 2636.50 | 41055                                                 | Mid-high | LTE Band 41 | 20                 | 23.2                        | 23.00                       | -0.01                  | 0                                                    | 1875                          | QPSK       | 1          | 50           | 10 mm   | bottom              | 1:1.59        | 0.754       | 1.047                           | 1.01                     | 0.797                  |        |
| 2680.00 | 41490                                                 | High     | LTE Band 41 | 20                 | 23.2                        | 22.77                       | 0.00                   | 0                                                    | 1875                          | QPSK       | 1          | 0            | 10 mm   | bottom              | 1:1.59        | 0.608       | 1.104                           | 1.01                     | 0.678                  |        |
| 2506.00 | 39750                                                 | Low      | LTE Band 41 | 20                 | 22.2                        | 21.74                       | -0.02                  | 1                                                    | 1875                          | QPSK       | 50         | 50           | 10 mm   | bottom              | 1:1.59        | 0.331       | 1.112                           | 1.01                     | 0.372                  |        |
| 2549.50 | 40185                                                 | Low-mid  | LTE Band 41 | 20                 | 22.2                        | 21.65                       | -0.17                  | 1                                                    | 1875                          | QPSK       | 50         | 0            | 10 mm   | bottom              | 1:1.59        | 0.381       | 1.135                           | 1.01                     | 0.436                  |        |
| 2593.00 | 40620                                                 | Mid      | LTE Band 41 | 20                 | 22.2                        | 21.68                       | 0.11                   | 1                                                    | 1875                          | QPSK       | 50         | 50           | 10 mm   | bottom              | 1:1.59        | 0.512       | 1.127                           | 1.01                     | 0.583                  |        |
| 2636.50 | 41055                                                 | Mid-high | LTE Band 41 | 20                 | 22.2                        | 21.78                       | -0.06                  | 1                                                    | 1875                          | QPSK       | 50         | 25           | 10 mm   | bottom              | 1:1.59        | 0.605       | 1.102                           | 1.01                     | 0.674                  |        |
| 2680.00 | 41490                                                 | High     | LTE Band 41 | 20                 | 22.2                        | 21.70                       | -0.01                  | 1                                                    | 1875                          | QPSK       | 50         | 0            | 10 mm   | bottom              | 1:1.59        | 0.472       | 1.122                           | 1.01                     | 0.535                  |        |
| 2636.50 | 41055                                                 | Mid-high | LTE Band 41 | 20                 | 22.2                        | 21.73                       | -0.07                  | 1                                                    | 1875                          | QPSK       | 100        | 0            | 10 mm   | bottom              | 1:1.59        | 0.612       | 1.114                           | 1.01                     | 0.689                  |        |
| 2636.50 | 41055                                                 | Mid-high | LTE Band 41 | 20                 | 23.2                        | 23.00                       | -0.02                  | 0                                                    | 1875                          | QPSK       | 1          | 50           | 10 mm   | right               | 1:1.59        | 0.303       | 1.047                           | 1.01                     | 0.320                  |        |
| 2636.50 | 41055                                                 | Mid-high | LTE Band 41 | 20                 | 22.2                        | 21.78                       | 0.06                   | 1                                                    | 1875                          | QPSK       | 50         | 25           | 10 mm   | right               | 1:1.59        | 0.241       | 1.102                           | 1.01                     | 0.269                  |        |
| 2636.50 | 41055                                                 | Mid-high | LTE Band 41 | 20                 | 23.2                        | 23.00                       | -0.04                  | 0                                                    | 1875                          | QPSK       | 1          | 50           | 10 mm   | left                | 1:1.59        | 0.045       | 1.047                           | 1.01                     | 0.047                  |        |
| 2636.50 | 41055                                                 | Mid-high | LTE Band 41 | 20                 | 22.2                        | 21.78                       | 0.00                   | 1                                                    | 1875                          | QPSK       | 50         | 25           | 10 mm   | left                | 1:1.59        | 0.035       | 1.102                           | 1.01                     | 0.039                  |        |
|         | ANSI / IEEE C95.1 1992 - SAFETY LIMIT                 |          |             |                    |                             |                             |                        |                                                      |                               |            |            |              | 10      | Body                | 2M/a)         |             |                                 |                          |                        |        |
|         | Spatial Peak Uncontrolled Exposure/General Population |          |             |                    |                             |                             |                        |                                                      |                               |            |            |              |         | W/kg (n<br>ged over |               |             |                                 |                          |                        |        |
|         | Uncontrolled Exposure/General Population              |          |             |                    |                             |                             |                        |                                                      |                               |            |            |              |         | -                   |               |             |                                 |                          |                        |        |

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT LG | Reviewed by: Quality Manager |
|---------------------|---------------------|--------------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:                | Page 58 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset         | rage 56 of 79                |

# Table 11-23 WLAN Wireless Router SAR

|        | WEAR WIFEESS ROUGE OAR                |                |         |                    |                    |                     |         |                  |                     |       |               |          |                   |                    |        |
|--------|---------------------------------------|----------------|---------|--------------------|--------------------|---------------------|---------|------------------|---------------------|-------|---------------|----------|-------------------|--------------------|--------|
|        |                                       |                |         |                    | ME                 | ASUREN              | IENT RE | SULTS            |                     |       |               |          |                   |                    |        |
| FREQUI | ENCY                                  | Mode           | Service | Maximum<br>Allowed | Conducted<br>Power | Power<br>Drift [dB] | Spacing | Device<br>Serial | Data Rate<br>(Mbps) | Side  | Duty<br>Cycle | SAR (1g) | Scaling<br>Factor | Scaled SAR<br>(1g) | Plot # |
| MHz    | Ch.                                   |                |         | Power [dBm]        | [dBm]              | Drint [GD]          |         | Number           | (MDPS)              |       | Cycle         | (W/kg)   | 1 actor           | (W/kg)             |        |
| 2462   | 11                                    | IEEE 802.11b   | DSSS    | 17.0               | 16.48              | 0.10                | 8 mm    | 1890             | 1                   | back  | 1:1           | 0.187    | 1.127             | 0.211              | A33    |
| 2462   | 11                                    | IEEE 802.11b   | DSSS    | 17.0               | 16.48              | 0.02                | 8 mm    | 1890             | 1                   | front | 1:1           | 0.107    | 1.127             | 0.121              |        |
| 2462   | 11                                    | IEEE 802.11b   | DSSS    | 17.0               | 16.48              | 0.01                | 10 mm   | 1890             | 1                   | top   | 1:1           | 0.035    | 1.127             | 0.039              |        |
| 2462   | 11                                    | IEEE 802.11b   | DSSS    | 17.0               | 16.48              | 0.05                | 10 mm   | 1890             | 1                   | left  | 1:1           | 0.164    | 1.127             | 0.185              |        |
| 5765   | 153                                   | IEEE 802.11a   | OFDM    | 12.0               | 10.91              | -0.08               | 8 mm    | 1890             | 6                   | back  | 1:1           | 0.026    | 1.285             | 0.033              |        |
| 5765   | 153                                   | IEEE 802.11a   | OFDM    | 12.0               | 10.91              | 0.00                | 8 mm    | 1890             | 6                   | front | 1:1           | 0.000    | 1.285             | 0.000              |        |
| 5765   | 153                                   | IEEE 802.11a   | OFDM    | 12.0               | 10.91              | 0.00                | 10 mm   | 1890             | 6                   | top   | 1:1           | 0.001    | 1.285             | 0.001              |        |
| 5765   | 153                                   | IEEE 802.11a   | OFDM    | 12.0               | 10.91              | 0.04                | 10 mm   | 1890             | 6                   | left  | 1:1           | 0.051    | 1.285             | 0.066              | A36    |
| 5775   | 155                                   | IEEE 802.11ac  | OFDM    | 11.5               | 10.82              | -0.04               | 10 mm   | 1890             | 29.3                | left  | 1:1           | 0.007    | 1.169             | 0.008              |        |
|        | ANSI / IEEE C95.1 1992 - SAFETY LIMIT |                |         |                    |                    |                     |         |                  | •                   |       | Body          | •        | •                 |                    |        |
|        | Spatial Peak                          |                |         |                    |                    |                     |         |                  |                     |       | W/kg (m       | O,       |                   |                    |        |
|        |                                       | Uncontrolled E |         |                    |                    |                     | avera   | ged over         | 1 gram              |       |               |          |                   |                    |        |

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT | LG | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|----|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             |    | Page 59 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      |    | rage 39 of 79                |

## 11.4 Standalone Hand SAR Data

# Table 11-24 WLAN Hand SAR

|        | WLAN Hallu SAK                           |               |         |                    |                    |                     |         |                    |                     |         |           |           |                   |                     |        |
|--------|------------------------------------------|---------------|---------|--------------------|--------------------|---------------------|---------|--------------------|---------------------|---------|-----------|-----------|-------------------|---------------------|--------|
|        |                                          |               |         |                    | ME                 | ASURE               | MENT RE | SULTS              | ;                   |         |           |           |                   |                     |        |
| FREQUE | ENCY                                     | Mode          | Service | Maximum<br>Allowed | Conducted<br>Power | Power<br>Drift [dB] | Spacing | De vice<br>Se rial | Data Rate<br>(Mbps) | Side    | Duty      | SAR (10g) | Scaling<br>Factor | Scaled SAR<br>(10g) | Plot # |
| MHz    | Ch.                                      |               |         | Power [dBm]        | [dBm]              | Drift [db]          |         | Number             | (wops)              |         | Cycle     | (W/kg)    | Factor            | (W/kg)              |        |
| 5240   | 48                                       | IEEE 802.11a  | OFDM    | 12.0               | 11.19              | -0.21               | 0 mm    | 1890               | 6                   | back    | 1:1       | 0.159     | 1.205             | 0.192               |        |
| 5240   | 48                                       | IEEE 802.11a  | OFDM    | 12.0               | 11.19              | 0.02                | 0 mm    | 1890               | 6                   | front   | 1:1       | 0.087     | 1.205             | 0.105               |        |
| 5240   | 48                                       | IEEE 802.11a  | OFDM    | 12.0               | 11.19              | 0.04                | 0 mm    | 1890               | 6                   | top     | 1:1       | 0.070     | 1.205             | 0.084               |        |
| 5240   | 48                                       | IEEE 802.11a  | OFDM    | 12.0               | 11.19              | -0.16               | 0 mm    | 1890               | 6                   | left    | 1:1       | 0.207     | 1.205             | 0.249               |        |
| 5210   | 42                                       | IEEE 802.11ac | OFDM    | 11.5               | 9.74               | -0.05               | 0 mm    | 1890               | 29.3                | left    | 1:1       | 0.110     | 1.500             | 0.165               |        |
| 5260   | 52                                       | IEEE 802.11a  | OFDM    | 12.0               | 11.61              | -0.01               | 0 mm    | 1890               | 6                   | back    | 1:1       | 0.151     | 1.094             | 0.165               |        |
| 5260   | 52                                       | IEEE 802.11a  | OFDM    | 12.0               | 11.61              | 0.20                | 0 mm    | 1890               | 6                   | front   | 1:1       | 0.099     | 1.094             | 0.108               |        |
| 5260   | 52                                       | IEEE 802.11a  | OFDM    | 12.0               | 11.61              | 0.06                | 0 mm    | 1890               | 6                   | top     | 1:1       | 0.080     | 1.094             | 0.088               |        |
| 5260   | 52                                       | IEEE 802.11a  | OFDM    | 12.0               | 11.61              | -0.13               | 0 mm    | 1890               | 6                   | left    | 1:1       | 0.218     | 1.094             | 0.238               | A37    |
| 5290   | 58                                       | IEEE 802.11ac | OFDM    | 11.5               | 11.26              | -0.03               | 0 mm    | 1890               | 29.3                | left    | 1:1       | 0.163     | 1.057             | 0.172               |        |
| 5520   | 104                                      | IEEE 802.11a  | OFDM    | 12.0               | 11.38              | 0.17                | 0 mm    | 1890               | 6                   | back    | 1:1       | 0.108     | 1.153             | 0.125               |        |
| 5690   | 138                                      | IEEE 802.11ac | OFDM    | 11.5               | 10.89              | 0.02                | 0 mm    | 1890               | 29.3                | back    | 1:1       | 0.125     | 1.151             | 0.144               |        |
| 5520   | 104                                      | IEEE 802.11a  | OFDM    | 12.0               | 11.38              | 0.04                | 0 mm    | 1890               | 6                   | front   | 1:1       | 0.097     | 1.153             | 0.112               |        |
| 5520   | 104                                      | IEEE 802.11a  | OFDM    | 12.0               | 11.38              | 0.00                | 0 mm    | 1890               | 6                   | top     | 1:1       | 0.098     | 1.153             | 0.113               |        |
| 5520   | 104                                      | IEEE 802.11a  | OFDM    | 12.0               | 11.38              | 0.04                | 0 mm    | 1890               | 6                   | left    | 1:1       | 0.076     | 1.153             | 0.088               |        |
|        | ANSI / IEEE C95.1 1992 - SAFETY LIMIT    |               |         |                    |                    |                     |         |                    |                     |         | Hand      |           |                   |                     |        |
|        | Spatial Peak                             |               |         |                    |                    |                     |         |                    |                     |         | W/kg (m   |           |                   |                     |        |
|        | Uncontrolled Exposure/General Population |               |         |                    |                    |                     |         |                    |                     | average | ea over 1 | 0 grams   |                   |                     |        |

| FCC ID: ZNFLS995    | PCTEST*             | SAR EVALUATION REPORT LG | Reviewed by: Quality Manager |
|---------------------|---------------------|--------------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:                | Page 60 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset         | Page 60 01 79                |

#### 11.5 SAR Test Notes

#### General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2003, FCC/OET Bulletin 65, Supplement C [June 2001] and FCC KDB Publication 447498 D01v05.
- Batteries are fully charged at the beginning of the SAR measurements. A standard battery was used for all SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v05.
- 6. Per FCC KDB Publication 648474 D04v01, body-worn SAR was evaluated without a headset connected to the device. Since the standalone reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.
- 7. Per FCC KDB 865664 D01 v01, variability SAR tests were performed when the measured SAR results for a frequency band were greater than 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 13 for variability analysis.
- During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v01, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated (See Section 6.7 for more details).
- Per FCC KDB Publication 648474 D04v01r01, this device is considered a "phablet" since the diagonal dimension is > 160 mm but < 200 mm. However, extremity SAR tests for the licensed transmitter were not required since Hotspot SAR was < 1.2 W/kg.
- 10. Due to the embowed design of the device, Body SAR was configured per FCC Guidance. See section 1.7 for more information.

#### GSM/GPRS Test Notes:

- 1. This device supports GSM VOIP in the head and the body-worn configurations therefore GPRS was additionally evaluated for head and body-worn compliance.
- Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR.
- Justification for reduced test configurations per KDB Publication 941225 D03v01 and October 2013 TCB Workshop notes: The source-based time-averaged output power was evaluated for all multi-slot operations. The multi-slot configuration with the highest frame averaged output power was evaluated for SAR for hotspot SAR.
- 4. Per FCC KDB Publication 447498 D01v05, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > \( \frac{1}{2} \) dB, instead of the middle channel, the highest output power channel was used.

#### CDMA/EVDO Notes:

- Head SAR for CDMA2000 mode was tested under RC3/SO55 per FCC KDB Publication 941225
- Body-Worn SAR was tested with 1x RTT with TDSO / SO32 FCH Only. EVDO and TDSO / SO32 FCH+SCH SAR tests were not required since the average output power was not more than 0.25 dB higher than the TDSO / SO32 FCH only powers, per FCC KDB Publication 941225 D01v02.
- 3. CDMA Wireless Router SAR is measured using Subtype 0/1 Physical Layer configurations for Rev. 0 according to KDB 941225 D01 procedures for data devices. Since the average output power of Subtype 2 for Rev. A is less than the Rev. 0 power levels, then EVDO Rev. A SAR is not required. SAR is not required for 1x RTT for Ev-Do hotspot devices when the maximum average

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT LG | Reviewed by: Quality Manager |
|---------------------|---------------------|--------------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:                | Page 61 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset         | Fage 01 01 79                |

- output of each channel is less than 1/4 dB higher than that measured in Subtype 0/1 Physical Layer configurations for Rev. 0.
- 4. Head SAR was additionally evaluated using EVDO Rev. A to determine compliance for VoIP operations.
- Per FCC KDB Publication 447498 D01v05, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.
- CDMA 1X Advanced technology was not required for SAR since the maximum output powers for 1x Advanced was not more than 0.25 dB higher than the maximum measured powers for 1x and the reported SAR in any 1x mode exposure conditions was not greater than 1.2 W/kg.

#### **UMTS Notes:**

- 1. UMTS mode in Body SAR was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v02. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2
- Per FCC KDB Publication 447498 D01v05, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

#### LTE Notes:

- 1. LTE Considerations: LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r01. The general test procedures used for testing can be found in Section 8.5.4.
- 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.
- 3. A-MPR was disabled for all SAR tests by setting NS=01 on the base station simulator.
- 4. TDD LTE was tested using UL-DL configuration 0 with 6 UL subframes and 2 S subframes using normal cyclic prefix only and special subframe configuration 6. Due to equipment setup issues with extended cyclic prefix as a result of test samples configured for normal cyclic prefix, SAR tests were performed at maximum output power and worst-case transmission duty factor in normal cyclic prefix. Results were then scaled to the duty factor required for extended cyclic prefix listed in 3GPP TS 36.211 Section 4. The cyclic prefix scaling factor for LTE Band 41 was calculated by dividing the extended cyclic prefix duty factor by the normal cyclic prefix duty factor. Per 3GPP 36.211 Section 4, the duty factor for special subframe configuration 6 using normal cyclic prefix is 0.629. The duty factor for special subframe configuration 6 using extended cyclic prefix is 0.633.
- Per FCC KDB Publication 447498 D01v05, when the reported (scaled) LTE Band 41 SAR measured at the highest output power channel for each test configuration is > 0.6 W/kg then testing at the other channels is required for such test configuration(s). If the reported (scaled) LTE Band 25 or LTE Band 26 SAR measured at the highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).
- 6. LTE B41 high channel SAR was evaluated using probe 3914 and DASY software measurement version 52.8. Per KDB Publication 865664 D01 Section 2.6, at 300 MHz to 6 GHz, measurements must be within +/- 100 MHz of the probe calibration point frequency or the valid frequency range supported by the probe calibration, whichever is less. Footnote C on page 5 and page 6 of the calibration certificate for probe s/n 3914 states that a frequency validity of +/- 100

| FCC ID: ZNFLS995    | PCTEST*             | SAR EVALUATION REPORT | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             | Page 62 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      | Fage 02 01 79                |

MHz applies when using DASY measurement software version 4.4 and higher. Therefore, there are no additional requirements for SAR measurements at LTE B41 high channel.

#### WLAN Notes:

- Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v01r02 and October 2012 FCC/TCB Meeting Notes for 2.4 GHz WIFI: Highest average RF output power channel for the lowest data rate was selected for SAR evaluation in 802.11b. Other IEEE 802.11 modes (including 802.11g/n/ac) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode.
- 2. Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v01r02 and October 2012 FCC/TCB Meeting Notes for 5 GHz WIFI: Highest average RF output power channel for the lowest data rate was selected for SAR evaluation in 802.11a. Other IEEE 802.11 modes (including 802.11n 20 MHz and 40 MHz bandwidths) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11a mode.
- Per April 2013 TCB Workshop notes, full SAR tests for all IEEE 802.11ac configurations were not required because the average output power was not more than 0.25 dB higher than IEEE 802.11a mode. IEEE 802.11ac was evaluated for the highest IEEE 802.11a position in each 5 GHz band and exposure condition.
- 4. When Hotspot is enabled, all 5 GHz bands are disabled. Therefore no 5 GHz WIFI Hotspot SAR Data was required.
- 5 GHz Wifi Direct GO is supported in the 5.8 GHz band only. The manufacturer expects 5.8 GHz Wifi Direct GO may be used similar to wireless router usage. Therefore, 5.8 GHz Wifi Direct GO was evaluated for SAR similar to wireless router SAR procedures in FCC KDB Publication 941225.
- 6. WIFI transmission was verified using an uncalibrated spectrum analyzer.
- 7. Since the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg and the reported 1g averaged SAR is <0.8 W/kg, SAR testing on other default channels was not required.
- 8. Per FCC KDB Publication 648474 D04v01r01, this device is considered a "phablet" since the diagonal dimension is > 160 mm but < 200 mm. Therefore, hand SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg. Since wireless router operations are not supported for 5.2 5.7 GHz NII WLAN, Extremity SAR was evaluated for 5 GHz NII WLAN. Extremity SAR was not evaluated for 2.4 GHz and 5 GHz DTS WIFI since Hotspot/ WIFI Direct GO 1g SAR < 1.2 W/kg.

| FCC ID: ZNFLS995    | PCTEST*             | SAR EVALUATION REPORT LG | Reviewed by: Quality Manager |
|---------------------|---------------------|--------------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:                | Page 63 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset         | rage 63 01 79                |

#### 12.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v05 are applicable to handsets with built-in unlicensed transmitters such as 802.11a/b/g/n/ac and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

#### 12.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v05 IV.C.1.iii, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. When standalone SAR is not required to be measured, per FCC KDB 447498 D01v05 4.3.2 2), the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR=
$$\frac{\sqrt{f(GHz)}}{7.5} * \frac{\text{(Max Power of channel, mW)}}{\text{Min. Separation Distance, mm}}$$

Table 12-1
Estimated SAR

| Mode      | Frequency | Maximum<br>Allowed<br>Power | Separation<br>Distance<br>(Body) | Estimated<br>SAR<br>(Body) |  |  |  |  |
|-----------|-----------|-----------------------------|----------------------------------|----------------------------|--|--|--|--|
|           | [MHz]     | [dBm]                       | [mm]                             | [W/kg]                     |  |  |  |  |
| Bluetooth | 2441      | 9.50                        | 8                                | 0.234                      |  |  |  |  |

#### Notes:

- 1. Held-to ear configurations are not applicable to Bluetooth operations and therefore were not considered for simultaneous transmission. Per KDB Publication 447498 D01v05, the maximum power of the channel was rounded to the nearest mW before calculation.
- Main antenna SAR testing was not required for extremity exposure conditions per FCC KDB 648474. Therefore, no further analysis was required to determine that possible simultaneous scenarios would not exceed the SAR limit.

| FCC ID: ZNFLS995    | PCTEST*             | SAR EVALUATION REPORT | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             | Page 64 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      | rage 04 01 79                |

# 12.3 Head SAR Simultaneous Transmission Analysis

Table 12-2 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Held to Ear)

| Simult Tx  | Configuration | CDMA<br>BC10<br>(§90S) SAR<br>(W/kg) | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) | Simult Tx  | Configuration | EVDO BC10<br>(§90S) SAR<br>(W/kg) | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) |
|------------|---------------|--------------------------------------|-------------------------------|-----------------|------------|---------------|-----------------------------------|-------------------------------|-----------------|
|            | Right Cheek   | 0.520                                | 0.437                         | 0.957           |            | Right Cheek   | 0.508                             | 0.437                         | 0.945           |
| Head SAR   | Right Tilt    | 0.328                                | 0.260                         | 0.588           | Head SAR   | Right Tilt    | 0.352                             | 0.260                         | 0.612           |
| Tieau SAIX | Left Cheek    | 0.628                                | 0.159                         | 0.787           | ricau SAIX | Left Cheek    | 0.656                             | 0.159                         | 0.815           |
|            | Left Tilt     | 0.365                                | 0.118                         | 0.483           |            | Left Tilt     | 0.372                             | 0.118                         | 0.490           |
| Simult Tx  | Configuration | CDMA BC0<br>(§22H) SAR<br>(W/kg)     | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) | Simult Tx  | Configuration | EVDO BC0<br>(§22H) SAR<br>(W/kg)  | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) |
|            | Right Cheek   | 0.488                                | 0.437                         | 0.925           |            | Right Cheek   | 0.443                             | 0.437                         | 0.880           |
| Head SAR   | Right Tilt    | 0.296                                | 0.260                         | 0.556           | Head SAR   | Right Tilt    | 0.285                             | 0.260                         | 0.545           |
| Tieau SAIX | Left Cheek    | 0.555                                | 0.159                         | 0.714           | ricau SAIX | Left Cheek    | 0.537                             | 0.159                         | 0.696           |
|            | Left Tilt     | 0.310                                | 0.118                         | 0.428           |            | Left Tilt     | 0.280                             | 0.118                         | 0.398           |
| Simult Tx  | Configuration | PCS CDMA<br>SAR (W/kg)               | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) | Simult Tx  | Configuration | PCS EVDO<br>SAR (W/kg)            | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) |
|            | Right Cheek   | 0.255                                | 0.437                         | 0.692           |            | Right Cheek   | 0.266                             | 0.437                         | 0.703           |
| Head SAR   | Right Tilt    | 0.254                                | 0.260                         | 0.514           | Head SAR   | Right Tilt    | 0.200                             | 0.260                         | 0.460           |
| Tieau SAIX | Left Cheek    | 0.442                                | 0.159                         | 0.601           | ricau SAIX | Left Cheek    | 0.310                             | 0.159                         | 0.469           |
|            | Left Tilt     | 0.184                                | 0.118                         | 0.302           |            | Left Tilt     | 0.138                             | 0.118                         | 0.256           |
| Simult Tx  | Configuration | GSM 850<br>SAR (W/kg)                | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) | Simult Tx  | Configuration | GPRS 850<br>SAR (W/kg)            | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) |
|            | Right Cheek   | 0.450                                | 0.437                         | 0.887           |            | Right Cheek   | 0.621                             | 0.437                         | 1.058           |
| Head SAR   | Right Tilt    | 0.339                                | 0.260                         | 0.599           | Head SAR   | Right Tilt    | 0.415                             | 0.260                         | 0.675           |
| ricad OAIX | Left Cheek    | 0.499                                | 0.159                         | 0.658           | ricad OAIX | Left Cheek    | 0.733                             | 0.159                         | 0.892           |
|            | Left Tilt     | 0.305                                | 0.118                         | 0.423           |            | Left Tilt     | 0.427                             | 0.118                         | 0.545           |
| Simult Tx  | Configuration | GSM 1900<br>SAR (W/kg)               | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) | Simult Tx  | Configuration | GPRS 1900<br>SAR (W/kg)           | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) |
|            | Right Cheek   | 0.126                                | 0.437                         | 0.563           |            | Right Cheek   | 0.213                             | 0.437                         | 0.650           |
| Head SAR   | Right Tilt    | 0.089                                | 0.260                         | 0.349           | Head SAR   | Right Tilt    | 0.127                             | 0.260                         | 0.387           |
| I ICAU SAR | Left Cheek    | 0.151                                | 0.159                         | 0.310           | 1 ICAU SAR | Left Cheek    | 0.167                             | 0.159                         | 0.326           |
|            | Left Tilt     | 0.058                                | 0.118                         | 0.176           |            | Left Tilt     | 0.076                             | 0.118                         | 0.194           |

| FCC ID: ZNFLS995    | PCTEST*             | SAR EVALUATION REPORT LG | Reviewed by: Quality Manager |
|---------------------|---------------------|--------------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:                | Page 65 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset         | Fage 03 01 79                |

| Simult Tx  | Configuration | UMTS 850<br>SAR (W/kg)       | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) | Simult Tx                       | Configuration | UMTS 1900<br>SAR (W/kg)            | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) |
|------------|---------------|------------------------------|-------------------------------|-----------------|---------------------------------|---------------|------------------------------------|-------------------------------|-----------------|
|            | Right Cheek   | 0.374                        | 0.437                         | 0.811           |                                 | Right Cheek   | 0.119                              | 0.437                         | 0.556           |
| Head SAR   | Right Tilt    | 0.238                        | 0.260                         | 0.498           | Head SAR                        | Right Tilt    | 0.087                              | 0.260                         | 0.347           |
| neau SAR   | Left Cheek    | 0.437                        | 0.159                         | 0.596           | Head SAR                        | Left Cheek    | 0.145                              | 0.159                         | 0.304           |
|            | Left Tilt     | 0.247                        | 0.118                         | 0.365           |                                 | Left Tilt     | 0.059                              | 0.118                         | 0.177           |
| Simult Tx  | Configuration | LTE Band<br>26 SAR<br>(W/kg) | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) | Simult Tx                       | Configuration | LTE Band<br>25 (PCS)<br>SAR (W/kg) | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) |
|            | Right Cheek   | 0.403                        | 0.437                         | 0.840           |                                 | Right Cheek   | 0.238                              | 0.437                         | 0.675           |
| Head SAR   | Right Tilt    | 0.257                        | 0.260                         | 0.517           | 0.517<br>0.667<br>Head SAR<br>- | Right Tilt    | 0.164                              | 0.260                         | 0.424           |
| i leau SAR | Left Cheek    | 0.508                        | 0.159                         | 0.667           |                                 | Left Cheek    | 0.256                              | 0.159                         | 0.415           |
|            | Left Tilt     | 0.303                        | 0.118                         | 0.421           |                                 | Left Tilt     | 0.104                              | 0.118                         | 0.222           |

| Simult Tx | Configuration | LTE Band<br>41 SAR<br>(W/kg) | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) |
|-----------|---------------|------------------------------|-------------------------------|-----------------|
|           | Right Cheek   | 0.364                        | 0.437                         | 0.801           |
| Head SAR  | Right Tilt    | 0.112                        | 0.260                         | 0.372           |
| Head SAR  | Left Cheek    | 0.176                        | 0.159                         | 0.335           |
|           | Left Tilt     | 0.196                        | 0.118                         | 0.314           |

