

Variant FCC RF Test Report

APPLICANT : Texas Instruments Incorporated
EQUIPMENT : WiFi and Bluetooth Module
BRAND NAME : Texas Instruments
MODEL NAME : WL18MODGB
FCC ID : Z64-WL18SBMOD
STANDARD : FCC Part 15 Subpart C §15.247
CLASSIFICATION : (DTS) Digital Transmission System

The product was received on Oct. 23, 2014 and testing was completed on Aug. 14, 2015. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL INC.
No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.

TABLE OF CONTENTS

REVISION HISTORY.....	3
SUMMARY OF TEST RESULT	4
1 GENERAL DESCRIPTION.....	5
1.1 Applicant	5
1.2 Manufacturer.....	5
1.3 Product Feature of Equipment Under Test.....	5
1.4 Product Specification subjective to this standard	6
1.5 Modification of EUT	6
1.6 Testing Location	7
1.7 Applicable Standards.....	7
2 TEST CONFIGURATION OF EQUIPMENT UNDER TEST.....	8
2.1 Carrier Frequency and Channel	8
2.2 Pre-Scanned RF Power.....	9
2.3 Test Mode	10
2.4 Connection Diagram of Test System.....	11
2.5 Support Unit used in test configuration and system	11
2.6 EUT Operation Test Setup	11
2.7 Measurement Results Explanation Example.....	12
3 TEST RESULT.....	13
3.1 Peak Output Power Measurement	13
3.2 Radiated Band Edges and Spurious Emission Measurement	15
3.3 Antenna Requirements	19
4 LIST OF MEASURING EQUIPMENT.....	20
5 UNCERTAINTY OF EVALUATION.....	21
APPENDIX A. TEST RESULT OF CONDUCTED POWER	
APPENDIX B. TEST RESULT OF CONDUCTED SPURIOUS EMISSION	
APPENDIX C. TEST RESULT OF RADIATED SPURIOUS EMISSION	
APPENDIX D. SETUP PHOTOGRAPHS	

REVISION HISTORY

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(b)	Power Output Measurement	$\leq 30\text{dBm}$	Pass	-
3.2	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 4.02 dB at 51.330 MHz
3.3	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

1 General Description

1.1 Applicant

Texas Instruments Incorporated
12500 TI Boulevard, M/S 8751, Dallas, TX 75243, USA

1.2 Manufacturer

Jorjin Technologies Inc
17F, No.239, Sec. 1, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

1.3 Product Feature of Equipment Under Test

Product Feature	
Equipment	WiFi and Bluetooth Module
Brand Name	Texas Instruments
Model Name	WL18MODGB
FCC ID	Z64-WL18SBMOD
EUT supports Radios application	WLAN 11b/g/n HT20/HT40 Bluetooth v4.0 EDR/LE
EUT Stage	Identical Prototype

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification subjective to this standard

Product Specification subjective to this standard																	
Tx/Rx Channel Frequency Range		802.11b/g/n : 2412 MHz ~ 2462 MHz															
Maximum Output Power to antenna		<Ant. 1> 802.11b : 17.93 dBm (0.0607 W) 802.11g : 20.58 dBm (0.1143 W) 802.11n HT40 : 20.18 dBm (0.1042 W) SISO<Ant. 1> 802.11n HT20 : 20.55 dBm (0.1135 W) MIMO<Ant. 1 + 2> 802.11n HT20 : 23.52 dBm (0.2249 W)															
Type of Modulation		802.11b : DSSS (DBPSK / DQPSK / CCK) 802.11g/n : OFDM (BPSK / QPSK / 16QAM / 64QAM)															
Antenna Function for Transmitter		<table border="1"><tr><td></td><td>Chain Port 0 Ant. 1</td><td>Chain Port 1 Ant. 2</td></tr><tr><td>802.11 b</td><td>V</td><td>-</td></tr><tr><td>802.11 g</td><td>V</td><td>-</td></tr><tr><td>802.11 n SISO</td><td>V</td><td>-</td></tr><tr><td>802.11 n MIMO</td><td>V</td><td>V</td></tr></table>		Chain Port 0 Ant. 1	Chain Port 1 Ant. 2	802.11 b	V	-	802.11 g	V	-	802.11 n SISO	V	-	802.11 n MIMO	V	V
	Chain Port 0 Ant. 1	Chain Port 1 Ant. 2															
802.11 b	V	-															
802.11 g	V	-															
802.11 n SISO	V	-															
802.11 n MIMO	V	V															

