

HCT CO., LTD.

CERTIFICATE OF COMPLIANCE

FCC Certification

Applicant Name:

LG Electronics MobileComm U.S.A., Inc.

Address:

1000 Sylvan Avenue, Englewood Cliffs NJ 07632

Date of Issue:

September 05, 2014

Test Site/Location:

HCT CO., LTD., 74, Seoicheon-ro 578beon-gil, Majang-

myeon, Icheon-si, Gyeonggi-do, Korea

Report No.: HCT-R-1408-F017-2

HCT FRN: 0005866421

FCC ID

: ZNFD690

APPLICANT

: LG Electronics MobileComm U.S.A., Inc.

FCC Model(s):

LG-D690

Additional FCC Model(s):

LGD690, D690, LG-D693, LGD693, D693

EUT Type:

Cellular/PCS GSM/GPRS/EDGE Rx only and WCDMA HSDPA/HSUPA with Bluetooth and WLAN

Max. RF Output Power:

4.51 dBm (2.82 mW)

Frequency Range:

2402 MHz - 2480 MHz (Bluetooth)

Modulation type

GFSK(Normal), π/4DQPSK and 8DPSK(EDR)

FCC Classification:

FCC Part 15 Spread Spectrum Transmitter

FCC Rule Part(s):

Part 15 subpart C 15.247

Note:

The device, LG-D690 (FCC ID: ZNFD690) is electrically identical to the previously certified device, LG-D690n (FCC ID: ZNFD690N) and spot-checks were done to confirm that the

data remains applicable to this FCC ID.

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

Report prepared by

: Jong Seok Lee

Test Engineer of RF Team

Approved by

: Kyoung Houn Seo

Manager of RF Team

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

Report No.: HCT-R-1408-F017-2

Version

TEST REPORT NO.	DATE	DESCRIPTION
HCT-R-1408-F017	August 26, 2014	- First Approval Report
HCT-R-1408-F017-1	September 02, 2014	-Add LIST OF TEST EQUIPMENT for ZNF690N on page 84 and page 86
HCT-R-1408-F017-2	September 05, 2014	-Delete spot-check data (LG-D690) -Add Note on page 1

Page 2 of 72

Report No.: HCT-R-1408-F017-2 Model: LG-D690

Table of Contents

1.	GENERAL INFORMATION	4
2.	EUT DESCRIPTION	4
3.	TEST METHODOLOGY	5
	3.1 EUT CONFIGURATION	5
	3.2 EUT EXERCISE	5
	3.3 GENERAL TEST PROCEDURES	5
	3.4 DESCRIPTION OF TEST MODES	6
4.	INSTRUMENT CALIBRATION	6
5.	FACILITIES AND ACCREDITATIONS	6
	5.1 FACILITIES	6
	5.2 EQUIPMENT	6
6.	ANTENNA REQUIREMENTS	6
7.	SUMMARY OF TEST RESULTS	7
8.	FCC PART 15.247 REQUIREMENTS	8
	8.1 PEAK POWER	8
	8.2 BAND EDGES	15
	8.3 FREQUENCY SEPARATION / OCCUPIED BANDWIDTH (99% BW)	23
	8.4 NUMBER OF HOPPING FREQUENCY	32
	8.5 TIME OF OCCUPANCY (DWELL TIME)	36
	8.6 SPURIOUS EMISSIONS	43
	8.6.1 CONDUCTED SPURIOUS EMISSIONS	43
	8.6.2 RADIATED SPURIOUS EMISSIONS	52
	8.6.3 RADIATED RESTRICTED BAND EDGES	63
	8.7 POWERLINE CONDUCTED EMISSIONS	66
9.	LIST OF TEST EQUIPMENT	71
	9.1 LIST OF TEST EQUIPMENT(Conducted Test)	71
	9.2 LIST OF TEST EQUIPMENT(Radiated Test)	72

Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 4 of 72

1. GENERAL INFORMATION

Applicant: LG Electronics MobileComm U.S.A., Inc.

Address: 1000 Sylvan Avenue, Englewood Cliffs NJ 07632

FCC ID: ZNFD690

EUT Type: Cellular/PCS GSM/GPRS/EDGE Rx only and WCDMA HSDPA/HSUPA with Bluetooth and WLAN

Model name(s): LG-D690

Additional Model name(s): LGD690, D690, LG-D693, LGD693, D693

Date(s) of Tests: June 18, 2014 ~ July 03, 2014

Place of Tests: HCT Co., Ltd.

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea

(IC Recognition No.: 5944A-3)

2. EUT DESCRIPTION

FCC Model Name	LG-D690
Additional FCC Model Name	LGD690, D690, LG-D693, LGD693, D693
EUT Type	Cellular/PCS GSM/GPRS/EDGE Rx only and WCDMA HSDPA/HSUPA with Bluetooth and WLAN
Power Supply	DC 3.8 V
Battery type	Li-ion Battery(Standard)
Frequency Range	2402 MHz - 2480 MHz (Bluetooth)
Transmit Power	4.51 dBm (2.82 mW)
BT Operating Mode	Normal, EDR, AFH
Modulation Type	GFSK(Normal), π/4DQPSK and 8DPSK(EDR)
Modulation Technique	FHSS
Number of Channels	79Channels, Minimum 20 Channels(AFH)
Antenna Specification	Manufacturer: IM-Tech
	Antenna type: FPCB Antenna
	Peak Gain : -2.42 dBi

💥 15.247 Requirements for Bluetooth transmitter

- This Bluetooth module has been tested by a Bluetooth Qualification Lab, and we confirm the following:
- 1) This system is hopping pseudo-randomly.
- 2) Each frequency is used equally on the average by each transmitter.
- 3) The receiver input bandwidths that match the hopping channel bandwidths of their corresponding transmitters
- 4) The receiver shifts frequencies in synchronization with the transmitted signals.
- 15.247(g): The system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this Section 15.247 should the transmitter be presented with a continuous data (or information) stream.
- 15.247(h): The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

F-01P-02-014 (Rev.00) FCC ID: ZNFD690 HCT CO., LTD

Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 5 of 72

3. TEST METHODOLOGY

The measurement procedure described in the American National Standard for Testing Unlicensed Wireless Devices(ANSI C63.4-2003) and FCC Public Notice DA 00-705 dated March 30, 2000 entitled "Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems" were used in the measurement of the **LG Electronics MobileComm U.S.A.**, **Inc.**

Cellular/PCS GSM/GPRS/EDGE Rx only and WCDMA HSDPA/HSUPA with Bluetooth and WLAN FCC ID: ZNFD690

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4. (Version :2003) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 13.1.4.1 of ANSI C63.4. (Version: 2003). To record the final measurements, the analyzer detector function was set to CISPR quasi-peak mode and the bandwidth of the spectrum analyzer was set to 120 kHz for frequencies below 1 GHz or 1 MHz for frequencies above 1 GHz. For average measurements above 1 GHz, the analyzer was set to peak detector with a reduced VBW setting(RBW = 1 MHz, VBW = 1/T Hz, where T = Pulse width).

Conducted Antenna Terminal

See Section from 8.1 to 8.6.1.(DA 00-705)

Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 6 of 72

3.4 DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Channel low, mid and high with highest data rate (worst case) is chosen for full testing.

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipments, which is traceable to recognized national standards.

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea. The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2003) and CISPR Publication 22. Detailed description of test facility was submitted to the Commission and accepted dated February 28, 2014 (Registration Number: 90661)

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

^{*} The antennas of this E.U.T are permanently attached.

^{*}The E.U.T Complies with the requirement of §15.203

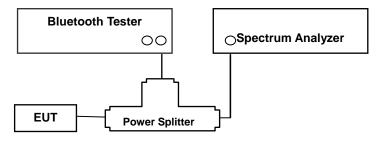
Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 7 of 72

7. SUMMARY OF TEST RESULTS

Test Description	FCC Part Section(s)	Test Limit	Test Condition	Test Result
20 dB Bandwidth	§15.247(a)(1)(ii) or (iii)	NA		PASS
Occupied Bandwidth	NA	NA		NA
Conducted Maximum Peak Output Power	§15.247(b)(1)	< 1 Watts for 1Mbps < 125 Milliwatts for 2, 3Mbps		PASS
Carrier Frequency Separation	§15.247(a)(1)	>25 kHz or >2/3 of the 20dB BW		PASS
Number of Hopping Frequencies	§15.247(a)(1)(iii)	>15	CONDUCTED	PASS
Time of Occupancy	§15.247(a)(1)(iii)	<400 ms		PASS
Conducted Spurious Emissions	§15.247(d)	> 20 dB for all out-of band emissions		PASS
Band Edge(Out of Band Emissions)	§15.247(d)	> 20 dB for all out-of band emissions		PASS
AC Power line Conducted Emissions	§15.207(a)	cf. Section 8.7		PASS
Radiated Spurious Emissions \$15.247(d), 15.205, 15.209		cf. Section 8.6.2	DADIATED	PASS
Radiated Restricted Band Edge	§15.247(d), 15.205, 15.209	cf. Section 8.6.3	RADIATED	PASS

Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 8 of 72

8. FCC PART 15.247 REQUIREMENTS


8.1 PEAK POWER

LIMIT

The maximum peak output power of the intentional radiator shall not exceed the following:

- For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 W for hopping mode, 125 mW for AFH mode
- 2. The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi.

Test Configuration

TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer. The Spectrum Analyzer is set to the peak detector mode. This test is performed with hopping off.

The Spectrum Analyzer is set to (DA 00-705)

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW > the 20 dB bandwidth of the emission being measured

VBW ≥ RBW

Sweep = Auto

Detector = Peak

Trace = Max hold

SAMPLE CALCULATION

Output Power = Spectrum Reading Power + Power Splitter loss + Cable loss(2 ea) = 10 dBm + 6 dB + 1.5 dB = 17.5 dBm

Note:

- 1. Spectrum reading values are not plot data. The power results in plot is already including the actual values of loss for the splitter and cable combination.
- 2. Spectrum offset = Power Splitter loss + Cable loss

Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 9 of 72

3. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. Actual value of loss for the splitter and cable combination is 7.18 dB at 2402 MHz and is 7.23 dB at 2480 MHz.So, 7.2 dB is offset. And the offset gap in the 2.4 GHz range do not affect the conducted peak power final result

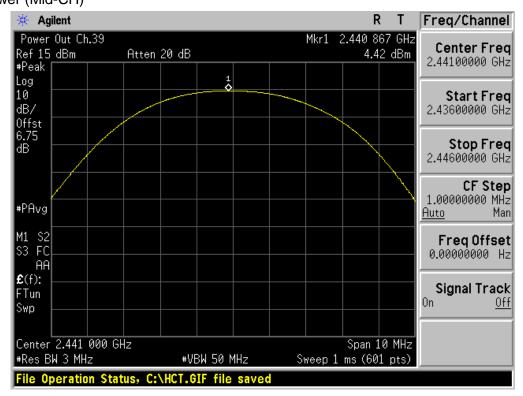
TEST RESULTS

No non-compliance noted

Test Data

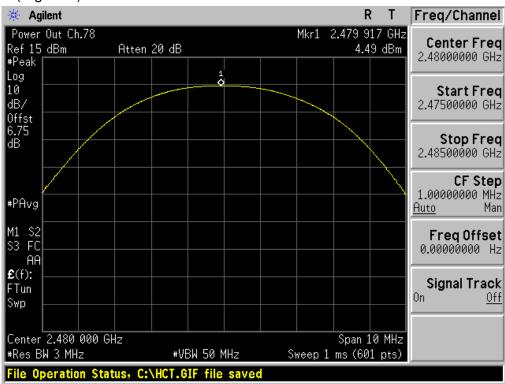
Channel Frequency		-	Power	Limit	Result
	(MHz)	(dBm)	(mW)	(mW)	
Low	2402	3.80	2.40		PASS
Mid	2441	4.42	2.77	125	PASS
High	2480	4.49	2.81		PASS

