

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctestlab.com

SAR EVALUATION REPORT

Applicant Name:

LG Electronics MobileComm U.S.A., Inc. 1000 Sylvan Avenue, Englewood Cliffs, NJ 07632 USA Date of Testing: 01/05/13 - 01/15/13 Test Site/Location: PCTEST Lab, Columbia, MD, USA Document Serial No.: 0Y1301020025.ZNF

FCC ID: ZNFE980

APPLICANT: LG ELECTRONICS MOBILECOMM U.S.A., INC.

DUT Type: Portable Handset Application Type: Certification
FCC Rule Part(s): CFR §2.1093

Model(s): LG-E980, E980, LGE980

Equipment	Band & Mode	Tx Frequency	Measured Conducted	SAR			
Class	Jana 6 111666	equency	Power [dBm]	1 gm Head (W/kg)	1 gm Body- Worn (W/kg)	1 gm Hotspot (W/kg)	
PCE	GSM/GPRS/EDGE 850	824.20 - 848.80 MHz	33.62	0.37	0.43	0.53	
PCE	UMTS 850	826.40 - 846.60 MHz	23.55	0.15	0.27	0.35	
PCE	GSM/GPRS/EDGE 1900	1850.20 - 1909.80 MHz	30.39	0.18	1.29	1.29	
PCE	UMTS 1900	1852.4 - 1907.6 MHz	23.54	0.14	0.85	0.85	
PCE	LTE Band 17	706.5 - 713.5 MHz	23.65	0.19	0.36	0.50	
PCE	LTE Band 5 (Cell)	826.5 - 846.5 MHz	23.69	0.16	0.30	0.36	
PCE	LTE Band 4 (AWS)	1712.5 - 1752.5 MHz	23.70	0.24	0.36	0.42	
PCE	LTE Band 2 (PCS)	1852.5 - 1907.5 MHz	23.70	0.24	1.08	1.08	
DTS	2.4 GHz WLAN	2412 - 2462 MHz	16.85	< 0.1	< 0.1	< 0.1	
DTS	5.8 GHz WLAN	5745 - 5825 MHz	14.89	< 0.1	0.20		
UNII	5.2 GHz WLAN	5180 - 5240 MHz	14.86	< 0.1	< 0.1		
UNII	5.3 GHz WLAN	5260 - 5320 MHz	14.80	< 0.1	< 0.1		
UNII	5.5 GHz WLAN	5500 - 5700 MHz	14.26	< 0.1	0.19		
DSS/DTS Bluetooth 2402 - 2480 MHz 11.12					N/A		
Simultaneous	SAR per KDB 690783 D01v0	1r02:		0.41	1.58	1.32	

Note: Powers in the above table represent output powers for the SAR test configurations and may not represent the highest output powers for all configurations for each mode.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.8 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

Randy Ortanez President

FCC ID: ZNFE980	PCTEST:	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dans 4 of 55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset		Page 1 of 55

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	LTE INFO	DRMATION	. 10
3	INTROD	JCTION	. 11
4	DOSIME	TRIC ASSESSMENT	. 12
5	DEFINIT	ION OF REFERENCE POINTS	. 13
6	TEST CO	NFIGURATION POSITIONS FOR HANDSETS	. 14
7	RF EXPO	OSURE LIMITS	. 17
8	FCC ME	ASUREMENT PROCEDURES	. 18
9	RF CON	DUCTED POWERS	. 22
10	SYSTEM	VERIFICATION	. 33
11	SAR DA	ΓA SUMMARY	35
12	FCC MU	LTI-TX AND ANTENNA SAR CONSIDERATIONS	. 44
13	SAR ME	ASUREMENT VARIABILITY	49
14	EQUIPM	ENT LIST	50
15	MEASUF	REMENT UNCERTAINTIES	51
16	CONCLU	JSION	53
17	REFERE	NCES	54
APPEN	NDIX A:	SAR TEST PLOTS	
APPEN	NDIX B:	SAR DIPOLE VERIFICATION PLOTS	
APPEN	NDIX C:	PROBE AND DIPOLE CALIBRATION CERTIFICATES	
APPEN	NDIX D:	SAR TISSUE SPECIFICATIONS	
APPEN	NDIX E:	SAR SYSTEM VALIDATION	
APPEN	NDIX F:	SAR TEST SETUP PHOTOGRAPHS	

FCC ID: ZNFE980	PCTEST:	SAR EVALUATION REPORT LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 0 . 155
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset	Page 2 of 55

1 DEVICE UNDER TEST

1.1 Device Overview

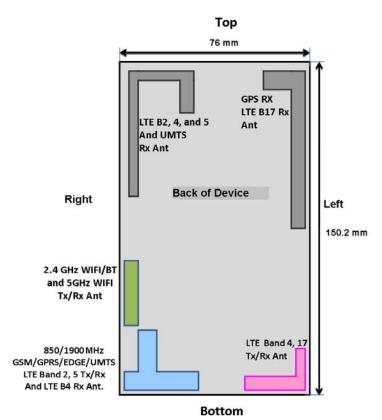
Band & Mode	Operating Modes	Tx Frequency
GSM/GPRS/EDGE 850	Voice/Data	824.20 - 848.80 MHz
UMTS 850	Voice/Data	826.40 - 846.60 MHz
GSM/GPRS/EDGE 1900	Voice/Data	1850.20 - 1909.80 MHz
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz
LTE Band 17	Data	706.5 - 713.5 MHz
LTE Band 5 (Cell)	Data	826.5 - 846.5 MHz
LTE Band 4 (AWS)	Data	1712.5 - 1752.5 MHz
LTE Band 2 (PCS)	Data	1852.5 - 1907.5 MHz
2.4 GHz WLAN	Data	2412 - 2462 MHz
5.8 GHz WLAN	Data	5745 - 5825 MHz
5.2 GHz WLAN	Data	5180 - 5240 MHz
5.3 GHz WLAN	Data	5260 - 5320 MHz
5.5 GHz WLAN	Data	5500 - 5700 MHz
Bluetooth	Data	2402 - 2480 MHz
NFC	Data	13.56 MHz

1.2 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v05.

	Voice	Burst A	verage	Burst Av	erage 8-	
Mode / Pand	(dBm)	GMSK	GMSK (dBm)		dBm)	
Mode / Band		1 TX	1 TX	2 TX	1 TX	2 TX
		Slot	Slots	Slots	Slots	Slots
GSM/GPRS/EDGE 850	Maximum	33.7	33.7	31.7	27.7	27.7
G3IVI/GPR3/EDGE 830	Nominal	33.2	33.2	31.2	27.2	27.2
GSM/GPRS/EDGE 1900	Maximum	30.7	30.7	28.7	26.7	26.7
d d d d d d d d d d d d d d d d d d d	Nominal	30.2	30.2	28.2	26.2	26.2

	Modulated Average			
Mode / Band	3GPP	3GPP	3GPP	
	RMC	HSDPA	HSUPA	
UMTS Band 5 (850 MHz)	Maximum	23.7	23.7	23.7
01V113 Ballu 3 (830 IVII 12)	Nominal	23.2	23.2	23.2
UMTS Band 2 (1900 MHz)	Maximum	23.7	23.7	23.7
	Nominal	23.2	23.2	23.2


FCC ID: ZNFE980	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dans 2 of 55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset	Page 3 of 55

Mode / Band	Modulated Average (dBm)	
LTE Band 17	Maximum	23.7
LIE Ballu 17	Nominal	23.2
LTE Band 5 (Cell)	Maximum	23.7
LTE Ballu 5 (Cell)	Nominal	23.2
LTE Band 4 (AWS)	Maximum	23.7
LTE Ballu 4 (AVV3)	Nominal	23.2
LTE Band 2 (PCS)	Maximum	23.7
LIE Ballu 2 (PC3)	Nominal	23.2

Made / Dand	Modulated Average	
Mode / Band		(dBm)
IEEE 902 11h /2 4 CH-)	Maximum	18.1
IEEE 802.11b (2.4 GHz)	Nominal	17.0
IEEE 802.11g (2.4 GHz)	Maximum	14.1
TEEE 802.11g (2.4 GHZ)	Nominal	13.0
IEEE 802.11n (2.4 GHz)	Maximum	13.1
ILLE 802.1111 (2.4 GHZ)	Nominal	12.0
IEEE 802.11a (5 GHz)	Maximum	15.1
1EEE 802.11a (3 GHZ)	Nominal	14.0
IEEE 802.11n (5GHz 20	Maximum	14.1
MHz) UNII - 1/2/3	Nominal	13.0
IEEE 802.11n (5GHz 20	Maximum	13.1
MHz) ISM (Ch149 - Ch165)	Nominal	12.0
IEEE 802.11n (5 GHz 40	Maximum	14.1
MHz) UNII - 1/2/3	Nominal	13.0
IEEE 802.11n (5GHz 40	Maximum	13.4
MHz) ISM (Ch151 - Ch159)	Nominal	12.3
Bluetooth	Maximum	11.5
Diuetootii	Nominal	10.5

FCC ID: ZNFE980	PCTEST*	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 4 . (55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset		Page 4 of 55

1.3 DUT Antenna Locations

Note: Specific antenna dimensions and separation distances are shown in the antenna distance document.

Figure 1-1
DUT Antenna Locations

Table 1-1
Mobile Hotspot Sides for SAR Testing

Mobile Hotspot Sides for SAR Testing							
Mode	Back	Front	Top	Bottom	Right	Left	
GPRS 850	Yes	Yes	No	Yes	Yes	No	
UMTS 850	Yes	Yes	No	Yes	Yes	No	
GPRS 1900	Yes	Yes	No	Yes	Yes	No	
UMTS 1900	Yes	Yes	No	Yes	Yes	No	
LTE Band 17	Yes	Yes	No	Yes	No	Yes	
LTE Band 5 (Cell)	Yes	Yes	No	Yes	Yes	No	
LTE Band 4 (AWS)	Yes	Yes	No	Yes	No	Yes	
LTE Band 2 (PCS)	Yes	Yes	No	Yes	Yes	No	
2.4 GHz WLAN	Yes	Yes	No	Yes	Yes	No	

Note: Particular DUT edges were not required to be evaluated for Wireless Router SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v01 guidance, page 2. The antenna document shows the distances between the transmit antennas and the edges of the device. When the wireless router mode is enabled, all 5 GHz bands are disabled. Therefore 5 GHz WIFI is not considered in this section.

FCC ID: ZNFE980	PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 5 . (5 5
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset		Page 5 of 55

1.4 Near Field Communications (NFC) Antenna

This DUT has NFC operations. The NFC antenna is integrated into the back cover. The SAR tests were performed with the standard back cover.

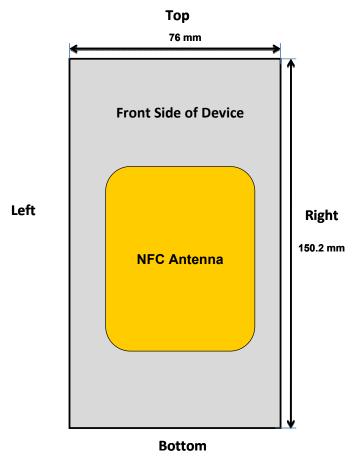
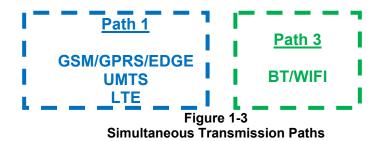



Figure 1-2 NFC Antenna Locations

FCC ID: ZNFE980	PCTEST:	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dans C of 55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset	Page 6 of 55

1.5 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D05v01, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths for the DUT are shown in Figure 1-3 and are color-coded to indicate communication modes which share the same path. Modes which share the same transmission path cannot transmit simultaneously with one another.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v05 3) procedures.

Table 1-2
Simultaneous Transmission Scenarios

No.	Capable TX Configration	Head SAR	Body Worn SAR	Hotspot SAR	Note
1	GSM 850 Voice + WiFi 2.4Ghz	ves	ves	N/A	
_	GSM 1900 Voice + WiFi 2.4Ghz	yes	ves	N/A	GSM voice + WiFi 2.4Ghz
3	GSM 850 Voice + WiFi 5Ghz	yes	ves	N/A	
4	GSM 1900 Voice + WiFi 5Ghz	yes	ves	N/A	GSM voice + WiFi 5Ghz
5	GSM 850 GPRS/EDGE + WiFi 2.4Ghz	yes	yes	yes	CDDS/EDGE : WEE 2 4G
6	GSM 1900 GPRS/EDGE + WiFi 2.4Ghz	yes	yes	yes	GPRS/EDGE + WiFi 2.4Ghz
7	GSM 850 GPRS/EDGE + WiFi 5Ghz	no	no	no	Wifi FC is not associated that and Wifi Risest
8	GSM 1900 GPRS/EDGE + WiFi 5Ghz	no	no	no	WiFi 5G is not supported Hotspot and WiFi Direct
9	UMTS 850 + WiFi 2.4Ghz	yes	yes	yes	LINATO - NAGE: 2 ACE-
10	UMTS 1900 + WiFi 2.4Ghz	yes	yes	yes	UMTS + WiFi 2.4Ghz
11	UMTS 850 + WiFi 5Ghz	yes	yes	no	UMTS + WiFi 5Ghz
12	UMTS 1900 + WiFi 5Ghz	yes	yes	no	OM12 + MIFL2QUZ
13	GSM 850 Voice + 2.4 GHz Bluetooth	no	yes	no	
14	GSM 1900 Voice + 2.4 GHz Bluetooth	no	yes	no	
15	GSM 850 GPRS/EDGE + 2.4 GHz Bluetooth	no	yes	no	2G/3G + 2.4 GHz Bluetooth
16	GSM 1900 GPRS/EDGE + 2.4 GHz Bluetooth	no	yes	no	2G/3G + 2.4 GHZ Bluet00th
17	UMTS 850 + 2.4 GHz Bluetooth	no	yes	no	
18	UMTS 1900 + 2.4 GHz Bluetooth	no	yes	no	
19	LTE B2 + 2.4Ghz Bluetooth	no	yes	no	
20	LTE B4 + 2.4 GHz Bluetooth	no	yes	no	LTE + 2.4GHz Bluetooth
21	LTE B5 + 2.4 GHz Bluetooth	no	yes	no	LTE + 2.4GHZ Bluetootil
22	LTE B17 + 2.4 GHz Bluetooth	no	yes	no	
23	LTE B2 + WiFi 2.4Ghz	yes	yes	yes	
24	LTE B4 + WiFi 2.4Ghz	yes	yes	yes	LTE + WiFi 2.4Ghz
25	LTE B5 + WiFi 2.4Ghz	yes	yes	yes	LTL + WIIT 2.4OIIZ
26	LTE B17 + WiFi 2.4Ghz	yes	yes	yes	
27	LTE B2 + WiFi 5Ghz	no	no	no	
28	LTE B4 + WiFi 5Ghz	no	no	no	WiFi 5G is not supported Hotspot and WiFi Direct
29	LTE B5 + WiFi 5Ghz	no	no	no	Will 1 30 13 Hot supported Hotspot and Will Direct
30	LTE B17 + WiFi 5Ghz	no	no	no	

^{1.} WiFi 2.4Ghz is supported Hotspot&WiFi-Direct, WiFi 5Ghz is not supported Hotspot&WiFi-Direct.

^{4.} Bluetooth and WiFi can not transmit simultaneous because they operate on same antenna path.

FCC ID: ZNFE980	PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 7 . (55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset		Page 7 of 55

^{2.} LTE, UMTS data, GPRS/EDGE is supported Hotspot.

^{3.} VoIP is supported in LTE, WCDMA, GSM (e.g. 3rd part VoIP and VoLTE)

1.6 SAR Test Exclusions Applied

(A) WIFI/BT

Since Wireless Router operations are not allowed by the chipset firmware using 5 GHz WIFI, only 2.4 GHz WIFI Hotspot SAR tests and combinations are considered for SAR with respect to Wireless Router configurations according to FCC KDB 941225 D06v01.

Per FCC KDB 447498 D01 v05, the SAR exclusion threshold for distances <50mm is defined by the following equation:

$$\frac{\textit{Max Power of Channel (mW)}}{\textit{Test Separation Dist (mm)}} * \sqrt{\textit{Frequency(GHz)}} \le 3.0$$

Based on the maximum conducted power of Bluetooth and the antenna to use separation distance, Bluetooth SAR was not required; $[(14/10)^* \sqrt{2.441}] = 2.2 < 3.0$.

This device supports 20 MHz and 40 MHz Bandwidths for IEEE 802.11n for 5 GHz WIFI only. IEEE 802.11n was not evaluated for SAR since the average output power of 20 MHz and 40 MHz bandwidths was not more than 0.25 dB higher than the average output power of IEEE 802.11a.

(B) Licensed Transmitter(s)

This model does not support Simultaneous Voice and Data for the licensed transmitter in any modes except in UMTS that allows Multi-RAB transmissions that share voice and data operations on a single physical channel.

GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data.

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v02.

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02.

1.7 Power Reduction for SAR

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

1.8 Guidance Applied

- FCC OET Bulletin 65 Supplement C [June 2001]
- IEEE 1528-2003
- FCC KDB Publication 941225 D01-D06 (2G/3G/4G and Hotspot)
- FCC KDB Publication 248227 D01v01r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v05 (General SAR Guidance)
- FCC KDB Publication 865664 D01-D02 (SAR Measurements up to 6 GHz)

FCC ID: ZNFE980	PCTEST'	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 0 . (55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset	Page 8 of 55	

1.9 Device Serial Numbers

Several samples were used with identical hardware to support SAR testing. All samples have the same physical, mechanical and thermal characteristics and are electrically identical.

	Head Serial Number	Body-Worn Serial Number	Hotspot Serial Number
GSM/GPRS/EDGE 850	211KPPB263112	211KPPB263112	211KPPB263112
UMTS 850	211KPPB263112	211KPPB263112	211KPPB263112
GSM/GPRS/EDGE 1900	211KPPB263112	211KPPB263112	211KPPB263112
UMTS 1900	211KPSL263118	211KPSL263118	211KPSL263118
LTE Band 17	211KPDT263122	211KPDT263122	211KPDT263122
LTE Band 5 (Cell)	211KPDT263122	211KPDT263122	211KPDT263122
LTE Band 4 (AWS)	211KPMZ263122	211KPDT263122	211KPDT263122
LTE Band 2 (PCS)	211KPDT263122	211KPMZ263122	211KPMZ263122
2.4 GHz WLAN	211KPKN263125	211KPMZ263122	211KPMZ263122
5 GHz WLAN	211KPDT263122	211KPDT263122	-

FCC ID: ZNFE980	PCTEST:	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dans 0 of 55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset	Page 9 of 55

2 LTE INFORMATION

LTE Information						
FCC ID		ZNFE980				
Form Factor		Portable Handset				
Frequency Range of each LTE transmission band	LTE B	and 17 (706.5 - 713.5	5 MHz)			
	LTE Ban	d 5 (Cell) (826.5 - 84	6.5 MHz)			
	LTE Band 4 (AWS) (1712.5 - 1752.5 MHz)					
	LTE Band 2 (PCS) (1852.5 - 1907.5 MHz)					
Channel Bandwidths	LTE	Band 17: 5 MHz, 10	MHz			
	LTE Ba	and 5 (Cell): 5 MHz, 1	10 MHz			
	LTE Band 4 (AWS): 5 MHz, 10 MHz					
	LTE Band 2 (PCS): 5 MHz, 10 MHz					
Channel Numbers and Frequencies (MHz)	Low	Mid	High			
LTE Band 17: 5 MHz	706.5 (23755)	710 (23790)	713.5 (23825)			
LTE Band 17: 10 MHz	709 (23780)	710 (23790)	711 (23800)			
LTE Band 5 (Cell): 5 MHz	826.5 (20425)	836.5 (20525)	846.5 (20625)			
LTE Band 5 (Cell): 10 MHz	829 (20450)	836.5 (20525)	844 (20600)			
LTE Band 4 (AWS): 5 MHz	1712.5 (19975)	1732.5 (20175)	1752.5 (20375)			
LTE Band 4 (AWS): 10 MHz	1715 (20000)	1732.5 (20175)	1750 (20350)			
LTE Band 2 (PCS): 5 MHz	1852.5 (18625)	1880 (18900)	1907.5 (19175)			
LTE Band 2 (PCS): 10 MHz	1855 (18650)	1880 (18900)	1905 (19150)			
UE Category		3				
Modulations Supported in UL		QPSK, 16QAM				
LTE Transmitter and Antenna Implementation			d 2 Rx only antennas for LTE			
Description of LTE Tx and Ant. Implementation	GSM/UMTS	LTE share the same	e transmitter			
Hotspot with LTE+WIFI		YES				
Hotspot with LTE+WIFI active with 1XVoice sessions?		NO				
LTE MPR Permanently implemented per 3GPP TS						
36.101 section 6.2.3~6.2.5? (manufacturer attestation		YES				
to be provided)						
A-MPR (Additional MPR) disabled for SAR Testing?	YES					
Conducted power Table provided for 1RB (low, mid, and high offsets), 50% RB (low, mid, and high offsets), 100% RB		YES				

FCC ID: ZNFE980	PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 40 . (55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset		Page 10 of 55

3 INTRODUCTION

The FCC and Industry Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [24]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m)

 ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: ZNFE980	PCTEST'	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 44 . 655
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset		Page 11 of 55

4 DOSIMETRIC ASSESSMENT

4.1 Measurement Procedure

The evaluation was performed using the following procedure:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01 (See Table 4-1).
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

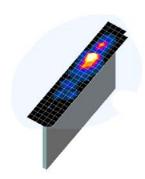


Figure 4-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01 (See Table 4-1). On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. The data was extrapolated to the surface of the outer-shell of the phantom. The combined distance extrapolated was the combined distance from the center of the dipoles 2.7mm away from the tip of the probe housing plus the 1.2 mm distance between the surface and the lowest measuring point. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 4-1

Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01

Maximum Area Scan Frequency Resolution (mm)				Maximum Zoom Scan Spatial Resolution (mm)			
Frequency	$(\Delta x_{area}, \Delta y_{area})$	$(\Delta x_{zoom}, \Delta y_{zoom})$	Uniform Grid	G	raded Grid	Volume (mm) (x,y,z)	
			Δz _{zoom} (n)	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*		
≤ 2 GHz	≤ 15	≤8	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30	
2-3 GHz	≤ 12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30	
3-4 GHz	≤ 12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28	
4-5 GHz	≤ 10	≤4	≤3	≤ 2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25	
5-6 GHz	≤ 10	≤4	≤2	≤2	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 22	

FCC ID: ZNFE980	PCTEST*	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 40 . (55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset		Page 12 of 55

5 DEFINITION OF REFERENCE POINTS

5.1 EAR REFERENCE POINT

Figure 5-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 5-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

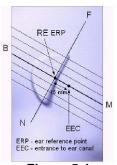


Figure 5-1 Close-Up Side view of ERP

5.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 5-3). The "test device reference point" was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at it's top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 5-2 Front, back and side view of SAM Twin Phantom

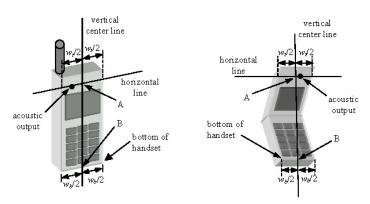


Figure 5-3
Handset Vertical Center & Horizontal Line Reference Points

FCC ID: ZNFE980	PCTEST:	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dana 40 of 55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset	Page 13 of 55

6 TEST CONFIGURATION POSITIONS FOR HANDSETS

6.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02.

6.2 Positioning for Cheek

1. The test device was positioned with the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 6-1 Front, Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the ear.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the plane normal to MB-NF including the line MB (reference plane).
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 6-2).

6.3 Positioning for Ear / 15° Tilt

With the test device aligned in the "Cheek Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- 2. The phone was then rotated around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. The tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6-2).

FCC ID: ZNFE980	PCTEST:	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dans 44 of 55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset	Page 14 of 55

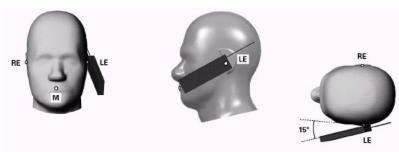


Figure 6-2 Front, Side and Top View of Ear/15° Tilt Position

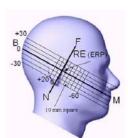


Figure 6-3
Side view w/ relevant markings

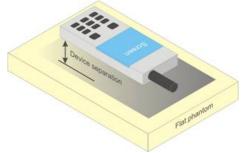


Figure 6-4
Sample Body-Worn Diagram

6.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones.

Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document FCC KDB Publication 648474 D04_v01. The SAR required in these regions of SAM should be measured using a flat phantom. The phone should be positioned with a separation distance of 4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell. While maintaining this distance at the ERP location, the low (bottom) edge of the phone should be lowered from the phantom to establish the same separation distance between the peak SAR location identified by the truncated partial SAR distribution measured with the SAM phantom. The distance from the peak SAR location to the phone is determined by the straight line passing perpendicularly through the phantom surface. When it is not feasible to maintain 4 mm separation at the ERP while also establishing the required separation at the peak SAR location, the top edge of the phone will be allowed to touch the phantom with a separation < 4 mm at the ERP. The phone should not be tilted to the left or right while placed in this inclined position to the flat phantom.

The latest IEEE 1528 committee developments propose the usage of a tilted phantom when the antenna of the phone is mounted at the bottom or in all cases the peak absorption is in the chin region. Both SAM heads of the TwinSAM-Chin20 are rotated 20 degrees around the NF line. Each head can be removed individually from the table for emptying and cleaning.

Figure 6-5 Twin SAM Chin20

FCC ID: ZNFE980	PCTEST'	SAR EVALUATION REPORT LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 45 . (55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset	Page 15 of 55

6.5 Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-4). Per FCC KDB Publication 648474 D04_v01, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01_v05 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

6.6 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 v01 where SAR test considerations for handsets (L x W \geq 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v05 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

FCC ID: ZNFE980	PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 40 . (55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset		Page 16 of 55

7 RF EXPOSURE LIMITS

7.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

7.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 7-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS					
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)			
SPATIAL PEAK SAR Brain	1.6	8.0			
SPATIAL AVERAGE SAR Whole Body	0.08	0.4			
SPATIAL PEAK SAR Hands, Feet, Ankles, Wrists	4.0	20			

^{1.} The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: ZNFE980	PCTEST'	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dana 47 of 55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset		Page 17 of 55

^{2.} The Spatial Average value of the SAR averaged over the whole body.

^{3.} The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

8 FCC MEASUREMENT PROCEDURES

Power measurements were performed using a base station simulator under digital average power.

8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v05, When SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r02.

8.2 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01 "SAR Measurement Procedures for 3G Devices" v02, October 2007.

The device was placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test were evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device was tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviated by more than 5%, the SAR test and drift measurements were repeated.

8.3 SAR Measurement Conditions for UMTS

8.3.1 Output Power Verification

Maximum output power is measured on the High, Middle and Low channels for each applicable transmission band according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1s".

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121 (release 5), using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

8.3.2 Head SAR Measurements for Handsets

SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than 0.25 dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a

FCC ID: ZNFE980	PCTEST'	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 40 . 155
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset		Page 18 of 55

3.4 kbps SRB (signaling radio bearer) using the exposure configuration that resulted in the highest SAR for that RF channel in the 12.2 kbps RMC mode.

8.3.3 Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s".

8.3.4 SAR Measurements for Handsets with Rel 5 HSDPA

Body SAR for HSDPA is not required for handsets with HSDPA capabilities when the maximum average output power of each RF channel with HSDPA active is less than 0.25 dB higher than that measured without HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is $\leq 75\%$ of the SAR limit. Otherwise, SAR is measured for HSDPA, using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration measured in 12.2 kbps RMC without HSDPA, on the maximum output channel with the body exposure configuration that resulted in the highest SAR in 12.2 kbps RMC mode for that RF channel.

The H-set used in FRC for HSDPA should be configured according to the UE category of a test device. The number of HS-DSCH/HSPDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the applicable H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the FRC for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 2 ms to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors of $\beta c=9$ and $\beta d=15$, and power offset parameters of $\Delta ACK=\Delta NACK=5$ and $\Delta CQI=2$ is used. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the FRC.

8.3.5 SAR Measurements for Handsets with Rel 6 HSUPA

Body SAR for HSUPA is not required when the maximum average output of each RF channel with HSUPA/HSDPA active is less than 0.25 dB higher than as measured without HSUPA/HSDPA using 12.2 kbps RMC and maximum SAR for 12.2 kbps RMC is \leq 75 % of the SAR limit. Otherwise SAR is measured on the maximum output channel for the body exposure configuration produced highest SAR in 12.2 kbps RMC for that RF channel, using the additional procedures under "Release 6 HSPA data devices"

Head SAR for VOIP operations under HSPA is not required when maximum average output of each RF channel with HSPA is less than 0.25 dB higher than as measured using 12.2 kbps RMC. Otherwise SAR is measured using same HSPA configuration as used for body SAR.

FCC ID: ZNFE980	PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 40 . (55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset		Page 19 of 55

Sub- test	βε	βα	β _d (SF)	β_c/β_d	$\beta_{hs}^{(1)}$	β _{ec}	β_{ed}	β _{ed} (SF)	β _{ed} (codes)	CM ⁽²⁾ (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E- TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15(3)	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed1} : 47/15 β _{ed2} : 47/15		2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 * \beta_c$.

Note 2: CM = 1 for β_c/β_d =12/15, β_{hs}/β_c=24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c=10/15$ and $\beta_d=15/15$.

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g.

Note 6: β_{ed} can not be set directly; it is set by Absolute Grant Value.

8.4 SAR Measurement Conditions for LTE

LTE modes were tested according to FCC KDB 941225 D05v02 publication. Please see notes after the tabulated SAR data for required test configurations. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 was used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing.

8.4.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

8.4.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

8.4.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

8.4.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.

FCC ID: ZNFE980	PCTEST:	SAR EVALUATION REPORT LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 00 . 1 55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset	Page 20 of 55

- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.</p>

8.5 SAR Testing with 802.11 Transmitters

Normal network operating configurations are not suitable for measuring the SAR of 802.11 a/b/g/n transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v01r02 for more details.

8.5.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

8.5.2 Frequency Channel Configurations [27]

For 2.4 GHz, the highest average RF output power channel between the low, mid and high channel at the lowest data rate was selected for SAR evaluation in 802.11b mode. 802.11g/n modes and higher data rates for 802.11b were additionally evaluated for SAR if the output power of the respective mode was 0.25 dB or higher than the powers of the SAR configurations tested in the 802.11b mode.