Table 12-3
Simultaneous Transmission Scenario with 5 GHz WLAN (Held to Ear)

| Simult Tx  | Configuration | CDMA<br>BC10<br>(§90S) SAR<br>(W/kg) | 5 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) | Simult Tx  | Configuration | EVDO BC10<br>(§90S) SAR<br>(W/kg) | 5 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) |
|------------|---------------|--------------------------------------|-----------------------------|-----------------|------------|---------------|-----------------------------------|-----------------------------|-----------------|
|            | Right Cheek   | 0.520                                | 0.158                       | 0.678           |            | Right Cheek   | 0.508                             | 0.158                       | 0.666           |
| Head SAR   | Right Tilt    | 0.328                                | 0.154                       | 0.482           | Head SAR   | Right Tilt    | 0.352                             | 0.154                       | 0.506           |
| TICAU SAIN | Left Cheek    | 0.628                                | 0.037                       | 0.665           | rieau SAIN | Left Cheek    | 0.656                             | 0.037                       | 0.693           |
|            | Left Tilt     | 0.365                                | 0.051                       | 0.416           |            | Left Tilt     | 0.372                             | 0.051                       | 0.423           |
| Simult Tx  | Configuration | CDMA BC0<br>(§22H) SAR<br>(W/kg)     | 5 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) | Simult Tx  | Configuration | EVDO BC0<br>(§22H) SAR<br>(W/kg)  | 5 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) |
|            | Right Cheek   | 0.488                                | 0.158                       | 0.646           |            | Right Cheek   | 0.443                             | 0.158                       | 0.601           |
| Head SAR   | Right Tilt    | 0.296                                | 0.154                       | 0.450           | Head SAR   | Right Tilt    | 0.285                             | 0.154                       | 0.439           |
| ricad SAIN | Left Cheek    | 0.555                                | 0.037                       | 0.592           | ricad OAIX | Left Cheek    | 0.537                             | 0.037                       | 0.574           |
|            | Left Tilt     | 0.310                                | 0.051                       | 0.361           |            | Left Tilt     | 0.280                             | 0.051                       | 0.331           |

| FCC ID: ZNFLS995    | PCTEST*             | SAR EVALUATION REPORT LG | Reviewed by: Quality Manager |
|---------------------|---------------------|--------------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:                | Page 66 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset         | Page 66 01 79                |

| Simult Tx  | Configuration                                           | PCS CDMA<br>SAR (W/kg)       | 5 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) | Simult Tx  | Configuration | PCS EVDO<br>SAR (W/kg)             | 5 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) |  |
|------------|---------------------------------------------------------|------------------------------|-----------------------------|-----------------|------------|---------------|------------------------------------|-----------------------------|-----------------|--|
|            | Right Cheek                                             | 0.255                        | 0.158                       | 0.413           |            | Right Cheek   | 0.266                              | 0.158                       | 0.424           |  |
|            | Right Tilt                                              | 0.254                        | 0.154                       | 0.408           |            | Right Tilt    | 0.200                              | 0.154                       | 0.354           |  |
| Head SAR   | Left Cheek                                              | 0.442                        | 0.037                       | 0.479           | Head SAR   | Left Cheek    | 0.310                              | 0.037                       | 0.347           |  |
|            | Left Tilt                                               | 0.184                        | 0.051                       | 0.235           |            | Left Tilt     | 0.138                              | 0.051                       | 0.189           |  |
| Simult Tx  | Configuration                                           | GSM 850<br>SAR (W/kg)        | 5 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) | Simult Tx  | Configuration | GPRS 850<br>SAR (W/kg)             | 5 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) |  |
|            | Right Cheek                                             | 0.450                        | 0.158                       | 0.608           |            | Right Cheek   | 0.621                              | 0.158                       | 0.779           |  |
| Head SAR   | Right Tilt                                              | 0.339                        | 0.154                       | 0.493           | Head SAR   | Right Tilt    | 0.415                              | 0.154                       | 0.569           |  |
| Head SAR   | Left Cheek                                              | 0.499                        | 0.037                       | 0.536           | Head SAR   | Left Cheek    | 0.733                              | 0.037                       | 0.770           |  |
|            | Left Tilt                                               | 0.305                        | 0.051                       | 0.356           |            | Left Tilt     | 0.427                              | 0.051                       | 0.478           |  |
| Simult Tx  | Configuration                                           | GSM 1900<br>SAR (W/kg)       | 5 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) | Simult Tx  | Configuration | GPRS 1900<br>SAR (W/kg)            | 5 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) |  |
|            | Right Cheek                                             | 0.126                        | 0.158                       | 0.284           |            | Right Cheek   | 0.213                              | 0.158                       | 0.371           |  |
| Head CAD   | Right Tilt                                              | 0.089                        | 0.154                       | 0.243           | - Head SAR | Right Tilt    | 0.127                              | 0.154                       | 0.281           |  |
| Head SAR   | Left Cheek                                              | 0.151                        | 0.037                       | 0.188           |            | Left Cheek    | 0.167                              | 0.037                       | 0.204           |  |
|            | Left Tilt                                               | 0.058                        | 0.051                       | 0.109           |            | Left Tilt     | 0.076                              | 0.051                       | 0.127           |  |
| Simult Tx  | Configuration                                           | UMTS 850<br>SAR (W/kg)       | 5 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) | Simult Tx  | Configuration | UMTS 1900<br>SAR (W/kg)            | 5 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) |  |
|            | Right Cheek                                             | 0.374                        | 0.158                       | 0.532           |            | Right Cheek   | 0.119                              | 0.158                       | 0.277           |  |
| Head SAR   | Right Tilt                                              | 0.238                        | 0.154                       | 0.392           | Head SAR   | Right Tilt    | 0.087                              | 0.154                       | 0.241           |  |
| ricad OAIX | Left Cheek                                              | 0.437                        | 0.037                       | 0.474           | ricad OAIX | Left Cheek    | 0.145                              | 0.037                       | 0.182           |  |
|            | Left Tilt                                               | 0.247                        | 0.051                       | 0.298           |            | Left Tilt     | 0.059                              | 0.051                       | 0.110           |  |
| Simult Tx  | Configuration                                           | LTE Band<br>26 SAR<br>(W/kg) | 5 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) | Simult Tx  | Configuration | LTE Band<br>25 (PCS)<br>SAR (W/kg) | 5 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) |  |
|            | Right Cheek                                             | 0.403                        | 0.158                       | 0.561           |            | Right Cheek   | 0.238                              | 0.158                       | 0.396           |  |
| Hood CAD   | Right Tilt                                              | 0.257                        | 0.154                       | 0.411           | Hood CAD   | Right Tilt    | 0.164                              | 0.154                       | 0.318           |  |
| Head SAR   | Left Cheek                                              | 0.508                        | 0.037                       | 0.545           | Head SAR   | Left Cheek    | 0.256                              | 0.037                       | 0.293           |  |
|            | Left Tilt                                               | 0.303                        | 0.051                       | 0.354           | ]          | Left Tilt     | 0.104                              | 0.051                       | 0.155           |  |
|            | Simult Tx Configuration LTE Band 41 SAR WLAN SAR (W/kg) |                              |                             |                 |            |               |                                    |                             |                 |  |

| Simult Tx | Configuration | LTE Band<br>41 SAR<br>(W/kg) | 5 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) |
|-----------|---------------|------------------------------|-----------------------------|-----------------|
|           | Right Cheek   | 0.364                        | 0.158                       | 0.522           |
| Head SAR  | Right Tilt    | 0.112                        | 0.154                       | 0.266           |
| neau SAR  | Left Cheek    | 0.176                        | 0.037                       | 0.213           |
|           | Left Tilt     | 0.196                        | 0.051                       | 0.247           |

Note: The worst case 5 GHz head SAR value was used to evaluate potential combinations using WIFI Direct.

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             | Page 67 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      | rage of oil 19               |

# 12.4 Body-Worn Simultaneous Transmission Analysis

Table 12-4
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body-Worn)

| <u> </u>      | Transmission Sconar | TO WILL Z. T OTIZ TVEAT (DOGY-TVOIT) |                               |                 |  |
|---------------|---------------------|--------------------------------------|-------------------------------|-----------------|--|
| Configuration | Mode                | 2G/3G/4G<br>SAR (W/kg)               | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) |  |
| Back Side     | CDMA BC10 (§90S)    | 0.737                                | 0.211                         | 0.948           |  |
| Back Side     | CDMA BC0 (§22H)     | 0.652                                | 0.211                         | 0.863           |  |
| Back Side     | PCS CDMA            | 1.160                                | 0.211                         | 1.371           |  |
| Back Side     | GSM 850             | 0.580                                | 0.211                         | 0.791           |  |
| Back Side     | GPRS 850            | 0.750                                | 0.211                         | 0.961           |  |
| Back Side     | GSM 1900            | 0.472                                | 0.211                         | 0.683           |  |
| Back Side     | GPRS 1900           | 0.625                                | 0.211                         | 0.836           |  |
| Back Side     | UMTS 850            | 0.452                                | 0.211                         | 0.663           |  |
| Back Side     | UMTS 1900           | 0.592                                | 0.211                         | 0.803           |  |
| Back Side     | LTE Band 26         | 0.562                                | 0.211                         | 0.773           |  |
| Back Side     | LTE Band 25 (PCS)   | 0.774                                | 0.211                         | 0.985           |  |
| Back Side     | LTE Band 41         | 0.396                                | 0.211                         | 0.607           |  |

Table 12-5
Simultaneous Transmission Scenario with 5 GHz WLAN (Body-Worn)

| Configuration | Mode              | 2G/3G/4G<br>SAR (W/kg) | 5 GHz WLAN<br>SAR (W/kg) | Σ SAR<br>(W/kg) |
|---------------|-------------------|------------------------|--------------------------|-----------------|
| Back Side     | CDMA BC10 (§90S)  | 0.737                  | 0.130                    | 0.867           |
| Back Side     | CDMA BC0 (§22H)   | 0.652                  | 0.130                    | 0.782           |
| Back Side     | PCS CDMA          | 1.160                  | 0.130                    | 1.290           |
| Back Side     | GSM 850           | 0.580                  | 0.130                    | 0.710           |
| Back Side     | GPRS 850          | 0.750                  | 0.130                    | 0.880           |
| Back Side     | GSM 1900          | 0.472                  | 0.130                    | 0.602           |
| Back Side     | GPRS 1900         | 0.625                  | 0.130                    | 0.755           |
| Back Side     | UMTS 850          | 0.452                  | 0.130                    | 0.582           |
| Back Side     | UMTS 1900         | 0.592                  | 0.130                    | 0.722           |
| Back Side     | LTE Band 26       | 0.562                  | 0.130                    | 0.692           |
| Back Side     | LTE Band 25 (PCS) | 0.774                  | 0.130                    | 0.904           |
| Back Side     | LTE Band 41       | 0.396                  | 0.130                    | 0.526           |

Note: The worst case 5 GHz body-worn accessory SAR value was used to evaluate potential combinations using WIFI Direct.

| FCC ID: ZNFLS995    | PCTEST*             | SAR EVALUATION REPORT LG | Reviewed by: Quality Manager |
|---------------------|---------------------|--------------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:                | Page 68 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset         | Page 00 01 79                |

Table 12-6 Simultaneous Transmission Scenario with Bluetooth (Body-Worn)

| Configuration | Mode              | 2G/3G/4G<br>SAR (W/kg) | Bluetooth<br>SAR (W/kg) | Σ SAR<br>(W/kg) |
|---------------|-------------------|------------------------|-------------------------|-----------------|
| Back Side     | CDMA BC10 (§90S)  | 0.737                  | 0.234                   | 0.971           |
| Back Side     | CDMA BC0 (§22H)   | 0.652                  | 0.234                   | 0.886           |
| Back Side     | PCS CDMA          | 1.160                  | 0.234                   | 1.394           |
| Back Side     | GSM 850           | 0.580                  | 0.234                   | 0.814           |
| Back Side     | GPRS 850          | 0.750                  | 0.234                   | 0.984           |
| Back Side     | GSM 1900          | 0.472                  | 0.234                   | 0.706           |
| Back Side     | GPRS 1900         | 0.625                  | 0.234                   | 0.859           |
| Back Side     | UMTS 850          | 0.452                  | 0.234                   | 0.686           |
| Back Side     | UMTS 1900         | 0.592                  | 0.234                   | 0.826           |
| Back Side     | LTE Band 26       | 0.562                  | 0.234                   | 0.796           |
| Back Side     | LTE Band 25 (PCS) | 0.774                  | 0.234                   | 1.008           |
| Back Side     | LTE Band 41       | 0.396                  | 0.234                   | 0.630           |

Note: Bluetooth SAR was not required to be measured per FCC KDB 447498. Estimated Bluetooth SAR results were used in the above table to determine simultaneous transmission SAR test exclusion.

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT LG | Reviewed by: Quality Manager |
|---------------------|---------------------|--------------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:                | Page 69 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset         | Faye 03 01 79                |

## 12.5 Hotspot SAR Simultaneous Transmission Analysis

Per FCC KDB Publication 941225 D06v01, the devices edges with antennas more than 2.5 cm from edge are not required to be evaluated for SAR ("-").

Table 12-7
Simultaneous Transmission Scenario (2.4 GHz Hotspot)

| Simult Tx | Configuration | EVDO BC10<br>(§90S) SAR<br>(W/kg) | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) | Simult Tx | Configuration | EVDO BC0<br>(§22H) SAR<br>(W/kg) | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) |
|-----------|---------------|-----------------------------------|-------------------------------|-----------------|-----------|---------------|----------------------------------|-------------------------------|-----------------|
|           | Back          | 0.729                             | 0.211                         | 0.940           |           | Back          | 0.640                            | 0.211                         | 0.851           |
|           | Front         | 0.720                             | 0.121                         | 0.841           |           | Front         | 0.709                            | 0.121                         | 0.830           |
| Body SAR  | Тор           | -                                 | 0.039                         | 0.039           | Body SAR  | Тор           | -                                | 0.039                         | 0.039           |
| Body SAR  | Bottom        | 0.337                             | -                             | 0.337           | Body SAR  | Bottom        | 0.340                            | -                             | 0.340           |
|           | Right         | 0.473                             | -                             | 0.473           |           | Right         | 0.387                            | -                             | 0.387           |
|           | Left          | 0.660                             | 0.185                         | 0.845           |           | Left          | 0.551                            | 0.185                         | 0.736           |
| Simult Tx | Configuration | PCS EVDO<br>SAR (W/kg)            | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) | Simult Tx | Configuration | GPRS 850<br>SAR (W/kg)           | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) |
|           | Back          | 1.197                             | 0.211                         | 1.408           |           | Back          | 0.750                            | 0.211                         | 0.961           |
|           | Front         | 1.092                             | 0.121                         | 1.213           |           | Front         | 0.838                            | 0.121                         | 0.959           |
| Body SAR  | Тор           | -                                 | 0.039                         | 0.039           | Body SAR  | Тор           | -                                | 0.039                         | 0.039           |
| Body SAIN | Bottom        | 1.024                             | -                             | 1.024           |           | Bottom        | 0.484                            | -                             | 0.484           |
|           | Right         | 0.268                             | -                             | 0.268           |           | Right         | 0.543                            | -                             | 0.543           |
|           | Left          | 0.286                             | 0.185                         | 0.471           |           | Left          | 0.712                            | 0.185                         | 0.897           |
| Simult Tx | Configuration | GPRS 1900<br>SAR (W/kg)           | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) | Simult Tx | Configuration | UMTS 850<br>SAR (W/kg)           | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) |
|           | Back          | 0.625                             | 0.211                         | 0.836           |           | Back          | 0.452                            | 0.211                         | 0.663           |
|           | Front         | 0.595                             | 0.121                         | 0.716           |           | Front         | 0.712                            | 0.121                         | 0.833           |
| Body SAR  | Тор           | -                                 | 0.039                         | 0.039           | Body SAR  | Тор           | -                                | 0.039                         | 0.039           |
| Body SAIN | Bottom        | 0.487                             | -                             | 0.487           | Body SAIN | Bottom        | 0.264                            | -                             | 0.264           |
|           | Right         | 0.141                             | -                             | 0.141           |           | Right         | 0.293                            | -                             | 0.293           |
|           | Left          | 0.139                             | 0.185                         | 0.324           |           | Left          | 0.424                            | 0.185                         | 0.609           |
| Simult Tx | Configuration | UMTS 1900<br>SAR (W/kg)           | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) | Simult Tx | Configuration | LTE Band 26<br>SAR (W/kg)        | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) |
|           | Back          | 0.592                             | 0.211                         | 0.803           |           | Back          | 0.562                            | 0.211                         | 0.773           |
|           | Front         | 0.718                             | 0.121                         | 0.839           |           | Front         | 0.588                            | 0.121                         | 0.709           |
| Body SAR  | Тор           | -                                 | 0.039                         | 0.039           | Body SAR  | Тор           | -                                | 0.039                         | 0.039           |
| Body SAR  | Bottom        | 0.593                             | -                             | 0.593           | Dody SAR  | Bottom        | 0.272                            | -                             | 0.272           |
|           | Right         | 0.122                             | -                             | 0.122           |           | Right         | 0.408                            | -                             | 0.408           |
|           | Left          | 0.147                             | 0.185                         | 0.332           |           | Left          | 0.558                            | 0.185                         | 0.743           |

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT | LG | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|----|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             |    | Page 70 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      |    | rage 70 of 79                |

| Simult Tx | Configuration | LTE Band 25<br>(PCS) SAR<br>(W/kg) | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) | Simult Tx    | Configuration | LTE Band 41<br>SAR (W/kg) | 2.4 GHz<br>WLAN SAR<br>(W/kg) | Σ SAR<br>(W/kg) |
|-----------|---------------|------------------------------------|-------------------------------|-----------------|--------------|---------------|---------------------------|-------------------------------|-----------------|
|           | Back          | 0.774                              | 0.211                         | 0.985           | · Body SAR · | Back          | 0.396                     | 0.211                         | 0.607           |
|           | Front         | 0.912                              | 0.121                         | 1.033           |              | Front         | 0.855                     | 0.121                         | 0.976           |
| Body SAR  | Тор           | -                                  | 0.039                         | 0.039           |              | Тор           | -                         | 0.039                         | 0.039           |
| Body SAIN | Bottom        | 0.883                              | -                             | 0.883           |              | Bottom        | 0.797                     | -                             | 0.797           |
|           | Right         | 0.241                              | -                             | 0.241           |              | Right         | 0.320                     | -                             | 0.320           |
|           | Left          | 0.225                              | 0.185                         | 0.410           |              | Left          | 0.047                     | 0.185                         | 0.232           |

Table 12-8 Simultaneous Transmission Scenario (5.8 GHz WIFI Direct)

| Simult Tx | Configuration | EVDO BC10<br>(§90S) SAR<br>(W/kg) | 5 GHz WLAN<br>SAR (W/kg) | Σ SAR<br>(W/kg) | Simult Tx | Configuration | EVDO BC0<br>(§22H) SAR<br>(W/kg) | 5 GHz WLAN<br>SAR (W/kg) | Σ SAR<br>(W/kg) |
|-----------|---------------|-----------------------------------|--------------------------|-----------------|-----------|---------------|----------------------------------|--------------------------|-----------------|
|           | Back          | 0.729                             | 0.033                    | 0.762           |           | Back          | 0.640                            | 0.033                    | 0.673           |
|           | Front         | 0.720                             | 0.000                    | 0.720           |           | Front         | 0.709                            | 0.000                    | 0.709           |
| Body SAR  | Тор           | -                                 | 0.001                    | 0.001           | Body SAR  | Тор           | -                                | 0.001                    | 0.001           |
| Body SAIX | Bottom        | 0.337                             | -                        | 0.337           | Body SAIN | Bottom        | 0.340                            | -                        | 0.340           |
|           | Right         | 0.473                             | -                        | 0.473           |           | Right         | 0.387                            | -                        | 0.387           |
|           | Left          | 0.660                             | 0.066                    | 0.726           |           | Left          | 0.551                            | 0.066                    | 0.617           |
| Simult Tx | Configuration | PCS EVDO<br>SAR (W/kg)            | 5 GHz WLAN<br>SAR (W/kg) | Σ SAR<br>(W/kg) | Simult Tx | Configuration | GPRS 850<br>SAR (W/kg)           | 5 GHz WLAN<br>SAR (W/kg) | Σ SAR<br>(W/kg) |
|           | Back          | 1.197                             | 0.033                    | 1.230           | Body SAR  | Back          | 0.750                            | 0.033                    | 0.783           |
|           | Front         | 1.092                             | 0.000                    | 1.092           |           | Front         | 0.838                            | 0.000                    | 0.838           |
| Body SAR  | Тор           | -                                 | 0.001                    | 0.001           |           | Тор           | -                                | 0.001                    | 0.001           |
| Body SAR  | Bottom        | 1.024                             | -                        | 1.024           |           | Bottom        | 0.484                            | -                        | 0.484           |
|           | Right         | 0.268                             | -                        | 0.268           |           | Right         | 0.543                            | -                        | 0.543           |
|           | Left          | 0.286                             | 0.066                    | 0.352           |           | Left          | 0.712                            | 0.066                    | 0.778           |
| Simult Tx | Configuration | GPRS 1900<br>SAR (W/kg)           | 5 GHz WLAN<br>SAR (W/kg) | Σ SAR<br>(W/kg) | Simult Tx | Configuration | UMTS 850<br>SAR (W/kg)           | 5 GHz WLAN<br>SAR (W/kg) | Σ SAR<br>(W/kg) |
|           | Back          | 0.625                             | 0.033                    | 0.658           |           | Back          | 0.452                            | 0.033                    | 0.485           |
|           | Front         | 0.595                             | 0.000                    | 0.595           |           | Front         | 0.712                            | 0.000                    | 0.712           |
| Body SAR  | Тор           | -                                 | 0.001                    | 0.001           | Body SAR  | Тор           | -                                | 0.001                    | 0.001           |
| Dody SAR  | Bottom        | 0.487                             | -                        | 0.487           | Dody SAR  | Bottom        | 0.264                            | -                        | 0.264           |
|           | Right         | 0.141                             | -                        | 0.141           |           | Right         | 0.293                            | -                        | 0.293           |
|           | Left          | 0.139                             | 0.066                    | 0.205           |           | Left          | 0.424                            | 0.066                    | 0.490           |

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT LG | Reviewed by: Quality Manager |
|---------------------|---------------------|--------------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:                | Page 71 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset         | Faye / 1 01 /9               |

| Simult Tx           | Configuration        | UMTS 1900<br>SAR (W/kg)               | 5 GHz WLAN<br>SAR (W/kg) | Σ SAR<br>(W/kg)         | Simult Tx           | Configuration        | LTE Band 26<br>SAR (W/kg)    | 5 GHz WLAN<br>SAR (W/kg) | Σ SAR<br>(W/kg)                          |
|---------------------|----------------------|---------------------------------------|--------------------------|-------------------------|---------------------|----------------------|------------------------------|--------------------------|------------------------------------------|
| Body SAR            | Back                 | 0.592                                 | 0.033                    | 0.625                   | Body SAR            | Back                 | 0.562                        | 0.033                    | 0.595                                    |
|                     | Front                | 0.718                                 | 0.000                    | 0.718                   |                     | Front                | 0.588                        | 0.000                    | 0.588                                    |
|                     | Тор                  | -                                     | 0.001                    | 0.001                   |                     | Тор                  | -                            | 0.001                    | 0.001                                    |
|                     | Bottom               | 0.593                                 | -                        | 0.593                   |                     | Bottom               | 0.272                        | -                        | 0.272                                    |
|                     | Right                | 0.122                                 | -                        | 0.122                   |                     | Right                | 0.408                        | -                        | 0.408                                    |
|                     | Left                 | 0.147                                 | 0.066                    | 0.213                   |                     | Left                 | 0.558                        | 0.066                    | 0.624                                    |
|                     |                      |                                       |                          |                         |                     |                      |                              |                          |                                          |
| Simult Tx           | Configuration        | LTE Band 25<br>(PCS) SAR<br>(W/kg)    | 5 GHz WLAN<br>SAR (W/kg) | Σ SAR<br>(W/kg)         | Simult Tx           | Configuration        | LTE Band 41<br>SAR (W/kg)    | 5 GHz WLAN<br>SAR (W/kg) | Σ SAR<br>(W/kg)                          |
| Simult Tx           | Configuration  Back  | (PCS) SAR                             |                          | _                       | Simult Tx           | Configuration  Back  |                              |                          | _                                        |
| Simult Tx           |                      | (PCS) SAR<br>(W/kg)                   | SAR (W/kg)               | (W/kg)                  | Simult Tx           |                      | SAR (W/kg)                   | SAR (W/kg)               | (W/kg)                                   |
|                     | Back                 | (PCS) SAR<br>(W/kg)<br>0.774          | SAR (W/kg)<br>0.033      | (W/kg)<br>0.807         |                     | Back                 | SAR (W/kg)<br>0.396          | SAR (W/kg)<br>0.033      | (W/kg)<br>0.429                          |
| Simult Tx  Body SAR | Back<br>Front        | (PCS) SAR<br>(W/kg)<br>0.774          | 0.033<br>0.000           | 0.807<br>0.912          | Simult Tx  Body SAR | Back<br>Front        | SAR (W/kg)<br>0.396          | 0.033<br>0.000           | (W/kg)<br>0.429<br><b>0.855</b>          |
|                     | Back<br>Front<br>Top | (PCS) SAR<br>(W/kg)<br>0.774<br>0.912 | 0.033<br>0.000<br>0.001  | 0.807<br>0.912<br>0.001 |                     | Back<br>Front<br>Top | SAR (W/kg)<br>0.396<br>0.855 | 0.033<br>0.000<br>0.001  | (W/kg)<br>0.429<br><b>0.855</b><br>0.001 |

## 12.6 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v05.

| FCC ID: ZNFLS995    | PCTEST*             | SAR EVALUATION REPORT | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             | Page 72 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      | Fage 72 01 79                |

#### 13 SAR MEASUREMENT VARIABILITY

#### 13.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Table 13-1
Body SAR Measurement Variability Results

|              | body OAR Measurement Variability Results |     |          |             |                 |      |                                                  |        |                             |            |                             |        |     |
|--------------|------------------------------------------|-----|----------|-------------|-----------------|------|--------------------------------------------------|--------|-----------------------------|------------|-----------------------------|--------|-----|
|              | BODY VARIABILITY RESULTS                 |     |          |             |                 |      |                                                  |        |                             |            |                             |        |     |
| Band         | FREQUE                                   | NCY | Mode     | Service     | Service Side S  |      | Measured SAR (1g) SAR (1g) 1st Repeated SAR (1g) | Ratio  | 2nd<br>Repeated<br>SAR (1g) | Ratio      | 3rd<br>Repeated<br>SAR (1g) | Ratio  |     |
|              | MHz                                      | Ch. |          |             |                 |      | (W/kg)                                           | (W/kg) |                             | (W/kg)     |                             | (W/kg) |     |
| 1900         | 1880.00                                  | 600 | PCS CDMA | EVDO Rev. 0 | back            | 8 mm | 1.140                                            | 1.090  | 1.05                        | N/A        | N/A                         | N/A    | N/A |
|              | ANSI / IEEE C95.1 1992 - SAFETY LIMIT    |     |          |             |                 |      |                                                  |        | Во                          | dy         |                             |        |     |
| Spatial Peak |                                          |     |          |             | 1.6 W/kg (mW/g) |      |                                                  |        |                             |            |                             |        |     |
|              | Uncontrolled Exposure/General Population |     |          |             |                 |      |                                                  | а      | veraged o                   | ver 1 gram |                             |        |     |

#### 13.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for all frequency bands. Therefore, per KDB Publication 865664 D01v01, the extended measurement uncertainty analysis per IEEE 1528-2003 was not required.

| FCC ID: ZNFLS995    | PCTEST"             | SAR EVALUATION REPORT LG | Reviewed by: Quality Manager |
|---------------------|---------------------|--------------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:                | Page 73 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset         | Fage 73 01 79                |

#### 14 EQUIPMENT LIST

| LQUII              | WILITI L                                 | 101                                                                  |            |              |            |               |
|--------------------|------------------------------------------|----------------------------------------------------------------------|------------|--------------|------------|---------------|
| Manufacturer       | Model                                    | Description                                                          | Cal Date   | Cal Interval | Cal Due    | Serial Number |
| Agilent            | E8257D                                   | (250kHz-20GHz) Signal Generator                                      | 4/16/2013  | Annual       | 4/16/2014  | MY45470194    |
| Agilent            | 8753E                                    | (30kHz-6GHz) Network Analyzer                                        | 4/16/2013  | Annual       | 4/16/2014  | JP38020182    |
| Agilent            | 8753E                                    | (30kHz-6GHz) Network Analyzer                                        | 7/23/2013  | Annual       | 7/23/2014  | US37390350    |
| Agilent            | 8594A                                    | (9kHz-2.9GHz) Spectrum Analyzer                                      | N/A        | N/A          | N/A        | 3051A00187    |
| Agilent            | 8648D                                    | (9kHz-4GHz) Signal Generator                                         | 4/17/2013  | Annual       | 4/17/2014  | 3629U00687    |
| Agilent            | 85070C                                   | Dielectric Probe Kit                                                 | 2/14/2013  | Annual       | 2/14/2014  | MY44300633    |
| Agilent            | N9020A                                   | MXA Signal Analyzer                                                  | 10/29/2013 | Annual       | 10/29/2014 | US46470561    |
| Agilent            | N5182A                                   | MXG Vector Signal Generator                                          | 10/28/2013 | Annual       | 10/28/2014 | US46240505    |
|                    |                                          |                                                                      |            |              |            |               |
| Agilent            | 8753ES                                   | S-Parameter Network Analyzer                                         | 10/29/2013 | Annual       | 10/29/2014 | US39170122    |
| Agilent            | 85047A                                   | S-Parameter Test Set                                                 | N/A        | N/A          | N/A        | 2904A00579    |
| Agilent            | E5515C                                   | Wireless Communications Test Set                                     | 10/18/2012 | Biennial     | 10/18/2014 | GB43193563    |
| Amplifier Research | 5S1G4                                    | 5W, 800MHz-4.2GHz                                                    | CBT        | N/A          | CBT        | 21910         |
| Anritsu            | ML2495A                                  | Power Meter                                                          | 10/31/2013 | Annual       | 10/31/2014 | 1039008       |
| Anritsu            | MA2481A                                  | Power Sensor                                                         | 2/14/2013  | Annual       | 2/14/2014  | 5318          |
| Anritsu            | MA2481A                                  | Power Sensor                                                         | 2/14/2013  | Annual       | 2/14/2014  | 5821          |
| Anritsu            | MA2411B                                  | Pulse Power Sensor                                                   | 12/4/2012  | Annual       | 12/4/2013  | 1207364       |
| Anritsu            | MT8820C                                  | Radio Communication Analyzer                                         | 6/28/2013  | Annual       | 6/28/2014  | 6201240328    |
| Anritsu            | MA2481D                                  | Universal Sensor                                                     | 12/17/2012 | Annual       | 12/17/2013 | 1204419       |
| Anritsu            | MA2481D                                  | Universal Sensor                                                     | 12/17/2012 | Annual       | 12/17/2013 | 1204343       |
| Anritsu            | MA24106A                                 | USB Power Sensor                                                     | 12/7/2012  | Annual       | 12/7/2013  | 1244515       |
|                    | MA24106A                                 |                                                                      |            |              |            | 1244512       |
| Anritsu            |                                          | USB Power Sensor                                                     | 12/7/2012  | Annual       | 12/7/2013  |               |
| COMTECH            | AR85729-5/5759B                          | Solid State Amplifier                                                | CBT        | N/A          | CBT        | M3W1A00-1002  |
| COMTech            | AR85729-5                                | Solid State Amplifier                                                | CBT        | N/A          | CBT        | M1S5A00-009   |
| Gigatronics        | 80701A                                   | (0.05-18GHz) Power Sensor                                            | 10/30/2013 | Annual       | 10/30/2014 | 1833460       |
| Gigatronics        | 8651A                                    | Universal Power Meter                                                | 10/30/2013 | Annual       | 10/30/2014 | 8650319       |
| MCL                | BW-N6W5+                                 | 6dB Attenuator                                                       | CBT        | N/A          | CBT        | 1139          |
| MiniCircuits       | VLF-6000+                                | Low Pass Filter                                                      | CBT        | N/A          | CBT        | N/A           |
| MiniCircuits       | VLF-6000+                                | Low Pass Filter                                                      | CBT        | N/A          | CBT        | N/A           |
| MiniCircuits       | SLP-2400+                                | Low Pass Filter                                                      | CBT        | N/A          | CBT        | R8979500903   |
| Mini-Circuits      | BW-N20W5+                                | DC to 18 GHz Precision Fixed 20 dB Attenuator                        | CBT        | N/A          | CBT        | N/A           |
| Mini-Circuits      | NLP-1200+                                | Low Pass Filter DC to 1000 MHz                                       | CBT        | N/A          | CBT        | N/A           |
| Mini-Circuits      | NLP-2950+                                | Low Pass Filter DC to 2700 MHz                                       | CBT        | N/A          | CBT        | N/A           |
|                    |                                          |                                                                      |            | ·            |            |               |
| Mini-Circuits      | BW-N20W5                                 | Power Attenuator                                                     | CBT        | N/A          | CBT        | 1226          |
| Narda              | 4014C-6                                  | 4 - 8 GHz SMA 6 dB Directional Coupler                               | CBT        | N/A          | CBT        | N/A           |
| Narda              | 4772-3                                   | Attenuator (3dB)                                                     | CBT        | N/A          | CBT        | 9406          |
| Narda              | BW-S3W2                                  | Attenuator (3dB)                                                     | CBT        | N/A          | CBT        | 120           |
| Pasternack         | PE2208-6                                 | Bidirectional Coupler                                                | CBT        | N/A          | CBT        | N/A           |
| Pasternack         | PE2209-10                                | Bidirectional Coupler                                                | CBT        | N/A          | CBT        | N/A           |
| Rohde & Schwarz    | CMU200                                   | Base Station Simulator                                               | 9/23/2013  | Annual       | 9/23/2014  | 109892        |
| Rohde & Schwarz    | NRVD                                     | Dual Channel Power Meter                                             | 10/12/2012 | Biennial     | 10/12/2014 | 101695        |
| Rohde & Schwarz    | CMW500                                   | LTE Radio Communication Tester                                       | 2/8/2013   | Annual       | 2/8/2014   | 101699        |
| Rohde & Schwarz    | CMW500                                   | LTE Radio Communication Tester                                       | 6/6/2013   | Annual       | 6/6/2014   | 111427        |
| Rohde & Schwarz    | NRV-Z32                                  | Peak Power Sensor                                                    | 10/12/2012 | Biennial     | 10/12/2014 | 836019/013    |
| Rohde & Schwarz    | SMIQ03B                                  | Signal Generator                                                     | 4/17/2013  | Annual       | 4/17/2014  | DE27259       |
|                    |                                          |                                                                      |            |              |            |               |
| Rohde & Schwarz    | SME06                                    | Signal Generator                                                     | 10/30/2013 | Annual       | 10/30/2014 | 832026        |
| Rohde & Schwarz    | NRVS                                     | Single Channel Power Meter                                           | 10/31/2013 | Annual       | 10/31/2014 | 835360/0079   |
| Seekonk            | NC-100                                   | Torque Wrench (8" lb)                                                | 11/29/2011 | Triennial    | 11/29/2014 | 21053         |
| Seekonk            | NC-100                                   | Torque Wrench (8" lb)                                                | 3/5/2012   | Triennial    | 3/5/2015   | N/A           |
| SPEAG              | D1900V2                                  | 1900 MHz SAR Dipole                                                  | 2/6/2013   | Annual       | 2/6/2014   | 5d148         |
| SPEAG              | D2450V2                                  | 2450 MHz SAR Dipole                                                  | 1/8/2013   | Annual       | 1/8/2014   | 797           |
| SPEAG              | D2450V2                                  | 2450 MHz SAR Dipole                                                  | 2/11/2013  | Annual       | 2/11/2014  | 882           |
| SPEAG              | D2600V2                                  | 2600 MHz SAR Dipole                                                  | 5/2/2013   | Annual       | 5/2/2014   | 1004          |
| SPEAG              | D5GHzV2                                  | 5 GHz SAR Dipole                                                     | 1/11/2013  | Annual       | 1/11/2014  | 1057          |
| SPEAG              | D5GHzV2                                  | 5 GHz SAR Dipole                                                     | 2/14/2013  | Annual       | 2/14/2014  | 1120          |
| SPEAG              | D835V2                                   | 835 MHz SAR Dipole                                                   | 4/25/2013  | Annual       | 4/25/2014  | 4d119         |
| SPEAG              | DAE4                                     | Dasy Data Acquisition Electronics                                    | 1/17/2013  | Annual       | 1/17/2014  | 1272          |
| SPEAG              | DAE4                                     | Dasy Data Acquisition Electronics                                    | 2/6/2013   | Annual       | 2/6/2014   | 649           |
| SPEAG              | DAE4                                     | Dasy Data Acquisition Electronics                                    | 3/8/2013   | Annual       | 3/8/2014   | 1334          |
| SPEAG              | DAE4                                     | Dasy Data Acquisition Electronics                                    | 4/22/2013  | Annual       | 4/22/2014  | 665           |
| SPEAG              | DAE4                                     | Dasy Data Acquisition Electronics  Dasy Data Acquisition Electronics | 4/22/2013  | Annual       | 4/22/2014  | 1364          |
| SPEAG              | DAE4                                     | Dasy Data Acquisition Electronics  Dasy Data Acquisition Electronics | 4/22/2013  | Annual       | 4/22/2014  | 1368          |
|                    |                                          |                                                                      |            |              |            |               |
| SPEAG              | DAE4                                     | Dasy Data Acquisition Electronics                                    | 5/13/2013  | Annual       | 5/13/2014  | 859           |
| SPEAG              | DAE4                                     | Dasy Data Acquisition Electronics                                    | 8/21/2013  | Annual       | 8/21/2014  | 1322          |
| SPEAG              | DAK-3.5                                  | Dielectric Assessment Kit                                            | 12/11/2012 | Annual       | 12/11/2013 | 1091          |
| SPEAG              | DAK-3.5                                  | Dielectric Assessment Kit                                            | 5/14/2013  | Annual       | 5/14/2014  | 1070          |
| SPEAG              | DAKS-3.5                                 | Portable Dielectric Assessment Kit                                   | 8/18/2013  | Annual       | 8/18/2014  | 1008          |
| SPEAG              | DAKS-3.5                                 | Portable Dielectric Assessment Kit                                   | 8/18/2013  | Annual       | 8/18/2014  | 1009          |
| SPEAG              | EX3DV4                                   | SAR Probe                                                            | 1/17/2013  | Annual       | 1/17/2014  | 3589          |
| SPEAG              | ES3DV3                                   | SAR Probe                                                            | 3/15/2013  | Annual       | 3/15/2014  | 3209          |
| SPEAG              | EX3DV4                                   | SAR Probe                                                            | 10/23/2013 | Annual       | 10/23/2014 | 3914          |
| SPEAG              | ES3DV3                                   | SAR Probe                                                            | 4/29/2013  | Annual       | 4/29/2014  | 3213          |
| SPEAG              | ES3DV3                                   | SAR Probe                                                            | 4/29/2013  | Annual       | 4/29/2014  | 3318          |
| SPEAG              | ES3DV3                                   | SAR Probe                                                            | 4/29/2013  | Annual       | 4/29/2014  | 3319          |
|                    |                                          | SAR Probe                                                            |            |              | 5/16/2014  |               |
| SPEAG              | ES3DV3                                   |                                                                      | 5/16/2013  | Annual       |            | 3263          |
| SPEAG              | ES3DV2                                   | SAR Probe                                                            | 8/22/2013  | Annual       | 8/22/2014  | 3022          |
| Tektronix          | RSA6114A                                 | Real Time Spectrum Analyzer                                          | 4/17/2013  | Annual       | 4/17/2014  | B010177       |
| VWR                | 23226-658                                | Long Stem Thermometer                                                | 6/27/2012  | Biennial     | 6/27/2014  | 122363923     |
| VWR                | 23226-658                                | Long Stem Thermometer                                                | 7/11/2012  | Biennial     | 7/11/2014  | 122389334     |
| VWR                | 23226-658                                | Long Stem Thermometer                                                | 7/11/2012  | Biennial     | 7/11/2014  | 122389330     |
| DT (0 III 1 I D (  | T .: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | tooting the magazirement noths o                                     |            |              | —          | CIL           |

