

TEST REPORT

Product Name: Mid-Tier 802.11ac Wi-Fi Access Point

Trade Mark: GRANDSTREAM

Model No. / HVIN: GWN7602

Report Number: 191120011RFC-1

Test Standards: FCC 47 CFR Part 15 Subpart E

RSS-247 Issue 2

RSS-Gen Issue 5

FCC ID: YZZGWN7602

IC: 11964A-GWN7602

Test Result: PASS

Date of Issue: February 28, 2020

Prepared for:

Grandstream Networks, Inc.
126 Brookline Ave., 3rd Floor Boston, MA 02215, USA

Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd.
16/F, Block A, Building 6, Baoneng Science and Technology Park,
Qingxiang Road No.1, Longhua New District, Shenzhen, China
TEL: +86-755-2823 0888
FAX: +86-755-2823 0886

Prepared by:

Reviewed by:

Kevin Liang
Assistant Manager

Approved by:

Billy Li
Technical Director

Date: February 28, 2020

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

Tel: +86-755-28230888

Fax: +86-755-28230886

E-mail: info@uttlab.com

<http://www.uttlab.com>

UTTR-RF-RSS247-V1.0

Version

Version No.	Date	Description
V1.0	February 28, 2020	Original

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China
Tel: +86-755-28230888 Fax: +86-755-28230886 E-mail: info@uttlab.com <http://www.uttlab.com>
UTTR-RF-RSS247-V1.0

CONTENTS

1. GENERAL INFORMATION	4
1.1 CLIENT INFORMATION	4
1.2 EUT INFORMATION	4
1.2.1 GENERAL DESCRIPTION OF EUT	4
1.2.2 DESCRIPTION OF ACCESSORIES.....	4
1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD.....	4
1.4 OTHER INFORMATION.....	6
1.5 DESCRIPTION OF SUPPORT UNITS	6
1.6 TEST LOCATION.....	6
1.7 TEST FACILITY.....	6
1.8 DEVIATION FROM STANDARDS	7
1.9 ABNORMALITIES FROM STANDARD CONDITIONS.....	7
1.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER	7
1.11 MEASUREMENT UNCERTAINTY	7
2. TEST SUMMARY	8
3. EQUIPMENT LIST	9
4. TEST CONFIGURATION	10
4.1 ENVIRONMENTAL CONDITIONS FOR TESTING	10
4.1.1 NORMAL OR EXTREME TEST CONDITIONS	10
4.1.2 RECORD OF NORMAL ENVIRONMENT.....	10
4.2 TEST CHANNELS	11
4.3 EUT TEST STATUS	11
4.4 PRE-SCAN.....	12
4.5 TEST SETUP	13
4.5.1 FOR RADIATED EMISSIONS TEST SETUP	13
4.5.2 FOR CONDUCTED EMISSIONS TEST SETUP	14
4.5.3 FOR CONDUCTED RF TEST SETUP	15
4.6 SYSTEM TEST CONFIGURATION	16
4.7 DUTY CYCLE	17
5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION	21
5.1 REFERENCE DOCUMENTS FOR TESTING	21
5.2 ANTENNA REQUIREMENT	21
5.3 26 dB BANDWIDTH & OCCUPIED BANDWIDTH.....	22
5.4 MAXIMUM CONDUCTED OUTPUT POWER OR E.I.R.P	35
5.5 PEAK POWER SPECTRAL DENSITY	40
5.6 RADIATED EMISSIONS AND BAND EDGE MEASUREMENT.....	56
5.7 AC POWER LINE CONDUCTED EMISSION	81
APPENDIX 1 PHOTOS OF TEST SETUP	84
APPENDIX 2 PHOTOS OF EUT CONSTRUCTIONAL DETAILS	84

1. GENERAL INFORMATION

1.1 CLIENT INFORMATION

Applicant:	Grandstream Networks, Inc.
Address of Applicant:	126 Brookline Ave., 3rd Floor Boston, MA 02215, USA
Manufacturer:	Grandstream Networks, Inc.
Address of Manufacturer:	126 Brookline Ave., 3rd Floor Boston, MA 02215, USA

1.2 EUT INFORMATION

1.2.1 General Description of EUT

Product Name:	Mid-Tier 802.11ac Wi-Fi Access Point		
Model No. / HVIN:	GWN7602		
Trade Mark:	GRANDSTREAM		
DUT Stage:	Identical Prototype		
EUT Supports Function:	2.4 GHz ISM Band:	IEEE 802.11b/g/n	
	5 GHz U-NII Bands:	5 150 MHz to 5 250 MHz	IEEE 802.11a/n/ac
		5 250 MHz to 5 350 MHz	IEEE 802.11a/n/ac
		5 470 MHz to 5 725 MHz	IEEE 802.11a/n/ac
		5 725 MHz to 5 850 MHz	IEEE 802.11a/n/ac
Software Version:	1.0.0.4		
Hardware Version:	V1		
Sample Received Date:	November 20, 2019		
Sample Tested Date:	November 20, 2019 to February 19, 2020		

1.2.2 Description of Accessories

None.

1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD

Frequency Bands:	5150 MHz to 5250 MHz (U-NII-1) 5250 MHz to 5350 MHz (U-NII-2A) 5470 MHz to 5725 MHz (U-NII-2C) 5725 MHz to 5850 MHz (U-NII-3)
Frequency Ranges:	5180 MHz to 5240 MHz
	5260 MHz to 5320 MHz
	5500 MHz to 5700 MHz
	5745 MHz to 5825 MHz
Support Standards:	IEEE 802.11a/n/ac
TPC Function:	Not Support
DFS Operational mode:	Master
Type of Modulation:	IEEE 802.11a: OFDM(64QAM, 16QAM, QPSK, BPSK)
	IEEE 802.11n: OFDM(64QAM, 16QAM, QPSK, BPSK)
	IEEE 802.11ac: OFDM(64QAM, 16QAM, QPSK, BPSK)
Channel Spacing:	IEEE 802.11a/n-HT20/ac-VHT20: 20 MHz
	IEEE 802.11n-HT40/ac-VHT40: 40 MHz
	IEEE 802.11ac-VHT80: 80 MHz
Data Rate:	IEEE 802.11a: Up to 54 Mbps

Shenzhen UnionTrust Quality and Technology Co., Ltd.

	IEEE 802.11n-HT20: Up to MCS15		
	IEEE 802.11n-HT40: Up to MCS15		
	IEEE 802.11ac-VHT20: Up to MCS8		
	IEEE 802.11ac-VHT40: Up to MCS9		
	IEEE 802.11ac-VHT80: Up to MCS9		
Number of Channels:	5150 MHz to 5250 MHz: 4 for IEEE 802.11a/n-HT20/ac-VHT20 2 for IEEE 802.11n-HT40)/ac-VHT40 1 for IEEE 802.11acVHT80		
	5250 MHz to 5350 MHz: 4 for IEEE 802.11a/n-HT20/ac-VHT20 2 for IEEE 802.11n-HT40)/ac-VHT40 1 for IEEE 802.11acVHT80		
	5470 MHz to 5725 MHz: 11 for IEEE 802.11a/n-HT20/ac-VHT20 5 for IEEE 802.11n-HT40/ac-VHT40 2 for IEEE 802.11ac-VHT80		
	5725 MHz to 5850 MHz: 5 for IEEE 802.11a/n-HT20/ac-VHT20 2 for IEEE 802.11n-HT40/ac-VHT40 1 for IEEE 802.11ac-VHT80		
Antenna Type:	Chain 0		
	Chain 1		
Antenna Gain:	Chain 0	5150 MHz to 5250 MHz: 3.5 dBi	
		5250 MHz to 5350 MHz: 3.5 dBi	
		5470 MHz to 5725 MHz: 3.5 dBi	
		5725 MHz to 5850 MHz: 3.5 dBi	
	Chain 1	5150 MHz to 5250 MHz: 3.0 dBi	
		5250 MHz to 5350 MHz: 3.0 dBi	
		5470 MHz to 5725 MHz: 3.0 dBi	
		5725 MHz to 5850 MHz: 3.0 dBi	
Maximum conducted output power (dBm):	MIMO_Chain 0+1	U-NII-2A	U-NII-2C
	IEEE 802.11a:	16.28	18.67
	IEEE 802.11n-HT20:	15.75	18.33
	IEEE 802.11n-HT40:	12.06	14.73
	IEEE 802.11ac-VHT20:	15.64	18.41
	IEEE 802.11ac-VHT40:	11.97	14.87
	IEEE 802.11ac-VHT80:	10.65	13.17

1.4 OTHER INFORMATION

Operation Frequency Each of Channel				
	U-NII-1	U-NII-2A	U-NII-2C	U-NII-3
IEEE 802.11a, IEEE 802.11n-HT20, IEEE 802.11ac-VHT20	$f = 5000 + 5k, k = 32 + 4n$			$f = 5000 + 5k, k = 145 + 4n$
	$n = 1, \dots, 4$	$n = 5, \dots, 8$	$n = 17, \dots, 27$	$n = 1, \dots, 5$
IEEE 802.11n-HT40, IEEE 802.11ac-VHT40	$f = 5000 + 5k, k = 30 + 8n$			$f = 5000 + 5k, k = 143 + 8n$
	$n = 1, 2$	$n = 1, \dots, 5$	$n = 9, \dots, 13$	$n = 1, 2$
IEEE 802.11ac-VHT80	$f = 5000 + 5k, k = 26 + 16n$			$f = 5000 + 5k, k = 155$
	$n = 1$	$n = 1, 2$	$n = 5, 6$	

Note:
 f is the operating frequency (MHz);
 k is the operating channel.

1.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested with associated equipment below.

1) Support Equipment

Description	Manufacturer	Model No.	Serial Number	Supplied by
Notebook	Lenovo	E450	SL10G10780	UnionTrust

2) Support Cable

Cable No.	Description	Connector	Length	Supplied by
1	Antenna Cable	SMA	0.3 Meter	UnionTrust
2	Lan*3	RJ-45	1.5 Meter	UnionTrust

1.6 TEST LOCATION

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China 518109

Telephone: +86 (0) 755 2823 0888

Fax: +86 (0) 755 2823 0886

1.7 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

Tel: +86-755-28230888

Fax: +86-755-28230886

E-mail: info@uttlab.com

<http://www.uttlab.com>

UTTR-RF-RSS247-V1.0

requirements in the identified field of testing.

ISED Wireless Device Testing Laboratories

CAB identifier: CN0032

FCC Accredited Lab.

Designation Number: CN1194

Test Firm Registration Number: 259480

1.8 DEVIATION FROM STANDARDS

None.

1.9 ABNORMALITIES FROM STANDARD CONDITIONS

None.

1.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER

None.

1.11 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Measurement Uncertainty
1	Conducted emission 9KHz-150KHz	±3.8 dB
2	Conducted emission 150KHz-30MHz	±3.4 dB
3	Radiated emission 9KHz-30MHz	±4.9 dB
4	Radiated emission 30MHz-1GHz	±4.7 dB
5	Radiated emission 1GHz-18GHz	±5.1 dB
6	Radiated emission 18GHz-26GHz	±5.2 dB
7	Radiated emission 26GHz-40GHz	±5.2 dB

2. TEST SUMMARY

FCC 47 CFR Part 15 Subpart E Test Cases			
Test Item	Test Requirement	Test Method	Result
Antenna Requirement	FCC 47 CFR Part 15 Subpart C Section 15.203 FCC 47 CFR Part 15 Subpart E Section 15.407(a)(1)(2) RSS-Gen Issue 5, Section 6.8	N/A	PASS
26 dB emission bandwidth	FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(2)(5) RSS-247 Issue 2 Section 6.2.1.2	KDB 789033 D02 v02r01 Section C.1	PASS
Occupied Bandwidth	RSS-Gen Issue 5, Section 6.7	RSS-Gen Issue 5, section 6.7	PASS
Maximum conducted output power	FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3) RSS-247 Issue 2 Section 6.2.1.1/6.2.2.1/6.2.3.1/6.2.4.1	KDB 789033 D02 v02r01 Section E.3.a (Method PM)	PASS
Peak Power Spectral Density	FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3) RSS-247 Issue 2 Section 6.2.1.1/6.2.2.1/6.2.3.1/6.2.4.1	KDB 789033 D02 v02r01 Section F	PASS
Radiated Emissions and Band Edge Measurement	FCC 47 CFR Part 15 Subpart E Section 15.407 (b)(1)(2)(3)(4)(6) FCC 47 CFR Part 15 Subpart C Section 15.209/205 RSS-247 Issue 2 Section 6.2.1.2/6.2.2.2/6.2.3.2/6.2.4.2	KDB 789033 D02 v02r01 Section G.3, G.4, G.5, and G.6	PASS
Dynamic Frequency Selection	FCC 47 CFR Part 15 Subpart E Section 15.407 (h) RSS-247 Issue 2 Section 6.3	KDB 905462 D03 Client Without DFS New Rules v01r02	PASS (See Note 1)
AC Power Line Conducted Emission	FCC 47 CFR Part 15 Subpart E Section 15.407 (b)(6) FCC 47 CFR Part 15 Subpart C Section 15.207 RSS-Gen Issue 5, Section 8.8	ANSI C63.10-2013, Section 6.2.	PASS

Note:

1. Please refer to Report No.: 191120011RFC-2 for DFS Test report.

3. EQUIPMENT LIST

Radiated Emission Test Equipment List						
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)
<input checked="" type="checkbox"/>	3M Chamber & Accessory Equipment	ETS-LINDGREN	3M	N/A	Dec. 03, 2018	Dec. 03, 2021
<input checked="" type="checkbox"/>	Receiver	R&S	ESIB26	100114	Nov. 24, 2019	Nov. 23, 2020
<input checked="" type="checkbox"/>	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Nov. 24, 2019	Nov. 23, 2020
<input checked="" type="checkbox"/>	Loop Antenna	ETS-LINDGREN	6502	00202525	Nov. 16, 2019	Nov. 15, 2020
<input checked="" type="checkbox"/>	Broadband Antenna	ETS-LINDGREN	3142E	00201566	Nov. 16, 2019	Nov. 15, 2020
<input checked="" type="checkbox"/>	6dB Attenuator	Talent	RA6A5-N-18	18103001	Nov. 16, 2019	Nov. 15, 2020
<input checked="" type="checkbox"/>	Preamplifier	HP	8447F	2805A02960	Nov. 24, 2019	Nov. 23, 2020
<input type="checkbox"/>	Broadband Antenna (Pre-amplifier)	ETS-LINDGREN	3142E-PA	00201891	Nov. 16, 2019	Nov. 15, 2020
<input type="checkbox"/>	6dB Attenuator	Talent	RA6A5-N-18	18103002	Nov. 24, 2019	Nov. 23, 2020
<input type="checkbox"/>	Horn Antenna	ETS-LINDGREN	3117	00164202	Nov. 16, 2019	Nov. 15, 2020
<input checked="" type="checkbox"/>	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3117-PA	00201874	Nov. 16, 2019	Nov. 15, 2020
<input type="checkbox"/>	Horn Antenna	ETS-LINDGREN	3116C	00200180	Nov. 16, 2019	Nov. 15, 2020
<input checked="" type="checkbox"/>	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3116C-PA	00202652	Nov. 16, 2019	Nov. 15, 2020
<input checked="" type="checkbox"/>	Multi device Controller	ETS-LINDGREN	7006-001	00160105	N/A	N/A
<input type="checkbox"/>	Band Rejection Filter (2400MHz~2500MHz)	Micro-Tronics	BRM50702	G248	Nov. 16, 2019	Nov. 15, 2020
<input checked="" type="checkbox"/>	Band Rejection Filter (5150MHz~5880MHz)	Micro-Tronics	BRM50716	G1868	Nov. 16, 2019	Nov. 15, 2020
<input checked="" type="checkbox"/>	Test Software	Audix	e3	Software Version: 9.160323		