For 5 GHz, the highest average RF output power channel across the default test channels at the lowest data rate was selected for SAR evaluation in 802.11a. When the adjacent channels are higher in power then the default channels, these "required channels" were considered instead of the default channels for SAR testing. 802.11n modes and higher data rates for 802.11a/n were evaluated only if the respective mode was 0.25 dB or higher than the 802.11a mode.

If the maximum extrapolated peak SAR of the zoom scan for the highest output channel was less than 1.6 W/kg or if the 1g averaged SAR was less than 0.8 W/kg, SAR testing was not required for the other test channels in the band.

FCC ID: ZNFE980	PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 04 . (55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset		Page 21 of 55

9.1 GSM Conducted Powers

		Maximum Burst-Averaged Output Power					
		Voice		PRS/EDGE Data (GMSK)		Data (8- SK)	
Band	Band Channel		GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	
	128	33.52	33.57	31.45	27.25	27.42	
GSM 850	190	33.62	33.67	31.47	27.09	27.19	
	251	33.69	33.51	31.49	27.05	27.20	
GSM 1900	512	30.27	30.29	28.54	25.97	25.98	
	661	30.39	30.61	28.52	26.18	26.17	
	810	30.32	30.55	28.53	26.16	26.17	

		Calculate	Calculated Maximum Frame-Averaged Output Power						
		Voice	GPRS/EDGE Data (GMSK)		EDGE Data (8- PSK)				
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot			
	128	24.49	24.54	25.43	18.22	21.40			
GSM 850	190	24.59	24.64	25.45	18.06	21.17			
	251	24.66	24.48	25.47	18.02	21.18			
	512	21.24	21.26	22.52	16.94	19.96			
GSM 1900	661	21.36	21.58	22.50	17.15	20.15			
	810	21.29	21.52	22.51	17.13	20.15			

Note: Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.

The bolded GPRS modes were selected for SAR testing according to the highest frame-averaged output power table according to KDB 941225 D03v01.

GPRS/EDGE (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 - CS4 settings do not have any impact on the output levels or modulation in the GPRS modes.

FCC ID: ZNFE980	PCTEST:	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dans 00 of 55	
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset	Page 22 of 55	

EDGE (8-PSK) output powers were measured with MCS7 on the base station simulator. MCS7 coding scheme was used to measure the output powers for EDGE since investigation has shown that choosing MCS7 coding scheme will ensure 8-PSK modulation. It has been shown that MCS levels that produce 8PSK modulation do not have an impact on output power.

This device does not support evolved EDGE (eEDGE).

GSM Class: B

GPRS Multislot class: 10 (Max 2 Tx uplink slots) EDGE Multislot class: 10 (Max 2 Tx uplink slots)

DTM Multislot Class: N/A

Figure 9-1
Power Measurement Setup

9.2 UMTS Conducted Powers

3GPP Release	Mode	3GPP 34.121 Subtest	Cellular Band [dBm]			PC	3GPP MPR		
Version		Cubicst	4132	4183	4233	9262	9400	9538	[GD]
99	WCDMA	12.2 kbps RMC	23.45	23.55	23.52	23.54	23.47	23.41	-
99	VVCDIVIA	12.2 kbps AMR	23.36	23.41	23.34	23.37	23.31	23.29	-
6	HSDPA	Subtest 1	23.46	23.50	23.35	23.42	23.40	23.34	0
6		Subtest 2	23.06	23.05	22.91	23.18	23.29	23.23	0
6	TIODEA	Subtest 3	23.01	22.91	22.75	23.18	23.20	23.20	0.5
6		Subtest 4	22.97	22.84	22.82	23.18	23.19	23.17	0.5
6		Subtest 1	23.03	23.00	22.78	23.28	22.71	22.67	0
6		Subtest 2	22.13	22.06	21.90	22.05	21.95	22.04	2
6	HSUPA	Subtest 3	22.02	22.30	22.23	22.43	22.09	22.33	1
6		Subtest 4	22.07	22.10	22.01	22.12	22.11	21.99	2
6	1	Subtest 5	23.35	22.89	22.87	22.92	23.28	22.31	0

UMTS SAR was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v02. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg.

This device does not support DC-HSDPA.

It is expected by the manufacturer that MPR for some HSUPA subtests may be up to 1 dB more than specified by 3GPP, but also as low as 0 dB according to the chipset implementation in this model.

Figure 9-2 Power Measurement Setup

FCC ID: ZNFE980	PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 00 . (55
0Y1301020025.ZNF 01/05/13 - 01/15/13 F		Portable Handset	Page 23 of 55	

9.3 LTE Conducted Powers

9.3.1 LTE Band 17

Table 9-1
LTE Band 17 Conducted Powers - 10 MHz Bandwidth

	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	Target MPR [dB]	MPR Allowed per 3GPP [dB]
	710.0	23790	10	QPSK	1	0	23.55	0	0
	710.0	23790	10	QPSK	1	25	23.65	0	0
	710.0	23790	10	QPSK	1	49	23.56	0	0
	710.0	23790	10	QPSK	25	0	22.53	1	0-1
	710.0	23790	10	QPSK	25	12	22.50	1	0-1
	710.0	23790	10	QPSK	25	25	22.59	1	0-1
Mid	710.0	23790	10	QPSK	50	0	22.44	1	0-1
Σ	710.0	23790	10	16QAM	1	0	22.38	1	0-1
	710.0	23790	10	16QAM	1	25	22.39	1	0-1
	710.0	23790	10	16QAM	1	49	22.30	1	0-1
	710.0	23790	10	16QAM	25	0	21.62	2	0-2
	710.0	23790	10	16QAM	25	12	21.63	2	0-2
	710.0	23790	10	16QAM	25	25	21.69	2	0-2
	710.0	23790	10	16QAM	50	0	21.47	2	0-2

Note: LTE Band 17 at 10 MHz Bandwidth does not support three non-overlapping channels. Per KDB 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the mid channel of the group of overlapping channels should be selected for testing.

Table 9-2
LTE Band 17 Conducted Powers - 5 MHz Bandwidth

	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	Target MPR [dB]	MPR Allowed per 3GPP [dB]
	710.0	23790	5	QPSK	1	0	23.63	0	0
	710.0	23790	5	QPSK	1	12	23.64	0	0
	710.0	23790	5	QPSK	1	24	23.70	0	0
	710.0	23790	5	QPSK	12	0	22.66	1	0-1
	710.0	23790	5	QPSK	12	6	22.70	1	0-1
	710.0	23790	5	QPSK	12	13	22.70	1	0-1
ē	710.0	23790	5	QPSK	25	0	22.53	1	0-1
Σ	710.0	23790	5	16-QAM	1	0	22.24	1	0-1
	710.0	23790	5	16-QAM	1	12	22.27	1	0-1
	710.0	23790	5	16-QAM	1	24	22.40	1	0-1
	710.0	23790	5	16-QAM	12	0	21.60	2	0-2
	710.0	23790	5	16-QAM	12	6	21.70	2	0-2
	710.0	23790	5	16-QAM	12	13	21.69	2	0-2
	710.0	23790	5	16-QAM	25	0	21.51	2	0-2

Note: LTE Band 17 at 5 MHz Bandwidth does not support three non-overlapping channels. Per KDB 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the mid channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNFE980	PCTEST*	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		D 04 - 155	
0Y1301020025.ZNF	25.ZNF 01/05/13 - 01/15/13 Portable Handset			Page 24 of 55	

9.3.2 LTE Band 5 (Cell)

Table 9-3
LTE Band 5 (Cell) Conducted Powers - 10 MHz Bandwidth

				,					
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	Target MPR [dB]	MPR Allowed per 3GPP [dB]
	836.5	20525	10	QPSK	1	0	23.55	0	0
	836.5	20525	10	QPSK	1	25	23.69	0	0
	836.5	20525	10	QPSK	1	49	23.63	0	0
	836.5	20525	10	QPSK	25	0	22.34	1	0-1
	836.5	20525	10	QPSK	25	12	22.37	1	0-1
	836.5	20525	10	QPSK	25	25	22.39	1	0-1
Mid	836.5	20525	10	QPSK	50	0	22.35	1	0-1
Σ	836.5	20525	10	16QAM	1	0	22.22	1	0-1
	836.5	20525	10	16QAM	1	25	22.38	1	0-1
	836.5	20525	10	16QAM	1	49	22.31	1	0-1
	836.5	20525	10	16QAM	25	0	21.46	2	0-2
	836.5	20525	10	16QAM	25	12	21.52	2	0-2
	836.5	20525	10	16QAM	25	25	21.56	2	0-2
	836.5	20525	10	16QAM	50	0	21.30	2	0-2

Note: LTE Band 5 at 10 MHz Bandwidth does not support three non-overlapping channels. Per KDB 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the mid channel of the group of overlapping channels should be selected for testing.

Table 9-4 LTE Band 5 (Cell) Conducted Powers - 5 MHz Bandwidth

_			Julia o (aactea i		O WILL DUI		
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	Target MPR [dB]	MPR Allowed per 3GPP [dB]
	826.5	20425	5	QPSK	1	0	23.62	0	0
	826.5	20425	5	QPSK	1	12	23.70	0	0
	826.5	20425	5	QPSK	1	24	23.54	0	0
	826.5	20425	5	QPSK	12	0	22.61	1	0-1
	826.5	20425	5	QPSK	12	6	22.61	1	0-1
	826.5	20425	5	QPSK	12	13	22.55	1	0-1
Low	826.5	20425	5	QPSK	25	0	22.48	1	0-1
2	826.5	20425	5	16-QAM	1	0	22.64	1	0-1
	826.5	20425	5	16-QAM	1	12	22.68	1	0-1
	826.5	20425	5	16-QAM	1	24	22.67	1	0-1
	826.5	20425	5	16-QAM	12	0	21.67	2	0-2
	826.5	20425	5	16-QAM	12	6	21.62	2	0-2
	826.5	20425	5	16-QAM	12	13	21.57	2	0-2
	826.5	20425	5	16-QAM	25	0	21.56	2	0-2
	836.5	20525	5	QPSK	1	0	23.68	0	0
	836.5	20525	5	QPSK	1	12	23.70	0	0
	836.5	20525	5	QPSK	1	24	23.69	0	0
	836.5	20525	5	QPSK	12	0	22.46	1	0-1
	836.5	20525	5	QPSK	12	6	22.55	1	0-1
	836.5	20525	5	QPSK	12	13	22.69	1	0-1
p	836.5	20525	5	QPSK	25	0	22.50	1	0-1
Mid	836.5	20525	5	16-QAM	1	0	22.65	1	0-1
	836.5	20525	5	16-QAM	1	12	22.64	1	0-1
	836.5	20525	5	16-QAM	1	24	22.54	1	0-1
	836.5	20525	5	16-QAM	12	0	21.45	2	0-2
	836.5	20525	5	16-QAM	12	6	21.48	2	0-2
	836.5	20525	5	16-QAM	12	13	21.63	2	0-2
	836.5	20525	5	16-QAM	25	0	21.44	2	0-2
	846.5	20625	5	QPSK	1	0	23.62	0	0
	846.5	20625	5	QPSK	1	12	23.42	0	0
	846.5	20625	5	QPSK	1	24	23.37	0	0
	846.5	20625	5	QPSK	12	0	22.47	1	0-1
	846.5	20625	5	QPSK	12	6	22.40	1	0-1
	846.5	20625	5	QPSK	12	13	22.45	1	0-1
High	846.5	20625	5	QPSK	25	0	22.40	1	0-1
Ξ̈́	846.5	20625	5	16-QAM	1	0	22.70	1	0-1
	846.5	20625	5	16-QAM	1	12	22.65	1	0-1
	846.5	20625	5	16-QAM	1	24	22.60	1	0-1
	846.5	20625	5	16-QAM	12	0	21.57	2	0-2
	846.5	20625	5	16-QAM	12	6	21.50	2	0-2
	846.5	20625	5	16-QAM	12	13	21.51	2	0-2
	846.5	20625	5	16-QAM	25	0	21.38	2	0-2

FCC ID: ZNFE980	PCTEST'	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		D 05 . (55	
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset		Page 25 of 55	

9.3.3 LTE Band 4 (AWS)

Table 9-5
LTE Band 4 (AWS) Conducted Powers - 10 MHz Bandwidth

_			- Land	(7 1110) 00.	i a a o t o a i	011010	10 111112 201	o wii iz banawiatii		
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	Target MPR [dB]	MPR Allowed per 3GPP [dB]	
	1715	20000	10	QPSK	1	0	23.67	0	0	
	1715	20000	10	QPSK	1	25	23.70	0	0	
	1715	20000	10	QPSK	1	49	23.69	0	0	
	1715	20000	10	QPSK	25	0	22.54	1	0-1	
	1715	20000	10	QPSK	25	12	22.57	1	0-1	
	1715	20000	10	QPSK	25	25	22.59	1	0-1	
Low	1715	20000	10	QPSK	50	0	22.47	1	0-1	
의	1715	20000	10	16QAM	1	0	22.69	1	0-1	
	1715	20000	10	16QAM	1	25	22.70	1	0-1	
	1715	20000	10	16QAM	1	49	22.68	1	0-1	
	1715	20000	10	16QAM	25	0	21.63	2	0-2	
	1715	20000	10	16QAM	25	12	21.52	2	0-2	
	1715	20000	10	16QAM	25	25	21.58	2	0-2	
	1715	20000	10	16QAM	50	0	21.49	2	0-2	
	1732.5	20175	10	QPSK	1	0	23.68	0	0	
	1732.5	20175	10	QPSK	1	25	23.67	0	0	
	1732.5	20175	10	QPSK	1	49	23.70	0	0	
	1732.5	20175	10	QPSK	25	0	22.64	1	0-1	
	1732.5	20175	10	QPSK	25	12	22.70	1	0-1	
	1732.5	20175	10	QPSK	25	25	22.61	1	0-1	
Mid	1732.5	20175	10	QPSK	50	0	22.52	1	0-1	
Σ	1732.5	20175	10	16QAM	1	0	22.63	1	0-1	
	1732.5	20175	10	16QAM	1	25	22.70	1	0-1	
	1732.5	20175	10	16QAM	1	49	22.67	1	0-1	
	1732.5	20175	10	16QAM	25	0	21.60	2	0-2	
	1732.5	20175	10	16QAM	25	12	21.60	2	0-2	
	1732.5	20175	10	16QAM	25	25	21.52	2	0-2	
	1732.5	20175	10	16QAM	50	0	21.59	2	0-2	
	1750	20350	10	QPSK	1	0	23.70	0	0	
	1750	20350	10	QPSK	1	25	23.70	0	0	
	1750	20350	10	QPSK	1	49	23.63	0	0	
	1750	20350	10	QPSK	25	0	22.55	1	0-1	
	1750	20350	10	QPSK	25	12	22.53	1	0-1	
	1750	20350	10	QPSK	25	25	22.46	1	0-1	
High	1750	20350	10	QPSK	50	0	22.33	1	0-1	
Ξ	1750	20350	10	16QAM	1	0	22.65	1	0-1	
	1750	20350	10	16QAM	1	25	22.54	1	0-1	
	1750	20350	10	16QAM	1	49	22.51	1	0-1	
	1750	20350	10	16QAM	25	0	21.46	2	0-2	
	1750	20350	10	16QAM	25	12	21.60	2	0-2	
	1750	20350	10	16QAM	25	25	21.53	2	0-2	
	1750	20350	10	16QAM	50	0	21.48	2	0-2	

FCC ID: ZNFE980	PCTEST:	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 00 . (55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset	Page 26 of 55

Table 9-6
LTE Band 4 (AWS) Conducted Powers - 5 MHz Bandwidth

		<u> </u>		(AVVS) CO	maucteu	Powers -	· 5 MHZ Ban		
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	Target MPR [dB]	MPR Allowed per 3GPP [dB]
	1712.5	19975	5	QPSK	1	0	23.65	0	0
	1712.5	19975	5	QPSK	1	12	23.60	0	0
	1712.5	19975	5	QPSK	1	24	23.61	0	0
	1712.5	19975	5	QPSK	12	0	22.58	1	0-1
	1712.5	19975	5	QPSK	12	6	22.44	1	0-1
	1712.5	19975	5	QPSK	12	13	22.48	1	0-1
Low	1712.5	19975	5	QPSK	25	0	22.26	1	0-1
2	1712.5	19975	5	16-QAM	1	0	22.53	1	0-1
	1712.5	19975	5	16-QAM	1	12	22.50	1	0-1
	1712.5	19975	5	16-QAM	1	24	22.43	1	0-1
	1712.5	19975	5	16-QAM	12	0	21.53	2	0-2
	1712.5	19975	5	16-QAM	12	6	21.59	2	0-2
	1712.5	19975	5	16-QAM	12	13	21.55	2	0-2
	1712.5	19975	5	16-QAM	25	0	21.38	2	0-2
	1732.5	20175	5	QPSK	1	0	23.70	0	0
	1732.5	20175	5	QPSK	1	12	23.69	0	0
	1732.5	20175	5	QPSK	1	24	23.65	0	0
	1732.5	20175	5	QPSK	12	0	22.56	1	0-1
	1732.5	20175	5	QPSK	12	6	22.58	1	0-1
	1732.5	20175	5	QPSK	12	13	22.67	1	0-1
Mid	1732.5	20175	5	QPSK	25	0	22.61	1	0-1
Σ	1732.5	20175	5	16-QAM	1	0	22.45	1	0-1
	1732.5	20175	5	16-QAM	1	12	22.38	1	0-1
	1732.5	20175	5	16-QAM	1	24	22.31	1	0-1
	1732.5	20175	5	16-QAM	12	0	21.68	2	0-2
	1732.5	20175	5	16-QAM	12	6	21.67	2	0-2
	1732.5	20175	5	16-QAM	12	13	21.58	2	0-2
	1732.5	20175	5	16-QAM	25	0	21.61	2	0-2
	1752.5	20375	5	QPSK	1	0	23.42	0	0
	1752.5	20375	5	QPSK	1	12	23.34	0	0
	1752.5	20375	5	QPSK	1	24	23.31	0	0
	1752.5	20375	5	QPSK	12	0	22.46	1	0-1
	1752.5	20375	5	QPSK	12	6	22.36	1	0-1
	1752.5	20375	5	QPSK	12	13	22.40	1	0-1
High	1752.5	20375	5	QPSK	25	0	22.32	1	0-1
Ξ	1752.5	20375	5	16-QAM	1	0	22.70	1	0-1
	1752.5	20375	5	16-QAM	1	12	22.65	1	0-1
	1752.5	20375	5	16-QAM	1	24	22.57	1	0-1
	1752.5	20375	5	16-QAM	12	0	21.51	2	0-2
	1752.5	20375	5	16-QAM	12	6	21.46	2	0-2
	1752.5	20375	5	16-QAM	12	13	21.50	2	0-2
	1752.5	20375	5	16-QAM	25	0	21.46	2	0-2

FCC ID: ZNFE980	SAR EVALUATION REPOR		LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 07 . (55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset		Page 27 of 55

9.3.4 LTE Band 2 (PCS)

Table 9-7
LTE Band 2 (PCS) Conducted Powers - 10 MHz Bandwidth

				(1 00) 001	uucteu i t	JW613 - 10	WITZ Bandw		
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	Target MPR [dB]	MPR Allowed per 3GPP [dB]
	1855	18650	10	QPSK	1	0	23.29	0	0
	1855	18650	10	QPSK	1	25	23.52	0	0
	1855	18650	10	QPSK	1	49	23.56	0	0
	1855	18650	10	QPSK	25	0	22.04	1	0-1
	1855	18650	10	QPSK	25	12	22.16	1	0-1
	1855	18650	10	QPSK	25	25	22.26	1	0-1
Low	1855	18650	10	QPSK	50	0	22.03	1	0-1
2	1855	18650	10	16QAM	1	0	21.93	1	0-1
	1855	18650	10	16QAM	1	25	22.19	1	0-1
	1855	18650	10	16QAM	1	49	22.11	1	0-1
	1855	18650	10	16QAM	25	0	21.08	2	0-2
	1855	18650	10	16QAM	25	12	21.12	2	0-2
	1855	18650	10	16QAM	25	25	21.29	2	0-2
	1855	18650	10	16QAM	50	0	21.00	2	0-2
	1880.0	18900	10	QPSK	1	0	23.63	0	0
	1880.0	18900	10	QPSK	1	25	23.70	0	0
	1880.0	18900	10	QPSK	1	49	23.55	0	0
	1880.0	18900	10	QPSK	25	0	22.65	1	0-1
	1880.0	18900	10	QPSK	25	12	22.60	1	0-1
	1880.0	18900	10	QPSK	25	25	22.63	1	0-1
Mid	1880.0	18900	10	QPSK	50	0	22.48	1	0-1
Σ	1880.0	18900	10	16QAM	1	0	22.41	1	0-1
	1880.0	18900	10	16QAM	1	25	22.51	1	0-1
	1880.0	18900	10	16QAM	1	49	22.39	1	0-1
	1880.0	18900	10	16QAM	25	0	21.68	2	0-2
	1880.0	18900	10	16QAM	25	12	21.58	2	0-2
	1880.0	18900	10	16QAM	25	25	21.52	2	0-2
	1880.0	18900	10	16QAM	50	0	21.38	2	0-2
	1905	19150	10	QPSK	1	0	23.51	0	0
	1905	19150	10	QPSK	1	25	23.45	0	0
	1905	19150	10	QPSK	1	49	23.16	0	0
	1905	19150	10	QPSK	25	0	22.18	1	0-1
	1905	19150	10	QPSK	25	12	22.15	1	0-1
	1905	19150	10	QPSK	25	25	22.19	1	0-1
High	1905	19150	10	QPSK	50	0	22.10	1	0-1
Ξ̈́	1905	19150	10	16QAM	1	0	22.15	1	0-1
	1905	19150	10	16QAM	1	25	22.06	1	0-1
	1905	19150	10	16QAM	1	49	22.08	1	0-1
	1905	19150	10	16QAM	25	0	21.15	2	0-2
	1905	19150	10	16QAM	25	12	21.18	2	0-2
	1905	19150	10	16QAM	25	25	21.22	2	0-2
	1905	19150	10	16QAM	50	0	21.02	2	0-2

FCC ID: ZNFE980	PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 00 . (55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset		Page 28 of 55

Table 9-8
LTE Band 2 (PCS) Conducted Powers - 5 MHz Bandwidth

			- Dana Z	(1 00) 001	iducted i	OWEIS - J	MINZ Danus		
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	Target MPR [dB]	MPR Allowed per 3GPP [dB]
	1852.5	18625	5	QPSK	1	0	23.24	0	0
	1852.5	18625	5	QPSK	1	12	23.32	0	0
	1852.5	18625	5	QPSK	1	24	23.43	0	0
	1852.5	18625	5	QPSK	12	0	22.15	1	0-1
	1852.5	18625	5	QPSK	12	6	22.12	1	0-1
	1852.5	18625	5	QPSK	12	13	22.23	1	0-1
>	1852.5	18625	5	QPSK	25	0	22.00	1	0-1
Low	1852.5	18625	5	16-QAM	1	0	22.26	1	0-1
	1852.5	18625	5	16-QAM	1	12	22.38	1	0-1
	1852.5	18625	5	16-QAM	1	24	22.47	1	0-1
	1852.5	18625	5	16-QAM	12	0	21.07	2	0-2
	1852.5	18625	5	16-QAM	12	6	21.11	2	0-2
	1852.5	18625	5	16-QAM	12	13	21.22	2	0-2
	1852.5	18625	5	16-QAM	25	0	20.96	2	0-2
	1880.0	18900	5	QPSK	1	0	23.68	0	0
	1880.0	18900	5	QPSK	1	12	23.65	0	0
	1880.0	18900	5	QPSK	1	24	23.60	0	0
	1880.0	18900	5	QPSK	12	0	22.64	1	0-1
	1880.0	18900	5	QPSK	12	6	22.62	1	0-1
	1880.0	18900	5	QPSK	12	13	22.61	1	0-1
Mid	1880.0	18900	5	QPSK	25	0	22.49	1	0-1
Σ	1880.0	18900	5	16-QAM	1	0	22.58	1	0-1
	1880.0	18900	5	16-QAM	1	12	22.55	1	0-1
	1880.0	18900	5	16-QAM	1	24	22.57	1	0-1
	1880.0	18900	5	16-QAM	12	0	21.54	2	0-2
	1880.0	18900	5	16-QAM	12	6	21.50	2	0-2
	1880.0	18900	5	16-QAM	12	13	21.54	2	0-2
	1880.0	18900	5	16-QAM	25	0	21.49	2	0-2
	1907.5	19175	5	QPSK	1	0	23.30	0	0
	1907.5	19175	5	QPSK	1	12	23.26	0	0
	1907.5	19175	5	QPSK	1	24	23.11	0	0
	1907.5	19175	5	QPSK	12	0	22.37	1	0-1
	1907.5	19175	5	QPSK	12	6	22.31	1	0-1
	1907.5	19175	5	QPSK	12	13	22.12	1	0-1
High	1907.5	19175	5	QPSK	25	0	22.12	1	0-1
Ξ	1907.5	19175	5	16-QAM	1	0	22.46	1	0-1
	1907.5	19175	5	16-QAM	1	12	22.44	1	0-1
	1907.5	19175	5	16-QAM	1	24	22.19	1	0-1
	1907.5	19175	5	16-QAM	12	0	21.40	2	0-2
1	1907.5	19175	5	16-QAM	12	6	21.33	2	0-2
	1907.5	19175	5	16-QAM	12	13	21.20	2	0-2
L	1907.5	19175	5	16-QAM	25	0	21.18	2	0-2

9.4 WLAN Conducted Powers

Table 9-9 IEEE 802.11b Average RF Power

	Freq		802.11b (2.4 GHz) Coi	nducted Pow	er [dBm]				
Mode	1104	Channel	Data Rate [Mbps]							
	[MHz]		1	2	5.5	11				
802.11b	2412	1*	16.57	16.64	16.66	16.67				
802.11b	2437	6*	16.85	16.91	16.98	16.96				
802.11b	2462	11*	16.33	16.19	16.29	16.34				

FCC ID: ZNFE980	PCTEST*	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 00 . (55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset		Page 29 of 55

Table 9-10 IEEE 802.11g Average RF Power

	Freq	802.11g (2.4 GHz) Conducted Power [dBm] Data Rate [Mbps]								
Mode	- 10	Channel								
	[MHz]		6	9	12	18	24	36	48	54
802.11g	2412	1	13.62	13.62	13.18	13.19	13.60	13.55	13.18	13.55
802.11g	2437	6	13.97	13.87	13.87	13.77	13.70	13.82	13.75	13.81
802.11g	2462	11	13.23	13.16	13.22	13.19	13.12	13.32	13.19	13.17

Table 9-11 IEEE 802.11n Average RF Power

	Freq		802.11n (2.4 GHz) Conducted Power [dBm]										
Mode	•	Channel		Data Rate [Mbps]									
	[MHz]		6.5	13	20	26	39	52	58	65			
802.11n	2412	1	12.65	12.60	12.65	12.07	12.65	12.55	12.52	12.57			
802.11n	2437	6	12.85	12.71	12.74	12.70	12.67	12.66	12.72	12.54			
802.11n	2462	11	12.12	12.16	12.17	12.16	12.14	12.09	12.07	12.09			

Table 9-12 IEEE 802.11a Average RF Power

	Freq				802.11a (5G	Hz) Conduct	ed Power [[dBm]		
Mode	1109	Channel				Data Rate [M	bps]			
	[MHz]		6	9	12	18	24	36	48	54
802.11a	5180	36*	14.69	14.78	14.79	14.76	14.72	14.72	14.64	14.65
802.11a	5200	40	14.70	14.69	14.65	14.68	14.68	14.67	14.46	14.74
802.11a	5220	44	14.86	14.84	14.85	14.87	14.86	14.78	14.85	14.71
802.11a	5240	48*	14.80	14.77	14.83	14.90	14.87	14.81	14.60	14.91
802.11a	5260	52*	14.80	14.86	14.82	14.93	14.94	14.85	14.71	14.83
802.11a	5280	56	14.80	14.94	14.89	14.95	15.01	14.92	14.79	14.86
802.11a	5300	60	13.97	13.91	13.97	13.92	13.88	13.82	13.81	13.81
802.11a	5320	64*	13.93	13.87	13.83	13.96	13.92	13.97	13.94	13.91
802.11a	5500	100	13.99	13.91	13.98	14.00	13.90	14.02	13.87	13.82
802.11a	5520	104*	14.06	14.09	14.12	14.03	14.06	14.08	14.02	14.05
802.11a	5540	108	13.98	14.07	13.89	14.01	14.02	13.96	13.66	13.85
802.11a	5560	112	14.07	14.02	13.90	14.04	14.06	13.85	13.58	13.91
802.11a	5580	116*	14.08	14.10	14.07	14.07	14.07	13.87	13.94	13.97
802.11a	5600	120	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
802.11a	5620	124*	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
802.11a	5640	128	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
802.11a	5660	132	14.21	14.24	14.25	14.25	14.26	13.95	14.04	14.12
802.11a	5680	136*	14.26	14.32	14.25	14.24	14.28	14.05	14.07	14.11
802.11a	5700	140	13.18	13.27	13.24	13.22	13.27	13.12	13.05	13.09
802.11a	5745	149*	12.63	12.68	12.75	12.65	12.68	12.61	12.52	12.51
802.11a	5765	153	13.73	13.70	13.68	13.72	13.75	13.74	13.67	13.59
802.11a	5785	157*	14.82	14.86	14.75	14.83	14.74	14.73	14.82	14.67
802.11a	5805	161*	14.89	14.42	14.84	14.83	14.82	14.76	14.66	14.70
802.11a	5825	165	14.84	14.92	14.91	14.88	14.94	14.81	14.81	14.75

Per FCC KDB Publication 443999 and RSS-210 A9.2(3), transmission on channels which overlap the 5600-5650 MHz is prohibited as a client. This device does not transmit any beacons or initiate any transmissions in 5.3 and 5.5 GHz Band.

(*) – indicates default channels per KDB Publication 248227 D01v01r02. When the adjacent channels are higher in power then the default channels, these "required channels" are considered for SAR testing instead of the default channels.