Antenna Information		
Antenna Type	Brand	2.4GHz~2.5GHz
PCB	Ethertronics	-0.6
Dipole	LSR	2
PCB	Laird	2
Chip	Pulse	3.2
PIFA	LSR	2
Chip	TDK	2.4

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sportun Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code : 1190) and the FCC designation No. TW1022 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.
Test Site Location	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C. TEL: +886-3-327-3456 FAX: +886-3-328-4978
Test Site No.	Sportun Site No. TH05-HY

Test Site	SPORTON INTERNATIONAL INC.
Test Site Location	No. 58 , Aly. 75, Ln. 564, Wenhua 3rd Rd., Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C. TEL: +886-3-327-0855
Test Site No.	Sportun Site No. 03CH10

Note: The test site complies with ANSI C63.4 2009 requirement.

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r03
- FCC KDB 662911 D01 Multiple Transmitter Output v02r01.
- ANSI C63.10-2009

Remark:

1. All test items were verified and recorded according to the standards and without any deviation during the test.
2. FCC permits the use of the 1.5 meter table for frequency above 1GHz as an alternative in C63.10-2013 through inquiry tracking number 961829.
3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiated emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).

The final configuration from all the combinations and the worst-case data rates were investigated by measuring the maximum power across all the data rates and modulation modes under section 2.2.

Based on the worst configuration found above, the RF power setting is set individually to meet FCC compliance limit for the final conducted and radiated tests shown in section 2.3.

2.1 Carrier Frequency and Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
2400-2483.5 MHz	1	2412	7	2442
	2	2417	8	2447
	3	2422	9	2452
	4	2427	10	2457
	5	2432	11	2462
	6	2437		

2.2 Pre-Scanned RF Power

Preliminary tests were performed in different data rate and data rate associated with the highest power were chosen for full test shown in the following tables.

<Ant. 1>

802.11b			
Data Rate (MHz)	1M bps		
Channel	CH 01	CH 06	CH 11
Peak Power (dBm)	17.93	17.73	17.51

802.11g			
Data Rate (MHz)	6Mbps		
Channel	CH 01	CH 06	CH 11
Peak Power (dBm)	20.17	20.58	19.82

2.4GHz 802.11n HT40			
Data Rate (MHz)	MCS0		
Channel	CH 03	CH 06	CH 09
Peak Power (dBm)	19.21	20.18	18.91

SISO<Ant. 1>

2.4GHz 802.11n HT20			
Data Rate (MHz)	MCS0		
Channel	CH 01	CH 06	CH 11
Peak Power (dBm)	20.15	20.55	19.66

MIMO<Ant. 1 + 2>

2.4GHz 802.11n HT20			
Data Rate (MHz)	MCS12		
Channel	CH 01	CH 06	CH 11
Peak Power (dBm)	23.33	23.52	23.14

Note: MIMO Ant. 1+2 is a calculated result from sum of the power MIMO Ant. 1 and MIMO Ant. 2.

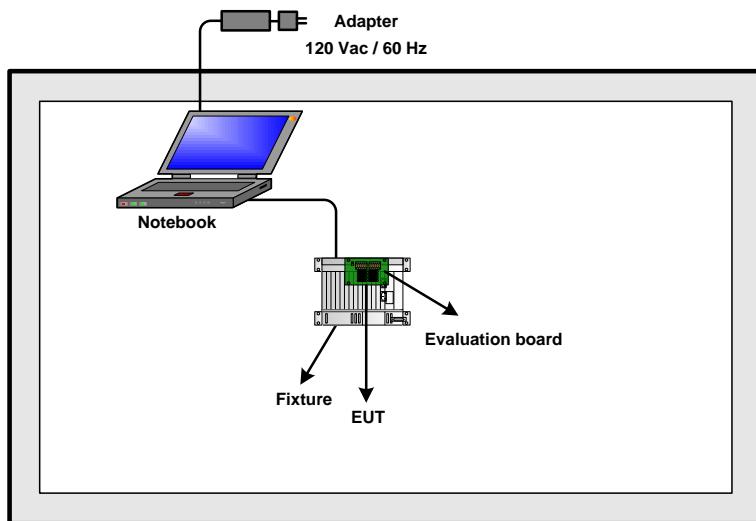
2.3 Test Mode

Final test mode of conducted test items and radiated spurious emissions are considering the modulation and worse data rates from the power table described in section 2.2.