Notes: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

| FCC ID: ZNFLS995    |                     | SAR EVALUATION REPORT | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             | Page 74 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      | Fage 74 01 79                |

### 15 MEASUREMENT UNCERTAINTIES

Applicable for frequencies less than 3000 MHz.

| а                                                                             | b            | С     | d     | e=     | f    | g      | h =            | j =            | k              |
|-------------------------------------------------------------------------------|--------------|-------|-------|--------|------|--------|----------------|----------------|----------------|
|                                                                               |              |       |       | f(d,k) |      |        | c x f/e        | c x g/e        |                |
| Uncertainty                                                                   | IEEE         | Tol.  | Prob. |        | Ci   | Ci     | 1gm            | 10gms          |                |
| Component                                                                     | 1528<br>Sec. | (± %) | Dist. | Div.   | 1gm  | 10 gms | u <sub>i</sub> | u <sub>i</sub> | v <sub>i</sub> |
|                                                                               |              |       |       |        |      |        | (± %)          | (± %)          |                |
| Measurement System                                                            |              |       |       |        |      |        |                |                |                |
| Probe Calibration                                                             | E.2.1        | 6.0   | N     | 1      | 1.0  | 1.0    | 6.0            | 6.0            | $\infty$       |
| Axial Isotropy                                                                | E.2.2        | 0.25  | N     | 1      | 0.7  | 0.7    | 0.2            | 0.2            | $\infty$       |
| Hemishperical Isotropy                                                        | E.2.2        | 1.3   | N     | 1      | 1.0  | 1.0    | 1.3            | 1.3            | $\infty$       |
| Boundary Effect                                                               | E.2.3        | 0.4   | N     | 1      | 1.0  | 1.0    | 0.4            | 0.4            | $\infty$       |
| Linearity                                                                     | E.2.4        | 0.3   | N     | 1      | 1.0  | 1.0    | 0.3            | 0.3            | $\infty$       |
| System Detection Limits                                                       | E.2.5        | 5.1   | N     | 1      | 1.0  | 1.0    | 5.1            | 5.1            | $\infty$       |
| Readout Electronics                                                           | E.2.6        | 1.0   | N     | 1      | 1.0  | 1.0    | 1.0            | 1.0            | $\infty$       |
| Response Time                                                                 | E.2.7        | 8.0   | R     | 1.73   | 1.0  | 1.0    | 0.5            | 0.5            | $\infty$       |
| Integration Time                                                              | E.2.8        | 2.6   | R     | 1.73   | 1.0  | 1.0    | 1.5            | 1.5            | $\infty$       |
| RF Ambient Conditions                                                         | E.6.1        | 3.0   | R     | 1.73   | 1.0  | 1.0    | 1.7            | 1.7            | $\infty$       |
| Probe Positioner Mechanical Tolerance                                         | E.6.2        | 0.4   | R     | 1.73   | 1.0  | 1.0    | 0.2            | 0.2            | $\infty$       |
| Probe Positioning w/ respect to Phantom                                       | E.6.3        | 2.9   | R     | 1.73   | 1.0  | 1.0    | 1.7            | 1.7            | $\infty$       |
| Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation | E.5          | 1.0   | R     | 1.73   | 1.0  | 1.0    | 0.6            | 0.6            | $\infty$       |
| Test Sample Related                                                           |              |       |       |        |      |        |                |                |                |
| Test Sample Positioning                                                       | E.4.2        | 6.0   | N     | 1      | 1.0  | 1.0    | 6.0            | 6.0            | 287            |
| Device Holder Uncertainty                                                     | E.4.1        | 3.32  | R     | 1.73   | 1.0  | 1.0    | 1.9            | 1.9            | $\infty$       |
| Output Power Variation - SAR drift measurement                                | 6.6.2        | 5.0   | R     | 1.73   | 1.0  | 1.0    | 2.9            | 2.9            | $\infty$       |
| Phantom & Tissue Parameters                                                   |              |       |       |        |      |        |                |                |                |
| Phantom Uncertainty (Shape & Thickness tolerances)                            | E.3.1        | 4.0   | R     | 1.73   | 1.0  | 1.0    | 2.3            | 2.3            | $\infty$       |
| Liquid Conductivity - deviation from target values                            | E.3.2        | 5.0   | R     | 1.73   | 0.64 | 0.43   | 1.8            | 1.2            | $\infty$       |
| Liquid Conductivity - measurement uncertainty                                 | E.3.3        | 3.8   | N     | 1      | 0.64 | 0.43   | 2.4            | 1.6            | 6              |
| Liquid Permittivity - deviation from target values                            | E.3.2        | 5.0   | R     | 1.73   | 0.60 | 0.49   | 1.7            | 1.4            | $\infty$       |
| Liquid Permittivity - measurement uncertainty                                 | E.3.3        | 4.5   | N     | 1      | 0.60 | 0.49   | 2.7            | 2.2            | 6              |
| Combined Standard Uncertainty (k=1) RSS                                       |              |       |       |        |      |        | 12.1           | 11.7           | 299            |
| Expanded Uncertainty k=2                                                      |              |       |       |        |      | 24.2   | 23.5           |                |                |
| (95% CONFIDENCE LEVEL)                                                        |              |       |       |        |      |        |                |                |                |

The above measurement uncertainties are according to IEEE Std. 1528-2003

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             | Page 75 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      | Faye 13 01 19                |

#### Applicable for frequencies up to 6 GHz.

| а                                                                             | b            | С     | d     | e=     | f    | g      | h =            | j =            | k              |
|-------------------------------------------------------------------------------|--------------|-------|-------|--------|------|--------|----------------|----------------|----------------|
|                                                                               |              |       |       | f(d,k) |      |        | c x f/e        | c x g/e        |                |
| Uncertainty                                                                   | IEEE         | Tol.  | Prob. |        | Ci   | Ci     | 1gm            | 10gms          |                |
| Component                                                                     | 1528<br>Sec. | (± %) | Dist. | Div.   | 1gm  | 10 gms | u <sub>i</sub> | u <sub>i</sub> | V <sub>i</sub> |
| ·                                                                             | 000.         |       |       |        |      |        | (± %)          | (± %)          |                |
| Measurement System                                                            |              |       |       |        |      |        |                |                |                |
| Probe Calibration                                                             | E.2.1        | 6.55  | N     | 1      | 1.0  | 1.0    | 6.6            | 6.6            | $\infty$       |
| Axial Isotropy                                                                | E.2.2        | 0.25  | N     | 1      | 0.7  | 0.7    | 0.2            | 0.2            | œ              |
| Hemishperical Isotropy                                                        | E.2.2        | 1.3   | N     | 1      | 1.0  | 1.0    | 1.3            | 1.3            | $\infty$       |
| Boundary Effect                                                               | E.2.3        | 0.4   | N     | 1      | 1.0  | 1.0    | 0.4            | 0.4            | $\infty$       |
| Linearity                                                                     | E.2.4        | 0.3   | N     | 1      | 1.0  | 1.0    | 0.3            | 0.3            | $\infty$       |
| System Detection Limits                                                       | E.2.5        | 5.1   | N     | 1      | 1.0  | 1.0    | 5.1            | 5.1            | $\infty$       |
| Readout Electronics                                                           | E.2.6        | 1.0   | N     | 1      | 1.0  | 1.0    | 1.0            | 1.0            | œ              |
| Response Time                                                                 | E.2.7        | 0.8   | R     | 1.73   | 1.0  | 1.0    | 0.5            | 0.5            | $\infty$       |
| Integration Time                                                              | E.2.8        | 2.6   | R     | 1.73   | 1.0  | 1.0    | 1.5            | 1.5            | $\infty$       |
| RF Ambient Conditions                                                         | E.6.1        | 3.0   | R     | 1.73   | 1.0  | 1.0    | 1.7            | 1.7            | $\infty$       |
| Probe Positioner Mechanical Tolerance                                         | E.6.2        | 0.4   | R     | 1.73   | 1.0  | 1.0    | 0.2            | 0.2            | $\infty$       |
| Probe Positioning w/ respect to Phantom                                       | E.6.3        | 2.9   | R     | 1.73   | 1.0  | 1.0    | 1.7            | 1.7            | $\infty$       |
| Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation | E.5          | 1.0   | R     | 1.73   | 1.0  | 1.0    | 0.6            | 0.6            | $\infty$       |
| Test Sample Related                                                           |              |       |       |        |      |        |                |                |                |
| Test Sample Positioning                                                       | E.4.2        | 6.0   | N     | 1      | 1.0  | 1.0    | 6.0            | 6.0            | 287            |
| Device Holder Uncertainty                                                     | E.4.1        | 3.32  | R     | 1.73   | 1.0  | 1.0    | 1.9            | 1.9            | $\infty$       |
| Output Power Variation - SAR drift measurement                                | 6.6.2        | 5.0   | R     | 1.73   | 1.0  | 1.0    | 2.9            | 2.9            | $\infty$       |
| Phantom & Tissue Parameters                                                   |              |       |       |        |      |        |                |                |                |
| Phantom Uncertainty (Shape & Thickness tolerances)                            | E.3.1        | 4.0   | R     | 1.73   | 1.0  | 1.0    | 2.3            | 2.3            | $\infty$       |
| Liquid Conductivity - deviation from target values                            | E.3.2        | 5.0   | R     | 1.73   | 0.64 | 0.43   | 1.8            | 1.2            | oc             |
| Liquid Conductivity - measurement uncertainty                                 | E.3.3        | 3.8   | N     | 1      | 0.64 | 0.43   | 2.4            | 1.6            | 6              |
| Liquid Permittivity - deviation from target values                            | E.3.2        | 5.0   | R     | 1.73   | 0.60 | 0.49   | 1.7            | 1.4            | $\infty$       |
| Liquid Permittivity - measurement uncertainty                                 | E.3.3        | 4.5   | N     | 1      | 0.60 | 0.49   | 2.7            | 2.2            | 6              |
| Combined Standard Uncertainty (k=1) RSS                                       |              |       |       |        |      |        | 12.4           | 12.0           | 299            |
| Expanded Uncertainty k=2                                                      |              |       |       |        |      | 24.7   | 24.0           |                |                |
| (95% CONFIDENCE LEVEL)                                                        |              |       |       |        |      |        |                |                |                |

The above measurement uncertainties are according to IEEE Std. 1528-2003

| FCC ID: ZNFLS995    | PCTEST*             | SAR EVALUATION REPORT | LG | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|----|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             |    | Page 76 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      |    | rage 70 01 79                |

#### 16 CONCLUSION

#### 16.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

| FCC ID: ZNFLS995    | PCTEST*             | SAR EVALUATION REPORT | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             | Page 77 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      | Page 11 01 19                |

#### 17 REFERENCES

- Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, June 2001.
- [6] IEEE Standards Coordinating Committee 34 IEEE Std. 1528-2003, Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices.
- [7] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [8] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [9] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. -124.
- [10] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [11] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [12] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [13] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [14] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [15] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [16] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [17] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             | Page 78 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      | Faye 10 01 19                |

- [18] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.
- [19] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [20] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [21] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [22] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [23] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 4, March 2010.
- [24] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz - 300 GHz, 2009
- [25] FCC Public Notice DA-02-1438. Office of Engineering and Technology Announces a Transition Period for the Phantom Requirements of Supplement C to OET Bulletin 65, June 19, 2002
- [26] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [27] SAR Measurement procedures for IEEE 802.11a/b/g KDB Publication 248227 D01v01r02
- [28] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas. KDB Publications 648474 D02-D04
- [29] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [30] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [31] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [32] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [33] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

| FCC ID: ZNFLS995    | PCTEST              | SAR EVALUATION REPORT | <b>LG</b> | Reviewed by: Quality Manager |
|---------------------|---------------------|-----------------------|-----------|------------------------------|
| Document S/N:       | Test Dates:         | DUT Type:             |           | Page 79 of 79                |
| 0Y1311192196-R1.ZNF | 11/11/13 - 11/26/13 | Portable Handset      |           | Fage 19 01 19                |

### APPENDIX A: SAR TEST DATA

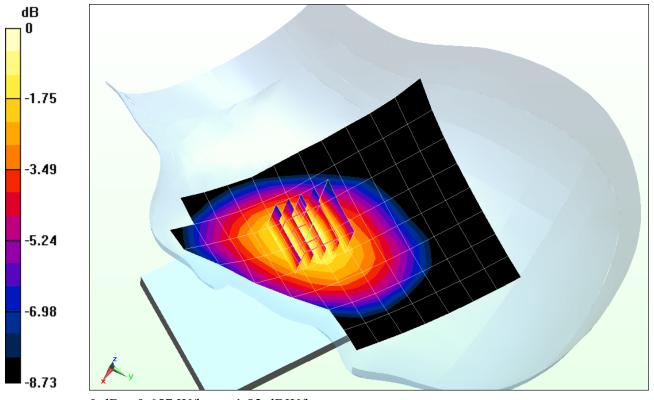
DUT: ZNFLS995; Type: Portable Handset; Serial: 1881

Communication System: CDMA; Frequency: 820.1 MHz; Duty Cycle: 1:1 Medium: 835 Head; Medium parameters used (interpolated):  $f = 820.1 \text{ MHz}; \ \sigma = 0.863 \text{ S/m}; \ \epsilon_r = 40.274; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Left Section

Test Date: 11-14-2013; Ambient Temp: 24.0°C; Tissue Temp: 21.2°C

Probe: ES3DV2 - SN3022; ConvF(6.09, 6.09, 6.09); Calibrated: 8/22/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 8/21/2013
Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646
Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

#### Mode: Cell. EVDO RevA BC10, Left Head, Cheek, Mid.ch


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 29.130 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.791 W/kg

SAR(1 g) = 0.628 W/kg



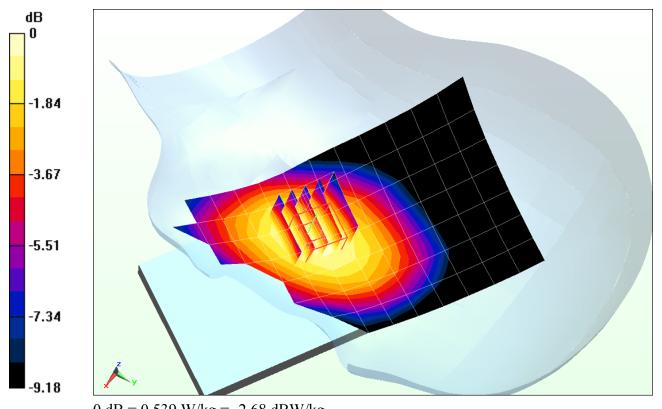
DUT: ZNFLS995; Type: Portable Handset; Serial: 1881

Communication System: CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: 835 Head; Medium parameters used (interpolated):  $f = 836.52 \text{ MHz}; \ \sigma = 0.879 \text{ S/m}; \ \epsilon_r = 40.21; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Left Section

Test Date: 11-14-2013; Ambient Temp: 24.0°C; Tissue Temp: 21.2°C

Probe: ES3DV2 - SN3022; ConvF(6.09, 6.09, 6.09); Calibrated: 8/22/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 8/21/2013
Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646
Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

#### Mode: Cell. CDMA BC0, Left Head, Cheek, Mid.ch


Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.746 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.645 W/kg

SAR(1 g) = 0.512 W/kg



#### DUT: ZNFLS995; Type: Portable Handset; Serial: 1881

Communication System: CDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Head; Medium parameters used:  $f = 1880 \text{ MHz}; \ \sigma = 1.436 \text{ S/m}; \ \epsilon_r = 40.639; \ \rho = 1000 \text{ kg/m}^3$ 

Phantom section: Left Section

Test Date: 11-13-2013; Ambient Temp: 22.2°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3318; ConvF(5.22, 5.22, 5.22); Calibrated: 4/29/2013;

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1364; Calibrated: 4/22/2013 Phantom: SAM; Type: QD000P40CD; Serial: TP:1758

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

#### Mode: PCS CDMA, Left Head, Cheek, Mid.ch

Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.460 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.666 W/kg

SAR(1 g) = 0.415 W/kg



DUT: ZNFLS995; Type: Portable Handset; Serial: 1880

Communication System: GSM GPRS; 2 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:4.15 Medium: 835 Head; Medium parameters used (interpolated):

 $f = 836.6 \text{ MHz}; \ \sigma = 0.879 \text{ S/m}; \ \epsilon_r = 40.21; \ \rho = 1000 \text{ kg/m}^3$ 

Phantom section: Left Section

Test Date: 11-14-2013; Ambient Temp: 24.0°C; Tissue Temp: 21.2°C

Probe: ES3DV2 - SN3022; ConvF(6.09, 6.09, 6.09); Calibrated: 8/22/2013;

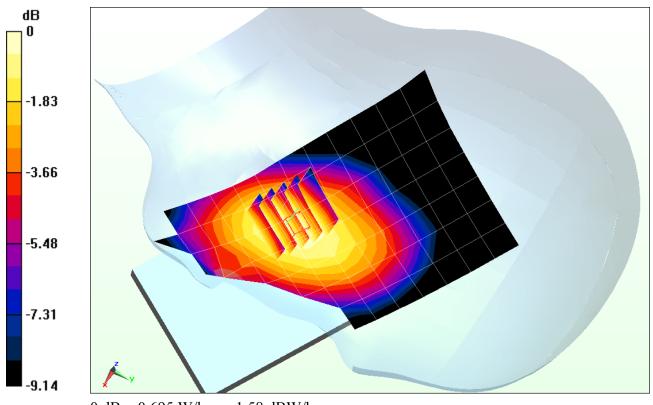
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1322; Calibrated: 8/21/2013

Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

#### Mode: GPRS 850, Left Head, Cheek, Mid.ch, 2 Tx slots


Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.283 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.864 W/kg

SAR(1 g) = 0.669 W/kg



0 dB = 0.695 W/kg = -1.58 dBW/kg

DUT: ZNFLS995; Type: Portable Handset; Serial: 1880

Communication System: GSM GPRS; 2 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium: 1900 Head; Medium parameters used:

f = 1880 MHz;  $\sigma$  = 1.401 S/m;  $\epsilon_r$  = 39.642;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Right Section

Test Date: 11-19-2013; Ambient Temp: 24.0°C; Tissue Temp: 21.5°C

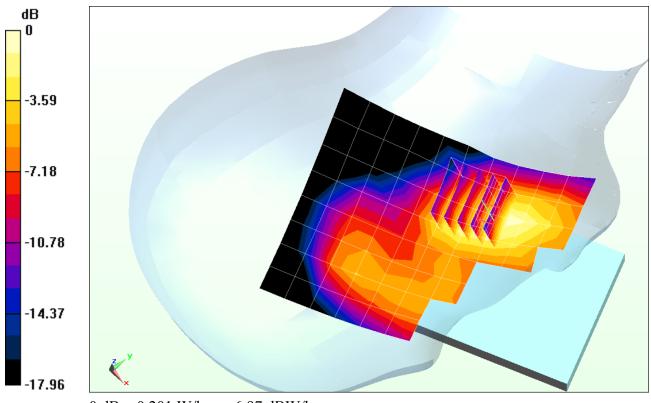
Probe: ES3DV3 - SN3213; ConvF(5.08, 5.08, 5.08); Calibrated: 4/29/2013;

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/22/2013

Phantom: SAM Front; Type: QD000P40CD; Serial: 1717

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

#### Mode: GPRS 1900, Right Head, Cheek, Mid.ch, 2 Tx Slots


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.607 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.296 W/kg

SAR(1 g) = 0.186 W/kg



0 dB = 0.201 W/kg = -6.97 dBW/kg

DUT: ZNFLS995; Type: Portable Handset; Serial: 1876

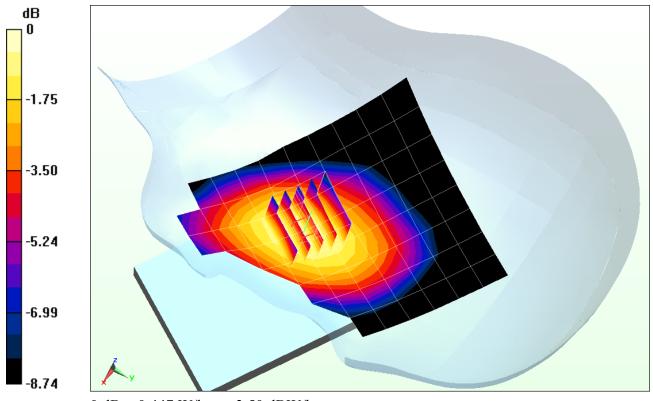
Communication System: UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Head; Medium parameters used (interpolated):  $f = 836.6 \text{ MHz}; \ \sigma = 0.879 \text{ S/m}; \ \epsilon_r = 40.21; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Left Section

Test Date: 11-14-2013; Ambient Temp: 24.0°C; Tissue Temp: 21.2°C

Probe: ES3DV2 - SN3022; ConvF(6.09, 6.09, 6.09); Calibrated: 8/22/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 8/21/2013
Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

#### Mode: UMTS 850, Left Head, Cheek, Mid.ch


Area Scan (9x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.762 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.536 W/kg

SAR(1 g) = 0.427 W/kg



DUT: ZNFLS995; Type: Portable Handset; Serial: 1876

Communication System: UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Head; Medium parameters used:  $f = 1880 \text{ MHz}; \ \sigma = 1.436 \text{ S/m}; \ \epsilon_r = 40.639; \ \rho = 1000 \text{ kg/m}^3$ 

Phantom section: Left Section

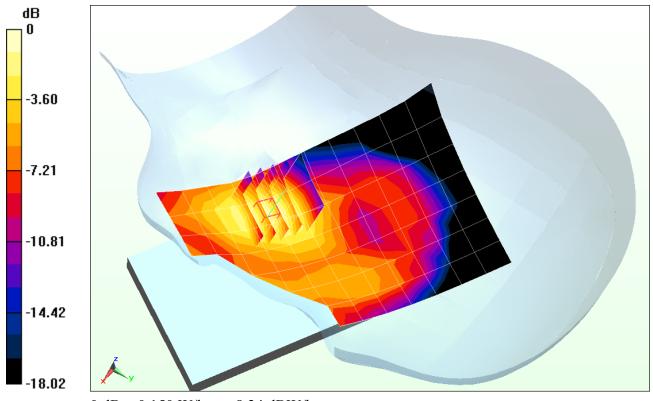
Test Date: 11-13-2013; Ambient Temp: 22.2°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3318; ConvF(5.22, 5.22, 5.22); Calibrated: 4/29/2013;

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1364; Calibrated: 4/22/2013 Phantom: SAM; Type: QD000P40CD; Serial: TP:1758

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

#### Mode: UMTS 1900, Left Head, Cheek, Mid.ch


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.441 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.222 W/kg

SAR(1 g) = 0.142 W/kg



0 dB = 0.150 W/kg = -8.24 dBW/kg

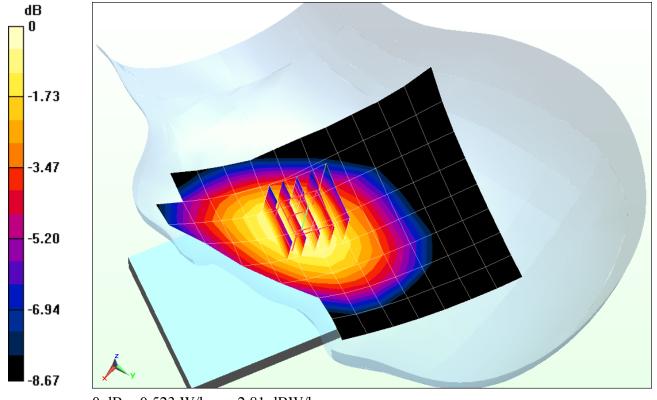
DUT: ZNFLS995; Type: Portable Handset; Serial: 1877

Communication System: LTE Band 26; Frequency: 831.5 MHz; Duty Cycle: 1:1 Medium: 835 Head; Medium parameters used (interpolated):  $f = 831.5 \text{ MHz}; \ \sigma = 0.874 \text{ S/m}; \ \epsilon_r = 40.236; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Left Section

Test Date: 11-14-2013; Ambient Temp: 24.0°C; Tissue Temp: 21.2°C

Probe: ES3DV2 - SN3022; ConvF(6.09, 6.09, 6.09); Calibrated: 8/22/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 8/21/2013
Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646
Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Mode: LTE Band 26, Left Head, Cheek, Mid.ch, OPSK, 10 MHz Bandwidth, 1 RB, 0 RB Offset


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.654 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.624 W/kg

SAR(1 g) = 0.499 W/kg



0 dB = 0.523 W/kg = -2.81 dBW/kg

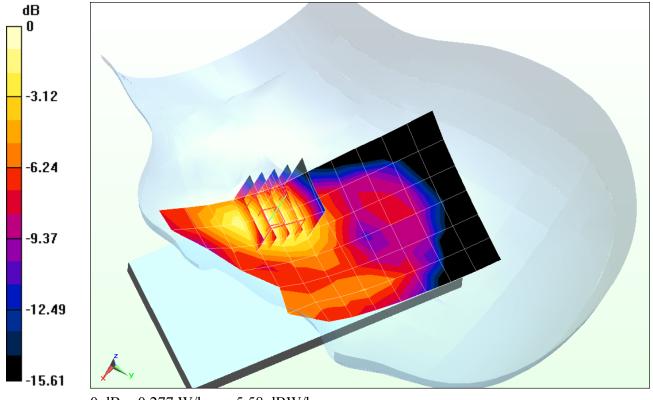
**DUT: ZNFLS995; Type: Portable Handset; Serial: 1879** 

Communication System: LTE Band 25 (PCS); Frequency: 1882.5 MHz; Duty Cycle: 1:1 Medium: 1900 Head; Medium parameters used (interpolated):  $f = 1882.5 \text{ MHz}; \ \sigma = 1.438 \text{ S/m}; \ \epsilon_r = 40.629; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Left Section

Test Date: 11-13-2013; Ambient Temp: 22.2°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3318; ConvF(5.22, 5.22, 5.22); Calibrated: 4/29/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1364; Calibrated: 4/22/2013
Phantom: SAM; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