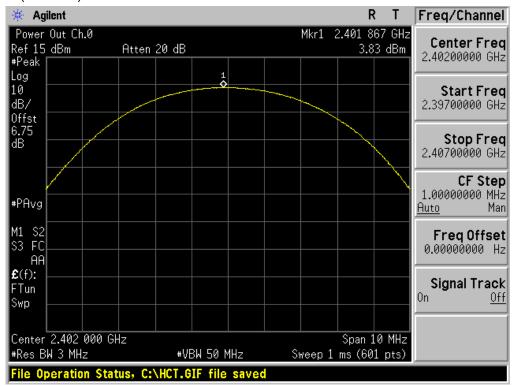
Channel	Frequency	Output Power (8DPSK)		Output (π/4D0		Limit	Result
	(MHz)	(dBm)	(mW)	(dBm)	(mW)	(mW)	
Low	2402	3.83	2.42	3.65	2.32		PASS
Mid	2441	4.47	2.80	4.26	2.67	125	PASS
High	2480	4.51	2.82	4.32	2.70		PASS



Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 10 of 72

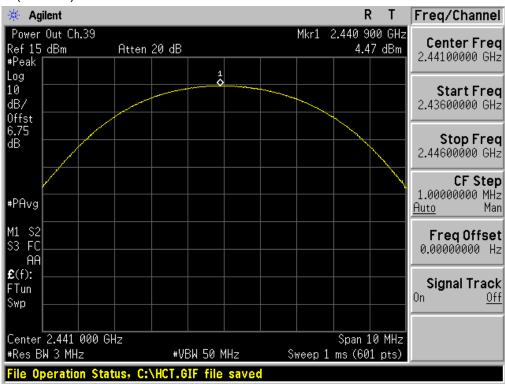
Test Plots (GFSK) Peak Power (Low-CH)

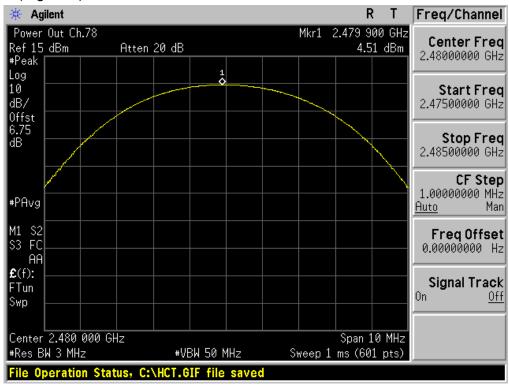

Test Plots (GFSK) Peak Power (Mid-CH)



Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 11 of 72

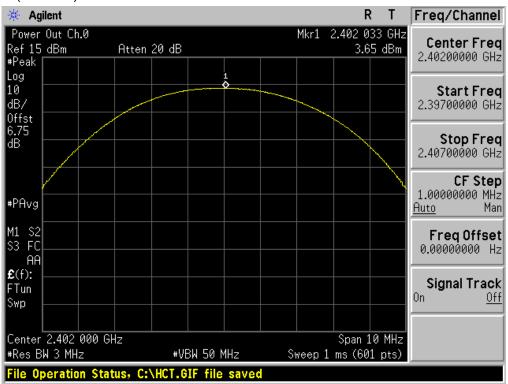
Test Plots (GFSK) Peak Power (High-CH)

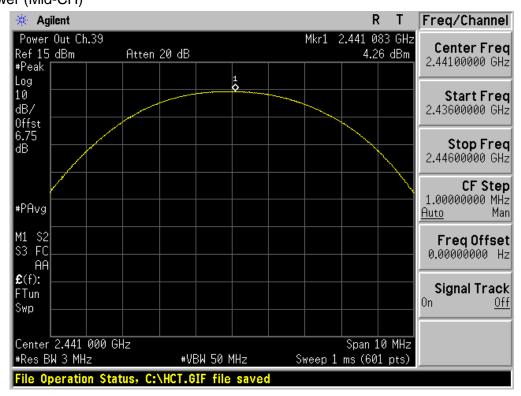

Test Plots (8DPSK) Peak Power (Low-CH)



Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 12 of 72

Test Plots (8DPSK) Peak Power (Mid-CH)

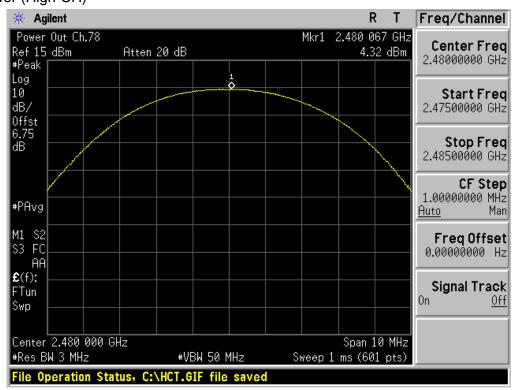

Test Plots (8DPSK) Peak Power (High-CH)



Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 13 of 72

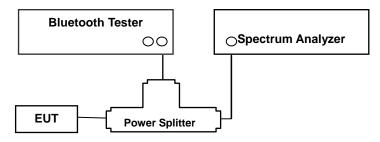
Test Plots (π/4DQPSK) Peak Power (Low-CH)

Test Plots (π/4DQPSK) Peak Power (Mid-CH)



Test Plots ($\pi/4DQPSK$) Peak Power (High-CH)

Report No.: HCT-R-1408-F017-2


Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 15 of 72

8.2 BAND EDGES

LIMIT

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Test Configuration

TEST PROCEDURE

This test is performed with hopping off and hopping on.

The Spectrum Analyzer is set to (DA 00-705)

Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation

RBW ≥ 1% of the span

VBW ≥ RBW

Sweep = Auto

Detector = Peak

Trace = Max hold

TEST RESULTS

See attached.

Note:

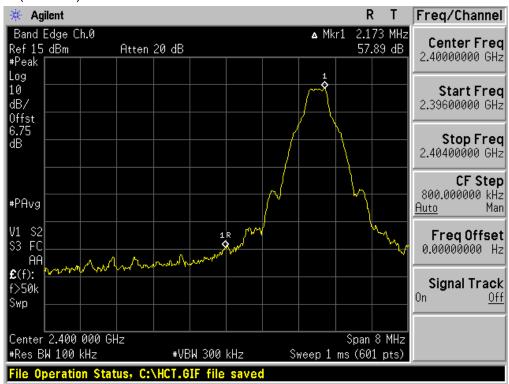
- 1. The results in plot is already including the actual values of loss for the splitter and cable combination.
- 2. Spectrum offset = Power Splitter loss + Cable loss
- 3. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. Actual value of loss for the splitter and cable combination is 7.18 dB at 2402 MHz and is 7.23 dB at 2480 MHz. So, 7.2 dB is offset. And the offset gap in the 2.4 GHz range do not affect the band edge measurement final result.

Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 16 of 72

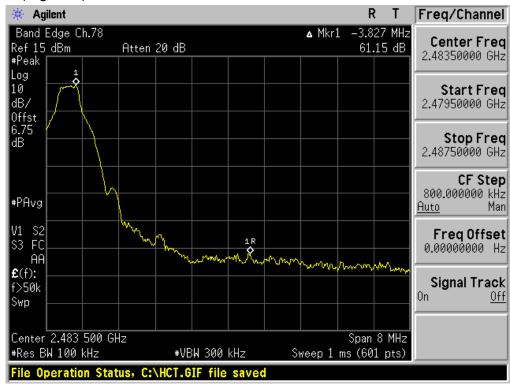
Test Data

- Without hopping

Outside Frequency	GFSK	8DPSK	π/4DQPSK	Limit		Margin		
Band	(dD)	(AD)	(4D)	(dBc)	GFSK	8DPSK	π/4DQPSK	Result
Ballu	(dB)	(dB)	(dB) (dBc)		(dBc)	(dBc)	(dBc)	
Lower	57.89	56.99	55.83	20	37.89	36.99	35.83	PASS
Upper	61.15	59.18	60.75	20	41.15	39.18	40.75	PASS

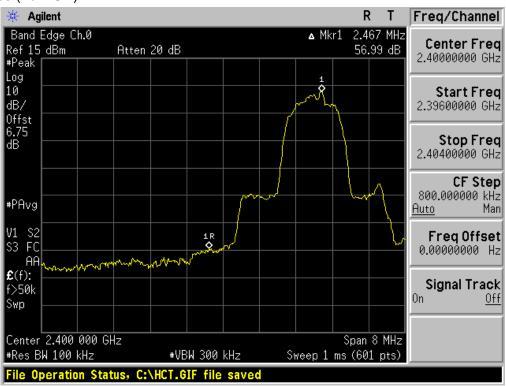

- With hopping

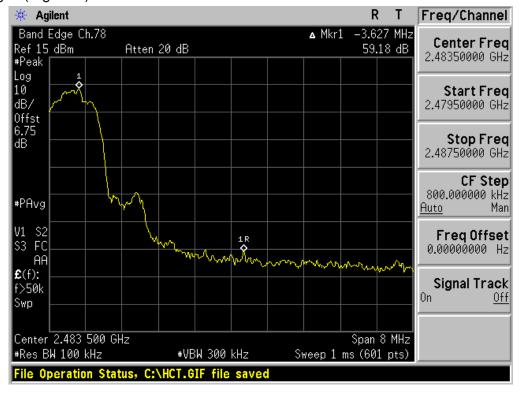
Outoido Eroguanov	GFSK	8DPSK	π/4DQPSK	-/4DQPSK Limit		Margin		
Outside Frequency Band	(AD)	(4D)	(dB) (dBc)		GFSK	8DPSK	π/4DQPSK	Result
Ballu	(dB)	(dB)		(dBc)	(dBc)	(dBc)		
Lower	58.79	56.75	54.99	20	38.79	36.75	34.99	PASS
Upper	52.96	61.24	60.07	20	32.96	41.24	40.07	PASS



Report No.: HCT-R-1408-F017-2 Model: LG-D690

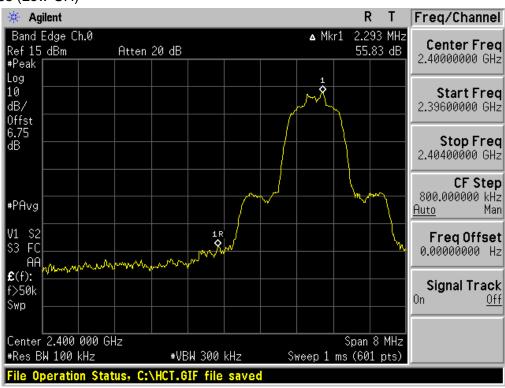
Test Plots without hopping (GFSK) Band Edges (Low-CH)


Test Plots without hopping (GFSK) Band Edges (High-CH)



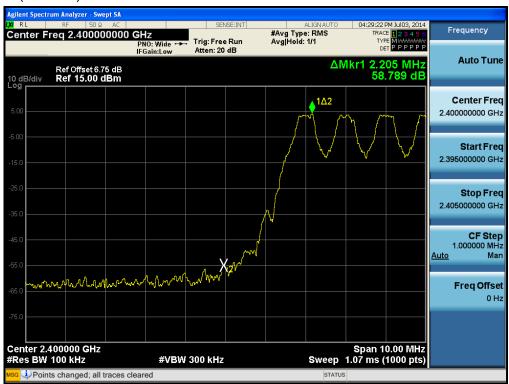
Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 18 of 72