FCC ID: ZNFE980	PCTEST	SAR EVALUATION REPORT	<mark>]</mark> LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 00 . 155
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset		Page 30 of 55

Table 9-13
IEEE 802.11n Average RF Power – 20 MHz Bandwidth

	Freq			20MF	Iz BW 802.11	n (5GHz) Co	nducted P	ower [dBm]	
Mode	Heq	Channel				Data Rate [M	bps]			
	[MHz]		6.5	13	20	26	39	52	58	65
802.11n	5180	36	12.70	13.52	13.39	13.34	13.39	13.61	13.46	13.39
802.11n	5200	40	12.67	13.51	13.41	13.42	13.45	13.41	13.33	13.42
802.11n	5220	44	12.90	13.53	13.40	13.51	13.56	13.52	13.39	13.39
802.11n	5240	48	12.75	13.54	13.37	13.55	13.59	13.44	13.49	13.47
802.11n	5260	52	12.90	13.59	13.56	13.56	13.65	13.52	13.47	13.54
802.11n	5280	56	13.73	13.68	13.72	13.67	13.57	13.48	13.70	13.55
802.11n	5300	60	13.81	13.78	13.79	13.65	13.52	13.69	13.62	13.39
802.11n	5320	64	13.84	13.82	13.75	13.79	13.63	13.65	13.73	13.44
802.11n	5500	100	12.67	12.64	12.61	12.59	12.63	12.53	12.54	12.09
802.11n	5520	104	12.81	12.73	12.64	12.47	12.59	12.54	12.45	12.20
802.11n	5540	108	13.54	13.76	13.72	13.56	13.69	13.61	13.58	13.31
802.11n	5560	112	13.75	13.90	13.77	13.61	13.51	13.54	13.64	13.16
802.11n	5580	116	12.35	13.84	13.89	13.72	13.58	13.57	13.63	13.28
802.11a	5600	120	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
802.11a	5620	124	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
802.11a	5640	128	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
802.11n	5660	132	12.83	12.85	12.75	12.75	12.44	12.60	12.71	12.12
802.11n	5680	136	12.85	12.90	12.81	12.67	12.45	12.67	12.83	12.20
802.11n	5700	140	11.92	11.74	11.82	11.62	11.48	11.64	11.64	11.17
802.11n	5745	149	11.45	11.25	11.23	11.11	11.01	11.16	11.11	10.69
802.11n	5765	153	12.53	12.39	12.38	12.47	12.15	12.29	12.25	11.84
802.11n	5785	157	12.61	12.39	12.41	12.67	12.08	12.23	12.26	11.95
802.11n	5805	161	12.59	12.45	12.37	12.48	12.12	12.29	12.45	11.71
802.11n	5825	165	12.67	12.46	12.45	12.40	12.25	12.27	12.31	11.73

Table 9-14
IEEE 802.11n Average RF Power – 40 MHz Bandwidth

	Freq			40MF	Iz BW 802.11	n (5GHz) Co	nducted P	ower [dBn	1]	
Mode	1164	Channel				Data Rate [M	bps]			
	[MHz]		13.5/15	27/30	40.5/45	54/60	81/90	108/120	121.5/135	135/150
802.11n	5190	38	13.22	13.22	12.71	13.03	13.02	12.97	12.45	11.73
802.11n	5230	46	13.35	12.96	12.76	13.13	13.15	13.07	12.54	12.02
802.11n	5270	54	13.72	13.67	13.53	13.58	13.56	13.45	13.57	13.61
802.11n	5310	62	12.77	12.70	12.67	12.64	12.63	12.67	12.54	12.68
802.11n	5510	102	13.41	12.95	12.84	13.29	13.21	13.16	12.42	11.98
802.11n	5550	110	13.49	12.94	12.91	13.28	13.30	13.32	12.68	12.03
802.11n	5590	118	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
802.11n	5630	126	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
802.11n	5670	134	13.62	13.28	13.31	13.52	13.44	13.44	12.87	12.22
802.11n	5755	151	13.23	12.83	12.60	13.26	12.93	12.92	12.55	11.76
802.11n	5795	159	13.33	12.92	12.65	12.83	13.11	13.01	12.43	11.90

Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v01r02 and April 2010 FCC/TCB Meeting Notes:

- For 2.4 GHz, highest average RF output power channel for the lowest data rate for IEEE 802.11b were selected for SAR evaluation. Other IEEE 802.11 modes (including 802.11g/n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode.
- For 5 GHz, highest average RF output power channel for the lowest data rate for IEEE 802.11a were selected for SAR evaluation. Other IEEE 802.11 modes (including 802.11n 20 MHz and 40 MHz) were not investigated since the average output powers over all channels and data rates

FCC ID: ZNFE980	PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 04 -155
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset		Page 31 of 55

were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11a mode.

- When the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg and the reported 1g averaged SAR is <0.8 W/kg, SAR testing on other channels is not required. Otherwise, the other default (or corresponding required) test channels were additionally tested using the lowest data rate.
- The bolded data rate and channel above were tested for SAR.

Figure 9-3
Power Measurement Setup

FCC ID: ZNFE980	PCTEST*	SAR EVALUATION REPORT	L G	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dana 22 of 55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset		Page 32 of 55

10.1 Tissue Verification

Table 10-1 Measured Tissue Properties

01/07/2013 750B 22.2 740 0.955 54.42 0.963 55.570 -0.83% 755 0.971 54.29 0.964 55.512 0.73% 01/08/2013 850B 22.6 820 0.944 53.09 0.969 55.258 -2.58% 850 0.957 52.95 0.970 55.200 -1.34% 850 0.972 52.83 0.988 55.154 -1.62% 1710 1.485 53.21 1.460 53.540 1.71% 1790 1.575 52.92 1.510 53.300 -3.82% 01/07/2013 1900B 22.4 1850 1.462 51.01 1.520 53.300 -3.82% 01/07/2013 1900B 21.8 1850 1.462 51.01 1.520 53.300 -1.51% 01/07/2013 1900B 21.8 1880 1.497 51.06 1.520 53.300 -0.59% 01/07/2013 1900B 21.8 1880				vicasui eu	I IISSUE P	opernes				
Performed on:										
01/14/2013		Tissue Type					• .		% dev σ	% dev ε
01/14/2013 750H 24.5 740	Performed on:		(C [*])	, ,	` '		, ,	· ·		
01/07/2013 836H 20.5 835 0.908 42.24 0.090 41.571 -1.78% 850 0.925 42.12 0.916 41.500 0.89% 850 0.925 42.12 0.916 41.500 0.89% 850 0.925 42.12 0.916 41.500 0.89% 850 0.925 42.12 0.916 41.500 0.89% 850 0.925 42.12 0.916 41.500 0.89% 850 0.896 41.21 0.916 41.500 2.89% 850 0.896 41.21 0.916 41.500 2.44% 850 0.896 41.21 0.916 41.500 2.44% 850 0.896 41.21 0.916 41.500 2.48% 850 0.896 41.21 0.916 41.500 2.48% 850 0.896 41.21 0.916 41.500 2.48% 850 0.896 41.21 0.916 41.500 1.24% 850 0.994 41.42 0.898 41.571 0.67% 850 0.994 41.11 0.916 41.500 1.97% 850 0.934 41.11 0.906 41.500 1.97% 850 0.934 41.11 0.906 41.500 1.97% 850 0.934 41.11 0.906 41.500 1.97% 850 0.934 41.11 0.906 41.500 1.97% 850 0.934 41.11 0.906 41.500 1.97% 850 0.934 41.11 0.906 41.500 1.97% 91.000 1.450 3.99 3.9.68 1.370 40.100 2.12% 91.000 1.900 1.										0.92%
01/07/2013 835H 20.5 835 0.908 42.24 0.900 41.500 0.89% 850 0.925 42.12 0.916 41.500 0.89% 850 0.870 41.57 0.898 41.571 3.12% 820 0.870 41.57 0.898 41.571 3.12% 855 0.878 41.49 0.900 41.500 2.98% 850 0.896 41.21 0.916 41.500 2.48% 850 0.896 41.21 0.916 41.500 2.48% 850 0.994 41.42 0.898 41.571 0.67% 850 0.994 41.42 0.898 41.571 0.67% 850 0.934 41.11 0.916 41.500 1.89% 850 0.934 41.11 0.916 41.500 1.89% 850 0.934 41.11 0.916 41.500 1.89% 850 0.934 41.11 0.916 41.500 1.89% 850 0.934 41.11 0.916 41.500 1.89% 850 0.934 41.11 0.916 41.500 1.89% 850 0.934 41.11 0.916 41.500 1.89% 850 0.934 41.11 0.916 41.500 1.89% 850 0.934 41.11 0.916 41.000 41.500 1.89% 850 0.934 41.11 0.916 41.000 41.500 1.89% 850 0.934 41.11 0.916 41.000 41.500 1.89% 850 0.934 41.11 0.916 41.000 41.500 1.89% 850 0.934 41.11 0.916 41.000 41.500 1.89% 850 0.934 41.11 0.916 41.000 41.500 1.89% 850 0.934 41.11 0.916 41.000 41.500 1.89% 850 0.934 41.11 0.916 41.500 2.26% 850 0.938 38.88 1.370 40.100 2.12% 850 1.389 38.78 1.400 40.000 3.71% 850 1.389 38.78 1.400 40.000 3.71% 91/14/2013 1900H 23.2 1880 1.416 38.96 1.400 40.000 3.71% 91/14/2013 2450H 24.2 2450 1.852 37.68 1.800 39.200 2.89% 91/14/2013 2450H 24.2 2450 1.852 37.68 1.800 39.200 2.89% 91/14/2013 2450H 24.2 2450 1.852 37.68 1.800 39.200 2.89% 91/14/2013 2450H 24.2 2450 4.860 35.40 4.760 35.90 0.26% 91/14/2013 2450H 24.2 2450 4.860 35.40 4.660 35.71 4.680 35.90 0.26% 91/14/2013 2450H 24.2 24.50 24.50 35.300 4.666 35.71 4.680 35.900 0.26% 91/1	01/14/2013	750H	24.5							1.11%
01/07/2013 835H 20.5 835 0.908 42.24 0.900 41.500 0.89% 850 0.925 42.12 0.916 41.500 0.89% 0.80% 0.807 41.57 0.898 41.571 3.12% 0.870 41.57 0.898 41.571 3.12% 0.870 41.57 0.898 41.571 3.12% 0.870 41.57 0.898 41.571 3.12% 0.870 41.571 0.916 41.500 2.44% 0.898 41.571 0.67% 0.898 41.21 0.916 41.500 2.48% 0.896 41.21 0.916 41.500 2.48% 0.896 41.21 0.916 41.500 1.24% 0.898 41.571 0.67% 0.898 41.571 0.67% 0.898 41.571 0.67% 0.898 41.571 0.67% 0.898 41.571 0.67% 0.896 41.21 0.916 41.500 1.97% 0.896 41.21 0.916 41.500 1.97% 0.896 0.934 41.11 0.906 41.500 1.97% 0.896 0.934 41.11 0.916 41.500 1.97% 0.896 0.934 41.11 0.916 41.500 1.97% 0.896 0.934 41.11 0.916 41.500 1.97% 0.896 0.934 0.938 0.										1.11%
01/11/2013 835H 22.5 820 0.870 41.157 0.898 41.571 -3.12% 820 0.870 41.570 0.898 41.571 -3.12% 820 0.870 41.571 0.976 41.500 2.24% 850 0.876 41.21 0.916 41.500 2.24% 850 0.896 41.21 0.916 41.500 2.24% 820 0.904 41.42 0.898 41.571 0.67% 850 0.896 41.21 0.916 41.500 1.2.18% 850 0.896 41.21 0.916 41.500 1.2.18% 850 0.934 41.131 0.900 41.500 1.89% 850 0.934 41.131 0.900 41.500 1.89% 850 0.934 41.11 0.916 41.500 1.2.18% 1.500 1.2.18% 1.500 1.2.18% 1.500 1.399 3.9.581 1.370 40.100 2.12% 1.750 1.399 3.9.581 1.370 40.100 2.12% 1.750 1.399 3.9.581 1.370 40.100 2.12% 1.750 1.399 3.9.581 1.370 40.100 2.12% 1.750 1.399 3.9.581 1.370 40.100 2.12% 1.750 1.399 3.9.581 1.370 40.100 2.12% 1.750 1.399 3.9.581 1.370 40.100 2.12% 1.750 1.399 3.9.581 1.370 40.000 4.02% 1.750 1.399 3.9.581 1.370 40.000 2.12% 1.750 1.399 3.9.581 1.370 40.000 2.12% 1.750 1.399 3.9.581 1.370 40.000 2.12% 1.750 1.399 3.9.581 1.370 40.000 2.12% 1.750 1.399 3.9.581 1.370 40.000 2.12% 1.750 1.399 3.9.581 1.370 40.000 2.12% 1.750 1.399 3.9.581 1.370 40.000 2.12% 1.750 1.399 3.9.581 1.370 40.000 2.12% 1.750 1.399 3.9.581 1.370 40.000 2.12% 1.750 1.399 3.9.581 1.370 40.000 2.12% 1.750 1.399 3.9.581 1.400 40.000 1.71% 1.750										2.14%
01/11/2013 838H 22.5 835 0.878 41.49 0.900 41.571 3.12% 850 0.896 41.21 0.916 41.500 2.2.44% 850 0.896 41.21 0.916 41.500 2.2.44% 850 0.896 41.21 0.916 41.500 1.2.48% 850 0.896 41.21 0.916 41.500 1.2.48% 850 0.904 41.42 0.898 41.571 0.67% 850 0.934 41.41 0.916 41.500 1.97% 850 0.934 41.11 0.916 41.500 1.97% 850 0.934 41.11 0.916 41.500 1.97% 1710 1361 39.99 1.348 40.136 0.96% 1850 1.389 39.88 1.370 40.100 2.12% 1750 1.399 39.88 1.370 40.100 2.12% 1750 1.399 39.88 1.370 40.100 2.12% 1850 1.389 38.78 1.400 40.000 4.02% 1850 1.389 38.78 1.400 40.000 1.14% 1910 1.452 38.81 1.400 40.000 1.14% 1910 1.452 38.81 1.400 40.000 1.14% 1910 1.452 38.81 1.400 40.000 1.14% 1910 1.452 38.81 1.400 40.000 1.2.75% 1910 1.97% 1910 1.852 37.88 1.800 39.200 2.29% 19.07 37.45 1.852 39.135 2.27% 1520 4.668 35.71 4.660 36.000 -0.79% 1520 4.668 35.000 -0.79% 1520 4.668 35.000 -0.79% 1520 4.668 35.000 -0.79% 1520	01/07/2013	835H	20.5							1.78%
01/11/2013 835H 22.5 855 0.878 41.49 0.900 41.500 2.243% 850 0.896 41.21 0.916 41.500 2.243% 850 0.896 41.21 0.916 41.500 2.243% 850 0.904 41.42 0.898 41.571 0.67% 850 0.917 41.31 0.900 41.500 1.89% 850 0.934 41.11 0.916 41.500 1.89% 850 0.934 41.11 0.916 41.500 1.97% 1750 1.399 39.88 1.370 40.100 2.12% 1750 1.399 39.88 1.390 40.000 3.27% 1750 1.399 39.88 1.390 40.000 3.27% 1750 1.452 38.81 1.400 40.000 3.27% 1.28% 1										1.49%
850										0.00%
01/15/2013 835H 23.1 835 0.917 41.31 0.900 41.501 0.67% 850 0.934 41.11 0.916 41.500 1.69% 850 0.934 41.11 0.916 41.500 1.69% 01/09/2013 1750H 21.0 1750 1.399 39.68 1.370 40.100 2.12% 1790 1.450 39.46 1.394 40.020 4.02% 1790 1.450 39.46 1.394 40.020 4.02% 1790 1.450 39.46 1.394 40.000 -0.79% 1790 1.450 39.46 1.394 40.000 -0.79% 1850 1.389 18.70 40.100 2.12% 1850 1.389 18.70 40.100 2.12% 1850 1.389 18.70 40.100 4.0000 1.74% 1910 1.452 38.81 1.400 40.000 1.74% 1910 1.452 38.81 1.400 40.000 3.71% 1910 1.486 38.81 1.400 40.000 3.71% 1910 1.486 38.81 1.400 40.000 3.71% 1910 1.486 38.81 1.400 40.000 3.71% 1910 1.486 38.42 5.150 38.40 38.980 0.26% 1910 1.486 38.42 5.150 38.40 38.980 0.26% 1910 1.486 38.42 5.150 38.40 38.980 0.26% 1910 1.486 38.42 5.150 38.40 38.980 1.288 1910 1.486 38.42 5.150 38.40 38.980 1.288 1910 1.486 38.42 5.150 38.500 38.980 1.288 1910 1.486 38.42 5.150 38.500 38.980 1.588 1910 1.486 38.500 1.586 4.42 0.963 55.587 38.295 38.390 1.588 1910 1.486 38.500 1.588 1910 1.486 38.500 1.588 1910 1.486 38.500 1.588 1910 1.486 38.500 1.588 1910 1.486 38.500 1.588 1910 1.486 38.500 1.588 1910 1.486 58.500 1.588 1910 1.588 1800 1.589 1910 1.588 1800 1.580 1.588	01/11/2013	835H	22.5							-0.02%
01/15/2013 836H 23.1 835 0.917 41.31 0.900 41.500 1.89% 850 0.934 41.11 0.916 41.500 1.97% 1.97% 1.97% 1.98%										-0.70%
1750H 21.0 1750H 21.0 1750 1.399 39.68 1.370 40.136 0.96%										-0.36%
1710	01/15/2013	835H	23.1							-0.46%
01/09/2013										-0.94%
1790										-0.36%
1850	01/09/2013	1750H	21.0							-1.05%
1900 23.2 1880										-1.42%
01/09/2013										-3.05%
01/09/2013 2450H 24.2 2450 1.852 37.68 1.800 39.208 2.28% 2499 1.907 37.46 1.852 39.135 2.97% 5200 4.651 35.86 4.660 36.000 -0.19% 5220 4.668 35.71 4.680 35.980 -0.26% 5220 4.668 35.71 4.680 35.980 -0.26% 5260 4.764 35.34 4.720 35.940 35.900 2.29% 5600 5.117 34.82 5.070 35.500 0.93% 5600 5.117 34.82 5.070 35.500 0.93% 5680 5.447 34.09 5.270 35.300 3.6% 5805 5.447 34.09 5.275 35.295 3.39% 01/07/2013 750B 22.2 740 0.955 54.42 0.960 55.570 -0.83% 755 0.971 54.29 0.960 55.520 -1.34% 01/08/2013 1750B 22.7 1750 1.531 1.530 1.480 53.40 1.490 53.300 -1.55% 01/07/2013 1900B 21.8 1880 1.497 1.552 5.300 1.984 1.158 39.298 2.28% 2.89% 1.800 39.200 2.89% 1.800 39.200 2.89% 1.800 35.800 -0.19% 55200 4.661 35.86 4.660 36.000 -0.19% 35.900 2.29% 5600 5.117 34.82 5.070 35.500 0.93% 5800 5.447 34.09 5.275 35.295 3.39% 710 0.929 54.72 0.960 55.687 -0.83% 755 0.971 54.29 0.964 55.512 0.73% 8500 0.944 53.09 0.969 55.258 2.268 835 0.957 52.95 0.970 55.200 -1.34% 01/05/2013 1750B 22.7 1750 1.531 53.06 1.490 53.300 -1.51% 1910 1.652 53.300 -0.26% 5280 0.75% 1990 1.652 53.300 0.75% 1880 1.520 53.300 0.75% 1880 1.520 53.300 0.75% 1880 1.520 53.300 0.75% 1880 1.520 53.300 0.75% 1880 1.520 53.300 0.75% 1880 1.520 53.300 0.75% 1880 1.520 53.300 0.75% 1880 1.520 53.300 0.75% 1.68% 0.999 1.999 1.903 2.245 1.803 1.903 2.245 1.803 1.903 2.286 3.298 4.808 5.766 4.808 1.520 5.203 4.8987 -1.99% 5260 5.200 5.201 5.201 5.201 5.200 5.200 5.201 5.200 5.201 5.200 5.200 5.200 5.201 5.200 5.200 5.200 5.201 5.200	01/14/2013	1900H	23.2							-2.60%
01/09/2013 2450H 24.2 2450 1.852 37.68 1.800 39.200 2.89% 2499 1.907 37.45 1.852 39.135 2.97% 5200 4.661 35.86 4.660 36.000 -0.19% 5220 4.668 35.71 4.680 35.980 -0.26% 5260 4.764 35.34 4.720 35.940 0.93% 5800 5.117 34.82 5.070 35.940 0.93% 5800 5.117 34.82 5.070 35.900 2.29% 5800 5.147 34.82 5.070 35.300 0.93% 5800 5.447 34.09 5.275 35.300 35.300 0.93% 5800 5.447 34.09 5.275 35.300 3.36% 5800 5.447 34.09 5.275 35.300 3.36% 5800 5.447 34.09 5.275 35.300 3.36% 5800 5.447 3.09 5.275 35.300 3.36% 680 680 680 680 680 680 680 6										-2.97%
1,007 37,45										-3.71%
1/10/2013 5200 - 5800H 23.5 5200 4.651 35.86 4.660 36.000 -0.19% 5220 4.668 35.71 4.680 35.980 -0.26% 5260 4.764 35.34 4.720 35.940 0.93% 5300 4.869 35.42 4.760 35.900 2.29% 5600 5.117 34.82 5.070 35.500 0.93% 5680 5.308 34.42 5.150 35.400 3.07% 5800 5.447 34.09 5.270 35.300 3.36% 5800 5.447 34.09 5.275 35.295 3.39% 710 0.929 54.72 0.960 55.687 -3.23% 710 0.929 54.72 0.960 55.570 -0.83% 755 0.971 54.29 0.964 55.570 -0.83% 755 0.971 54.29 0.964 55.512 0.73% 820 0.944 53.09 0.969 55.258 -2.56% 835 0.957 52.95 0.970 55.200 -1.34% 850 0.972 52.83 0.988 55.154 -1.62% 1710 1.485 53.21 1.460 53.540 1.71% 1.71% 1.485 53.21 1.460 53.540 1.71% 1.71% 1.508 1.500 1.520 53.300 -3.82% 1.900 1.575 52.92 1.510 53.330 -3.82% 1.900 1.576 52.92 1.510 53.330 -1.51% 1.900 1.520 53.300 -1.51% 1.520 53.300 -1.52% 1.520 53.300 -1.52% 1.520 53.300 -1.52% 1.520 53.300 -1.52% 1.520 53.300 -1.52% 1.520 53.300 -1.52% 1.520 53.300 -1.	01/09/2013	2450H	24.2							-3.88%
01/10/2013 5200 - 5800H 23.5 5200										-4.31%
01/10/2013 5200 - 5800H 23.5 5200 - 4.764										-0.39%
01/10/2013										-0.75%
17/10/2013 5200 - 5800H 23.5 5600 5.117 34.82 5.070 35.500 0.93% 5680 5.308 34.42 5.150 35.420 3.07% 5800 5.447 34.09 5.270 35.300 3.36% 5805 5.454 34.09 5.275 35.295 3.39% 710 0.929 54.72 0.960 55.687 -3.23% 710 0.929 54.72 0.960 55.687 -3.23% 755 0.971 54.29 0.964 55.512 0.73% 755 0.971 54.29 0.964 55.512 0.73% 820 0.944 53.09 0.969 55.258 -2.58% 820 0.944 53.09 0.969 55.258 -2.58% 850 0.972 52.83 0.988 55.154 -1.62% 850 0.972 52.83 0.988 55.154 -1.62% 1710 1.485 53.21 1.460 53.540 1.71% 1790 1.575 52.92 1.510 53.330 4.30% 1790 1.575 52.92 1.510 53.330 4.30% 1910 1.532 50.85 1.520 53.300 -2.58% 1910 1.532 50.85 1.520 53.300 -0.59% 1910 1.588 52.08 1.520 53.300 4.47% 1910 1.588 52.08 1.520 53.300 4.47% 1910 1.588 52.08 1.520 53.300 4.47% 1910 1.588 52.08 1.520 53.300 4.47% 1910 1.588 50.09 2.019 52.638 -1.63% 1.520 53.300 4.47% 1.		5200 - 5800H	23.5							-1.67%
S680 S.308 34.42 S.150 35.420 3.07% 5800 5.447 34.09 5.270 35.300 3.36% 5805 5.454 34.09 5.275 35.295 3.39% 710 0.929 54.72 0.960 55.687 -3.23% 7508 22.2 740 0.955 54.42 0.963 55.570 -0.83% 755 0.971 54.29 0.964 55.512 0.73% 755 0.971 54.29 0.964 55.512 0.73% 8200 0.944 53.09 0.969 55.258 -2.58% 820 0.944 53.09 0.969 55.258 -2.58% 850 0.972 52.83 0.988 55.154 -1.62% 850 0.972 52.83 0.988 55.154 -1.62% 1710 1.485 53.21 1.460 53.540 1.71%	01/10/2013									-1.34%
S800 S.447 34.09 S.270 35.300 3.36% 5805 5.454 34.09 5.275 35.295 3.39% 710 0.929 54.72 0.960 55.687 -3.23% 755 0.971 54.29 0.964 55.570 -0.83% 755 0.971 54.29 0.964 55.512 0.73% 820 0.944 53.09 0.969 55.258 -2.58% 820 0.944 53.09 0.969 55.258 -2.58% 820 0.972 52.83 0.988 55.154 -1.62% 1710 1.485 53.21 1.460 53.540 1.71% 1.71% 1.710 1.485 53.21 1.460 53.540 1.71% 1.710 1.575 52.92 1.510 53.300 2.75% 1790 1.575 52.92 1.510 53.300 -3.82% 1.880 1.497 51.06 1.520 53.300 -3.82% 1.910 1.532 50.85 1.520 53.300 -0.59% 1.910 1.588 52.08 1.520 53.300 -0.59% 1.910 1.588 52.08 1.520 53.300 -0.59% 1.510 1.520 53.300 -0.59% 1.510 1.520 53.300 -0.59% 1.510 1.520 53.300 -0.59% 1.510 1.520 53.300 -0.59% 1.510 1.520 53.300 -0.59% 1.520 1.520 1.530 1.520										-1.92%
01/07/2013										-2.82%
01/07/2013 750B 22.2 740 0.929 54.72 0.960 55.687 -3.23% 755 0.971 54.29 0.964 55.512 0.73% 755 0.971 54.29 0.964 55.512 0.73% 820 0.944 53.09 0.969 55.258 -2.58% 850 0.972 52.83 0.988 55.154 -1.62% 850 0.972 52.83 0.988 55.154 -1.62% 1710 1.485 53.21 1.460 53.540 1.71% 1.71% 1.575 52.92 1.510 53.330 2.75% 1790 1.575 52.92 1.510 53.330 3.38% 1.520 53.300 -1.51% 1910 1.532 50.85 1.520 53.300 0.79% 1850 1.582 52.41 1.520 53.300 0.79% 1850 1.582 52.41 1.520 53.300 4.08% 1910 1.588 52.41 1.520 53.300 4.08% 1910 1.588 52.41 1.520 53.300 4.08% 1910 1.588 52.08 1.520 53.300 4.08% 1.520 53.300 4.08% 1.520 53.300 4.08% 1.520 53.300 4.08% 1.520 53.300 4.08% 1.520 53.300 4.08% 1.520 53.300 4.08% 1.520 53.300 4.08% 1.520 53.300 4.08% 1.520 53.300 4.08% 1.520 53.300 4.08% 1.520 53.300										-3.43%
01/07/2013 750B 22.2 740 0.955 54.42 0.963 55.570 -0.83% 755 0.971 54.29 0.964 55.512 0.73% 01/08/2013 850B 22.6 835 0.957 52.95 0.970 55.200 -1.34% 850 0.972 52.83 0.988 55.154 -1.62% 1710 1.485 53.21 1.460 53.540 1.71% 01/05/2013 1750B 22.7 1750 1.531 53.06 1.490 53.430 2.75% 1790 1.575 52.92 1.510 53.300 -3.82% 01/07/2013 1900B 22.4 1880 1.497 51.06 1.520 53.300 -3.82% 01/07/2013 1900B 21.8 1880 1.591 52.62 1.520 53.300 -0.59% 01/08/2013 2450B 21.8 1880 1.582 52.41 1.520 53.300 4.08% 01/08/2013										-3.41%
01/08/2013 850B 22.6 820 0.944 53.09 0.969 55.258 -2.58% 820 0.944 53.09 0.969 55.258 -2.58% 850 0.957 52.95 0.970 55.200 -1.34% 850 0.972 52.83 0.988 55.154 -1.62% 1710 1.485 53.21 1.460 53.540 1.71% 1790 1.575 52.92 1.510 53.330 4.30% 1790 1.575 52.92 1.510 53.330 4.30% 1880 1.497 51.06 1.520 53.300 -1.51% 1910 1.532 50.85 1.520 53.300 -0.59% 1910 1.582 52.41 1.520 53.300 -0.59% 1910 1.588 52.08 1.520 53.300 4.08% 1910 1.588 52.08 1.520 52.08 1.520 52.08 1.520 52.08 1.520 52.08 1.520 52.08 1.520 52.08 1.520 52.08 1.520 52.08 1.520 52.08 1.520 52.08 1.520 52.08 1.520 52.08 1.520 52.08 1.520 52.08 1.520 52.08 1.520 52.08 1.520 52.08 1										-1.74%
01/08/2013 850B 22.6 835 0.957 52.95 0.970 55.200 -1.34% 850 0.972 52.83 0.988 55.154 -1.62% 1710 1.485 53.21 1.460 53.540 1.71% 1790 1.575 52.92 1.510 53.330 4.30% 1850 1.497 51.06 1.520 53.300 -1.51% 1910 1.532 50.85 1.520 53.300 -1.51% 1910 1.588 52.92 1.510 53.300 -0.59% 1910 1.588 52.08 1.520 53.300 4.47% 1910 1	01/07/2013	750B	22.2							-2.07%
01/08/2013 850B 22.6 835 0.957 52.95 0.970 55.200 -1.34% 850 0.972 52.83 0.988 55.154 -1.62% 1710 1.485 53.21 1.460 53.540 1.71% 01/05/2013 1750B 22.7 1750 1.531 53.06 1.490 53.430 2.75% 1790 1.575 52.92 1.510 53.330 4.30% 1850 1.462 51.01 1.520 53.300 -3.82% 01/07/2013 1900B 22.4 1880 1.497 51.06 1.520 53.300 -3.82% 1910 1.532 50.85 1.520 53.300 -0.59% 01/14/2013 1900B 21.8 1880 1.511 52.62 1.520 53.300 -0.59% 01/08/2013 2450B 20.4 2450 1.938 51.17 1.950 52.765 -1.58% 01/08/2013 5200 - 5800B 20.4 2450										-2.20%
1710										-3.92%
01/05/2013	01/08/2013	850B	22.6							-4.08%
01/05/2013										-4.21%
01/07/2013										-0.62%
01/07/2013	01/05/2013	1750B	22.7							-0.69%
01/07/2013										-0.77%
01/14/2013	01/07/2012	4000D	22.4							-4.30% -4.20%
01/14/2013	01/07/2013	1900B	22.4							-4.20% -4.60%
01/08/2013										-1.28%
01/08/2013	01/14/2013	1900B	21.8							-1.67%
01/08/2013										-2.29%
01/08/2013 5200 - 5800B 23.2 2499 1.986 50.90 2.019 52.638 -1.63% 5200 5.192 49.10 5.299 49.014 -2.02% 5220 5.217 48.96 5.323 48.987 -1.99% 5260 5.298 48.78 5.369 48.906 -1.32% 5300 5.377 48.78 5.416 48.851 -0.72% 5600 5.795 48.08 5.766 48.444 0.50% 5680 5.951 47.89 5.860 48.336 1.55%	04/00/0040	0.4500	00.4							-2.98%
01/08/2013 5200 - 5800B 5200 5.192 49.10 5.299 49.014 -2.02% 5220 5.217 48.96 5.323 48.987 -1.99% 5260 5.298 48.78 5.369 48.906 -1.32% 5300 5.377 48.78 5.416 48.851 -0.72% 5600 5.795 48.08 5.766 48.444 0.50% 5680 5.951 47.89 5.860 48.336 1.55%	01/08/2013	2450B	20.4							-2.90% -3.30%
01/08/2013 5200 - 5800B 5220 5.217 48.96 5.323 48.987 -1.99% 5260 5.298 48.78 5.369 48.906 -1.32% 5300 5.377 48.78 5.416 48.851 -0.72% 5600 5.795 48.08 5.766 48.444 0.50% 5680 5.951 47.89 5.860 48.336 1.55%										-3.30% 0.18%
01/08/2013 5200 - 5800B 23.2 5260 5.298 48.78 5.369 48.906 -1.32% 5300 5.377 48.78 5.416 48.851 -0.72% 5600 5.795 48.08 5.766 48.444 0.50% 5680 5.951 47.89 5.860 48.336 1.55%										-0.06%
01/08/2013 5200 - 5800B 23.2 5600 5.795 48.08 5.766 48.444 0.50% 5680 5.951 47.89 5.860 48.336 1.55%				5260	5.298	48.78	5.369	48.906	-1.32%	-0.26%
5600 5.795 48.08 5.766 48.444 0.50% 5680 5.951 47.89 5.860 48.336 1.55%	01/08/2013	5200 - 5800R	23.2							-0.15%
	5 17 007 20 10		20.2							-0.75%
				5680 5800	5.951 6.130	47.89 47.54	5.860 6.000	48.336 48.200	1.55% 2.17%	-0.92% -1.37%
5805 6.146 47.55 6.005 48.166 2.35%										-1.28%

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per IEEE 1528 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the ta29 ble above due to significant digit rounding in the software.