# Mode: LTE Band 25 (PCS), Left Head, Cheek, Mid.ch, OPSK, 10 MHz Bandwidth, 1 RB, 49 RB Offset


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.200 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.398 W/kg

SAR(1 g) = 0.254 W/kg



0 dB = 0.277 W/kg = -5.58 dBW/kg

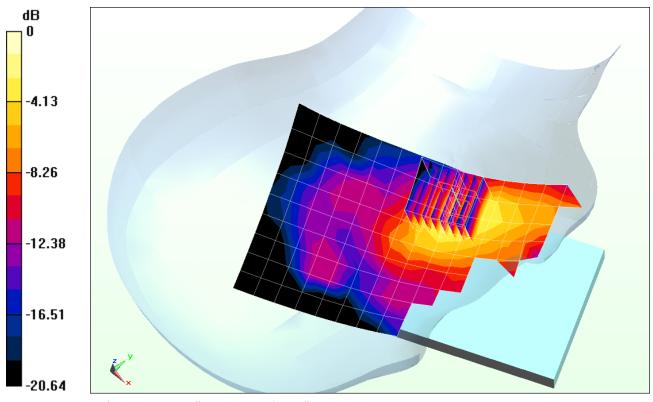
DUT: ZNFLS995; Type: Portable Handset; Serial: 1875

Communication System: LTE Band 41; Frequency: 2636.5 MHz; Duty Cycle: 1:1.59 Medium: 2600 Head; Medium parameters used (interpolated):  $f = 2636.5 \text{ MHz}; \ \sigma = 2.017 \text{ S/m}; \ \epsilon_r = 39.067; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Right Section

Test Date: 11-18-2013; Ambient Temp: 23.6°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN3914; ConvF(6.79, 6.79, 6.79); Calibrated: 10/23/2013; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn649; Calibrated: 2/6/2013
Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648
Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

# Mode: LTE Band 41, Right Head, Cheek, Mid-High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset


Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.300 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.611 W/kg

SAR(1 g) = 0.344 W/kg



0 dB = 0.420 W/kg = -3.77 dBW/kg

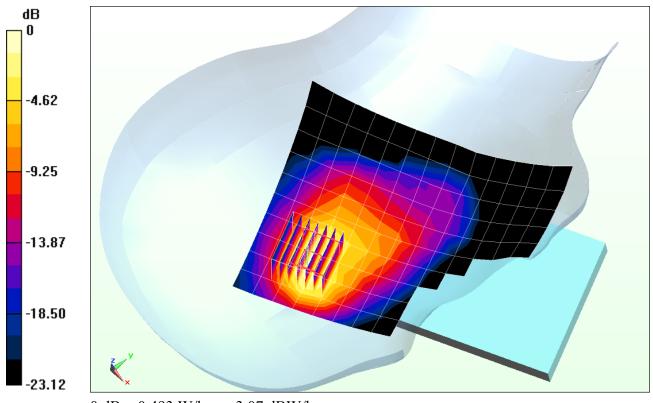
DUT: ZNFLS995; Type: Portable Handset; Serial: 1890

Communication System: IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: 2450 Head; Medium parameters used (interpolated):  $f = 2462 \text{ MHz}; \ \sigma = 1.847 \text{ S/m}; \ \epsilon_r = 40.01; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Right Section

Test Date: 11-12-2013; Ambient Temp: 22.6°C; Tissue Temp: 22.3°C

Probe: ES3DV3 - SN3209; ConvF(4.57, 4.57, 4.57); Calibrated: 3/15/2013; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 3/8/2013
Phantom: SAM Right; Type: QD000P40CD; Serial: 1686
Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

#### Mode: IEEE 802.11b, Right Head, Cheek, Ch 11, 1 Mbps


Area Scan (11x16x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.748 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.795 W/kg

SAR(1 g) = 0.388 W/kg



0 dB = 0.493 W/kg = -3.07 dBW/kg

DUT: ZNFLS995; Type: Portable Handset; Serial: 1890

Communication System: IEEE 802.11a; Frequency: 5765 MHz; Duty Cycle: 1:1

Medium: 5 GHz Head; Medium parameters used:

f = 5765 MHz;  $\sigma$  = 5.087 S/m;  $ε_r$  = 34.379; ρ = 1000 kg/m<sup>3</sup>

Phantom section: Right Section

Test Date: 11-26-2013; Ambient Temp: 22.1°C; Tissue Temp: 21.7°C

Probe: EX3DV4 - SN3914; ConvF(4.52, 4.52, 4.52); Calibrated: 10/23/2013;

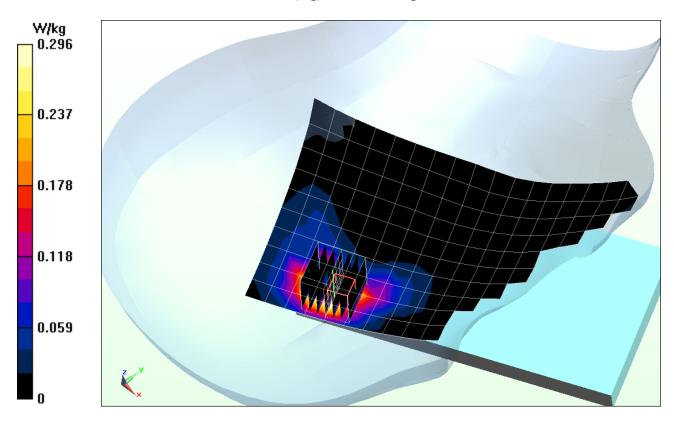
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 2/6/2013

Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Mode: IEEE 802.11a, 5.8 GHz, Right Head, Cheek, Ch 153, 6 Mbps


Area Scan (11x21x1): Measurement grid: dx=10mm, dy=10mm

**Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 1.867 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.163 W/kg

SAR(1 g) = 0.019 W/kg



DUT: ZNFLS995; Type: Portable Handset; Serial: 1890

Communication System: IEEE 802.11a; Frequency: 5260 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head; Medium parameters used: f = 5260 MHz;  $\sigma = 4.57 \text{ S/m}$ ;  $\varepsilon_r = 35.053$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Right Section

Test Date: 11-26-2013; Ambient Temp: 22.1°C; Tissue Temp: 21.7°C

Probe: EX3DV4 - SN3914; ConvF(4.82, 4.82, 4.82); Calibrated: 10/23/2013;

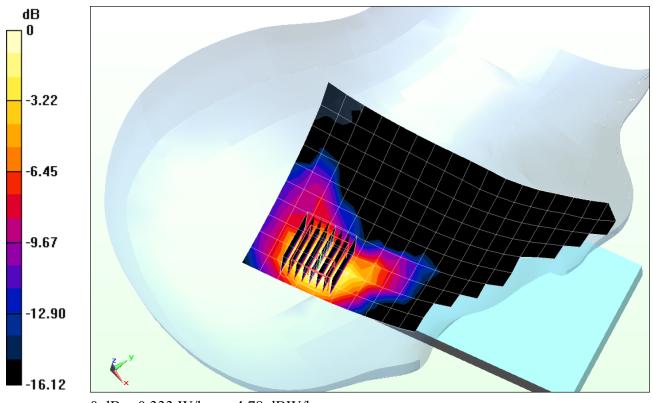
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 2/6/2013

Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

#### Mode: IEEE 802.11a, 5.3 GHz, Right Head, Cheek, Ch 52, 6 Mbps


Area Scan (11x21x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 5.185 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.554 W/kg

SAR(1 g) = 0.142 W/kg



0 dB = 0.333 W/kg = -4.78 dBW/kg

#### DUT: ZNFLS995; Type: Portable Handset; Serial: 1881

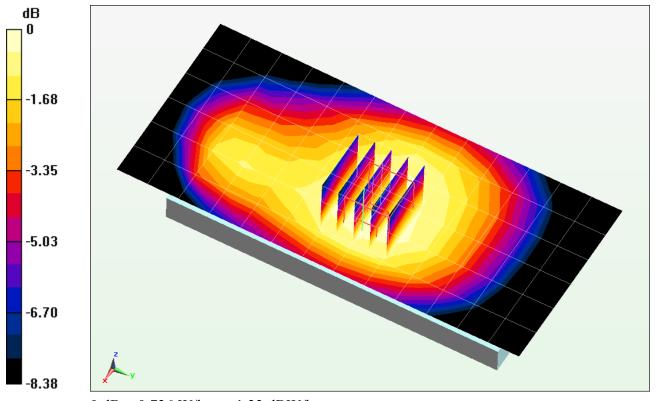
Communication System: CDMA; Frequency: 820.1 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): f = 820.1 MHz;  $\sigma = 0.962$  S/m;  $\varepsilon_r = 53.857$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 0.8 cm

Test Date: 11-12-2013; Ambient Temp: 24.5°C; Tissue Temp: 22.9°C

Probe: ES3DV3 - SN3209; ConvF(6.28, 6.28, 6.28); Calibrated: 3/15/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 3/8/2013
Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP-1158
Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

#### Mode: Cell. CDMA BC 10, Body SAR, Back side, Mid.ch


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.114 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.913 W/kg

SAR(1 g) = 0.707 W/kg



0 dB = 0.736 W/kg = -1.33 dBW/kg

#### DUT: ZNFLS995; Type: Portable Handset; Serial: 1881

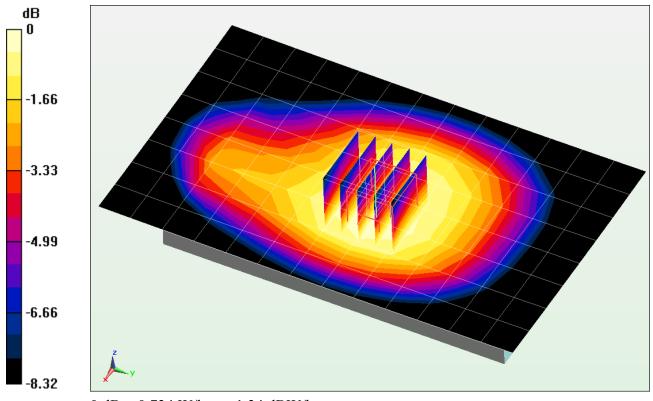
Communication System: CDMA; Frequency: 820.1 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): f = 820.1 MHz;  $\sigma = 0.962$  S/m;  $\varepsilon_r = 53.857$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 0.8 cm

Test Date: 11-12-2013; Ambient Temp: 24.5°C; Tissue Temp: 22.9°C

Probe: ES3DV3 - SN3209; ConvF(6.28, 6.28, 6.28); Calibrated: 3/15/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 3/8/2013
Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP-1158
Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

#### Mode: Cell. EVDO Rev0, BC 10, Body SAR, Back side, Mid.ch


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.346 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.891 W/kg

SAR(1 g) = 0.702 W/kg



0 dB = 0.734 W/kg = -1.34 dBW/kg

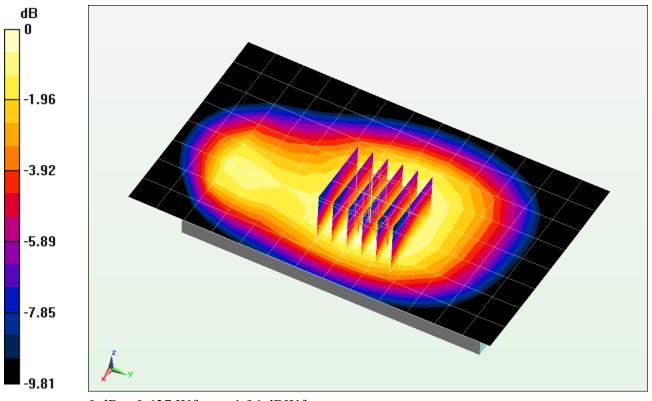
#### DUT: ZNFLS995; Type: Portable Handset; Serial: 1881

Communication System: CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated):  $f = 836.52 \text{ MHz}; \ \sigma = 0.978 \text{ S/m}; \ \epsilon_r = 53.681; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section: Space: 0.8 cm

Test Date: 11-12-2013; Ambient Temp: 24.5°C; Tissue Temp: 22.9°C

Probe: ES3DV3 - SN3209; ConvF(6.28, 6.28, 6.28); Calibrated: 3/15/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 3/8/2013
Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP-1158
Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

#### Mode: Cell. CDMA BC 0, Body SAR, Back side, Mid.ch


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.824 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.778 W/kg

SAR(1 g) = 0.611 W/kg



0 dB = 0.637 W/kg = -1.96 dBW/kg

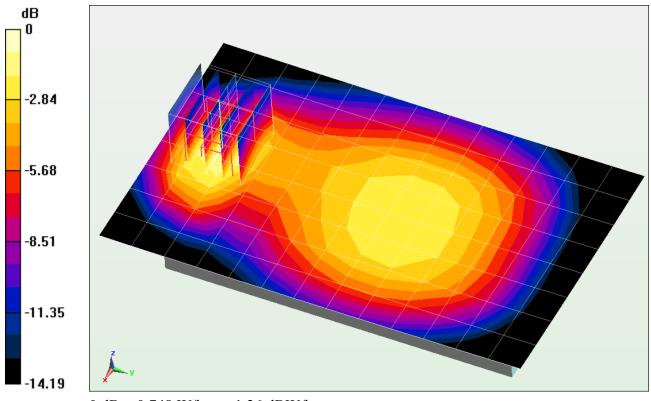
DUT: ZNFLS995; Type: Portable Handset; Serial: 1881

Communication System: CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): f = 836.52 MHz;  $\sigma = 0.978$  S/m;  $\varepsilon_r = 53.681$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section; Space: 0.8 cm

Test Date: 11-12-2013; Ambient Temp: 24.5°C; Tissue Temp: 22.9°C

Probe: ES3DV3 - SN3209; ConvF(6.28, 6.28, 6.28); Calibrated: 3/15/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 3/8/2013
Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP-1158
Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

#### Mode: Cell. EVDO Rev0, BC 0, Body SAR, Front side, Mid.ch


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.044 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 1.13 W/kg

SAR(1 g) = 0.674 W/kg



0 dB = 0.748 W/kg = -1.26 dBW/kg

#### DUT: ZNFLS995; Type: Portable Handset; Serial: 1881

Communication System: CDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used:

f = 1880 MHz; σ = 1.544 S/m;  $ε_r$  = 54.492; ρ = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 0.8 cm

Test Date: 11-14-2013; Ambient Temp: 21.1°C; Tissue Temp: 21.0°C

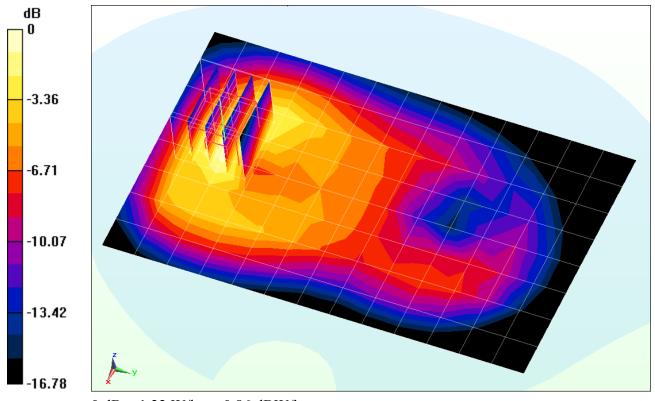
Probe: ES3DV3 - SN3319; ConvF(4.85, 4.85, 4.85); Calibrated: 4/29/2013;

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 4/22/2013

Phantom: SAM front; Type: QD000P40CD; Serial: TP:1759

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

#### Mode: PCS CDMA, Body SAR, Back side, Mid.ch


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.057 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.79 W/kg

SAR(1 g) = 1.09 W/kg



0 dB = 1.22 W/kg = 0.86 dBW/kg

#### DUT: ZNFLS995; Type: Portable Handset; Serial: 1881

Communication System: CDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used: f = 1880 MHz;  $\sigma = 1.544 \text{ S/m}$ ;  $\varepsilon_r = 54.492$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section; Space: 0.8 cm

Test Date: 11-14-2013; Ambient Temp: 21.1°C; Tissue Temp: 21.0°C

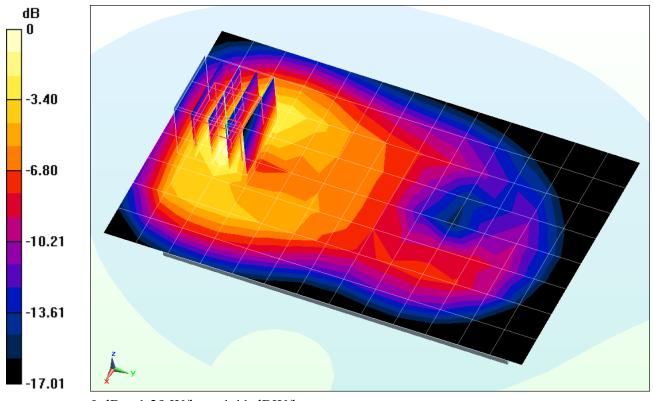
Probe: ES3DV3 - SN3319; ConvF(4.85, 4.85, 4.85); Calibrated: 4/29/2013;

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 4/22/2013

Phantom: SAM front; Type: QD000P40CD; Serial: TP:1759

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

#### Mode: PCS EVDO Rev 0, Body SAR, Back side, Mid.ch


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.702 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.91 W/kg

SAR(1 g) = 1.14 W/kg



0 dB = 1.29 W/kg = 1.11 dBW/kg

DUT: ZNFLS995; Type: Portable Handset; Serial: 1880

Communication System: GSM GPRS; 2 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:4.15

Medium: 835 Body; Medium parameters used (interpolated): f = 836.6 MHz;  $\sigma$  = 0.978 S/m;  $\epsilon_r$  = 53.68;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 0.8 cm

Test Date: 11-12-2013; Ambient Temp: 24.5°C; Tissue Temp: 22.9°C

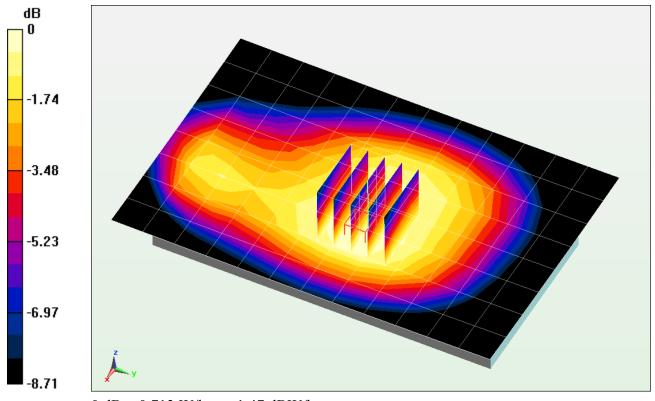
Probe: ES3DV3 - SN3209; ConvF(6.28, 6.28, 6.28); Calibrated: 3/15/2013;

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 3/8/2013

Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP-1158

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

#### Mode: GPRS 850, Body SAR, Back side, Mid.ch, 2 Tx Slots


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.386 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.861 W/kg

SAR(1 g) = 0.684 W/kg



0 dB = 0.713 W/kg = -1.47 dBW/kg

DUT: ZNFLS995; Type: Portable Handset; Serial: 1880

Communication System: GSM GPRS; 2 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:4.15

Medium: 835 Body; Medium parameters used (interpolated):  $f = 836.6 \text{ MHz}; \ \sigma = 0.978 \text{ S/m}; \ \epsilon_r = 53.68; \ \rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section; Space: 0.8 cm

Test Date: 11-12-2013; Ambient Temp: 24.5°C; Tissue Temp: 22.9°C

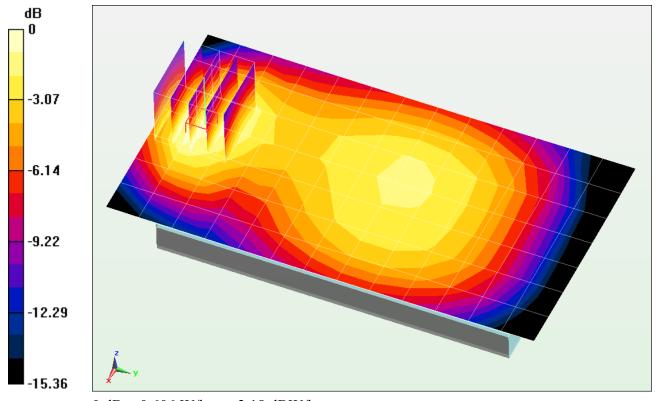
Probe: ES3DV3 - SN3209; ConvF(6.28, 6.28, 6.28); Calibrated: 3/15/2013;

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 3/8/2013

Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP-1158

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

#### Mode: GPRS 850, Body SAR, Front side, Mid.ch, 2 Tx Slots


Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.549 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.26 W/kg

SAR(1 g) = 0.765 W/kg



0 dB = 0.606 W/kg = -2.18 dBW/kg

DUT: ZNFLS995; Type: Portable Handset; Serial: 1880

Communication System: GSM GPRS; 2 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium: 1900 Body; Medium parameters used:

f = 1880 MHz;  $\sigma$  = 1.544 S/m;  $\epsilon_{r}$  = 54.492;  $\rho$  = 1000 kg/m  $^{3}$ 

Phantom section: Flat Section; Space: 0.8 cm

Test Date: 11-14-2013; Ambient Temp: 21.1°C; Tissue Temp: 21.0°C

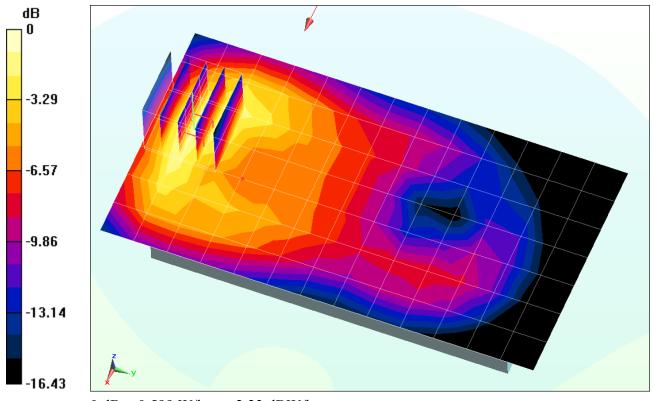
Probe: ES3DV3 - SN3319; ConvF(4.85, 4.85, 4.85); Calibrated: 4/29/2013;

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 4/22/2013

Phantom: SAM front; Type: QD000P40CD; Serial: TP:1759

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

#### Mode: GPRS 1900, Body SAR, Back side, Mid.ch, 2 Tx Slots


Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.105 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.899 W/kg

SAR(1 g) = 0.545 W/kg



0 dB = 0.599 W/kg = -2.23 dBW/kg

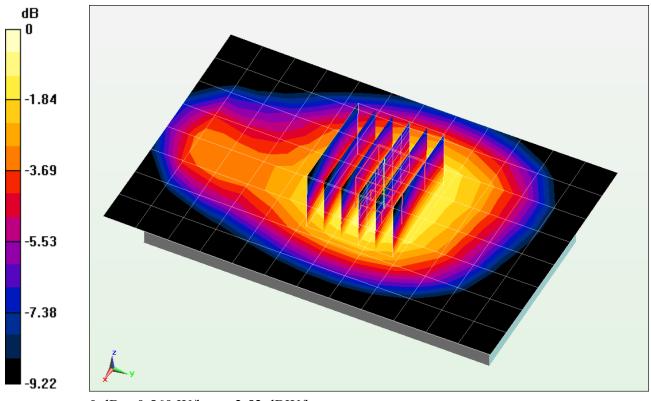
DUT: ZNFLS995; Type: Portable Handset; Serial: 1876

Communication System: UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated):  $f = 836.6 \text{ MHz}; \ \sigma = 0.99 \text{ S/m}; \ \epsilon_r = 55.419; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section: Space: 0.8 cm

Test Date: 11-14-2013; Ambient Temp: 24.5°C; Tissue Temp: 23.8°C

Probe: ES3DV3 - SN3209; ConvF(6.28, 6.28, 6.28); Calibrated: 3/15/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 3/8/2013
Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP-1158
Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

#### Mode: UMTS 850, Body SAR, Back side, Mid.ch


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (7x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.768 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.557 W/kg

SAR(1 g) = 0.442 W/kg



0 dB = 0.560 W/kg = -2.52 dBW/kg

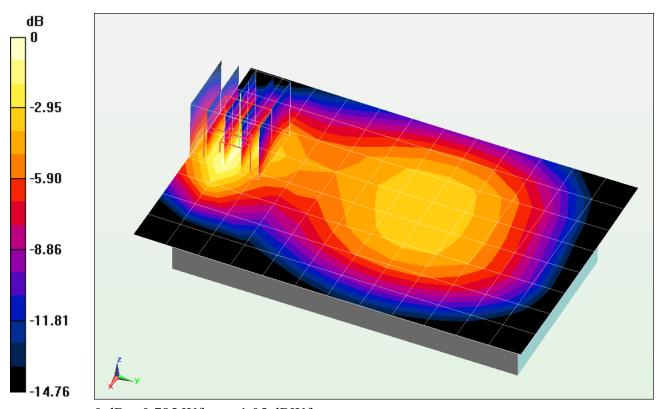
DUT: ZNFLS995; Type: Portable Handset; Serial: 1876

Communication System: UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated):  $f = 836.6 \text{ MHz}; \ \sigma = 0.99 \text{ S/m}; \ \epsilon_r = 55.419; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section: Space: 0.8 cm

Test Date: 11-14-2013; Ambient Temp: 24.5°C; Tissue Temp: 23.8°C

Probe: ES3DV3 - SN3209; ConvF(6.28, 6.28, 6.28); Calibrated: 3/15/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 3/8/2013
Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP-1158
Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

#### Mode: UMTS 850, Body SAR, Front side, Mid.ch


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.186 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.20 W/kg

SAR(1 g) = 0.696 W/kg



0 dB = 0.785 W/kg = -1.05 dBW/kg

DUT: ZNFLS995; Type: Portable Handset; Serial: 1876

Communication System: UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used:

f = 1880 MHz;  $\sigma$  = 1.544 S/m;  $\varepsilon_r$  = 54.492;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 0.8 cm

Test Date: 11-14-2013; Ambient Temp: 21.1°C; Tissue Temp: 21.0°C

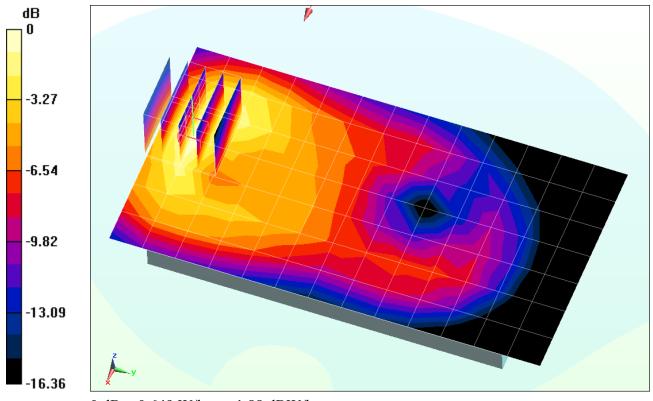
Probe: ES3DV3 - SN3319; ConvF(4.85, 4.85, 4.85); Calibrated: 4/29/2013;

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 4/22/2013

Phantom: SAM front; Type: QD000P40CD; Serial: TP:1759

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

#### Mode: UMTS 1900, Body SAR, Back side, Mid.ch


Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.065 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.944 W/kg

SAR(1 g) = 0.579 W/kg



0 dB = 0.649 W/kg = -1.88 dBW/kg

DUT: ZNFLS995; Type: Portable Handset; Serial: 1876

Communication System: UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used:

f = 1880 MHz;  $\sigma$  = 1.544 S/m;  $\varepsilon_r$  = 54.492;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 0.8 cm

Test Date: 11-14-2013; Ambient Temp: 21.1°C; Tissue Temp: 21.0°C

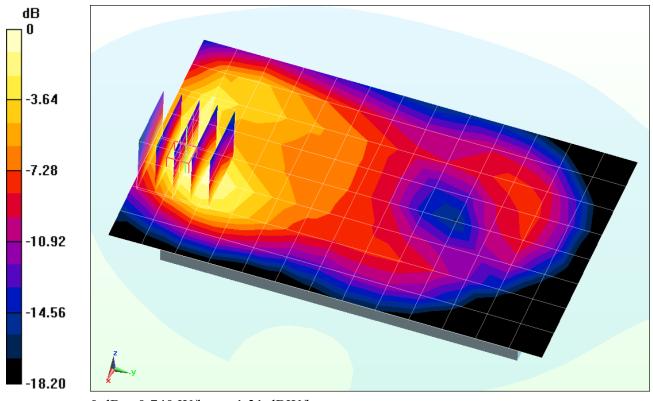
Probe: ES3DV3 - SN3319; ConvF(4.85, 4.85, 4.85); Calibrated: 4/29/2013;

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 4/22/2013

Phantom: SAM front; Type: QD000P40CD; Serial: TP:1759

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

#### Mode: UMTS 1900, Body SAR, Front side, Mid.ch


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.970 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 1.25 W/kg

SAR(1 g) = 0.702 W/kg



0 dB = 0.740 W/kg = -1.31 dBW/kg

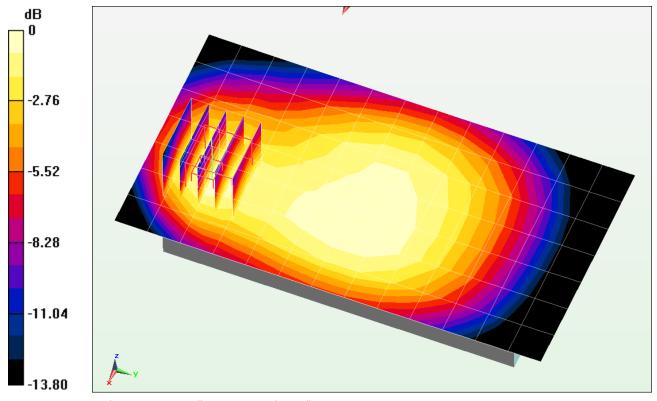
DUT: ZNFLS995; Type: Portable Handset; Serial: 1877

Communication System: LTE Band 26; Frequency: 831.5 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): f = 831.5 MHz;  $\sigma = 0.973 \text{ S/m}$ ;  $\epsilon_r = 53.729$ ;  $\rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 0.8 cm

Test Date: 11-12-2013; Ambient Temp: 24.5°C; Tissue Temp: 22.9°C

Probe: ES3DV3 - SN3209; ConvF(6.28, 6.28, 6.28); Calibrated: 3/15/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 3/8/2013
Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP-1158
Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Mode: LTE Band 26, Body SAR, Back side, Mid.ch, OPSK, 10 MHz Bandwidth, 1 RB, 0 RB Offset


Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.709 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.831 W/kg

SAR(1 g) = 0.552 W/kg



0 dB = 0.588 W/kg = -2.31 dBW/kg

DUT: ZNFLS995; Type: Portable Handset; Serial: 1877

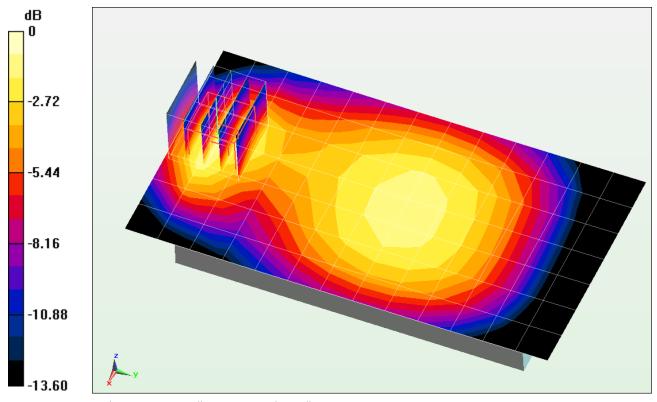
Communication System: LTE Band 26; Frequency: 831.5 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): f = 831.5 MHz;  $\sigma = 0.973$  S/m;  $\varepsilon_r = 53.729$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 0.8 cm