Test Plots without hopping (8DPSK) Band Edges (Low-CH)


Test Plots without hopping (8DPSK) Band Edges (High-CH)

Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 19 of 72

Test Plots without hopping ($\pi/4DQPSK$) Band Edges (Low-CH)

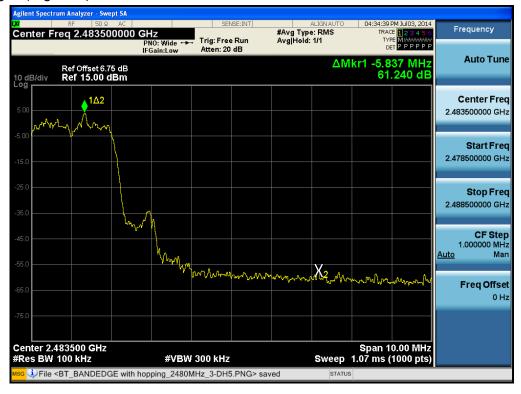

Test Plots without hopping ($\pi/4DQPSK$) Band Edges (High-CH)



Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 20 of 72

Test Plots with hopping (GFSK) Band Edges (Low-CH)

Test Plots with hopping (GFSK) Band Edges (High-CH)



Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 21 of 72

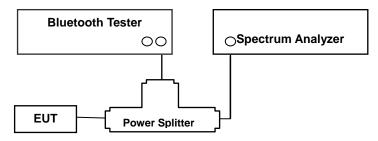
Test Plots with hopping (8DPSK) Band Edges (Low-CH)

Test Plots with hopping (8DPSK) Band Edges (High-CH)

Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 22 of 72

Test Plots with hopping (π/4DQPSK) Band Edges (Low-CH)

Test Plots with hopping (π/4DQPSK) Band Edges (High-CH)



Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 23 of 72

8.3 FREQUENCY SEPARATION / OCCUPIED BANDWIDTH (99% BW) LIMIT

According to §15.247(a)(1), Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Test Configuration

TEST PROCEDURE

The Channel Separation test is performed with hopping on. And the 20 dB Bandwidth test is performed with hopping off.

The Spectrum Analyzer is set to (DA 00-705)

Span = wide enough to capture the peaks of two adjacent channels

RBW ≥ 1% of the span

VBW ≥ RBW

Sweep = Auto

Detector = Peak

Trace = Max hold

The trace was allowed to stabilize. The marker-delta function was used to determine the separation between the peaks of the adjacent channels.

TEST RESULTS

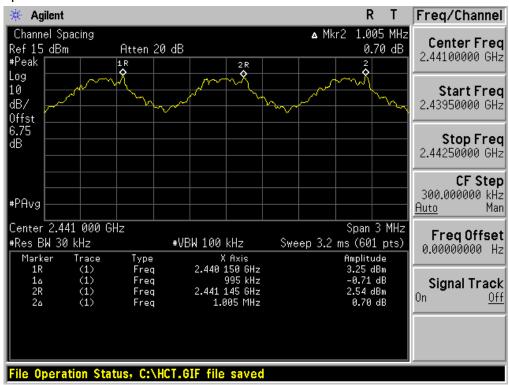
No non-compliance noted

Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 24 of 72

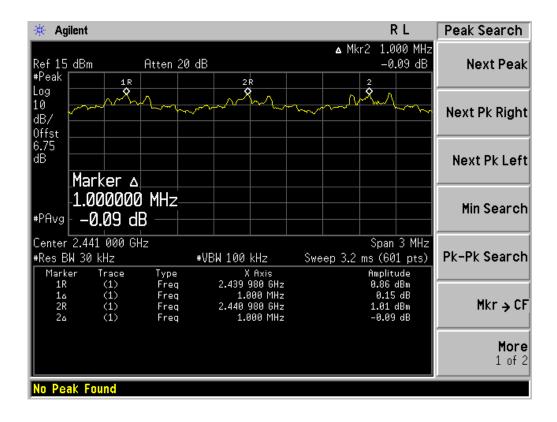
Test Data

Cha	Channel Separation (kHz)			20dB Bandwidth (kHz)			Limit	Result
GFSK	8DPSK	π/4DQPSK	Channel	GFSK	8DPSK	π/4DQPSK	(kHz)	
			Low CH	945.4	1289.0	1270.0	>25 or	
995	1000	990	Middle CH	944.6	1261.0	1285.0	>2/3 of the	Pass
			High CH	944.6	1289.0	1271.0	20dB BW	

Occupied Bandwidth (99% BW)


99% BW (kHz)						
Channel	GFSK	8DPSK	π/4DQPSK			
Low CH	882.2	1174.1	1163.8			
Middle CH	884.1	1157.4	1164.0			
High CH	885.3	1170.0	1163.4			

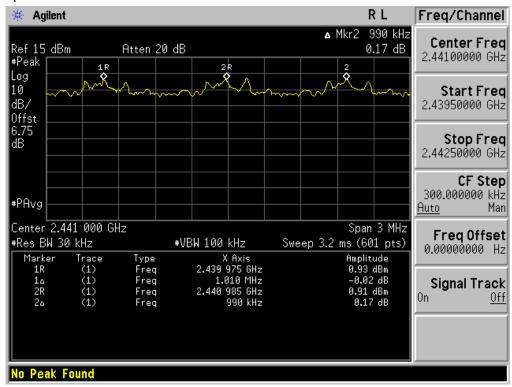
Note: We can not know what use channel in AFH mode. So, we can not test in AFH mode. Also, if the test performs some channel in AFH mode, the test result is not different with normal mode.



Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 25 of 72

Test Plots (GFSK) **Channel Separation**

Test Plots (8DPSK) **Channel Separation**

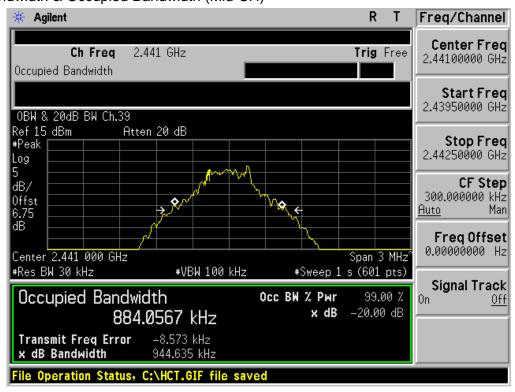


Model: LG-D690 Page 26 of 72 Report No.: HCT-R-1408-F017-2

Test Plots (π/4DQPSK) **Channel Separation**



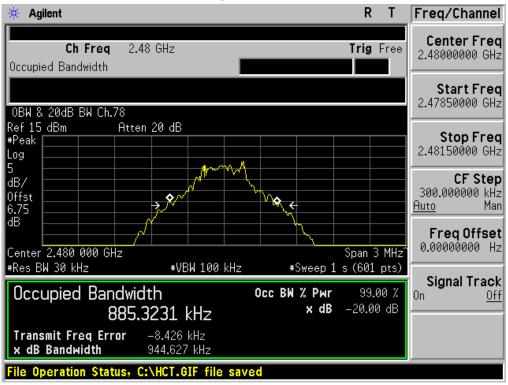
Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 27 of 72


Test Plots (GFSK)

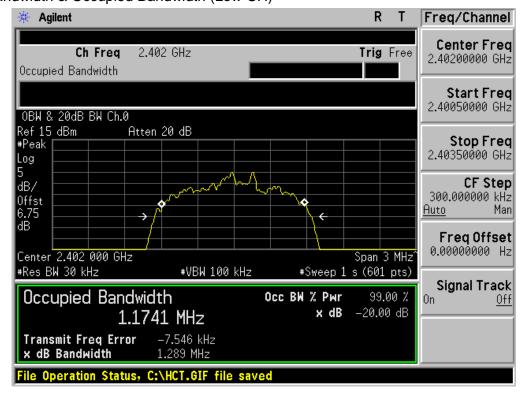
20 dB Bandwidth & Occupied Bandwidth (Low-CH)

Test Plots (GFSK)

20 dB Bandwidth & Occupied Bandwidth (Mid-CH)



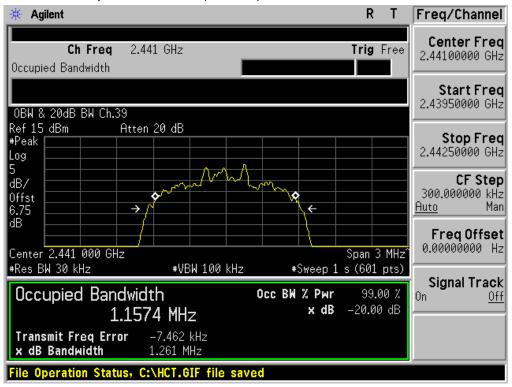
Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 28 of 72


Test Plots (GFSK)

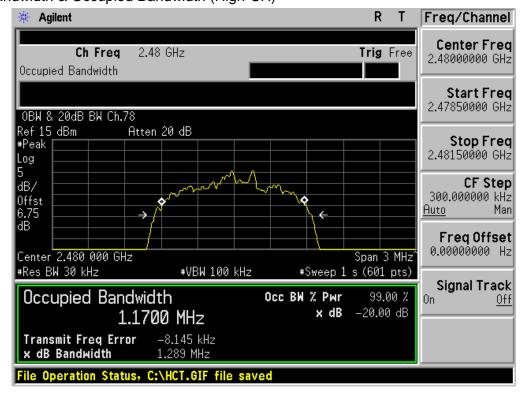
20 dB Bandwidth & Occupied Bandwidth (High-CH)

Test Plots (8DPSK)

20 dB Bandwidth & Occupied Bandwidth (Low-CH)



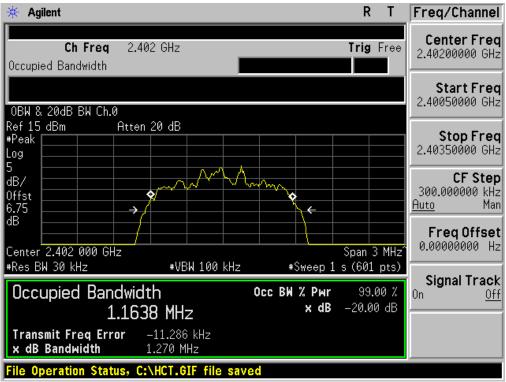
Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 29 of 72


Test Plots (8DPSK)

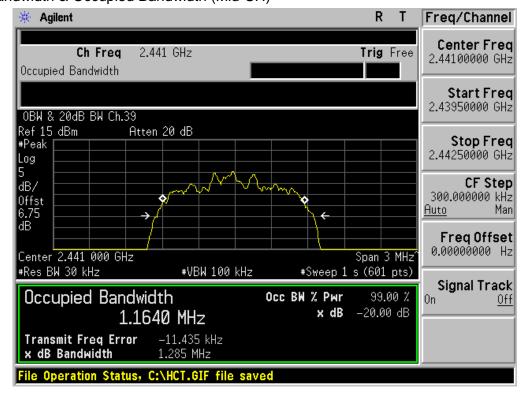
20 dB Bandwidth & Occupied Bandwidth (Mid-CH)

Test Plots (8DPSK)

20 dB Bandwidth & Occupied Bandwidth (High-CH)



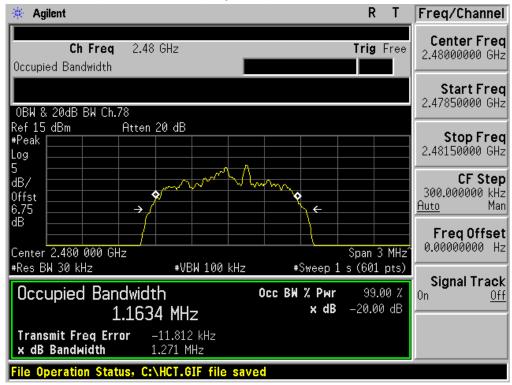
Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 30 of 72

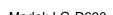

Test Plots (π/4DQPSK)

20 dB Bandwidth & Occupied Bandwidth (Low-CH)

Test Plots (π/4DQPSK)

20 dB Bandwidth & Occupied Bandwidth (Mid-CH)

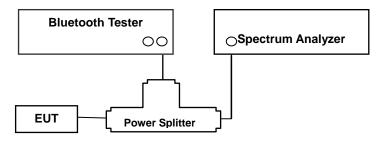




Test Plots (π/4DQPSK)

Report No.: HCT-R-1408-F017-2

20 dB Bandwidth & Occupied Bandwidth (High-CH)


Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 32 of 72

8.4 NUMBER OF HOPPING FREQUENCY

LIMIT

According to $\S15.247(a)(1)(iii)$, Frequency hopping systems operating in the 2400 MHz ~ 2483.5 MHz bands shall use at least 15 hopping frequencies.