FCC ID: ZNFE980	PCTEST*	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 00 . (55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset		Page 33 of 55

10.2 Test System Verification

Prior to SAR assessment, the system is verified to $\pm 10\%$ of the SAR measurement on the reference dipole at the time of calibration by the calibration facility.

Full system validation status and results can be found in Appendix E.

Table 10-2 System Verification Results

				System	ı veriti	cation	ı Kesi	ıits			
					System \						
Tissue Frequency (MHz)	Tissue Type	Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Dipole SN	Probe SN	Measured SAR _{1g} (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR _{1g}	Deviation (%)
750	HEAD	01/14/2013	23.8	23.4	0.100	1054	3288	0.834	8.520	8.340	-2.11%
835	HEAD	01/07/2013	23.4	21.5	0.090	4d047	3288	0.858	9.410	9.533	1.31%
835	HEAD	01/11/2013	23.9	22.3	0.100	4d133	3288	0.885	9.450	8.850	-6.35%
835	HEAD	01/15/2013	23.7	23.3	0.100	4d026	3209	0.937	9.390	9.370	-0.21%
1750	HEAD	01/09/2013	24.3	21.2	0.100	1051	3263	3.670	36.600	36.700	0.27%
1900	HEAD	01/14/2013	24.6	22.9	0.100	5d148	3213	4.020	40.500	40.200	-0.74%
2450	HEAD	01/09/2013	24.4	22.6	0.040	719	3022	2.150	52.700	53.750	1.99%
5200	HEAD	01/10/2013	23.3	22.3	0.100	1007	3561	8.120	79.800	81.200	1.75%
5300	HEAD	01/10/2013	23.4	22.3	0.100	1007	3561	7.890	83.100	78.900	-5.05%
5600	HEAD	01/10/2013	23.6	22.7	0.100	1007	3561	7.940	84.500	79.400	-6.04%
5800	HEAD	01/10/2013	23.6	22.8	0.100	1007	3561	7.760	79.800	77.600	-2.76%
750	BODY	01/07/2013	24.5	22.6	0.100	1054	3209	0.925	8.840	9.250	4.64%
835	BODY	01/08/2013	24.6	23.0	0.100	4d026	3209	0.915	9.580	9.150	-4.49%
1750	BODY	01/05/2013	23.2	22.9	0.100	1008	3209	3.880	37.400	38.800	3.74%
1900	BODY	01/07/2013	22.2	21.2	0.100	5d149	3213	4.120	39.300	41.200	4.83%
1900	BODY	01/14/2013	23.8	22.7	0.100	5d148	3263	4.170	39.100	41.700	6.65%
2450	BODY	01/08/2013	24.4	21.1	0.100	882	3263	4.720	50.300	47.200	-6.16%
5200	BODY	01/08/2013	24.0	22.4	0.100	1007	3561	7.300	73.300	73.000	-0.41%
5300	BODY	01/08/2013	24.1	22.5	0.100	1007	3561	7.500	75.600	75.000	-0.79%
5600	BODY	01/08/2013	24.4	22.8	0.100	1007	3561	8.550	80.000	85.500	6.88%
5800	BODY	01/08/2013	24.5	22.8	0.100	1007	3561	7.600	74.300	76.000	2.29%

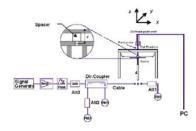


Figure 10-1 System Verification Setup Diagram

Figure 10-2
System Verification Setup Photo

FCC ID: ZNFE980	PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 04 - 155
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset		Page 34 of 55

11 SAR DATA SUMMARY

11.1 Standalone Head SAR Data

Table 11-1 GSM 850 Head SAR

						MEAS	ASUREMENT RESULTS								
FREQUI	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial Number	# of Time	Duty	SAR (1g)	Scaling	Scaled SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position		Slots	Cycle	(W/kg)	Factor	(W/kg)	
836.60	190	GSM 850	GSM	33.7	33.62	-0.06	Right	Cheek	211KPPB263112	1	1:8.3	0.218	1.019	0.222	
836.60	190	GSM 850	GSM	33.7	33.62	-0.06	Right	Tilt	211KPPB263112	1	1:8.3	0.137	1.019	0.140	
836.60	190	GSM 850	GSM	33.7	33.62	0.01	Left	Cheek	211KPPB263112	1	1:8.3	0.190	1.019	0.194	
836.60	190	GSM 850	GSM	33.7	33.62	0.01	Left	Tilt	211KPPB263112	1	1:8.3	0.097	1.019	0.099	
836.60	190	GSM 850	GPRS	31.7	31.47	0.13	Right	Cheek	211KPPB263112	2	1:4.15	0.346	1.054	0.365	A1
836.60	190	GSM 850	GPRS	31.7	31.47	-0.03	Right	Tilt	211KPPB263112	2	1:4.15	0.207	1.054	0.218	
836.60	190	GSM 850	GPRS	31.7	31.47	0.03	Left	Cheek	211KPPB263112	2	1:4.15	0.207	1.054	0.218	
836.60	190	GSM 850	GPRS	31.7	31.47	0.06	Left	Tilt	211KPPB263112	2	1:4.15	0.119	1.054	0.125	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population								a	Hea 1.6 W/kg /eraged ov	(mW/g)	n			

Table 11-2 UMTS 850 Head SAR

	MEASUREMENT RESULTS													
FREQU	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power Drift	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Scaled SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	Power [dBm]	[dB]		Position	Number	Cycle	(W/kg)	Factor	(W/kg)	
836.60	4183	UMTS 850	RMC	23.7	23.55	0.04	Right	Cheek	211KPPB263112	1:1	0.144	1.035	0.149	A2
836.60	4183	UMTS 850	RMC	23.7	23.55	0.10	Right	Tilt	211KPPB263112	1:1	0.092	1.035	0.095	
836.60	4183	UMTS 850	RMC	23.7	23.55	0.12	Left	Left Cheek 211KPPB263112 1:1 0.136 1.035						
836.60	4183	UMTS 850	RMC	23.7	23.55	0.16	Left	Tilt	211KPPB263112	1:1	0.080	1.035	0.082	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population									Head 6 W/kg (i aged ove				

Table 11-3 GSM 1900 Head SAR

						GSI	VI 190	и пеас	JOAK						
						ME	ASURE	IENT RE	SULTS						
FREQUI	ENCY	Mode/Band	Service	Maximum Allowed	Conducted Power	Power	Side	Test	Device Serial	# of Time	Duty	SAR (1g)	Scaling	Scaled SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	[dBm]	Drift [dB]		Position	Number	Slots	Cycle	(W/kg)	Factor	(W/kg)	
1880.00	661	GSM 1900	GSM	30.70	30.39	0.02	Right	Cheek	211KPPB263112	1	1:8.3	0.134	1.074	0.144	
1880.00	661	GSM 1900	GSM	30.70	30.39	-0.03	Right	Tilt	211KPPB263112	1	1:8.3	0.083	1.074	0.090	
1880.00	661	GSM 1900	GSM	30.70	30.39	0.15	Left	Cheek	211KPPB263112	1	1:8.3	0.088	1.074	0.095	
1880.00	380.00 661 GSM 1900 GSM 30.70 30.39 0							Tilt	211KPPB263112	1	1:8.3	0.097	1.074	0.104	
1880.00	661	GSM 1900	GPRS	28.70	28.52	-0.04	Right	Cheek	211KPPB263112	2	1:4.15	0.170	1.042	0.177	A3
1880.00	661	GSM 1900	GPRS	28.70	28.52	0.11	Right	Tilt	211KPPB263112	2	1:4.15	0.073	1.042	0.076	
1880.00	661	GSM 1900	GPRS	28.70	28.52	0.14	Left	Cheek	211KPPB263112	2	1:4.15	0.098	1.042	0.102	
1880.00	661	GSM 1900	GPRS	28.70	28.52	0.17	Left	Tilt	211KPPB263112	2	1:4.15	0.084	1.042	0.087	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population						Head 1.6 W/kg (mW/g) averaged over 1 gram								

FCC ID: ZNFE980	PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 05 . (55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset		Page 35 of 55

Table 11-4 UMTS 1900 Head SAR

								icaa c	7					
						MEASU	IREMEN	T RESUL	.TS					
FREQUE	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial Number	Duty Cycle	SAR (1g)	Scaling	Scaled SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position			(W/kg)	Factor	(W/kg)	
1880.00	9400	UMTS 1900	RMC	23.7	23.47	0.05	Right	Cheek	211KPSL263118	1:1	0.128	1.054	0.135	A4
1880.00	9400	UMTS 1900	RMC	23.7	23.47	0.15	Right	Tilt	211KPSL263118	1:1	0.070	1.054	0.074	
1880.00	9400	UMTS 1900	RMC	23.7	23.47	-0.04	Left	Cheek	211KPSL263118	1:1	0.061	1.054	0.064	
1880.00	9400	UMTS 1900	RMC	23.7	23.47	-0.20	Left	Tilt	211KPSL263118	1:1	0.068	1.054	0.072	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT									Head				
	Spatial Peak							1.6 W/kg (mW/g)						
	Uncontrolled Exposure/General Population								aver	aged over	1 gram			

Table 11-5 LTE Band 17 Head SAR

	ETE Baila II Head OAIX																		
	MEASUREMENT RESULTS																		
FREQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted		MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial Number	Duty	SAR (1g)	Scaling	Scaled SAR (1g)	Plot#	
MHz	CI	h.		[MHz]	Power [dBm]	Power [dBm]] Drift [dB]			Position					Cycle	(W/kg)	Factor	(W/kg)	
710.00	23790	Mid	LTE Band 17	10	23.7	23.65	0.10	0	Right	Cheek	QPSK	1	25	211KPDT263122	1:1	0.137	1.012	0.139	
710.00	23790	Mid	LTE Band 17	10	22.7	22.59	0.02	1	Right	Cheek	QPSK	25	25	211KPDT263122	1:1	0.098	1.026	0.100	
710.00	23790	Mid	LTE Band 17	10	23.7	23.65	-0.15	0	Right	Tilt	QPSK	1	25	211KPDT263122	1:1	0.090	1.012	0.091	
710.00	23790	Mid	LTE Band 17	10	22.7	22.59	0.09	1	Right	Tilt	QPSK	25	25	211KPDT263122	1:1	0.064	1.026	0.066	
710.00	23790	Mid	LTE Band 17	10	23.7	23.65	0.21	0	Left	Cheek	QPSK	1	25	211KPDT263122	1:1	0.183	1.012	0.185	A5
710.00	23790	Mid	LTE Band 17	10	22.7	22.59	0.02	1	Left	Cheek	QPSK	25	25	211KPDT263122	1:1	0.118	1.026	0.121	
710.00	23790	Mid	LTE Band 17	10	23.7	23.65	0.05	0	Left	Tilt	QPSK	1	25	211KPDT263122	1:1	0.094	1.012	0.095	
710.00	23790	Mid	LTE Band 17	10	22.7	22.59	-0.02	1	Left	Tilt	QPSK	25	25	211KPDT263122	1:1	0.060	1.026	0.062	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population						Head 1.6 W/kg (mW/g) averaged over 1 gram												

Table 11-6 LTE Band 5 (Cell) Head SAR

	ETE Band 5 (Gen) fredd GAR																		
	MEASUREMENT RESULTS																		
FREQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted		MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial		SAR (1g)	Scaling	Scaled SAR (1g)	AR Plot#	
MHz	CI	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.69	-0.09	0	Right	Cheek	QPSK	1	25	211KPDT263122	1:1	0.155	1.002	0.155	A6
836.50	20525	Mid	LTE Band 5 (Cell)	10	22.7	22.39	0.01	1	Right	Cheek	QPSK	25	25	211KPDT263122	1:1	0.122	1.074	0.131	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.69	0.15	0	Right	Tilt	QPSK	1	25	211KPDT263122	1:1	0.085	1.002	0.086	
836.50	20525	Mid	LTE Band 5 (Cell)	10	22.7	22.39	-0.03	1	Right	Tilt	QPSK	25	25	211KPDT263122	1:1	0.071	1.074	0.076	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.69	0.06	0	Left	Cheek	QPSK	1	25	211KPDT263122	1:1	0.154	1.002	0.154	
836.50	20525	Mid	LTE Band 5 (Cell)	10	22.7	22.39	0.15	1	Left	Cheek	QPSK	25	25	211KPDT263122	1:1	0.122	1.074	0.131	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.69	0.09	0	Left	Tilt	QPSK	1	25	211KPDT263122	1:1	0.094	1.002	0.094	
836.50	20525	Mid	LTE Band 5 (Cell)	10	22.7	22.39	0.09	1	Left	Tilt	QPSK	25	25	211KPDT263122	1:1	0.073	1.074	0.078	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population						Head 1.6 W/kg (mW/g) averaged over 1 gram												

FCC ID: ZNFE980	PCTEST*	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		D 00 . (55	
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset	Page 36 of 55		

Table 11-7 LTE Band 4 (AWS) Head SAR

								MEA	SUREN	IENT RE	SULTS								
FR	EQUENCY	,	Mode	Bandwidth [MHz]	Maximum Allowed Power	Conducted Power [dBm]		MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial Number	Duty Cycle	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot#
MHz	C	h.		[MHZ]	[dBm]	FOWEI [UBIII]	Dilit [db]			Position				Number	Сусів	(W/kg)	racioi	(W/kg)	
1732.50	20175	Mid	LTE Band 4 (AWS)	10	23.7	23.70	0.19	0.19 0 Right Cheek QPSK 1 49 211KPMZ263122 1:1 0.120 1.000 0.120											
1732.50																			
1732.50	20175	Mid	LTE Band 4 (AWS)	10	23.7	23.70 0.08 0 Right Tilt QPSK 1 49 211KPMZ263122 1:1 0.131 1.000 0.131													
1732.50	20175	Mid	LTE Band 4 (AWS)	10	22.7	22.70	0.00	1	Right	Tilt	QPSK	25	12	211KPMZ263122	1:1	0.109	1.000	0.109	
1732.50	20175	Mid	LTE Band 4 (AWS)	10	23.7	23.70	-0.01	0	Left	Cheek	QPSK	1	49	211KPMZ263122	1:1	0.238	1.000	0.238	A7
1732.50	20175	Mid	LTE Band 4 (AWS)	10	22.7	22.70	0.08	1	Left	Cheek	QPSK	25	12	211KPMZ263122	1:1	0.210	1.000	0.210	
1732.50	20175	Mid	LTE Band 4 (AWS)	10	23.7	23.70	-0.03	0	Left	Tilt	QPSK	1	49	211KPMZ263122	1:1	0.122	1.000	0.122	
1732.50	20175	Mid	LTE Band 4 (AWS)	10	22.7	22.70	-0.10	1	Left	Tilt	QPSK	25	12	211KPMZ263122	1:1	0.104	1.000	0.104	
				patial Peak	•									Head W/kg (mW/g)				•	
			Uncontrolled Exp	osure/Ger	neral Popu	lation							avera	ged over 1 gram					

Table 11-8 LTE Band 2 (PCS) Head SAR

								Dank	J Z (Heau	SAIL							
								MEA	SURE	MENT RE	SULTS								
FR	EQUENC	1	Mode	Bandwidth	Maximum Allowed Power	Conducted Power [dBm]		MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial Number	Duty Cycle	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot#
MHz	С	h.		[MHz]	[dBm]	Power [abm]	Drift (aB)			Position					Cycle	(W/kg)	Factor	(W/kg)	
1880.00	18900	Mid	LTE Band 2 (PCS)	10	23.7	23.70	0.05	0	Right	Cheek	QPSK	1	25	211KPDT263122	1:1	0.237	1.000	0.237	A8
1880.00	18900	Mid	LTE Band 2 (PCS)	10	22.7	22.65	0.15	1	Right	Cheek	QPSK	25	0	211KPDT263122	1:1	0.166	1.012	0.168	
1880.00	18900	Mid	LTE Band 2 (PCS)	10	23.7	23.70	0.08	0	Right	Tilt	QPSK	1	25	211KPDT263122	1:1	0.126	1.000	0.126	
1880.00	18900	Mid	LTE Band 2 (PCS)	10	22.7	22.65	0.06	1	Right	Tilt	QPSK	25	0	211KPDT263122	1:1	0.088	1.012	0.089	
1880.00	18900	Mid	LTE Band 2 (PCS)	10	23.7	23.70	0.08	0	Left	Cheek	QPSK	1	25	211KPDT263122	1:1	0.125	1.000	0.125	
1880.00	18900	Mid	LTE Band 2 (PCS)	10	22.7	22.65	0.08	1	Left	Cheek	QPSK	25	0	211KPDT263122	1:1	0.087	1.012	0.088	
1880.00	18900	Mid	LTE Band 2 (PCS)	10	23.7	23.70	0.07	0	Left	Tilt	QPSK	1	25	211KPDT263122	1:1	0.121	1.000	0.121	
1880.00	18900	Mid	LTE Band 2 (PCS)	10	22.7	22.65	0.05	1	Left	Tilt	QPSK	25	0	211KPDT263122	1:1	0.086	1.012	0.087	
			ANSI / IEEE C9: S Uncontrolled Exp	patial Peak										Head W/kg (mW/g) ged over 1 gram		•			

Table 11-9 DTS Head SAR

						MEASU	REMEN	T RESU	LTS							
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial Number	Data Rate	Duty Cycle	SAR (1g)	oouiiiig	Scaled SAR (1g)	Plot #	
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position		(Mbps)		(W/kg)	Factor	(W/kg)		
2437	6	IEEE 802.11b	DSSS	18.1	16.85	0.01	Right	Cheek	211KPKN263125	1	1:1	0.036	1.334	0.048	A9	
2437 6 IEEE 802.11b DSSS 18.1 16.85 -0.06 Right Tilt 211KPKN263125												0.021	1.334	0.029		
2437 6 IEEE 802.11b DSSS 18.1 16.85 0.18 Left Cheek 211KPKN263125 1 1:1 0.034 1.334 0.045																
2437	6	IEEE 802.11b	DSSS	18.1	16.85	0.12	0.12 Left Tilt 211KPKN263125 1 1:1 0.036 1.334 0.048									
5805	161	IEEE 802.11a	OFDM	15.1	14.89	0.20	Right	Touch	211KPDT263122	6	1:1	0.003	1.050	0.004		
5805	161	IEEE 802.11a	OFDM	15.1	14.89	0.17	Right	Tilt	211KPDT263122	6	1:1	0.006	1.050	0.006	A10	
5805	161	IEEE 802.11a	OFDM	15.1	14.89	0.18	Left	Touch	211KPDT263122	6	1:1	0.002	1.050	0.002		
5805	161	IEEE 802.11a	OFDM	15.1	14.89	0.16	Left	Tilt	211KPDT263122	6	1:1	0.002	1.050	0.002		
		SI / IEEE C95.1 Spat ntrolled Expos	ial Peak							Head 6 W/kg (I raged ove	nW/g)					

FCC ID: ZNFE980	PCTEST*	SAR EVALUATION REPORT	① LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		5 07 (55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset		Page 37 of 55

Table 11-10 NII Head SAR

						MEAS	UREME	NT RES	ULTS						
FREQU	ENCY	Mode	Service	Maximum Allowed Power	Conducted Power	Power Drift	Side	Test	Device Serial Number	Data Rate	Duty Cycle	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #
MHz	Ch.			[dBm]	[dBm]	[dB]		Position		(Mbps)	, -,	(W/kg)	Factor	(W/kg)	
5220	44	IEEE 802.11a	OFDM	15.1	14.86	-0.19	Right	Touch	211KPDT263122	6	1:1	0.001	1.057	0.001	
5220	44	IEEE 802.11a	OFDM	15.1	14.86	-0.21	Right	Tilt	211KPDT263122	6	1:1	0.001	1.057	0.002	
5220	44	IEEE 802.11a	OFDM	15.1	14.86	-0.12	Left	Touch	211KPDT263122	6	1:1	0.001	1.057	0.001	
5220	44	IEEE 802.11a	OFDM	15.1	14.86	0.12	Left	Tilt	211KPDT263122	6	1:1	0.003	1.057	0.003	
5260	52	IEEE 802.11a	OFDM	15.1	14.80	0.15	Right	Touch	211KPDT263122	6	1:1	0.003	1.072	0.003	
5260	52	IEEE 802.11a	OFDM	15.1	14.80	-0.11	Right	1.072	0.000						
5260	52	IEEE 802.11a	OFDM	15.1	14.80	-0.17	Left	Touch	211KPDT263122	6	1:1	0.007	1.072	0.007	A11
5260	52	IEEE 802.11a	OFDM	15.1	14.80	0.18	Left	Tilt	211KPDT263122	6	1:1	0.001	1.072	0.001	
5680	136	IEEE 802.11a	OFDM	15.1	14.26	0.14	Right	Touch	211KPDT263122	6	1:1	0.004	1.213	0.005	
5680	136	IEEE 802.11a	OFDM	15.1	14.26	0.11	Right	Tilt	211KPDT263122	6	1:1	0.000	1.213	0.000	
5680	136	IEEE 802.11a	OFDM	15.1	14.26	-0.15	Left	Touch	211KPDT263122	6	1:1	0.006	1.213	0.007	
5680	136	IEEE 802.11a	OFDM	15.1	14.26	-0.01	Left	Tilt	211KPDT263122	6	1:1	0.005	1.213	0.006	
		ANSI / IEEE (Spatial Pe							1.6 W	Head / kg (mW/g d over 1 gr				

11.2 Standalone Body-Worn SAR Data

Table 11-11 GSM/UMTS/ Body-Worn SAR Data

					MEA	SUREM	ENT RE	SULTS							
FREQUE	NCY	Mode	Service	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial Number	# of Time Slots	Duty Cycle	Side	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	Power [dBill]	Driit [dB]		Number	SIOLS	Cycle		(W/kg)	ractor	(W/kg)	
836.60	190	GSM 850	GSM	33.7	33.62	-0.18	10 mm	211KPPB263112	1	1:8.3	back	0.358	1.019	0.365	
836.60	190	GSM 850	GPRS	31.7	31.47	-0.11	10 mm	211KPPB263112	2	1:4.15	back	0.409	1.054	0.431	A12
836.60	4183	UMTS 850	RMC	23.7	23.55	0.01	10 mm	211KPPB263112	N/A	1:1	back	0.265	1.035	0.274	A14
1850.20	512	GSM 1900	GSM	30.7	30.27	-0.05	10 mm	211KPPB263112	1	1:8.3	back	0.904	1.104	0.998	
1880.00	661	GSM 1900	GSM	30.7	30.39	-0.03	10 mm	211KPPB263112	1	1:8.3	back	0.984	1.074	1.057	
1909.80	810	GSM 1900	GSM	30.7	30.32	-0.07	10 mm	211KPPB263112	1	1:8.3	back	0.836	1.091	0.912	
1850.20	512	GSM 1900	GPRS	28.7	28.54	0.03	10 mm	211KPPB263112	2	1:4.15	back	1.210	1.038	1.256	
1880.00	661	GSM 1900	GPRS	28.7	28.52	-0.01	10 mm	211KPPB263112	2	1:4.15	back	1.240	1.042	1.292	A16
1909.80	810	GSM 1900	GPRS	28.7	28.53	-0.07	10 mm	211KPPB263112	2	1:4.15	back	1.040	1.040	1.082	
1880.00	661	GSM 1900	GPRS	28.7	28.52	0.11	10 mm	211KPPB263112	2	1:4.15	back*	1.180	1.042	1.230	
1880.00	661	GSM 1900	GPRS	28.7	28.52	0.11	10 mm	211KPPB263112	2	1:4.15	back	1.160	1.042	1.209	
1852.40	9262	UMTS 1900	RMC	23.7	23.54	-0.11	10 mm	211KPSL263118	N/A	1:1	back	0.799	1.038	0.829	
1880.00	9400	UMTS 1900	RMC	23.7	23.47	-0.08	10 mm	211KPSL263118	N/A	1:1	back	0.804	1.054	0.847	A17
1907.60	9538	UMTS 1900	RMC	23.7	23.41	0.18	10 mm	211KPSL263118	N/A	1:1	back	0.570	1.068	0.609	
			E C95.1 1992 - S Spatial Peak d Exposure/Gen						av	1.6 W/k	ody g (mW/g over 1 gr				

Note:

- (*) represents a headset cable was connected during testing.
 Variability test data was highlighted as blue entry.