Test Date: 11-12-2013; Ambient Temp: 24.5°C; Tissue Temp: 22.9°C

Probe: ES3DV3 - SN3209; ConvF(6.28, 6.28, 6.28); Calibrated: 3/15/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 3/8/2013
Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP-1158
Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

# Mode: LTE Band 26, Body SAR, Front side, Mid.ch, QPSK, 10 MHz Bandwidth, 1 RB, 0 RB Offset


Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.583 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.949 W/kg

SAR(1 g) = 0.577 W/kg



0 dB = 0.629 W/kg = -2.01 dBW/kg

DUT: ZNFLS995; Type: Portable Handset; Serial: 1879

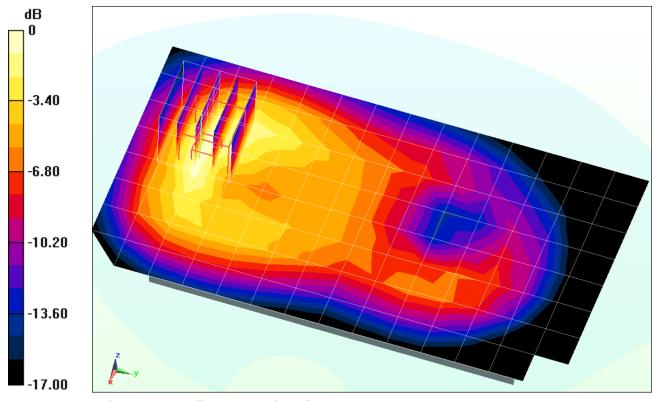
Communication System: LTE Band 25 (PCS); Frequency: 1882.5 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used (interpolated):  $f = 1882.5 \text{ MHz}; \ \sigma = 1.547 \text{ S/m}; \ \epsilon_r = 54.475; \ \rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section; Space: 0.8 cm

Test Date: 11-14-2013; Ambient Temp: 21.1°C; Tissue Temp: 21.0°C

Probe: ES3DV3 - SN3319; ConvF(4.85, 4.85, 4.85); Calibrated: 4/29/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 4/22/2013
Phantom: SAM front; Type: QD000P40CD; Serial: TP:1759
Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Mode: LTE Band 25 (PCS), Body SAR, Back side, Mid.ch, QPSK, 10 MHz Bandwidth, 1 RB, 49 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.521 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.26 W/kg

SAR(1 g) = 0.767 W/kg



0 dB = 0.848 W/kg = -0.72 dBW/kg

DUT: ZNFLS995; Type: Portable Handset; Serial: 1879

Communication System: LTE Band 25 (PCS); Frequency: 1910 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used (interpolated):  $f = 1910 \text{ MHz}; \ \sigma = 1.585 \text{ S/m}; \ \epsilon_r = 54.283; \ \rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section; Space: 0.8 cm

Test Date: 11-14-2013; Ambient Temp: 21.1°C; Tissue Temp: 21.0°C

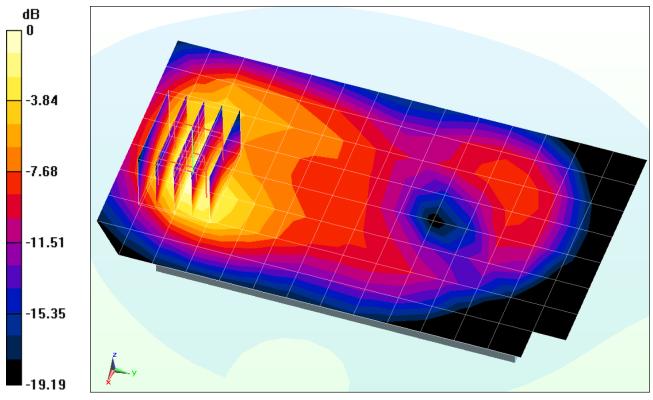
Probe: ES3DV3 - SN3319; ConvF(4.85, 4.85, 4.85); Calibrated: 4/29/2013;

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 4/22/2013

Phantom: SAM front; Type: QD000P40CD; Serial: TP:1759

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Mode: LTE Band 25 (PCS), Body SAR, Front side, High.ch, QPSK, 10 MHz Bandwidth, 1 RB, 0 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.267 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.55 W/kg

SAR(1 g) = 0.873 W/kg



0 dB = 0.976 W/kg = -0.11 dBW/kg

DUT: ZNFLS995; Type: Portable Handset; Serial: 1875

Communication System: LTE Band 41; Frequency: 2636.5 MHz; Duty Cycle: 1:1.59 Medium: 2450 Body; Medium parameters used (interpolated):  $f = 2636.5 \text{ MHz}; \ \sigma = 2.273 \text{ S/m}; \ \epsilon_r = 51.768; \ \rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section; Space: 0.8 cm

Test Date: 11-18-2013; Ambient Temp: 23.9°C; Tissue Temp: 23.6°C

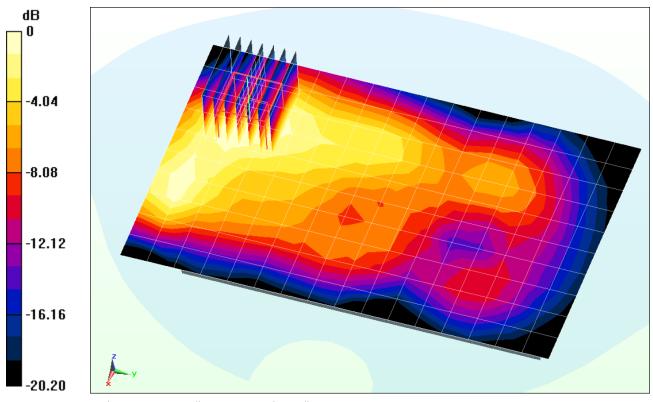
Probe: ES3DV2 - SN3022; ConvF(3.85, 3.85, 3.85); Calibrated: 8/22/2013;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 8/21/2013

Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

# Mode: LTE Band 41, Body SAR, Back side, Mid-High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset


Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.147 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.789 W/kg

SAR(1 g) = 0.374 W/kg



0 dB = 0.461 W/kg = -3.36 dBW/kg

**DUT: ZNFLS995; Type: Portable Handset; Serial: 1875** 

Communication System: LTE Band 41; Frequency: 2506 MHz; Duty Cycle: 1:1.59 Medium: 2450 Body; Medium parameters used (interpolated):  $f = 2506 \text{ MHz}; \ \sigma = 2.095 \text{ S/m}; \ \epsilon_r = 52.204; \ \rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section; Space: 0.8 cm

Test Date: 11-18-2013; Ambient Temp: 24.1°C; Tissue Temp: 23.7°C

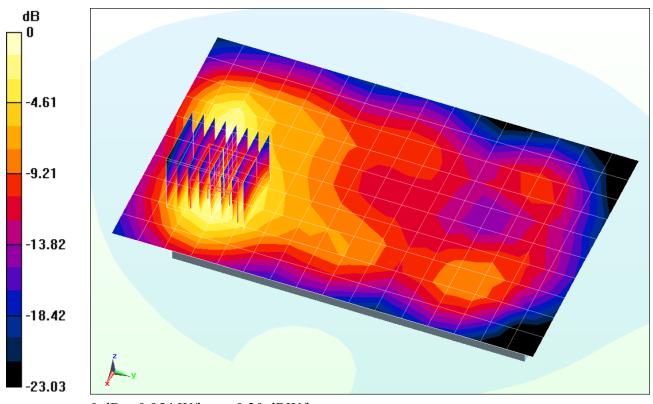
Probe: ES3DV2 - SN3022; ConvF(4.01, 4.01, 4.01); Calibrated: 8/22/2013;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 8/21/2013

Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

# Mode: LTE Band 41, Body SAR, Front side, Low.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset


Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.694 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.52 W/kg

SAR(1 g) = 0.771 W/kg



0 dB = 0.954 W/kg = -0.20 dBW/kg

DUT: ZNFLS995; Type: Portable Handset; Serial: 1890

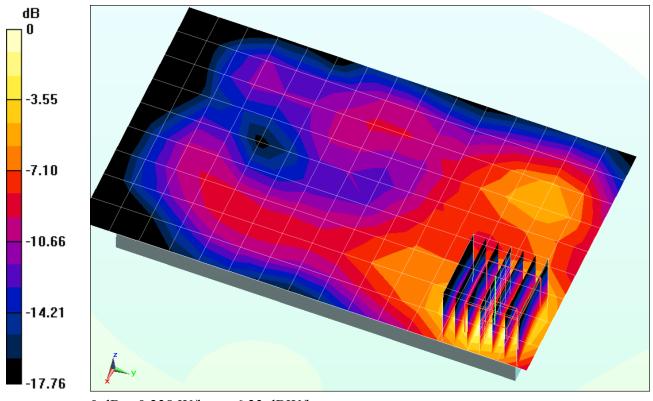
Communication System: IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used (interpolated):  $f = 2462 \text{ MHz}; \ \sigma = 2.005 \text{ S/m}; \ \epsilon_r = 53.324; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 0.8 cm

Test Date: 11-11-2013; Ambient Temp: 24.1°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3263; ConvF(4.33, 4.33, 4.33); Calibrated: 5/16/2013; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 5/13/2013
Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, Version 4.7 (80);SEMCAD X Version 14.6.10 (7164)

### Mode: IEEE 802.11b, Body SAR, Ch 11, 1 Mbps, Back Side


Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.551 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.391 W/kg

SAR(1 g) = 0.187 W/kg



0 dB = 0.238 W/kg = -6.23 dBW/kg

DUT: ZNFLS995; Type: Portable Handset; Serial: 1890

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5765 MHz; Duty Cycle: 1:1

Medium: 5 GHz Body; Medium parameters used:

f = 5765 MHz;  $\sigma$  = 6.227 S/m;  $\varepsilon_r$  = 45.954;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 0.8 cm

Test Date: 11-12-2013; Ambient Temp: 21.5°C; Tissue Temp: 20.4°C

Probe: EX3DV4 - SN3589; ConvF(3.66, 3.66, 3.66); Calibrated: 1/17/2013;

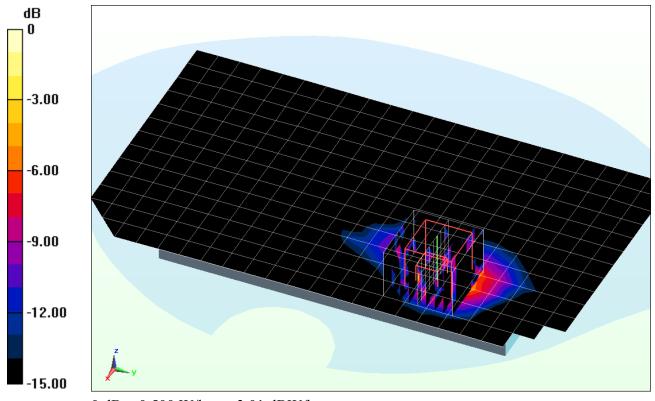
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1272; Calibrated: 1/17/2013

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

#### Mode: IEEE 802.11a, 5.8 GHz, Body SAR, Ch 153, 6 Mbps, Back Side


**Area Scan (14x23x1):** Measurement grid: dx=10mm, dy=10mm

**Zoom Scan (9x9x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 1.623 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.325 W/kg

SAR(1 g) = 0.026 W/kg



0 dB = 0.500 W/kg = -3.01 dBW/kg

DUT: ZNFLS995; Type: Portable Handset; Serial: 1890

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5260 MHz; Duty Cycle: 1:1

Medium: 5 GHz Body; Medium parameters used:

f = 5260 MHz;  $\sigma$  = 5.558 S/m;  $\varepsilon_r$  = 46.854;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 0.8 cm

Test Date: 11-12-2013; Ambient Temp: 21.5°C; Tissue Temp: 20.4°C

Probe: EX3DV4 - SN3589; ConvF(3.81, 3.81, 3.81); Calibrated: 1/17/2013;

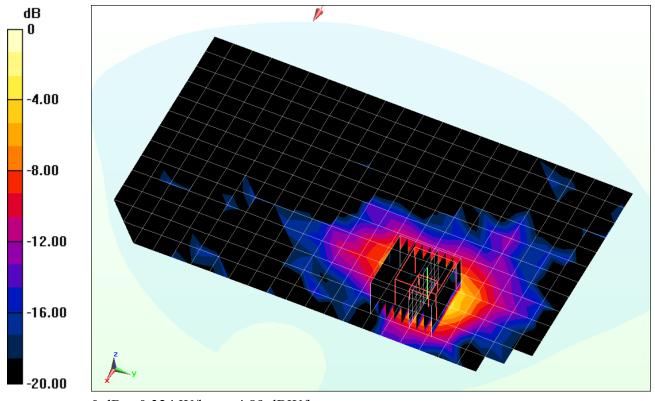
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1272; Calibrated: 1/17/2013

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

Mode: IEEE 802.11a, 5.3 GHz, Body SAR, Ch 52, 6 Mbps, Back Side


**Area Scan (14x23x1):** Measurement grid: dx=10mm, dy=10mm

**Zoom Scan (9x9x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 4.386 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.504 W/kg

SAR(1 g) = 0.116 W/kg



0 dB = 0.324 W/kg = -4.89 dBW/kg

DUT: ZNFLS995; Type: Portable Handset; Serial: 1890

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5765 MHz; Duty Cycle: 1:1

Medium: 5 GHz Body; Medium parameters used:

f = 5765 MHz;  $\sigma$  = 6.227 S/m;  $\varepsilon_r$  = 45.954;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-12-2013; Ambient Temp: 21.5°C; Tissue Temp: 20.4°C

Probe: EX3DV4 - SN3589; ConvF(3.81, 3.81, 3.81); Calibrated: 1/17/2013;

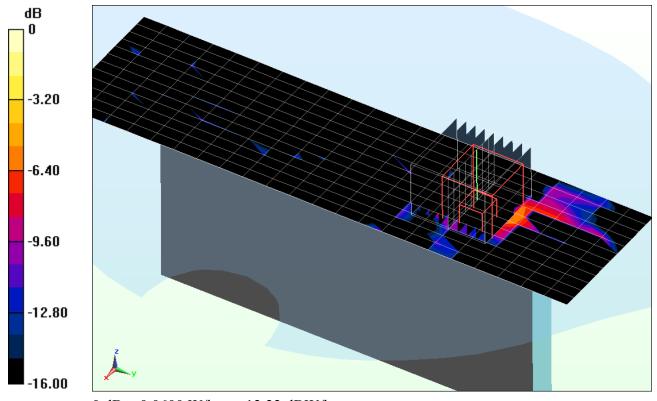
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1272; Calibrated: 1/17/2013

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

### Mode: IEEE 802.11a, 5.8 GHz, Body SAR, Ch 153, 6 Mbps, Left Edge


Area Scan (13x23x1): Measurement grid: dx=5mm, dy=10mm

**Zoom Scan (9x9x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 0.758 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.2 W/kg

SAR(1 g) = 0.051 W/kg



0 dB = 0.0600 W/kg = -12.22 dBW/kg

DUT: ZNFLS995; Type: Portable Handset; Serial: 1890

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5260 MHz; Duty Cycle: 1:1

Medium: 5 GHz Body; Medium parameters used:

f = 5260 MHz;  $\sigma$  = 5.558 S/m;  $\varepsilon_r$  = 46.854;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 11-12-2013; Ambient Temp: 21.5°C; Tissue Temp: 20.4°C

Probe: EX3DV4 - SN3589; ConvF(3.81, 3.81, 3.81); Calibrated: 1/17/2013;

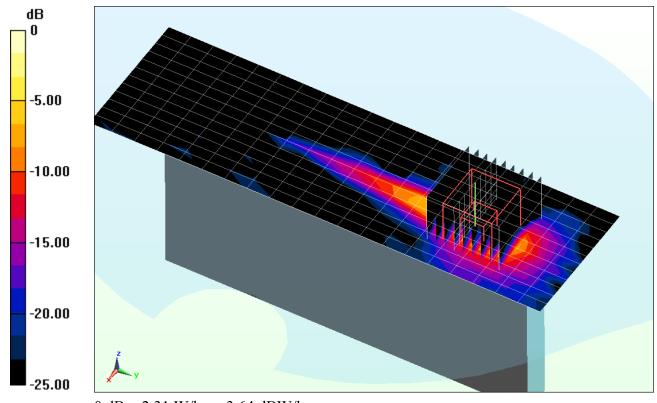
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1272; Calibrated: 1/17/2013

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

#### Mode: IEEE 802.11a, 5.3 GHz, Hand SAR, Ch 52, 6 Mbps, Left Edge


Area Scan (13x21x1): Measurement grid: dx=5mm, dy=10mm

**Zoom Scan (9x9x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 14.492 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 3.37 W/kg

SAR(1 g) = 0.862 W/kg; SAR(10 g) = 0.218 W/kg



0 dB = 2.31 W/kg = 3.64 dBW/kg

### APPENDIX B: SYSTEM VERIFICATION

#### DUT: SAR Dipole 835 MHz; Type: D835V2; Serial: 4d119

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: 835 Head; Medium parameters used:

f = 835 MHz;  $\sigma$  = 0.877 S/m;  $\epsilon_{r}$  = 40.224;  $\rho$  = 1000 kg/m  $^{3}$ 

Phantom section: Flat Section; Space: 1.5 cm

Test Date: 11-14-2013; Ambient Temp: 24.0°C; Tissue Temp: 21.2°C

Probe: ES3DV2 - SN3022; ConvF(6.09, 6.09, 6.09); Calibrated: 8/22/2013;

Sensor-Surface: 4mm (Mechanical Surface Detection)

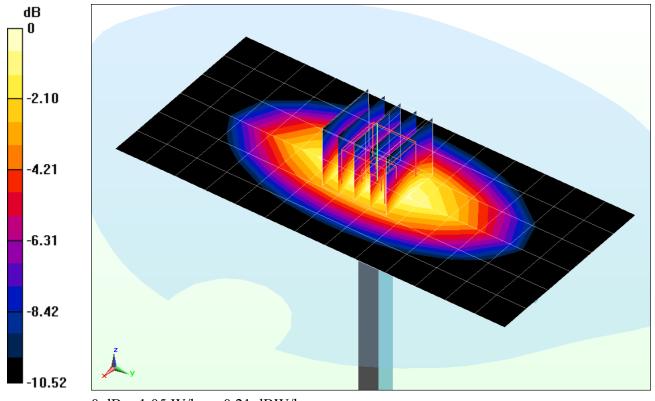
Electronics: DAE4 Sn1322; Calibrated: 8/21/2013

Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

### 835 MHz System Verification

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm


**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 1.43 W/kg

SAR(1 g) = 0.978 W/kg

Deviation = 1.03%



0 dB = 1.05 W/kg = 0.21 dBW/kg

#### DUT: SAR Dipole 1900 MHz; Type: D1900V2; Serial: 5d148

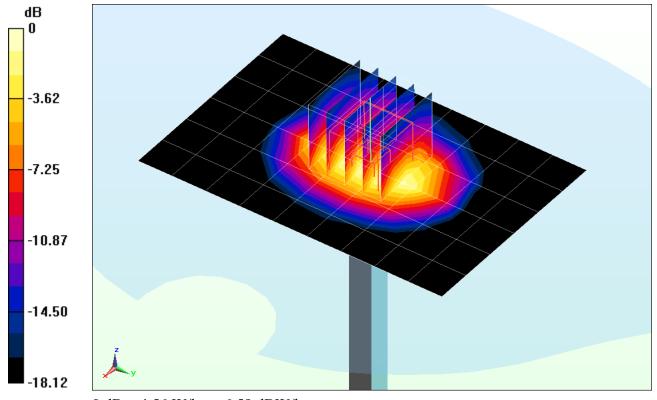
Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head; Medium parameters used (interpolated): f = 1900 MHz;  $\sigma = 1.449 \text{ S/m}$ ;  $\varepsilon_r = 40.555$ ;  $\rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-13-2013; Ambient Temp: 22.2°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3318; ConvF(5.22, 5.22, 5.22); Calibrated: 4/29/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1364; Calibrated: 4/22/2013
Phantom: SAM; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

#### 1900 MHz System Verification

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 7.56 W/kg

SAR(1 g) = 4.08 W/kg

Deviation = 2.77%



0 dB = 4.56 W/kg = 6.59 dBW/kg

#### DUT: SAR Dipole 1900 MHz; Type: D1900V2; Serial: 5d148

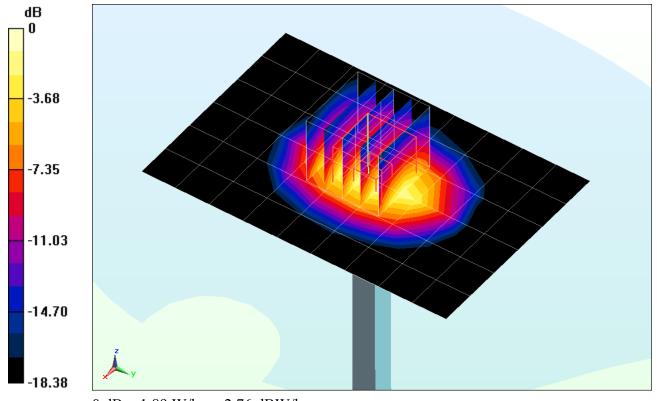
Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head; Medium parameters used (interpolated):  $f = 1900 \text{ MHz}; \ \sigma = 1.422 \text{ S/m}; \ \epsilon_r = 39.497; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-19-2013; Ambient Temp: 24.0°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3213; ConvF(5.08, 5.08, 5.08); Calibrated: 4/29/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 4/22/2013
Phantom: SAM Front; Type: QD000P40CD; Serial: 1717
Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

### 1900 MHz System Verification

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 16.0 dBm (40 mW)

Peak SAR (extrapolated) = 3.19 W/kg

SAR(1 g) = 1.71 W/kg

Deviation = 7.68%



0 dB = 1.89 W/kg = 2.76 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: 2450 Head; Medium parameters used:

f = 2450 MHz;  $\sigma$  = 1.832 S/m;  $\epsilon_{_{I}}$  = 40.058;  $\rho$  = 1000 kg/m  $^3$ 

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-14-2013; Ambient Temp: 22.6°C; Tissue Temp: 22.3°C

Probe: ES3DV3 - SN3209; ConvF(4.57, 4.57, 4.57); Calibrated: 3/15/2013;

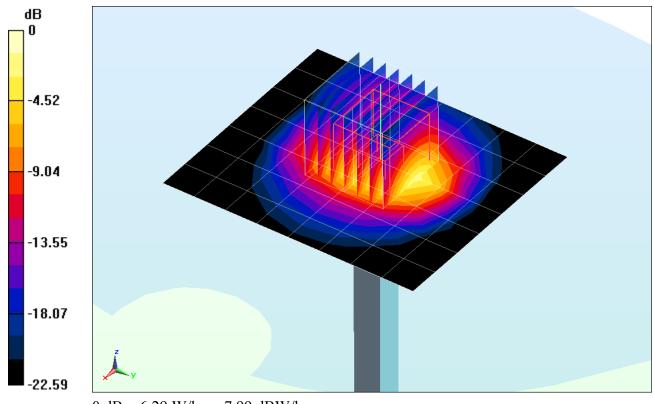
Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 3/8/2013

Phantom: SAM Right; Type: QD000P40CD; Serial: 1686

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

### 2450 MHz System Validation

**Area Scan (8x9x1):** Measurement grid: dx=12mm, dy=12mm


**Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 10.1 W/kg

SAR(1 g) = 4.96 W/kg

Deviation = -5.52%



0 dB = 6.29 W/kg = 7.99 dBW/kg

#### DUT: SAR Dipole 2600 MHz; Type: D2600V2; Serial: 1004

Communication System: CW; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: 2600 Head; Medium parameters used:

f = 2600 MHz; σ = 1.981 S/m;  $ε_r$  = 39.176; ρ = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-18-2013; Ambient Temp: 23.6°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN3914; ConvF(6.79, 6.79, 6.79); Calibrated: 10/23/2013;

Sensor-Surface: 3mm (Mechanical Surface Detection)

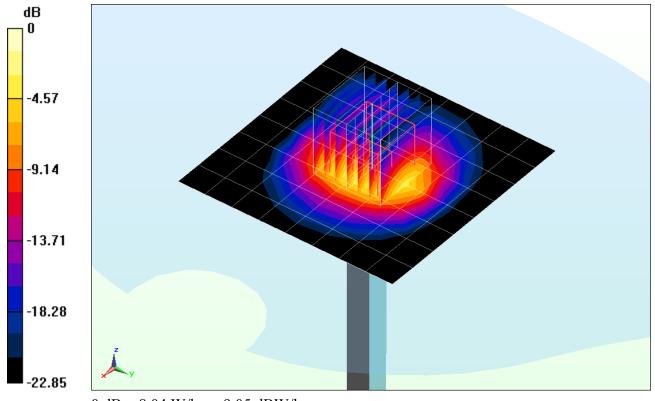
Electronics: DAE4 Sn649; Calibrated: 2/6/2013

Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

### **2600 MHz System Verification**

Area Scan (9x9x1): Measurement grid: dx=12mm, dy=12mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 12.9 W/kg

SAR(1 g) = 6.02 W/kg

Deviation = 3.44%



0 dB = 8.04 W/kg = 9.05 dBW/kg

DUT: Dipole 5200 MHz; Type: D5GHzV2; Serial: 1120

Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium: 5 GHz Head; Medium parameters used:

f = 5200 MHz;  $\sigma$  = 4.5 S/m;  $\epsilon_r$  = 35.078;  $\rho$  = 1000 kg/m  $^3$ 

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-26-2013; Ambient Temp: 22.1°C; Tissue Temp: 21.7°C

Probe: EX3DV4 - SN3914; ConvF(4.99, 4.99, 4.99); Calibrated: 10/23/2013;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 2/6/2013

Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

### **5200 MHz System Verification**

**Area Scan (7x7x1):** Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Input Power = 16.0 dBm (40 mW)

Peak SAR (extrapolated) = 12.7 W/kg

SAR(1 g) = 3.02 W/kg

Deviation = -0.66%



0 dB = 7.20 W/kg = 8.57 dBW/kg

DUT: Dipole 5300 MHz; Type: D5GHzV2; Serial: 1120

Communication System: CW; Frequency: 5300 MHz; Duty Cycle: 1:1

Medium: 5 GHz Head; Medium parameters used:

f = 5300 MHz;  $\sigma$  = 4.587 S/m;  $\varepsilon_r$  = 34.954;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-26-2013; Ambient Temp: 22.1°C; Tissue Temp: 21.7°C

Probe: EX3DV4 - SN3914; ConvF(4.82, 4.82, 4.82); Calibrated: 10/23/2013;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

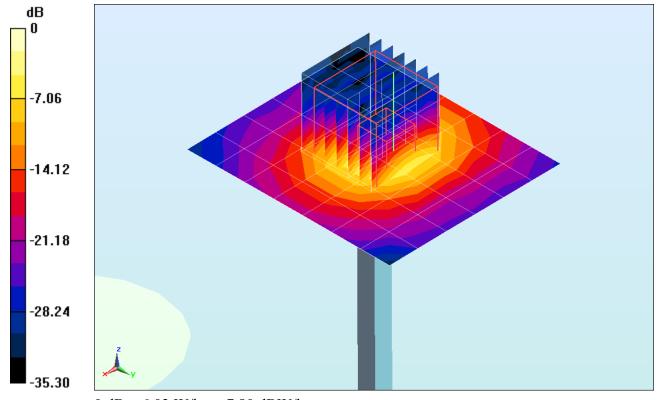
Electronics: DAE4 Sn649; Calibrated: 2/6/2013

Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

### 5300 MHz System Verification

**Area Scan (7x8x1):** Measurement grid: dx=10mm, dy=10mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Input Power = 16.0 dBm (40 mW)

Peak SAR (extrapolated) = 12.9 W/kg

SAR(1 g) = 3.04 W/kg

Deviation = -3.43%



0 dB = 6.03 W/kg = 7.80 dBW/kg

DUT: Dipole 5500 MHz; Type: D5GHzV2; Serial: 1120

Communication System: CW; Frequency: 5500 MHz; Duty Cycle: 1:1

Medium: 5 GHz Head; Medium parameters used:

f = 5500 MHz;  $\sigma$  = 4.809 S/m;  $\epsilon_r$  = 34.681;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-26-2013; Ambient Temp: 22.1°C; Tissue Temp: 21.7°C

Probe: EX3DV4 - SN3914; ConvF(4.55, 4.55, 4.55); Calibrated: 10/23/2013;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

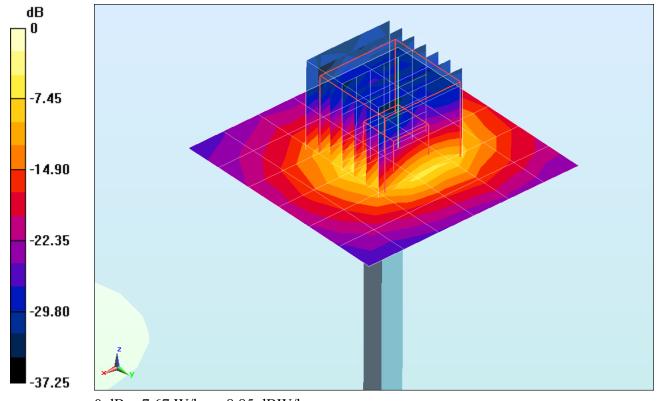
Electronics: DAE4 Sn649; Calibrated: 2/6/2013

Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

### 5500 MHz System Verification

**Area Scan (7x7x1):** Measurement grid: dx=10mm, dy=10mm


**Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Input Power = 16.0 dBm (40 mW)

Peak SAR (extrapolated) = 14.0 W/kg

SAR(1 g) = 3.18 W/kg

Deviation = -0.75%



0 dB = 7.67 W/kg = 8.85 dBW/kg

DUT: Dipole 5600 MHz; Type: D5GHzV2; Serial: 1120

Communication System: CW; Frequency: 5600 MHz; Duty Cycle: 1:1

Medium: 5 GHz Head; Medium parameters used:

f = 5600 MHz; σ = 4.905 S/m;  $ε_r = 34.516$ ; ρ = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-26-2013; Ambient Temp: 22.1°C; Tissue Temp: 21.7°C

Probe: EX3DV4 - SN3914; ConvF(4.37, 4.37, 4.37); Calibrated: 10/23/2013;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

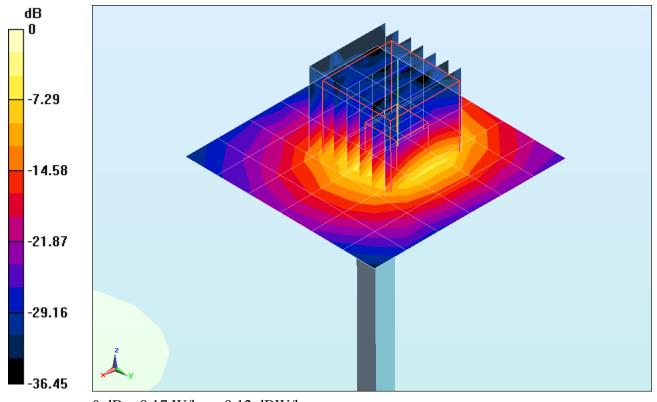
Electronics: DAE4 Sn649; Calibrated: 2/6/2013

Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

### **5600 MHz System Verification**

**Area Scan (7x7x1):** Measurement grid: dx=10mm, dy=10mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Input Power = 16.0 dBm (40 mW)

Peak SAR (extrapolated) = 15.3 W/kg

SAR(1 g) = 3.44 W/kg

Deviation = 7.63%



0 dB = 8.17 W/kg = 9.12 dBW/kg

DUT: Dipole 5800 MHz; Type: D5GHzV2; Serial: 1120

Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1

Medium: 5 GHz Head; Medium parameters used:

f = 5800 MHz;  $\sigma$  = 5.088 S/m;  $\epsilon_{_{I}}$  = 34.302;  $\rho$  = 1000 kg/m  $^3$ 