Test Configuration

TEST PROCEDURE

The Bluetooth frequency hopping function of the EUT was enabled.

The Spectrum Analyzer is set to (DA 00-705)

Span = the frequency band of operation

RBW ≥ 1% of the span

VBW ≥ RBW

Sweep = Auto

Detector = Peak

Trace = Max hold

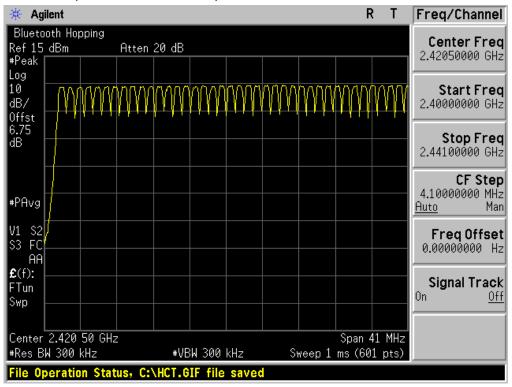
The trace was allowed to stabilize.

TEST RESULTS

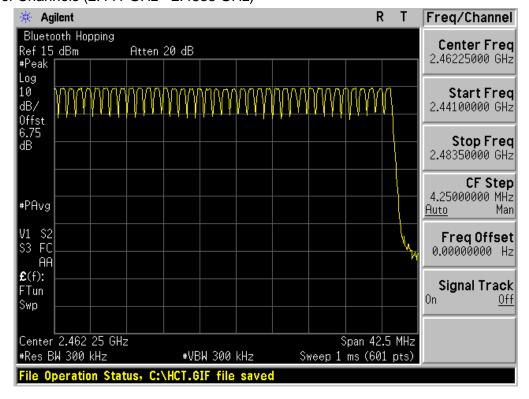
No non-compliance noted

Test Data

	Result (No. of CH)	I insid	Dooult	
GFSK	8DPSK	π/4DQPSK	Limit	Result
79	79	79	>15	Pass


Note: In case of AFH mode, minimum number of hopping channels is 20.

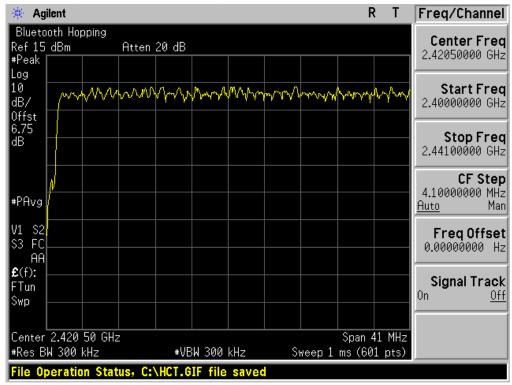
Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 33 of 72


Test Plots (GFSK)

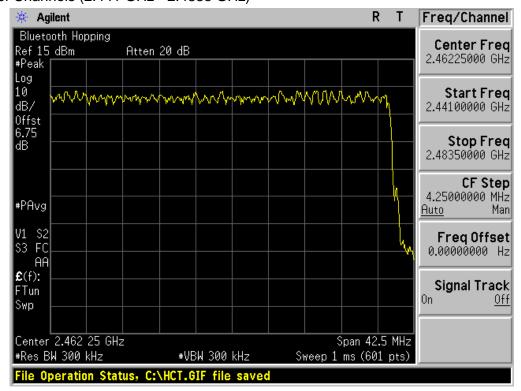
Number of Channels (2.4 GHz - 2.441 GHz)

Test Plots (GFSK)

Number of Channels (2.441 GHz - 2.4835 GHz)



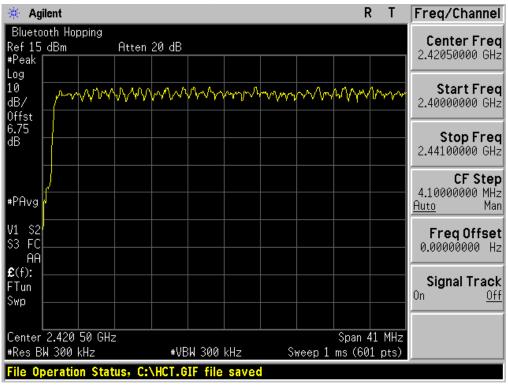
Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 34 of 72


Test Plots (8DPSK)

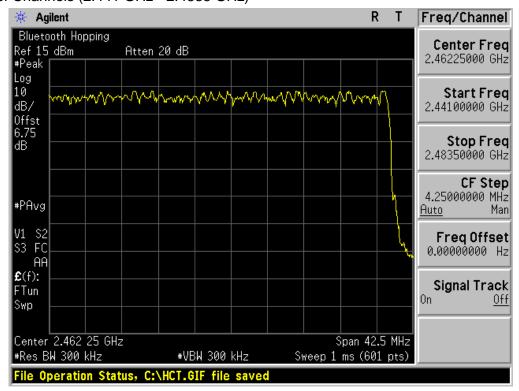
Number of Channels (2.4 GHz - 2.441 GHz)

Test Plots (8DPSK)

Number of Channels (2.441 GHz - 2.4835 GHz)



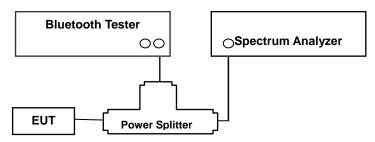
Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 35 of 72


Test Plots (π/4DQPSK)

Number of Channels (2.4 GHz - 2.441 GHz)

Test Plots (π/4DQPSK)

Number of Channels (2.441 GHz - 2.4835 GHz)


Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 36 of 72

8.5 TIME OF OCCUPANCY (DWELL TIME)

LIMIT

According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400 MHz ~ 2483.5 MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.

Test Configuration

TEST PROCEDURE

This test is performed with hopping off.

EUT was set to transmit the longest packet type (DH5)

The Spectrum Analyzer is set to (DA 00-705)

Span = Zero span, Centered on a hopping channel

RBW = 1 MHz

VBW ≥ RBW

Sweep = as necessary to capture the entire dwell time per hopping channel

Detector = Peak

Trace = Max hold

The marker-delta function was used to determine the dwell time.

Normal Mode / EDR Mode

DH 5(The longest packet type for GFSK)

CH Mid: 2.875 * (1600/6)/79 * 31.6 = 306.67 (ms)

2-DH 5(The longest packet type for $\pi/4DQPSK$)

CH Mid: 2.875 * (1600/6)/79 * 31.6 = 306.67 (ms)

3-DH 5(The longest packet type for 8DPSK)

CH Mid: 2.875 * (1600/6)/79 * 31.6 = 306.67 (ms)

AFH Mode

DH 5(The longest packet type for GFSK)

CH Mid: 2.875 * (800/6)/20 * 8.0 = 153.33 (ms)

F-01P-02-014 (Rev.00) FCC ID: ZNFD690

Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 37 of 72

2-DH 5(The longest packet type for $\pi/4DQPSK$)

CH Mid: 2.875 * (800/6)/20 * 8.0 = 153.33 (ms)

3-DH 5(The longest packet type for 8DPSK)

CH Mid: 2.875 * (800/6)/20 * 8.0 = 153.33 (ms)

Note:

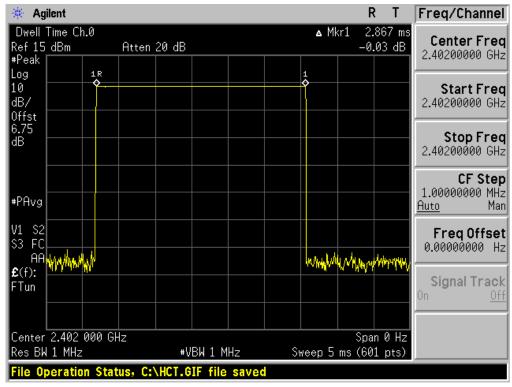
A DH5 Packet need 5 time slot for transmitting and 1 time slot for receiving. Then the system makes worst case 1600/6 hops per second with 79 channels. So the system have each channel 3.3755 times per second and so for 31.6 seconds the system have 106.7 times of appearance. Each tx-time per appearance of DH5 is 2.883 ms.

Dwell time = Tx-time * 106.7

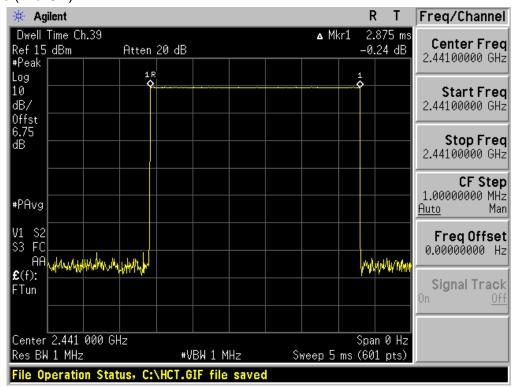
TEST RESULTS

See the table.