FCC ID: ZNFE980	PCTEST'	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 00 . 155
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset		Page 38 of 55

Table 11-12 LTE Body-Worn SAR

								Doa	y-vvoili c	<i>/</i> ///\									
							М	EASUR	EMENT RESUL	.TS									
FRE	QUENCY	,	Mode	Bandwidth	Maximum Allowed Power	Conducted Power [dBm]	Power Drift (dB1	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot #
MHz	С	h.		[MHZ]	[dBm]	Power [abm]	Drift [dB]		Number			Offset			Cycle	(W/kg)	Factor	(W/kg)	
710.00	23790	Mid	LTE Band 17	10	23.7	23.65	-0.02	0	211KPDT263122	QPSK	1	25	10 mm	back	1:1	0.356	1.012	0.360	A18
710.00	23790	Mid	LTE Band 17	10	22.7	22.59	0.07	1	211KPDT263122	QPSK	25	25	10 mm	back	1:1	0.253	1.026	0.260	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.69	0.00	0	211KPDT263122	QPSK	1	25	10 mm	back	1:1	0.303	1.002	0.304	A20
836.50	20525	Mid	LTE Band 5 (Cell)	10	22.7	22.39	-0.06	1	211KPDT263122	QPSK	25	25	10 mm	back	1:1	0.224	1.074	0.241	
1732.50	20175	Mid	LTE Band 4 (AWS)	10	23.7	-0.04	0	211KPDT263122	QPSK	1	49	10 mm	back	1:1	0.364	1.000	0.364	A22	
1732.50	20175	Mid	LTE Band 4 (AWS)	10	22.7	22.70	0.01	1	211KPDT263122	QPSK	25	12	10 mm	back	1:1	0.318	1.000	0.318	
1855.00	18650	Low	LTE Band 2 (PCS)	10	23.7	23.56	-0.04	0	211KPMZ263122	QPSK	1	49	10 mm	back	1:1	0.561	1.033	0.580	
1880.00	18900	Mid	LTE Band 2 (PCS)	10	23.7	23.70	0.06	0	211KPMZ263122	QPSK	1	25	10 mm	back	1:1	0.845	1.000	0.845	
1905.00	19150	High	LTE Band 2 (PCS)	10	23.7	23.51	-0.06	0	211KPMZ263122	QPSK	1	0	10 mm	back	1:1	1.030	1.045	1.076	A24
1880.00	18900	Mid	LTE Band 2 (PCS)	10	22.7	22.65	-0.03	1	211KPMZ263122	QPSK	25	0	10 mm	back	1:1	0.761	1.012	0.770	
1880.00	18900	Mid	LTE Band 2 (PCS)	10	22.7	22.48	-0.03	1	211KPMZ263122	QPSK	50	0	10 mm	back	1:1	0.699	1.052	0.735	
			ANSI / IEEE	C95.1 1992 Spatial Pe	- SAFETY LII	MIT							Boo 1.6 W/kg						
			Uncontrolled	Exposure/0	Seneral Popul	ation						ave	eraged ov	er 1 grar	n				

Table 11-13 DTS Body-Worn SAR

						. 0 50		7111 07 (1)							
					N	IEASURE	MENT	RESULTS							
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted Power	Power Drift	Spacing		Data Rate	Side	Duty	SAR (1g)		Scaled SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	[dBm]	[dB]		Number	(Mbps)		Cycle	(W/kg)	Factor	(W/kg)	
2437	6	IEEE 802.11b	DSSS	18.1	16.85	0.13	10 mm	211KPMZ263122	1	back	1:1	0.021	1.334	0.027	A25
5805	161	IEEE 802.11a	OFDM	15.1	14.89	0.15	10 mm	211KPDT263122	6	back	1:1	0.193	1.050	0.203	A26
			Spatial	92 - SAFETY LII Peak e/General Popul						Bo 1.6 W/kg eraged o					

Table 11-14 NII Body-Worn SAR

								<u> </u>							
						MEASU	REMEN	T RESULTS							
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted Power	Power Drift	Spacing	Device Serial Number	Data Rate	Side	Duty Cycle	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	[dBm]	[dB]		Number	(Mbps)		Cycle	(W/kg)	Factor	(W/kg)	
5220	44	IEEE 802.11a	OFDM	15.1	14.86	0.20	10 mm	211KPDT263122	6	back	1:1	0.049	1.057	0.052	
5260	52	IEEE 802.11a	OFDM	15.1	14.80	0.11	10 mm	211KPDT263122	6	back	1:1	0.081	1.072	0.086	
5680	136	IEEE 802.11a	OFDM	15.1	14.26	-0.10	10 mm	211KPDT263122	6	back	1:1	0.153	1.213	0.186	A27
		ANSI / IEEE C	95.1 1992	2 - SAFETY L	IMIT					В	ody				
			Spatial P								g (mW/g				
		Uncontrolled E	xposure/	General Pop	ulation				av	eraged	over 1 g	ram			
		•					·	•	·	·	·		·	·	

FCC ID: ZNFE980	PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 00 . (55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset		Page 39 of 55

11.3 Standalone Wireless Router SAR Data

Table 11-15 GPRS/UMTS/ Hotspot SAR Data

								RESULTS							
FREQUE	ENCY Ch.	Mode	Service	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial Number	# of Time Slots	Duty Cycle	Side	SAR (1g) (W/kg)	Scaling Factor	Scaled SAR (1g) (W/kg)	Plot #
836.60	190	GSM 850	GPRS	31.7	31.47	-0.11	10 mm	211KPPB263112	2	1:4.15	back	0.409	1.054	0.431	
836.60	190	GSM 850	GPRS	31.7	31.47	-0.02	10 mm	211KPPB263112	2	1:4.15	front	0.261	1.054	0.275	
836.60	190	GSM 850	GPRS	31.7	31.47	-0.06	10 mm	211KPPB263112	2	1:4.15	bottom	0.275	1.054	0.290	
836.60	190	GSM 850	GPRS	31.7	31.47	-0.03	10 mm	211KPPB263112	2	1:4.15	right	0.498	1.054	0.525	A13
836.60	4183	UMTS 850	RMC	23.7	23.55	0.01	10 mm	211KPPB263112	N/A	1:1	back	0.265	1.035	0.274	
836.60	4183	UMTS 850	RMC	23.7	23.55	0.05	10 mm	211KPPB263112	N/A	1:1	front	0.188	1.035	0.195	
836.60	4183	UMTS 850	RMC	23.7	23.55	-0.05	10 mm	211KPPB263112	N/A	1:1	bottom	0.164	1.035	0.170	
836.60	4183	UMTS 850	RMC	23.7	23.55	0.00	10 mm	211KPPB263112	N/A	1:1	right	0.336	1.035	0.348	A15
1850.20	512	GSM 1900	GPRS	28.7	28.54	0.03	10 mm	211KPPB263112	2	1:4.15	back	1.210	1.038	1.256	
1880.00	661	GSM 1900	GPRS	28.7	28.52	-0.01	10 mm	211KPPB263112	2	1:4.15	back	1.240	1.042	1.292	A16
1909.80	810	GSM 1900	GPRS	28.7	28.53	-0.07	10 mm	211KPPB263112	2	1:4.15	back	1.040	1.040	1.082	
1880.00	661	GSM 1900	GPRS	28.7	28.52	0.21	10 mm	211KPPB263112	2	1:4.15	front	0.418	1.042	0.436	
1850.20	512	GSM 1900	GPRS	28.7	28.54	-0.04	10 mm	211KPPB263112	2	1:4.15	bottom	0.842	1.038	0.874	
1880.00	661	GSM 1900	GPRS	28.7	28.52	-0.05	10 mm	211KPPB263112	2	1:4.15	bottom	0.897	1.042	0.935	
1909.80	810	GSM 1900	GPRS	28.7	28.53	-0.07	10 mm	211KPPB263112	2	1:4.15	bottom	0.740	1.040	0.770	
1880.00	661	GSM 1900	GPRS	28.7	28.52	0.08	10 mm	211KPPB263112	2	1:4.15	right	0.162	1.042	0.169	
1880.00	661	GSM 1900	GPRS	28.7	28.52	0.11	10 mm	211KPPB263112	2	1:4.15	back	1.160	1.042	1.209	
1852.40	9262	UMTS 1900	RMC	23.7	23.54	-0.11	10 mm	211KPSL263118	N/A	1:1	back	0.799	1.038	0.829	
1880.00	9400	UMTS 1900	RMC	23.7	23.47	-0.08	10 mm	211KPSL263118	N/A	1:1	back	0.804	1.054	0.847	A17
1907.60	9538	UMTS 1900	RMC	23.7	23.41	0.18	10 mm	211KPSL263118	N/A	1:1	back	0.570	1.068	0.609	
1880.00	9400	UMTS 1900	RMC	23.7	23.47	0.07	10 mm	211KPSL263118	N/A	1:1	front	0.307	1.054	0.324	
1880.00	9400	UMTS 1900	RMC	23.7	23.47	0.00	10 mm	211KPSL263118	N/A	1:1	bottom	0.550	1.054	0.580	
1880.00	9400	UMTS 1900	RMC	23.7	23.47	0.01	10 mm	211KPSL263118	N/A	1:1	right	0.141	1.054	0.149	
			C95.1 1992 - SA Spatial Peak Exposure/Gener		n					Bo d .6 W/kg eraged or	•	m			

Note: Variability test data was highlighted as blue entry.

Table 11-16 LTE Band 17 Hotspot SAR

								Dani	u i <i>i</i> iiota	spot c	יחי								
								MEAS	UREMENT RE	SULTS									
FRE	QUENCY	,	Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot#
MHz	Ch.	High		[MITZ]	Power [dBm]	[dBm]	Driit [ub]		Number							(W/kg)	racioi	(W/kg)	
710.00	23790	Mid	LTE Band 17	10	23.7	23.65	-0.02	0	211KPDT263122	QPSK	1	25	10 mm	back	1:1	0.356	1.012	0.360	
710.00	23790	Mid	LTE Band 17	10	22.7	22.59	0.07	1	211KPDT263122	QPSK	25	25	10 mm	back	1:1	0.253	1.026	0.260	
710.00							-0.05	0	211KPDT263122	QPSK	1	25	10 mm	front	1:1	0.214	1.012	0.217	
710.00	.00 23790 Mid LTE Band 17 10 22.7 22.59 (0.10	1	211KPDT263122	QPSK	25	25	10 mm	front	1:1	0.152	1.026	0.156	
710.00							0.00	0	211KPDT263122	QPSK	1	25	10 mm	bottom	1:1	0.268	1.012	0.271	
710.00	23790	Mid	LTE Band 17	10	22.7	22.59	0.11	1	211KPDT263122	QPSK	25	25	10 mm	bottom	1:1	0.196	1.026	0.201	
710.00	23790	Mid	LTE Band 17	10	23.7	23.65	-0.06	0	211KPDT263122	QPSK	1	25	10 mm	left	1:1	0.491	1.012	0.497	A19
710.00	.00 23790 Mid LTE Band 17 10 22.7 22.59 -0.03					-0.03	1	211KPDT263122	QPSK	25	25	10 mm	left	1:1	0.343	1.026	0.352		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Body												
	Spatial Peak						1.6 W/kg (mW/g)												
	Uncontrolled Exposure/General Population									averaged over 1 gram									

FCC ID: ZNFE980	PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		David 40 of 55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset		Page 40 of 55

Table 11-17 LTE Band 5 (Cell) Hotspot SAR

	-						<u> </u>	una c	(Cell) II	otopo	. 0,								
								MEAS	UREMENT RE	SULTS									
FRE	QUENCY		Mode	Bandwidth [MHz]	Maximum Allowed Power	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Scaled SAR (1g)	Plot #
MHz	CI	١.		[WITZ]	[dBm]	Fower [ubili]	Driit [ub]		Number							(W/kg)	ractor	(W/kg)	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.69	0.00	0	211KPDT263122	QPSK	1	25	10 mm	back	1:1	0.303	1.002	0.304	
836.50	20525	Mid	LTE Band 5 (Cell)	10	22.7	22.39	-0.06	1	211KPDT263122	QPSK	25	25	10 mm	back	1:1	0.224	1.074	0.241	
836.50							-0.02	0	211KPDT263122	QPSK	1	25	10 mm	front	1:1	0.212	1.002	0.212	
836.50	- 						0.05	1	211KPDT263122	QPSK	25	25	10 mm	front	1:1	0.160	1.074	0.172	
836.50	 						0.01	0	211KPDT263122	QPSK	1	25	10 mm	bottom	1:1	0.198	1.002	0.198	
836.50	20525	Mid	LTE Band 5 (Cell)	10	22.7	22.39	0.01	1	211KPDT263122	QPSK	25	25	10 mm	bottom	1:1	0.153	1.074	0.164	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.69	-0.01	0	211KPDT263122	QPSK	1	25	10 mm	right	1:1	0.355	1.002	0.356	A21
836.50	50 20525 Mid LTE Band 5 (Cell) 10 22.7 22.39 -0.01					-0.01	1	211KPDT263122	QPSK	25	25	10 mm	right	1:1	0.264	1.074	0.284		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT											Body							
	Spatial Peak						1.6 W/kg (mW/g)												
	Uncontrolled Exposure/General Population										averaç	jed over	1 gram						

Table 11-18 LTE Band 4 (AWS) Hotspot SAR

							_ ~	· //	(110) 110	topot	<u> </u>								
						N	MEASUR	EMENT RESU	LTS										
FRE	QUENCY	,	Mode	Bandwidth	Maximum Allowed Power	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Scaled SAR (1g)	Plot#
MHz	C	h.		[MHz]	[dBm]	Power [dBm]	Drift (aB)		Number							(W/kg)	Factor	(W/kg)	i
1732.50	20175	Mid	LTE Band 4 (AWS)	10	23.7	23.70	-0.04	0	211KPDT263122	QPSK	1	49	10 mm	back	1:1	0.364	1.000	0.364	
1732.50	20175	Mid	LTE Band 4 (AWS)	10	22.7	22.70	0.01	1	211KPDT263122	QPSK	25	12	10 mm	back	1:1	0.318	1.000	0.318	
1732.50	2.50 20175 Mid LTE Band 4 (AWS) 10 23.7 23.70							0	211KPDT263122	QPSK	1	49	10 mm	front	1:1	0.298	1.000	0.298	
1732.50							0.14	1	211KPDT263122	QPSK	25	12	10 mm	front	1:1	0.252	1.000	0.252	
1732.50	2.50 20175 Mid LTE Band 4 (AWS) 10 22.7 22.70 2.50 20175 Mid LTE Band 4 (AWS) 10 23.7 23.70						-0.08	0	211KPDT263122	QPSK	1	49	10 mm	bottom	1:1	0.156	1.000	0.156	
1732.50	20175	Mid	LTE Band 4 (AWS)	10	22.7	22.70	0.02	1	211KPDT263122	QPSK	25	12	10 mm	bottom	1:1	0.124	1.000	0.124	
1732.50	20175	Mid	LTE Band 4 (AWS)	10	23.7	23.70	0.13	0	211KPDT263122	QPSK	1	49	10 mm	left	1:1	0.417	1.000	0.417	A23
1732.50	2.50 20175 Mid LTE Band 4 (AWS) 10 22.7 22.70 0.02					0.02	1	211KPDT263122	QPSK	25	12	10 mm	left	1:1	0.339	1.000	0.339		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Body												
	Spatial Peak										1.6	W/kg (m	W/g)						
		Uncontrolled Exposure/General Population										avera	ged over	1 gram					

Table 11-19 LTE Band 2 (PCS) Hotspot SAR

								~ - /.	03) 110	topot		<u> </u>							
							ı	MEASUR	EMENT RESU	ILTS									
FRE	QUENCY	,	Mode	Bandwidth	Maximum Allowed Power	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #
MHz	С	h.		[MHz]	[dBm]	Power [dBm]	Drift [dB]		Number							(W/kg)	Factor	(W/kg)	
1855.00	18650	Low	LTE Band 2 (PCS)	10	23.7	23.56	-0.04	0	211KPMZ263122	QPSK	1	49	10 mm	back	1:1	0.561	1.033	0.580	
1880.00	18900	Mid	LTE Band 2 (PCS)	10	23.7	23.70	0.06	0	211KPMZ263122	QPSK	1	25	10 mm	back	1:1	0.845	1.000	0.845	
1905.00	19150	High	LTE Band 2 (PCS)	10	23.7	23.51	-0.06	0	211KPMZ263122	QPSK	1	0	10 mm	back	1:1	1.030	1.045	1.076	A24
1880.00	` '							1	211KPMZ263122	QPSK	25	0	10 mm	back	1:1	0.761	1.012	0.770	
1880.00	18900 Mid LTE Band 2 (PCS) 10 22.7 22.48						-0.03	1	211KPMZ263122	QPSK	50	0	10 mm	back	1:1	0.699	1.052	0.735	
1880.00	18900	Mid	LTE Band 2 (PCS)	10	23.7	23.70	-0.06	0	211KPMZ263122	QPSK	1	25	10 mm	front	1:1	0.305	1.000	0.305	
1880.00	18900	Mid	LTE Band 2 (PCS)	10	22.7	22.65	0.06	1	211KPMZ263122	QPSK	25	0	10 mm	front	1:1	0.276	1.012	0.279	
1880.00	18900	Mid	LTE Band 2 (PCS)	10	23.7	23.70	-0.04	0	211KPMZ263122	QPSK	1	25	10 mm	bottom	1:1	0.615	1.000	0.615	
1880.00	18900	Mid	LTE Band 2 (PCS)	10	22.7	22.65	0.01	1	211KPMZ263122	QPSK	25	0	10 mm	bottom	1:1	0.477	1.012	0.483	
1880.00	18900	Mid	LTE Band 2 (PCS)	10	23.7	23.70	0.14	0	211KPMZ263122	QPSK	1	25	10 mm	right	1:1	0.220	1.000	0.220	
1880.00	18900	Mid	LTE Band 2 (PCS)	10	22.7	22.65	0.04	1	211KPMZ263122	QPSK	25	0	10 mm	right	1:1	0.135	1.012	0.137	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population						Body 1.6 W/kg) averaged over 1 gram												

FCC ID: ZNFE980	PCTEST'	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 44 -555
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset		Page 41 of 55

Table 11-20 WLAN Hotspot SAR

						***		pot OAIX							
	MEASUREMENT RESULTS														
FREQU	ENCY	Mode	Service	Maximum Allowed Power	Conducted Power	Power Drift	Spacing		Data Rate	Side	Duty	SAR (1g)	Scaling	Scaled SAR (1g)	Plot#
MHz	Ch.			[dBm]	[dBm]	[dB]		Number	(Mbps)		Cycle	(W/kg)	Factor	(W/kg)	
2437	6	IEEE 802.11b	DSSS	18.1	16.85	0.13	10 mm	211KPMZ263122	1	back	1:1	0.021	1.334	0.027	A25
2437 6 IEEE 802.11b DSSS 18.1 16.85 0.02						0.02	10 mm	211KPMZ263122	1	front	1:1	0.002	1.334	0.003	
2437	6	IEEE 802.11b	DSSS	18.1	16.85	0.05	10 mm	211KPMZ263122	1	bottom	1:1	0.000	1.334	0.000	
2437	6	IEEE 802.11b	DSSS	18.1	16.85	0.04	10 mm	211KPMZ263122	1	right	1:1	0.010	1.334	0.013	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Body								
	Spatial Peak						1.6 W/kg (mW/g)								
	Uncontrolled Exposure/General Population								av	eraged o	over 1 gr	am			

11.4 SAR Test Notes

General Notes:

- The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2003, FCC/OET Bulletin 65, Supplement C [June 2001] and FCC KDB Publication 447498 D01v05.
- 2. Batteries are fully charged at the beginning of the SAR measurements. A standard battery was used for all SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v05.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- 7. Per FCC KDB 865664 D01 v01, variability SAR tests were performed when the measured SAR results for a frequency band were greater than 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 13 for variability analysis.
- 8. During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v01, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated (See Section 6.6 for more details).

GSM Test Notes:

- 1. Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR.
- 2. Justification for reduced test configurations per KDB Publication 941225 D03v01: The source-based time-averaged output power was evaluated for all multi-slot operations. The multi-slot configuration with the highest frame averaged output power was evaluated for SAR.
- 3. Per FCC KDB Publication 447498 D01v05, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel must be used.
- 4. Per FCC KDB Publication 648474 D04v01, SAR evaluation is required using a headset cable if standalone reported SAR was > 1.2 W/kg. Therefore, additional SAR evaluations using a headset cable were tested with the highest SAR configuration.

FCC ID: ZNFE980	PCTEST:	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 40 . (55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset		Page 42 of 55

UMTS Notes:

- 1. UMTS mode in Body SAR was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v02. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg.
- 2. Per FCC KDB Publication 447498 D01v05, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel must be used.
- 3. Per FCC KDB Publication 648474 D04v01, SAR was evaluated without a headset connected to the device. Since the standalone reported SAR was < 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

LTE Notes:

- LTE Considerations: LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02. Implementation of the general test procedures can be found in Section 8.4.4.
- 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 6.2.5 under Table 6.2.3-1.
- 3. A-MPR was disabled for all SAR tests by setting NS=01 on the base station simulator.
- 4. Per FCC KDB Publication 648474 D04v01, SAR was evaluated without a headset connected to the device. Since the standalone reported SAR was < 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

WLAN Notes:

- 1. Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v01r02 and April 2010 FCC/TCB Meeting Notes for 2.4 GHz WIFI: Highest average RF output power channel for the lowest data rate was selected for SAR evaluation in 802.11b. Other IEEE 802.11 modes (including 802.11g/n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode.
- 2. Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v01r02 and April 2010 FCC/TCB Meeting Notes for 5 GHz WIFI: Highest average RF output power channel for the lowest data rate was selected for SAR evaluation in 802.11a. Other IEEE 802.11 modes (including 802.11n 20 MHz and 40 MHz bandwidths) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11a mode.
- 3. When Hotspot is enabled, all 5 GHz bands are disabled. Therefore no 5 GHz WIFI Wireless Router SAR Data was required.
- 4. WIFI transmission was verified using an uncalibrated spectrum analyzer.
- Since the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg and the reported 1g averaged SAR is <0.8 W/kg, SAR testing on other default channels was not required.
- 6. Per FCC KDB Publication 648474 D04v01, SAR was evaluated without a headset connected to the device. Since the standalone reported SAR was < 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

FCC ID: ZNFE980	PCTEST'	SAR EVALUATION REPORT	(L) LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		David 40 of 55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset		Page 43 of 55

12 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

12.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v05 are applicable to handsets with built-in unlicensed transmitters such as 802.11a/b/g/n and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

12.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v05 IV.C.1.iii, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. When standalone SAR is not required to be measured, per FCC KDB 447498 D01v05 4.3.2 2), the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR=
$$\frac{\sqrt{f(GHz)}}{7.5} * \frac{\text{(Max Power of channel, mW)}}{\text{Min. Separation Distance, mm}}$$

Table 12-1 Estimated SAR

Mode	Frequency	Maximum Allowed Power	Separation Distance (Body)	Estimated SAR (Body)
	[MHz]	[dBm]	[mm]	[W/kg]
Bluetooth	2441	11.50	10	0.292

Note: Held-to ear configurations are not applicable to Bluetooth operations and therefore were not considered for simultaneous transmission.

FCC ID: ZNFE980	PCTEST' INDIVIDUAL LADOCATETY, INC.	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 44 . (55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset		Page 44 of 55

12.3 Head SAR Simultaneous Transmission Analysis

Table 12-2 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Held to Ear)

Simult Tx	Configuration	GSM 850 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	UMTS 850 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Right Cheek	0.222	0.048	0.270		Right Cheek	0.149	0.048	0.197
Head SAR	Right Tilt	0.140	0.029	0.169	Head SAR	Right Tilt	0.095	0.029	0.124
	Left Cheek Left Tilt	0.194 0.099	0.045 0.048	0.239 0.147		Left Cheek Left Tilt	0.141 0.082	0.045 0.048	0.186 0.130
Simult Tx	Configuration	GSM 1900 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	UMTS 1900 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Right Cheek	0.144	0.048	0.192		Right Cheek	0.135	0.048	0.183
Head SAR	Right Tilt	0.090	0.029	0.119	Head SAR	Right Tilt	0.074	0.029	0.103
ricad orar	Left Cheek	0.095	0.045	0.140	ricad OAIX	Left Cheek	0.064	0.045	0.109
	Left Tilt	0.104	0.048	0.152		Left Tilt	0.072	0.048	0.120
Simult Tx	Configuration	GPRS 850 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	GPRS 1900 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Right Cheek	0.365	0.048	0.413		Right Cheek	0.177	0.048	0.225
Head SAR	Right Tilt	0.218	0.029	0.247	Head SAR	Right Tilt	0.076	0.029	0.105
nead SAR	Left Cheek	0.218	0.045	0.263	nead SAR	Left Cheek	0.102	0.045	0.147
	Left Tilt	0.125	0.048	0.173		Left Tilt	0.087	0.048	0.135
Simult Tx	Configuration	LTE Band 17 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	LTE Band 5 (Cell) SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Right Cheek	0.139	0.048	0.187		Right Cheek	0.155	0.048	0.203
Head SAR	Right Tilt	0.091	0.029	0.120	Head SAR	Right Tilt	0.086	0.029	0.115
	Left Cheek	0.185	0.045	0.230		Left Cheek	0.154	0.045	0.199
	Left Tilt	0.095	0.048	0.143		Left Tilt	0.094	0.048	0.142
Simult Tx	Configuration	LTE Band 4 (AWS) SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	LTE Band 2 (PCS) SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Right Cheek	0.120	0.048	0.168		Right Cheek	0.237	0.048	0.285
Head SAR	Right Tilt	0.131	0.029	0.160	Head SAR	Right Tilt	0.126	0.029	0.155
I leau SAR	Left Cheek	0.238	0.045	0.283	i icau SAR	Left Cheek	0.125	0.045	0.170
	Left Tilt	0.122	0.048	0.170		Left Tilt	0.121	0.048	0.169

FCC ID: ZNFE980	PCTEST:	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dans 45 of 55	
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset		Page 45 of 55	

Table 12-3
Simultaneous Transmission Scenario with 5 GHz WLAN (Held to Ear)

Simult Tx	Configuration	GSM 850 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	UMTS 850 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Right Cheek	0.222	0.005	0.227		Right Cheek	0.149	0.005	0.154
Head SAR	Right Tilt	0.140	0.006	0.146	Head SAR	Right Tilt	0.095	0.006	0.101
Head SAR	Left Cheek	0.194	0.007	0.201	Ticau SAIN	Left Cheek	0.141	0.007	0.148
	Left Tilt	0.099	0.006	0.105		Left Tilt	0.082	0.006	0.088
Simult Tx	Configuration	GSM 1900 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	UMTS 1900 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Right Cheek	0.144	0.005	0.149		Right Cheek	0.135	0.005	0.140
Head SAR	Right Tilt	0.090	0.006	0.096	Head SAR	Right Tilt	0.074	0.006	0.080
ricad OAIX	Left Cheek	0.095	0.007	0.102	ricad OAIX	Left Cheek	0.064	0.007	0.071
	Left Tilt	0.104	0.006	0.110		Left Tilt	0.072	0.006	0.078

12.4 Body-Worn Simultaneous Transmission Analysis

Table 12-4
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body-Worn at 10 mm)

shedus Transmission Scenario with 2.4 GHZ WLAN (Body-Worn at 1									
Configuration	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)					
Back Side	GSM 850	0.365	0.027	0.392					
Back Side	UMTS 850	0.274	0.027	0.301					
Back Side	GSM 1900	1.057	0.027	1.084					
Back Side	UMTS 1900	0.847	0.027	0.874					
Back Side	GPRS 850	0.431	0.027	0.458					
Back Side	GPRS 1900	1.292	0.027	1.319					
Back Side	LTE Band 17	0.360	0.027	0.387					
Back Side	LTE Band 5 (Cell)	0.304	0.027	0.331					
Back Side	LTE Band 4 (AWS)	0.364	0.027	0.391					
Back Side	LTE Band 2 (PCS)	1.076	0.027	1.103					

Table 12-5
Simultaneous Transmission Scenario with 5 GHz WLAN (Body-Worn at 10 mm)

 tanoodo manoninocion occinano man o cinz vizzan (Body vicin de 10									
Configuration	Mode	2G/3G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)					
Back Side	GSM 850	0.365	0.203	0.568					
Back Side	UMTS 850	0.274	0.203	0.477					
Back Side	GSM 1900	1.057	0.203	1.260					
Back Side	UMTS 1900	0.847	0.203	1.050					

FCC ID: ZNFE980	PCTEST'	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		David 40 a 5 5 5
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset		Page 46 of 55

Table 12-6
Simultaneous Transmission Scenario with Bluetooth (Body-Worn at 10 mm)

Configuration	Mode	2G/3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
Back Side	GSM 850	0.365	0.292	0.657
Back Side	UMTS 850	0.274	0.292	0.566
Back Side	GSM 1900	1.057	0.292	1.349
Back Side	UMTS 1900	0.847	0.292	1.139
Back Side	GPRS 850	0.431	0.292	0.723
Back Side	GPRS 1900	1.292	0.292	1.584
Back Side	LTE Band 17	0.360	0.292	0.652
Back Side	LTE Band 5 (Cell)	0.304	0.292	0.596
Back Side	LTE Band 4 (AWS)	0.364	0.292	0.656
Back Side	LTE Band 2 (PCS)	1.076	0.292	1.368

Note: Bluetooth SAR was not required to be measured per FCC KDB 447498. Estimated SAR results were used in the above table to determine simultaneous transmission SAR test exclusion.

12.5 Hotspot SAR Simultaneous Transmission Analysis

Per FCC KDB Publication 941225 D06v01, the devices edges with antennas more than 2.5 cm from edge are not required to be evaluated for SAR ("-").

Table 12-7
Simultaneous Transmission Scenario (Hotspot at 1.0 cm)

Simult Tx	Configuration	GPRS 850 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	UMTS 850 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Back	0.431	0.027	0.458		Back	0.274	0.027	0.301
	Front	0.275	0.003	0.278		Front	0.195	0.003	0.198
Body	Top	1	-	0.000	Body	Top	-	-	0.000
SAR	Bottom	0.290	0.000	0.290	SAR	Bottom	0.170	0.000	0.170
	Right	0.525	0.013	0.538		Right	0.348	0.013	0.361
	Left	ı	-	0.000		Left	-	-	0.000
Cimult Tv	Configuration	GPRS 1900	2.4 GHz WLAN	ΣSAR	Cimult Tv	Canfinuation	UMTS 1900	2.4 GHz WLAN	ΣSAR
Simult 1x	Corniguration	SAR (W/kg)	SAR (W/kg)	(W/kg)	Simult 1x	Configuration	SAR (W/kg)	SAR (W/kg)	(W/kg)
Simult 1x	Back	SAR (W/kg) 1.292	SAR (W/kg) 0.027	(W/kg) 1.319	Simult 1x	Back	SAR (W/kg) 0.847	SAR (W/kg) 0.027	(W/kg) 0.874
	0	SAR (W/kg)	` 0,	(),		3	(0/	` 0,	ν σ,
Body	Back	1.292	0.027	1.319	Body	Back	0.847	0.027	0.874
	Back Front	1.292 0.436	0.027 0.003	1.319 0.439		Back Front	0.847	0.027	0.874 0.327
Body	Back Front Top	1.292 0.436	0.027 0.003	1.319 0.439 0.000	Body	Back Front Top	0.847 0.324	0.027 0.003	0.874 0.327 0.000

FCC ID: ZNFE980	PCTEST:	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dana 47 of 55	
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset		Page 47 of 55	

Simult Tx	Configuration	LTE Band 17 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	LTE Band 5 (Cell) SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Back	0.360	0.027	0.387		Back	0.304	0.027	0.331
	Front	0.217	0.003	0.220	ъ.	Front	0.212	0.003	0.215
Body	Top	-	-	0.000	Body	Top	-	-	0.000
SAR	Bottom	0.271	0.000	0.271	SAR	Bottom	0.198	0.000	0.198
	Right	-	0.013	0.013		Right	0.356	0.013	0.369
	Left	0.497	-	0.497		Left	-	-	0.000
Simult Tx	Configuration	LTE Band 4 (AWS) SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	LTE Band 2 (PCS) SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Back	0.364	0.027	0.391		Back	1.076	0.027	1.103
	Front	0.298	0.003	0.301		Front	0.305	0.003	0.308
Body	Top	-	-	0.000	Body	Top	-	-	0.000
SAR	Bottom	0.156	0.000	0.156	SAR	Bottom	0.615	0.000	0.615
	Right	-	0.013	0.013	1	Right	0.220	0.013	0.233
	Left	0.417	-	0.417		Left	-	-	0.000

12.6 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v05.

FCC ID: ZNFE980	PCTEST'	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 40
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset	Page 48 of 55

13 SAR MEASUREMENT VARIABILITY

13.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Table 13-1
Body SAR Measurement Variability Results

	BODY VARIABILITY RESULTS													
Band	FREQUE	NCY	Mode	Service	# of Time Slots	Side	Spacing	Measured SAR (1g)	1st Repeated SAR (1g)	Ratio	2nd Repeated SAR (1g)		3rd Repeated SAR (1g)	Ratio
	MHz	Ch.						(W/kg)	(W/kg)		(W/kg)		(W/kg)	
1900	1880.00	661	GSM 1900	GPRS	2	back	10 mm	1.240	1.160	1.1	N/A	N/A	N/A	N/A
	Α	NSI / IE	EE C95.1 1992 -	SAFETY LIMIT			Body							
	Spatial Peak						1.6 W/kg (mW/g)							
	Und	ontroll	ed Exposure/Ge	neral Population	1		averaged over 1 gram							

13.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for all frequency bands. Therefore, per KDB Publication 865664 D01v01, the extended measurement uncertainty analysis per IEEE 1528-2003 was not required.