Conducted Emission Test Equipment List						
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)
<input checked="" type="checkbox"/>	Receiver	R&S	ESR7	1316.3003K07-101181-K3	Nov. 24, 2019	Nov. 23, 2020
<input checked="" type="checkbox"/>	Pulse Limiter	R&S	ESH3-Z2	0357.8810.54	Nov. 24, 2019	Nov. 23, 2020
<input checked="" type="checkbox"/>	LISN	R&S	ESH2-Z5	860014/024	Nov. 24, 2019	Nov. 23, 2020
<input type="checkbox"/>	LISN	ETS-Lindgren	3816/2SH	00201088	Nov. 24, 2019	Nov. 23, 2020
<input checked="" type="checkbox"/>	Test Software	Audix	e3	Software Version: 9.160323		

Conducted RF test Equipment List						
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)
<input checked="" type="checkbox"/>	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Nov. 24, 2019	Nov. 23, 2020
<input checked="" type="checkbox"/>	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430035	Nov. 24, 2019	Nov. 23, 2020
<input type="checkbox"/>	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430023	Nov. 24, 2019	Nov. 23, 2020
<input checked="" type="checkbox"/>	MXG X-Series RF Vector Signal Generator	KEYSIGHT	N5182B	MY51350267	Nov. 24, 2019	Nov. 23, 2020

4. TEST CONFIGURATION

4.1 ENVIRONMENTAL CONDITIONS FOR TESTING

4.1.1 Normal or Extreme Test Conditions

Environment Parameter	Selected Values During Tests		
Test Condition	Ambient		
	Temperature (°C)	Voltage	Relative Humidity (%)
NT/NV	+15 to +35	120V~60Hz and 240V~50Hz	20 to 75

Remark:

1) NV: Normal Voltage; NT: Normal Temperature

4.1.2 Record of Normal Environment

Test Item	Temperature (°C)	Relative Humidity (%)	Pressure (kPa)	Tested by
26 dB emission bandwidth	24.5	49	99.8	Hank Wu
6 dB bandwidth	24.5	49	99.8	Hank Wu
Occupied Bandwidth	24.5	49	99.8	Hank Wu
Maximum conducted output power	24.5	49	99.8	Hank Wu
Peak Power Spectral Density	24.5	49	99.8	Hank Wu
Radiated Emissions and Band Edge Measurement	25.9	58	100.06	Fire Huo
Dynamic Frequency Selection	24.5	49	99.8	Hank Wu
AC Power Line Conducted Emission	24.9	46	100.74	Bert Xiong

4.2 TEST CHANNELS

Mode	Tx/Rx Frequency	Test RF Channel Lists		
		Lowest(L)	Middle(M)	Highest(H)
IEEE 802.11a IEEE 802.11n-HT20 IEEE 802.11ac-VHT20	5250 MHz to 5350 MHz	Channel 52	Channel 60	Channel 64
		5260 MHz	5300 MHz	5320 MHz
	5470 MHz to 5725 MHz	Channel 100	Channel 116	Channel 140
		5500 MHz	5580 MHz	5700 MHz
IEEE 802.11n-HT40 IEEE 802.11ac-VHT40	5250 MHz to 5350 MHz	Channel 54	--	Channel 62
		5270 MHz	--	5310 MHz
	5470 MHz to 5725 MHz	Channel 102	Channel 110	Channel 134
		5510 MHz	5550 MHz	5670 MHz
IEEE 802.11ac-VHT80	5250 MHz to 5350 MHz	--	Channel 58	--
		--	5290 MHz	--
	5470 MHz to 5725 MHz	Channel 106	--	--
		5530 MHz	--	--

4.3 EUT TEST STATUS

Mode	Tx/Rx Function	Description
IEEE 802.11a/n/ac	1Tx/1Rx or 2Tx/2Rx	1. Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.

Power Setting					
Mode	U-NII-2A		U-NII-2C		
	Chain 0	Chain 1	Chain 0	Chain 1	
IEEE 802.11a	14	13	14	13	
IEEE 802.11n-HT20	15	14	15	14	
IEEE 802.11n-HT40	0D	0C	0D	0C	
IEEE 802.11ac-VHT20	15	14	15	14	
IEEE 802.11ac-VHT40	0D	0C	0D	0C	
IEEE 802.11ac-VHT80	0A	9	0A	9	

Test Software
Test software name: MT76xxE_AP;

4.4 PRE-SCAN

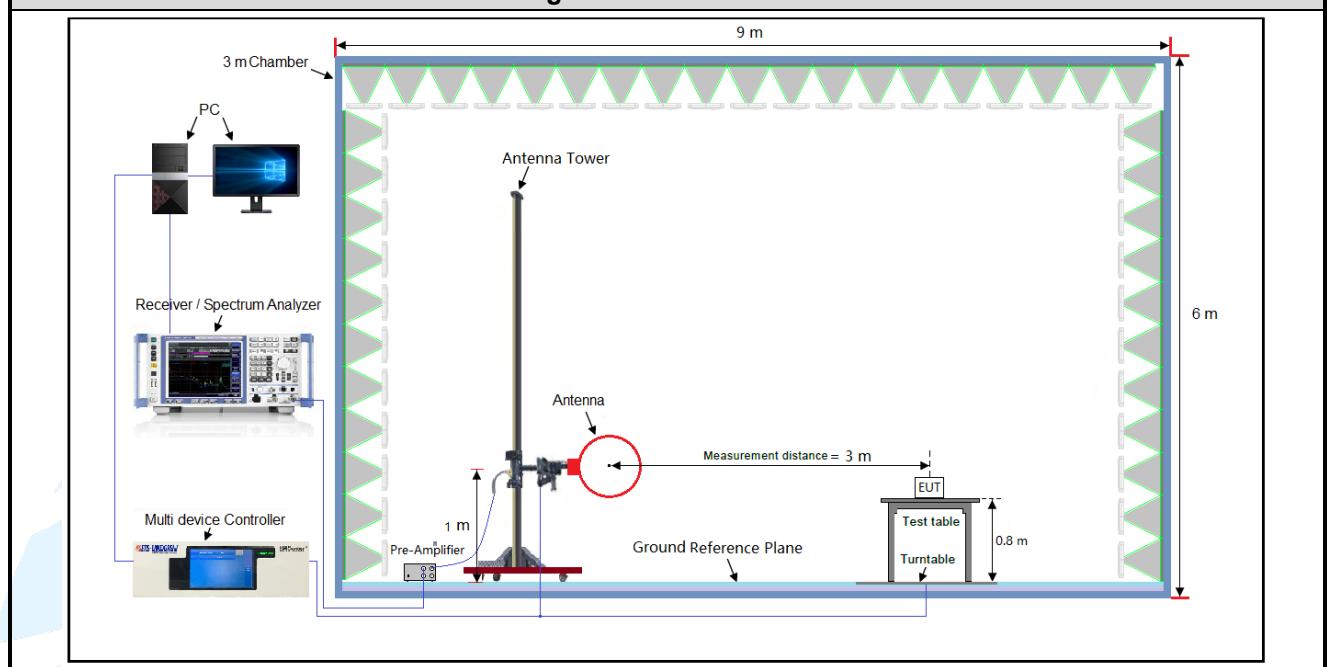
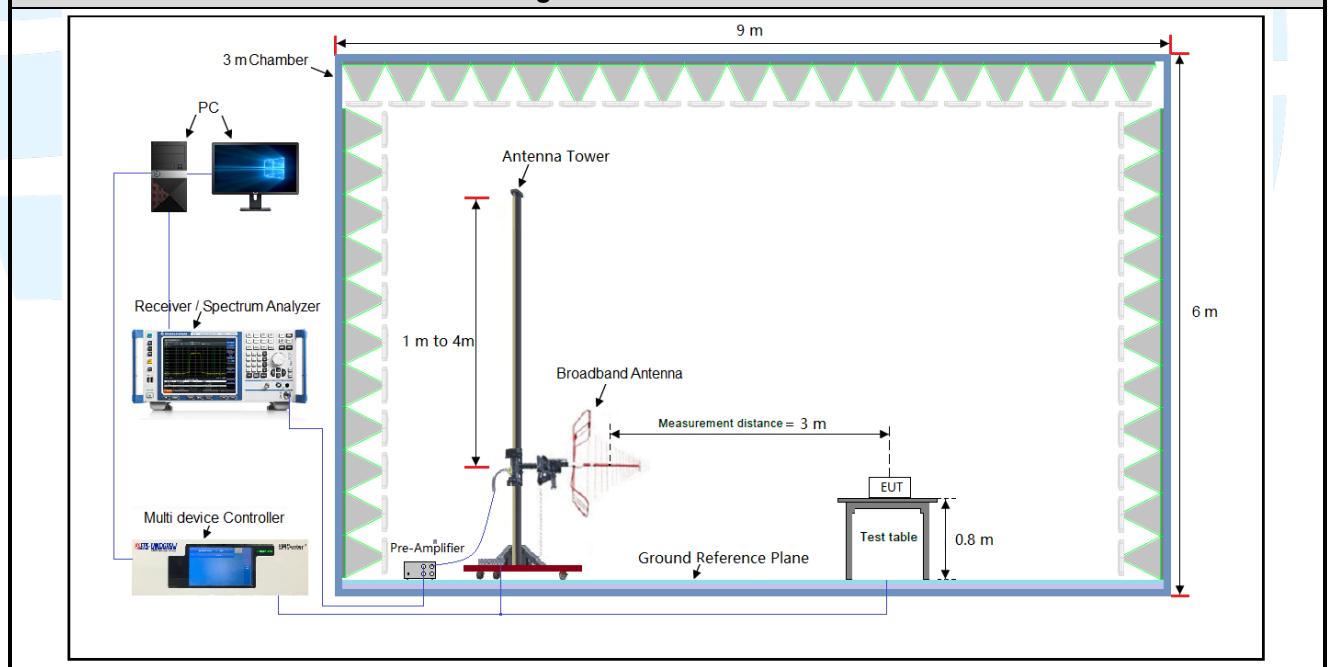
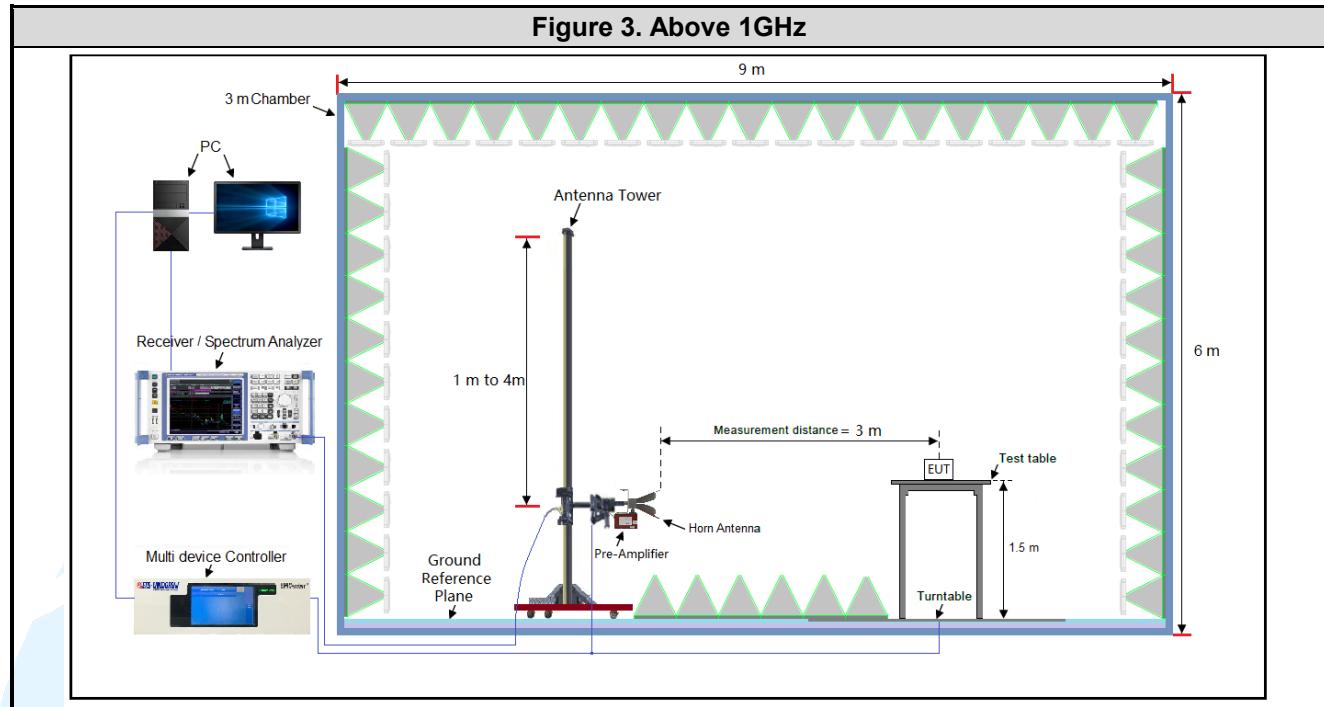
Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and data rate. Following data rate was (were) selected for the final test as listed below

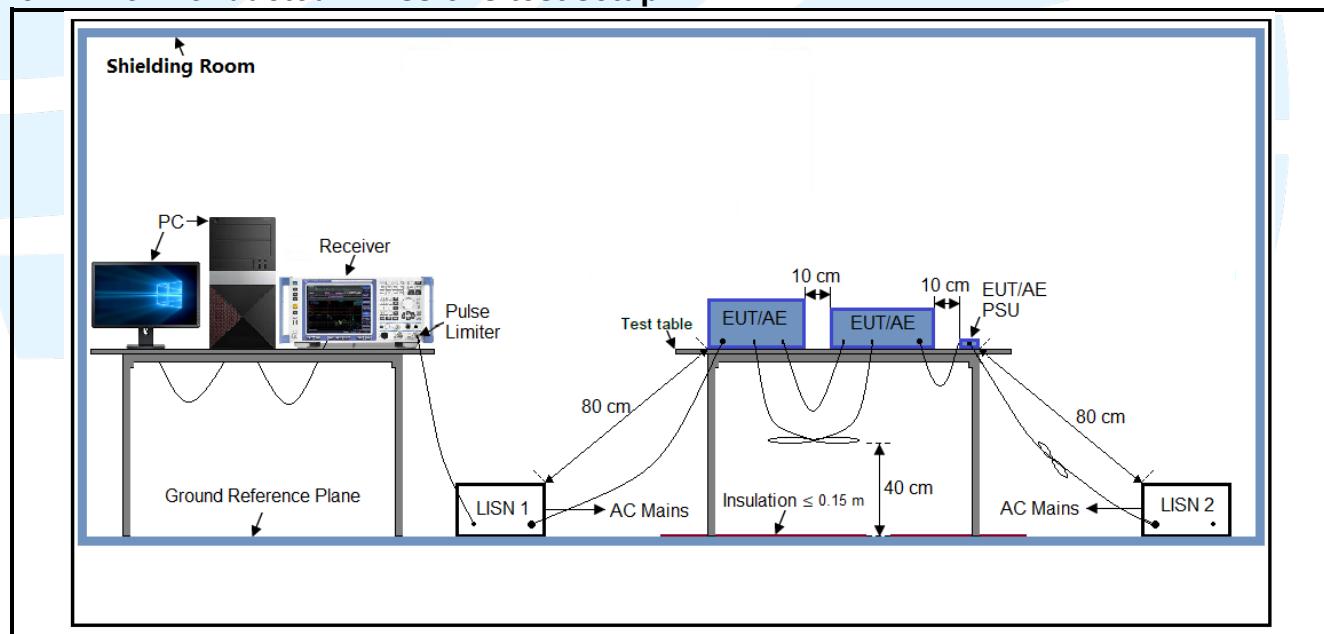
Mode	Worst-case data rates
IEEE 802.11a	6 Mbps
IEEE 802.11n-HT20	MCS0
IEEE 802.11n-HT40	MCS0
IEEE 802.11ac-VHT20	MCS0
IEEE 802.11ac-VHT40	MCS0
IEEE 802.11ac-VHT80	MCS0