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-26-2013; Ambient Temp: 22.1°C; Tissue Temp: 21.7°C

Probe: EX3DV4 - SN3914; ConvF(4.52, 4.52, 4.52); Calibrated: 10/23/2013;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

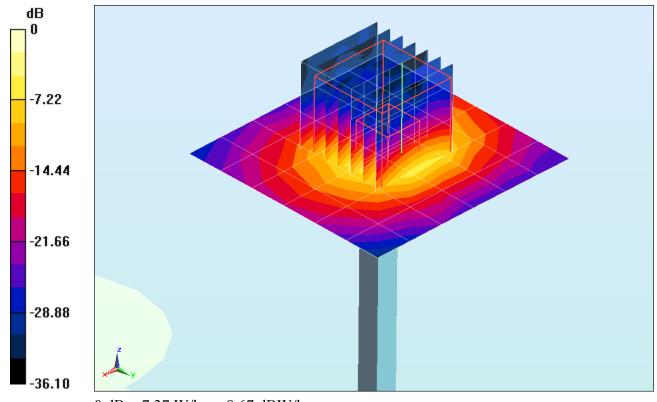
Electronics: DAE4 Sn649; Calibrated: 2/6/2013

Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

### **5800 MHz System Verification**

**Area Scan (7x7x1):** Measurement grid: dx=10mm, dy=10mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Input Power = 16.0 dBm (40 mW)

Peak SAR (extrapolated) = 14.3 W/kg

SAR(1 g) = 3.05 W/kg

Deviation = 1.80%



0 dB = 7.37 W/kg = 8.67 dBW/kg

#### DUT: SAR Dipole 835 MHz; Type: D835V2; Serial: 4d119

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used:

 $f = 835 \text{ MHz}; \ \sigma = 0.989 \text{ S/m}; \ \epsilon_r = 55.428; \ \rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section; Space: 1.5 cm

Test Date: 11-14-2013; Ambient Temp: 24.5°C; Tissue Temp: 23.8°C

Probe: ES3DV3 - SN3209; ConvF(6.28, 6.28, 6.28); Calibrated: 3/15/2013;

Sensor-Surface: 4mm (Mechanical Surface Detection)

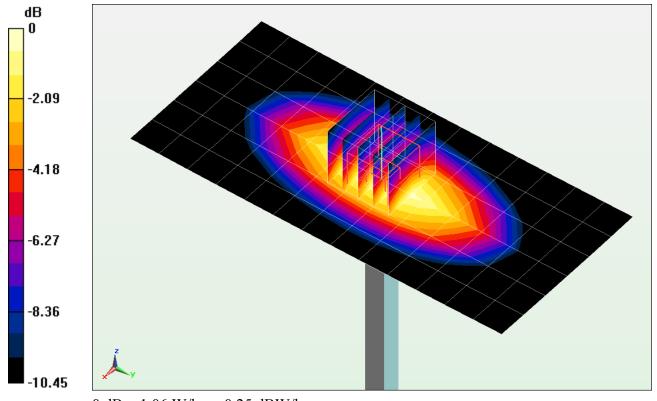
Electronics: DAE4 Sn1334; Calibrated: 3/8/2013

Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP-1158

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

### 835 MHz System Verification

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm


**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 1.42 W/kg

SAR(1 g) = 0.979 W/kg

Deviation = 2.62%



0 dB = 1.06 W/kg = 0.25 dBW/kg

#### DUT: SAR Dipole 1900 MHz; Type: D1900V2; Serial: 5d148

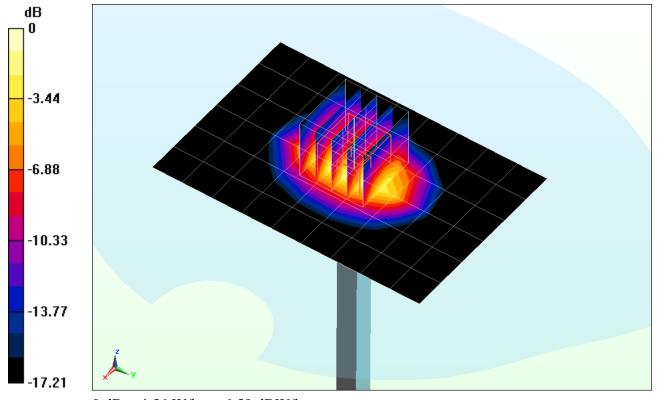
Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used (interpolated): f = 1900 MHz;  $\sigma = 1.571 \text{ S/m}$ ;  $\epsilon_r = 54.353$ ;  $\rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-14-2013; Ambient Temp: 21.1°C; Tissue Temp: 21.0°C

Probe: ES3DV3 - SN3319; ConvF(4.85, 4.85, 4.85); Calibrated: 4/29/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 4/22/2013
Phantom: SAM front; Type: QD000P40CD; Serial: TP:1759
Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

### 1900 MHz System Verification

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 7.27 W/kg

SAR(1 g) = 4.04 W/kg

Deviation = -0.98%



0 dB = 4.56 W/kg = 6.59 dBW/kg

#### DUT: SAR Dipole 1900 MHz; Type: D1900V2; Serial: 5d148

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used (interpolated):  $f = 1900 \text{ MHz}; \ \sigma = 1.584 \text{ S/m}; \ \epsilon_r = 51.454; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

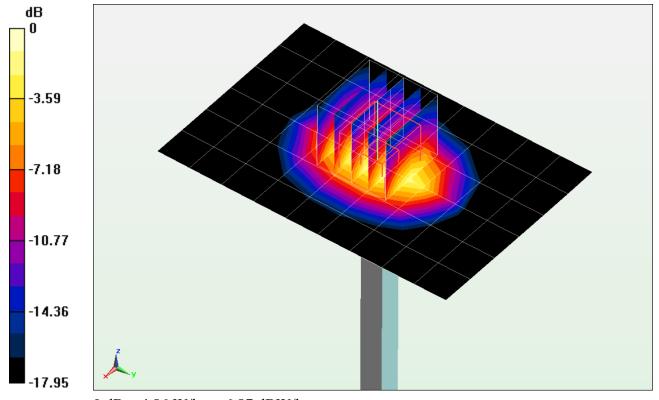
Test Date: 11-19-2013; Ambient Temp: 23.7°C; Tissue Temp: 23.6°C

Probe: ES3DV3 - SN3209; ConvF(4.77, 4.77, 4.77); Calibrated: 3/15/2013; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 3/8/2013
Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP-1158

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

### 1900 MHz System Verification

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 7.98 W/kg

SAR(1 g) = 4.35 W/kg

Deviation = 6.62%



0 dB = 4.86 W/kg = 6.87 dBW/kg

#### DUT: SAR Dipole 2450 MHz; Type: D2450V2; Serial: 882

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used:

f = 2450 MHz;  $\sigma$  = 1.991 S/m;  $\epsilon_{_{\! F}}$  = 53.36;  $\rho$  = 1000 kg/m  $^3$ 

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-11-2013; Ambient Temp: 24.1°C; Tissue Temp: 21.5°C

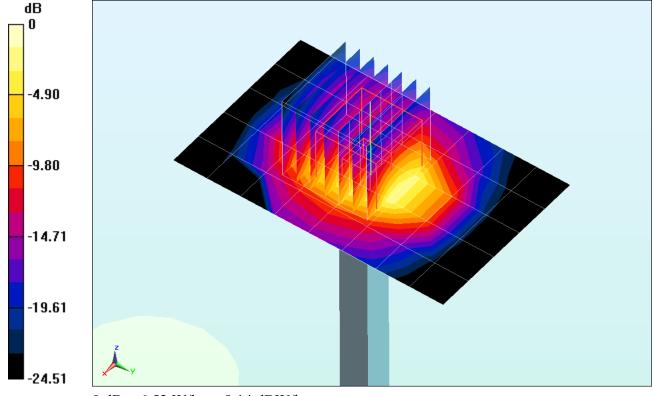
Probe: ES3DV3 - SN3263; ConvF(4.33, 4.33, 4.33); Calibrated: 5/16/2013;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/13/2013

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

### 2450MHz System Verification


Area Scan (6x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 11.0 W/kg

SAR(1 g) = 4.97 W/kgDeviation = -0.40%



0 dB = 6.52 W/kg = 8.14 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: 2450 Body; Medium parameters used:

f = 2450 MHz;  $\sigma$  = 2.003 S/m;  $\epsilon_{_{I}}$  = 52.362;  $\rho$  = 1000 kg/m  $^3$ 

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-18-2013; Ambient Temp: 24.1°C; Tissue Temp: 23.7°C

Probe: ES3DV2 - SN3022; ConvF(4.01, 4.01, 4.01); Calibrated: 8/22/2013;

Sensor-Surface: 3mm (Mechanical Surface Detection)

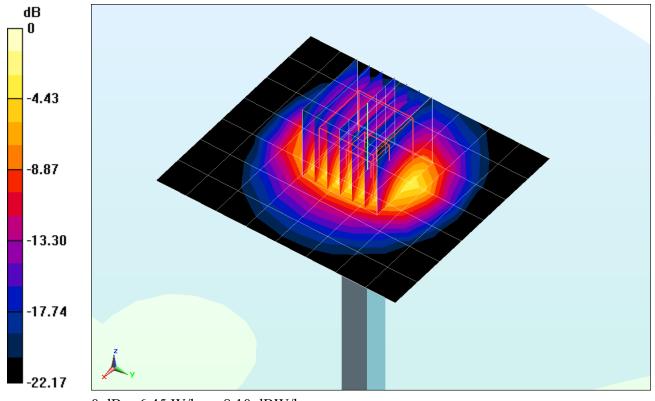
Electronics: DAE4 Sn1322; Calibrated: 8/21/2013

Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

### 2450 MHz System Verification

**Area Scan (8x9x1):** Measurement grid: dx=12mm, dy=12mm


**Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 10.9 W/kg

SAR(1 g) = 5.15 W/kg

Deviation = 3.83%



0 dB = 6.45 W/kg = 8.10 dBW/kg

#### DUT: SAR Dipole 2600 MHz; Type: D2600V2; Serial: 1004

Communication System: CW; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: 2450 Body; Medium parameters used:

f = 2600 MHz;  $\sigma$  = 2.22 S/m;  $\epsilon_r$  = 51.836;  $\rho$  = 1000 kg/m  $^3$ 

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-18-2013; Ambient Temp: 23.9°C; Tissue Temp: 23.6°C

Probe: ES3DV2 - SN3022; ConvF(3.85, 3.85, 3.85); Calibrated: 8/22/2013;

Sensor-Surface: 3mm (Mechanical Surface Detection)

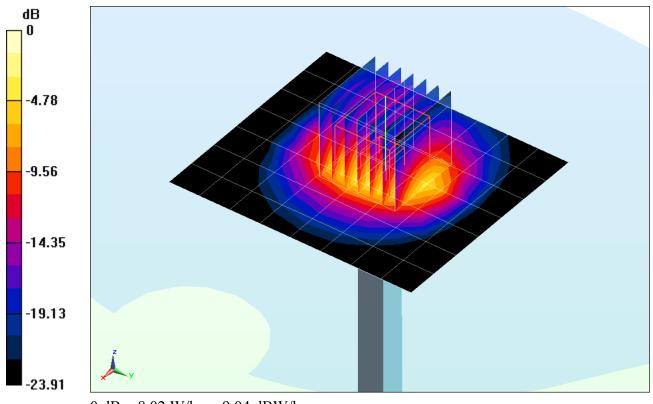
Electronics: DAE4 Sn1322; Calibrated: 8/21/2013

Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

### 2600 MHz System Verification

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm


**Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 13.9 W/kg

SAR(1 g) = 6.1 W/kg

Deviation = 6.09%



0 dB = 8.02 W/kg = 9.04 dBW/kg

DUT: Dipole 5200 MHz; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium: 5 GHz Body; Medium parameters used:

f = 5200 MHz;  $\sigma$  = 5.468 S/m;  $\epsilon_{r}$  = 46.966;  $\rho$  = 1000 kg/m  $^{3}$ 

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-12-2013; Ambient Temp: 21.5°C; Tissue Temp: 20.4°C

Probe: EX3DV4 - SN3589; ConvF(3.99, 3.99, 3.99); Calibrated: 1/17/2013;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1272; Calibrated: 1/17/2013

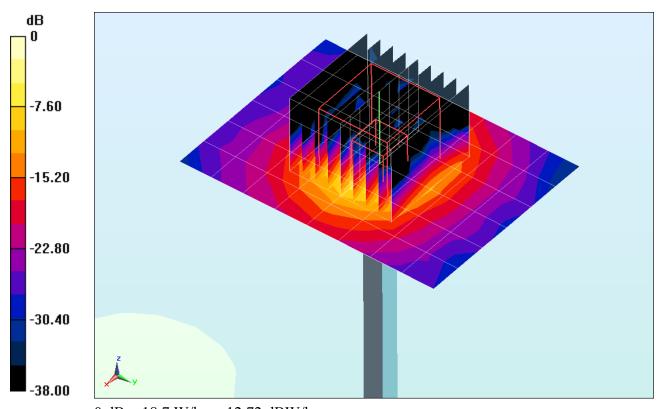
Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

#### 5200MHz System Verification

**Area Scan (7x9x1):** Measurement grid: dx=10mm, dy=10mm

Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4


Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 29.7 W/kg

SAR(1 g) = 7.5 W/kg; SAR(10 g) = 2.1 W/kg

Deviation (1 g) = -0.66%

Deviation (10 g) = -0.47%



0 dB = 18.7 W/kg = 12.72 dBW/kg

DUT: Dipole 5300 MHz; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5300 MHz; Duty Cycle: 1:1

Medium: 5 GHz Body; Medium parameters used:

f = 5300 MHz;  $\sigma$  = 5.598 S/m;  $\epsilon_r$  = 46.773;  $\rho$  = 1000 kg/m  $^3$ 

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-12-2013; Ambient Temp: 21.5°C; Tissue Temp: 20.4°C

Probe: EX3DV4 - SN3589; ConvF(3.81, 3.81, 3.81); Calibrated: 1/17/2013;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1272; Calibrated: 1/17/2013

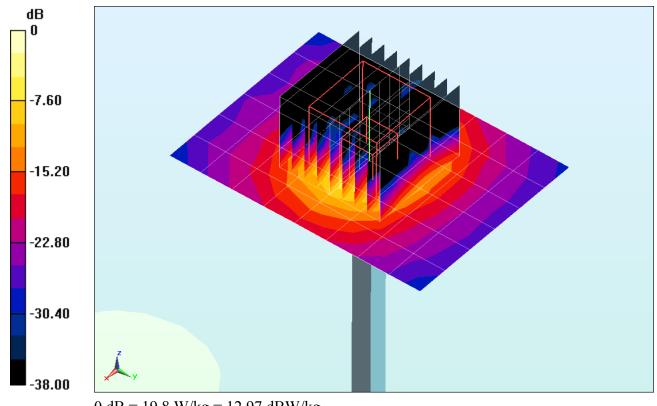
Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

#### 5300MHz System Verification

**Area Scan (7x9x1):** Measurement grid: dx=10mm, dy=10mm

**Zoom Scan (9x9x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4


Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 33.2 W/kg

SAR(1 g) = 7.95 W/kg; SAR(10 g) = 2.21 W/kg

Deviation (1 g) = 5.58%

Deviation (10 g) = 4.74%



0 dB = 19.8 W/kg = 12.97 dBW/kg

DUT: Dipole 5500 MHz; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5500 MHz; Duty Cycle: 1:1

Medium: 5 GHz Body; Medium parameters used:

f = 5500 MHz; σ = 5.866 S/m;  $ε_r$  = 46.391; ρ = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-12-2013; Ambient Temp: 21.5°C; Tissue Temp: 20.4°C

Probe: EX3DV4 - SN3589; ConvF(3.52, 3.52, 3.52); Calibrated: 1/17/2013;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1272; Calibrated: 1/17/2013

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

#### 5500MHz System Verification

**Area Scan (7x9x1):** Measurement grid: dx=10mm, dy=10mm

**Zoom Scan (9x9x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 33.6 W/kg

SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.21 W/kg

Deviation (1 g) = -1.49%

Deviation (10 g) = -1.34%



0 dB = 20.1 W/kg = 13.03 dBW/kg

DUT: Dipole 5600 MHz; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5600 MHz; Duty Cycle: 1:1

Medium: 5 GHz Body; Medium parameters used:

f = 5600 MHz; σ = 6.007 S/m;  $ε_r = 46.227$ ; ρ = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-12-2013; Ambient Temp: 21.5°C; Tissue Temp: 20.4°C

Probe: EX3DV4 - SN3589; ConvF(3.32, 3.32, 3.32); Calibrated: 1/17/2013;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1272; Calibrated: 1/17/2013

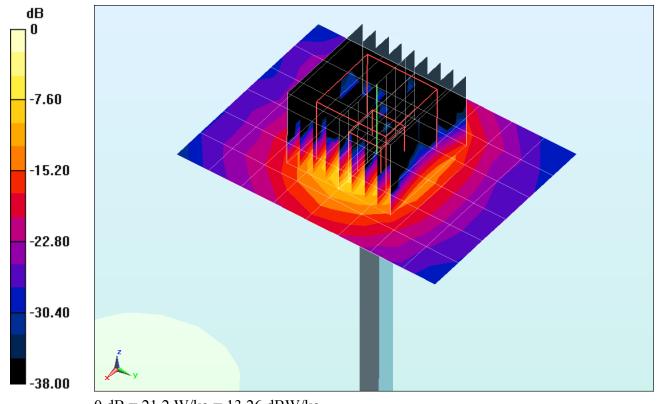
Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

#### 5600MHz System Verification

**Area Scan (7x9x1):** Measurement grid: dx=10mm, dy=10mm

Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4


Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 33.9 W/kg

SAR(1 g) = 8.32 W/kg; SAR(10 g) = 2.3 W/kg

Deviation (1 g) = 3.61%

Deviation (10 g) = 3.14%



0 dB = 21.2 W/kg = 13.26 dBW/kg

DUT: Dipole 5800 MHz; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1

Medium: 5 GHz Body; Medium parameters used:

f = 5800 MHz;  $\sigma$  = 6.281 S/m;  $\epsilon_{r}$  = 45.926;  $\rho$  = 1000 kg/m  $^{3}$ 

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-12-2013; Ambient Temp: 21.5°C; Tissue Temp: 20.4°C

Probe: EX3DV4 - SN3589; ConvF(3.66, 3.66, 3.66); Calibrated: 1/17/2013;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

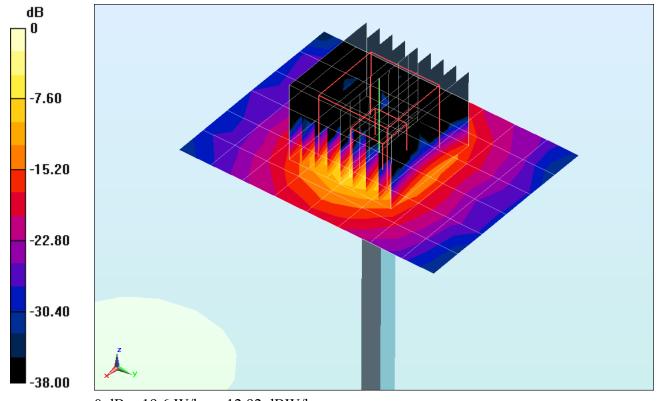
Electronics: DAE4 Sn1272; Calibrated: 1/17/2013

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.10 (7164)

### 5800MHz System Verification

Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm


Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Input Power = 20.0 dBm (100 mW)

Peak SAR (extrapolated) = 31.7 W/kg

SAR(1 g) = 7.48 W/kg

Deviation = -0.40%



0 dB = 19.6 W/kg = 12.92 dBW/kg

### APPENDIX C: PROBE CALIBRATION

### **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

**PC Test** 

Accreditation No.: SCS 108

Certificate No: D835V2-4d119\_Apr13

### CALIBRATION CERTIFICATE

Object

D835V2 - SN: 4d119

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

April 25, 2013

Votals

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration  |
|-----------------------------|--------------------|-----------------------------------|------------------------|
| Power meter EPM-442A        | GB37480704         | 01-Nov-12 (No. 217-01640)         | Oct-13                 |
| Power sensor HP 8481A       | US37292783         | 01-Nov-12 (No. 217-01640)         | Oct-13                 |
| Reference 20 dB Attenuator  | SN: 5058 (20k)     | 04-Apr-13 (No. 217-01736)         | Apr-14                 |
| Type-N mismatch combination | SN: 5047.3 / 06327 | 04-Apr-13 (No. 217-01739)         | Apr-14                 |
| Reference Probe ES3DV3      | SN: 3205           | 28-Dec-12 (No. ES3-3205_Dec12)    | Dec-13                 |
| DAE4                        | SN: 909            | 11-Sep-12 (No. DAE4-909_Sep12)    | Sep-13                 |
| Secondary Standards         | ID#                | Check Date (in house)             | Scheduled Check        |
| Power sensor HP 8481A       | MY41092317         | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 |
| FOWER SCHOOL LIE 040 FA     |                    |                                   |                        |
| RF generator R&S SMT-06     | 100005             | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 |

Calibrated by:

Claudio Leublei

Function

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: April 26, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d119\_Apr13

Page 1 of 8

#### **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

N/A

not approable of floring about

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

#### **Additional Documentation:**

Certificate No: D835V2-4d119 Apr13

d) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Page 2 of 8

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.8.6     |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 15 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 835 MHz ± 1 MHz        |             |

### **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 41.5         | 0.90 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 40.8 ± 6 %   | 0.94 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### **SAR** result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.51 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 9.68 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.62 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 6.30 W/kg ± 16.5 % (k=2) |

### **Body TSL parameters**

The following parameters and calculations were applied.

| The following parameters and earlier and the first approximation of the first and the | Temperature     | Permittivity | Conductivity     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22.0 °C         | 55.2         | 0.97 mho/m       |
| Measured Body TSL parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (22.0 ± 0.2) °C | 54.0 ± 6 %   | 1.01 mho/m ± 6 % |
| Body TSL temperature change during test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.5 °C        |              |                  |

### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.47 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 9.54 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm³ (10 g) of Body TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 250 mW input power | 1.62 W/kg                |
| SAR for nominal Body TSL parameters         | normalized to 1W   | 6.31 W/kg ± 16.5 % (k=2) |

Certificate No: D835V2-4d119\_Apr13 Page 3 of 8

#### **Appendix**

#### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 50.1 Ω - 4.7 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 26.6 dB       |

#### **Antenna Parameters with Body TSL**

| Impedance, transformed to feed point | 45.8 Ω - 6.3 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 22.1 dB       |

### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.385 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG         |
|-----------------|---------------|
| Manufactured on | June 29, 2010 |

Certificate No: D835V2-4d119\_Apr13 Page 4 of 8

#### **DASY5 Validation Report for Head TSL**

Date: 25.04.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d119

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz;  $\sigma = 0.94 \text{ S/m}$ ;  $\epsilon_r = 40.8$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### **DASY52 Configuration:**

• Probe: ES3DV3 - SN3205; ConvF(6.05, 6.05, 6.05); Calibrated: 28.12.2012;

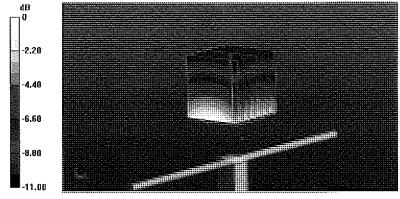
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn909; Calibrated: 11.09.2012

• Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

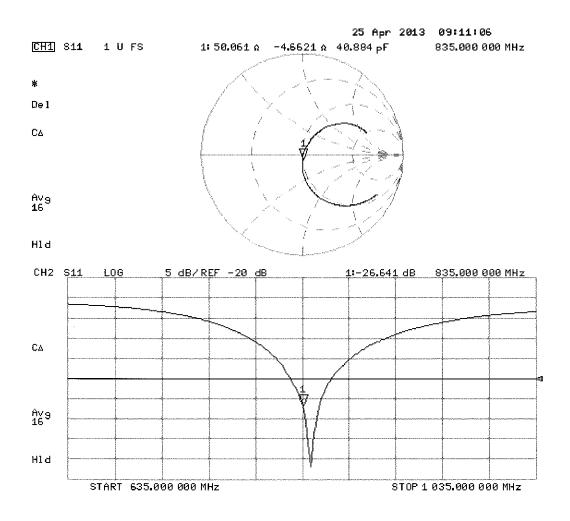
DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117)

#### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.387 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.86 W/kg


SAR(1 g) = 2.51 W/kg; SAR(10 g) = 1.62 W/kg

Maximum value of SAR (measured) = 2.93 W/kg



0 dB = 2.93 W/kg = 4.67 dBW/kg

# Impedance Measurement Plot for Head TSL



#### **DASY5 Validation Report for Body TSL**

Date: 24.04.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d119

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz;  $\sigma = 1.01$  S/m;  $\varepsilon_r = 54$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 28.12.2012;

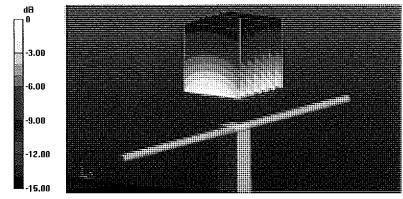
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn909; Calibrated: 11.09.2012

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

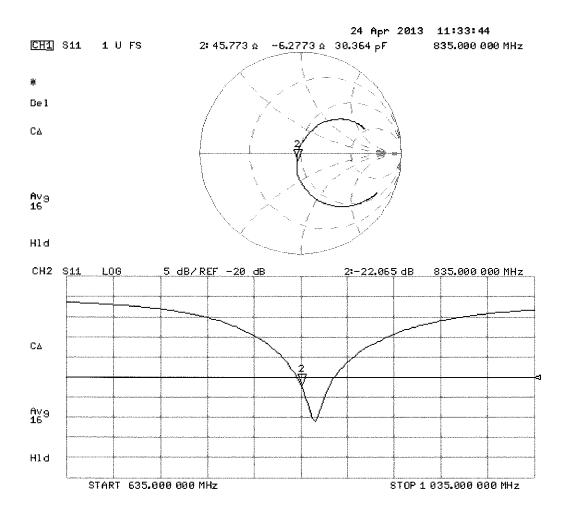
• DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117)

#### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.178 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.68 W/kg


SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.62 W/kg

Maximum value of SAR (measured) = 2.89 W/kg



0 dB = 2.89 W/kg = 4.61 dBW/kg

# Impedance Measurement Plot for Body TSL



#### **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

**PC Test** 

Accreditation No.: SCS 108

Certificate No: D1900V2-5d148\_Feb13

# **CALIBRATION CERTIFICATE**

Object

D1900V2 - SN: 5d148

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

February 06, 2013

104/12

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| ID#                | Cal Date (Certificate No.)                                                                                                            | Scheduled Calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GB37480704         | 01-Nov-12 (No. 217-01640)                                                                                                             | Oct-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| US37292783         | 01-Nov-12 (No. 217-01640)                                                                                                             | Oct-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SN: 5058 (20k)     | 27-Mar-12 (No. 217-01530)                                                                                                             | Apr-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SN: 5047.3 / 06327 | 27-Mar-12 (No. 217-01533)                                                                                                             | Apr-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SN: 3205           | 28-Dec-12 (No. ES3-3205_Dec12)                                                                                                        | Dec-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SN: 601            | 27-Jun-12 (No. DAE4-601_Jun12)                                                                                                        | Jun-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ID#                | Check Date (in house)                                                                                                                 | Scheduled Check                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MY41092317         | 18-Oct-02 (in house check Oct-11)                                                                                                     | In house check: Oct-13                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100005             | 04-Aug-99 (in house check Oct-11)                                                                                                     | In house check: Oct-13                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| US37390585 S4206   | 18-Oct-01 (in house check Oct-12)                                                                                                     | In house check: Oct-13                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Name               | Function                                                                                                                              | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Leif Klysner       | Laboratory Technician                                                                                                                 | Sif Myr                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Katja Pokovic      | Technical Manager                                                                                                                     | 17241                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    | GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601  ID #  MY41092317 100005 US37390585 S4206  Name Leif Klysner | GB37480704 01-Nov-12 (No. 217-01640) US37292783 01-Nov-12 (No. 217-01640) SN: 5058 (20k) 27-Mar-12 (No. 217-01530) SN: 5047.3 / 06327 27-Mar-12 (No. 217-01533) SN: 3205 28-Dec-12 (No. ES3-3205_Dec12) SN: 601 27-Jun-12 (No. DAE4-601_Jun12)  ID # Check Date (in house) MY41092317 18-Oct-02 (in house check Oct-11) 100005 04-Aug-99 (in house check Oct-11) US37390585 S4206 18-Oct-01 (in house check Oct-12)  Name Function Leif Klysner Laboratory Technician |

Issued: February 6, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d148 Feb13

Page 1 of 8

#### **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

#### **Additional Documentation:**

Certificate No: D1900V2-5d148\_Feb13

d) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.8.5     |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, $dy$ , $dz = 5 mm$ |             |
| Frequency                    | 1900 MHz ± 1 MHz       |             |

## **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 40.0         | 1.40 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 39.4 ± 6 %   | 1.38 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 9.87 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 39.7 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 5.18 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 20.8 W/kg ± 16.5 % (k=2) |

#### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 53.3         | 1.52 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 51.9 ± 6 %   | 1.53 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              | ====             |

### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 10.3 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 40.8 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 5.45 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 21.7 W/kg ± 16.5 % (k=2) |

#### **Appendix**

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 52.1 Ω + 5.9 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 24.3 dB       |

#### **Antenna Parameters with Body TSL**

| Impedance, transformed to feed point | $48.3~\Omega + 6.3~\mathrm{j}\Omega$ |
|--------------------------------------|--------------------------------------|
| Return Loss                          | - 23.6 dB                            |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.199 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG          |
|-----------------|----------------|
| Manufactured on | March 11, 2011 |

Certificate No: D1900V2-5d148\_Feb13 Page 4 of 8

#### **DASY5 Validation Report for Head TSL**

Date: 06.02.2013

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d148

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz;  $\sigma = 1.38 \text{ S/m}$ ;  $\varepsilon_r = 39.4$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.98, 4.98, 4.98); Calibrated: 28.12.2012;

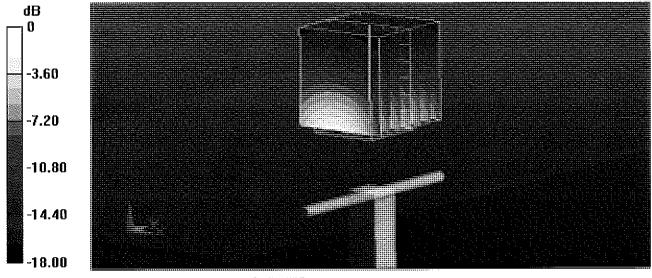
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

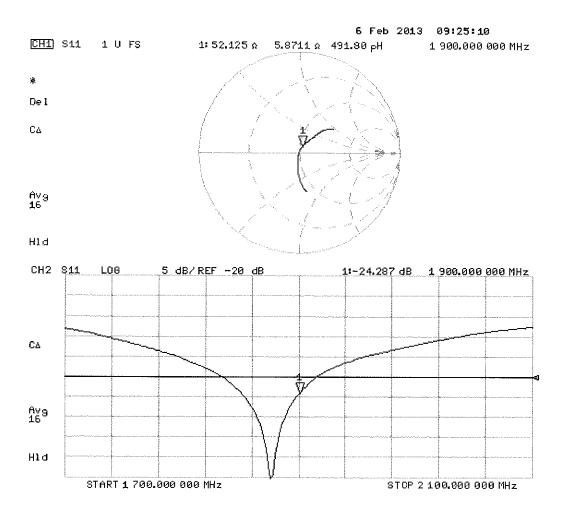
DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

#### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.534 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 17.8 W/kg


SAR(1 g) = 9.87 W/kg; SAR(10 g) = 5.18 W/kg

Maximum value of SAR (measured) = 12.1 W/kg



0 dB = 12.1 W/kg = 10.83 dBW/kg

# Impedance Measurement Plot for Head TSL



#### **DASY5 Validation Report for Body TSL**

Date: 06.02.2013

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d148

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz;  $\sigma = 1.53 \text{ S/m}$ ;  $\varepsilon_r = 51.9$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.6, 4.6, 4.6); Calibrated: 28.12.2012;