FCC ID: ZNFE980	PCTEST*	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager		
Document S/N:	Test Dates:	DUT Type:		Page 49 of 55		
0Y1301020025.ZNF	/1301020025.ZNF 01/05/13 - 01/15/13 P		Portable Handset			

14

EQUIPMENT LIST

Agilent E8257D (250kHz-20GHz) Signal Generator 4/5/2012 Annual 4 Agilent 8753E (30kHz-6GHz) Network Analyzer 4/3/2012 Annual 4 Agilent 8753E (30kHz-6GHz) Network Analyzer 4/4/2012 Annual 4 Agilent 8594A (9kHz-24GHz) Spectrum Analyzer N/A N/A N/A Agilent 864BD (9kHz-24GHz) Signal Generator 10/10/2012 Annual 10 Agilent 85070E Dielectric Probe Kit 3/8/2012 Annual 3 Agilent 864BD Signal Generator 4/3/2012 Annual 4 Agilent 85047A S-Parameter Test Set N/A N/A Agilent MA24106A USB Power Sensor 12/7/2012 Annual 12 Agilent MA24106A USB Power Sensor 12/7/2012 Annual 12 Amplifier Research 55104 5W, 800MHz-4/20Hz N/A N/A Anritsu ML2496A Power Meter 10/11/2012 An	Cal Due 1/5/2013 1/3/2013 1/4/2013 N/A 1/10/2013 1/3/2013	
Agilent 8753E (30kHz-6GHz) Network Analyzer 4/3/2012 Annual 4 Agilent 8753E (30kHz-6GHz) Network Analyzer 4/4/2012 Annual 4 Agilent 8594A (9kHz-2GHz) Spectrum Analyzer N/A N/A N/A N/A N/A N/A N/A Agilent 8648D (9kHz-4GHz) Signal Generator 10/10/2012 Annual 10 Agilent 85070E Dielectric Probe Kit 3/8/2012 Annual 3 Agilent 8648D Signal Generator 4/3/2012 Annual 3 Agilent 85047A S-Parameter Test Set N/A N/A Agilent MA24106A USB Power Sensor 12/7/2012 Annual 11 Agilent MA24106A USB Power Sensor 12/7/2012 Annual 11 Amplifier Research 5S1G4 5W, 800MHz-4.2GHz N/A N/A Anritsu ML2496A Power Meter 10/11/2012 Annual 11 Anritsu <td< td=""><td>N/A 0/10/2013 N/A 0/10/2013 8/8/2013</td><td>Serial Number MY45470194</td></td<>	N/A 0/10/2013 N/A 0/10/2013 8/8/2013	Serial Number MY45470194
Agilent 8753E (30kHz-6GHz) Network Analyzer 4/4/2012 Annual 4 Agilent 8594A (9kHz-2GHz) Spectrum Analyzer N/A N/A N/A Agilent 8648D (9kHz-4GHz) Signal Generator 10/10/2012 Annual 10 Agilent 85070E Dielectric Probe Kit 3/8/2012 Annual 3 Agilent 8648D Signal Generator 4/3/2012 Annual 4 Agilent 85047A S-Parameter Test Set N/A N/A N/A Agilent MA24106A USB Power Sensor 12/7/2012 Annual 11 Agilent MA24106A USB Power Sensor 12/7/2012 Annual 11 Amplifier Research 55104 5W, 800MHz-4.2GHz N/A N/A N/A Anritsu ML2495A Power Meter 10/11/2012 Annual 11 Anritsu ML2496A Power Meter 11/28/2012 Annual 11 Anritsu ML2498A Power Meter 11/24/2012	N/A N/A 0/10/2013 8/8/2013	US37390350
Agilent 8594A (9kHz-2.9GHz) Spectrum Analyzer N/A N/A Agilent 8648D (9kHz-4GHz) Signal Generator 10/10/2012 Annual 10 Agilent 85070E Dielectric Probe Kit 3/8/2012 Annual 3 Agilent 8648D Signal Generator 4/3/2012 Annual 4 Agilent 85047A S-Parameter Test Set N/A N/A N/A Agilent MA24106A USB Power Sensor 12/7/2012 Annual 12 Agilent MA24106A USB Power Sensor 12/7/2012 Annual 12 Amplifier Research 5S1G4 5W, 800MHz-4.2GHz N/A N/A Anritsu ML2495A Power Meter 10/11/2012 Annual 11 Anritsu ML2496A Power Meter 11/28/2012 Annual 11 Anritsu ML2438A Power Meter 12/4/2012 Annual 12	N/A 0/10/2013 8/8/2013	JP38020182
Agilent 8648D (9kHz-4GHz) Signal Generator 10/10/2012 Annual 10 Agilent 85070E Dielectric Probe Kit 3/8/2012 Annual 3 Agilent 8648D Signal Generator 4/3/2012 Annual 4 Agilent 85047A S-Parameter Test Set N/A N/A Agilent MA24106A USB Power Sensor 12/7/2012 Annual 12 Agilent MA24106A USB Power Sensor 12/7/2012 Annual 11 Amplifier Research 5S1G4 5W, 800MHz-4.2GHz N/A N/A Anritsu ML2495A Power Meter 10/11/2012 Annual 10 Anritsu ML2496A Power Meter 11/28/2012 Annual 11 Anritsu ML2438A Power Meter 12/4/2012 Annual 11	0/10/2013 8/8/2013	3051A00187
Agilent 85070E Dielectric Probe Kit 3/8/2012 Annual 3 Agilent 8648D Signal Generator 4/3/2012 Annual 4 Agilent 85047A S-Parameter Test Set N/A N/A Agilent MA24106A USB Power Sensor 12/7/2012 Annual 11 Agilent MA24106A USB Power Sensor 12/7/2012 Annual 12 Amplifier Research 5S104 5W, 800MHz-4.2GHz N/A N/A N/A Anritsu ML2495A Power Meter 10/11/2012 Annual 11 Anritsu ML2496A Power Meter 11/28/2012 Annual 11 Anritsu ML2498A Power Meter 12/4/2012 Annual 11	3/8/2013	3613A00315
Agilent 8648D Signal Generator 4/3/2012 Annual 4 Agilent 85047A S-Parameter Test Set N/A N/A N/A Agilent MA24106A USB Power Sensor 12/7/2012 Annual 11 Agilent MA24106A USB Power Sensor 12/7/2012 Annual 11 Amplifier Research 55164 5W, 800MHz-4 2GHz N/A N/A N/A Anritsu ML2495A Power Meter 10/11/2012 Annual 10 Anritsu ML2496A Power Meter 11/28/2012 Annual 11 Anritsu ML2438A Power Meter 12/4/2012 Annual 12		MY44300633
Agilent 85047A S-Parameter Test Set N/A N/A Agilent MA24106A USB Power Sensor 12/7/2012 Annual 11 Agilent MA24106A USB Power Sensor 12/7/2012 Annual 11 Amplifier Research 5S1G4 5W, 800MHz-4.2GHz N/A N/A Anritsu ML2495A Power Meter 10/11/2012 Annual 10 Anritsu ML2496A Power Meter 11/28/2012 Annual 11 Anritsu ML2438A Power Meter 12/4/2012 Annual 12		3629U00687
Agilent MA24106A USB Power Sensor 12/7/2012 Annual 1: Agilent MA24106A USB Power Sensor 12/7/2012 Annual 1: Amplifier Research 5S104 5W, 800MHz-4.2GHz N/A N/A Anritsu ML2495A Power Meter 10/11/2012 Annual 10 Anritsu ML2496A Power Meter 11/28/2012 Annual 11 Anritsu ML2498A Power Meter 12/4/2012 Annual 11	N/A	2904A00579
Agilent MA24106A USB Power Sensor 12/7/2012 Annual 12 Amplifier Research 5S104 5W, 800MHz-4.2GHz N/A N/A N/A Anritsu ML2495A Power Meter 10/11/2012 Annual 10 Anritsu ML2496A Power Meter 11/28/2012 Annual 11 Anritsu ML2438A Power Meter 12/4/2012 Annual 12	2/7/2013	1244515
Amplifier Research 5S1G4 5W, 800MHz-4.2GHz N/A N/A Anritsu ML2495A Power Meter 10/11/2012 Annual 10 Anritsu ML2496A Power Meter 11/28/2012 Annual 11 Anritsu ML2438A Power Meter 12/4/2012 Annual 12	2/7/2013	1244512
Anritsu ML2495A Power Meter 10/11/2012 Annual 10 Anritsu ML2496A Power Meter 11/28/2012 Annual 11 Anritsu ML2438A Power Meter 12/4/2012 Annual 12/4/2012	N/A	21910
Anritsu ML2496A Power Meter 11/28/2012 Annual 11 Anritsu ML2438A Power Meter 12/4/2012 Annual 12	0/11/2013	1039008
Anritsu ML2438A Power Meter 12/4/2012 Annual 12	1/28/2013	1138001
	2/4/2013	1070030
	3/5/2013	846215
	1/5/2013	5605
	2/4/2013	1207364
	2/5/2013	1126066
	/19/2013	1027293
	1/6/2013	6200901190
	/22/2013	1231538
	/22/2013	1231535
COMTECH AR85729-5/5759B Solid State Amplifier CBT N/A	CBT	M3W1A00-1002
	CBT	M1S5A00-009
	0/10/2013	1833460
	0/10/2013	8650319
	/27/2013	11081534
	/29/2013	120405017
MCL BW-N6W5+ 6dB Attenuator CBT N/A	CBT	1139
MiniCircuits VLF-6000+ Low Pass Filter CBT N/A	CBT	N/A
MiniCircuits VLF-6000+ Low Pass Filter CBT N/A	CBT	N/A
MiniCircuits SLP-2400+ Low Pass Filter CBT N/A	CBT	R8979500903
Mini-Circuits BW-N20W5+ DC to 18 GHz Precision Fixed 20 dB Attenuator CBT N/A	CBT	N/A
Mini-Circuits NLP-1200+ Low Pass Filter DC to 1000 MHz CBT N/A	CBT	N/A
Mini-Circuits NLP-2950+ Low Pass Filter DC to 2700 MHz CBT N/A	CBT	N/A
Mini-Circuits BW-N20W5 Power Attenuator CBT N/A	CBT	1226
Narda 4014C-6 4 - 8 GHz SMA 6 dB Directional Coupler CBT N/A	CBT	N/A
Narda 4772-3 Attenuator (3dB) CBT N/A	CBT	9406
Narda BW-S3W2 Attenuator (3dB) CBT N/A	CBT	120
Pasternack PE2208-6 Bidirectional Coupler CBT N/A	CBT	N/A
Pasternack PE2209-10 Bidirectional Coupler CBT N/A	CBT	N/A
	/22/2013	109892
)/12/2014	101695
	3/5/2013	102060
	/26/2013	108798
)/12/2014	836019/013
Rohde & Schwarz SMIQ03B Signal Generator 4/5/2012 Annual 4	1/5/2013	DE27259
)/11/2013	832026
	1/29/2014	21053
Seekonk NC-100 Torque Wrench (8" lb) 3/5/2012 Triennial 3	3/5/2015	N/A
Seekonk NC-100 Torque Wrench (8" lb) 3/5/2012 Triennial 3	3/5/2015	N/A
SPEAG D1750V2 1750 MHz SAR Dipole 4/24/2012 Annual 4/	/24/2013	1051
SPEAG D1765V2 1765 MHz SAR Dipole 5/18/2012 Annual 5/	/18/2013	1008
SPEAG D1900V2 1900 MHz SAR Dipole 2/8/2012 Annual 2	2/8/2013	5d148
SPEAG D1900V2 1900 MHz SAR Dipole 2/22/2012 Annual 2/	/22/2013	5d149
	2/7/2013	882
SPEAG D2450V2 2450 MHz SAR Dipole 2/7/2012 Annual 2	/23/2013	719
	0/30/2013	1007
SPEAG D2450V2 2450 MHz SAR Dipole 8/23/2012 Annual 8/	1001E0 10	1054
SPEAG D2450V2 2450 MHz SAR Dipole 8/23/2012 Annual 8/ SPEAG D5GHzV2 5 GHz SAR Dipole 10/30/2012 Annual 10	2/9/2013	4 10 47
SPEAG D2450V2 2450 MHz SAR Dipole 8/23/2012 Annual 8/8 SPEAG D5GHzV2 5 GHz SAR Dipole 10/30/2012 Annual 10 SPEAG D750V3 750 MHz Dipole 2/9/2012 Annual 2		4d047
SPEAG D2450V2 2450 MHz SAR Dipole 8/23/2012 Annual 8/8 SPEAG D5GHzV2 5 GHz SAR Dipole 10/30/2012 Annual 10 SPEAG D750V3 750 MHz Dipole 2/9/2012 Annual 2 SPEAG D835V2 835 MHz SAR Dipole 1/25/2012 Annual 1/	2/9/2013	4d047 4d133
SPEAG D2450V2 2450 MHz SAR Dipole 8/23/2012 Annual 8/8 SPEAG D5GHzV2 5 GHz SAR Dipole 10/30/2012 Annual 10 SPEAG D750V3 750 MHz Dipole 2/9/2012 Annual 2 SPEAG D835V2 835 MHz SAR Dipole 1/25/2012 Annual 1/2 SPEAG D835V2 835 MHz SAR Dipole 2/17/2012 Annual 2/2	2/9/2013 /25/2013	
SPEAG D2450V2 2450 MHz SAR Dipole 8/23/2012 Annual 8/8 SPEAG D5GHzV2 5 GHz SAR Dipole 10/30/2012 Annual 10 SPEAG D750V3 750 MHz Dipole 2/9/2012 Annual 2 SPEAG D835V2 835 MHz SAR Dipole 1/25/2012 Annual 1/ SPEAG D835V2 835 MHz SAR Dipole 2/17/2012 Annual 2/ SPEAG D835V2 835 MHz SAR Dipole 2/17/2012 Annual 2/ SPEAG D835V2 835 MHz SAR Dipole 8/23/2012 Annual 3/	2/9/2013 /25/2013 /17/2013	4d133
SPEAG D2450V2 2450 MHz SAR Dipole 8/23/2012 Annual 8/8 SPEAG D5GHzV2 5 GHz SAR Dipole 10/30/2012 Annual 10 SPEAG D750V3 750 MHz Dipole 2/9/2012 Annual 2 SPEAG D835V2 835 MHz SAR Dipole 1/25/2012 Annual 1/ SPEAG D835V2 835 MHz SAR Dipole 2/17/2012 Annual 2/ SPEAG D835V2 835 MHz SAR Dipole 8/23/2012 Annual 2/ SPEAG D835V2 835 MHz SAR Dipole 8/23/2012 Annual 2/ SPEAG DAS4 Dasy Data Acquisition Electronics 2/20/2012 Annual 2/	2/9/2013 /25/2013 /17/2013 /23/2013	4d133 4d026
SPEAG D2450V2 2450 MHz SAR Dipole 8/23/2012 Annual 8/8 SPEAG D5GHzV2 5 GHz SAR Dipole 10/30/2012 Annual 10 SPEAG D750V3 750 MHz Dipole 2/9/2012 Annual 12 SPEAG D835V2 835 MHz SAR Dipole 1/25/2012 Annual 1/ SPEAG D835V2 835 MHz SAR Dipole 2/17/2012 Annual 2/ SPEAG D835V2 835 MHz SAR Dipole 8/23/2012 Annual 2/ SPEAG DAS5V2 835 MHz SAR Dipole 8/23/2012 Annual 2/ SPEAG DAS4 Dasy Data Acquisition Electronics 2/20/2012 Annual 2/ SPEAG DAE4 Dasy Data Acquisition Electronics 4/19/2012 Annual 4/	2/9/2013 /25/2013 /17/2013 /23/2013 /20/2013	4d133 4d026 649
SPEAG D2450V2 2450 MHz SAR Dipole 8/23/2012 Annual 8/8 SPEAG D5GHzV2 5 GHz SAR Dipole 10/30/2012 Annual 10 SPEAG D750V3 750 MHz Dipole 2/9/2012 Annual 2 SPEAG D835V2 835 MHz SAR Dipole 1/25/2012 Annual 1/ SPEAG D835V2 835 MHz SAR Dipole 2/17/2012 Annual 2/ SPEAG D835V2 835 MHz SAR Dipole 8/23/2012 Annual 2/ SPEAG D844 Dasy Data Acquisition Electronics 2/20/2012 Annual 2/ SPEAG DAE4 Dasy Data Acquisition Electronics 4/19/2012 Annual 4/ SPEAG DAE4 Dasy Data Acquisition Electronics 5/7/2012 Annual 4/ SPEAG DAE4 Dasy Data Acquisition Electronics 5/7/2012 Annual 4/	2/9/2013 /25/2013 /17/2013 /23/2013 /20/2013 /19/2013	4d133 4d026 649 665
SPEAG D2450V2 2450 MHz SAR Dipole 8/23/2012 Annual 8/8 SPEAG D5GHzV2 5 GHz SAR Dipole 10/30/2012 Annual 10 SPEAG D750V3 750 MHz Dipole 2/9/2012 Annual 2 SPEAG D835V2 835 MHz SAR Dipole 1/25/2012 Annual 1/ SPEAG D835V2 835 MHz SAR Dipole 2/17/2012 Annual 2/ SPEAG D835V2 835 MHz SAR Dipole 8/23/2012 Annual 2/ SPEAG DAS4 Dasy Data Acquisition Electronics 2/20/2012 Annual 2/ SPEAG DAE4 Dasy Data Acquisition Electronics 4/19/2012 Annual 4/ SPEAG DAE4 Dasy Data Acquisition Electronics 5/7/2012 Annual 4/ SPEAG DAE4 Dasy Data Acquisition Electronics 8/24/2012 Annual 5/ SPEAG DAE4 Dasy Data Acquisition Electronics 8/24/2012 Annual 5/	2/9/2013 /25/2013 /17/2013 /17/2013 /23/2013 /20/2013 /19/2013 5/7/2013	4d133 4d026 649 665 1334
SPEAG D2450V2 2450 MHz SAR Dipole 8/23/2012 Annual 8/8 SPEAG D5GHzV2 5 GHz SAR Dipole 10/30/2012 Annual 10 SPEAG D750V3 750 MHz Dipole 2/9/2012 Annual 2 SPEAG D835V2 835 MHz SAR Dipole 1/25/2012 Annual 1/ SPEAG D835V2 835 MHz SAR Dipole 2/17/2012 Annual 2/ SPEAG D835V2 835 MHz SAR Dipole 8/23/2012 Annual 2/ SPEAG DAS5V2 835 MHz SAR Dipole 8/23/2012 Annual 8/ SPEAG DAS4 Dasy Data Acquisition Electronics 2/20/2012 Annual 8/ SPEAG DAE4 Dasy Data Acquisition Electronics 4/19/2012 Annual 4/ SPEAG DAE4 Dasy Data Acquisition Electronics 5/7/2012 Annual 5 SPEAG DAE4 Dasy Data Acquisition Electronics 8/24/2012 Annual 8/ SPEAG DAE4 Dasy Data Acquisition Electr	2/9/2013 //25/2013 //17/2013 //23/2013 //20/2013 //19/2013 5/7/2013 //24/2013	4d133 4d026 649 665 1334 1322
SPEAG D2450V2 2450 MHz SAR Dipole 8/23/2012 Annual 8/8 SPEAG D5GHzV2 5 GHz SAR Dipole 10/30/2012 Annual 10 SPEAG D750V3 750 MHz Dipole 2/9/2012 Annual 2 SPEAG D835V2 835 MHz SAR Dipole 1/25/2012 Annual 1/ SPEAG D835V2 835 MHz SAR Dipole 2/17/2012 Annual 2/ SPEAG D835V2 835 MHz SAR Dipole 2/17/2012 Annual 2/ SPEAG D835V2 835 MHz SAR Dipole 8/23/2012 Annual 2/ SPEAG DAE4 Dasy Data Acquisition Electronics 2/20/2012 Annual 3/ SPEAG DAE4 Dasy Data Acquisition Electronics 4/19/2012 Annual 4/ SPEAG DAE4 Dasy Data Acquisition Electronics 8/24/2012 Annual 8/ SPEAG DAE4 Dasy Data Acquisition Electronics 8/24/2012 Annual 8/ SPEAG DAE4 Dasy Data Acquisition Elec	2/9/2013 2/25/2013 1/17/2013 1/23/2013 1/20/2013 1/19/2013 1/19/2013 1/24/2013 1/19/2013	4d133 4d026 649 665 1334 1322 1323 1333
SPEAG D2450V2 2450 MHz SAR Dipole 8/23/2012 Annual 8/8 SPEAG D5GHzV2 5 GHz SAR Dipole 10/30/2012 Annual 10 SPEAG D750V3 750 MHz Dipole 2/9/2012 Annual 2 SPEAG D835V2 835 MHz SAR Dipole 1/25/2012 Annual 1/ SPEAG D835V2 835 MHz SAR Dipole 8/23/2012 Annual 2/ SPEAG D835V2 835 MHz SAR Dipole 8/23/2012 Annual 2/ SPEAG DA84 Dasy Data Acquisition Electronics 2/20/2012 Annual 2/ SPEAG DAE4 Dasy Data Acquisition Electronics 4/19/2012 Annual 4/ SPEAG DAE4 Dasy Data Acquisition Electronics 8/24/2012 Annual 4/ SPEAG DAE4 Dasy Data Acquisition Electronics 8/24/2012 Annual 8/ SPEAG DAE4 Dasy Data Acquisition Electronics 9/19/2012 Annual 9/ SPEAG DAE4 Dasy Data Acq	2/9/2013 2/25/2013 1/17/2013 1/25/2013 1/20/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013	4d133 4d026 649 665 1334 1322 1323
SPEAG D2450V2 2450 MHz SAR Dipole 8/23/2012 Annual 8/8 SPEAG D5GHzV2 5 GHz SAR Dipole 10/30/2012 Annual 10 SPEAG D750V3 750 MHz Dipole 2/9/2012 Annual 2 SPEAG D835V2 835 MHz SAR Dipole 1/25/2012 Annual 1/2 SPEAG D835V2 835 MHz SAR Dipole 2/17/2012 Annual 1/2 SPEAG D835V2 835 MHz SAR Dipole 2/17/2012 Annual 8/2 SPEAG DAE4 Dasy Data Acquisition Electronics 2/20/2012 Annual 8/2 SPEAG DAE4 Dasy Data Acquisition Electronics 2/19/2012 Annual 2/4 SPEAG DAE4 Dasy Data Acquisition Electronics 5/7/2012 Annual 5/2 SPEAG DAE4 Dasy Data Acquisition Electronics 8/24/2012 Annual 8/2 SPEAG DAE4 Dasy Data Acquisition Electronics 8/24/2012 Annual 8/2 SPEAG DAE4 Dasy D	2/9/2013 2/25/2013 1/17/2013 1/17/2013 1/23/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013	4d133 4d026 649 665 1334 1322 1323 1333 1070 1091
SPEAG D2450V2 2450 MHz SAR Dipole 8/23/2012 Annual 8/8 SPEAG D5GHzV2 5 GHz SAR Dipole 10/30/2012 Annual 10 SPEAG D750V3 750 MHz Dipole 2/9/2012 Annual 1 SPEAG D835V2 835 MHz SAR Dipole 1/25/2012 Annual 1/1 SPEAG D835V2 835 MHz SAR Dipole 2/17/2012 Annual 2/2 SPEAG D835V2 835 MHz SAR Dipole 8/23/2012 Annual 2/2 SPEAG D84 Dasy Data Acquisition Electronics 2/20/2012 Annual 8/2 SPEAG DAE4 Dasy Data Acquisition Electronics 4/19/2012 Annual 4/2 SPEAG DAE4 Dasy Data Acquisition Electronics 8/24/2012 Annual 5/2 SPEAG DAE4 Dasy Data Acquisition Electronics 8/24/2012 Annual 8/2 SPEAG DAE4 Dasy Data Acquisition Electronics 8/24/2012 Annual 8/2 SPEAG DAE4 Dasy D	2/9/2013 2/25/2013 1/17/2013 1/25/2013 1/23/2013 1/20/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013	4d133 4d026 649 665 1334 1322 1323 1333 1070 1091 3209
SPEAG D2450V2 2450 MHz SAR Dipole 8/23/2012 Annual 8/8 SPEAG D5GHzV2 5 GHz SAR Dipole 10/30/2012 Annual 10 SPEAG D750V3 750 MHz Dipole 2/9/2012 Annual 2 SPEAG D835V2 835 MHz SAR Dipole 1/25/2012 Annual 1/ SPEAG D835V2 835 MHz SAR Dipole 2/17/2012 Annual 1/ SPEAG D835V2 835 MHz SAR Dipole 8/23/2012 Annual 8/ SPEAG DA85V2 835 MHz SAR Dipole 8/23/2012 Annual 8/ SPEAG DA84 Dasy Data Acquisition Electronics 2/20/2012 Annual 8/ SPEAG DAE4 Dasy Data Acquisition Electronics 4/19/2012 Annual 4/ SPEAG DAE4 Dasy Data Acquisition Electronics 5/7/2012 Annual 8/ SPEAG DAE4 Dasy Data Acquisition Electronics 9/19/2012 Annual 8/ SPEAG DAE4 Dasy Data Acquisition Elect	2/9/2013 2/25/2013 1/17/2013 1/23/2013 1/20/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013	4d133 4d026 649 665 1334 1322 1323 1333 1070 1091 3209 3213
SPEAG D2450V2 2450 MHz SAR Dipole 8/23/2012 Annual 8/8 SPEAG D5GHzV2 5 GHz SAR Dipole 10/30/2012 Annual 10 SPEAG D750V3 750 MHz Dipole 2/9/2012 Annual 1 SPEAG D835V2 835 MHz SAR Dipole 1/25/2012 Annual 1/2 SPEAG D835V2 835 MHz SAR Dipole 2/17/2012 Annual 1/2 SPEAG D835V2 835 MHz SAR Dipole 2/17/2012 Annual 1/2 SPEAG D835V2 835 MHz SAR Dipole 2/2/2012 Annual 8/2 SPEAG DA64 Dasy Data Acquisition Electronics 2/20/2012 Annual 8/2 SPEAG DAE4 Dasy Data Acquisition Electronics 5/7/2012 Annual 4/2 SPEAG DAE4 Dasy Data Acquisition Electronics 8/24/2012 Annual 9/2 SPEAG DAE4 Dasy Data Acquisition Electronics 8/24/2012 Annual 9/2 SPEAG DAE4 Dasy Data Acquisitio	2/9/2013 1/25/2013 1/17/2013 1/23/2013 1/20/2013 1/20/2013 1/20/2013 1/24/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013	4d133 4d026 649 665 1334 1322 1323 1333 1070 1091 3209 3213 3263
SPEAG D2450V2 2450 MHz SAR Dipole 8/23/2012 Annual 8/8 SPEAG D5GHzV2 5 GHz SAR Dipole 10/30/2012 Annual 10 SPEAG D750V3 750 MHz Dipole 2/9/2012 Annual 1 SPEAG D835V2 835 MHz SAR Dipole 1/25/2012 Annual 1/1 SPEAG D835V2 835 MHz SAR Dipole 2/17/2012 Annual 2/2 SPEAG D835V2 835 MHz SAR Dipole 2/27/2012 Annual 2/2 SPEAG D835V2 835 MHz SAR Dipole 8/23/2012 Annual 2/2 SPEAG D844 Dasy Data Acquisition Electronics 2/20/2012 Annual 8/2 SPEAG DAE4 Dasy Data Acquisition Electronics 4/19/2012 Annual 4/2 SPEAG DAE4 Dasy Data Acquisition Electronics 8/24/2012 Annual 8/2 SPEAG DAE4 Dasy Data Acquisition Electronics 8/24/2012 Annual 8/2 SPEAG DAE4 Dasy Data Acquisit	2/9/2013 2/25/2013 1/17/2013 1/25/2013 1/20/2013 1/20/2013 1/19/2013 1/24/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013	4d133 4d026 649 665 1334 1322 1323 1333 1070 1091 3209 3213 3263 3561
SPEAG D2450V2 2450 MHz SAR Dipole 8/23/2012 Annual 8/8 SPEAG D5GHzV2 5 GHz SAR Dipole 10/30/2012 Annual 10 SPEAG D750V3 750 MHz Dipole 29/2012 Annual 2 SPEAG D835V2 835 MHz SAR Dipole 11/25/2012 Annual 1/2 SPEAG D835V2 835 MHz SAR Dipole 21/20/212 Annual 1/2 SPEAG D835V2 835 MHz SAR Dipole 8/23/2012 Annual 8/2 SPEAG DA84 Dasy Data Acquisition Electronics 2/20/2012 Annual 8/2 SPEAG DAE4 Dasy Data Acquisition Electronics 2/19/2012 Annual 2/2 SPEAG DAE4 Dasy Data Acquisition Electronics 5/7/2012 Annual 5/2 SPEAG DAE4 Dasy Data Acquisition Electronics 8/24/2012 Annual 8/2 SPEAG DAE4 Dasy Data Acquisition Electronics 8/24/2012 Annual 8/2 SPEAG DAE4 Dasy D	229/2013 1/25/2013 1/25/2013 1/25/2013 1/20/2013	4d133 4d026 649 665 1334 1322 1323 1333 1070 1091 3209 3213 3263 3561 3022
SPEAG D2450V2 2450 MHz SAR Dipole 8/23/2012 Annual 8/8 SPEAG D5GHzV2 5 GHz SAR Dipole 10/30/2012 Annual 10 SPEAG D750V3 750 MHz Dipole 2/9/2012 Annual 2 SPEAG D835V2 835 MHz SAR Dipole 1/25/2012 Annual 1/2 SPEAG D835V2 835 MHz SAR Dipole 2/17/2012 Annual 2/2 SPEAG D835V2 835 MHz SAR Dipole 2/17/2012 Annual 2/2 SPEAG D835V2 835 MHz SAR Dipole 2/17/2012 Annual 2/2 SPEAG DA64 Dasy Data Acquisition Electronics 2/20/2012 Annual 3/2 SPEAG DA64 Dasy Data Acquisition Electronics 2/19/2012 Annual 4/2 SPEAG DA64 Dasy Data Acquisition Electronics 5/7/2012 Annual 5/2 SPEAG DA64 Dasy Data Acquisition Electronics 8/24/2012 Annual 9/2 SPEAG DA64 Dasy Data Acquisiti	2/9/2013 2/25/2013 1/7/2013 1/7/2013 1/20/2013 1/20/2013 1/20/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/24/2013 1/24/2013 1/24/2013 1/26/2013 1/26/2013 1/26/2013 1/26/2013 1/26/2013 1/26/2013	4d133 4d026 649 665 1334 1322 1323 137 1070 1091 3209 3213 3263 3561 3022 3288
SPEAG D2450V2 2450 MHz SAR Dipole 8/23/2012 Annual 8/8 SPEAG D5GHzV2 5 GHz SAR Dipole 10/30/2012 Annual 10 SPEAG D750V3 750 MHz Dipole 2/9/2012 Annual 1 SPEAG D835V2 835 MHz SAR Dipole 1/25/2012 Annual 1/1 SPEAG D835V2 835 MHz SAR Dipole 2/17/2012 Annual 2/2 SPEAG D835V2 835 MHz SAR Dipole 8/23/2012 Annual 2/2 SPEAG D835V2 835 MHz SAR Dipole 8/23/2012 Annual 2/2 SPEAG D844 Dasy Data Acquisition Electronics 2/20/2012 Annual 8/2 SPEAG DAE4 Dasy Data Acquisition Electronics 8/7/2012 Annual 4/4 SPEAG DAE4 Dasy Data Acquisition Electronics 8/24/2012 Annual 8/2 SPEAG DAE4 Dasy Data Acquisition Electronics 8/24/2012 Annual 8/2 SPEAG DAE4 Dasy Data Acquisiti	2/9/2013 1/25/2013 1/17/2013 1/20/2013 1/20/2013 1/20/2013 1/24/2013 1/24/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/24/2013 1/24/2013 1/26/2013 1/26/2013 1/26/2013 1/26/2013 1/26/2013 1/26/2013	4d133 4d026 649 665 1334 1322 1323 1070 1091 3209 3213 3263 3561 3022 3288 B010177
SPEAG D2450V2 2450 MHz SAR Dipole 8/23/2012 Annual 8/8 SPEAG D5GHzV2 5 GHz SAR Dipole 10/30/2012 Annual 10 SPEAG D750V3 750 MHz Dipole 2/9/2012 Annual 12 SPEAG D835V2 835 MHz SAR Dipole 11/25/2012 Annual 11 SPEAG D835V2 835 MHz SAR Dipole 2/17/2012 Annual 11 SPEAG D835V2 835 MHz SAR Dipole 2/17/2012 Annual 8/2 SPEAG DA84 Dasy Data Acquisition Electronics 2/20/2012 Annual 8/2 SPEAG DAE4 Dasy Data Acquisition Electronics 2/19/2012 Annual 2/2 SPEAG DAE4 Dasy Data Acquisition Electronics 5/7/2012 Annual 5/2 SPEAG DAE4 Dasy Data Acquisition Electronics 8/24/2012 Annual 8/2 SPEAG DAE4 Dasy Data Acquisition Electronics 8/24/2012 Annual 9/2 SPEAG DAE4 Dasy D	2/9/2013 1/25/2013 1/17/2013 1/23/2013 1/23/2013 1/20/2013 1/19/2013 1/24/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/26/2014 1/26/2014 1	4d133 4d026 649 665 1334 1322 1323 1070 1091 3209 3213 3263 3561 3022 3288 8010177 122179874
SPEAG D2450V2 2450 MHz SAR Dipole 8/23/2012 Annual 8/8 SPEAG D5GHzV2 5 GHz SAR Dipole 10/30/2012 Annual 10 SPEAG D750V3 750 MHz Dipole 2/9/2012 Annual 1 SPEAG D835V2 835 MHz SAR Dipole 1/25/2012 Annual 1/1 SPEAG D835V2 835 MHz SAR Dipole 2/17/2012 Annual 2/2 SPEAG D835V2 835 MHz SAR Dipole 8/23/2012 Annual 2/2 SPEAG D835V2 835 MHz SAR Dipole 8/23/2012 Annual 2/2 SPEAG DA64 Dasy Data Acquisition Electronics 2/20/2012 Annual 8/2 SPEAG DA64 Dasy Data Acquisition Electronics 5/7/2012 Annual 4/2 SPEAG DA64 Dasy Data Acquisition Electronics 8/24/2012 Annual 8/2 SPEAG DA64 Dasy Data Acquisition Electronics 8/24/2012 Annual 8/2 SPEAG DA64 Dasy Data Acquisiti	2/9/2013 1/25/2013 1/17/2013 1/20/2013	4d133 4d026 649 665 1334 1322 1323 1070 1091 3209 3213 3263 3561 3022 3288 B010177 122179874
SPEAG D2450V2 2450 MHz SAR Dipole 8/23/2012 Annual 8/8 SPEAG D6GHzV2 5 GHz SAR Dipole 10/30/2012 Annual 10 SPEAG D750V3 750 MHz Dipole 2/9/2012 Annual 2 SPEAG D835V2 835 MHz SAR Dipole 1/25/2012 Annual 1/2 SPEAG D835V2 835 MHz SAR Dipole 2/17/2012 Annual 1/2 SPEAG D835V2 835 MHz SAR Dipole 8/23/2012 Annual 8/2 SPEAG DA85V2 835 MHz SAR Dipole 8/23/2012 Annual 8/2 SPEAG DAE4 Dasy Data Acquisition Electronics 2/20/2012 Annual 2/2 SPEAG DAE4 Dasy Data Acquisition Electronics 5/7/2012 Annual 4/2 SPEAG DAE4 Dasy Data Acquisition Electronics 8/24/2012 Annual 8/2 SPEAG DAE4 Dasy Data Acquisition Electronics 8/19/2012 Annual 8/2 SPEAG DAE4 Dasy Data Acquisiti	2/9/2013 1/25/2013 1/17/2013 1/23/2013 1/23/2013 1/20/2013 1/19/2013 1/24/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/19/2013 1/26/2014 1/26/2014 1	4d133 4d026 649 665 1334 1322 1323 1070 1091 3209 3213 3263 3561 3022 3288 B010177 122179874