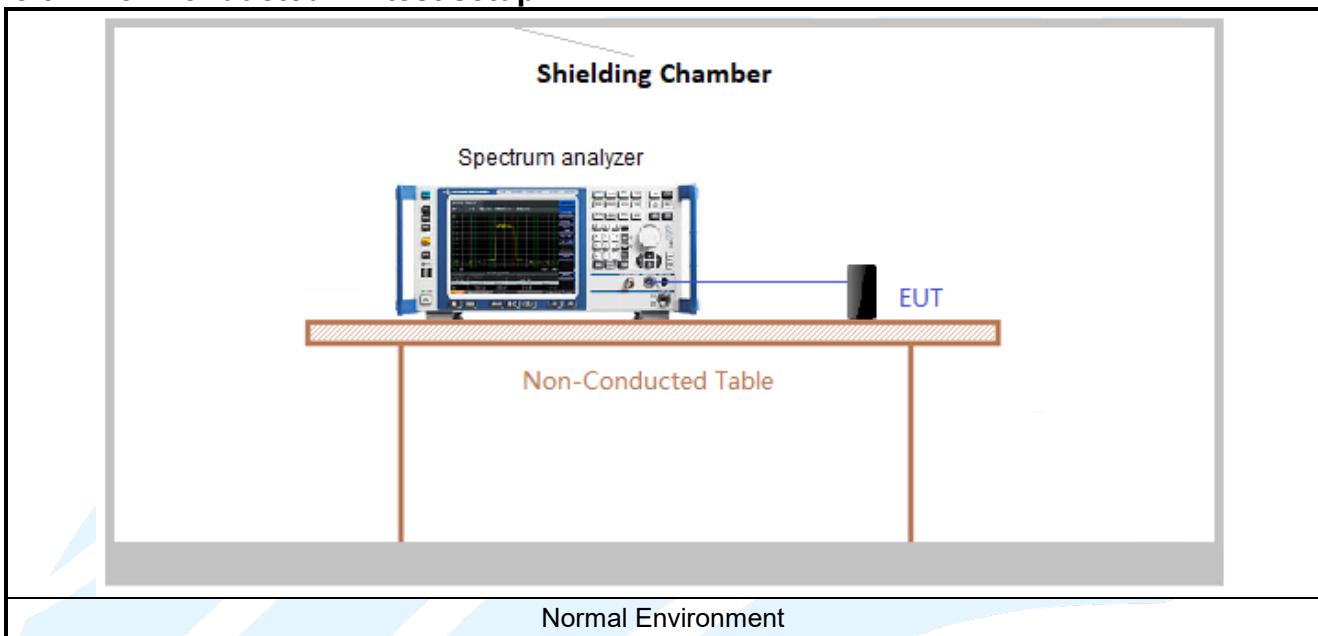
4.5 TEST SETUP

4.5.1 For Radiated Emissions test setup

Figure 1. Below 30MHz


Figure 2. 30MHz to 1GHz


Figure 3. Above 1GHz

4.5.2 For Conducted Emissions test setup

4.5.3 For Conducted RF test setup

4.6 SYSTEM TEST CONFIGURATION

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. Only the worst case data were recorded in this test report.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. Therefore, all final radiated testing was performed with the EUT in (see table below) orientation.

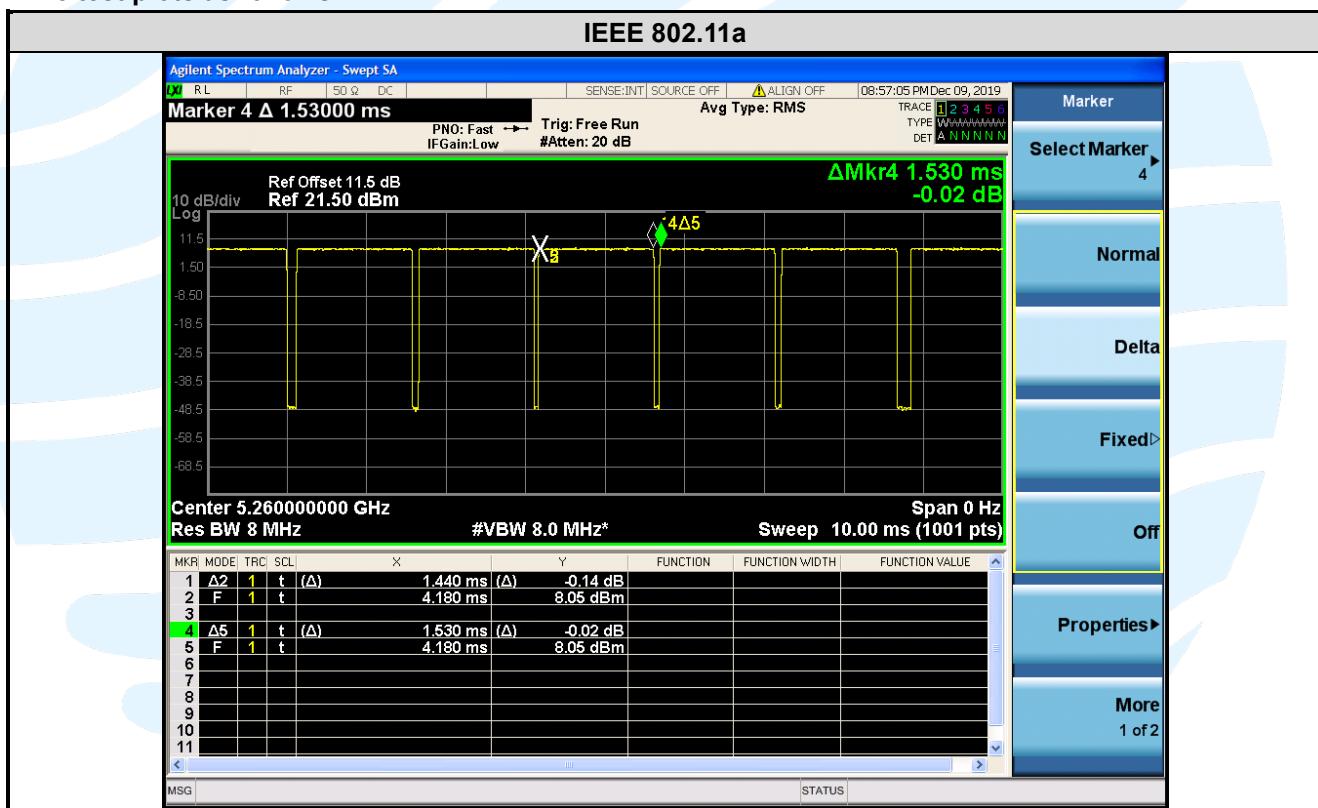
Frequency	Mode	Antenna Port	Worst-case axis positioning
Above 1GHz	2TX	Chain 0+1	Y axis

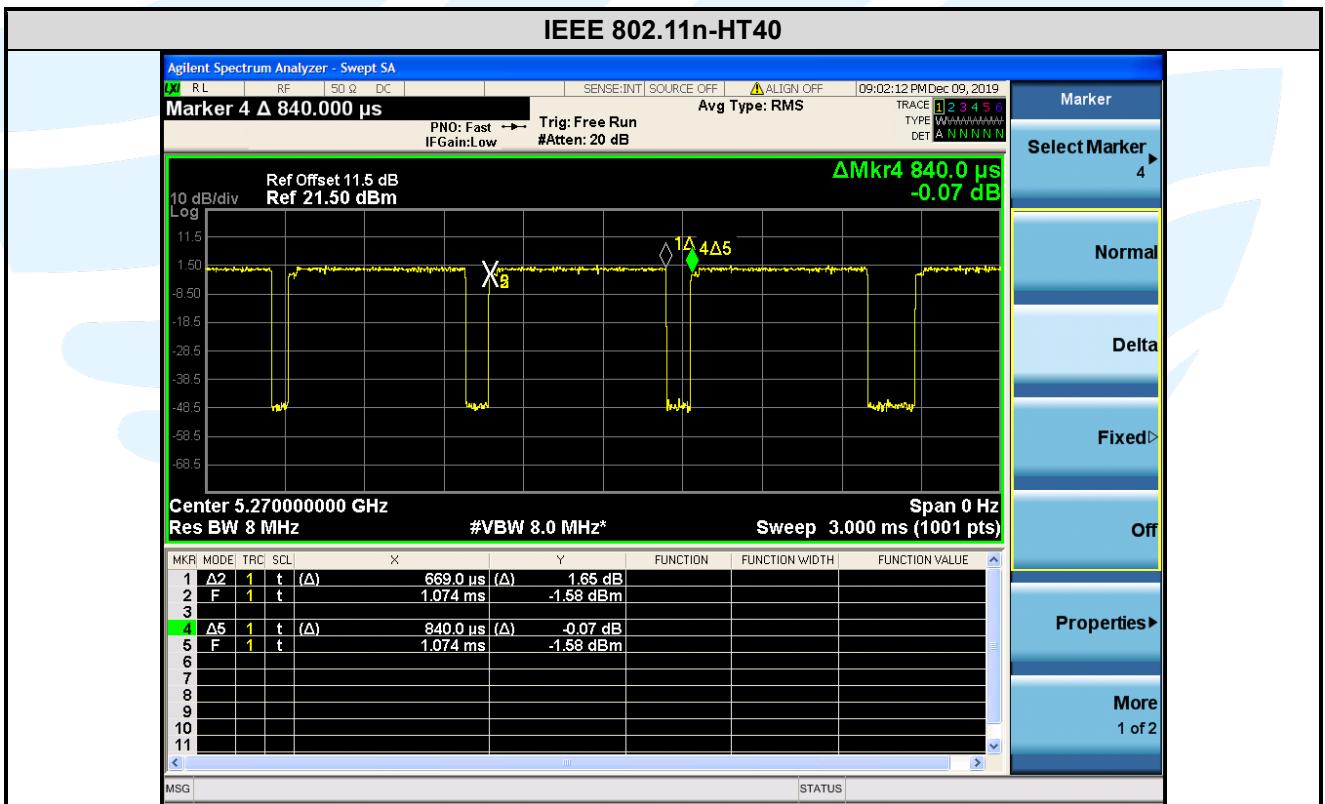
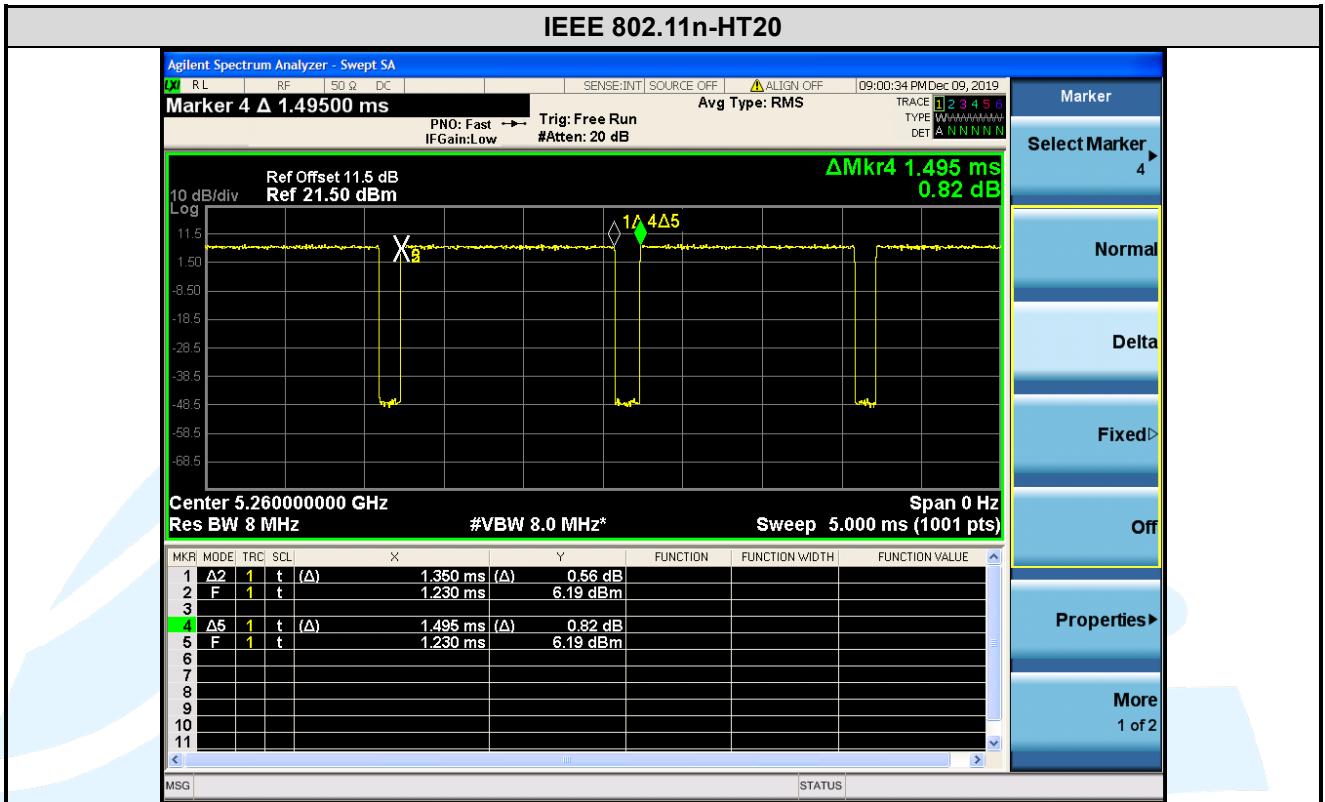
All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000 MHz. The resolution is 1 MHz or greater for frequencies above 1000 MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