	Channel	GFSK	8DPSK	π/4DQPSK
Pulse	Low	2.867	2.883	2.875
Time	Mid	2.875	2.875	2.875
(ms)	High	2.875	2.883	2.875

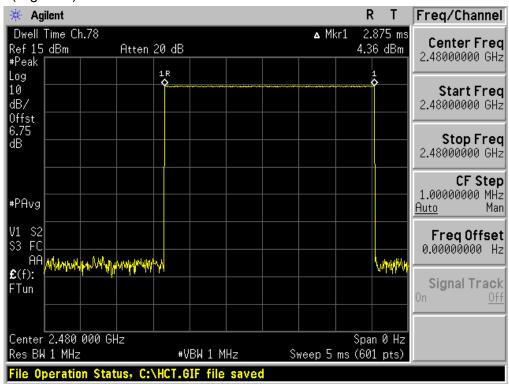

	Channel	GFSK	8DPSK	π/4DQPSK	Period Time (s)	Limit (ms)	Result
Total of	Low	305.81	307.52	306.67	31.6		PASS
Dwell	Mid	306.67	306.67	306.67	31.6	400	PASS
(ms)	High	306.67	307.52	306.67	31.6		PASS

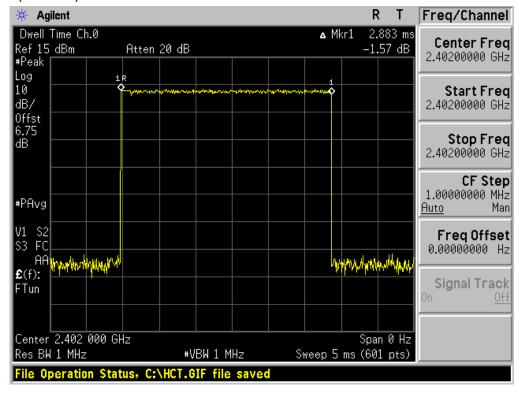
F-01P-02-014 (Rev.00) FCC ID: ZNFD690



Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 38 of 72

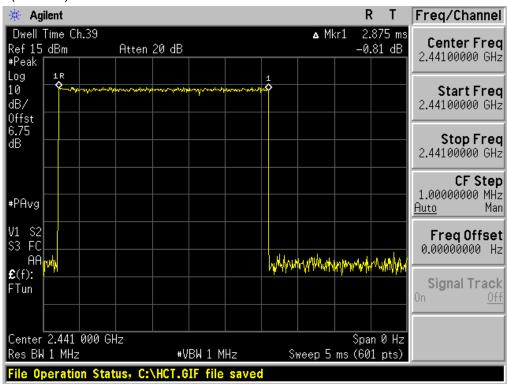
Test Plots (GFSK) Dwell Time (Low-CH)

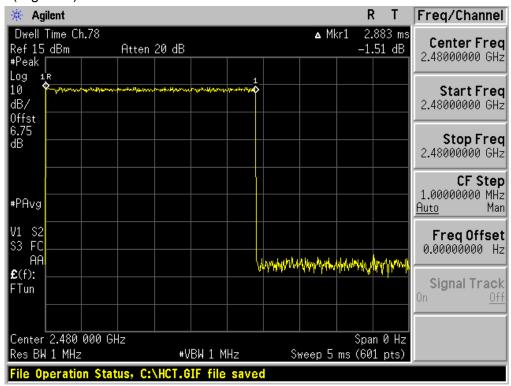

Test Plots (GFSK) Dwell Time (Mid-CH)



Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 39 of 72

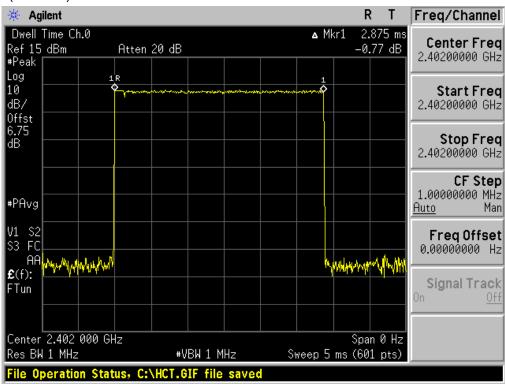
Test Plots (GFSK) Dwell Time (High-CH)

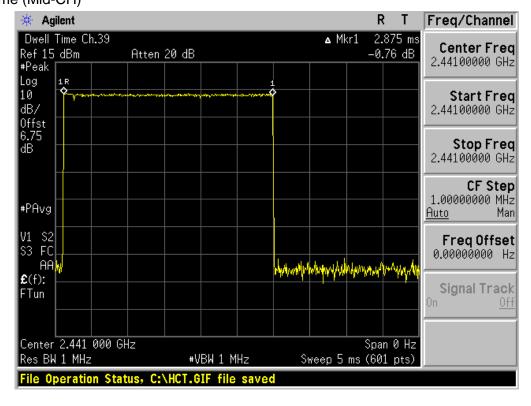

Test Plots (8DPSK) Dwell Time (Low-CH)



Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 40 of 72

Test Plots (8DPSK) Dwell Time (Mid-CH)

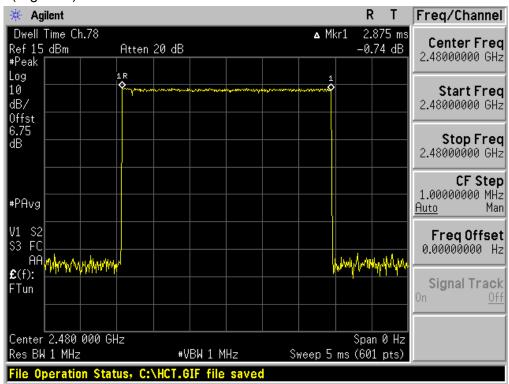

Test Plots (8DPSK) Dwell Time (High-CH)



Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 41 of 72

Test Plots (π/4DQPSK) Dwell Time (Low-CH)

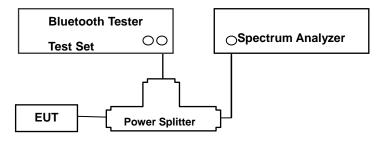
Test Plots (π/4DQPSK) Dwell Time (Mid-CH)



Model: LG-D690 Page 42 of 72 Report No.: HCT-R-1408-F017-2

Test Plots (π/4DQPSK) Dwell Time (High-CH)

Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 43 of 72


8.6 SPURIOUS EMISSIONS

8.6.1 CONDUCTED SPURIOUS EMISSIONS

Test Requirements and limit, §15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

Limit: 20 dBc
Test Configuration

TEST PROCEDURE

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer.

The Spectrum Analyzer is set to (DA 00-705)

- 1. Span = wide enough to capture the peak level of the in-band emission and all spurious emissions(e.g.,harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic.
- 2. RBW = 100 kHz
- 3. VBW ≥ 300 kHz
- 4. Sweep = auto
- 5. Sweep point ≥ 2*span/RBW

Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 44 of 72

- 5. Detector function = peak
- 6. Trace = max hold

Measurements are made over the 30 MHz to 26 GHz range with the transmitter set to the lowest, middle, and highest channels.

This test is performed with hopping off.

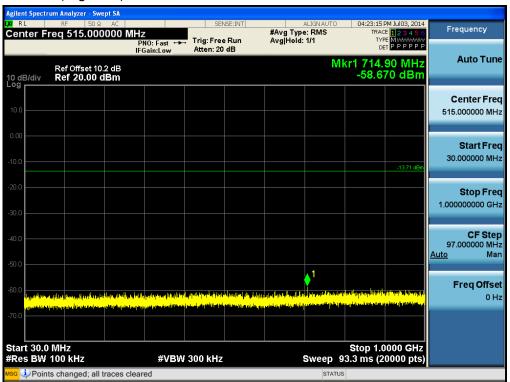
TEST RESULTS

No non-compliance noted.

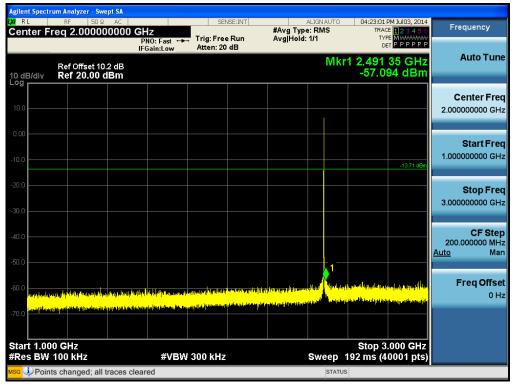
Note: In order to simplify the report, attached plots were only the worst case channel and data rate.

FACTORS FOR FREQUENCY

Freq(MHz) Factor(dB) 30 10.01 100 10.02 200 10.10 300 10.09 400 10.13 500 10.21 600 10.13 700 10.31 800 10.18 900 10.30 1000 10.17	
100 10.02 200 10.10 300 10.09 400 10.13 500 10.21 600 10.13 700 10.31 800 10.18 900 10.30 1000 10.17	
200 10.10 300 10.09 400 10.13 500 10.21 600 10.13 700 10.31 800 10.18 900 10.30 1000 10.17	
300 10.09 400 10.13 500 10.21 600 10.13 700 10.31 800 10.18 900 10.30 1000 10.17	
400 10.13 500 10.21 600 10.13 700 10.31 800 10.18 900 10.30 1000 10.17	
500 10.21 600 10.13 700 10.31 800 10.18 900 10.30 1000 10.17	
600 10.13 700 10.31 800 10.18 900 10.30 1000 10.17	
700 10.31 800 10.18 900 10.30 1000 10.17	
800 10.18 900 10.30 1000 10.17	
900 10.30 1000 10.17	
1000 10.17	
2000	
2000 8.53	
2400* 7.18	
2500* 7.21	
3000 8.59	
4000 10.02	
5000 9.88	
6000 5.70	
7000 10.21	
8000 6.13	
9000 8.79	
10000 12.46	
11000 8.11	
12000 9.52	
13000 8.98	
14000 8.13	
15000 11.82	
16000 6.92	
17000 13.23	
18000 10.25	
19000 10.28	
20000 9.10	
21000 10.94	
22000 11.54	
23000 8.81	
24000 11.71	
25000 9.37	
26000 9.34	

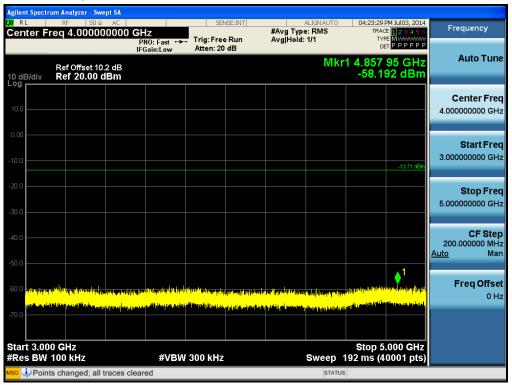

Note: 1. '*' is fundamental frequency range.

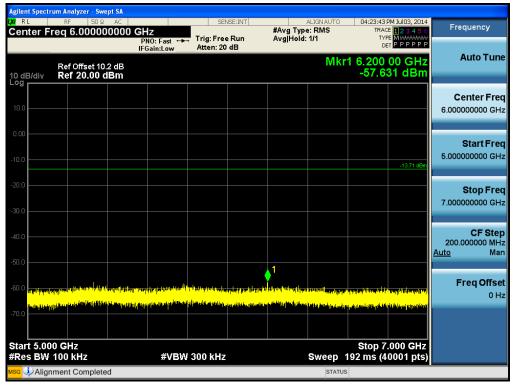
2. Factor = Cable loss + Splitter loss



Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 45 of 72

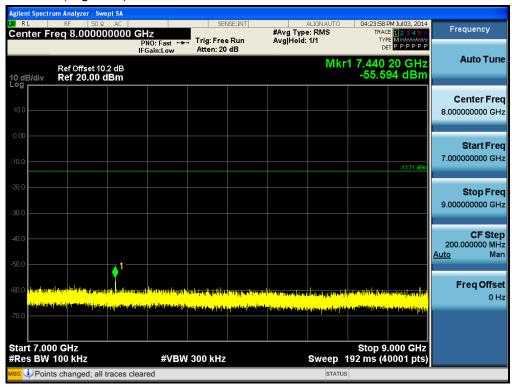
Test Plots (8DPSK)- 30 MHz - 1 GHz Spurious Emission (High-CH)

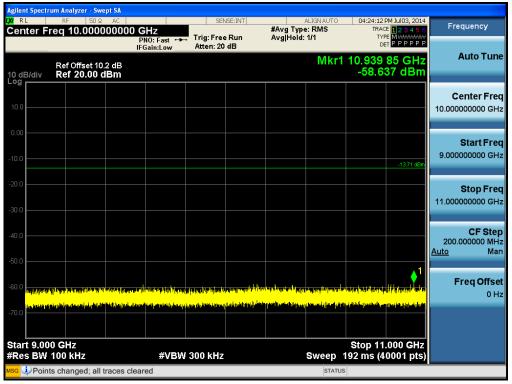

Test Plots (8DPSK)- 1 GHz - 3 GHz Spurious Emission (High-CH)



Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 46 of 72

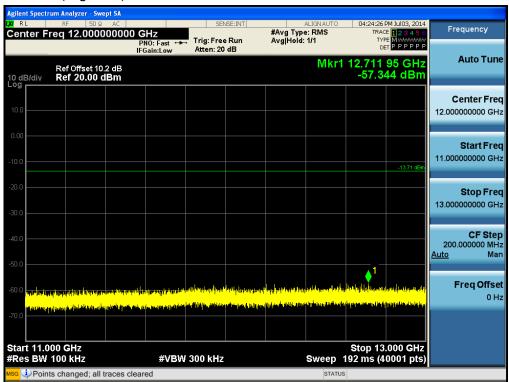
Test Plots (8DPSK)- 3 GHz - 5 GHz Spurious Emission (High-CH)

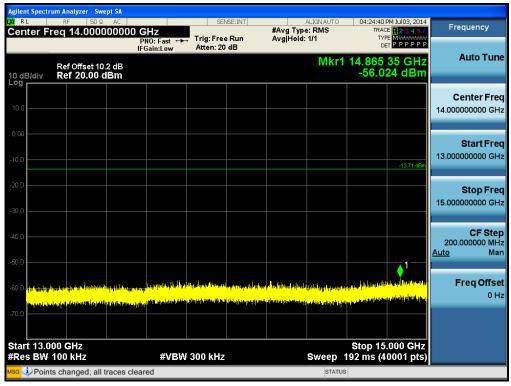

Test Plots (8DPSK)- 5 GHz - 7 GHz Spurious Emission (High-CH)



Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 47 of 72

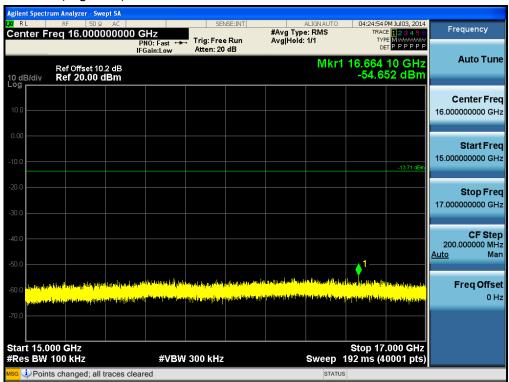
Test Plots (8DPSK)- 7 GHz - 9 GHz Spurious Emission (High-CH)

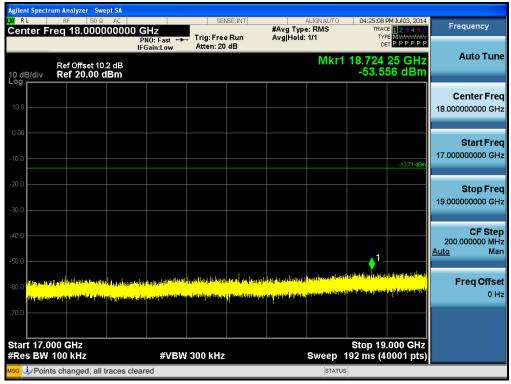

Test Plots (8DPSK)- 9 GHz - 11 GHz Spurious Emission (High-CH)



Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 48 of 72

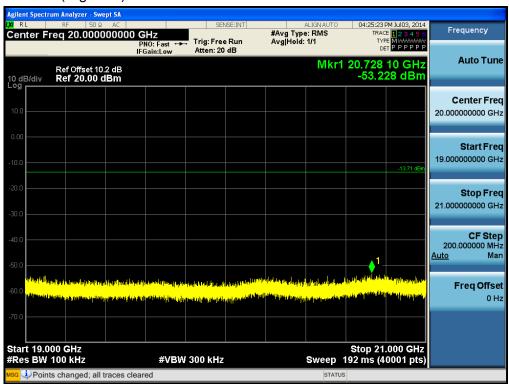
Test Plots (8DPSK)- 11 GHz - 13 GHz Spurious Emission (High-CH)

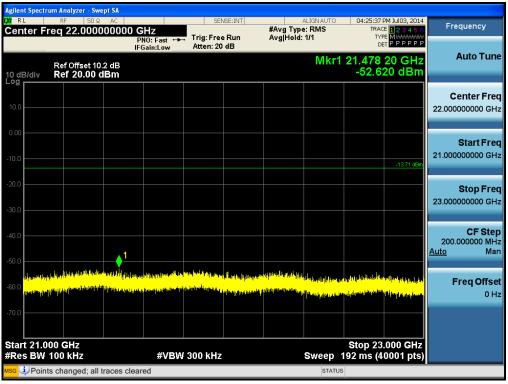

Test Plots (8DPSK)- 13 GHz - 15 GHz Spurious Emission (High-CH)



Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 49 of 72

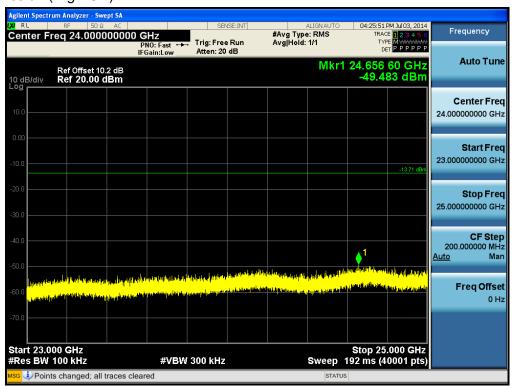
Test Plots (8DPSK)- 15 GHz - 17 GHz Spurious Emission (High-CH)


Test Plots (8DPSK)- 17 GHz - 19 GHz Spurious Emission (High-CH)



Report No.: HCT-R-1408-F017-2 Model: LG-D690

Test Plots (8DPSK)- 19 GHz - 21 GHz Spurious Emission (High-CH)


Test Plots (8DPSK)- 21 GHz - 23 GHz Spurious Emission (High-CH)

Test Plots (8DPSK)- 23 GHz - 25 GHz Spurious Emission (High-CH)

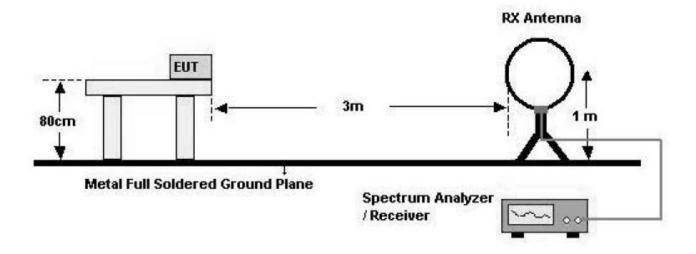
Page 51 of 72

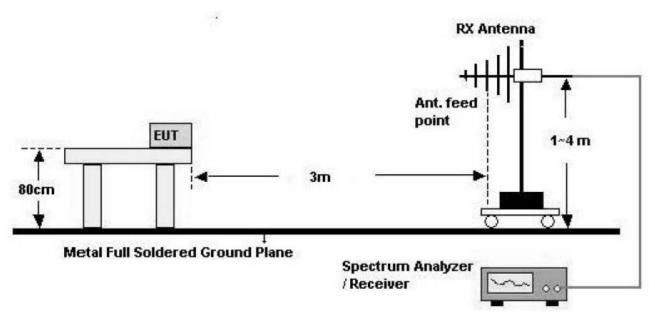
Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 52 of 72

8.6.2 RADIATED SPURIOUS EMISSIONS

LIMIT: §15.247(d), §15.205, §15.209

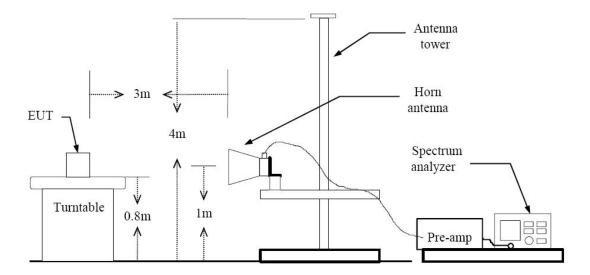
1. 20dBc in any 100kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.


Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 – 1.705	24000/F(kHz)	30		
1.705 – 30	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		


Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 53 of 72

Test Configuration

Below 30 MHz


30 MHz - 1 GHz

Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 54 of 72

Above 1 GHz

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8 m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. Spectrum Setting
 - a. Peak Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 MHz.
 - b. AV Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 kHz ≥ 1/τ Hz, where τ = pulse width in seconds.

Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 55 of 72

TEST RESULTS

9 kHz - 30MHz

Operation Mode: Normal Mode

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin	
Mlz $dB\mu V$ dB/m dB (H/V) $dB\mu V/m$ $dB\mu V/m$ dB								
No Critical peaks found								

Notes:

- 1. Measuring frequencies from 9 kHz to the 30MHz.
- 2. The reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
- 3. Distance extrapolation factor = 40 log (specific distance / test distance) (dB)
- 4. Limit line = specific Limits (dBuV) + Distance extrapolation factor
- 5. This test is performed with hopping off.
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

F-01P-02-014 (Rev.00) FCC ID: ZNFD690

Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 56 of 72

TEST RESULTS

Below 1 GHz

Operation Mode: Normal Mode

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin	
Mlz $dB\mu V$ dB/m dB (H/V) $dB\mu V/m$ $dB\mu V/m$ dB								
No Critical peaks found								

Notes:

- 1. Measuring frequencies from 30 MHz to the 1 GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.
- 3. This test is performed with hopping off.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 57 of 72

Above 1 GHz

Operation Mode: CH Low(GFSK)

Frequency	Reading	※ A.F+CL-AMP GAIN	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	DBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4804	52.45	-4.32	V	48.13	73.98	25.85	PK
4804	38.26	-4.32	V	33.94	53.98	20.04	AV
7206	51.41	5.18	V	56.59	73.98	17.39	PK
7206	37.45	5.18	V	42.63	53.98	11.35	AV
4804	52.63	-4.32	Н	48.31	73.98	25.67	PK
4804	38.71	-4.32	Н	34.39	53.98	19.59	AV
7206	51.73	5.18	Н	56.91	73.98	17.07	PK
7206	37.87	5.18	Н	43.05	53.98	10.93	AV

Operation Mode: CH Low(8DPSK)

Frequency	Reading	※A.F+CL-AMP GAIN	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	DBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4804	51.72	-4.32	V	47.40	73.98	26.58	PK
4804	38.25	-4.32	V	33.93	53.98	20.05	AV
7206	51.39	5.18	V	56.57	73.98	17.41	PK
7206	37.26	5.18	V	42.44	53.98	11.54	AV
4804	51.89	-4.32	Н	47.57	73.98	26.41	PK
4804	38.34	-4.32	Н	34.02	53.98	19.96	AV
7206	51.44	5.18	Н	56.62	73.98	17.36	PK
7206	37.46	5.18	Н	42.64	53.98	11.34	AV

Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 58 of 72

Operation Mode: CH Low($\pi/4DQPSK$)

Frequency	Reading	※ A.F+CL-AMP GAIN	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	DBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4804	52.05	-4.32	V	47.73	73.98	26.25	PK
4804	38.12	-4.32	V	33.80	53.98	20.18	AV
7206	51.24	5.18	V	56.42	73.98	17.56	PK
7206	37.45	5.18	V	42.63	53.98	11.35	AV
4804	52.17	-4.32	Н	47.85	73.98	26.13	PK
4804	38.42	-4.32	Н	34.10	53.98	19.88	AV
7206	51.48	5.18	Н	56.66	73.98	17.32	PK
7206	37.57	5.18	Н	42.75	53.98	11.23	AV