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

FCC ID: ZNFE980	PCTEST	SAR EVALUATION REPORT LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 50 . (55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset	Page 50 of 55
0Y1301020025.ZNF		Portable Handset	Pa

15 MEASUREMENT UNCERTAINTIES

Applicable for frequencies less than 3000 MHz.

а	b	С	d	e=	f	g	h =	j =	k
				f(d,k)			c x f/e	c x g/e	
Uncertainty	IEEE	Tol.	Prob.		Ci	C _i	1gm	10gms	
Component	1528 Sec.	(± %)	Dist.	Div.	1gm	10 gms	u _i	u _i	V _i
- Composition	Sec.	(= /0)	-150	J	.5		(± %)	(± %)	'
Measurement System							(= 10)	(= /*/	
Probe Calibration	E.2.1	6.0	N	1	1.0	1.0	6.0	6.0	∞
Axial Isotropy	E.2.2	0.25	N	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	E.2.2	1.3	N	1	1.0	1.0	1.3	1.3	∞
Boundary Effect	E.2.3	0.4	N	1	1.0	1.0	0.4	0.4	∞
Linearity	E.2.4	0.3	N	1	1.0	1.0	0.3	0.3	∞
System Detection Limits	E.2.5	5.1	N	1	1.0	1.0	5.1	5.1	∞
Readout Electronics	E.2.6	1.0	N	1	1.0	1.0	1.0	1.0	∞
Response Time		8.0	R	1.73	1.0	1.0	0.5	0.5	×
Integration Time		2.6	R	1.73	1.0	1.0	1.5	1.5	oc
RF Ambient Conditions	E.6.1	3.0	R	1.73	1.0	1.0	1.7	1.7	×
Probe Positioner Mechanical Tolerance		0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Probe Positioning w/ respect to Phantom		2.9	R	1.73	1.0	1.0	1.7	1.7	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	1.0	R	1.73	1.0	1.0	0.6	0.6	8
Test Sample Related									
Test Sample Positioning	E.4.2	6.0	N	1	1.0	1.0	6.0	6.0	287
Device Holder Uncertainty	E.4.1	3.32	R	1.73	1.0	1.0	1.9	1.9	∞
Output Power Variation - SAR drift measurement	6.6.2	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	4.0	R	1.73	1.0	1.0	2.3	2.3	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity - measurement uncertainty	E.3.3	3.8	N	1	0.64	0.43	2.4	1.6	6
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Liquid Permittivity - measurement uncertainty	E.3.3	4.5	N	1	0.60	0.49	2.7	2.2	6
Combined Standard Uncertainty (k=1) RSS					•	12.1	11.7	299	
Expanded Uncertainty	Expanded Uncertainty k=2						24.2	23.5	
(95% CONFIDENCE LEVEL)						_]

The above measurement uncertainties are according to IEEE Std. 1528-2003

FCC ID: ZNFE980	PCTEST	SAR EVALUATION REPORT		Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 54 . (55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset		Page 51 of 55

Applicable for frequencies up to 6 GHz.

а	b	С	d	e=	f	g	h =	i =	k
, and the second					·	9			
				f(d,k)			c x f/e	c x g/e	
Uncertainty	1528	Tol.	Prob.		Ci	Ci	1gm	10gms	
Component	Sec.	(± %)	Dist.	Div.	1gm	10 gms	u _i	u _i	V _i
W							(± %)	(± %)	
Measurement System	F 0 4	0.55	.	4	4.0	4.0	0.0	0.0	
Probe Calibration	E.2.1	6.55	N	1	1.0	1.0	6.6	6.6	∞
Axial Isotropy	E.2.2	0.25	N	1	0.7	0.7	0.2	0.2	00
Hemishperical Isotropy	E.2.2	1.3	N	1	1.0	1.0	1.3	1.3	∞
Boundary Effect	E.2.3	0.4	N	1	1.0	1.0	0.4	0.4	∞
Linearity	E.2.4	0.3	N	1	1.0	1.0	0.3	0.3	∞
System Detection Limits	E.2.5	5.1	N	1	1.0	1.0	5.1	5.1	∞
Readout Electronics	E.2.6 E.2.7	1.0	N	1	1.0	1.0	1.0	1.0	∞
Response Time		0.8	R	1.73	1.0	1.0	0.5	0.5	00
Integration Time		2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions	E.6.1 E.6.2	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Probe Positioner Mechanical Tolerance		0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Probe Positioning w/ respect to Phantom	E.6.3	2.9	R	1.73	1.0	1.0	1.7	1.7	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	1.0	R	1.73	1.0	1.0	0.6	0.6	∞
Test Sample Related									
Test Sample Positioning	E.4.2	6.0	N	1	1.0	1.0	6.0	6.0	287
Device Holder Uncertainty	E.4.1	3.32	R	1.73	1.0	1.0	1.9	1.9	∞
Output Power Variation - SAR drift measurement	6.6.2	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	4.0	R	1.73	1.0	1.0	2.3	2.3	œ
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity - measurement uncertainty	E.3.3	3.8	N	1	0.64	0.43	2.4	1.6	6
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Liquid Permittivity - measurement uncertainty	E.3.3	4.5	N	1	0.60	0.49	2.7	2.2	6
Combined Standard Uncertainty (k=1)	Combined Standard Uncertainty (k=1) RSS						12.4	12.0	299
Expanded Uncertainty			k=2				24.7	24.0	
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to IEEE Std. 1528-2003

FCC ID: ZNFE980	PCTEST	SAR EVALUATION REPORT		Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 50 . (55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset		Page 52 of 55

16 CONCLUSION

16.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: ZNFE980	PCTEST:	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dans 52 of 55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset	Page 53 of 55

17 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, December 2002.
- Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, June 2001.
- [6] IEEE Standards Coordinating Committee 34 IEEE Std. 1528-2003, Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices.
- [7] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [8] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. -124.
- [10] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [11] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [12] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [13] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [14] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [15] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [16] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [17] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.

FCC ID: ZNFE980	PCTEST	SAR EVALUATION REPORT	① LG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 54 of 55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset	: Handset	
© 2013 PCTEST Engineering Lab	oratory, Inc.			REV 12.2 M

- [18] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.
- [19] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [20] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [21] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [22] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [23] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 4, March 2010.
- [24] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2009
- [25] FCC Public Notice DA-02-1438. Office of Engineering and Technology Announces a Transition Period for the Phantom Requirements of Supplement C to OET Bulletin 65, June 19, 2002
- [26] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [27] SAR Measurement procedures for IEEE 802.11a/b/g KDB Publication 248227 D01v01r02
- [28] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D02-D04
- [29] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [30] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [31] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [32] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [33] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: ZNFE980	PCTEST	SAR EVALUATION REPORT		Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 55 . (55
0Y1301020025.ZNF	01/05/13 - 01/15/13	Portable Handset	Page 55 of 55	

APPENDIX A: SAR TEST DATA

DUT: ZNFE980; Type: Portable Handset; Serial: 211KPPB263112

Communication System: GSM850 GPRS; 2 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:4.15 Medium: 835 Head; Medium parameters used (interpolated):

f = 836.6 MHz; σ = 0.919 S/m; ε_r = 41.289; ρ = 1000 kg/m³

Phantom section: Right Section

Test Date: 01-15-2013; Ambient Temp: 23.7°C; Tissue Temp: 23.3°C

Probe: ES3DV3 - SN3209; ConvF(6.22, 6.22, 6.22); Calibrated: 3/16/2012;

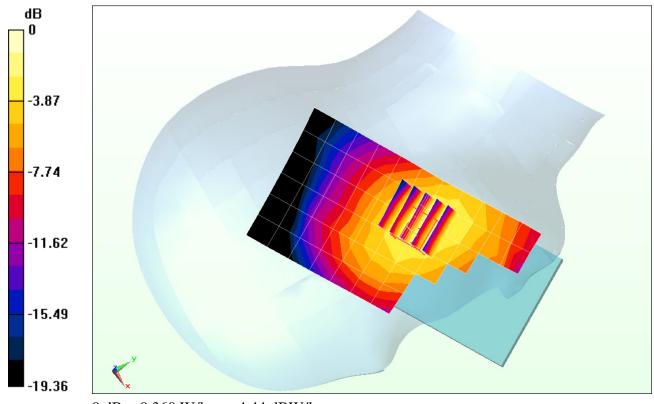
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 2/20/2012

Phantom: SAM Sub Dasy B; Type: SAM 5.0; Serial: TP-1626

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.8 (7028)

Mode: GPRS 850, Right Head, Cheek, Mid.ch, 2 Tx Slots


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.953 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.414 W/kg

SAR(1 g) = 0.346 W/kg; SAR(10 g) = 0.269 W/kg

0 dB = 0.360 W/kg = -4.44 dBW/kg

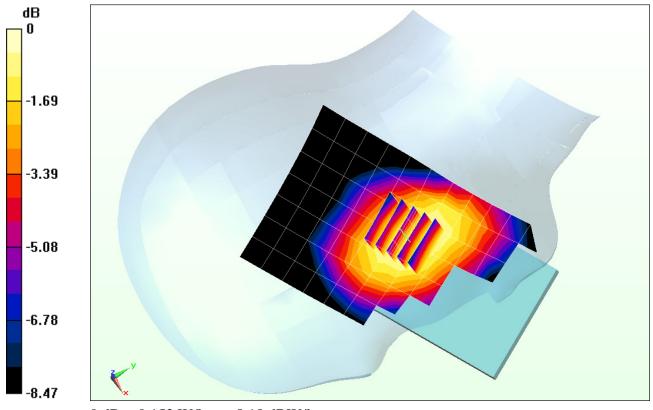
DUT: ZNFE980; Type: Portable Handset; Serial: 211KPPB263112

Communication System: UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Head; Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.88 \text{ S/m}; \ \epsilon_{r} = 41.46; \ \rho = 1000 \text{ kg/m}^{3}$ Phantom section: Right Section

Test Date: 01-11-2013; Ambient Temp: 23.9°C; Tissue Temp: 22.3°C

Probe: ES3DV3 - SN3288; ConvF(6.41, 6.41, 6.41); Calibrated: 9/20/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 9/19/2012
Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646
Measurement SW: DASY52, Version 52.8 (3);SEMCAD X Version 14.6.8 (7028)

Mode: UMTS 850, Right Head, Cheek, Mid.ch


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.067 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.173 W/kg

SAR(1 g) = 0.144 W/kg

0 dB = 0.152 W/kg = -8.18 dBW/kg

DUT: ZNFE980; Type: Portable Handset; Serial: 211KPPB263112

Communication System: GSM GPRS; 2 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium: 1900 Head; Medium parameters used: f = 1880 MHz; $\sigma = 1.416 \text{ S/m}$; $\varepsilon_r = 38.96$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Test Date: 01-14-2013; Ambient Temp: 24.6°C; Tissue Temp: 22.9°C

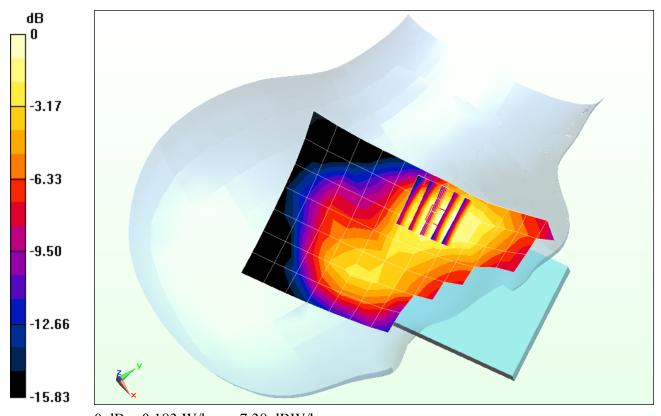
Probe: ES3DV3 - SN3213; ConvF(5.02, 5.02, 5.02); Calibrated: 4/24/2012;

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/19/2012

Phantom: SAM Right; Type: QD000P40CD; Serial: 1686

Measurement SW: DASY52, Version 52.8 (3); SEMCAD X Version 14.6.8 (7028)

Mode: GPRS 1900, Right Head, Cheek, Mid.ch, 2 Tx slots


Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.065 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.263 W/kg

SAR(1 g) = 0.170 W/kg

0 dB = 0.183 W/kg = -7.38 dBW/kg

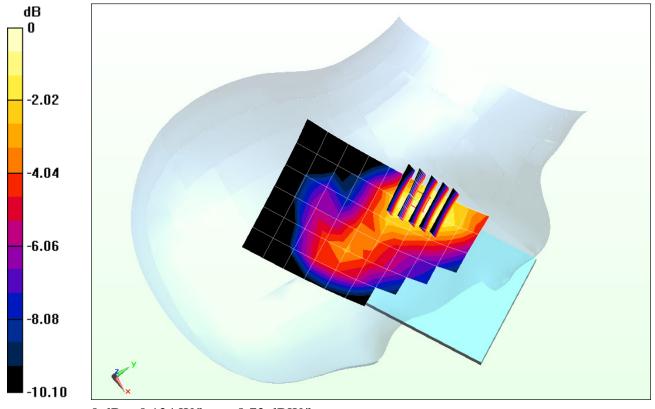
DUT: ZNFE980; Type: Portable Handset; Serial: 211KPSL263118

Communication System: UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Head; Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.416 \text{ S/m}; \ \epsilon_r = 38.96; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 01-14-2013; Ambient Temp: 24.6°C; Tissue Temp: 22.9°C

Probe: ES3DV3 - SN3213; ConvF(5.02, 5.02, 5.02); Calibrated: 4/24/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 4/19/2012
Phantom: SAM Right; Type: QD000P40CD; Serial: 1686
Measurement SW: DASY52, Version 52.8 (3);SEMCAD X Version 14.6.8 (7028)

Mode: UMTS 1900, Right Head, Cheek, Mid.ch


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.621 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.201 W/kg

SAR(1 g) = 0.128 W/kg

0 dB = 0.134 W/kg = -8.73 dBW/kg

DUT: ZNFE980; Type: Portable Handset; Serial: 211KPDT263122

Communication System: LTE Band 17; Frequency: 710 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used:

f = 710 MHz; σ = 0.877 S/m; $\varepsilon_{\rm r}$ = 42.5; ρ = 1000 kg/m³

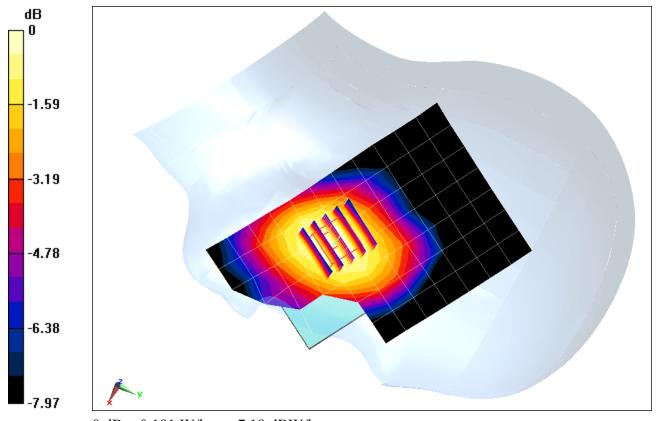
Phantom section: Left Section

Test Date: 01-14-2013; Ambient Temp: 23.8°C; Tissue Temp: 23.4°C

Probe: ES3DV3 - SN3288; ConvF(6.67, 6.67, 6.67); Calibrated: 9/20/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 9/19/2012

Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646 Measurement SW: DASY52, Version 52.8 (3);SEMCAD X Version 14.6.8 (7028)

Mode: LTE Band 17, Left Head, Cheek, Mid.ch, QPSK, 10 MHz Bandwidth, 1 RB, 25 RB Offset


Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.955 V/m; Power Drift = 0.21 dB

Peak SAR (extrapolated) = 0.225 W/kg

SAR(1 g) = 0.183 W/kg; SAR(10 g) = 0.144 W/kg

0 dB = 0.191 W/kg = -7.19 dBW/kg

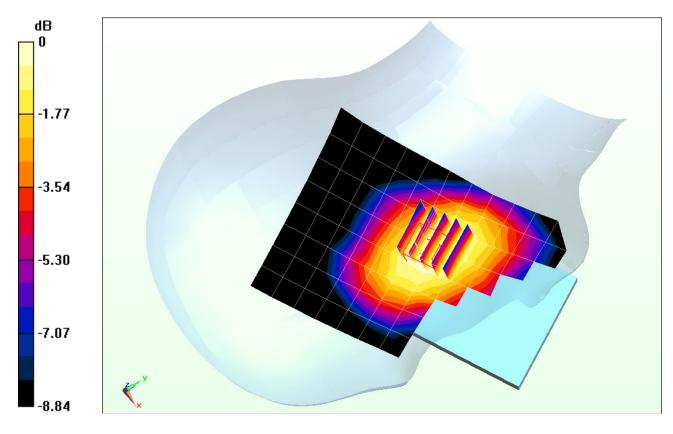
DUT: ZNFE980; Type: Portable Handset; Serial: 211KPDT263122

Communication System: LTE Band 5 (Cell.); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Head; Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 0.91 \text{ S/m}; \ \epsilon_r = 42.228; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 01-07-2013; Ambient Temp: 23.4°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3288; ConvF(6.41, 6.41, 6.41); Calibrated: 9/20/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 9/19/2012
Phantom: SAM v5.0 front; Type: QD000P40CD; Serial: TP-1646
Measurement SW: DASY52, Version 52.8 (3);SEMCAD X Version 14.6.8 (7028)

Mode: LTE Band 5 (Cell.), Right Head, Cheek, Mid.ch, QPSK, 10 MHz Bandwidth, 1 RB, 25 RB Offset


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.273 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.189 W/kg

SAR(1 g) = 0.155 W/kg; SAR(10 g) = 0.121 W/kg

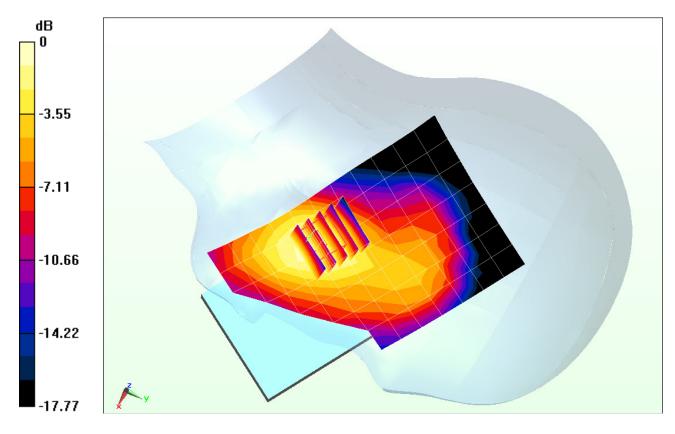
DUT: ZNFE980; Type: Portable Handset; Serial: 211KPMZ263122

Communication System: LTE Band 4 (AWS); Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: 1750 Head; Medium parameters used (interpolated): $f = 1732.5 \text{ MHz}; \ \sigma = 1.382 \text{ S/m}; \ \epsilon_r = 39.816; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 01-09-2013; Ambient Temp: 24.3°C; Tissue Temp: 21.2°C

Probe: ES3DV3 - SN3263; ConvF(5.3, 5.3, 5.3); Calibrated: 5/18/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 5/7/2012
Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648
Measurement SW: DASY52, Version 52.8 (3);SEMCAD X Version 14.6.8 (7028)

Mode: LTE Band 4 (AWS), Left Head, Cheek, Mid.ch, QPSK, 10 MHz Bandwidth, 1 RB, 49 RB Offset


Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.718 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.357 W/kg

SAR(1 g) = 0.238 W/kg; SAR(10 g) = 0.154 W/kg

DUT: ZNFE980; Type: Portable Handset; Serial: 211KPDT263122

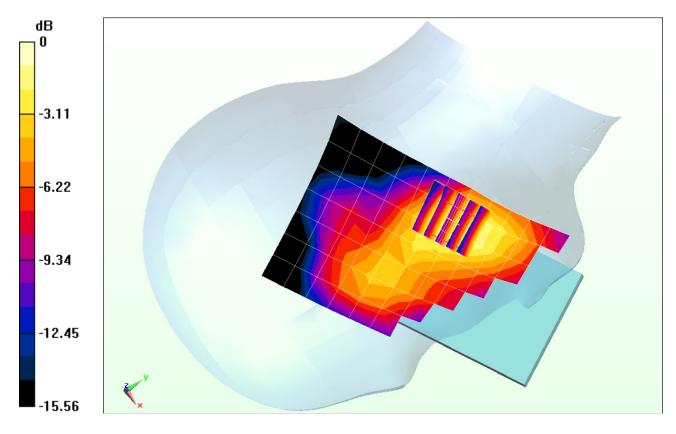
Communication System: LTE Band 2; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Head; Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.416 \text{ S/m}; \ \epsilon_r = 38.96; \ \rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Test Date: 01-14-2013; Ambient Temp: 24.6°C; Tissue Temp: 22.9°C

Probe: ES3DV3 - SN3213; ConvF(5.02, 5.02, 5.02); Calibrated: 4/24/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 4/19/2012
Phantom: SAM Right; Type: QD000P40CD; Serial: 1686
Measurement SW: DASY52, Version 52.8 (3);SEMCAD X Version 14.6.8 (7028)

Mode: LTE Band 2 (PCS), Right Head, Cheek, Mid.ch, QPSK, 10 MHz Bandwidth, 1 RB, 25 RB Offset


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.547 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.378 W/kg

SAR(1 g) = 0.237 W/kg; SAR(10 g) = 0.147 W/kg

DUT: ZNFE980; Type: Portable Handset; Serial: 211KPKN263125

Communication System: IEEE 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: 2450 Head; Medium parameters used (interpolated): $f = 2437 \text{ MHz}; \ \sigma = 1.838 \text{ S/m}; \ \epsilon_r = 37.722; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

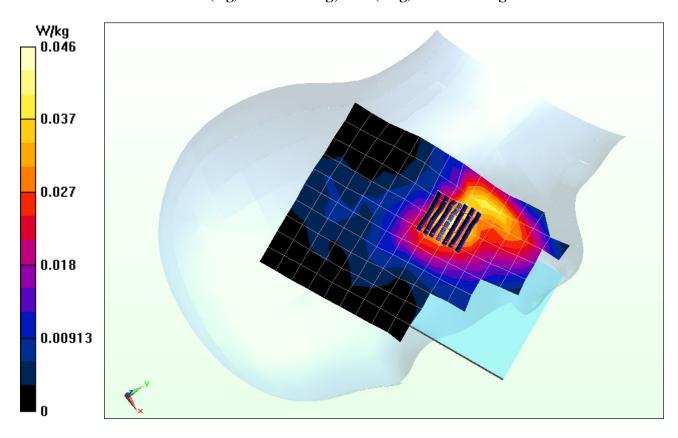
Test Date: 01-09-2013; Ambient Temp: 24.4°C; Tissue Temp: 22.6°C

Probe: ES3DV2 - SN3022; ConvF(4.23, 4.23, 4.23); Calibrated: 8/28/2012;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 11/13/2012 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.8 (7028)

Mode: IEEE 802.11b, Right Head, Cheek, Ch 06, 1 Mbps


Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.835 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.0690 W/kg

SAR(1 g) = 0.036 W/kg; SAR(10 g) = 0.019 W/kg

DUT: ZNFE980; Type: Portable Handset; Serial: 211KPDT263122

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5805 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head; Medium parameters used:

f = 5805 MHz; σ = 5.454 S/m; ε_r = 34.09; ρ = 1000 kg/m³

Phantom section: Right Section

Test Date: 01-10-2013; Ambient Temp: 23.6°C; Tissue Temp: 22.8°C

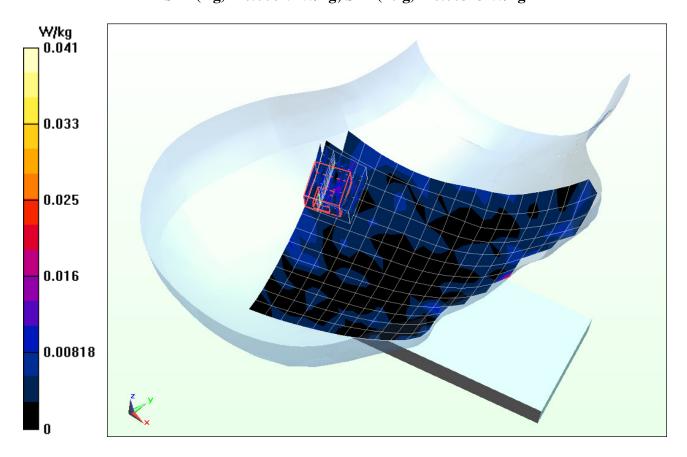
Probe: EX3DV4 - SN3561; ConvF(3.92, 3.92, 3.92); Calibrated: 7/26/2012;

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 8/24/2012

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.8 (7028)

Mode: IEEE 802.11a 5.8 GHz, Right Head, Tilt, Ch 161, 6 Mbps


Area Scan (14x19x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 0.434 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 1.51 W/kg