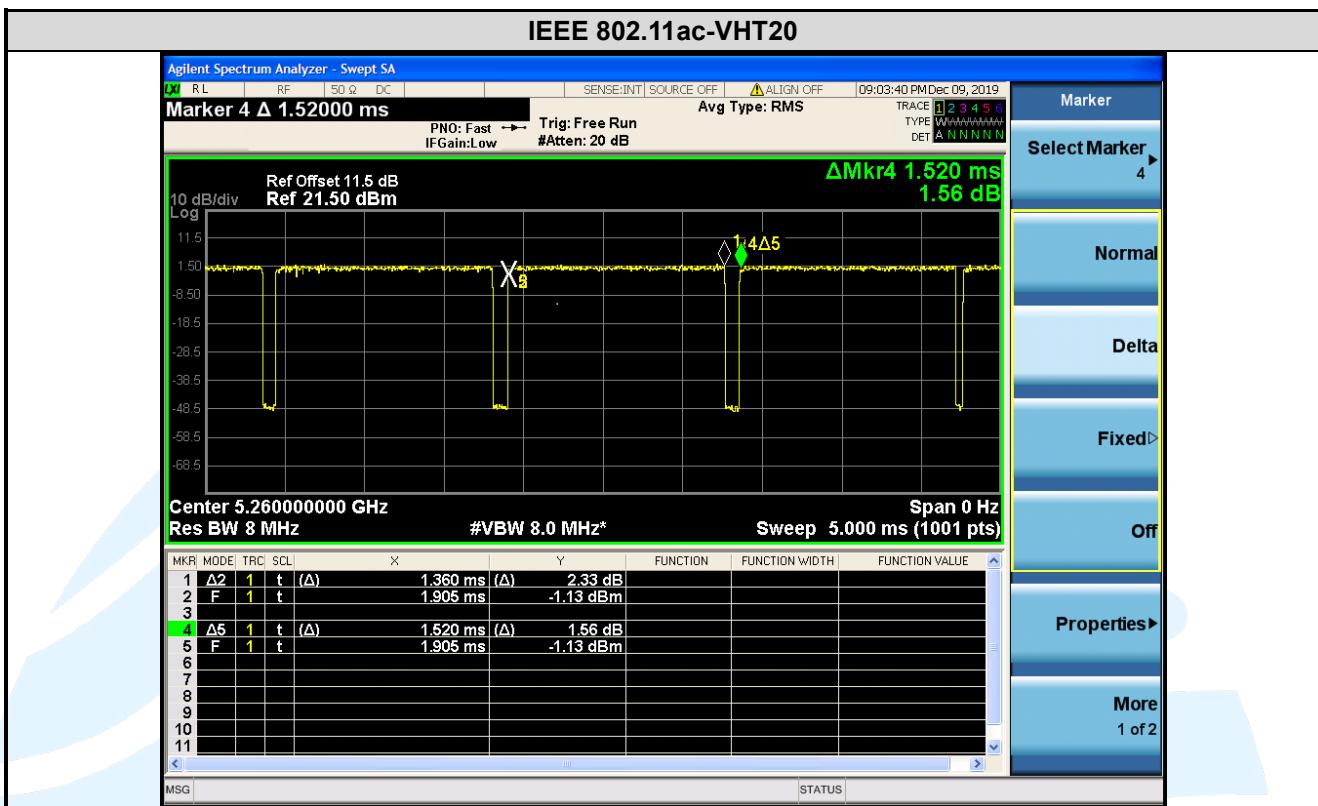
4.7 DUTY CYCLE

Test Procedure: ANSI C63.10-2013 Clause 12.2.

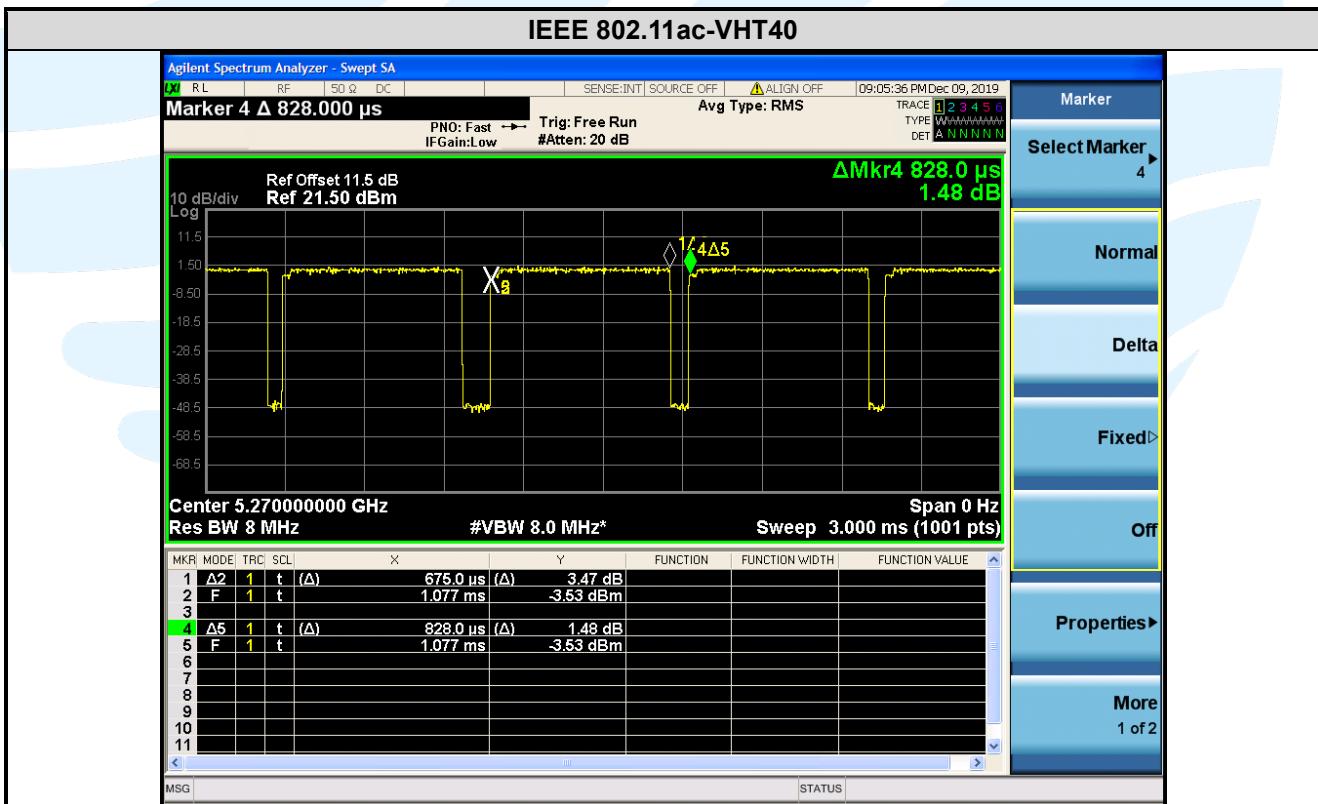

Test Results

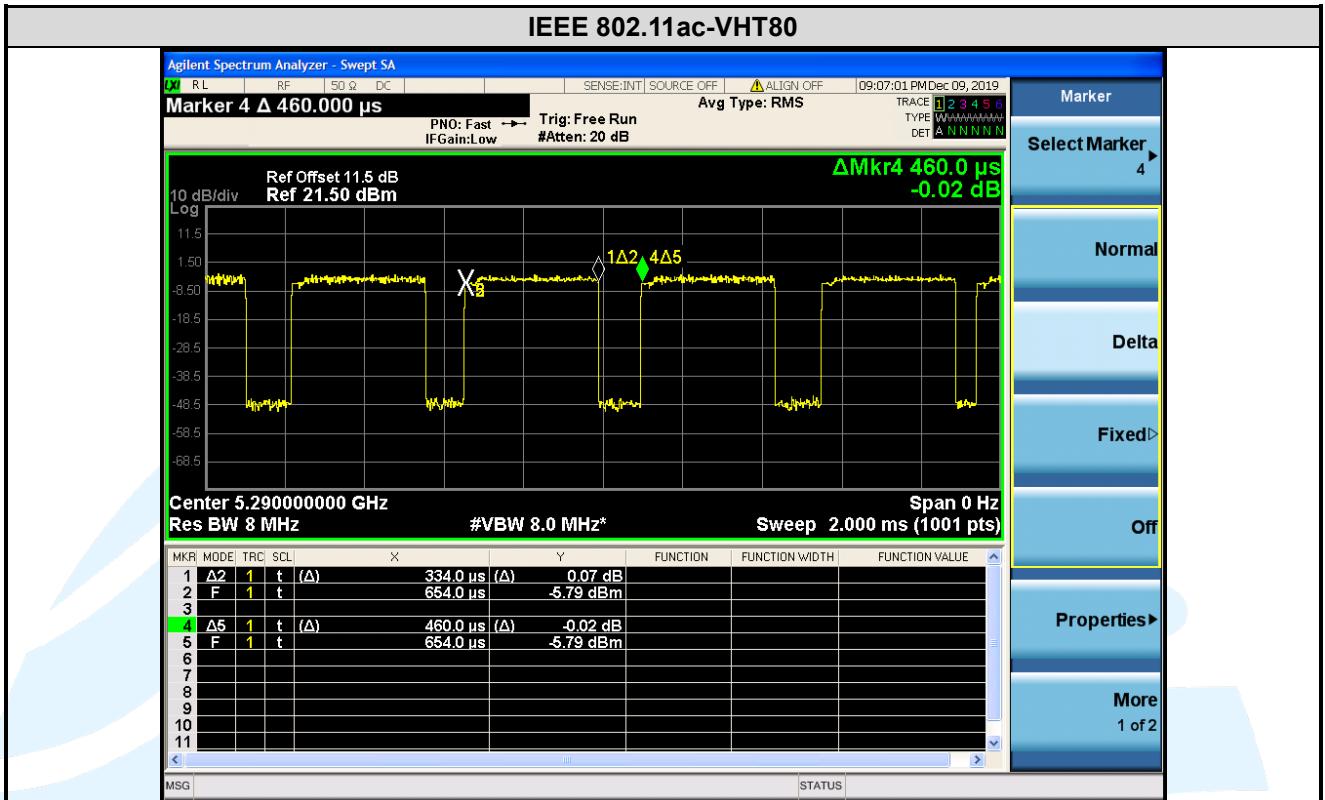


Mode	Data rates (Mbps)	On Time (msec)	Period (msec)	Duty Cycle (linear)	Duty Cycle (%)	Duty Cycle Factor (dB)	1/ T Minimum VBW (kHz)	Average Factor (dB)
IEEE 802.11a	6	1.440	1.530	0.94	94.12	0.26	0.69	-0.53
IEEE 802.11n-HT20	MCS0	1.350	1.495	0.90	90.30	0.44	0.74	-0.89
IEEE 802.11n-HT40	MCS0	0.669	0.840	0.80	79.64	0.99	1.49	-1.98
IEEE 802.11ac-VHT20	MCS0	1.360	1.520	0.89	89.47	0.48	0.74	-0.97
IEEE 802.11ac-VHT40	MCS0	0.675	0.828	0.82	81.52	0.89	1.48	-1.77
IEEE 802.11ac-VHT80	MCS0	0.334	0.460	0.73	72.61	1.39	2.99	-2.78

Remark:


- 1) Duty cycle= On Time/ Period;
- 2) Duty Cycle factor = $10 * \log(1 / \text{Duty cycle})$;
- 3) Average factor = $20 \log_{10} \text{Duty Cycle}$.

The test plots as follows





IEEE 802.11ac-VHT20

IEEE 802.11ac-VHT40

5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION

5.1 REFERENCE DOCUMENTS FOR TESTING

No.	Identity	Document Title
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations
2	FCC 47 CFR Part 15	Radio Frequency Devices
3	RSS-247 Issue 2	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices
4	RSS-Gen Issue 5	General Requirements for Compliance of Radio Apparatus
5	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices
6	KDB 789033 D02 General UNII Test Procedures New Rules v02r01	Guidelines for compliance testing of unlicensed national information infrastructure (U-NII) device part 15, subpart E
7	KDB 905462 D06 802.11 Channel Plans New Rules v02	Operation in U-NII bands -802.11 channel PLAN(§15.407)
8	KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02	Compliance measurement procedures for Unlicensed –National Information Infrastructure devices operates in the frequency bands 5250 MHz to 5350 MHz and 5470 MHz to 5725 MHz bands incorporating dynamic frequency selection
9	KDB 905462 D03 Client Without DFS New Rules v01r02	U-NII client devices without radar detection capability
10	KDB 662911 D01 Multiple Transmitter Output v02r01	Emissions Testing of Transmitters with Multiple Outputs in the Same Band

5.2 ANTENNA REQUIREMENT

Standard Requirement
15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.
15.407(a)(1) (2) requirement: The conducted output power limit specified in paragraph (a) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (a) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
RSS-Gen Issue 5, Section 6.8 requirement: According to RSS-Gen Issue 5, Section 6.8, a transmitter can only be sold or operated with antennas with which it was certified. A transmitter may be certified with multiple antenna types. An antenna type comprises antennas having similar in-band and out-of-band radiation patterns.
EUT Antenna: Both antenna in the interior of the equipment and no consideration of replacement. The transmit signals are correlated with each other and the antenna gain of both chains is completely consistent, the best case directional gain of the antenna is 6.26 dBi (See section 5.5).

5.326 DB BANDWIDTH & OCCUPIED BANDWIDTH

Test Requirement: FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(2)(5)

RSS-247 Issue 2 Section 6.2.1.2

Test Method: KDB 789033 D02 v02r01 Section C.1

Limit: None; for reporting purposes only.

Test Procedure:

The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum analyzer.

Spectrum analyzer according to the following Settings:

a) Set RBW = approximately 1 % of the emission bandwidth.

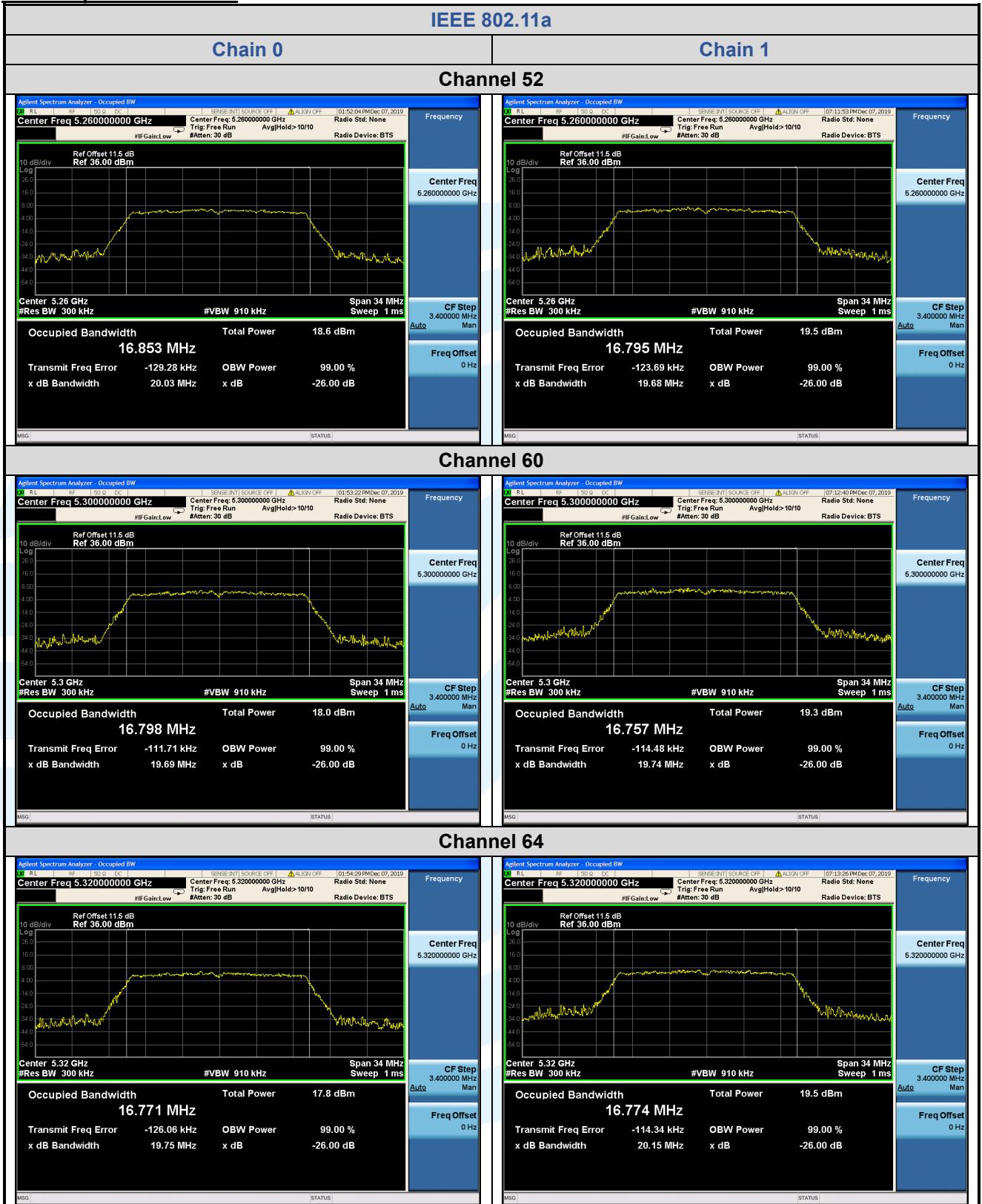
b) Set the VBW > RBW.