Single Antenna

<2.4GHz>

Modulation	Data Rate
802.11b	1 Mbps
802.11g	6 Mbps
802.11n HT20	MCS0
802.11n HT40	MCS0


MIMO Antenna

<2.4GHz>

Modulation	Data Rate
802.11n HT20	MCS12

2.4 Connection Diagram of Test System

<WLAN Tx Mode>

2.5 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Notebook	Lenovo	E335 (with WiFi module TP00034A)	FCC DoC/ Contains FCC ID:QDS-BRCM1058	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m

2.6 EUT Operation Test Setup

For WLAN function, programmed RF utility, "Rttt" installed in the EUT make the EUT provide functions like channel selection and power level for continuous transmitting and receiving signals.

2.7 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

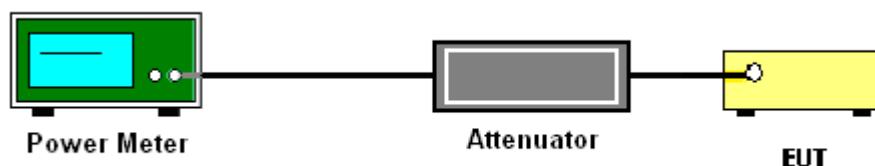
$$= 4.2 + 10 = 14.2 \text{ (dB)}$$

3 Test Result

3.1 Peak Output Power Measurement

3.1.1 Limit of Peak Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna with directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.


3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

1. The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v03r03 section 9.1.2 PKPM1 Peak power meter method.
2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
3. Set to the maximum power setting and enable the EUT transmit continuously.
4. Measure the conducted output power and record the results in the test report.
5. For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

3.1.4 Test Setup

3.1.5 Test Result of Peak Output Power

Please refer to Appendix A.

3.1.6 Test Result of Average output Power (Reporting Only)

Please refer to Appendix A.

3.2 Radiated Band Edges and Spurious Emission Measurement

3.2.1 Limit of Radiated band edge and Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

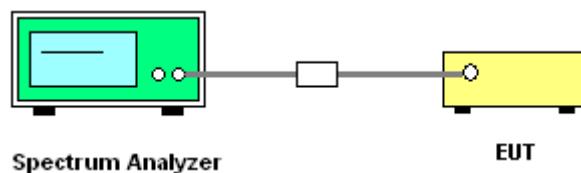
Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 – 960	200	3
Above 960	500	3

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedure

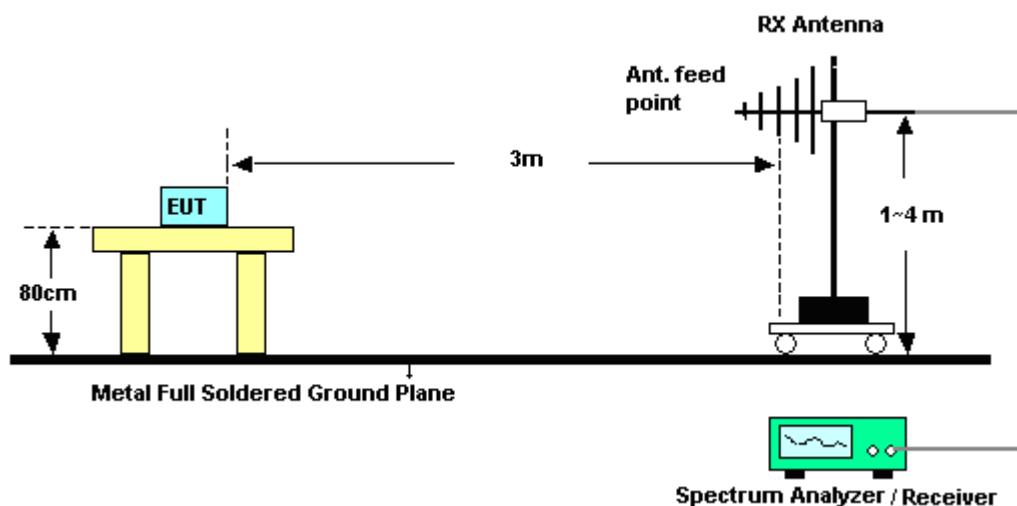
1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r03.
2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
5. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level
6. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
7. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for $f < 1$ GHz; VBW \geq RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \geq 1$ GHz for peak measurement.