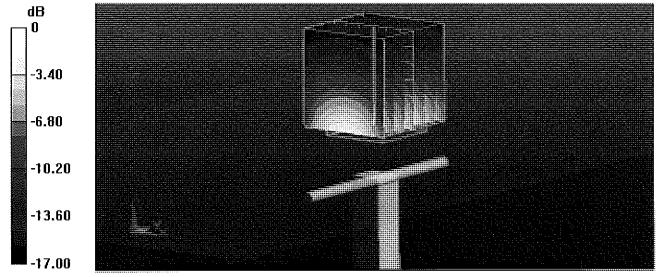
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

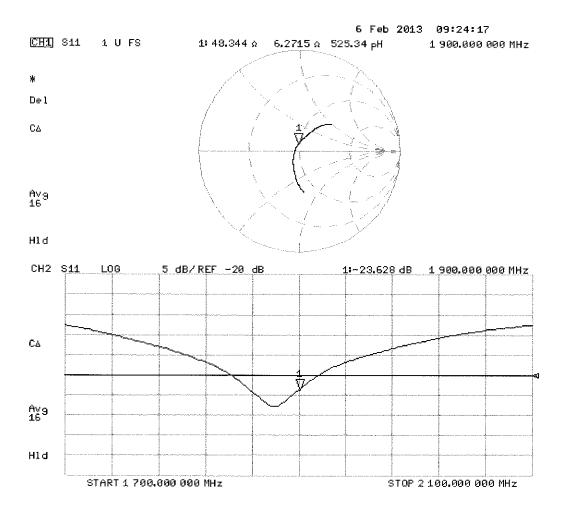
DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

#### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.534 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 17.9 W/kg


SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.45 W/kg

Maximum value of SAR (measured) = 13.1 W/kg



0 dB = 13.1 W/kg = 11.17 dBW/kg

# Impedance Measurement Plot for Body TSL



#### **Calibration Laboratory of**

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage C

Servizio svizzero di taratura S

**Swiss Calibration Service** 

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

**PC Test** 

Accreditation No.: SCS 108

Certificate No: D2450V2-797 Jan13

# **CALIBRATION CERTIFICATE**

Object

D2450V2 - SN: 797

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

January 08, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration  |
|-----------------------------|--------------------|-----------------------------------|------------------------|
| Power meter EPM-442A        | GB37480704         | 01-Nov-12 (No. 217-01640)         | Oct-13                 |
| Power sensor HP 8481A       | US37292783         | 01-Nov-12 (No. 217-01640)         | Oct-13                 |
| Reference 20 dB Attenuator  | SN: 5058 (20k)     | 27-Mar-12 (No. 217-01530)         | Apr-13                 |
| Type-N mismatch combination | SN: 5047.3 / 06327 | 27-Mar-12 (No. 217-01533)         | Apr-13                 |
| Reference Probe ES3DV3      | SN: 3205           | 28-Dec-12 (No. ES3-3205_Dec12)    | Dec-13                 |
| DAE4                        | SN: 601            | 27-Jun-12 (No. DAE4-601_Jun12)    | Jun-13                 |
| Secondary Standards         | ID #               | Check Date (in house)             | Scheduled Check        |
| Power sensor HP 8481A       | MY41092317         | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 |
| RF generator R&S SMT-06     | 100005             | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 |
| Network Analyzer HP 8753E   | US37390585 S4206   | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 |
|                             |                    |                                   |                        |
|                             | Name               | Function                          | Signature              |

Calibrated by:

Israe El-Naouq

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: January 8, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-797\_Jan13

Page 1 of 8

#### **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossarv:

**TSL** 

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

#### **Additional Documentation:**

d) DASY4/5 System Handbook

#### **Methods Applied and Interpretation of Parameters:**

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.8.4     |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 2450 MHz ± 1 MHz       |             |

**Head TSL parameters**The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.2         | 1.80 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 37.9 ± 6 %   | 1.85 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### **SAR** result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 13.4 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 52.5 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 6.20 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 24.5 W/kg ± 16.5 % (k=2) |

# **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 52.7         | 1.95 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 50.5 ± 6 %   | 2.01 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

# **SAR** result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 12.7 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 49.6 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 5.88 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 23.2 W/kg ± 16.5 % (k=2) |

Certificate No: D2450V2-797\_Jan13

#### **Appendix**

#### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 53.3 Ω + 3.1 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 27.1 dB       |

#### **Antenna Parameters with Body TSL**

| Impedance, transformed to feed point | 49.1 Ω + 4.9 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 26.0 dB       |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.152 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG            |
|-----------------|------------------|
| Manufactured on | January 24, 2006 |

Certificate No: D2450V2-797\_Jan13 Page 4 of 8

#### **DASY5 Validation Report for Head TSL**

Date: 08.01.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz;  $\sigma = 1.85 \text{ S/m}$ ;  $\varepsilon_r = 37.9$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.52, 4.52, 4.52); Calibrated: 28.12.2012;

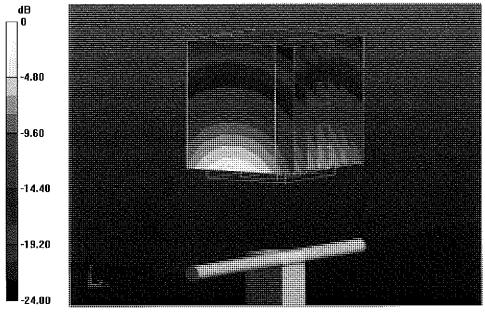
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.06.2012

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

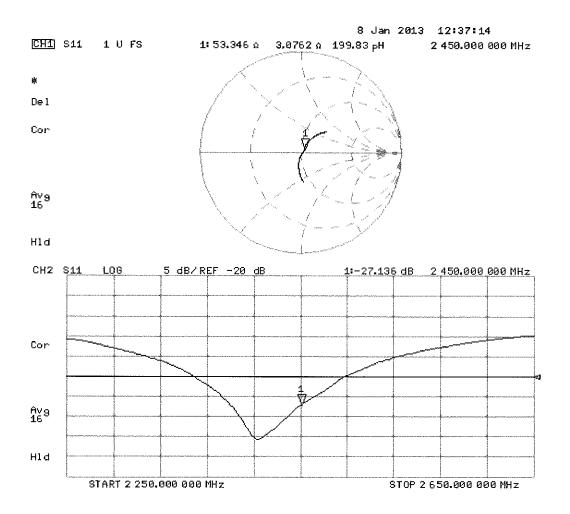
• DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)

#### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.154 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 27.8 W/kg


SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.2 W/kg

Maximum value of SAR (measured) = 17.0 W/kg



0 dB = 17.0 W/kg = 12.30 dBW/kg

# Impedance Measurement Plot for Head TSL



#### **DASY5 Validation Report for Body TSL**

Date: 08.01.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz;  $\sigma = 2.01 \text{ S/m}$ ;  $\varepsilon_r = 50.5$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.42, 4.42, 4.42); Calibrated: 28.12.2012;

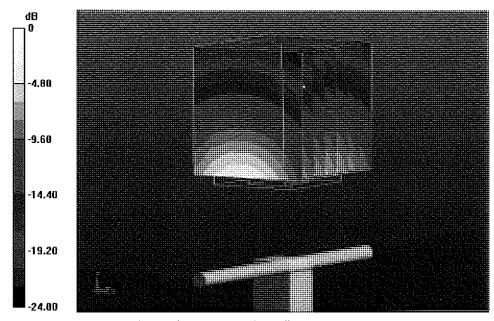
Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

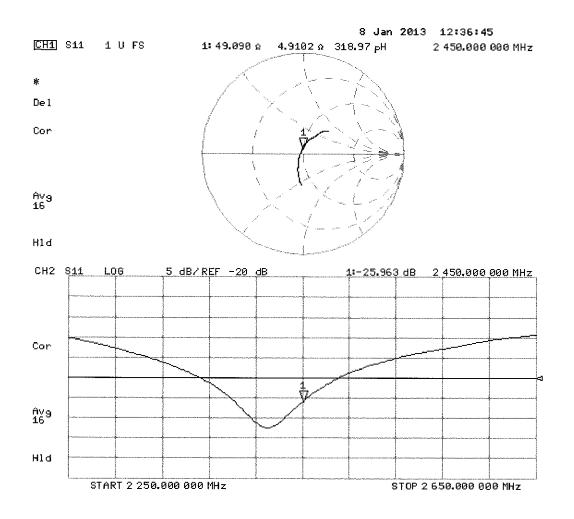
• DASY52 52.8.4(1052); SEMCAD X 14.6.8(7028)

#### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.935 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 26.7 W/kg


SAR(1 g) = 12.7 W/kg; SAR(10 g) = 5.88 W/kg

Maximum value of SAR (measured) = 16.7 W/kg



0 dB = 16.7 W/kg = 12.23 dBW/kg

# Impedance Measurement Plot for Body TSL



#### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** 

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

**PC Test** 

Accreditation No.: SCS 108

Certificate No: D2600V2-1004\_May13

#### CALIBRATION CERTIFICATE

Object

D2600V2 - SN: 1004

Calibration procedure(s)

QA.CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

May 02, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration  |
|-----------------------------|--------------------|-----------------------------------|------------------------|
| Power meter EPM-442A        | GB37480704         | 01-Nov-12 (No. 217-01640)         | Oct-13                 |
| Power sensor HP 8481A       | US37292783         | 01-Nov-12 (No. 217-01640)         | Oct-13                 |
| Reference 20 dB Attenuator  | SN: 5058 (20k)     | 04-Apr-13 (No. 217-01736)         | Apr-14                 |
| Type-N mismatch combination | SN: 5047.3 / 06327 | 04-Apr-13 (No. 217-01739)         | Apr-14                 |
| Reference Probe ES3DV3      | SN: 3205           | 28-Dec-12 (No. ES3-3205_Dec12)    | Dec-13                 |
| DAE4                        | SN: 601            | 25-Apr-13 (No. DAE4-601_Apr13)    | Apr-14                 |
| DAE4                        | SN: 909            | 11-Sep-12 (No. DAE4-909_Sep12)    | Sep-13                 |
| Secondary Standards         | ID#                | Check Date (in house)             | Scheduled Check        |
| Power sensor HP 8481A       | MY41092317         | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 |
| RF generator R&S SMT-06     | 100005             | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 |
| Network Analyzer HP 8753E   | US37390585 S4206   | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 |
|                             | Name               | Function                          | Şignature \            |
| Calibrated by:              | Claudio Leubler    | Laboratory Technician             |                        |
| Approved by:                | Katja Pokovic      | Technical Manager                 | 2011                   |

Issued: May 2, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2600V2-1004\_May13

Page 1 of 8

#### **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossarv:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

#### **Additional Documentation:**

d) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2600V2-1004\_May13 Page 2 of 8

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.8.6     |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 2600 MHz ± 1 MHz       |             |

# **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.0         | 1.96 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 37.2 ± 6 %   | 1.99 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 14.8 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 58.2 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 6.57 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 26.0 W/kg ± 16.5 % (k=2) |

### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature      | Permittivity | Conductivity     |
|-----------------------------------------|------------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C          | 52.5         | 2.16 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C  | 50.8 ± 6 %   | 2.20 mho/m ± 6 % |
| Body TSL temperature change during test | < 0. <b>5</b> °C |              |                  |

# SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 14.6 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 57.5 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 6.43 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 25.5 W/kg ± 16.5 % (k=2) |

Certificate No: D2600V2-1004\_May13 Page 3 of 8

#### **Appendix**

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 50.0 Ω - 4.3 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 27.3 dB       |

#### **Antenna Parameters with Body TSL**

| Impedance, transformed to feed point | 46.7 Ω - 2.9 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 26.8 dB       |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.149 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG             |
|-----------------|-------------------|
| Manufactured on | December 23, 2006 |

Certificate No: D2600V2-1004\_May13 Page 4 of 8

#### **DASY5 Validation Report for Head TSL**

Date: 02.05.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1004

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz;  $\sigma = 1.99 \text{ S/m}$ ;  $\varepsilon_r = 37.2$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 28.12.2012;

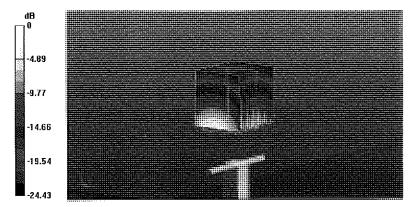
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

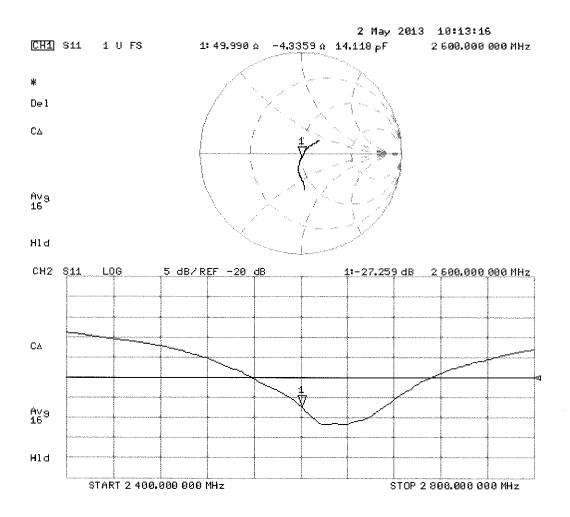
• DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117)

### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.3 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 31.9 W/kg


SAR(1 g) = 14.8 W/kg; SAR(10 g) = 6.57 W/kg

Maximum value of SAR (measured) = 19.0 W/kg



0 dB = 19.0 W/kg = 12.79 dBW/kg

# Impedance Measurement Plot for Head TSL



#### **DASY5 Validation Report for Body TSL**

Date: 25.04.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1004

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz;  $\sigma = 2.2 \text{ S/m}$ ;  $\varepsilon_r = 50.8$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.32, 4.32, 4.32); Calibrated: 28.12.2012;

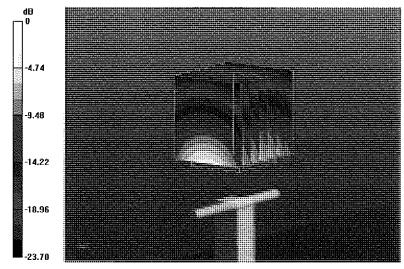
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn909; Calibrated: 11.09.2012

• Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

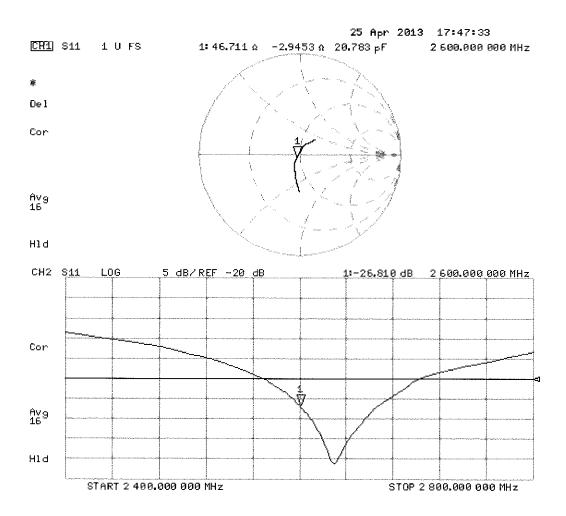
DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117)

#### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.605 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 32.0 W/kg


SAR(1 g) = 14.6 W/kg; SAR(10 g) = 6.43 W/kg

Maximum value of SAR (measured) = 19.4 W/kg



0 dB = 19.4 W/kg = 12.88 dBW/kg

# Impedance Measurement Plot for Body TSL



#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

**PC Test** 

Accreditation No.: SCS 108

Certificate No: D5GHzV2-1120\_Feb13

#### CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN: 1120

Calibration procedure(s)

QA CAL-22.v2

Calibration procedure for dipole validation kits between 3-6 GHz

Calibration date:

February 14, 2013

VINTO

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration  |
|-----------------------------|--------------------|-----------------------------------|------------------------|
| Power meter EPM-442A        | GB37480704         | 01-Nov-12 (No. 217-01640)         | Oct-13                 |
| Power sensor HP 8481A       | US37292783         | 01-Nov-12 (No. 217-01640)         | Oct-13                 |
| Reference 20 dB Attenuator  | SN: 5058 (20k)     | 27-Mar-12 (No. 217-01530)         | Apr-13                 |
| Type-N mismatch combination | SN: 5047.3 / 06327 | 27-Mar-12 (No. 217-01533)         | Apr-13                 |
| Reference Probe EX3DV4      | SN: 3503           | 28-Dec-12 (No. EX3-3503_Dec12)    | Dec-13                 |
| DAE4                        | SN: 601            | 27-Jun-12 (No. DAE4-601_Jun12)    | Jun-13                 |
| Secondary Standards         | ID#                | Check Date (in house)             | Scheduled Check        |
| Power sensor HP 8481A       | MY41092317         | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 |
| RF generator R&S SMT-06     | 100005             | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 |
| Network Analyzer HP 8753E   | US37390585 S4206   | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 |

Calibrated by:

Israe El-Naouq

Function

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: February 14, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1120\_Feb13

Page 1 of 16

#### **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

#### Additional Documentation:

c) DASY4/5 System Handbook

#### **Methods Applied and Interpretation of Parameters:**

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Page 2 of 16

# **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                                                                                            | V52.8.5                          |
|------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------|
| Extrapolation                | Advanced Extrapolation                                                                           |                                  |
| Phantom                      | Modular Flat Phantom V5.0                                                                        |                                  |
| Distance Dipole Center - TSL | 10 mm                                                                                            | with Spacer                      |
| Zoom Scan Resolution         | dx, dy = 4.0  mm, dz = 1.4  mm                                                                   | Graded Ratio = 1.4 (Z direction) |
| Frequency                    | 5200 MHz ± 1 MHz<br>5300 MHz ± 1 MHz<br>5500 MHz ± 1 MHz<br>5600 MHz ± 1 MHz<br>5800 MHz ± 1 MHz |                                  |

# Head TSL parameters at 5200 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 36.0         | 4.66 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.7 ± 6 %   | 4.47 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

### SAR result with Head TSL at 5200 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.67 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 76.0 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.18 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 21.5 W/kg ± 19.5 % (k=2) |

# Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.9         | 4.76 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.5 ± 6 %   | 4.57 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5300 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                            |
|-------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                          | 100 mW input power | 7.94 W/kg                  |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 78.7 W / kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.2 <b>7</b> W/kg        |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 22.4 W/kg ± 19.5 % (k=2) |

# Head TSL parameters at 5500 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.6         | 4.96 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.2 ± 6 %   | 4.74 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5500 MHz

| SAR averaged over 1 cm³ (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 100 mW input power | 8.09 W/kg                |
| SAR for nominal Head TSL parameters       | normalized to 1W   | 80.1 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm³ (10 g) of Head TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 100 mW input power | 2.29 W/kg                |
| SAR for nominal Head TSL parameters         | normalized to 1W   | 22.6 W/kg ± 19.5 % (k=2) |

Page 4 of 16 Certificate No: D5GHzV2-1120\_Feb13

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.5         | 5.07 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.1 ± 6 %   | 4.83 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5600 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.08 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 79.9 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.28 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 22.5 W/kg ± 19.5 % (k=2) |

#### Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.3         | 5.27 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 33.9 ± 6 %   | 5.05 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5800 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.57 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 74.9 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.13 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 21.0 W/kg ± 19.5 % (k=2) |

Page 5 of 16 Certificate No: D5GHzV2-1120\_Feb13

# Body TSL parameters at 5200 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 49.0         | 5.30 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 46.9 ± 6 %   | 5.36 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Body TSL at 5200 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.73 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 76.6 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.17 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 21.5 W/kg ± 19.5 % (k=2) |

# **Body TSL parameters at 5300 MHz**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.9         | 5.42 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 46.7 ± 6 %   | 5.48 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Body TSL at 5300 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.75 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 76.8 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.18 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 21.5 W/kg ± 19.5 % (k=2) |

Page 6 of 16 Certificate No: D5GHzV2-1120\_Feb13

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.6         | 5.65 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 46.3 ± 6 %   | 5.71 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

### SAR result with Body TSL at 5500 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.06 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 79.8 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.24 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 22.1 W/kg ± 19.5 % (k=2) |

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.5         | 5.77 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 46.2 ± 6 %   | 5.83 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL at 5600 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.15 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 80.7 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm³ (10 g) of Body TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 100 mW input power | 2.26 W/kg                |
| SAR for nominal Body TSL parameters         | normalized to 1W   | 22.3 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1120\_Feb13 Page 7 of 16

# Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.2         | 6.00 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 45.9 ± 6 %   | 6.12 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Body TSL at 5800 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.62 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 75.5 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.12 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 20.9 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1120\_Feb13

#### **Appendix**

#### Antenna Parameters with Head TSL at 5200 MHz

| Impedance, transformed to feed point | 53.8 Ω - 6.3 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 23.0 dB       |

#### Antenna Parameters with Head TSL at 5300 MHz

| Impedance, transformed to feed point | 50.1 Ω + 0.5 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 45.3 dB       |

#### Antenna Parameters with Head TSL at 5500 MHz

| Impedance, transformed to feed point | 51.0 Ω - 0.9 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 37.9 dB       |

#### Antenna Parameters with Head TSL at 5600 MHz

| Impedance, transformed to feed point | 55.3 Ω - 0.9 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 25.8 dB       |

#### Antenna Parameters with Head TSL at 5800 MHz

| Impedance, transformed to feed point | 53.5 Ω + 3.3 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 26.7 dB       |

#### Antenna Parameters with Body TSL at 5200 MHz

| Impedance, transformed to feed point | 53.7 Ω - 4.8 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 24.8 dB       |

#### Antenna Parameters with Body TSL at 5300 MHz

| Impedance, transformed to feed point | 50.2 Ω + 2.4 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 32.5 dB       |

#### Antenna Parameters with Body TSL at 5500 MHz

| Impedance, transformed to feed point | 51.6 Ω - 1.5 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 33.3 dB       |

#### Antenna Parameters with Body TSL at 5600 MHz

| Impedance, transformed to feed point | 57.4 Ω + 0.9 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 23.2 dB       |

Certificate No: D5GHzV2-1120\_Feb13

#### Antenna Parameters with Body TSL at 5800 MHz

| Impedance, transformed to feed point | $53.5 \Omega + 3.2 j\Omega$ |
|--------------------------------------|-----------------------------|
| Return Loss                          | - 26.7 dB                   |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.206 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG              |
|-----------------|--------------------|
| Manufactured on | September 08, 2011 |

Certificate No: D5GHzV2-1120\_Feb13 Page 10 of 16

#### **DASY5 Validation Report for Head TSL**

Date: 08.02.2013

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1120

Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz,

Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f=5200 MHz;  $\sigma=4.47$  S/m;  $\epsilon_r=34.7;$   $\rho=1000$  kg/m³ , Medium parameters used: f=5300 MHz;  $\sigma=4.57$  S/m;  $\epsilon_r=34.5;$   $\rho=1000$  kg/m³ , Medium parameters used: f=5500 MHz;  $\sigma=4.74$  S/m;  $\epsilon_r=34.2;$   $\rho=1000$  kg/m³ , Medium parameters used: f=5600 MHz;  $\sigma=4.83$  S/m;  $\epsilon_r=34.1;$   $\rho=1000$  kg/m³ , Medium parameters used: f=5600 MHz;  $\sigma=4.83$  S/m;  $\epsilon_r=34.1;$   $\rho=1000$  kg/m³ , Medium parameters used: f=5800 MHz;  $\sigma=5.05$  S/m;  $\epsilon_r=33.9;$   $\rho=1000$  kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41); Calibrated: 28.12.2012, ConvF(5.1, 5.1, 5.1);
   Calibrated: 28.12.2012, ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.76, 4.76, 4.76);
   Calibrated: 28.12.2012, ConvF(4.81, 4.81, 4.81); Calibrated: 28.12.2012;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

#### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 61.561 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 28.8 W/kg

SAR(1 g) = 7.67 W/kg; SAR(10 g) = 2.18 W/kg

Maximum value of SAR (measured) = 17.7 W/kg

### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 62.429 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 30.3 W/kg

SAR(1 g) = 7.94 W/kg; SAR(10 g) = 2.27 W/kg

Maximum value of SAR (measured) = 18.5 W/kg

### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 61.998 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 32.7 W/kg

SAR(1 g) = 8.09 W/kg; SAR(10 g) = 2.29 W/kg

Maximum value of SAR (measured) = 19.3 W/kg

#### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

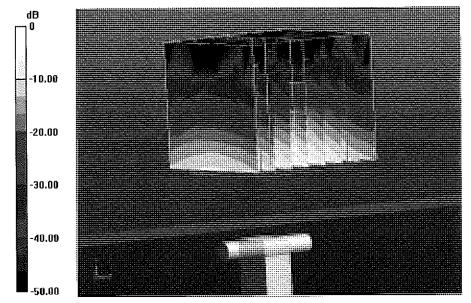
Reference Value = 62.540 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 33.3 W/kg

SAR(1 g) = 8.08 W/kg; SAR(10 g) = 2.28 W/kg

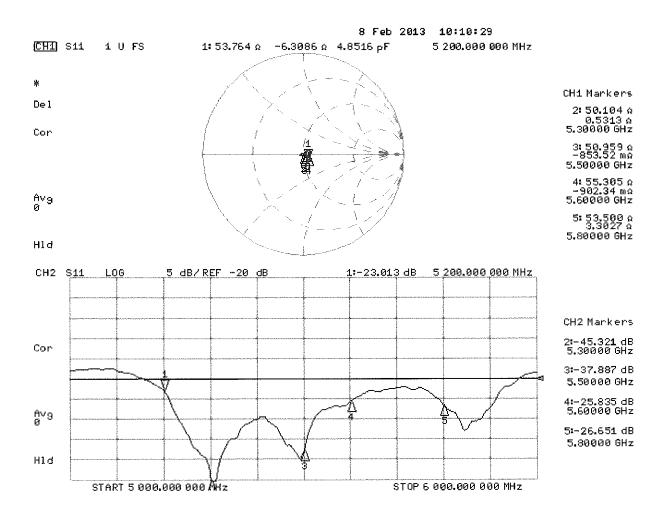
Maximum value of SAR (measured) = 19.5 W/kg

#### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.600 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 32.9 W/kg


SAR(1 g) = 7.57 W/kg; SAR(10 g) = 2.13 W/kg

Maximum value of SAR (measured) = 18.8 W/kg



0 dB = 18.8 W/kg = 12.74 dBW/kg

#### Impedance Measurement Plot for Head TSL



#### **DASY5 Validation Report for Body TSL**

Date: 14.02.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1120

Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz,

Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz;  $\sigma = 5.36$  S/m;  $\varepsilon_r = 46.9$ ;  $\rho = 1000$  kg/m³, Medium parameters used: f = 5300 MHz;  $\sigma = 5.48$  S/m;  $\varepsilon_r = 46.7$ ;  $\rho = 1000$  kg/m³, Medium parameters used: f = 5500 MHz;  $\sigma = 5.71$  S/m;  $\varepsilon_r = 46.3$ ;  $\rho = 1000$  kg/m³, Medium parameters used: f = 5600 MHz;  $\sigma = 5.83$  S/m;  $\varepsilon_r = 46.2$ ;  $\rho = 1000$  kg/m³, Medium parameters used: f = 5800 MHz;  $\sigma = 6.12$  S/m;  $\varepsilon_r = 45.9$ ;  $\rho = 1000$  kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.67, 4.67, 4.67); Calibrated: 28.12.2012, ConvF(4.43, 4.43, 4.43); Calibrated: 28.12.2012, ConvF(4.22, 4.22, 4.22); Calibrated: 28.12.2012, ConvF(4.38, 4.38, 4.38); Calibrated: 28.12.2012;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

## Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 61.053 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 31.1 W/kg

SAR(1 g) = 7.73 W/kg; SAR(10 g) = 2.17 W/kg

Maximum value of SAR (measured) = 18.2 W/kg

#### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 60.021 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 32.1 W/kg

SAR(1 g) = 7.75 W/kg; SAR(10 g) = 2.18 W/kg

Maximum value of SAR (measured) = 18.5 W/kg

#### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 59.894 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 35.3 W/kg

SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.24 W/kg

Maximum value of SAR (measured) = 19.4 W/kg

Certificate No: D5GHzV2-1120\_Feb13

#### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

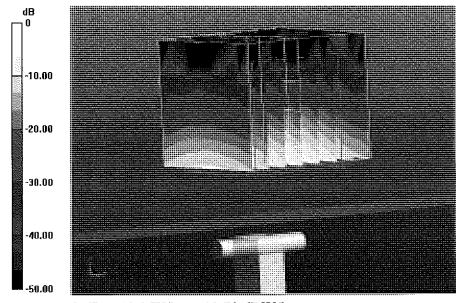
Reference Value = 59.730 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 36.8 W/kg

SAR(1 g) = 8.15 W/kg; SAR(10 g) = 2.26 W/kg

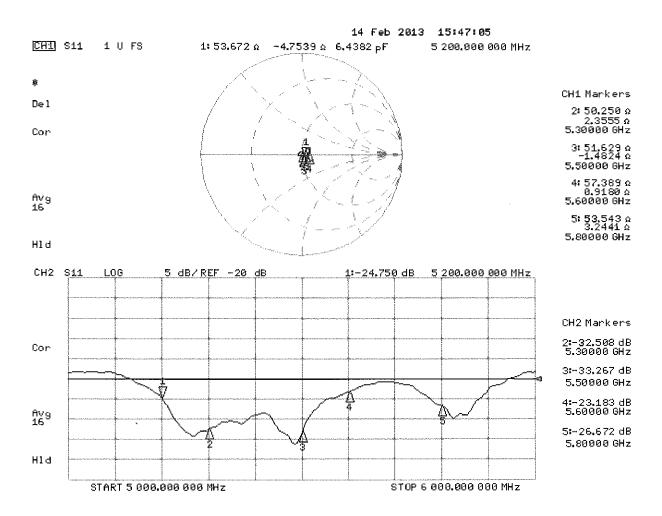
Maximum value of SAR (measured) = 19.9 W/kg

#### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 56.663 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 36.4 W/kg


SAR(1 g) = 7.62 W/kg; SAR(10 g) = 2.12 W/kg

Maximum value of SAR (measured) = 19.0 W/kg



0 dB = 19.0 W/kg = 12.79 dBW/kg

#### Impedance Measurement Plot for Body TSL



#### **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

**PC Test** 

Accreditation No.: SCS 108

Certificate No: D2450V2-882\_Feb13

#### **CALIBRATION CERTIFICATE**

Object

D2450V2 - SN: 882

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

February 11, 2013

10 KU/13

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID#_               | Cal Date (Certificate No.)        | Scheduled Calibration  |
|-----------------------------|--------------------|-----------------------------------|------------------------|
| Power meter EPM-442A        | GB37480704         | 01-Nov-12 (No. 217-01640)         | Oct-13                 |
| Power sensor HP 8481A       | US37292783         | 01-Nov-12 (No. 217-01640)         | Oct-13                 |
| Reference 20 dB Attenuator  | SN: 5058 (20k)     | 27-Mar-12 (No. 217-01530)         | Apr-13                 |
| Type-N mismatch combination | SN: 5047.3 / 06327 | 27-Mar-12 (No. 217-01533)         | Apr-13                 |
| Reference Probe ES3DV3      | SN: 3205           | 28-Dec-12 (No. ES3-3205_Dec12)    | Dec-13                 |
| DAE4                        | SN: 601            | 27-Jun-12 (No. DAE4-601_Jun12)    | Jun-13                 |
| Secondary Standards         | ID #               | Check Date (in house)             | Scheduled Check        |
| Power sensor HP 8481A       | MY41092317         | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 |
| RF generator R&S SMT-06     | 100005             | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 |
| Network Analyzer HP 8753E   | US37390585 S4206   | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 |
|                             | Name               | Function                          | Signature              |
| Calibrated by:              | Israe El-Naouq     | Laboratory Technician             | Orona Holanes          |
| Approved by:                | Katja Pokovic      | Technical Manager                 | 20 111                 |