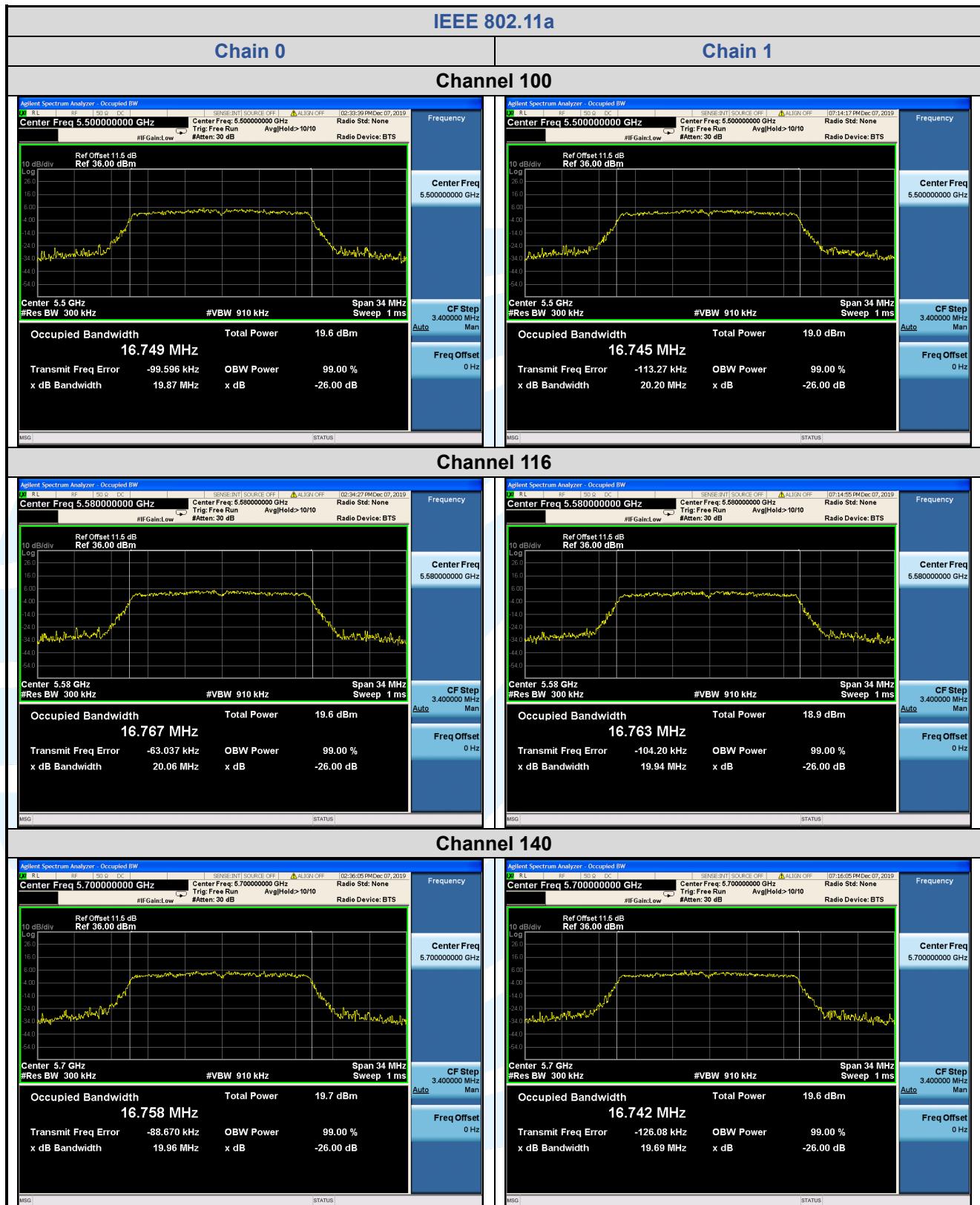
c) Detector = Peak.

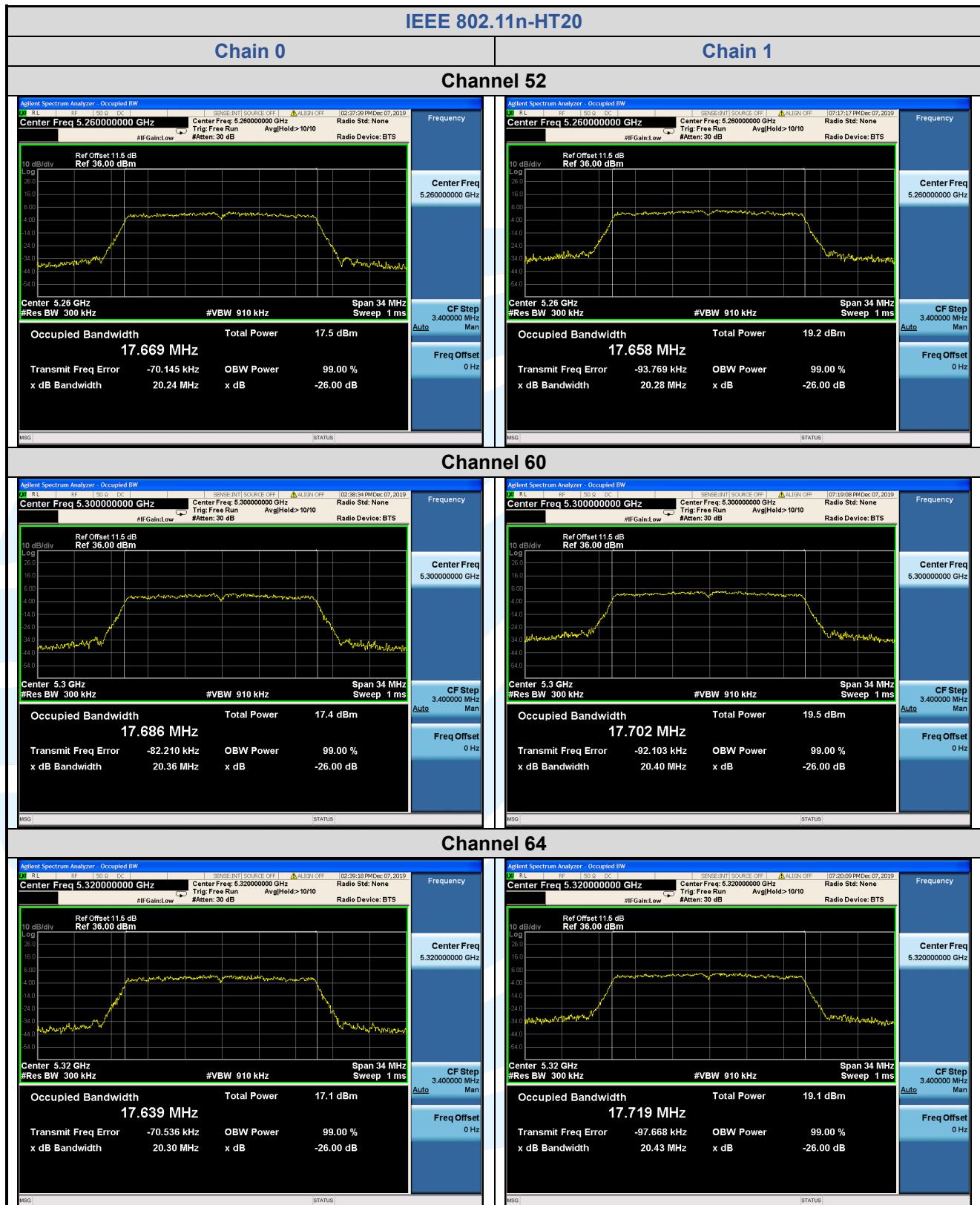
d) Trace mode = max hold.

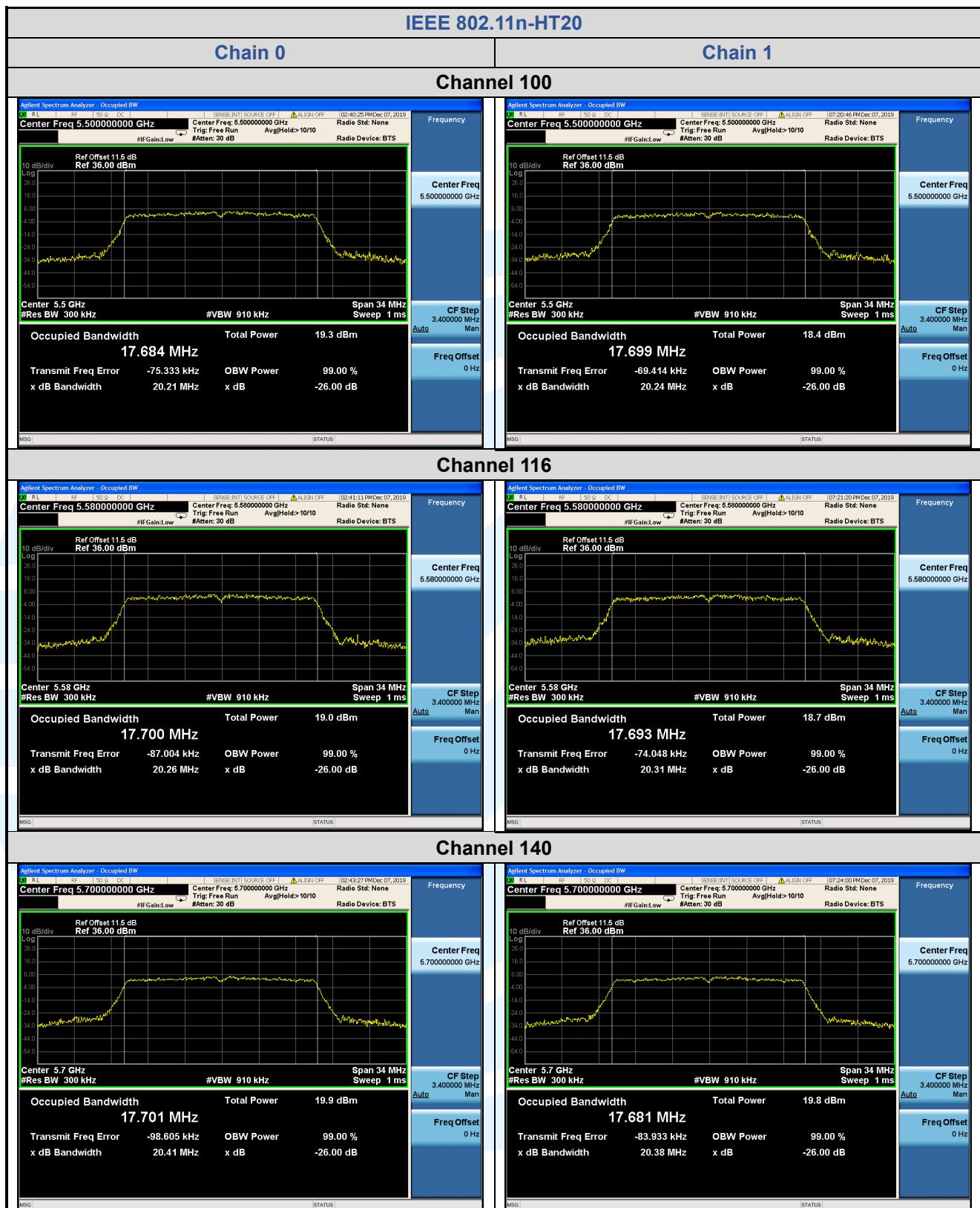
e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1 %.

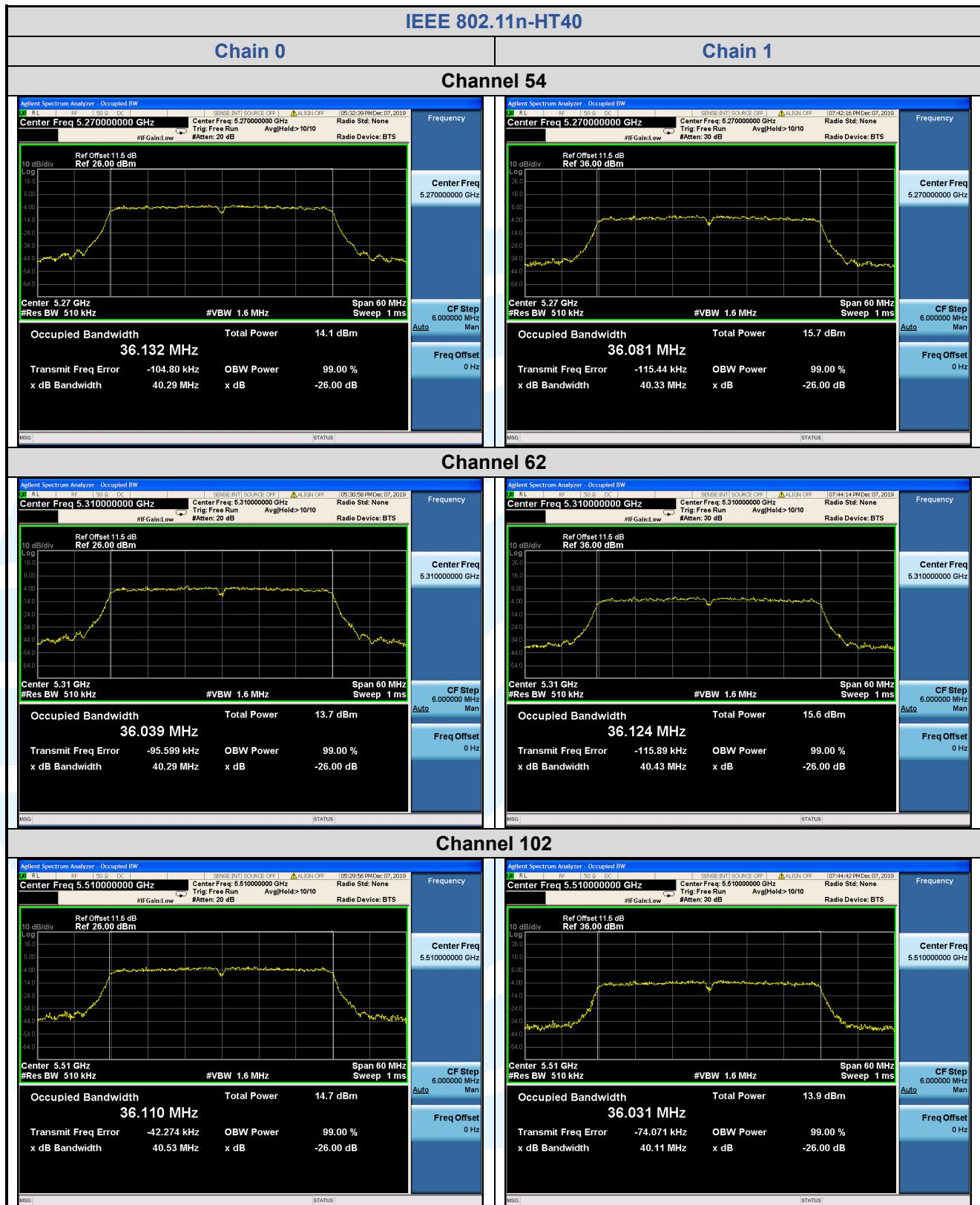
Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