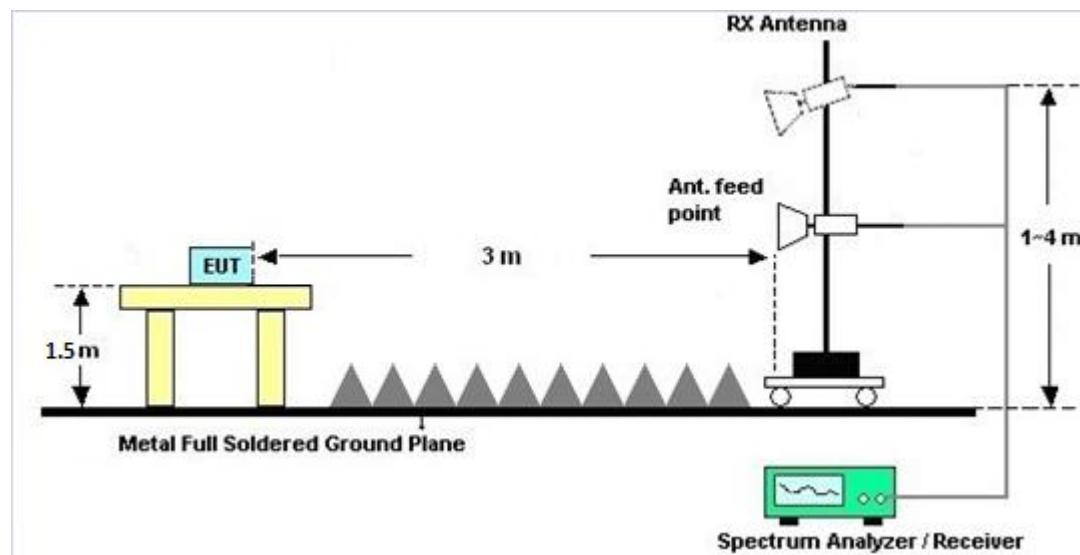

For average measurement:

- VBW = 10 Hz, when duty cycle is no less than 98 percent.
- VBW $\geq 1/T$, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Antenna	Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
1	802.11b	40.76	640	1.5625	3kHz
1	802.11g	32.69	340	2.94	3kHz
1	2.4GHz 802.11n HT20	33.02	350	2.86	3kHz
1	2.4GHz 802.11n HT40	30.39	310	3.23	10kHz
1+2	2.4GHz 802.11n HT20 for Ant 1	30.88	210	4.76	10kHz
1+2	2.4GHz 802.11n HT20 for Ant 2	30.88	210	4.76	10kHz

3.2.4 Test Setup


For Conducted Measurement Setup:


For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

3.2.5 Test Results of Radiated Emissions (9kHz ~ 30MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

3.2.6 Test Result of Conducted Spurious at Band Edges in the Restricted Band

Please refer to Appendix B.

3.2.7 Test Result of Conducted Spurious Emission in the Restricted Band

Please refer to Appendix B.

3.2.8 Test Result of Cabinet Radiated Spurious at Band Edges

Please refer to Appendix C.

3.2.9 Test Result of Cabinet Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C.

3.3 Antenna Requirements

3.3.1 Standard Applicable

If directional gain of transmitting Antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. For the fixed point-to-point operation, the power shall be reduced by one dB for every 3 dB that the directional gain of the Antenna exceeds 6 dBi. The use of a permanently attached Antenna or of an Antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.3.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.3.3 Antenna Gain

FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

For CDD transmissions, directional gain is calculated as

Directional gain = $G_{ANT} + \text{Array Gain}$, where Array Gain is as follows.