※ A·F: ANTENNA FACTOR

C·L: CABLE LOSS

AMP GAIN: AMPLIFIER GAIN

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. Spectrum setting:
 - a. Peak Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 MHz.
 - b. AV Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 kHz \geq 1/T Hz, where T = pulse width in seconds. We performed using a reduced video BW method was done with the analyzer in linear mode.
- 6. We have done Normal Mode and EDR Mode test.
- 7. This test is performed with hopping off.
- 8. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 59 of 72

Operation Mode: CH Mid(GFSK)

Frequency	Reading	※ A.F+CL-AMP GAIN	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4882	51.32	-3.95	V	47.37	73.98	26.61	PK
4882	37.45	-3.95	V	33.50	53.98	20.48	AV
7323	51.89	5.46	V	57.35	73.98	16.64	PK
7323	38.02	5.46	V	43.48	53.98	10.51	AV
4882	51.44	-3.95	Н	47.49	73.98	26.49	PK
4882	37.53	-3.95	Н	33.58	53.98	20.40	AV
7323	52.19	5.46	Н	57.65	73.98	16.34	PK
7323	38.07	5.46	Н	43.53	53.98	10.46	AV

Operation Mode: CH Mid(8DPSK)

Frequency	Reading	※A.F+CL-AMP GAIN	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	DBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4882	51.47	-3.95	V	47.52	73.98	26.46	PK
4882	37.45	-3.95	V	33.50	53.98	20.48	AV
7323	51.77	5.46	V	57.23	73.98	16.76	PK
7323	37.84	5.46	V	43.30	53.98	10.69	AV
4882	51.52	-3.95	Н	47.57	73.98	26.41	PK
4882	37.64	-3.95	Н	33.69	53.98	20.29	AV
7323	52.02	5.46	Н	57.48	73.98	16.51	PK
7323	37.92	5.46	Н	43.38	53.98	10.61	AV

Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 60 of 72

Operation Mode: CH Mid(π /4DQPSK)

Frequency	Reading	※ A.F+CL-AMP GAIN	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	DBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4882	51.23	-3.95	V	47.28	73.98	26.70	PK
4882	37.23	-3.95	V	33.28	53.98	20.70	AV
7323	51.99	5.46	V	57.45	73.98	16.54	PK
7323	37.75	5.46	V	43.21	53.98	10.78	AV
4882	51.16	-3.95	Н	47.21	73.98	26.77	PK
4882	37.48	-3.95	Н	33.53	53.98	20.45	AV
7323	52.05	5.46	Н	57.51	73.98	16.48	PK
7323	37.88	5.46	Н	43.34	53.98	10.65	AV

※ A·F: ANTENNA FACTOR

C·L: CABLE LOSS

AMP GAIN: AMPLIFIER GAIN

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. Spectrum setting:
 - a. Peak Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 MHz.
 - b. AV Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 kHz \geq 1/T Hz, where T = pulse width in seconds. We performed using a reduced video BW method was done with the analyzer in linear mode.
- 6. We have done Normal Mode and EDR Mode test.
- 7. This test is performed with hopping off.
- 8. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 61 of 72

Operation Mode: CH High(GFSK)

Frequency	Reading	※ A.F+CL-AMP GAIN	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4960	51.28	-3.49	V	47.79	73.98	26.19	PK
4960	37.32	-3.49	V	33.83	53.98	20.15	AV
7440	51.28	5.10	V	56.38	73.98	17.60	PK
7440	37.55	5.10	V	42.65	53.98	11.33	AV
4960	51.36	-3.49	Н	47.87	73.98	26.11	PK
4960	37.39	-3.49	Н	33.90	53.98	20.08	AV
7440	51.53	5.10	Н	56.63	73.98	17.35	PK
7440	37.76	5.10	Н	42.86	53.98	11.12	AV

Operation Mode: CH High(8DPSK)

Frequency	Reading	※ A.F+CL-AMP GAIN	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	DBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4960	51.41	-3.49	V	47.92	73.98	26.06	PK
4960	37.31	-3.49	V	33.82	53.98	20.16	AV
7440	51.28	5.10	V	56.38	73.98	17.60	PK
7440	37.27	5.10	V	42.37	53.98	11.61	AV
4960	51.55	-3.49	Н	48.06	73.98	25.92	PK
4960	37.45	-3.49	Н	33.96	53.98	20.02	AV
7440	51.32	5.10	Н	56.42	73.98	17.56	PK
7440	37.38	5.10	Н	42.48	53.98	11.50	AV

Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 62 of 72

Operation Mode: CH High ($\pi/4DQPSK$)

Frequency	Reading	※ A.F+CL-AMP GAIN	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	DBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4960	51.35	-3.49	V	47.86	73.98	26.12	PK
4960	37.45	-3.49	V	33.96	53.98	20.02	AV
7440	51.37	5.10	V	56.47	73.98	17.51	PK
7440	37.64	5.10	V	42.74	53.98	11.24	AV
4960	51.64	-3.49	Н	48.15	73.98	25.83	PK
4960	37.52	-3.49	Н	34.03	53.98	19.95	AV
7440	51.46	5.10	Н	56.56	73.98	17.42	PK
7440	37.85	5.10	Н	42.95	53.98	11.03	AV

※ A·F: ANTENNA FACTOR

C·L: CABLE LOSS

AMP GAIN: AMPLIFIER GAIN

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. Spectrum setting:
 - a. Peak Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 MHz.
 - b. AV Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 kHz \geq 1/T Hz, where T = pulse width in seconds. We performed using a reduced video BW method was done with the analyzer in linear mode.
- 6. We have done Normal Mode and EDR Mode test.
- 7. This test is performed with hopping off.
- 8. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 63 of 72

8.6.3 RADIATED RESTRICTED BAND EDGES

Test Requirements and limit, §15.247(d), §15.205, §15.209

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in section 15.209(a) (See section 15.205(c).

Operation Mode Normal(GFSK)

Operating Frequency 2402 MHz, 2480 MHz

Channel No CH 0, CH 78

Frequency	Reading	፠ A.F.+CL	Ant. Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement
[MHz]	dBuV	[dB]	[H/V]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	Туре
2390.0	24.49	33.90	Н	0	58.39	73.98	15.59	PK
2390.0	11.75	33.90	Η	-24.73	20.92	53.98	33.06	AV
2390.0	24.17	33.90	V	0	58.07	73.98	15.91	PK
2390.0	11.69	33.90	V	-24.73	20.86	53.98	33.12	AV
2483.5	31.13	33.99	Н	0	65.12	73.98	8.86	PK
2483.5	27.74	33.99	Н	-24.73	37.00	53.98	16.98	AV
2483.5	30.35	33.99	V	0	64.34	73.98	9.64	PK
2483.5	25.68	33.99	V	-24.73	34.94	53.98	19.04	AV

Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 64 of 72

Operation Mode EDR(8DPSK)

Operating Frequency 2402 MHz , 2480 MHz

Channel No CH 0, CH 78

Frequency	Reading	፠ A.F.+CL	Ant. Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement
[MHz]	dBuV	[dB]	[H/V]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	Type
2390.0	24.90	33.90	Η	0	58.80	73.98	15.18	PK
2390.0	11.78	33.90	Н	-24.73	20.95	53.98	33.03	AV
2390.0	24.83	33.90	V	0	58.73	73.98	15.25	PK
2390.0	11.75	33.90	V	-24.73	20.92	53.98	33.06	AV
2483.5	30.93	33.99	Н	0	64.92	73.98	9.06	PK
2483.5	25.88	33.99	Н	-24.73	35.14	53.98	18.84	AV
2483.5	29.54	33.99	V	0	63.53	73.98	10.45	PK
2483.5	24.05	33.99	V	-24.73	33.31	53.98	20.67	AV

Operation Mode EDR(π /4DQPSK)

Operating Frequency 2402 MHz , 2480 MHz

Channel No CH 0, CH 78

Frequency	Reading	፠ A.F.+CL	Ant. Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement
[MHz]	dBuV	[dB]	[H/V]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	Туре
2390.0	24.84	33.90	Н	0	58.74	73.98	15.24	PK
2390.0	11.62	33.90	Н	-24.73	20.79	53.98	33.19	AV
2390.0	24.52	33.90	V	0	58.42	73.98	15.56	PK
2390.0	11.57	33.90	V	-24.73	20.74	53.98	33.24	AV
2483.5	30.68	33.99	Н	0	64.67	73.98	9.31	PK
2483.5	25.81	33.99	Н	-24.73	35.07	53.98	18.91	AV
2483.5	29.23	33.99	V	0	63.22	73.98	10.76	PK
2483.5	24.11	33.99	V	-24.73	33.37	53.98	20.61	AV

※ A⋅F: ANTENNA FACTOR

C-L: CABLE LOSS

AMP GAIN: AMPLIFIER GAIN

Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 65 of 72

Notes:

- 1. Frequency range of measurement = 2483.5 MHz ~ 2500 MHz
- 2. Total = Fundamental Reading Value + Antenna Factor + Cable Loss + Duty Cycle Correction Factor
- 3. Spectrum setting:
 - a. Peak Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 MHz.
 - b. AV Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 kHz ≥ 1/τ Hz, where τ = pulse width in seconds.

We performed using a reduced video BW method was done with the analyzer in linear mode.

- 4. FYI: Duty Cycle Correction Factor (79 channel hopping)
 - a. Time to cycle through all channels= Δ t= τ [ms] x 79 channels = 229.100 ms, where τ = pulse width
 - b. 100 ms/ Δt [ms] = $H \rightarrow$ Round up to next highest integer, H'=1
 - c. Worst Case Dwell Time = T [ms] x H '= 2.900 ms
 - d. Duty Cycle Correction = 20log (Worst Case Dwell Time/ 100ms) dB = -30.752 dB
- 5. Duty Cycle Correction Factor(AFH mode minimum channel number case 20 channels)
 - a. Time to cycle through all channels = Δ t= τ [ms] x 20 channels = 58.00 ms, where τ = pulse width
 - b. 100 ms/ Δt [ms] = $H \rightarrow \text{Round up to next highest integer}$, H = 2
 - c. Worst Case Dwell Time = T [ms] x H '= 5.800 ms
 - d. Duty Cycle Correction(AFH) = 20log (Worst Case Dwell Time/ 100ms) dB = -24.7314 dB
 - e. We applied DCCF in the test result which hopping channel number is 20.
- 6. We have done Normal Mode, EDR Mode.
- 7. This test is performed with hopping off.
- 8. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 66 of 72

8.7 POWERLINE CONDUCTED EMISSIONS

LIMIT

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolt (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Francisco Dongs (MILE)	Limits (dBμV)					
Frequency Range (MHz)	Quasi-peak	Average				
0.15 to 0.50	66 to 56	56 to 46				
0.50 to 5	56	46				
5 to 30	60	50				

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

TEST PROCEDURE

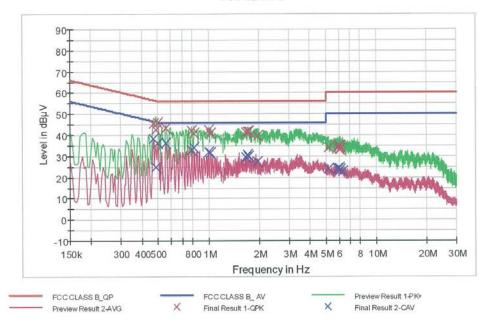
- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors Quasi Peak and Average Detector.
- 5. This test is performed with hopping off and 3 Mbps (8DPSK) data rate of No.78 channel.

Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 67 of 72

■ RESULT PLOTS

Conducted Emissions (Line 1)

EMI Auto Test(2)


HCT TEST Report

Common Information

EUT: LG-D690n Manufacturer: LG

Test Site: SHIELD ROOM
Operating Conditions: BT MODE
Operator Name: KH-SEO

FCC CLASS B

Final Result 1

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.469500	45.6	9.000	Off	L1	9.7	10.9	56.5
0.487500	42.7	9.000	Off	L1	9.7	13.5	56.2
0.500000	46.1	9.000	Off	L1	9.7	9.9	56.0
0.558500	43.6	9.000	Off	L1	9.6	12.4	56.0
0.792500	42.1	9.000	Off	L1	9.7	13.9	56.0
0.819500	40.6	9.000	Off	L1	9.7	15.4	56.0
0.999500	42.5	9.000	Off	L1	9.7	13.5	56.0
1.031000	40.7	9.000	Off	L1	9.7	15.3	56.0
1.679000	41.4	9.000	Off	L1	9.8	14.6	56.0
1.706000	41.9	9.000	Off	L1	9.8	14.1	56.0
1.733000	41.7	9.000	Off	L1	9.8	14.3	56.0
1.967000	39.7	9.000	Off	L1	9.8	16.3	56.0
5.166500	34.2	9.000	Off	L1	9.9	25.8	60.0
5.873000	34.1	9.000	Off	L1	9.9	25.9	60.0
5.985500	33.2	9.000	Off	L1	9.9	26.8	60.0
6.008000	34.6	9.000	Off	L1	9.9	25.4	60.0

7/1/2014 3:25:04

Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 68 of 72

EMI Auto Test(2)

2/2

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
6.035000	34.8	9.000	Off	L1	9.9	25.2	60.0
6.111500	33.1	9.000	Off	L1	9.9	26.9	60.0

Final Result 2

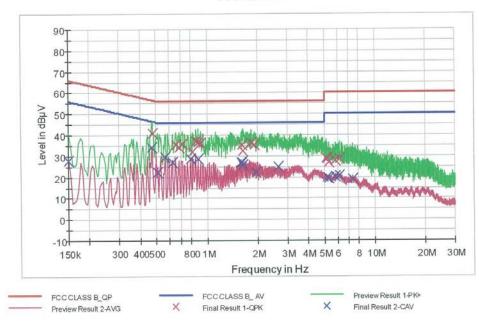
Frequency (MHz)	CAverage (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.469500	38.5	9.000	Off	L1	9.7	8.0	46.5
0.487500	25.0	9.000	Off	L1	9.7	21.2	46.2
0.500000	36.4	9.000	Off	L1	9.7	9.6	46.0
0.558500	36.0	9.000	Off	L1	9.6	10.0	46.0
0.792500	32.8	9.000	Off	L1	9.7	13.2	46.0
0.824000	34.1	9.000	Off	L1	9.7	11.9	46.0
0.999500	32.1	9.000	Off	L1	9.7	13.9	46.0
1.031000	31.8	9,000	Off	L1	9.7	14.2	46.0
1.674500	29.5	9.000	Off	L1	9.8	16.5	46.0
1.706000	30.7	9.000	Off	L1	9.8	15.3	46.0
1.733000	30.1	9.000	Off	L1	9.8	15.9	46.0
1.967000	27.5	9.000	Off	L1	9.8	18.5	46.0
5.166500	23.8	9.000	Off	L1	9.9	26.2	50.0
5.873000	23.9	9.000	Off	L1	9.9	26.1	50.0
5.940500	24.1	9.000	Off	L1	9.9	25.9	50.0
6.008000	24.5	9.000	Off	L1	9.9	25.5	50.0
6.111500	23.7	9.000	Off	L1	9.9	26.3	50.0
6.314000	23.0	9.000	Off	L1	9.9	27.0	50.0

7/1/2014 3:25:04

Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 69 of 72

Conducted Emissions (Line 2)

EMI Auto Test(2)


HCT TEST Report

Common Information

EUT: LG-D690n Manufacturer: LG

Test Site: SHIELD ROOM
Operating Conditions: BT MODE
Operator Name: KH-SEO

FCC CLASS B

Final Result 1

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.474000	41.0	9.000	Off	N	9.7	15.4	56.4
0.653000	35.6	9.000	Off	N	9.7	20.4	56.0
0.684500	34.3	9.000	Off	N	9.7	21.7	56.0
0.711500	35.9	9.000	Off	N	9.7	20.1	56.0
0.819500	32.0	9.000	Off	N	9.7	24.0	56.0
0.860000	37.2	9.000	Off	N	9.7	18.8	56.0
0.887000	36.6	9.000	Off	N	9.7	19.4	56.
0.918500	36.3	9.000	Off	N	9.7	19.7	56.0
1.625000	35.3	9.000	Off	N	9.8	20.7	56.0
1.643000	32.2	9.000	Off	N	9.8	23.8	56.
1.841000	36.3	9.000	Off	N	9.8	19.7	56.
1,922000	35.4	9.000	Off	N	9.8	20.6	56.
5.153000	29.2	9.000	Off	N	9.9	30.8	60.
5.180000	28.7	9.000	Off	N	9.9	31.3	60.
5.288000	27.1	9.000	Off	N	9.9	32.9	60.0
5.841500	27.8	9.000	Off	N	9.9	32.2	60.0

7/1/2014 3:37:35

F-01P-02-014 (Rev.00) FCC ID: ZNFD690

Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 70 of 72

EMI Auto Test(2)

2/2

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
6.116000	28.6	9.000	Off	N	9.9	31.4	60.0
6.129500	28.6	9.000	Off	N	9.9	31.4	60.0

Final Result 2

Frequency (MHz)	CAverage (dBµV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.150000	27.7	9.000	Off	N	9.6	28.3	56.0
0.469500	34.1	9.000	Off	N	9.7	12.4	46.5
0.509000	22.2	9.000	Off	N	9.7	23.8	46.0
0.563000	29.4	9.000	Off	N	9.7	16.6	46.0
0.621500	27.2	9.000	Off	N	9.6	18.8	46.0
0.797000	28.6	9.000	Off	N	9.7	17.4	46.0
0.887000	28.6	9.000	Off	N	9.7	17.4	46.0
1.593500	26.8	9.000	Off	N	9.8	19.2	46.0
1.620500	27.0	9.000	Off	N	9.8	19.0	46.0
1.629500	25.6	9.000	Off	N	9.8	20.4	46.0
1.958000	22.2	9.000	Off	N	9.8	23.8	46.0
2.651000	24.8	9.000	Off	N	9.8	21.2	46.0
5.180000	19.8	9.000	Off	N	9.9	30.2	50.0
5.288000	19.5	9.000	Off	N	9.9	30.5	50.0
5.841500	20.1	9.000	Off	N	9.9	29.9	50.0
6.147500	20.6	9.000	Off	N	9.9	29.4	50.0
6.156500	20.7	9.000	Off	N	9.9	29.3	50.0
7.389500	19.0	9.000	Off	N	10.0	31.0	50.0

3:37:35

7/1/2014

Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 71 of 72

9. LIST OF TEST EQUIPMENT

9.1 LIST OF TEST EQUIPMENT(Conducted Test)

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Calibration Due	Serial No.
Rohde & Schwarz	ENV216/ LISN	01/29/2014	Annual	01/29/2015	100073
Agilent	E4440A/ Spectrum Analyzer	04/09/2014	Annual	04/09/2015	US45303008
Agilent	N9020A/ SIGNAL ANALYZER	05/23/2014	Annual	05/23/2015	MY51110063
Agilent	N1911A/Power Meter	01/24/2014	Annual	01/24/2015	MY45100523
Agilent	N1921A /POWER SENSOR	07/11/2013	Annual	07/11/2014	MY45241059
Hewlett Packard	11636B/Power Divider	10/22/2013	Annual	10/22/2014	11377
Agilent	87300B/Directional Coupler	12/18/2013	Annual	12/18/2014	3116A03621
Hewlett Packard	11667B / Power Splitter	01/27/2014	Annual	01/27/2015	10545
DIGITAL	EP-3010 /DC POWER SUPPLY	10/29/2013	Annual	10/29/2014	3110117
ITECH	IT6720 / DC POWER SUPPLY	11/05/2013	Annual	11/05/2014	0100021562870011 99
TESCOM	TC-3000C / BLUETOOTH TESTER	04/11/2014	Annual	04/11/2015	3000C000276
Rohde & Schwarz	CBT / BLUETOOTH TESTER	05/07/2014	Annual	05/07/2015	100422
Agilent	8493C / Attenuator(10 dB)	07/24/2013	Annual	07/24/2014	76649
WEINSCHEL	2-3 / Attenuator(3 dB)	10/28/2013	Annual	10/28/2014	BR0617

Report No.: HCT-R-1408-F017-2 Model: LG-D690 Page 72 of 72

9.2 LIST OF TEST EQUIPMENT(Radiated Test)

Manufacturer	Model / Equipment	Calibration	Calibration	Calibration	Serial No.
		Date	Interval	Due	
Schwarzbeck	VULB 9160/ TRILOG Antenna	12/17/2012	Biennial	12/17/2014	3150
Rohde & Schwarz	ESCI / EMI TEST RECEIVER	01/24/2014	Annual	01/24/2015	100584
HD	MA240/ Antenna Position Tower	N/A	N/A	N/A	556
EMCO	1050/ Turn Table	N/A	N/A	N/A	114
HD GmbH	HD 100/ Controller	N/A	N/A	N/A	13
HD GmbH	KMS 560/ SlideBar	N/A	N/A	N/A	12
Rohde & Schwarz	SCU-18/ Signal Conditioning Unit	09/10/2013	Annual	09/10/2014	10094
CERNEX	CBL18265035 / POWER AMP	07/24/2013	Annual	07/24/2014	22966
CERNEX	CBL26405040 / POWER AMP	04/04/2014	Annual	04/04/2015	19660
Schwarzbeck	BBHA 9120D/ Horn Antenna	07/05/2013	Biennial	07/05/2015	1151
Schwarzbeck	BBHA9170 / Horn Antenna(15 GHz ~ 40 GHz)	10/30/2012	Biennial	10/30/2014	BBHA9170124
Rohde & Schwarz	FSP / Spectrum Analyzer	01/24/2014	Annual	01/24/2015	839117/011
Wainwright Instrument	WHF3.0/18G-10EF / High Pass Filter	02/03/2014	Annual	02/03/2015	F6
Wainwright Instrument	WHNX6.0/26.5G-6SS / High Pass Filter	04/09/2014	Annual	04/09/2015	1
Wainwright Instrument	WHNX7.0/18G-8SS / High Pass Filter	04/04/2014	Annual	04/04/2015	29
Wainwright Instrument	WRCJ2400/2483.5-2370/2520-60/14SS / Band Reject Filter	06/17/2014	Annual	06/17/2015	1
TESCOM	TC-3000C / BLUETOOTH TESTER	04/11/2014	Annual	04/11/2015	3000C000276
Rohde & Schwarz	CBT / BLUETOOTH TESTER	05/07/2014	Annual	05/07/2015	100422
Rohde & Schwarz	LOOP ANTENNA	08/14/2012	Biennial	08/14/2014	100179
CERNEX	CBL06185030 / POWER AMP	07/24/2013	Annual	07/24/2014	22965
CERNEX	CBLU1183540 / POWER AMP	07/24/2013	Annual	07/24/2014	22964