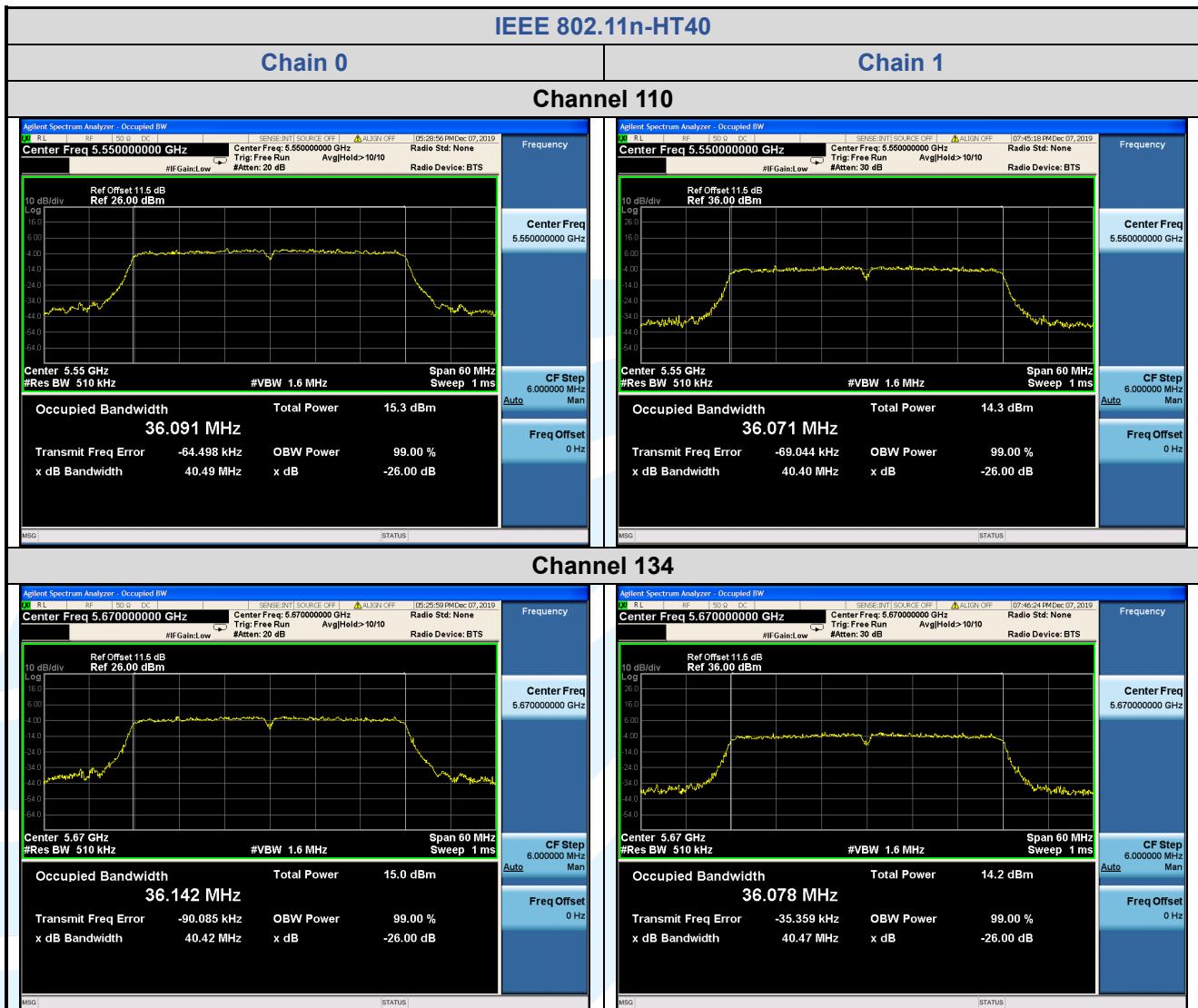

Test Setup: Refer to section 4.5.3 for details.