For power spectral density (PSD) measurements on all devices,

Array Gain = $10 \log(N_{ANT}/N_{SS}=1)$ dB.

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \leq 4$.

The EUT supports only MCS 12-15 for MIMO mode, hence $N_{SS}=2$.

The power and PSD limit should be modified if the directional gain of EUT is over 6 dBi,

The directional gain “DG” is calculated as following table.

			DG for Power	DG for PSD	Power Limit	PSD Limit
	Ant. 1 (dBi)	Ant. 2 (dBi)	Power (dBi)	PSD (dBi)	Reduction (dB)	Reduction (dB)
2.4 GHz	3.20	3.20	3.20	3.20	0.00	0.00

Power Limit Reduction = DG(Power) – 6dBi, (min = 0)

PSD Limit Reduction = DG(PSD) – 6dBi, (min = 0)

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Power Meter	Anritsu	ML2495A	1218006	300MHz~40GHz	Oct. 18, 2014	Aug. 07, 2015~ Aug. 13, 2015	Oct. 17, 2015	Conducted (TH05-HY)
Power Sensor	Anritsu	MA2411B	1126017	300MHz~40GHz	Oct. 18, 2014	Aug. 07, 2015~ Aug. 13, 2015	Oct. 17, 2015	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP40	100055	9kHz-40GHz	Jun. 18, 2015	Aug. 07, 2015~ Aug. 13, 2015	Jun. 17, 2016	Conducted (TH05-HY)
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170 584	18GHz- 40GHz	Nov. 03, 2014	Aug. 13, 2015~ Aug. 14, 2015	Nov. 02, 2015	Radiation (03CH10-HY)
Loop Antenna	TESEQ	HLA 6120	31244	9kHz~30MHz	Feb. 02, 2015	Aug. 13, 2015~ Aug. 14, 2015	Feb. 01, 2016	Radiation (03CH10-HY)
Amplifier	SONOMA	310N	187311	9kHz~1GHz	Nov. 24, 2014	Aug. 13, 2015~ Aug. 14, 2015	Nov. 23, 2015	Radiation (03CH10-HY)
Bilog Antenna	TESEQ	CBL 6111D	35413	30MHz~1GHz	Oct. 24, 2014	Aug. 13, 2015~ Aug. 14, 2015	Oct. 23, 2015	Radiation (03CH10-HY)
EMI Test Receiver	Keysight	N9038A	MY541300 85	20Hz ~ 8.4GHz	Nov. 05, 2014	Aug. 13, 2015~ Aug. 14, 2015	Nov. 04, 2015	Radiation (03CH10-HY)
Horn Antenna	SCHWARZBECK	BBHA 9120 D	9120D-132 5	1GHz ~ 18GHz	Oct. 03, 2014	Aug. 13, 2015~ Aug. 14, 2015	Oct. 02, 2015	Radiation (03CH10-HY)
Preamplifier	Keysight	83017A	MY532700 78	1GHz~26.5GHz	Nov. 20, 2014	Aug. 13, 2015~ Aug. 14, 2015	Nov. 19, 2015	Radiation (03CH10-HY)
Spectrum Analyzer	Keysight	N9010A	MY542004 85	10Hz ~ 44GHz	Oct. 14, 2014	Aug. 13, 2015~ Aug. 14, 2015	Oct. 13, 2015	Radiation (03CH10-HY)
Controller	EMEC	EM 1000	N/A	Control Turn table & Ant Mast	N/A	Aug. 13, 2015~ Aug. 14, 2015	N/A	Radiation (03CH10-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1~4m	N/A	Aug. 13, 2015~ Aug. 14, 2015	N/A	Radiation (03CH10-HY)
Turn Table	EMEC	TT 2200	N/A	0-360 degree	N/A	Aug. 13, 2015~ Aug. 14, 2015	N/A	Radiation (03CH10-HY)
Preamplifier	MITEQ	JS44-180040 00-33-8P	1840917	18GHz ~ 40GHz	Jun. 02, 2015	Aug. 13, 2015~ Aug. 14, 2015	Jun. 01, 2016	Radiation (03CH10-HY)

5 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	4.90
---	------

APPENDIX A. TEST RESULT OF CONDUCTED POWER