SAR(1 g) = 0.00619 W/kg; SAR(10 g) = 0.00323 W/kg

DUT: ZNFE980; Type: Portable Handset; Serial: 211KPDT263122

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5260 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head; Medium parameters used:

f = 5260 MHz; σ = 4.764 S/m; $ε_r$ = 35.34; ρ = 1000 kg/m³

Phantom section: Left Section

Test Date: 01-10-2013; Ambient Temp: 23.4°C; Tissue Temp: 22.3°C

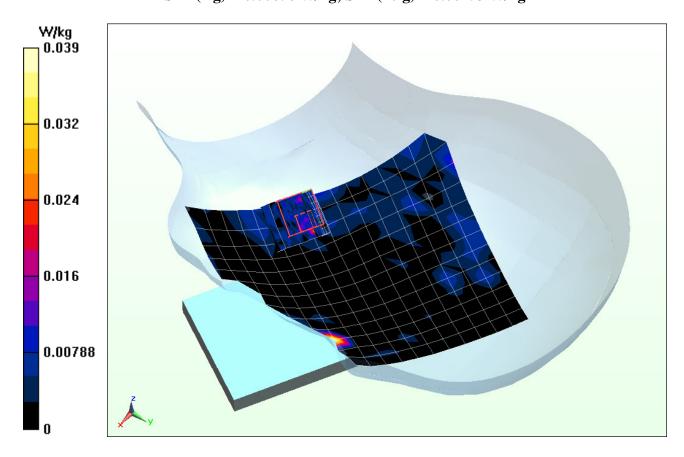
Probe: EX3DV4 - SN3561; ConvF(4.16, 4.16, 4.16); Calibrated: 7/26/2012;

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 8/24/2012

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.8 (7028)

Mode: IEEE 802.11a, 5.3 GHz Left Head, Cheek, Ch 52, 6 Mbps


Area Scan (14x17x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 1.103 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 1.32 W/kg

SAR(1 g) = 0.00656 W/kg; SAR(10 g) = 0.00253 W/kg

DUT: ZNFE980; Type: Portable Handset; Serial: 211KPPB263112

Communication System: GSM850 GPRS; 2 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:4.15

Medium: 835 Body; Medium parameters used (interpolated):

f = 836.6 MHz; σ = 0.959 S/m; ε_r = 52.937; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-08-2013; Ambient Temp: 24.6°C; Tissue Temp: 23.0°C

Probe: ES3DV3 - SN3209; ConvF(6.13, 6.13, 6.13); Calibrated: 3/16/2012;

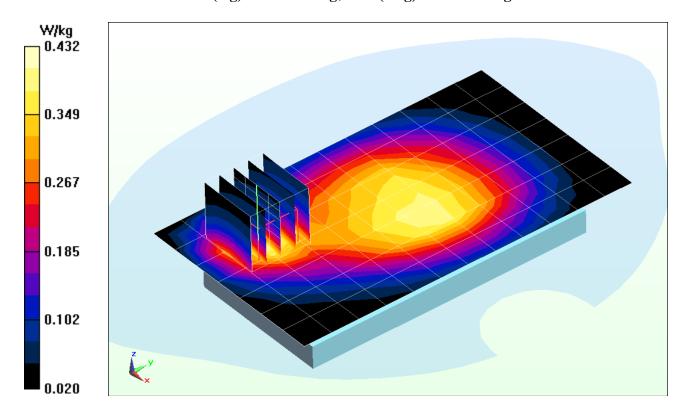
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 2/20/2012

Phantom: SAM with CRP; Type: SAM 4.0; Serial: TP1375

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.8 (7028)

Mode: GPRS 850, Body SAR, Back side, Mid.ch, 2 Tx Slots


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.150 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.637 W/kg

SAR(1 g) = 0.409 W/kg; SAR(10 g) = 0.263 W/kg

DUT: ZNFE980; Type: Portable Handset; Serial: 211KPPB263112

Communication System: GSM 850 GPRS; 2 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:4.15 Medium: 835 Body; Medium parameters used (interpolated):

f = 836.6 MHz; σ = 0.959 S/m; ε_r = 52.937; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-08-2013; Ambient Temp: 24.6°C; Tissue Temp: 23.0°C

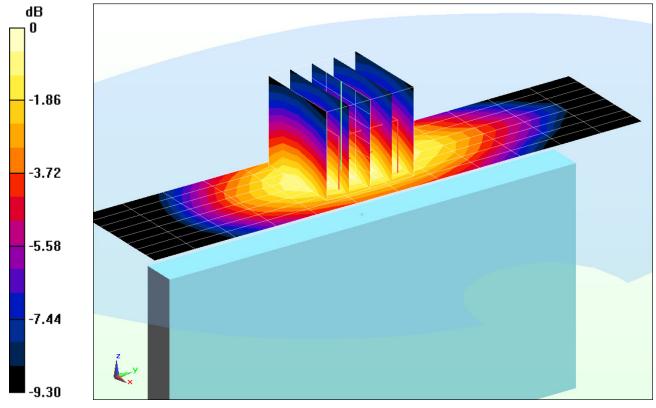
Probe: ES3DV3 - SN3209; ConvF(6.13, 6.13, 6.13); Calibrated: 3/16/2012;

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn649; Calibrated: 2/20/2012

Phantom: SAM with CRP; Type: SAM 4.0; Serial: TP1375

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.8 (7028)

Mode: GPRS 850, Body SAR, Right Edge, Mid.ch, 2 Tx Slots


Area Scan (9x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.217 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.683 W/kg

SAR(1 g) = 0.498 W/kg; SAR(10 g) = 0.343 W/kg

0 dB = 0.536 W/kg = -2.71 dBW/kg

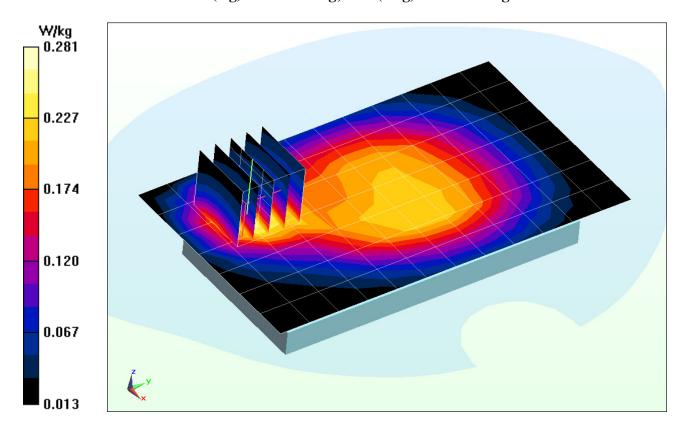
DUT: ZNFE980; Type: Portable Handset; Serial: 211KPPB263112

Communication System: WCDMA850; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.959 \text{ S/m}; \ \epsilon_r = 52.937; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-08-2013; Ambient Temp: 24.6°C; Tissue Temp: 23.0°C

Probe: ES3DV3 - SN3209; ConvF(6.13, 6.13, 6.13); Calibrated: 3/16/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn649; Calibrated: 2/20/2012
Phantom: SAM with CRP; Type: SAM 4.0; Serial: TP1375
Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.8 (7028)

Mode: UMTS 850, Body SAR, Back side, Mid.ch


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.544 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.412 W/kg

SAR(1 g) = 0.265 W/kg; SAR(10 g) = 0.169 W/kg

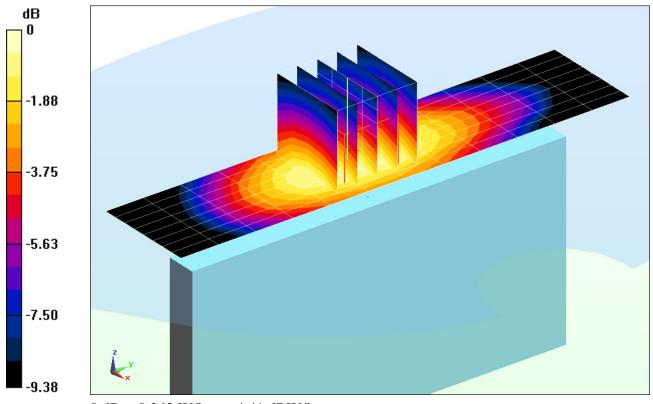
DUT: ZNFE980; Type: Portable Handset; Serial: 211KPPB263112

Communication System: WCDMA850; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.959 \text{ S/m}; \ \epsilon_r = 52.937; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-08-2013; Ambient Temp: 24.6°C; Tissue Temp: 23.0°C

Probe: ES3DV3 - SN3209; ConvF(6.13, 6.13, 6.13); Calibrated: 3/16/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn649; Calibrated: 2/20/2012
Phantom: SAM with CRP; Type: SAM 4.0; Serial: TP1375
Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.8 (7028)

Mode: UMTS 850, Body SAR, Right Edge, Mid.ch


Area Scan (9x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.740 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.456 W/kg

SAR(1 g) = 0.336 W/kg; SAR(10 g) = 0.232 W/kg

0 dB = 0.362 W/kg = -4.41 dBW/kg

DUT: ZNFE980; Type: Portable Handset; Serial: 211KPPB263112

Communication System: GSM GPRS; 2 Tx slots; Frequency: 1880 MHz;Duty Cycle: 1:4.15 Medium: 1900 Body; Medium parameters used:

f = 1880 MHz; σ = 1.582 S/m; ε_r = 52.41; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-14-2013; Ambient Temp: 23.8°C; Tissue Temp: 2209°C

Probe: ES3DV3 - SN3263; ConvF(4.76, 4.76, 4.76); Calibrated: 5/18/2012;

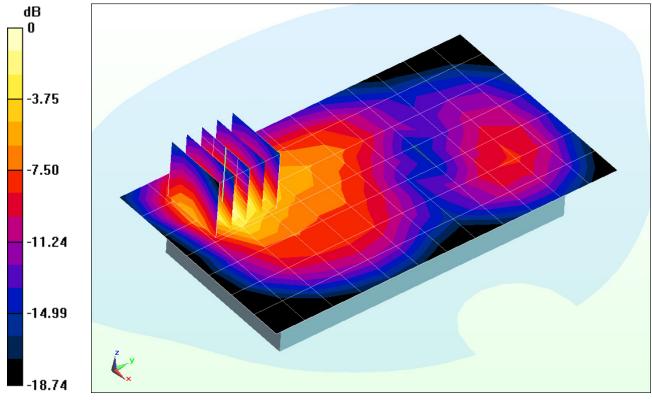
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1334; Calibrated: 5/7/2012

Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648

Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

Mode: GPRS 1900, Body SAR, Back side, Mid.ch, 2 Tx Slots


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 29.333 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 2.19 W/kg

SAR(1 g) = 1.24 W/kg

0 dB = 1.37 W/kg = 1.37 dBW/kg

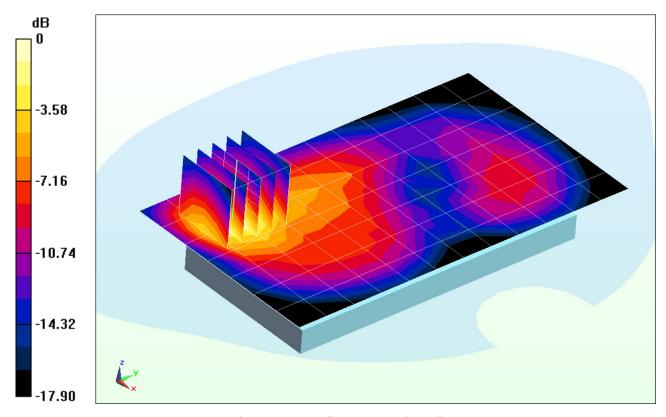
DUT: ZNFE980; Type: Portable Handset; Serial: 211KPSL263118

Communication System: UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.582 \text{ S/m}; \ \epsilon_r = 52.41; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-14-2013; Ambient Temp: 23.8°C; Tissue Temp: 22.7°C

Probe: ES3DV3 - SN3263; ConvF(4.76, 4.76, 4.76); Calibrated: 5/18/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 5/7/2012
Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648
Measurement SW: DASY52, Version 52.8 (5);SEMCAD X Version 14.6.8 (7028)

Mode: UMTS 1900, Body SAR, Back side, Mid.ch


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.500 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 1.41 W/kg

SAR(1 g) = 0.804 W/kg

0 dB = 0.873 W/kg = -0.59 dBW/kg

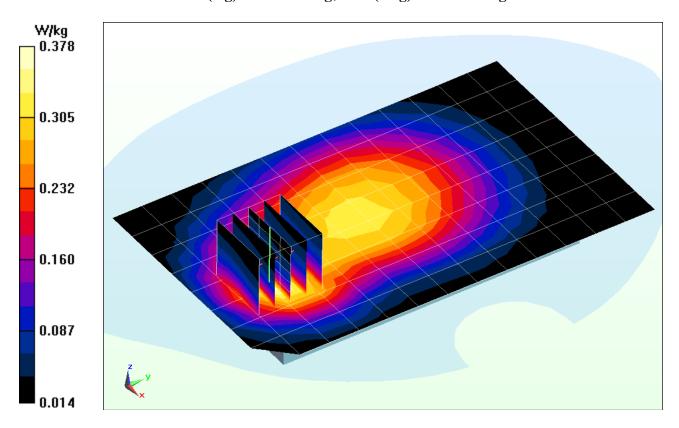
DUT: ZNFE980; Type: Portable Handset; Serial: 211KPDT263122

Communication System: LTE BAND 17; Frequency: 710 MHz; Duty Cycle: 1:1 Medium: 750 Body; Medium parameters used: $f = 710 \text{ MHz}; \ \sigma = 0.929 \text{ S/m}; \ \epsilon_r = 54.72; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-07-2013; Ambient Temp: 24.5°C; Tissue Temp: 22.6°C

Probe: ES3DV3 - SN3209; ConvF(6.23, 6.23, 6.23); Calibrated: 3/16/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn649; Calibrated: 2/20/2012
Phantom: SAM Sub Dasy B; Type: SAM 5.0; Serial: TP-1626
Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.8 (7028)

Mode: LTE Band 17, Body SAR, Back side, Mid.ch, QPSK, 10 MHz Bandwidth, 1 RB, 25 RB Offset


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.417 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.648 W/kg

SAR(1 g) = 0.356 W/kg; SAR(10 g) = 0.213 W/kg

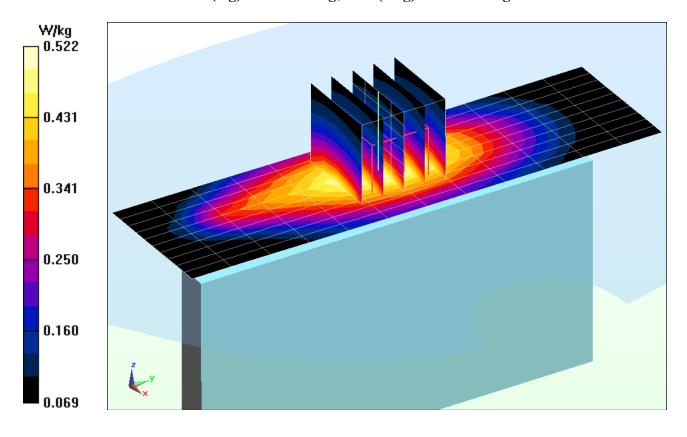
DUT: ZNFE980; Type: Portable Handset; Serial: 211KPDT263122

Communication System: LTE BAND 17; Frequency: 710 MHz; Duty Cycle: 1:1 Medium: 750 Body; Medium parameters used: $f = 710 \text{ MHz}; \ \sigma = 0.929 \text{ S/m}; \ \epsilon_r = 54.72; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-07-2013; Ambient Temp: 24.5°C; Tissue Temp: 22.6°C

Probe: ES3DV3 - SN3209; ConvF(6.23, 6.23, 6.23); Calibrated: 3/16/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn649; Calibrated: 2/20/2012
Phantom: SAM Sub Dasy B; Type: SAM 5.0; Serial: TP-1626
Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.8 (7028)

Mode: LTE Band 17, Body SAR, Left Edge, Mid.ch, QPSK, 10 MHz Bandwidth, 1 RB, 25 RB Offset


Area Scan (11x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.071 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.668 W/kg

SAR(1 g) = 0.491 W/kg; SAR(10 g) = 0.348 W/kg

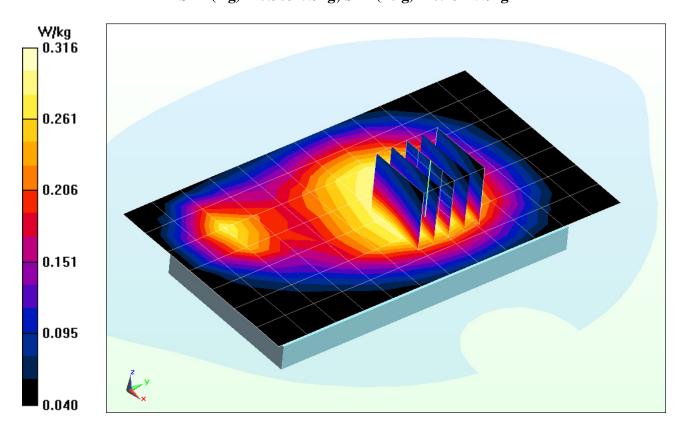
DUT: ZNFE980; Type: Portable Handset; Serial: 211KPDT263122

Communication System: LTE BAND 5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 0.959 \text{ S/m}; \ \epsilon_r = 52.938; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-08-2013; Ambient Temp: 24.6°C; Tissue Temp: 23.0°C

Probe: ES3DV3 - SN3209; ConvF(6.13, 6.13, 6.13); Calibrated: 3/16/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn649; Calibrated: 2/20/2012
Phantom: SAM with CRP; Type: SAM 4.0; Serial: TP1375
Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.8 (7028)

Mode: LTE Band 5 (Cell), Body SAR, Back side, Mid.ch, QPSK, 10 MHz Bandwidth, 1 RB, 25 RB Offset


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.444 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.375 W/kg

SAR(1 g) = 0.303 W/kg; SAR(10 g) = 0.234 W/kg

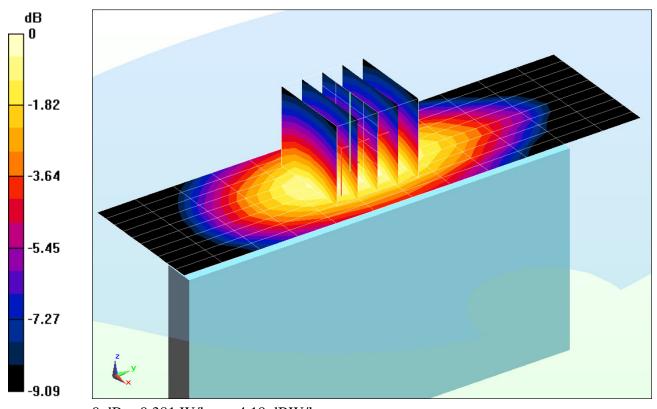
DUT: ZNFE980; Type: Portable Handset; Serial: 211KPDT263122

Communication System: LTE BAND 5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 0.959 \text{ S/m}; \ \epsilon_{r} = 52.938; \ \rho = 1000 \text{ kg/m}^{3}$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-08-2013; Ambient Temp: 24.6°C; Tissue Temp: 23.0°C

Probe: ES3DV3 - SN3209; ConvF(6.13, 6.13, 6.13); Calibrated: 3/16/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn649; Calibrated: 2/20/2012
Phantom: SAM with CRP; Type: SAM 4.0; Serial: TP1375
Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.8 (7028)

Mode: LTE Band 5 (Cell), Body SAR, Right Edge, Mid.ch, QPSK, 10 MHz Bandwidth, 1 RB, 25 RB Offset


Area Scan (11x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.194 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.480 W/kg

SAR(1 g) = 0.355 W/kg; SAR(10 g) = 0.248 W/kg

0 dB = 0.381 W/kg = -4.19 dBW/kg

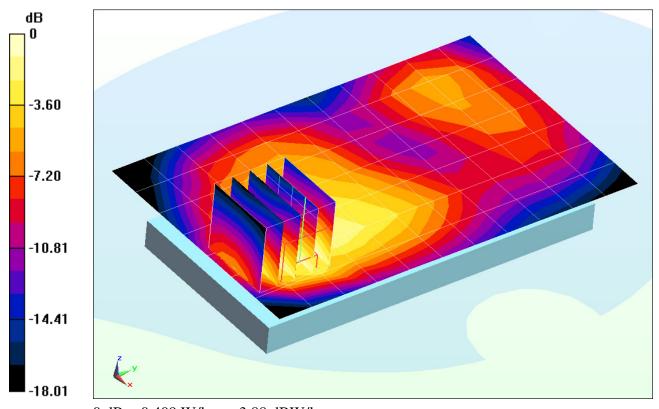
DUT: ZNFE980; Type: Portable Handset; Serial: 211KPDT263122

Communication System: LTE RF; Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used (interpolated): $f = 1732.5 \text{ MHz}; \ \sigma = 1.511 \text{ S/m}; \ \epsilon_r = 53.126; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-05-2013; Ambient Temp: 23.2°C; Tissue Temp: 22.9°C

Probe: ES3DV3 - SN3209; ConvF(4.83, 4.83, 4.83); Calibrated: 3/16/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn649; Calibrated: 2/20/2012
Phantom: SAM Sub Dasy B; Type: SAM 5.0; Serial: TP-1626
Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.8 (7028)

Mode: LTE Band 4 (AWS), Body SAR, Back side, Mid.ch, QPSK, 10 MHz Bandwidth, 1 RB, 49 RB Offset


Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.516 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.681 W/kg

SAR(1 g) = 0.364 W/kg; SAR(10 g) = 0.210 W/kg

0 dB = 0.409 W/kg = -3.88 dBW/kg

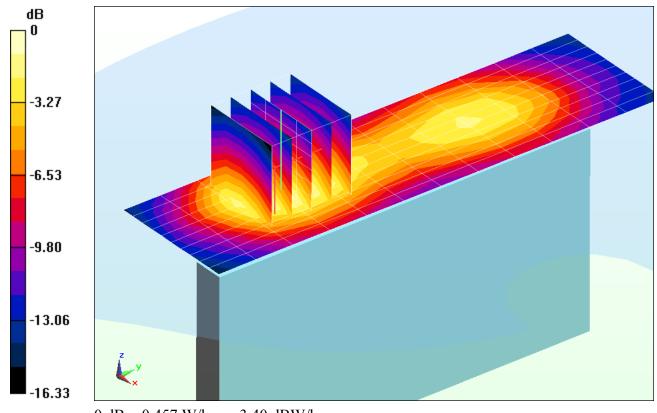
DUT: ZNFE980; Type: Portable Handset; Serial: 211KPDT263122

Communication System: LTE RF; Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used (interpolated): $f = 1732.5 \text{ MHz}; \ \sigma = 1.511 \text{ S/m}; \ \epsilon_r = 53.126; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-05-2013; Ambient Temp: 23.2°C; Tissue Temp: 22.9°C

Probe: ES3DV3 - SN3209; ConvF(4.83, 4.83, 4.83); Calibrated: 3/16/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn649; Calibrated: 2/20/2012
Phantom: SAM Sub Dasy B; Type: SAM 5.0; Serial: TP-1626
Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.8 (7028)

Mode: LTE Band 4 (AWS), Body SAR, Left Edge, Mid.ch, QPSK, 10 MHz Bandwidth, 1 RB, 49 RB Offset


Area Scan (11x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.534 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.678 W/kg

SAR(1 g) = 0.417 W/kg; SAR(10 g) = 0.244 W/kg

0 dB = 0.457 W/kg = -3.40 dBW/kg

DUT: ZNFE980; Type: Portable Handset; Serial: 211KPMZ263122

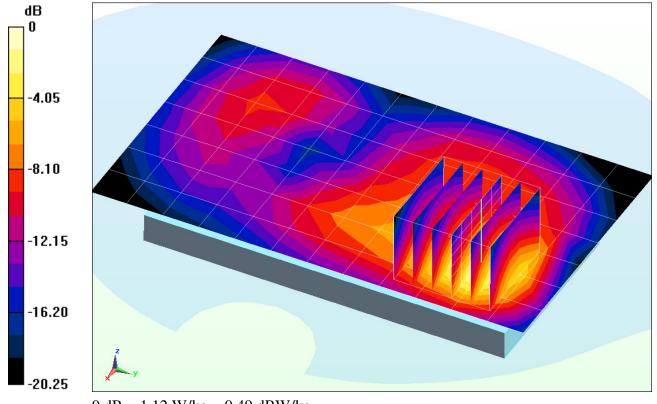
Communication System: LTE Band 2 (PCS); Frequency: 1905 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used (interpolated): $f = 1905 \text{ MHz}; \ \sigma = 1.526 \text{ S/m}; \ \epsilon_r = 50.885; \ \rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-07-2013; Ambient Temp: 22.2°C; Tissue Temp: 21.2°C

Probe: ES3DV3 - SN3213; ConvF(4.5, 4.5, 4.5); Calibrated: 4/24/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 4/19/2012
Phantom: SAM Right; Type: QD000P40CD; Serial: 1686
Measurement SW: DASY52, Version 52.8 (3);SEMCAD X Version 14.6.8 (7028)

Mode: LTE Band 2 (PCS), Body SAR, Back side, High.ch, QPSK, 10 MHz Bandwidth, 1 RB, 0 RB Offset


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.682 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 1.83 W/kg

SAR(1 g) = 1.03 W/kg; SAR(10 g) = 0.554 W/kg

0 dB = 1.12 W/kg = 0.49 dBW/kg

DUT: ZNFE980; Type: Portable Handset; Serial: 211KPMZ263122

Communication System: IEEE 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used (interpolated):

f = 2437 MHz; σ = 1.921 S/m; ε_r = 51.175; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-08-2013; Ambient Temp: 24.4°C; Tissue Temp: 21.1°C

Probe: ES3DV3 - SN3263; ConvF(4.35, 4.35, 4.35); Calibrated: 5/18/2012;

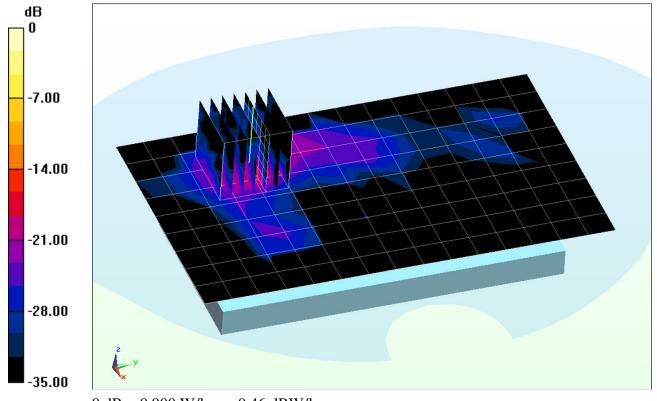
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1334; Calibrated: 5/7/2012

Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648

Measurement SW: DASY52, Version 52.8 (3);SEMCAD X Version 14.6.8 (7028)

Mode: IEEE 802.11b, Body SAR, Ch 06, 1 Mbps, Back Side


Area Scan (10x16x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.616 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.0440 W/kg

SAR(1 g) = 0.0205 W/kg

0 dB = 0.900 W/kg = -0.46 dBW/kg

DUT: ZNFE980; Type: Portable Handset; Serial: 211KPDT263122

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5805 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body; Medium parameters used:

f = 5805 MHz; σ = 6.146 S/m; ε_r = 47.55; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-08-2013; Ambient Temp: 24.5°C; Tissue Temp: 22.8°C

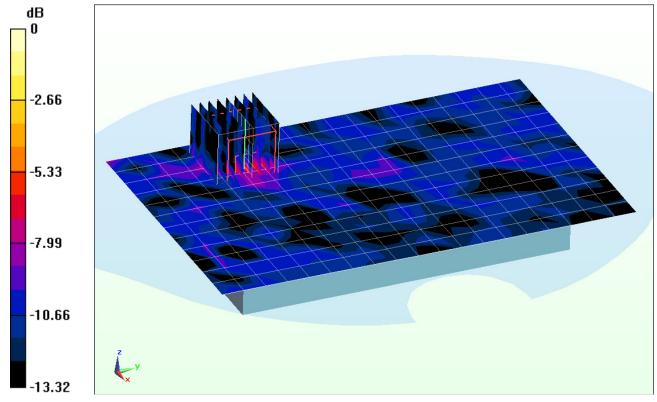
Probe: EX3DV4 - SN3561; ConvF(3.42, 3.42, 3.42); Calibrated: 7/26/2012;

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 8/24/2012

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.8 (7028)

Mode: IEEE 802.11a, 5.8 GHz, Body SAR, Ch 161, 6 Mbps, Back Side


Area Scan (13x20x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 4.949 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.625 W/kg

SAR(1 g) = 0.193 W/kg; SAR(10 g) = 0.097 W/kg

0 dB = 0.397 W/kg = -4.01 dBW/kg

DUT: ZNFE980; Type: Portable Handset; Serial: 211KPDT263122

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5680 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body; Medium parameters used:

f = 5680 MHz; σ = 5.951 S/m; ε_r = 47.89; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-08-2013; Ambient Temp: 24.4°C; Tissue Temp: 22.8°C

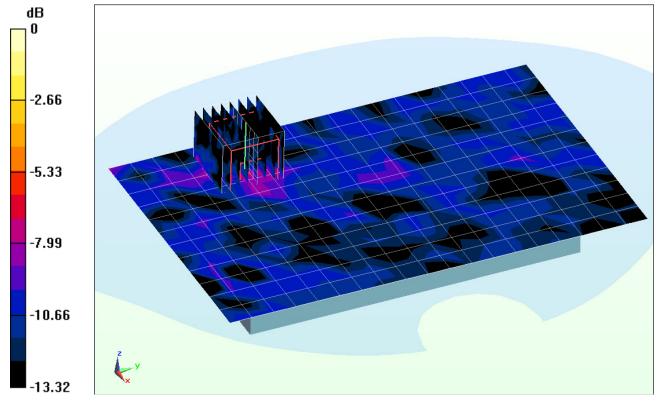
Probe: EX3DV4 - SN3561; ConvF(3.17, 3.17, 3.17); Calibrated: 7/26/2012;

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 8/24/2012

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.8 (7028)

Mode: IEEE 802.11a, 5.5 - 5.7 GHz, Body SAR, Ch 136, 6 Mbps, Back Side


Area Scan (13x20x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 5.434 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.488 W/kg

SAR(1 g) = 0.153 W/kg; SAR(10 g) = 0.074 W/kg

0 dB = 0.397 W/kg = -4.01 dBW/kg