Issued: February 11, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-882\_Feb13

Page 1 of 8

#### **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

#### **Additional Documentation:**

d) DASY4/5 System Handbook

#### **Methods Applied and Interpretation of Parameters:**

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.8.5     |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, $dy$ , $dz = 5 mm$ |             |
| Frequency                    | 2450 MHz ± 1 MHz       |             |

Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.2         | 1.80 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 37.9 ± 6 %   | 1.85 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        | ****         |                  |

#### **SAR** result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 13.2 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 51.7 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 6.0 <b>7</b> W/kg        |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 24.0 W/kg ± 16.5 % (k=2) |

#### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 52.7         | 1.95 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 50.9 ± 6 %   | 2.02 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 12.8 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 49.9 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 5.91 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 23.3 W/kg ± 16.5 % (k=2) |

Certificate No: D2450V2-882\_Feb13 Page 3 of 8

#### **Appendix**

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 53.6 Ω - 0.4 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 29.0 dB       |

#### **Antenna Parameters with Body TSL**

| Impedance, transformed to feed point | 49.5 Ω + 1.2 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 37.4 dB       |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.157 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG            |
|-----------------|------------------|
| Manufactured on | October 06, 2011 |

Certificate No: D2450V2-882\_Feb13 Page 4 of 8

#### **DASY5 Validation Report for Head TSL**

Date: 11.02.2013

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 882

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz;  $\sigma = 1.85 \text{ S/m}$ ;  $\varepsilon_r = 37.9$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.52, 4.52, 4.52); Calibrated: 28.12.2012;

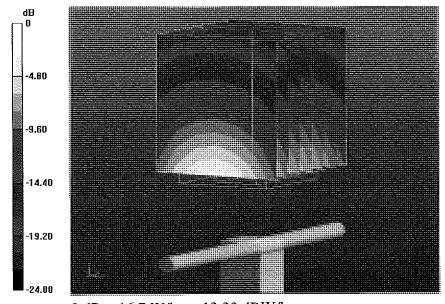
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06.2012

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

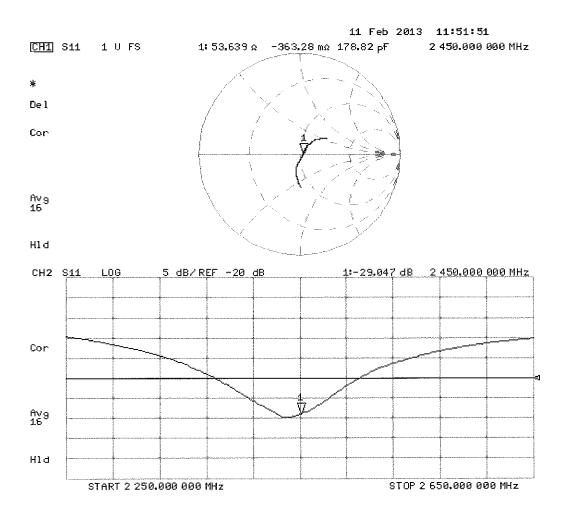
• DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

#### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.806 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 27.6 W/kg


SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.07 W/kg

Maximum value of SAR (measured) = 16.7 W/kg



0 dB = 16.7 W/kg = 12.23 dBW/kg

#### Impedance Measurement Plot for Head TSL



#### **DASY5 Validation Report for Body TSL**

Date: 11.02.2013

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 882

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz;  $\sigma = 2.02 \text{ S/m}$ ;  $\varepsilon_r = 50.9$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.42, 4.42, 4.42); Calibrated: 28.12.2012;

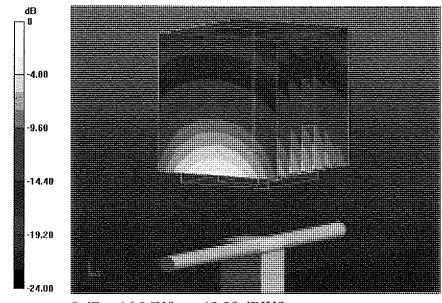
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06,2012

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

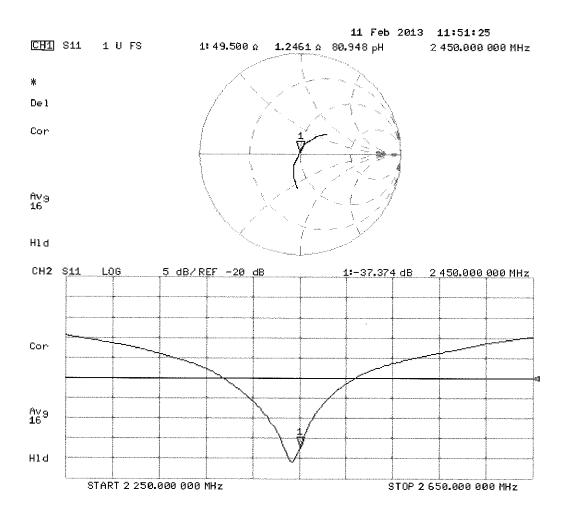
• DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

#### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.474 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 27.1 W/kg


SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.91 W/kg

Maximum value of SAR (measured) = 16.9 W/kg



0 dB = 16.9 W/kg = 12.28 dBW/kg

#### Impedance Measurement Plot for Body TSL



#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

**PC Test** 

Certificate No: D5GHzV2-1057\_Jan13

Accreditation No.: SCS 108

#### **CALIBRATION CERTIFICATE**

Object

D5GHzV2 - SN: 1057

Calibration procedure(s)

QA CAL-22.v2

Calibration procedure for dipole validation kits between 3-6 GHz

Calibration date:

January 11, 2013

12/2/2

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration  |
|-----------------------------|--------------------|-----------------------------------|------------------------|
| Power meter EPM-442A        | GB37480704         | 01-Nov-12 (No. 217-01640)         | Oct-13                 |
| Power sensor HP 8481A       | US37292783         | 01-Nov-12 (No. 217-01640)         | Oct-13                 |
| Reference 20 dB Attenuator  | SN: 5058 (20k)     | 27-Mar-12 (No. 217-01530)         | Apr-13                 |
| Type-N mismatch combination | SN: 5047.3 / 06327 | 27-Mar-12 (No. 217-01533)         | Apr-13                 |
| Reference Probe EX3DV4      | SN: 3503           | 28-Dec-12 (No. EX3-3503_Dec12)    | Dec-13                 |
| DAE4                        | SN: 601            | 27-Jun-12 (No. DAE4-601_Jun12)    | Jun-13                 |
| Secondary Standards         | ID #               | Check Date (in house)             | Scheduled Check        |
| Power sensor HP 8481A       | MY41092317         | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 |
| RF generator R&S SMT-06     | 100005             | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 |
| Network Analyzer HP 8753E   | US37390585 S4206   | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 |
|                             | Name               | Function                          | Signature              |
| Calibrated by:              | Israe El-Naouq     | Laboratory Te <b>c</b> hnician    | Iran Unaones           |
| Approved by:                | Katja Pokovic      | Technical Manager                 |                        |

Issued: January 11, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

#### **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossarv:

**TSL** 

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

#### **Additional Documentation:**

Certificate No: D5GHzV2-1057\_Jan13

c) DASY4/5 System Handbook

#### **Methods Applied and Interpretation of Parameters:**

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                                                                                            | V52.8.5                          |
|------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------|
| Extrapolation                | Advanced Extrapolation                                                                           |                                  |
| Phantom                      | Modular Flat Phantom V5.0                                                                        |                                  |
| Distance Dipole Center - TSL | 10 mm                                                                                            | with Spacer                      |
| Zoom Scan Resolution         | dx, dy = 4.0  mm, dz = 1.4  mm                                                                   | Graded Ratio = 1.4 (Z direction) |
| Frequency                    | 5200 MHz ± 1 MHz<br>5300 MHz ± 1 MHz<br>5500 MHz ± 1 MHz<br>5600 MHz ± 1 MHz<br>5800 MHz ± 1 MHz |                                  |

Head TSL parameters at 5200 MHz
The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 36.0         | 4.66 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.6 ± 6 %   | 4.50 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5200 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.66 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 75.9 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.17 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 21.4 W/kg ± 19.5 % (k=2) |

#### Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.9         | 4.76 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.5 ± 6 %   | 4.60 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        | A 14 14 14   |                  |

#### SAR result with Head TSL at 5300 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                            |
|-------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                          | 100 mW input power | 7.76 W/kg                  |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 76.9 W / kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.22 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 21.9 W/kg ± 19.5 % (k=2) |

#### Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.6         | 4.96 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.2 ± 6 %   | 4.79 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5500 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.09 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 80.1 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.28 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 22.5 W/kg ± 19.5 % (k=2) |

#### Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.5         | 5.07 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.1 ± 6 %   | 4.88 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5600 MHz

| SAR averaged over 1 cm³ (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 100 mW input power | 8.12 W/kg                |
| SAR for nominal Head TSL parameters       | normalized to 1W   | 80.4 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.30 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 22.7 W/kg ± 19.5 % (k=2) |

#### Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.3         | 5.27 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 33.8 ± 6 %   | 5.09 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              | 2444             |

#### SAR result with Head TSL at 5800 MHz

| SAR averaged over 1 cm³ (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 100 mW input power | 7.69 W/kg                |
| SAR for nominal Head TSL parameters       | normalized to 1W   | 76.1 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2. <b>17</b> W/kg        |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 21.4 W/kg ± 19.5 % (k=2) |

## Body TSL parameters at 5200 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 49.0         | 5.30 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 47.0 ± 6 %   | 5.42 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL at 5200 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.61 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 75.5 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.13 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 21.1 W/kg ± 19.5 % (k=2) |

#### Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.9         | 5.42 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 46.8 ± 6 %   | 5.55 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL at 5300 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.59 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 75.3 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.13 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 21.1 W/kg ± 19.5 % (k=2) |

#### Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.6         | 5.65 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 46.5 ± 6 %   | 5.81 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL at 5500 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.14 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 80.8 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.26 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 22.4 W/kg ± 19.5 % (k=2) |

#### Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.5         | 5.77 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 46.3 ± 6 %   | 5.94 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL at 5600 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.10 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 80.3 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.25 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 22.3 W/kg ± 19.5 % (k=2) |

## Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.2         | 6.00 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 46.0 ± 6 %   | 6.21 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL at 5800 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.57 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 75.1 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.09 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 20.7 W/kg ± 19.5 % (k=2) |

#### **Appendix**

#### Antenna Parameters with Head TSL at 5200 MHz

| Impedance, transformed to feed point | 50.5 Ω - 9.8 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 20.3 dB       |

#### Antenna Parameters with Head TSL at 5300 MHz

| Impedance, transformed to feed point | 48.5 Ω - 4.5 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 26.4 dB       |

#### Antenna Parameters with Head TSL at 5500 MHz

| Impedance, transformed to feed point | $50.6~\Omega$ - $5.8~\mathrm{j}\Omega$ |
|--------------------------------------|----------------------------------------|
| Return Loss                          | - 24.8 dB                              |

#### Antenna Parameters with Head TSL at 5600 MHz

| Impedance, transformed to feed point | 53.9 Ω - 3.8 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 25.6 dB       |

#### Antenna Parameters with Head TSL at 5800 MHz

| Impedance, transformed to feed point | 52.5 Ω - 4.4 jΩ |  |  |  |
|--------------------------------------|-----------------|--|--|--|
| Return Loss                          | - 26.1 dB       |  |  |  |

#### Antenna Parameters with Body TSL at 5200 MHz

| Impedance, transformed to feed point | 49.3 Ω - 7.9 jΩ |  |  |  |
|--------------------------------------|-----------------|--|--|--|
| Return Loss                          | - 22.0 dB       |  |  |  |

#### Antenna Parameters with Body TSL at 5300 MHz

| Impedance, transformed to feed point | 48.7 Ω - 3.2 jΩ |  |  |
|--------------------------------------|-----------------|--|--|
| Return Loss                          | - 29.2 dB       |  |  |

#### Antenna Parameters with Body TSL at 5500 MHz

| Impedance, transformed to feed point | 51.2 Ω - 4.8 jΩ |  |  |
|--------------------------------------|-----------------|--|--|
| Return Loss                          | - 26.2 dB       |  |  |

#### Antenna Parameters with Body TSL at 5600 MHz

| Impedance, transformed to feed point | 53.6 Ω - 2.1 jΩ |  |  |  |
|--------------------------------------|-----------------|--|--|--|
| Return Loss                          | - 27.9 dB       |  |  |  |

Certificate No: D5GHzV2-1057\_Jan13 Page 9 of 16

#### Antenna Parameters with Body TSL at 5800 MHz

| Impedance, transformed to feed point | 53.3 Ω - 2.9 jΩ |  |  |  |  |
|--------------------------------------|-----------------|--|--|--|--|
| Return Loss                          | - 27.4 dB       |  |  |  |  |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.202 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG             |  |  |  |
|-----------------|-------------------|--|--|--|
| Manufactured on | November 27, 2006 |  |  |  |

Certificate No: D5GHzV2-1057\_Jan13 Page 10 of 16

#### **DASY5 Validation Report for Head TSL**

Date: 11.01.2013

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1057

Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz,

Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz;  $\sigma = 4.5$  S/m;  $\varepsilon_r = 34.6$ ;  $\rho = 1000$  kg/m³, Medium parameters used: f = 5300 MHz;  $\sigma = 4.6$  S/m;  $\varepsilon_r = 34.5$ ;  $\rho = 1000$  kg/m³, Medium parameters used: f = 5500 MHz;  $\sigma = 4.79$  S/m;  $\varepsilon_r = 34.2$ ;  $\rho = 1000$  kg/m³, Medium parameters used: f = 5600 MHz;  $\sigma = 4.88$  S/m;  $\varepsilon_r = 34.1$ ;  $\rho = 1000$ 

kg/m<sup>3</sup>, Medium parameters used: f = 5800 MHz;  $\sigma = 5.09$  S/m;  $\varepsilon_r = 33.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41); Calibrated: 28.12.2012, ConvF(5.1, 5.1, 5.1); Calibrated: 28.12.2012, ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.76, 4.76, 4.76); Calibrated: 28.12.2012, ConvF(4.81, 4.81, 4.81); Calibrated: 28.12.2012;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

#### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.671 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 29.4 W/kg

SAR(1 g) = 7.66 W/kg; SAR(10 g) = 2.17 W/kg

Maximum value of SAR (measured) = 18.5 W/kg

#### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.473 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 30.3 W/kg

SAR(1 g) = 7.76 W/kg; SAR(10 g) = 2.22 W/kg

Maximum value of SAR (measured) = 18.8 W/kg

#### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.735 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 33.2 W/kg

SAR(1 g) = 8.09 W/kg; SAR(10 g) = 2.28 W/kg

Maximum value of SAR (measured) = 20.1 W/kg

#### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

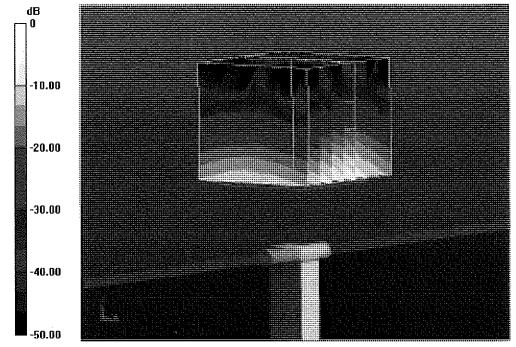
Reference Value = 63.848 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 33.5 W/kg

SAR(1 g) = 8.12 W/kg; SAR(10 g) = 2.3 W/kg

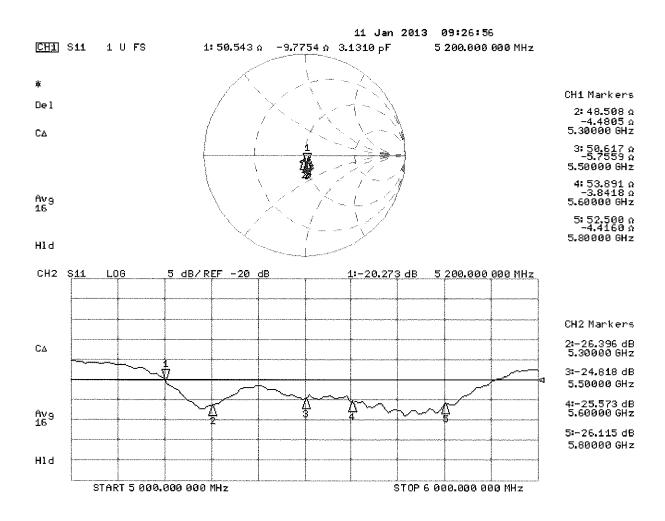
Maximum value of SAR (measured) = 20.2 W/kg

#### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 60.467 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 33.3 W/kg


SAR(1 g) = 7.69 W/kg; SAR(10 g) = 2.17 W/kg

Maximum value of SAR (measured) = 19.4 W/kg



0 dB = 19.4 W/kg = 12.88 dBW/kg

#### Impedance Measurement Plot for Head TSL



#### **DASY5 Validation Report for Body TSL**

Date: 10.01.2013

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1057

Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz,

Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz;  $\sigma = 5.42$  S/m;  $\epsilon_r = 47$ ;  $\rho = 1000$  kg/m³, Medium parameters used: f = 5300 MHz;  $\sigma = 5.55$  S/m;  $\epsilon_r = 46.8$ ;  $\rho = 1000$  kg/m³, Medium parameters used: f = 5500 MHz;  $\sigma = 5.81$  S/m;  $\epsilon_r = 46.5$ ;  $\rho = 1000$  kg/m³, Medium parameters used: f = 5600 MHz;  $\sigma = 5.94$  S/m;  $\epsilon_r = 46.3$ ;  $\rho = 1000$ 

kg/m<sup>3</sup>, Medium parameters used: f = 5800 MHz;  $\sigma = 6.21 \text{ S/m}$ ;  $\varepsilon_r = 46$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.67, 4.67, 4.67); Calibrated: 28.12.2012, ConvF(4.43, 4.43, 4.43); Calibrated: 28.12.2012, ConvF(4.22, 4.22, 4.22); Calibrated: 28.12.2012, ConvF(4.38, 4.38, 4.38); Calibrated: 28.12.2012;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

## Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 59.074 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 30.4 W/kg

SAR(1 g) = 7.61 W/kg; SAR(10 g) = 2.13 W/kg

Maximum value of SAR (measured) = 18.0 W/kg

#### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.924 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 30.9 W/kg

SAR(1 g) = 7.59 W/kg; SAR(10 g) = 2.13 W/kg

Maximum value of SAR (measured) = 17.9 W/kg

#### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 59.561 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 35.3 W/kg

SAR(1 g) = 8.14 W/kg; SAR(10 g) = 2.26 W/kg

Maximum value of SAR (measured) = 19.7 W/kg

#### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

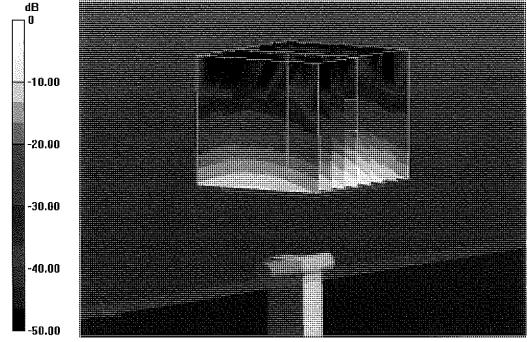
Reference Value = 58.884 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 36.3 W/kg

SAR(1 g) = 8.1 W/kg; SAR(10 g) = 2.25 W/kg

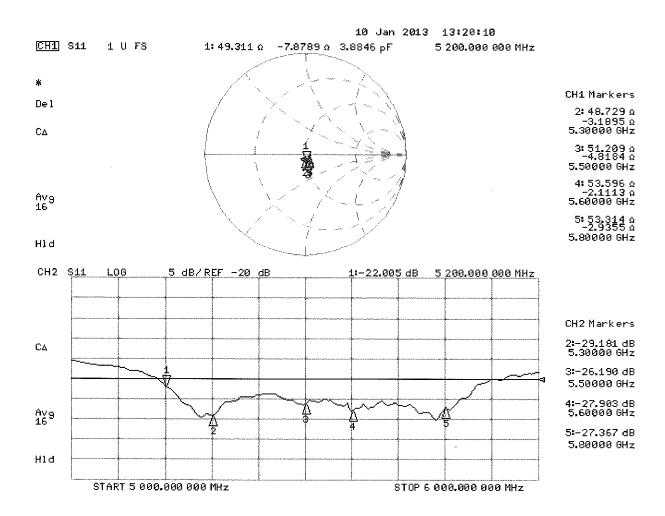
Maximum value of SAR (measured) = 20.0 W/kg

#### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 55.753 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 35.6 W/kg


SAR(1 g) = 7.57 W/kg; SAR(10 g) = 2.09 W/kg

Maximum value of SAR (measured) = 18.9 W/kg



0 dB = 18.9 W/kg = 12.76 dBW/kg

#### Impedance Measurement Plot for Body TSL



#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** 

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

**PC Test** 

Accreditation No.: SCS 108

C

S

Certificate No: ES3-3022\_Aug13

#### CALIBRATION CERTIFICATE

Object

ES3DV2 - SN:3022

Calibration procedure(s)

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

Calibration date:

August 22, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All catibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID              | Cal Date (Certificate No.)        | Scheduled Calibration  |
|----------------------------|-----------------|-----------------------------------|------------------------|
| Power meter E4419B         | GB41293874      | 04-Apr-13 (No. 217-01733)         | Apr-14                 |
| Power sensor E4412A        | MY41498087      | 04-Apr-13 (No. 217-01733)         | Apr-14                 |
| Reference 3 dB Attenuator  | SN: S5054 (3c)  | 04-Apr-13 (No. 217-01737)         | Apr-14                 |
| Reference 20 dB Attenuator | SN: S5277 (20x) | 04-Apr-13 (No. 217-01735)         | Apr-14                 |
| Reference 30 dB Attenuator | SN: S5129 (30b) | 04-Apr-13 (No. 217-01738)         | Apr-14                 |
| Reference Probe ES3DV2     | SN: 3013        | 28-Dec-12 (No. ES3-3013_Dec12)    | Dec-13                 |
| DAE4                       | SN: 660         | 31-Jan-13 (No. DAE4-660_Jan13)    | Jan-14                 |
| Secondary Standards        | 1D              | Check Date (in house)             | Scheduled Check        |
| RF generator HP 8648C      | US3642U01700    | 4-Aug-99 (in house check Apr-13)  | In house check: Apr-15 |
| Network Analyzer HP 8753E  | US37390585      | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 |

Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager

Issued: August 23, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

#### Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF DCP

sensitivity in TSL / NORMx,y,z diode compression point

CF A, B, C, D crest factor (1/duty\_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

Certificate No: ES3-3022\_Aug13

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

#### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
   NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

# Probe ES3DV2

SN:3022

Manufactured: April 15, 2003 August 22, 2013

Calibrated:

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

ES3DV2-SN:3022

#### DASY/EASY - Parameters of Probe: ES3DV2 - SN:3022

#### **Basic Calibration Parameters**

|                                            | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------------------------|----------|----------|----------|-----------|
| Norm (μV/(V/m) <sup>2</sup> ) <sup>A</sup> | 1.00     | 1.04     | 0.99     | ± 10.1 %  |
| DCP (mV) <sup>B</sup>                      | 100.7    | 97.4     | 99.7     |           |

#### **Modulation Calibration Parameters**

| UID | Communication System Name |   | Α   | В     | С   | D    | VR    | Unc⁵   |
|-----|---------------------------|---|-----|-------|-----|------|-------|--------|
|     |                           |   | dB  | dB√μV |     | dB   | mV    | (k=2)  |
| 0   | CW                        | X | 0.0 | 0.0   | 1.0 | 0.00 | 178.6 | ±3.0 % |
|     |                           | Y | 0.0 | 0.0   | 1.0 |      | 141.9 |        |
|     |                           | Z | 0.0 | 0.0   | 1.0 |      | 134.7 | .,     |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ES3-3022\_Aug13

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter; uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ES3DV2-SN:3022 August 22, 2013

#### DASY/EASY - Parameters of Probe: ES3DV2 - SN:3022

#### Calibration Parameter Determined in Head Tissue Simulating Media

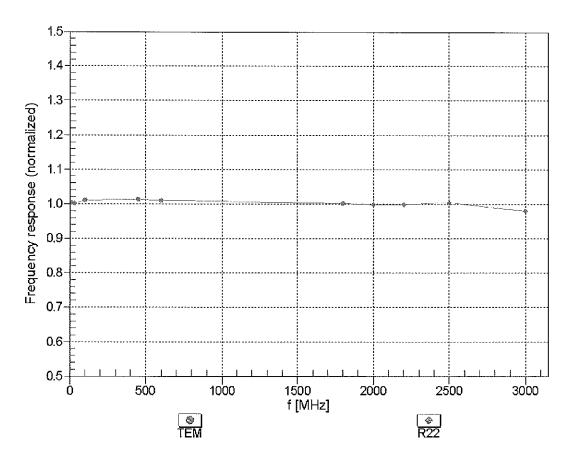
| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth<br>(mm) | Unct.<br>(k=2) |
|----------------------|---------------------------------------|-------------------------|---------|---------|---------|-------|---------------|----------------|
| 750                  | 41.9                                  | 0.89                    | 6.21    | 6.21    | 6.21    | 0.19  | 2.37          | ± 12.0 %       |
| 835                  | 41.5                                  | 0.90                    | 6.09    | 6.09    | 6.09    | 0.30  | 1.70          | ± 12.0 %       |
| 1750                 | 40.1                                  | 1.37                    | 5.19    | 5.19    | 5.19    | 0.65  | 1.23          | ± 12.0 %       |
| 1900                 | 40.0                                  | 1.40                    | 5.03    | 5.03    | 5.03    | 0.51  | 1.43          | ± 12.0 %       |
| 2450                 | 39.2                                  | 1.80                    | 4.36    | 4.36    | 4.36    | 0.51  | 1.51          | ± 12.0 %       |
| 2600                 | 39.0                                  | 1.96                    | 4.16    | 4.16    | 4.16    | 0.74  | 1.29          | ± 12.0 %       |

<sup>&</sup>lt;sup>C</sup> Frequency validity of  $\pm$  100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to  $\pm$  50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

FAt frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

August 22, 2013

#### DASY/EASY - Parameters of Probe: ES3DV2 - SN:3022

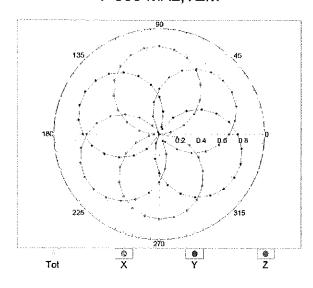

#### Calibration Parameter Determined in Body Tissue Simulating Media

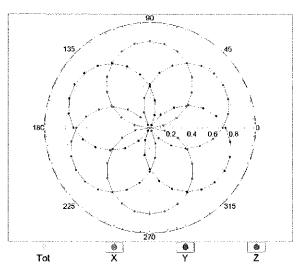
| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth<br>(mm) | Unct.<br>(k=2) |
|----------------------|---------------------------------------|-------------------------|---------|---------|---------|-------|---------------|----------------|
| 750                  | 55.5                                  | 0.96                    | 5.92    | 5.92    | 5.92    | 0.24  | 1.99          | ± 12.0 %       |
| 835                  | 55.2                                  | 0.97                    | 5.91    | 5.91    | 5.91    | 0.29  | 1.85          | ± 12.0 %       |
| 1750                 | 53.4                                  | 1.49                    | 4.75    | 4.75    | 4.75    | 0.52  | 1.52          | ± 12.0 %       |
| 1900                 | 53.3                                  | 1.52                    | 4.49    | 4.49    | 4.49    | 0.49  | 1.56          | ± 12.0 %       |
| 2450                 | 52.7                                  | 1.95                    | 4.01    | 4.01    | 4.01    | 0.70  | 1.02          | ± 12.0 %       |
| 2600                 | 52.5                                  | 2.16                    | 3.85    | 3.85    | 3.85    | 0.58  | 0.90          | ± 12.0 %       |

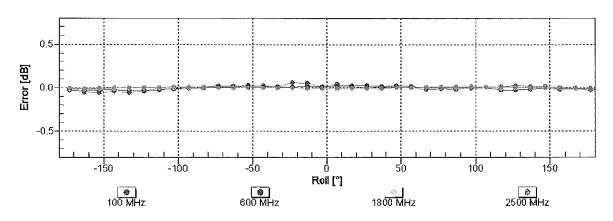
<sup>&</sup>lt;sup>C</sup> Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

# Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

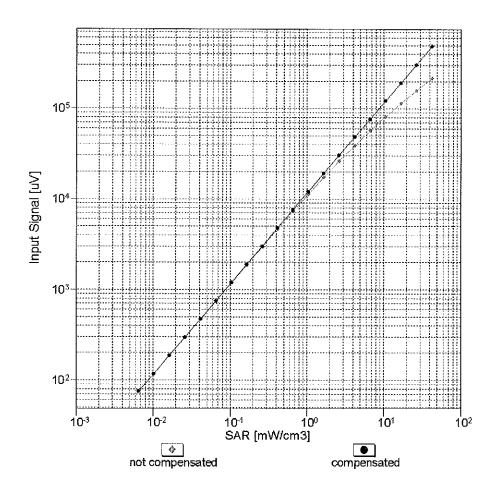


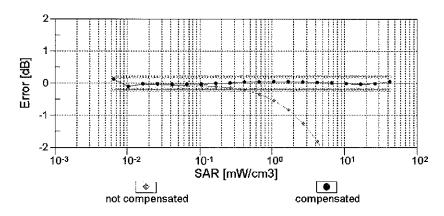


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


## Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$

f=600 MHz,TEM

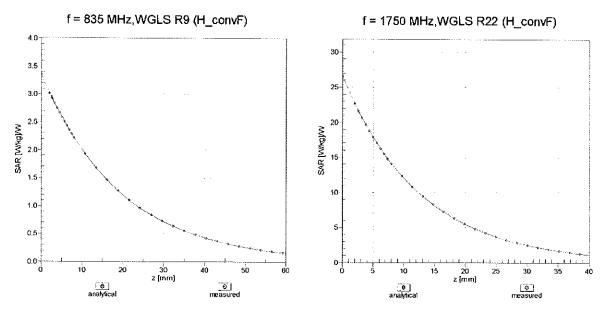
f=1800 MHz,R22



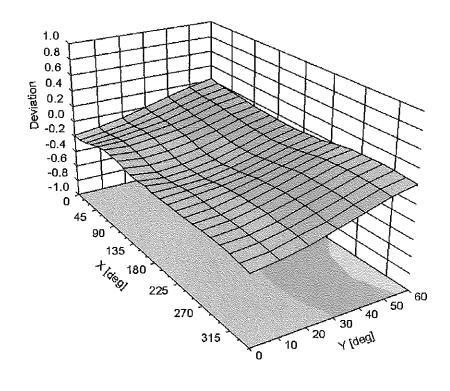



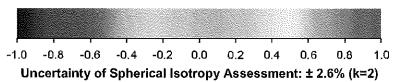



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


#### Dynamic Range f(SAR<sub>head</sub>) (TEM cell , f = 900 MHz)







Uncertainty of Linearity Assessment: ± 0.6% (k=2)

#### **Conversion Factor Assessment**



Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz





## DASY/EASY - Parameters of Probe: ES3DV2 - SN:3022

#### **Other Probe Parameters**

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | -83.1      |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disabled   |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | 10 mm      |
| Tip Diameter                                  | 4 mm       |
| Probe Tip to Sensor X Calibration Point       | 2 mm       |
| Probe Tip to Sensor Y Calibration Point       | 2 mm       |
| Probe Tip to Sensor Z Calibration Point       | 2 mm       |
| Recommended Measurement Distance from Surface | . 3 mm     |