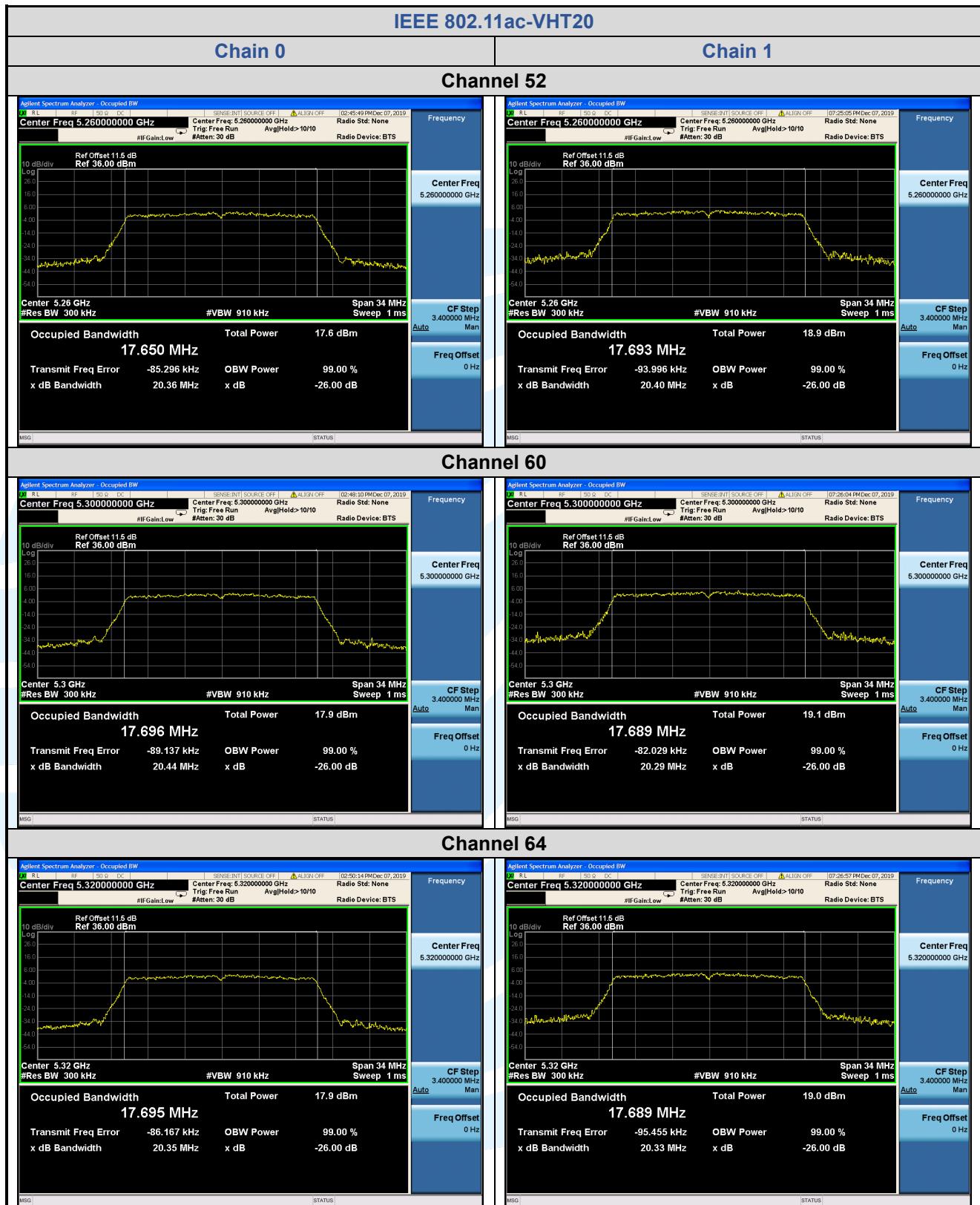

Instruments Used: Refer to section 3 for details

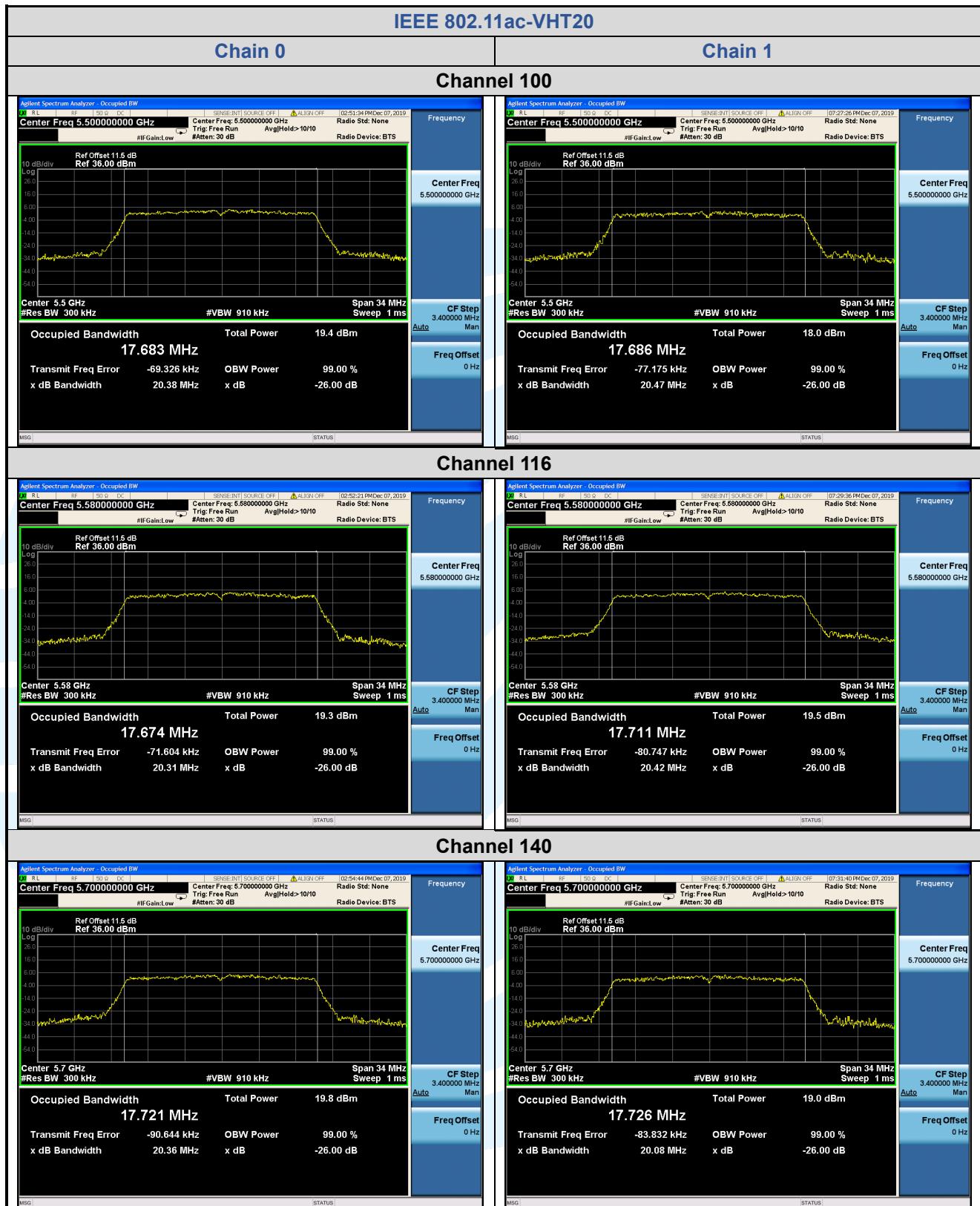

Test Results: Pass

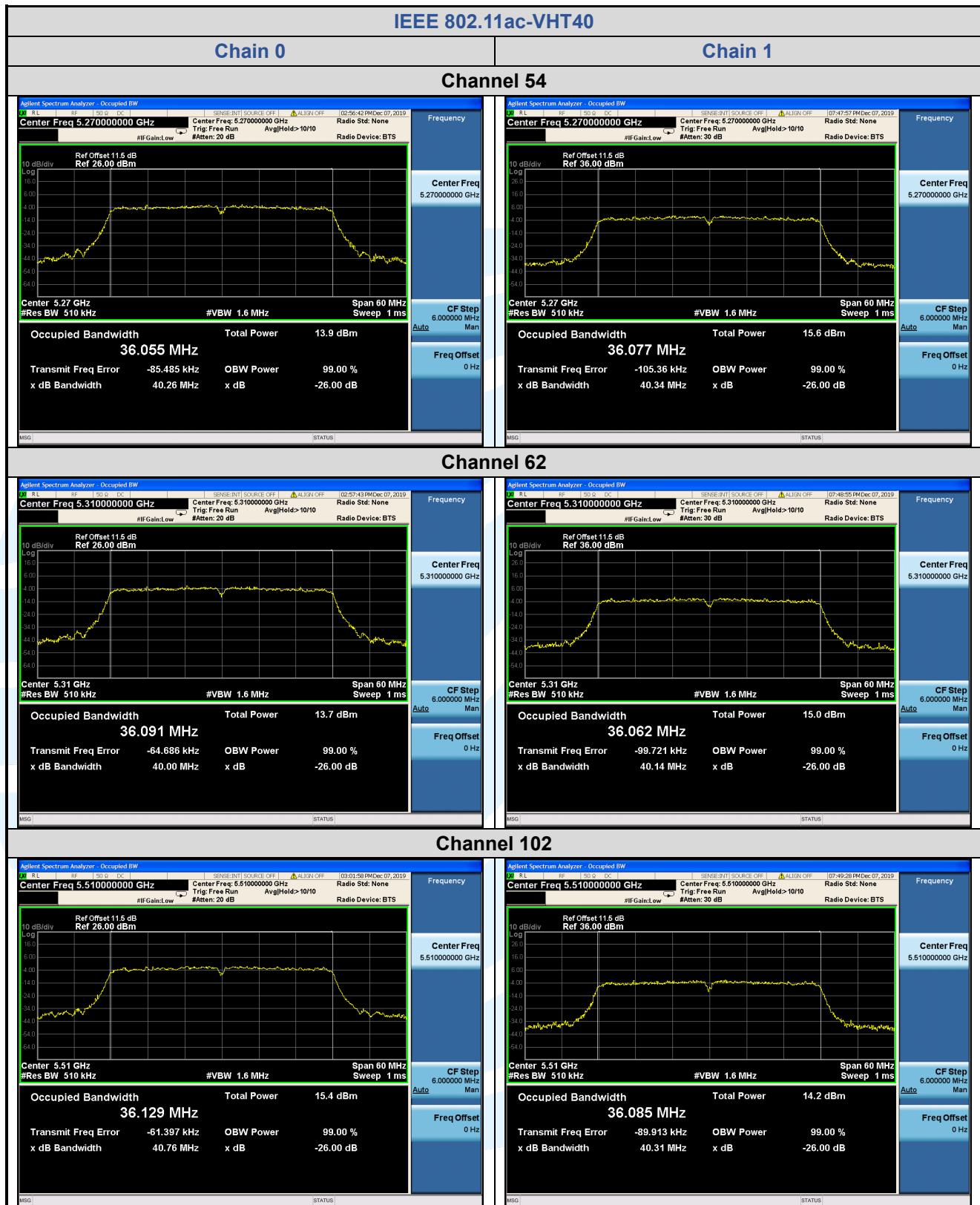

Mode	Channel	26 dB Bandwidth (MHz)		99% Bandwidth (MHz)	
		Chain 0	Chain 1	Chain 0	Chain 1
IEEE 802.11a	52 (5260)	20.03	19.68	16.853	16.795
	60 (5300)	19.69	19.74	16.798	16.757
	64 (5320)	19.75	20.15	16.771	16.774
	100 (5500)	19.87	20.20	16.749	16.745
	116 (5580)	20.06	19.94	16.767	16.763
	140 (5700)	19.96	19.69	16.758	16.742
IEEE 802.11n-HT20	52 (5260)	20.24	20.28	17.669	17.658
	60 (5300)	20.36	20.40	17.686	17.702
	64 (5320)	20.30	20.43	17.639	17.719
	100 (5500)	20.21	20.24	17.684	17.699
	116 (5580)	20.26	20.31	17.700	17.693
	140 (5700)	20.41	20.38	17.701	17.681
IEEE 802.11n-HT40	54 (5270)	40.29	40.33	36.132	36.081
	62 (5310)	40.29	40.43	36.039	36.124
	102 (5510)	40.53	40.11	36.110	36.031
	110 (5550)	40.49	40.40	36.091	36.071
	134 (5670)	40.42	40.47	36.142	36.078
IEEE 802.11ac-VHT20	52 (5260)	20.36	20.40	17.650	17.693
	60 (5300)	20.44	20.29	17.696	17.689
	64 (5320)	20.35	20.33	17.695	17.689
	100 (5500)	20.38	20.47	17.683	17.686
	116 (5580)	20.31	20.42	17.674	17.711
	140 (5700)	20.36	20.08	17.721	17.726
IEEE 802.11ac-VHT40	54 (5270)	40.26	40.34	36.055	36.077
	62 (5310)	40.00	40.14	36.091	36.062
	102 (5510)	40.76	40.31	36.129	36.085
	110 (5550)	40.35	40.24	36.077	36.086
	134 (5670)	40.25	40.45	36.081	36.097
IEEE 802.11ac-VHT80	58 (5290)	81.73	81.70	74.972	74.989
	106 (5530)	81.49	81.53	75.073	75.030

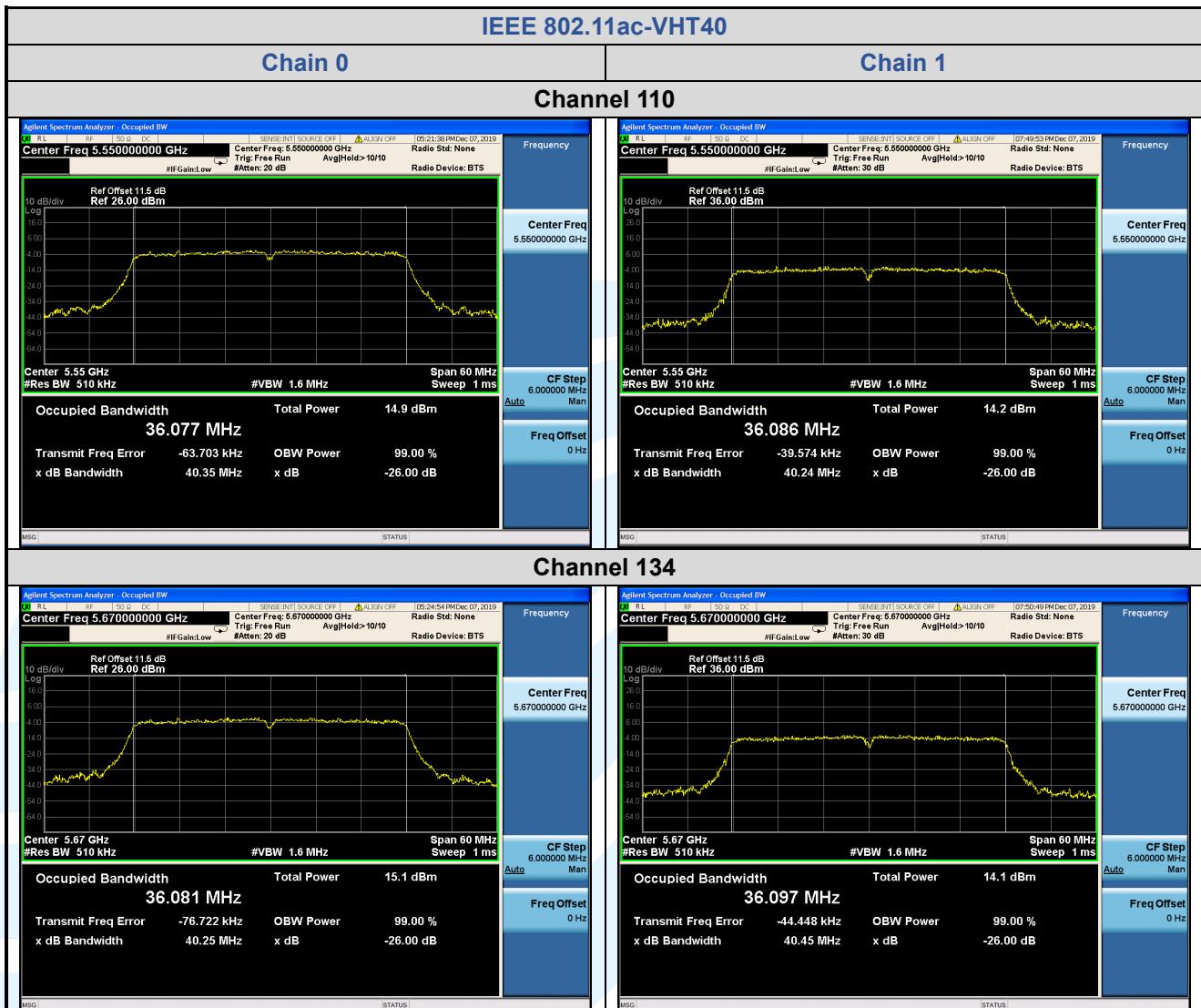

The test plots as follows:











5.4 MAXIMUM CONDUCTED OUTPUT POWER OR E.I.R.P

Test Requirement: FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3)

RSS-247 Issue 2 Section 6.2.1.1/6.2.2.1/6.2.3.1/6.2.4.1

Test Method: KDB 789033 D02 v02r01 Section E.3.a (Method PM)

Limits: FCC 47 CFR Part 15 Subpart E

1. For the band 5.15-5.25 GHz.

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

2. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or $11 \text{ dBm} + 10 \log B$, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3. For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Limits: RSS-247 Issue 2

1. Frequency band 5150-5250 MHz

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or $1.76 + 10 \log_{10}B$, dBm, whichever is less. Devices shall implement transmitter power control (TPC) in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.

For other devices, the maximum e.i.r.p. shall not exceed 200 mW or $10 + 10 \log_{10}B$, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

2. Frequency band 5250-5350 MHz

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or $1.76 + 10 \log_{10}B$, dBm, whichever is less. Devices shall implement TPC in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.

Devices, other than devices installed in vehicles, shall comply with the following:

- a) The maximum conducted output power shall not exceed 250 mW or $11 + 10 \log_{10}B$, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band;
- b) The maximum e.i.r.p. shall not exceed 1.0 W or $17 + 10 \log_{10}B$, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

Additional requirements

In addition to the above requirements, devices shall comply with the following, where applicable:

- a) Outdoor fixed devices with a maximum e.i.r.p. greater than 200 mW shall comply with the following e.i.r.p. at different elevations, where θ is the angle above the local horizontal plane (of the Earth) as shown below:

i. -13 dBW/MHz	for $0^\circ \leq \theta < 8^\circ$
ii. -13 – 0.716 (θ -8) dBW/MHz	for $8^\circ \leq \theta < 40^\circ$
iii. -35.9 – 1.22 (θ -40) dBW/MHz	for $40^\circ \leq \theta \leq 45^\circ$
iv. -42 dBW/MHz	for $\theta > 45^\circ$

The measurement procedure defined in Annex A of this document shall be used to verify the compliance to the e.i.r.p. at different elevations.

- b) Devices, other than outdoor fixed devices, having an e.i.r.p. greater than 200 mW shall comply with either i. or ii. below:
 - i. devices shall comply with the e.i.r.p. elevation mask in 6.2.2.3(a); or
 - ii. devices shall implement a method to permanently reduce their e.i.r.p. via a firmware feature in the event that the Department requires it. The test report must demonstrate how the device's power table can be updated to meet this firmware requirement. The manufacturer shall provide this firmware to update all systems automatically in compliance with the directions received from the Department.

3. Frequency bands 5470-5600 MHz and 5650-5725 MHz

The maximum conducted output power shall not exceed 250 mW or $11 + 10 \log_{10}B$, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band.

The maximum e.i.r.p. shall not exceed 1.0 W or $17 + 10 \log_{10}B$, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

4. Frequency band 5725-5850 MHz

The maximum conducted output power shall not exceed 1 W. The output power spectral density shall not exceed 30 dBm in any 500 kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the output power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point devices

operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed point-to-point operations exclude the use of point-to-multipoint³ systems, omnidirectional applications and multiple collocated transmitters transmitting the same information.

Test Procedure:

1. Connected the EUT's antenna port to measure device by 10dB attenuator.
2. Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of Tx on burst.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup: Refer to section 4.5.3 for details.

Instruments Used: Refer to section 3 for details

Test Mode: Transmitter mode

Test Results: Pass

Test Data:

Directional gain and the maximum output power limit.**RSS-247 Issue 2**

Frequency Band	Chain 0 Antenna Gain (dBi)	Chain 1 Antenna Gain (dBi)	Correlated chains directional gain (dBi)	Peak Power Limits (dBm)
U-NII-2A	3.50	3.00	6.26	23.74
U-NII-2C	3.50	3.00	6.26	23.74

Unequal antenna gains, with equal transmit powers. Directional gain is to be computed as follows:

If transmit signals are correlated, then

Directional gain = $10 \log[(10^G1 / 20 + 10^G2 / 20 + \dots + 10^GN / 20)^2 / NANT]$ dBi [Note the "20"s in the denominator of each exponent and the square of the sum of terms; the object is to combine the signal levels coherently.]

FCC 47 CFR Part 15 Subpart E

Frequency Band	Chain 0 Antenna Gain (dBi)	Chain 1 Antenna Gain (dBi)	Correlated chains directional gain (dBi)	Peak Power Limits (dBm)
U-NII-2A	3.50	3.00	6.26	23.74
U-NII-2C	3.50	3.00	6.26	23.74

Unequal antenna gains, with equal transmit powers. Directional gain is to be computed as follows:

If transmit signals are correlated, then

Directional gain = $10 \log[(10^G1 / 20 + 10^G2 / 20 + \dots + 10^GN / 20)^2 / NANT]$ dBi [Note the "20"s in the denominator of each exponent and the square of the sum of terms; the object is to combine the signal levels coherently.]

Frequency band 5250-5350 MHz
RSS-247 Issue 2:

For IEEE 802.11 a/n-HT20, the minimum 99% emission bandwidth is 16.757 MHz

$$11 \text{ dBm} + 10\log_{10}(16.757) = 23.24 \text{ dBm} < 23.74 \text{ dBm}$$

So the 23.24 dB limit applicable

For IEEE 802.11 n-HT40/ac-VHT80, the minimum 99% emission bandwidth is 36.039 MHz

$$11 \text{ dBm} + 10\log_{10}(36.039) = 26.57 \text{ dBm} > 23.74 \text{ dBm}$$

So the 23.74 dB limit applicable

FCC 47 CFR Part 15 Subpart E:

For IEEE 802.11 a/n/ac, the minimum 26 dB emission bandwidth is 19.68 MHz

$$11 \text{ dBm} + 10\log_{10}(19.68) = 23.94 \text{ dBm} > 23.74 \text{ dBm}$$

So the 23.74 dB limit applicable

Mode	Channel/ Frequency (MHz)	Maximum conducted output power (dBm)		Total Power MIMO Chain 0+1 (dBm)	Limit (dBm)		Pass / Fail		
		SISO			FCC Part 15E	RSS- 247			
		Chain 0	Chain 1						
IEEE 802.11a	52 (5260)	12.54	13.60	16.11	23.74	23.24	Pass		
	60 (5300)	12.82	13.67	16.28	23.74	23.24	Pass		
	64 (5320)	12.50	13.57	16.08	23.74	23.24	Pass		
IEEE 802.11n- HT20	52 (5260)	11.99	13.25	15.68	23.74	23.24	Pass		
	60 (5300)	12.18	13.05	15.65	23.74	23.24	Pass		
	64 (5320)	12.12	13.29	15.75	23.74	23.24	Pass		
IEEE 802.11n- HT40	54 (5270)	8.47	9.56	12.06	23.74	23.74	Pass		
	62 (5310)	8.41	9.61	12.06	23.74	23.74	Pass		
IEEE 802.11ac- VHT20	52 (5260)	11.90	13.04	15.52	23.74	23.24	Pass		
	60 (5300)	11.78	13.34	15.64	23.74	23.24	Pass		
	64 (5320)	11.86	13.10	15.53	23.74	23.24	Pass		
IEEE 802.11ac- VHT40	54 (5270)	8.41	9.44	11.97	23.74	23.74	Pass		
	62 (5310)	8.43	9.28	11.89	23.74	23.74	Pass		
IEEE 802.11ac- VHT80	58 (5290)	6.77	8.37	10.65	23.74	23.74	Pass		

Remark:

1. Maximum conducted output power = Conducted output power + Duty Cycle Factor

$$2. \text{ Total Power (Chain 0+1)} = 10^{\log[(10^{\text{Chain 0/10}})+(10^{\text{Chain 1/10}})]}$$

Frequency bands 5470-5725 MHz (RSS-247 Issue 2 Not including 5600-5650 MHz)
RSS-247 Issue 2:

For IEEE 802.11 a/n-HT20, the minimum 99% emission bandwidth is 16.742 MHz

$$11 \text{ dBm} + 10\log_{10}(16.742) = 23.24 \text{ dBm} < 23.74 \text{ dBm}$$

So the 23.24 dB limit applicable

For IEEE 802.11 n-HT40/ac-VHT80, the minimum 99% emission bandwidth is 36.031 MHz

$$11 \text{ dBm} + 10\log_{10}(36.031) = 26.57 \text{ dBm} > 23.74 \text{ dBm}$$

So the 23.74 dB limit applicable

FCC 47 CFR Part 15 Subpart E:

For IEEE 802.11 a/n/ac, the minimum 26 dB emission bandwidth is 19.69 MHz

$$11 \text{ dBm} + 10\log_{10}(19.69) = 23.94 \text{ dBm} > 23.74 \text{ dBm}$$

So the 23.74 dB limit applicable

Mode	Channel/ Frequency (MHz)	Maximum conducted output power (dBm)		Total Power MIMO Chain 0+1 (dBm)	Limit (dBm)		Pass / Fail		
		SISO			FCC Part 15E	RSS- 247			
		Chain 0	Chain 1						
IEEE 802.11a	100 (5500)	14.08	16.81	18.67	23.74	23.24	Pass		
	116 (5580)	13.91	16.50	18.41	23.74	23.24	Pass		
	140 (5700)	14.05	16.73	18.60	23.74	23.24	Pass		
IEEE 802.11n- HT20	100 (5500)	13.82	16.43	18.33	23.74	23.24	Pass		
	116 (5580)	13.51	16.19	18.06	23.74	23.24	Pass		
	140 (5700)	13.57	16.33	18.18	23.74	23.24	Pass		
IEEE 802.11n- HT40	102 (5510)	10.15	12.87	14.73	23.74	23.74	Pass		
	110 (5550)	10.01	12.76	14.61	23.74	23.74	Pass		
	134 (5670)	9.96	12.63	14.51	23.74	23.74	Pass		
IEEE 802.11ac- VHT20	100 (5500)	13.94	16.49	18.41	23.74	23.24	Pass		
	116 (5580)	13.61	16.25	18.14	23.74	23.24	Pass		
	140 (5700)	13.72	16.40	18.27	23.74	23.24	Pass		
IEEE 802.11ac- VHT40	102 (5510)	10.01	12.78	14.62	23.74	23.74	Pass		
	110 (5550)	10.32	12.99	14.87	23.74	23.74	Pass		
	134 (5670)	9.81	12.51	14.38	23.74	23.74	Pass		
IEEE 802.11ac- VHT80	106 (5530)	8.70	11.25	13.17	23.74	23.74	Pass		

Remark:

1. Maximum conducted output power = Conducted output power + Duty Cycle Factor

$$2. \text{ Total Power (Chain 0+1)} = 10 * \log[(10^{\text{Chain 0/10}}) + (10^{\text{Chain 1/10}})]$$

5.5 PEAK POWER SPECTRAL DENSITY

Test Requirement: FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3)
RSS-247 Issue 2 Section 6.2.1.1/6.2.2.1/6.2.3.1/6.2.4.1

Test Method: KDB 789033 D02 v02r01 Section F

Limits: FCC 47 CFR Part 15 Subpart E

1. For the band 5.15-5.25 GHz.
 - (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
 - (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
 - (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
 - (iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
2. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or $11 \text{ dBm} + 10 \log B$, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
3. For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

Tel: +86-755-28230888

Fax: +86-755-28230886

E-mail: info@uttlab.com

<http://www.uttlab.com>

UTTR-RF-RSS247-V1.0

Limits: RSS-247 Issue 2

1. Frequency band 5150-5250 MHz

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or $1.76 + 10 \log_{10}B$, dBm, whichever is less. Devices shall implement transmitter power control (TPC) in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.

For other devices, the maximum e.i.r.p. shall not exceed 200 mW or $10 + 10 \log_{10}B$, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

2. Frequency band 5250-5350 MHz

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or $1.76 + 10 \log_{10}B$, dBm, whichever is less. Devices shall implement TPC in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.

Devices, other than devices installed in vehicles, shall comply with the following:

- a) The maximum conducted output power shall not exceed 250 mW or $11 + 10 \log_{10}B$, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band;
- b) The maximum e.i.r.p. shall not exceed 1.0 W or $17 + 10 \log_{10}B$, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

Additional requirements

In addition to the above requirements, devices shall comply with the following, where applicable:

- a) Outdoor fixed devices with a maximum e.i.r.p. greater than 200 mW shall comply with the following e.i.r.p. at different elevations, where θ is the angle above the local horizontal plane (of the Earth) as shown below:

i. -13 dBW/MHz	for $0^\circ \leq \theta < 8^\circ$
ii. -13 – 0.716 (θ -8) dBW/MHz	for $8^\circ \leq \theta < 40^\circ$
iii. -35.9 – 1.22 (θ -40) dBW/MHz	for $40^\circ \leq \theta \leq 45^\circ$
iv. -42 dBW/MHz	for $\theta > 45^\circ$

The measurement procedure defined in Annex A of this document shall be used to verify the compliance to the e.i.r.p. at different elevations.

- b) Devices, other than outdoor fixed devices, having an e.i.r.p. greater than 200 mW shall comply with either i. or ii. below:
 - iii. devices shall comply with the e.i.r.p. elevation mask in 6.2.2.3(a); or
 - iv. devices shall implement a method to permanently reduce their e.i.r.p. via a firmware feature in the event that the Department requires it. The test report must demonstrate how the device's power table can be updated to meet this firmware requirement. The manufacturer shall provide this firmware to update all systems automatically in compliance with the directions received from the Department.

3. Frequency bands 5470-5600 MHz and 5650-5725 MHz

The maximum conducted output power shall not exceed 250 mW or $11 + 10 \log_{10}B$, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band.

The maximum e.i.r.p. shall not exceed 1.0 W or $17 + 10 \log_{10}B$, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

4. Frequency band 5725-5850 MHz

The maximum conducted output power shall not exceed 1 W. The output power spectral density shall not exceed 30 dBm in any 500 kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the output power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point devices

operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed point-to-point operations exclude the use of point-to-multipoint³ systems, omnidirectional applications and multiple collocated transmitters transmitting the same information.

Test Procedure:

The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum Analyzer.

Spectrum analyzer according to the following Settings:

1. For U-NII-1, U-NII-2A, U-NII-2C band:

Using method SA-2

- a) Set span to encompass the entire emission bandwidth (EBW) of the signal.
- b) Set RBW = 1 MHz, Set VBW \geq 3 RBW, Detector = RMS
- c) Sweep time = auto, trigger set to "free run".
- d) Trace average at least 100 traces in power averaging mode.
- e) Record the max value and add 10 log (1/duty cycle)

2. For U-NII-3 band:

- a) Set span to encompass the entire emission bandwidth (EBW) of the signal.
- b) Set RBW = 500 kHz, Set VBW \geq 3 RBW, Detector = RMS
- c) Use the peak marker function to determine the maximum power level in any 500 kHz band segment within the fundamental EBW.
- d) Sweep time = auto, trigger set to "free run".
- e) Trace average at least 100 traces in power averaging mode.
- f) Record the max value and add 10 log (1/duty cycle)

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup: Refer to section 4.5.3 for details.

Instruments Used: Refer to section 3 for details

Test Mode: Transmitter mode

Test Results: Pass

Test Data:

Directional gain and the maximum output power limit.**RSS-247 Issue 2:**

Frequency Band	Chain 0 Antenna Gain (dBi)	Chain 1 Antenna Gain (dBi)	Correlated chains directional gain (dBi)	PSD Limits (dBm/MHz or dBm/500kHz)
U-NII-2A	3.50	3.00	6.26	10.74
U-NII-2C	3.50	3.00	6.26	10.74
Unequal antenna gains, with equal transmit powers. Directional gain is to be computed as follows:				
If transmit signals are correlated, then				
Directional gain = $10 \log[(10^G1 /20 + 10^G2 /20 + \dots + 10^GN /20)^2 /NANT]$ dBi [Note the "20"s in the denominator of each exponent and the square of the sum of terms; the object is to combine the signal levels coherently.]				

FCC 47 CFR Part 15 Subpart E:

Frequency Band	Chain 0 Antenna Gain (dBi)	Chain 1 Antenna Gain (dBi)	Correlated chains directional gain (dBi)	PSD Limits (dBm/MHz or dBm/500kHz)
U-NII-2A	3.50	3.00	6.26	10.74
U-NII-2C	3.50	3.00	6.26	10.74
Unequal antenna gains, with equal transmit powers. Directional gain is to be computed as follows:				
If transmit signals are correlated, then				
Directional gain = $10 \log[(10^G1 /20 + 10^G2 /20 + \dots + 10^GN /20)^2 /NANT]$ dBi [Note the "20"s in the denominator of each exponent and the square of the sum of terms; the object is to combine the signal levels coherently.]				

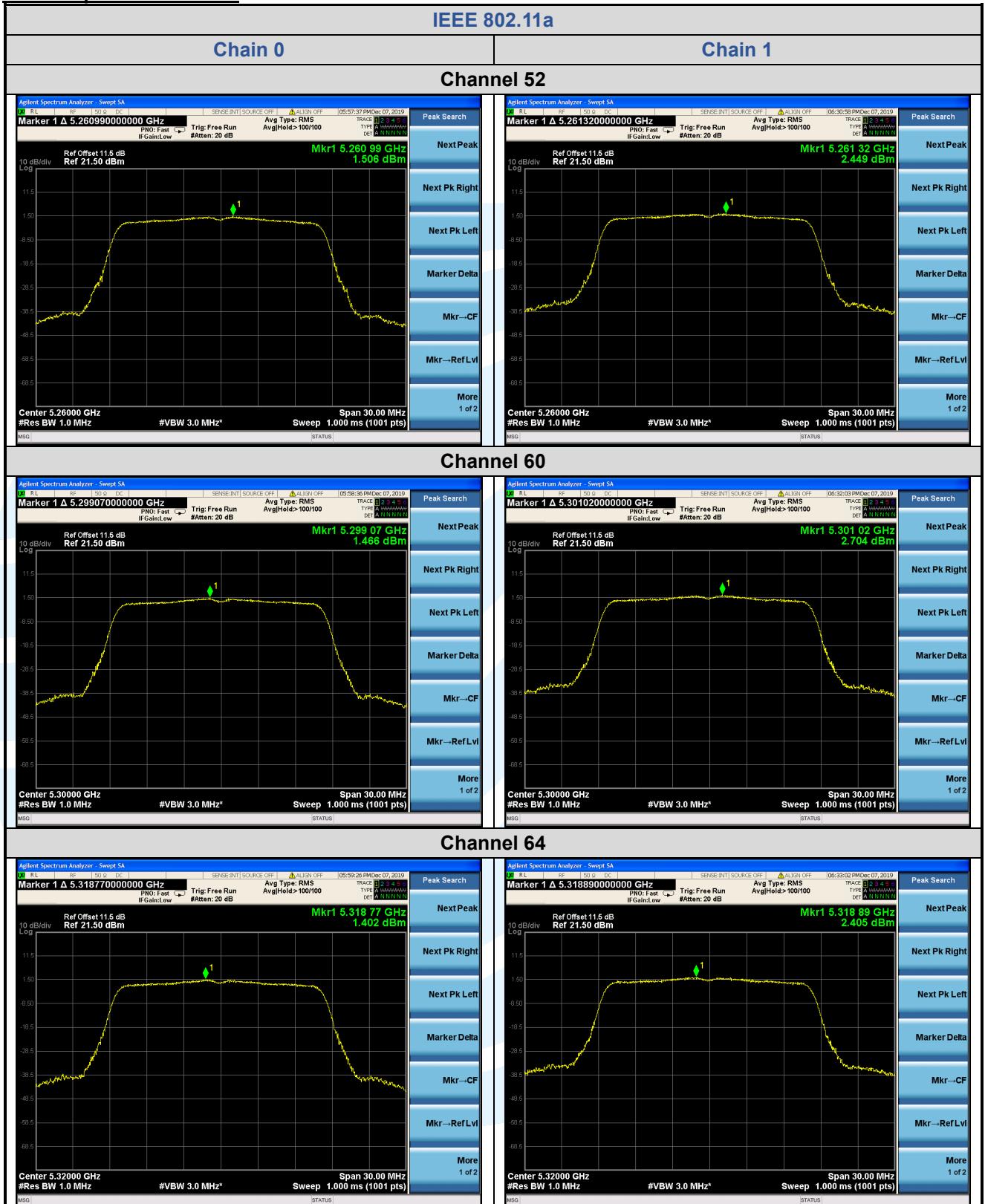
Frequency band 5250-5350 MHz

Mode	Channel/ Frequency (MHz)	Power spectral density (dBm/MHz)		Total power spectral density MIMO_Chain 0+1 (dBm/MHz)	Limit (dBm/MHz)	Pass / Fail			
		SISO							
		Chain 0	Chain 1						
IEEE 802.11a	52 (5260)	1.766	2.709	5.273	10.74	Pass			
	60 (5300)	1.726	2.964	5.399	10.74	Pass			
	64 (5320)	1.662	2.665	5.203	10.74	Pass			
IEEE 802.11n-HT20	52 (5260)	0.436	2.272	4.461	10.74	Pass			
	60 (5300)	0.789	1.711	4.285	10.74	Pass			
	64 (5320)	0.733	2.244	4.564	10.74	Pass			
IEEE 802.11n-HT40	54 (5270)	-5.776	-4.520	-2.092	10.74	Pass			
	62 (5310)	-5.893	-4.301	-2.014	10.74	Pass			
IEEE 802.11ac- VHT20	52 (5260)	0.584	2.007	4.364	10.74	Pass			
	60 (5300)	0.486	1.950	4.290	10.74	Pass			
	64 (5320)	0.929	2.211	4.627	10.74	Pass			
IEEE 802.11ac- VHT40	54 (5270)	-6.360	-4.254	-2.170	10.74	Pass			
	62 (5310)	-6.295	-4.151	-2.082	10.74	Pass			
IEEE 802.11ac- VHT80	58 (5290)	-11.223	-8.590	-6.700	10.74	Pass			

Remark:

1. Power spectral density = Conducted power spectral density + Duty Cycle Factor
2. Total Power (Chain 0+1) = $10^{\log[(10^{\text{Chain 0/10}})+(10^{\text{Chain 1/10}})]}$

Frequency bands 5470-5725 MHz (RSS-247 Issue 2 Not including 5600-5650 MHz)


Mode	Channel/ Frequency (MHz)	Power spectral density (dBm/MHz)		Total power spectral density MIMO_Chain 0+1 (dBm/MHz)	Limit (dBm/MHz)	Pass / Fail			
		SISO							
		Chain 0	Chain 1						
IEEE 802.11a	100 (5500)	3.317	2.501	5.938	10.74	Pass			
	116 (5580)	3.336	2.615	6.001	10.74	Pass			
	140 (5700)	3.663	3.091	6.397	10.74	Pass			
IEEE 802.11n-HT20	100 (5500)	2.657	1.681	5.207	10.74	Pass			
	116 (5580)	2.820	2.140	5.504	10.74	Pass			
	140 (5700)	2.883	2.744	5.824	10.74	Pass			
IEEE 802.11n-HT40	102 (5510)	-5.028	-5.588	-2.289	10.74	Pass			
	110 (5550)	-4.472	-5.119	-1.773	10.74	Pass			
	134 (5670)	-4.304	-4.815	-1.542	10.74	Pass			
IEEE 802.11ac- VHT20	100 (5500)	2.856	1.578	5.274	10.74	Pass			
	116 (5580)	2.683	2.463	5.585	10.74	Pass			
	140 (5700)	3.213	2.605	5.930	10.74	Pass			
IEEE 802.11ac- VHT40	102 (5510)	-5.055	-5.810	-2.406	10.74	Pass			
	110 (5550)	-4.817	-5.566	-2.165	10.74	Pass			
	134 (5670)	-5.015	-5.231	-2.111	10.74	Pass			
IEEE 802.11ac- VHT80	106 (5530)	-9.440	-9.632	-6.525	10.74	Pass			

Remark:

1. Power spectral density = Conducted power spectral density + Duty Cycle Factor
2. Total Power (Chain 0+1) = $10^{\log[(10^{\text{Chain 0/10}})+(10^{\text{Chain 1/10}})]}$

Shenzhen UnionTrust Quality and Technology Co., Ltd.

The test plots as follows:

