

MRT Technology (Suzhou) Co., Ltd
Phone: +86-512-66308358
Fax: +86-512-66308368
Web: www.mrt-cert.com

Report No.: 1511RSU00504
Report Version: V01
Issue Date: 12-18-2015

MEASUREMENT REPORT

FCC PART 15.407 WLAN 802.11a/n

FCC ID: YZZGVC3200

APPLICANT: Grandstream Networks, Inc.

Application Type: Certification

Product: Full HD Video Conferencing System

Model No.: GVC3202

Trademark: Grandstream

FCC Classification: Unlicensed National Information Infrastructure (UNII)

FCC Rule Part(s): Part 15.407

Test Procedure(s): ANSI C63.10-2009, KDB 789033 D02v01

Test Date: November 18 ~ 21, 2015

Reviewed By : Robin Wu
(Robin Wu)

Approved By : Marlin Chen
(Marlin Chen)

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB 789033 D02v01. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date
1511RSU00504	Rev. 01	Initial report	11-24-2015
1511RSU00504	Rev. 02	Delete the conducted power and add some band-edge and conducted emission data	12-18-2015

Note: This report was based on original report no. 1506RSU00104. The EUT makes some changes on the basis of the original. The main board removed the HDMI OUT3 interface and replaced the OLYMPUS lens with UNION len. Others are the same as before.

We have assessed the worst-case mode for conducted emission & radiated spurious emission & radiated restricted band edge and shown the worst-case on the report.

CONTENTS

Description	Page
§2.1033 General Information	4
1. INTRODUCTION	5
1.1. Scope	5
1.2. MRT Test Location	5
2. PRODUCT INFORMATION	6
2.1. Equipment Description.....	6
2.2. Working Frequencies.....	6
2.3. Test Mode	6
2.4. Test Software	7
3. DESCRIPTION OF TEST	8
3.1. Evaluation Procedure	8
3.2. AC Line Conducted Emissions.....	8
3.3. Radiated Emissions	9
4. TEST EQUIPMENT CALIBRATION DATE	10
5. MEASUREMENT UNCERTAINTY.....	11
6. TEST RESULT	12
6.1. Summary	12
6.2. Radiated Spurious Emission Measurement	13
6.2.1. Test Limit	13
6.2.2. Test Procedure Used	13
6.2.3. Test Setting.....	13
6.2.4. Test Setup	14
6.2.5. Test Result.....	16
6.3. Radiated Restricted Band Edge Measurement	19
6.3.1. Test Limit	19
6.3.2. Test Result of Radiated Restricted Band Edge	21
6.4. AC Conducted Emissions Measurement.....	37
6.4.1. Test Limit	37
6.4.2. Test Setup	37
6.4.3. Test Result.....	38

§2.1033 General Information

Applicant:	Grandstream Networks, Inc.
Applicant Address:	4th Floor, Rainbow Technology Building #16 New West Rd, Nanshan Science & Technology Park (North District), Shenzhen, China 518057
Manufacturer:	Grandstream Networks, Inc.
Manufacturer Address:	4th Floor, Rainbow Technology Building #16 New West Rd, Nanshan Science & Technology Park (North District), Shenzhen, China 518057
Test Site:	MRT Technology (Suzhou) Co., Ltd
Test Site Address:	D8 Building, Youxin Industrial Park, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China
MRT FCC Registration No.:	809388
FCC Rule Part(s):	Part 15.407
Model No.:	GVC3202
FCC ID:	YZZGVC3200
Test Device Serial No.:	N/A <input type="checkbox"/> Production <input checked="" type="checkbox"/> Pre-Production <input type="checkbox"/> Engineering
FCC Classification:	Unlicensed National Information Infrastructure (UNII)

Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Tian'edang Rd., Suzhou, China.

- MRT facility is a FCC registered (MRT Reg. No. 809388) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules.
- MRT facility is an IC registered (MRT Reg. No. 11384A-1) test laboratory with the site description on file at Industry Canada.
- MRT facility is a VCCI registered (R-4179, G-814, C-4664, T-2206) test laboratory with the site description on file at VCCI Council.
- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (A2LA) under the American Association for Laboratory Accreditation Program (A2LA Cert. No. 3628.01) in EMC, Telecommunications and Radio testing for FCC, Industry Canada, EU and TELEC Rules.

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, Youxin Industrial Park, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2009 on September 30, 2013.

2. PRODUCT INFORMATION

2.1. Equipment Description

Product Name	Full HD Video Conferencing System
Model No.	GVC3202
Frequency Range	For 802.11a/n-HT20: 5180~5320MHz, 5500~5700MHz, 5745~5825MHz
Type of Modulation	802.11a/n: OFDM
Antenna Type	PCB Antenna
Antenna Gain	1.14dBi for 5GHz
Components	
Adapter	M/N: NBS65A120500M3 INPUT: 100-240V ~ 50/60Hz, 1.5A OUTPUT: 12.0Vdc, 5.0A

2.2. Working Frequencies

Channel List for 802.11a/n-HT20

Channel	Frequency	Channel	Frequency	Channel	Frequency
36	5180 MHz	40	5200 MHz	44	5220 MHz
48	5240 MHz	52	5260 MHz	56	5280 MHz
60	5300 MHz	64	5320 MHz	100	5500 MHz
104	5520 MHz	108	5540 MHz	112	5560 MHz
116	5580 MHz	120	5600 MHz	124	5620 MHz
128	5640 MHz	132	5660 MHz	136	5680 MHz
140	5700 MHz	149	5745 MHz	153	5765 MHz
157	5785 MHz	161	5805 MHz	165	5825 MHz

2.3. Test Mode

Test Mode	Mode 1: Transmit by 802.11a
	Mode 2: Transmit by 802.11n-HT20

2.4. Test Software

The test utility software used during testing was engineering order by applicant.

3. DESCRIPTION OF TEST

3.1. Evaluation Procedure

The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2009), and the guidance provided in KDB 789033 D02v01 were used in the measurement of the **Full HD Video Conferencing System FCC ID: YZZGVC3200**.

Deviation from measurement procedure.....None

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, 50Ω/50uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions are used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.

Line conducted emissions test results are shown in Section 6.4.

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 0.8 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB BeamWidth of horn antenna, the horn antenna should be always directed to the EUT when rising height.

4. TEST EQUIPMENT CALIBRATION DATE

Conducted Emissions

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR7	MRTSUE06001	1 year	2016/11/03
Two-Line V-Network	R&S	ENV216	MRTSUE06002	1 year	2016/11/03
Two-Line V-Network	R&S	ENV216	MRTSUE06003	1 year	2016/11/03
Temperature/Humidity Meter	Ouleinuo	N/A	MRTSUE06114	1 year	2016/11/20

Radiated Emissions

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Spectrum Analyzer	Agilent	E4447A	MRTSUE06028	1 year	2016/12/08
EMI Test Receiver	R&S	ESR7	MRTSUE06001	1 year	2016/11/03
Preamplifier	Agilent	83017A	MRTSUE06020	1 year	2016/03/29
Preamplifier	Schwarzbeck	BBV9721	MRTSUE06121	1 year	2016/04/16
Loop Antenna	Schwarzbeck	FMZB1519	MRTSUE06025	1 year	2016/11/07
TRILOG Antenna	Schwarzbeck	VULB9162	MRTSUE06022	1 year	2016/11/07
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	MRTSUE06023	1 year	2016/11/07
Broadband Horn Antenna	Schwarzbeck	BBHA9170	MRTSUE06024	1 year	2016/01/05
Temperature/Humidity Meter	Ouleinuo	N/A	MRTSUE06115	1 year	2016/11/20

Software	Version	Function
e3	V8.3.5	EMI Test Software

5. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k = 2$.

AC Conducted Emission Measurement
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_c(y)$): 150kHz~30MHz: 3.46dB
Radiated Emission Measurement
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_c(y)$): 9kHz ~ 1GHz: 4.18dB 1GHz ~ 25GHz: 4.76dB

6. TEST RESULT

6.1. Summary

Product Name: Full HD Video Conferencing System
FCC ID: YZZGVC3200
FCC Classification: Unlicensed National Information Infrastructure (UNII)
Data Rate(s) Tested: 6Mbps ~ 54Mbps (a);
6.5/7.2Mbps ~ 65/72.2Mbps (n-HT20MHz BW);

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.407(b)(1), (2), (3), (4)	Undesirable Emissions	< -27dBm/MHz EIRP < -17dBm/MHz EIRP	Radiated	Pass	Section 6.2 & 6.3
15.205, 15.209 15.407(b)(5), (6), (7)	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209		Pass	
15.207	AC Conducted Emissions 150kHz - 30MHz	< FCC 15.207 limits	Line Conducted	Pass	Section 6.4

Notes:

- 1) All channels, modes, and modulations/data rates were investigated among all UNII bands. For radiated emission test, every axis (X, Y, Z) was also verified. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.

6.2. Radiated Spurious Emission Measurement

6.2.1. Test Limit

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table per Section 15.209.

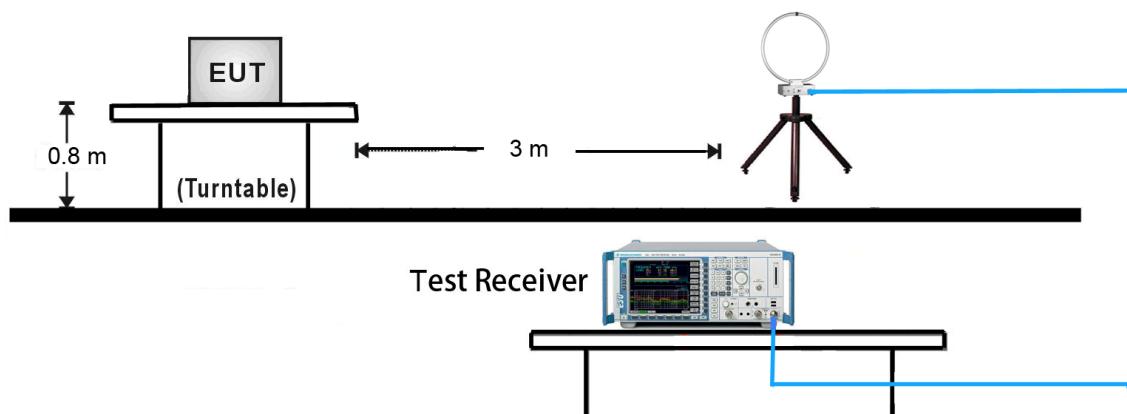
FCC Part 15 Subpart C Paragraph 15.209		
Frequency [MHz]	Field Strength [V/m]	Measured Distance [Meters]
0.009 - 0.490	2400/F (kHz)	300
0.490 - 1.705	24000/F (kHz)	30
1.705 - 30	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

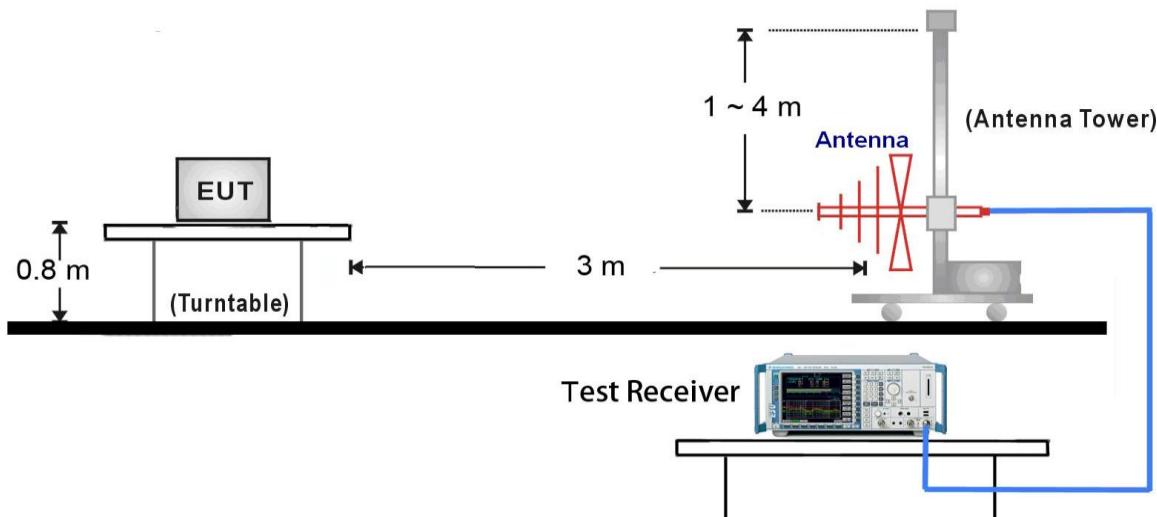
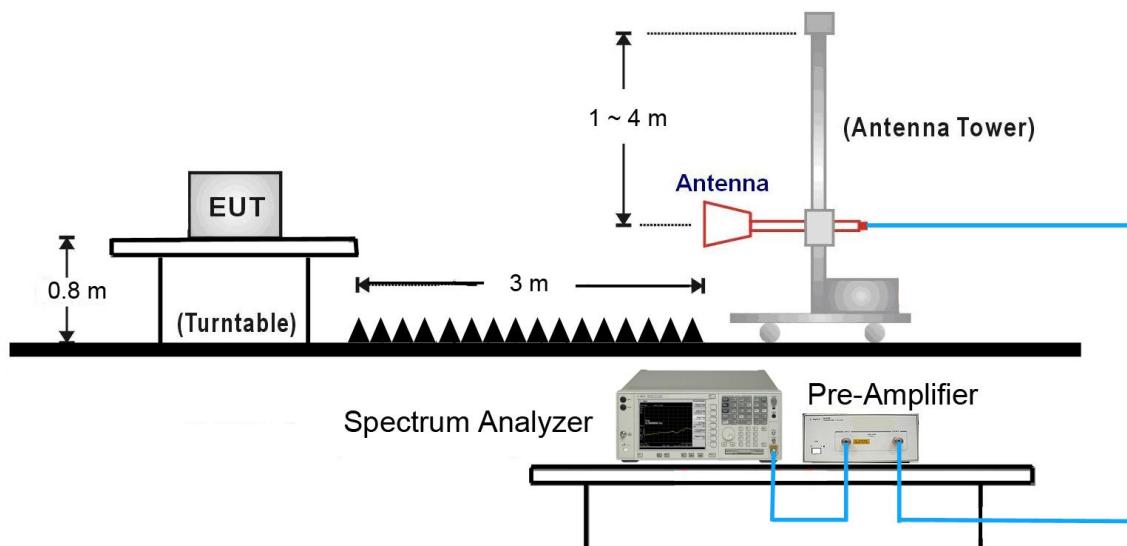
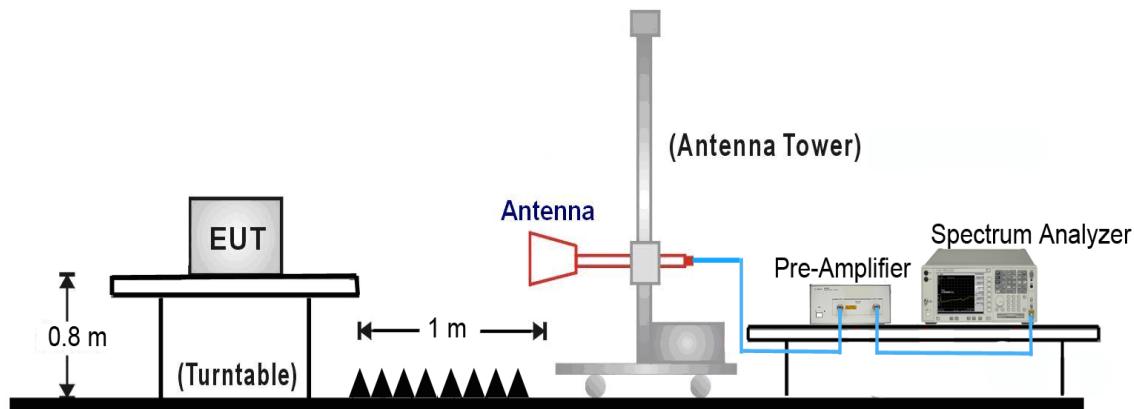
6.2.2. Test Procedure Used

KDB 789033 D02v01 - Section G

6.2.3. Test Setting

Peak Measurements above 1GHz


1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
2. RBW = 1MHz
3. VBW = 3MHz
4. Detector = peak
5. Sweep time = auto couple
6. Trace mode = max hold
7. Trace was allowed to stabilize




Quasi-Peak Measurements below 1GHz

1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
2. Span was set greater than 1MHz
3. RBW = 120 kHz
4. Detector = CISPR quasi-peak
5. Sweep time = auto couple
6. Trace was allowed to stabilize

Average Measurements above 1GHz (Method AD)

1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
2. RBW = 1MHz
3. VBW = 3MHz
4. Detector = power average (RMS)
5. Number of measurement points = 1001 (Number of points must be $> 2 \times \text{span/RBW}$)
6. Sweep time = auto
7. Trace was averaged over at 100 sweeps

6.2.4. Test Setup**9kHz ~ 30MHz Test Setup:**

30MHz ~ 1GHz Test Setup:

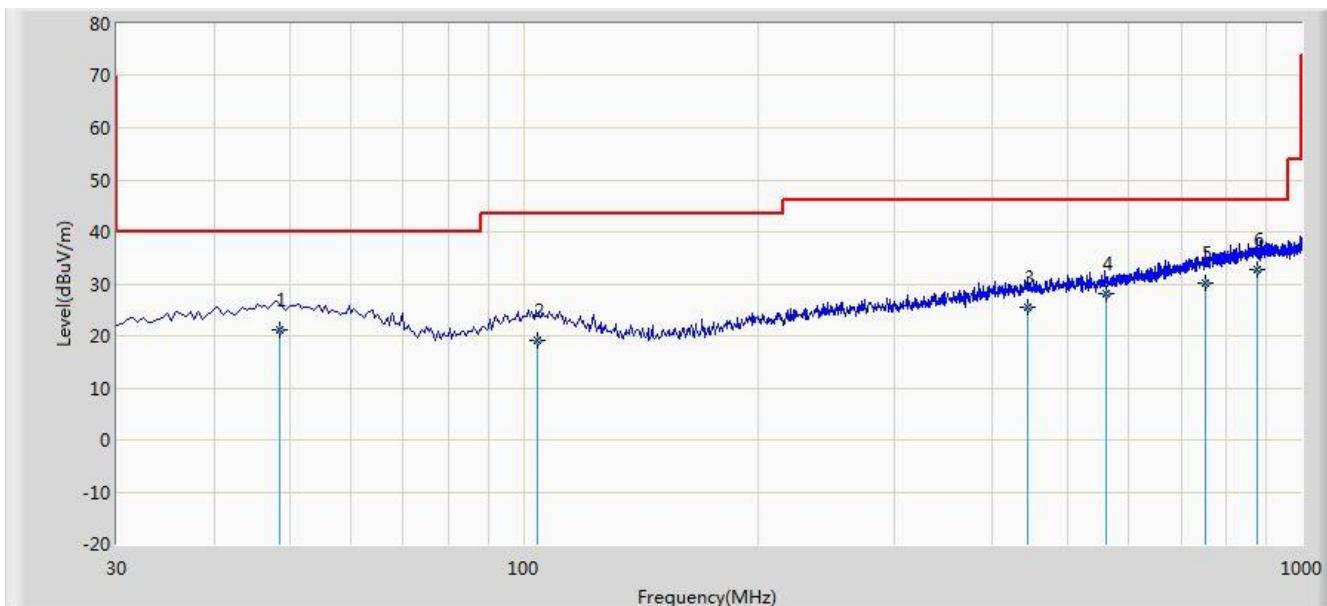
1GHz ~ 18GHz Test Setup:

18GHz ~40GHz Test Setup:

6.2.5. Test Result

Test Mode:	802.11a	Test Site:	AC1
Test Channel:	52	Test Engineer:	Roy Cheng
Remark:	1. Average measurement was not performed if peak level lower than average limit. 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the report.		

Mark	Frequency (MHz)	Reading Level (dB μ V)	Factor (dB)	Measure Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	Polarization
	7248.6	35.3	7.9	43.2	74.0	-30.8	Peak	Horizontal
*	9285.6	34.4	10.3	44.7	68.2	-23.5	Peak	Horizontal
	12154.9	35.1	11.8	46.9	74.0	-27.1	Peak	Horizontal
*	13485.6	34.8	13.7	48.5	68.2	-19.7	Peak	Horizontal
	7625.4	35.6	8.0	43.6	74.0	-30.4	Peak	Vertical
*	8653.3	35.8	8.8	44.6	68.2	-23.6	Peak	Vertical
	11468.3	34.4	12.7	47.1	74.0	-26.9	Peak	Vertical
*	12762.5	35.0	11.7	46.7	68.2	-21.5	Peak	Vertical


Note 1: “**” is not in restricted band, its limit is -27dBm/MHz. At a distance of 3 meters, the field strength limit in dB μ V/m can be determined by adding a “conversion” factor of 95.2dB to the EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions.

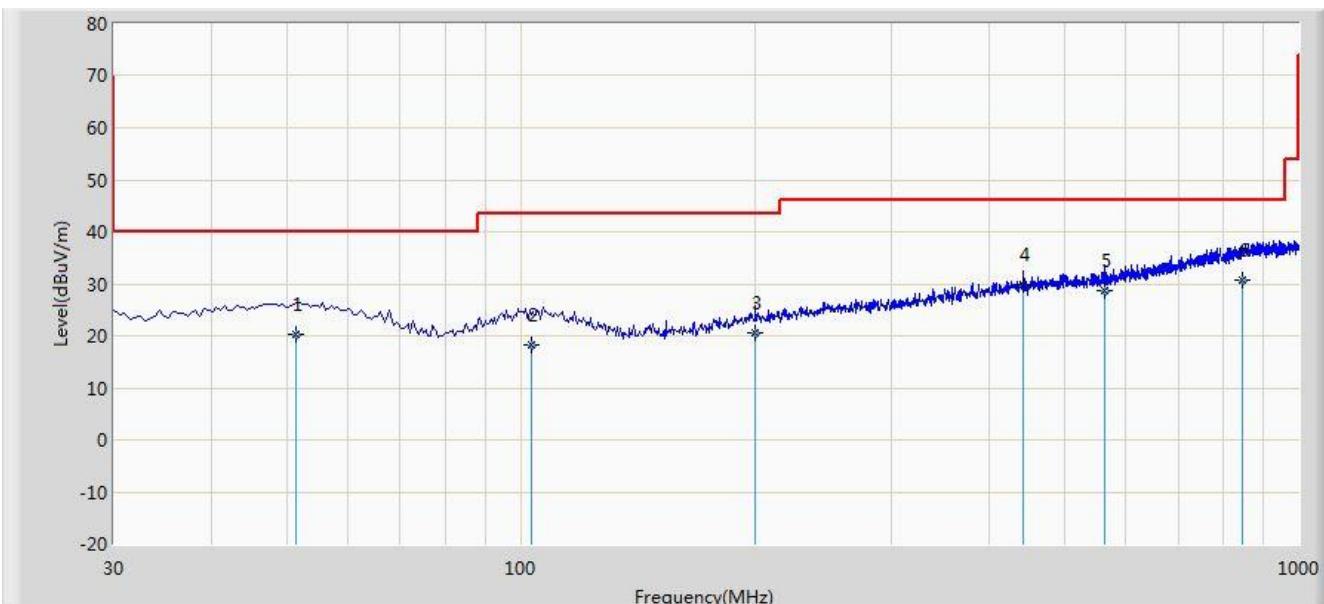
Note 2: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

The worst case of Radiated Emission below 1GHz:

Site: AC1	Time: 2015/11/20 - 17:11
Limit: FCC_Part15.209_RE(3m)	Engineer: Roy Cheng
Probe: VULB9162_0.03-8GHz	Polarity: Horizontal
EUT: Full HD Video Conferencing System	Power: AC 120V/60Hz

Worst Case Mode: Transmit at channel 5180MHz by 802.11a


No	Flag	Mark	Frequency (MHz)	Measure Level (dB μ V/m)	Reading Level (dB μ V)	Over Limit (dB)	Limit (dB μ V/m)	Factor	Type
1			48.533	21.229	6.300	-18.771	40.000	14.930	QP
2			103.950	19.124	6.020	-24.376	43.500	13.104	QP
3			444.020	25.539	8.300	-20.461	46.000	17.239	QP
4			560.200	28.193	8.940	-17.807	46.000	19.253	QP
5			752.740	30.074	7.930	-15.926	46.000	22.144	QP
6	*		877.350	32.741	8.940	-13.259	46.000	23.801	QP

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Site: AC1	Time: 2015/11/20 - 17:11
Limit: FCC_Part15.209_RE(3m)	Engineer: Roy Cheng
Probe: VULB9162_0.03-8GHz	Polarity: Vertical
EUT: Full HD Video Conferencing System	Power: AC 120V/60Hz

Worst Case Mode: Transmit at channel 5180MHz By 802.11a

No	Flag	Mark	Frequency (MHz)	Measure Level (dB μ V/m)	Reading Level (dB μ V)	Over Limit (dB)	Limit (dB μ V/m)	Factor	Type
1			51.430	20.183	5.300	-19.817	40.000	14.883	QP
2			103.260	18.325	5.200	-25.175	43.500	13.125	QP
3			200.040	20.525	8.300	-22.975	43.500	12.225	QP
4			443.200	29.729	12.500	-16.271	46.000	17.229	QP
5			562.130	28.799	9.500	-17.201	46.000	19.300	QP
6		*	845.360	30.804	7.400	-15.196	46.000	23.403	QP

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

6.3. Radiated Restricted Band Edge Measurement

6.3.1. Test Limit

For 15.205 requirement:

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a) of FCC part 15, must also comply with the radiated emission limits specified in Section 15.209(a).

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)

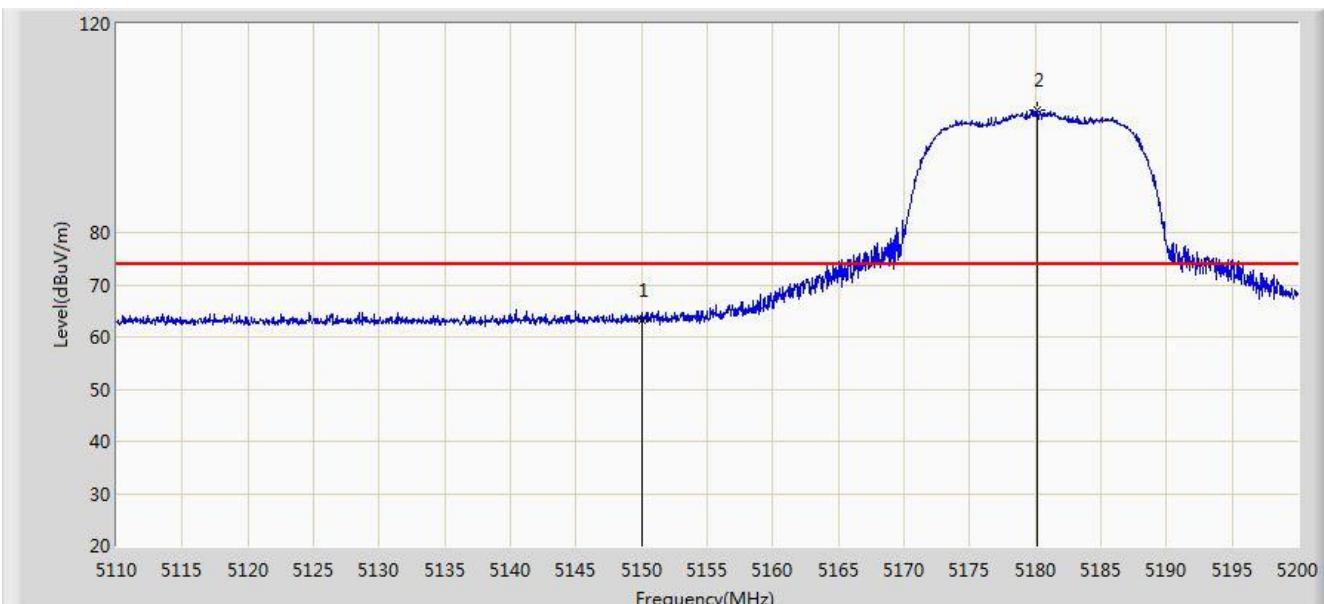
For 15.407(b) requirement:

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

Operating Frequency Band (MHz)	EIRP Limit (dBm/MHz)	Equivalent Field Strength at 3m (dBuV/m)
5150 - 5250	-27	68.2
5725 - 5850	-17	78.2
	-27	68.2

Note: Refer to KDB 789033 D02v01 G)2)c), as specified in § 15.407(b), emissions above 1000 MHz that are outside of the restricted bands are subject to a maximum emission limit of -27 dBm/MHz (or -17 dBm/MHz as specified in § 15.407(b)(4)). However, an out-of-band emission that complies with both the peak and average limits of § 15.209 is not required to satisfy the -27 dBm/MHz or -17 dBm/MHz maximum emission limit.

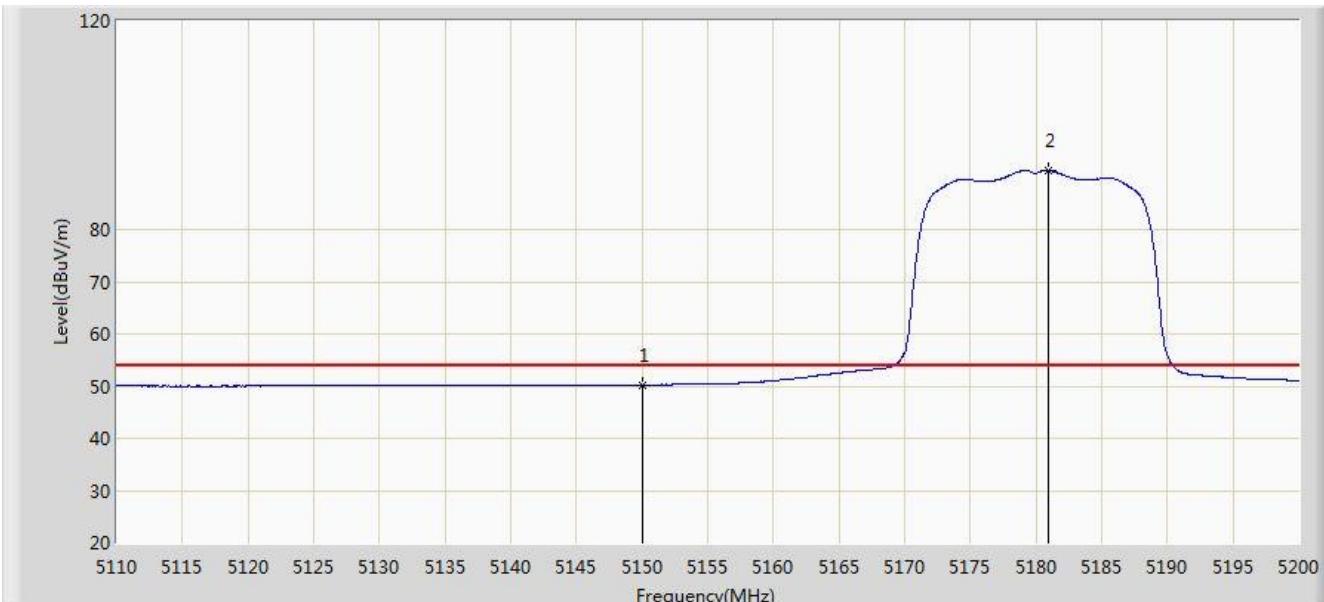

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table per Section 15.209.

FCC Part 15 Subpart C Paragraph 15.209		
Frequency [MHz]	Field Strength [V/m]	Measured Distance [Meters]
0.009 - 0.490	2400/F (kHz)	300
0.490 - 1.705	24000/F (kHz)	30
1.705 - 30	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Remark : All band have been tested , only worse case is reported

6.3.2. Test Result of Radiated Restricted Band Edge

Site: AC1	Time: 2015/11/20 - 17:29
Limit: FCC_Part15.209_RE(3m)	Engineer: Roy Cheng
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: Full HD Video Conferencing System	Power: AC 120V/60Hz
Test Mode: Transmit at Channel 5180MHz by 802.11a	

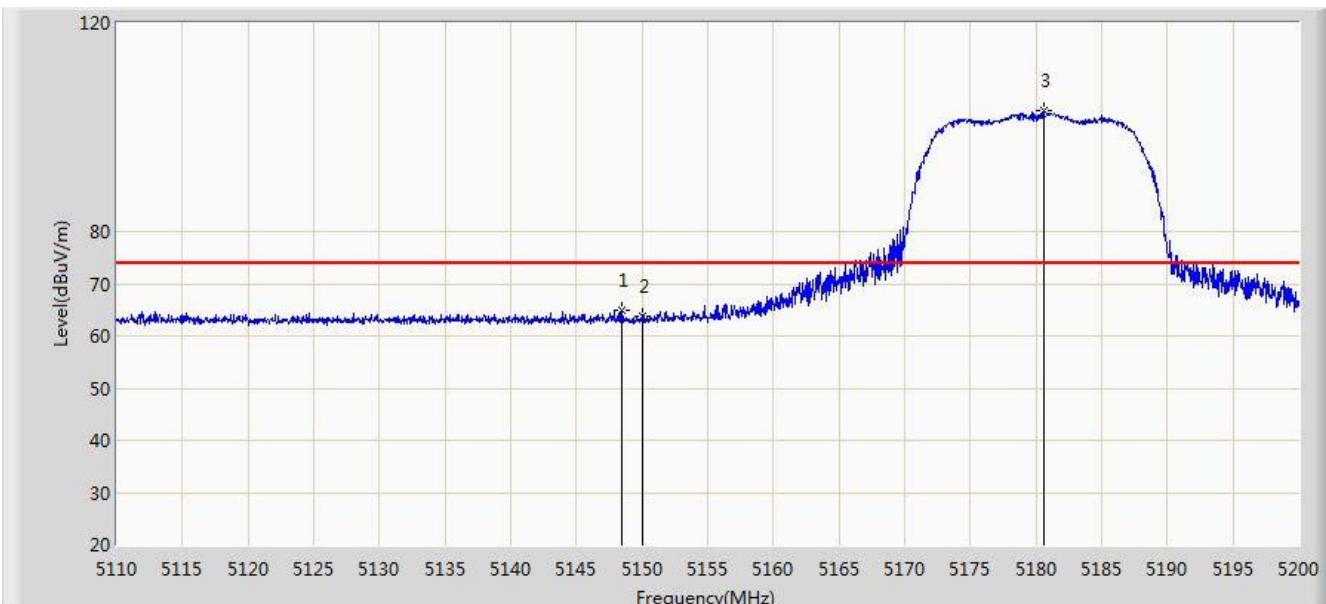


No	Flag	Mark	Frequency (MHz)	Measure Level (dB μ V/m)	Reading Level (dB μ V)	Over Limit (dB)	Limit (dB μ V/m)	Factor (dB)	Type
1			5150.000	63.170	25.718	-10.830	74.000	37.452	PK

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

Site: AC1	Time: 2015/11/20 - 17:29
Limit: FCC_Part15.209_RE(3m)	Engineer: Roy Cheng
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: Full HD Video Conferencing System	Power: AC 120V/60Hz
Test Mode: Transmit at Channel 5180MHz by 802.11a	

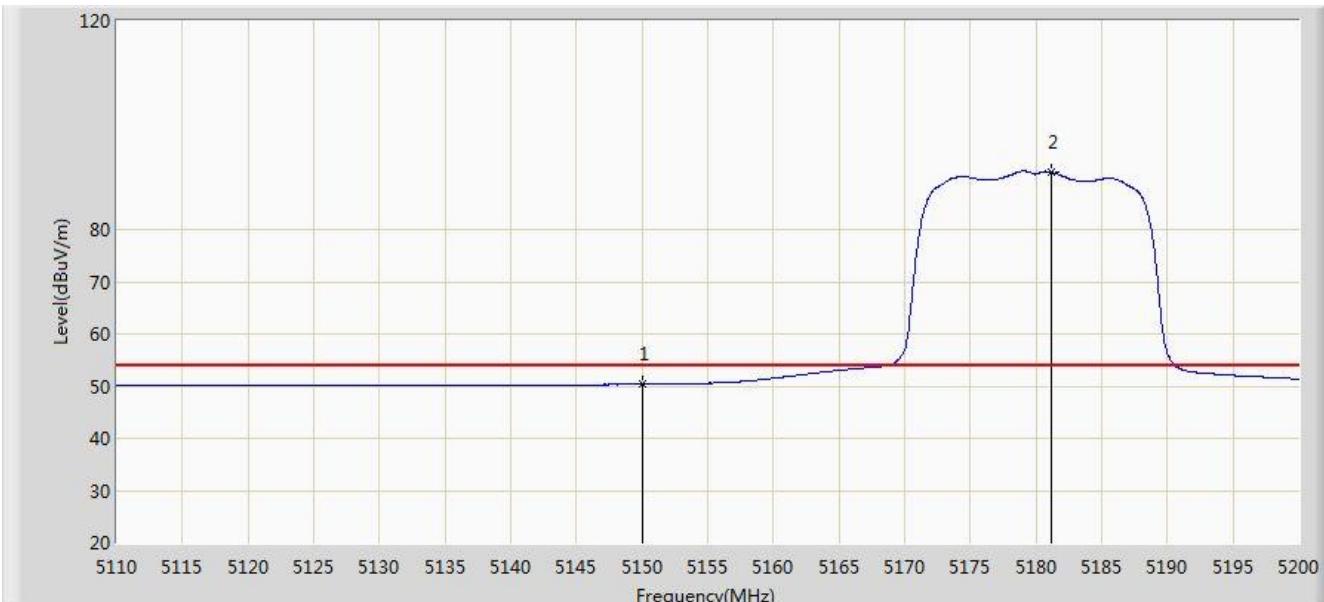


No	Flag	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor (dB)	Type
1			5150.000	50.210	12.758	-3.790	54.000	37.452	AV

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

Site: AC1	Time: 2015/11/20 - 17:32
Limit: FCC_Part15.209_RE(3m)	Engineer: Roy Cheng
Probe: BBHA9120D_1-18GHz	Polarity: Vertical
EUT: Full HD Video Conferencing System	Power: AC 120V/60Hz
Test Mode: Transmit at Channel 5180MHz by 802.11a	

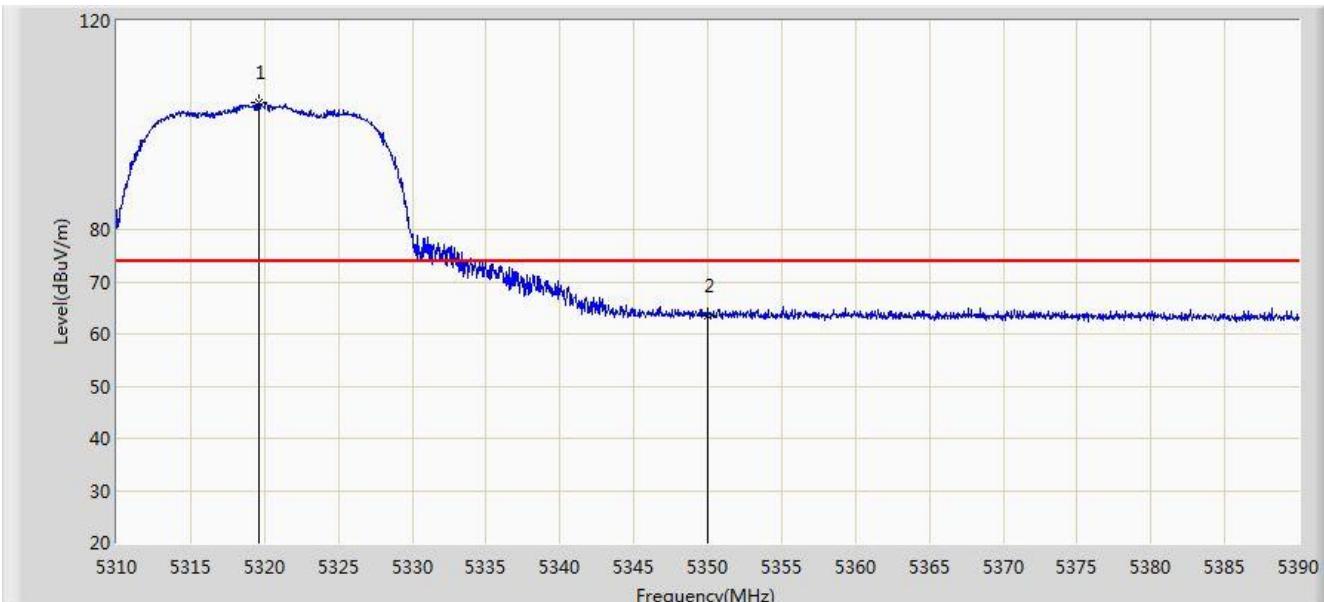


No	Flag	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor (dB)	Type
1			5148.475	64.882	27.428	-9.118	74.000	37.454	PK
2			5150.000	63.882	26.430	-10.118	74.000	37.452	PK

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

Site: AC1	Time: 2015/11/20 - 17:32
Limit: FCC_Part15.209_RE(3m)	Engineer: Roy Cheng
Probe: BBHA9120D_1-18GHz	Polarity: Vertical
EUT: Full HD Video Conferencing System	Power: AC 120V/60Hz
Test Mode: Transmit at Channel 5180MHz by 802.11a	

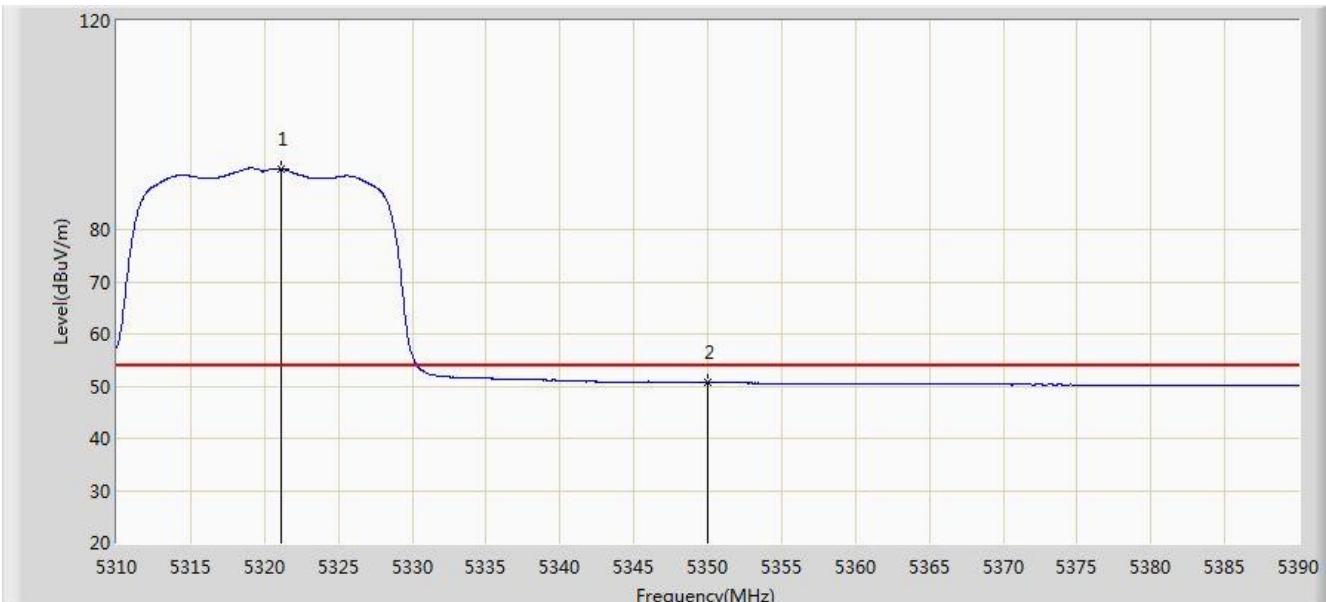


No	Flag	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor (dB)	Type
1			5150.000	50.340	12.888	-3.660	54.000	37.452	AV

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

Site: AC1	Time: 2015/11/20 - 17:34
Limit: FCC_Part15.209_RE(3m)	Engineer: Roy Cheng
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: Full HD Video Conferencing System	Power: AC 120V/60Hz
Test Mode: Transmit at Channel 5320MHz by 802.11a	

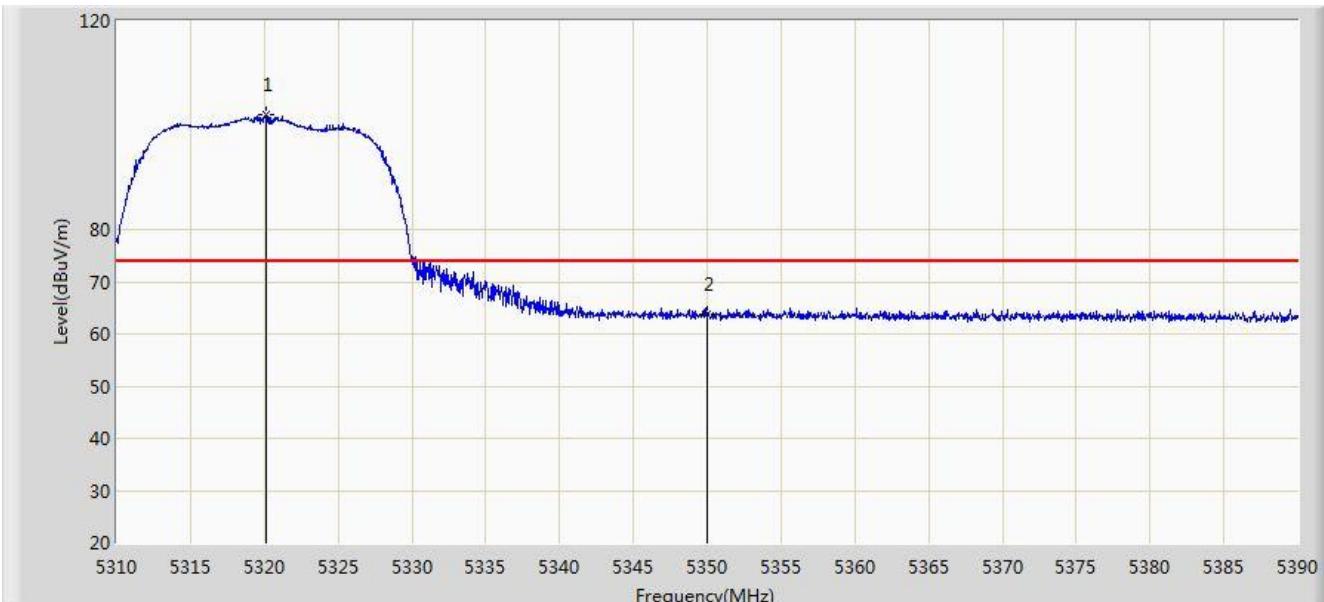


No	Flag	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor (dB)	Type
2			5350.000	63.432	26.146	-10.568	74.000	37.286	PK

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

Site: AC1	Time: 2015/11/20 - 17:34
Limit: FCC_Part15.209_RE(3m)	Engineer: Roy Cheng
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: Full HD Video Conferencing System	Power: AC 120V/60Hz
Test Mode: Transmit at Channel 5320MHz by 802.11a	

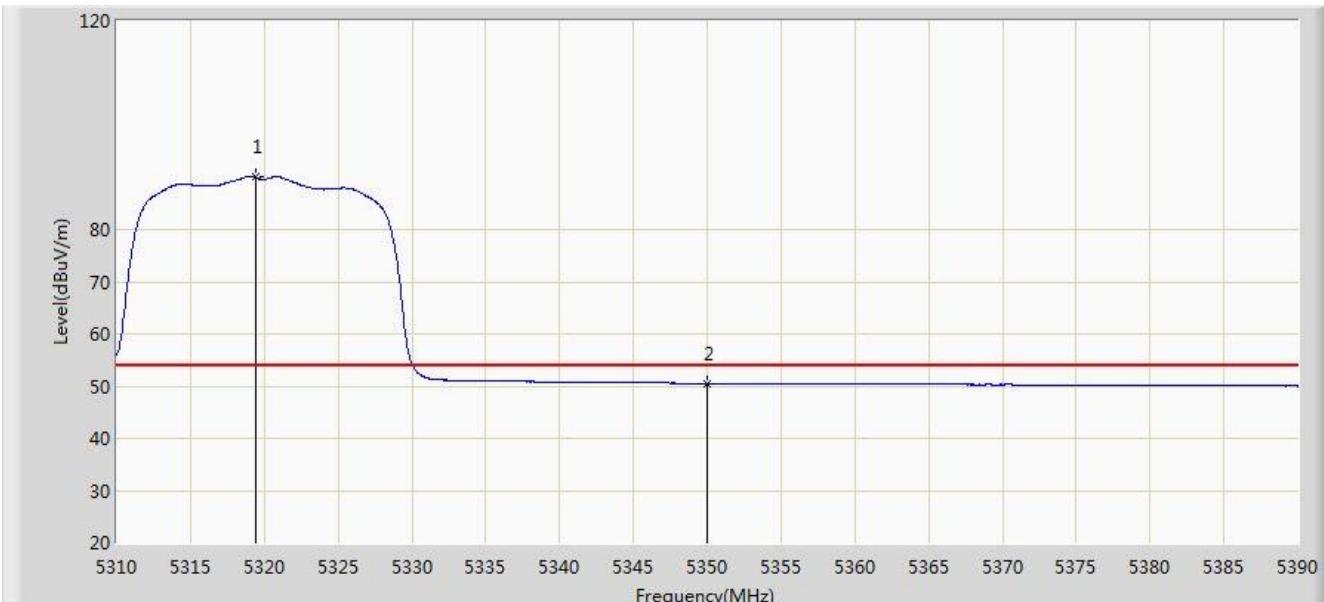


No	Flag	Mark	Frequency (MHz)	Measure Level (dB μ V/m)	Reading Level (dB μ V)	Over Limit (dB)	Limit (dB μ V/m)	Factor (dB)	Type
2			5350.000	50.614	13.328	-3.386	54.000	37.286	AV

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

Site: AC1	Time: 2015/11/20 - 17:35
Limit: FCC_Part15.209_RE(3m)	Engineer: Roy Cheng
Probe: BBHA9120D_1-18GHz	Polarity: Vertical
EUT: Full HD Video Conferencing System	Power: AC 120V/60Hz
Test Mode: Transmit at Channel 5320MHz by 802.11a	

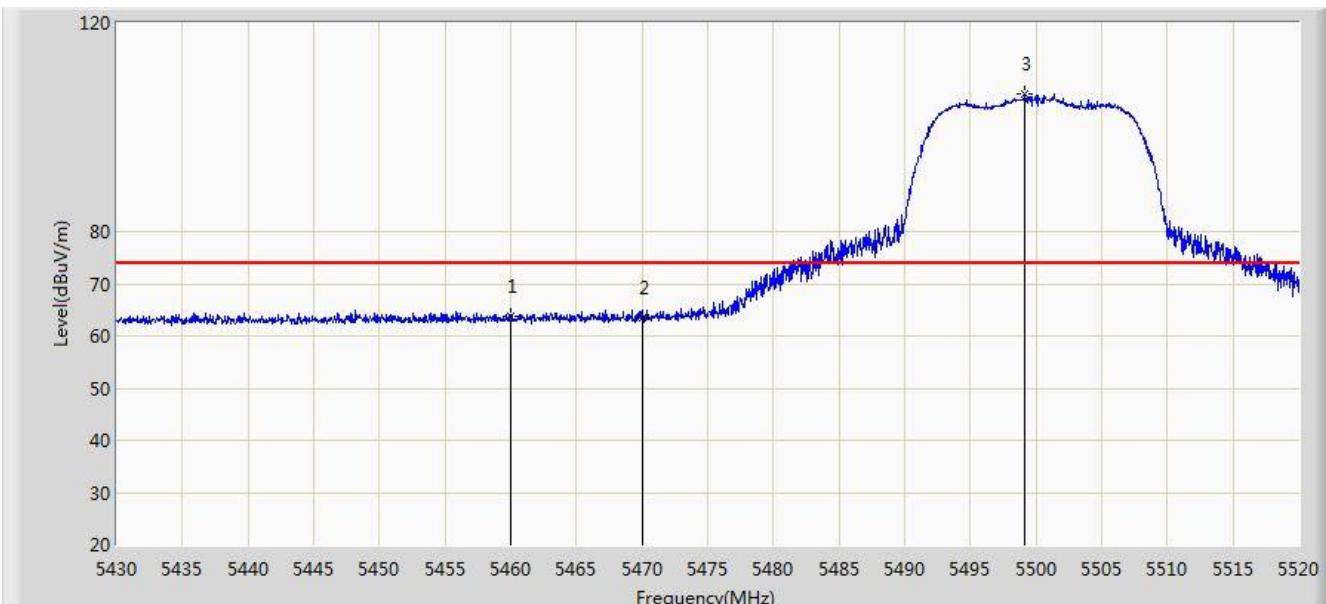


No	Flag	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor (dB)	Type
2			5350.000	63.909	26.623	-10.091	74.000	37.286	PK

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

Site: AC1	Time: 2015/11/20 - 17:35
Limit: FCC_Part15.209_RE(3m)	Engineer: Roy Cheng
Probe: BBHA9120D_1-18GHz	Polarity: Vertical
EUT: Full HD Video Conferencing System	Power: AC 120V/60Hz
Test Mode: Transmit at Channel 5320MHz by 802.11a	

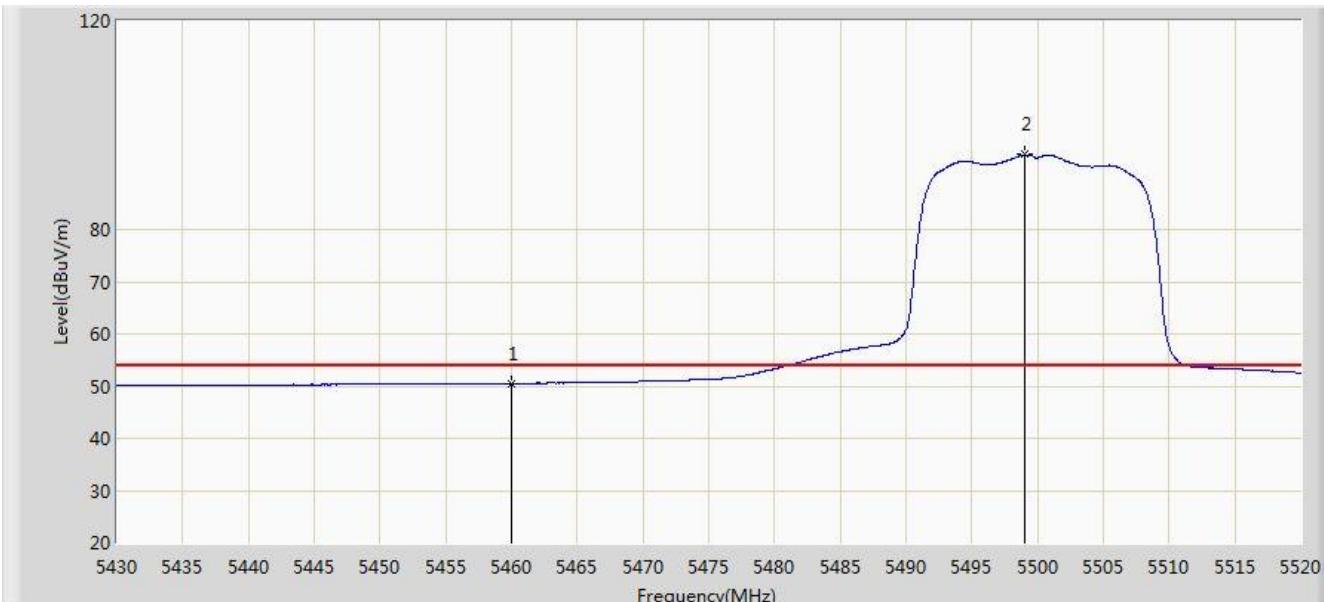


No	Flag	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor (dB)	Type
2			5350.000	50.518	13.232	-3.482	54.000	37.286	AV

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

Site: AC1	Time: 2015/11/20 - 17:37
Limit: FCC_Part15.209_RE(3m)	Engineer: Roy Cheng
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: Full HD Video Conferencing System	Power: AC 120V/60Hz
Test Mode: Transmit at Channel 5500MHz by 802.11a	

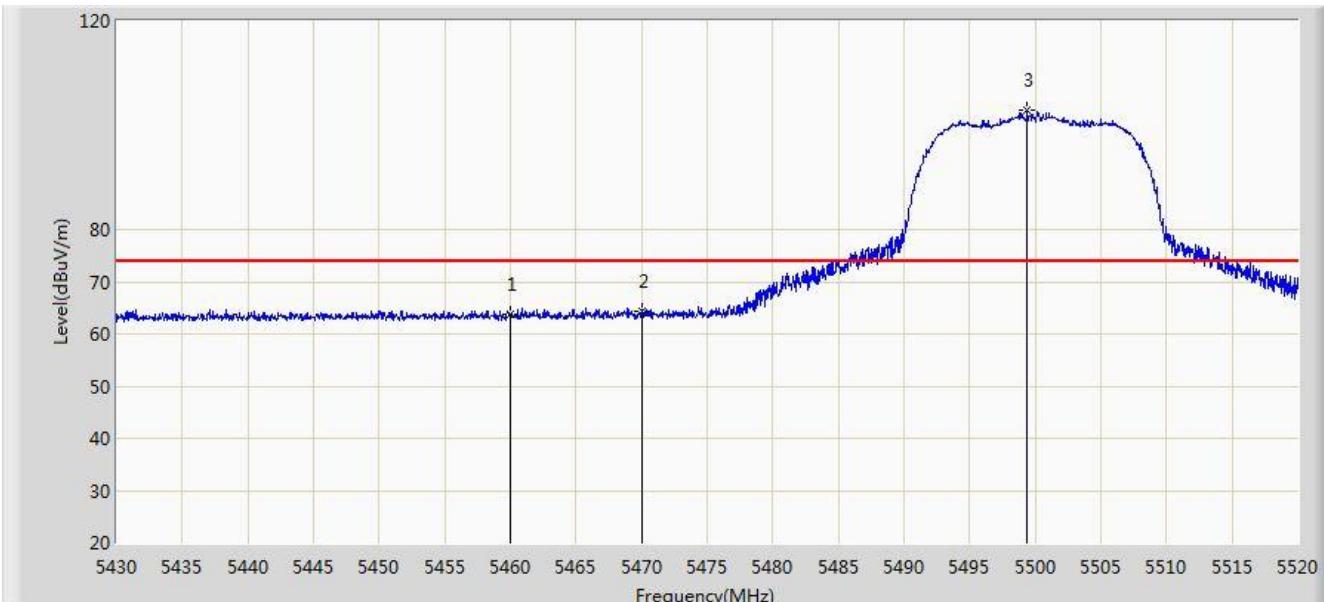


No	Flag	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor (dB)	Type
1			5460.000	63.655	26.092	-10.345	74.000	37.563	PK
2			5470.000	63.346	25.757	-10.654	74.000	37.588	PK

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

Site: AC1	Time: 2015/11/20 - 17:38
Limit: FCC_Part15.209_RE(3m)	Engineer: Roy Cheng
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: Full HD Video Conferencing System	Power: AC 120V/60Hz
Test Mode: Transmit at Channel 5500MHz by 802.11a	

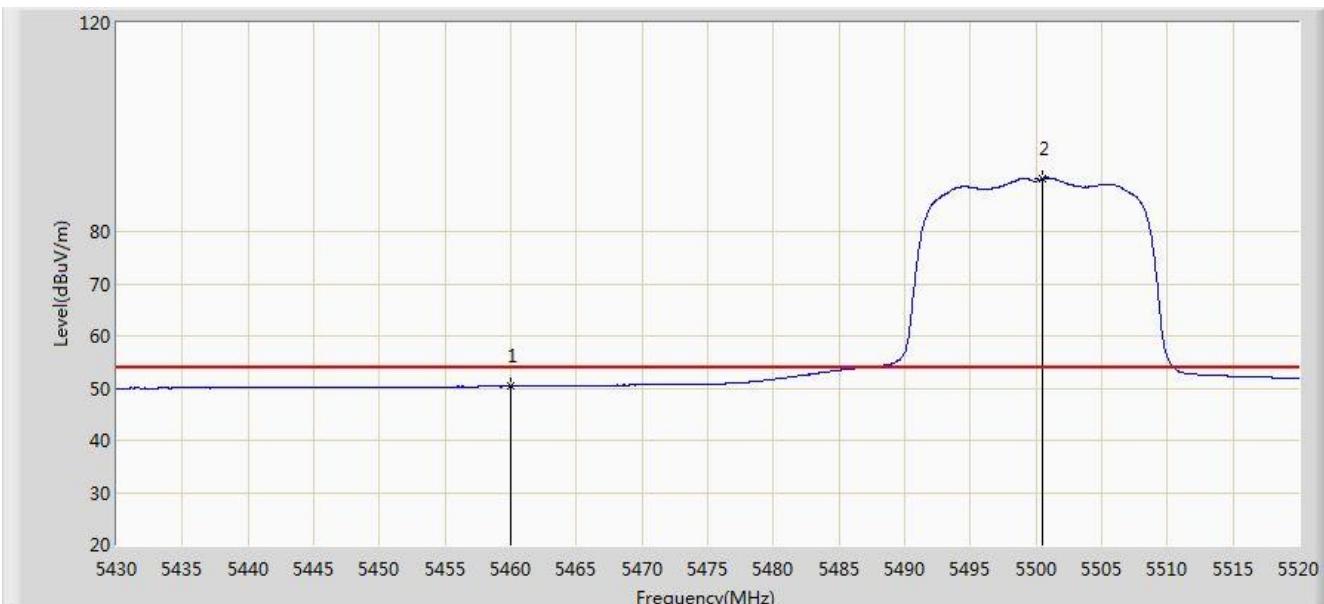


No	Flag	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor (dB)	Type
1			5460.000	50.522	12.959	-3.478	54.000	37.563	AV

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

Site: AC1	Time: 2015/11/20 - 17:39
Limit: FCC_Part15.209_RE(3m)	Engineer: Roy Cheng
Probe: BBHA9120D_1-18GHz	Polarity: Vertical
EUT: Full HD Video Conferencing System	Power: AC 120V/60Hz
Test Mode: Transmit at Channel 5500MHz by 802.11a	

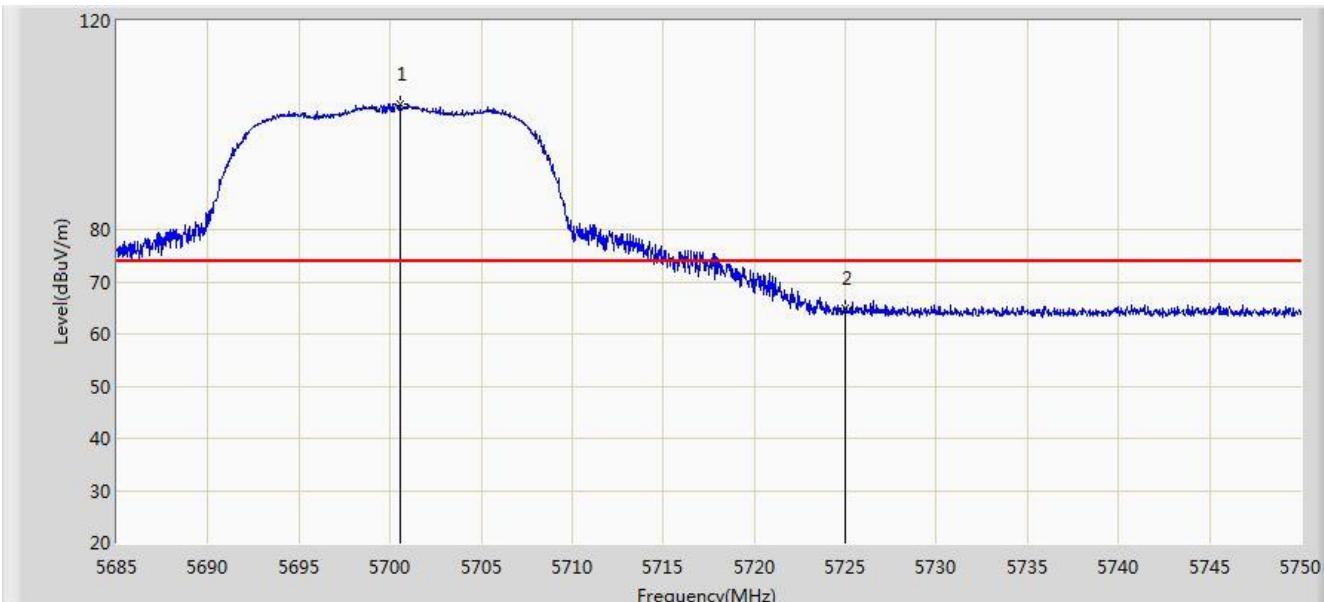


No	Flag	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor (dB)	Type
1			5460.000	63.813	26.250	-10.187	74.000	37.563	PK
2			5470.000	64.220	26.631	-9.780	74.000	37.588	PK

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

Site: AC1	Time: 2015/11/20 - 17:39
Limit: FCC_Part15.209_RE(3m)	Engineer: Roy Cheng
Probe: BBHA9120D_1-18GHz	Polarity: Vertical
EUT: Full HD Video Conferencing System	Power: AC 120V/60Hz
Test Mode: Transmit at Channel 5500MHz by 802.11a	

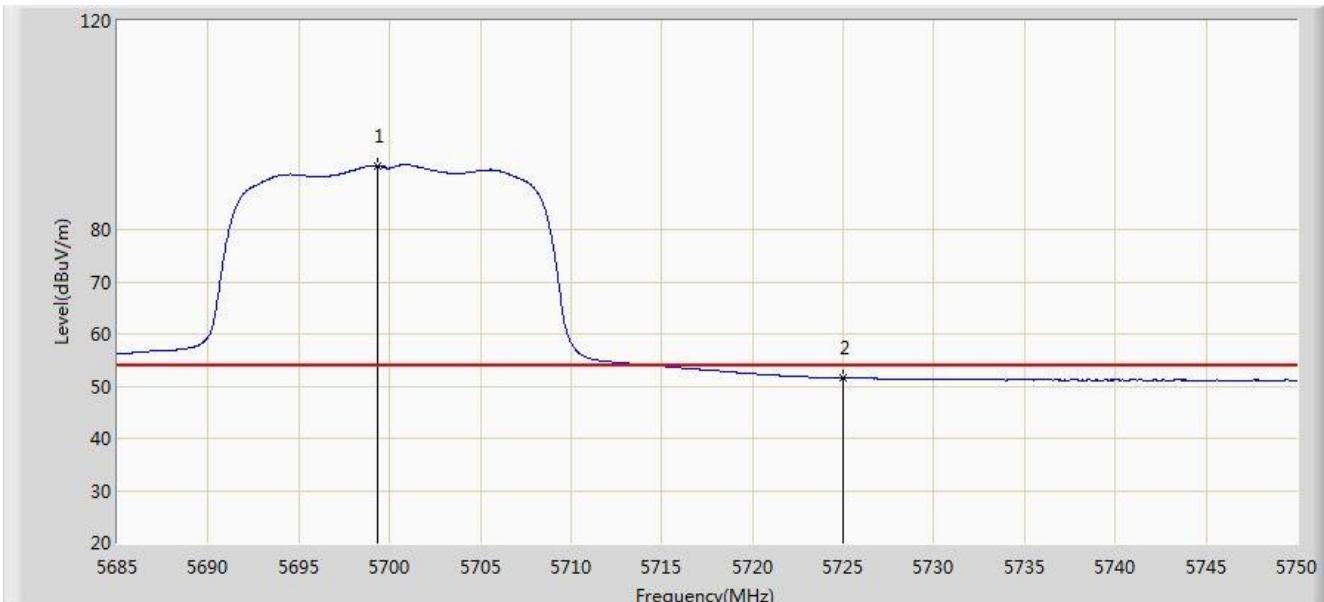


No	Flag	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor (dB)	Type
1			5460.000	50.325	12.762	-3.675	54.000	37.563	AV

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

Site: AC1	Time: 2015/11/20 - 17:42
Limit: FCC_Part15.209_RE(3m)	Engineer: Roy Cheng
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: Full HD Video Conferencing System	Power: AC 120V/60Hz
Test Mode: Transmit at Channel 5700MHz by 802.11a	

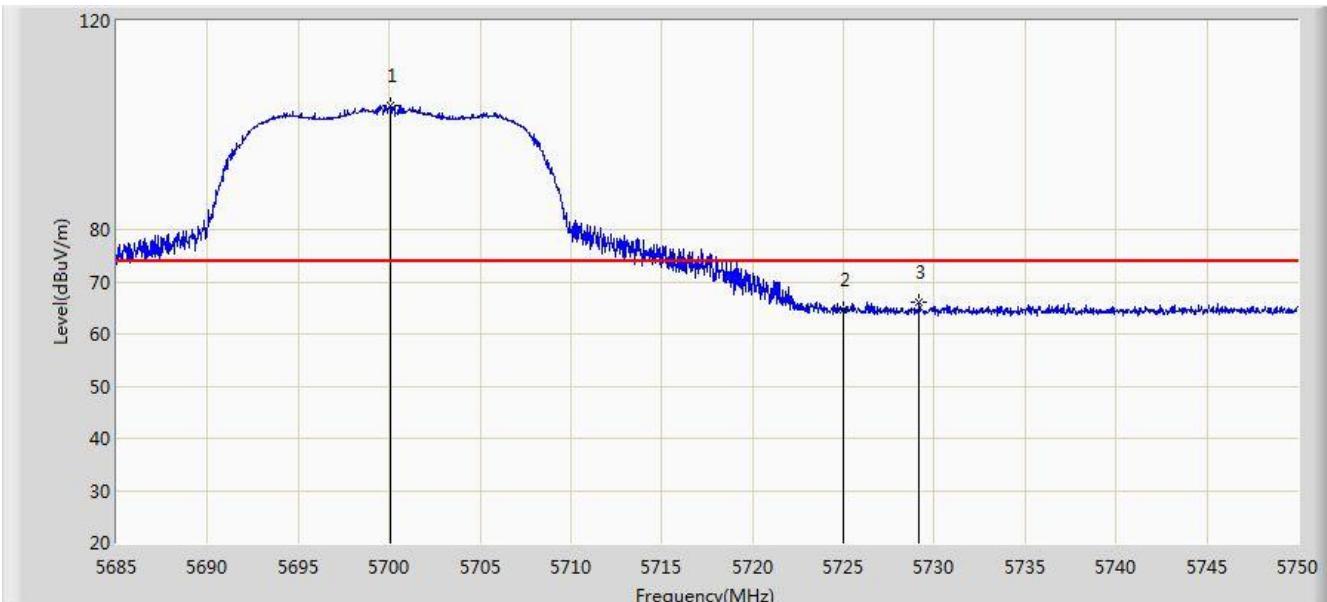


No	Flag	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor (dB)	Type
2			5725.000	64.876	26.886	-9.124	74.000	37.990	PK

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

Site: AC1	Time: 2015/11/20 - 17:42
Limit: FCC_Part15.209_RE(3m)	Engineer: Roy Cheng
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: Full HD Video Conferencing System	Power: AC 120V/60Hz
Test Mode: Transmit at Channel 5700MHz by 802.11a	

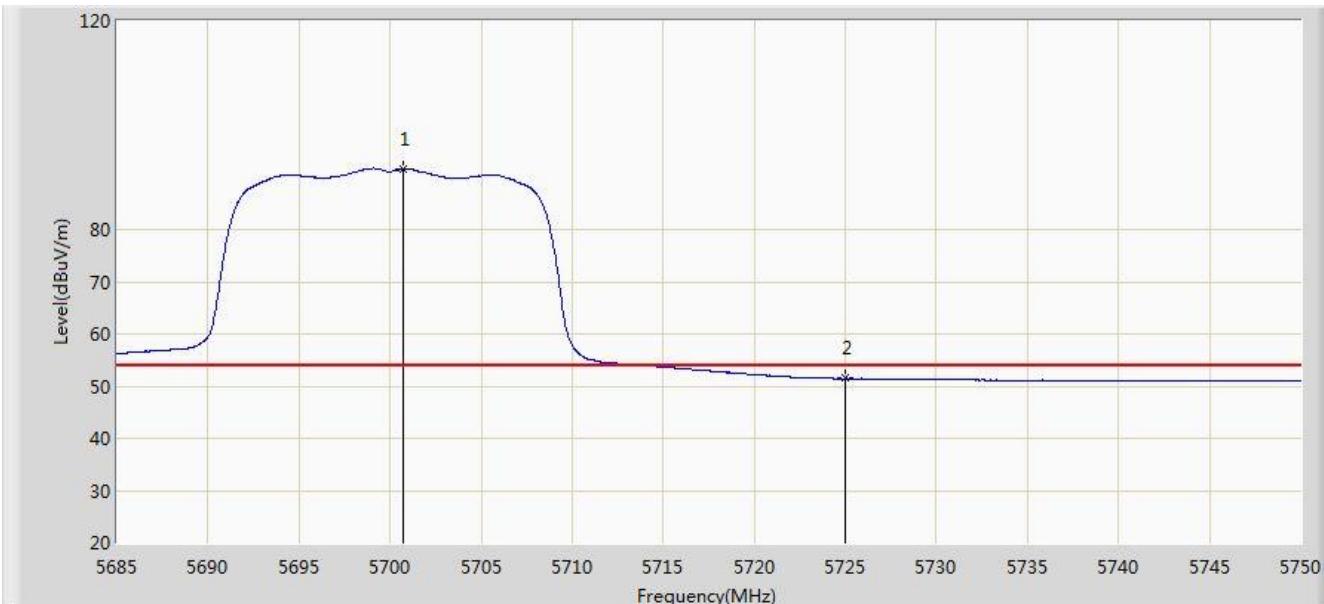


No	Flag	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor (dB)	Type
2			5725.000	51.523	13.533	-2.477	54.000	37.990	AV

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

Site: AC1	Time: 2015/11/20 - 17:43
Limit: FCC_Part15.209_RE(3m)	Engineer: Roy Cheng
Probe: BBHA9120D_1-18GHz	Polarity: Vertical
EUT: Full HD Video Conferencing System	Power: AC 120V/60Hz
Test Mode: Transmit at Channel 5700MHz by 802.11a	



No	Flag	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor (dB)	Type
2			5725.000	64.737	26.747	-9.263	74.000	37.990	PK

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

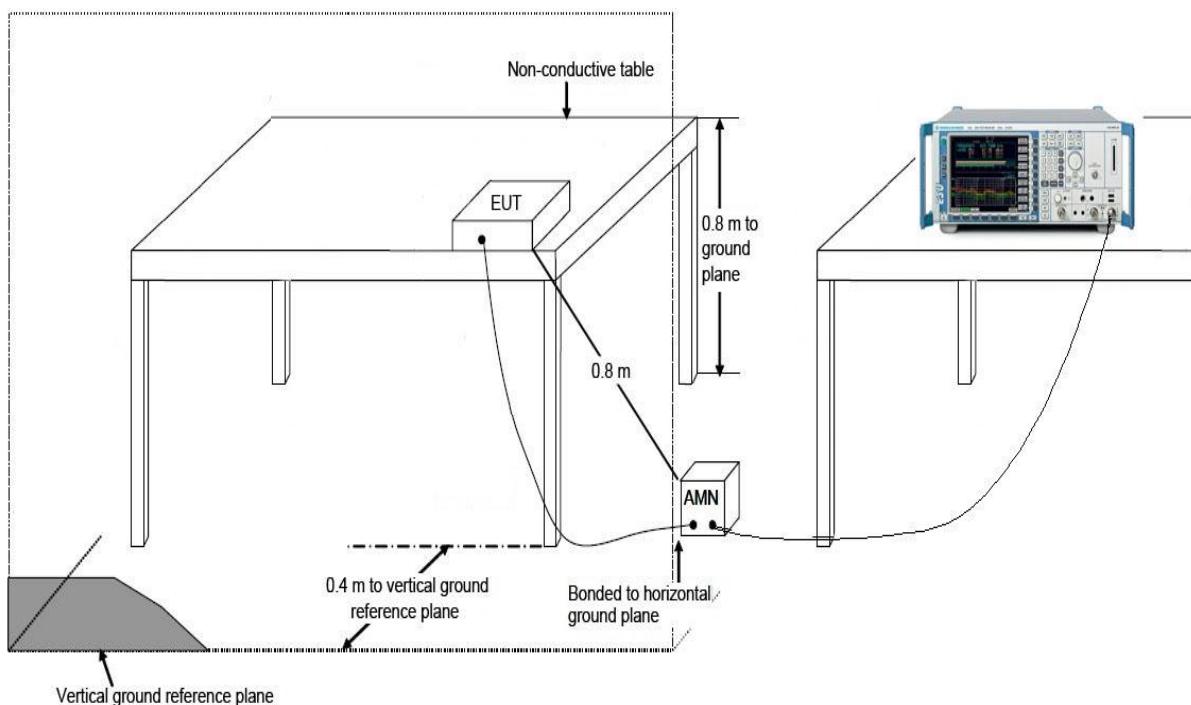
Site: AC1	Time: 2015/11/20 - 17:43
Limit: FCC_Part15.209_RE(3m)	Engineer: Roy Cheng
Probe: BBHA9120D_1-18GHz	Polarity: Vertical
EUT: Full HD Video Conferencing System	Power: AC 120V/60Hz
Test Mode: Transmit at Channel 5700MHz by 802.11a	

No	Flag	Mark	Frequency (MHz)	Measure Level (dBuV/m)	Reading Level (dBuV)	Over Limit (dB)	Limit (dBuV/m)	Factor (dB)	Type
2			5725.000	51.452	13.462	-2.548	54.000	37.990	AV

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

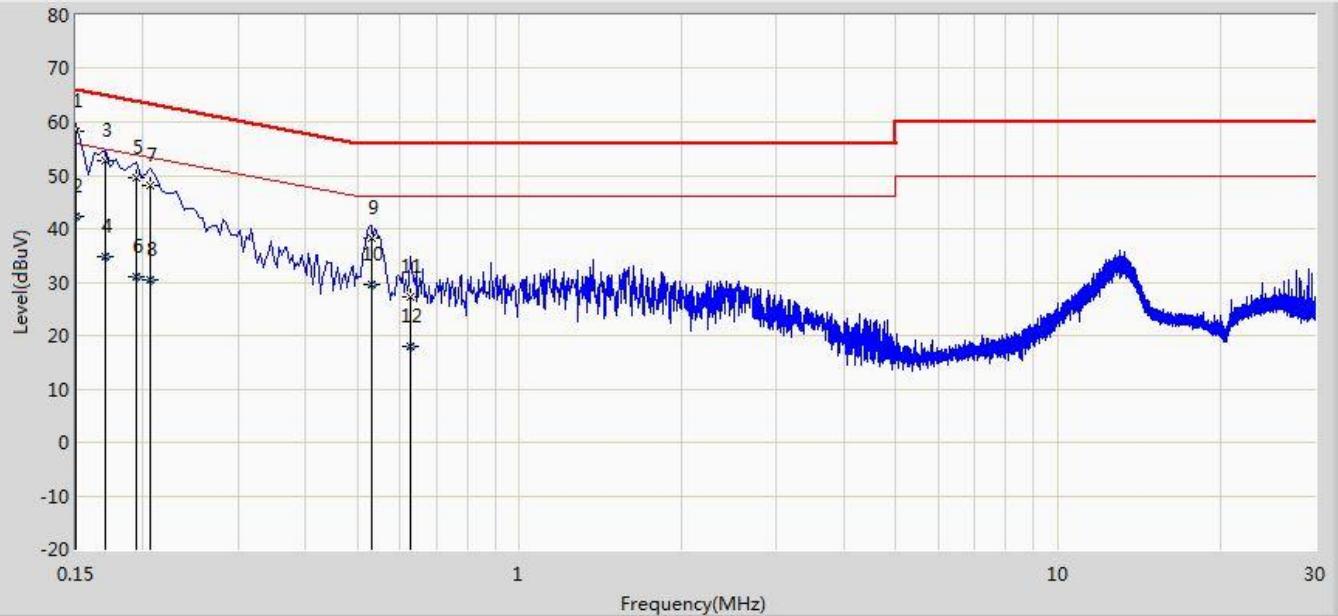
Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

6.4. AC Conducted Emissions Measurement


6.4.1. Test Limit

FCC Part 15 Subpart C Paragraph 15.207 Limits		
Frequency (MHz)	QP (dBuV)	AV (dBuV)
0.15 - 0.50	66 - 56	56 – 46
0.50 - 5.0	56	46
5.0 - 30	60	50

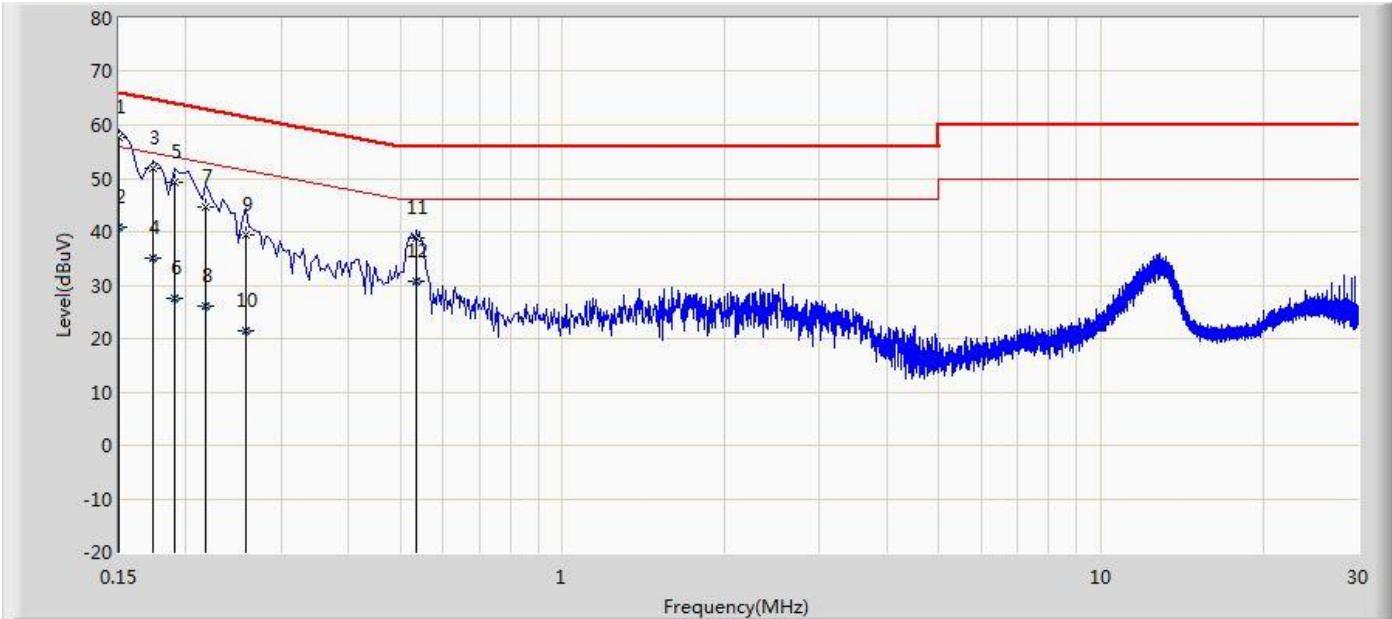
Note 1: The lower limit shall apply at the transition frequencies.


Note 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.

6.4.2. Test Setup

6.4.3. Test Result

Site: SR2	Time: 2015/12/18 - 13:09
Limit: FCC_Part15.207_CE_AC Power	Engineer: Vince Yu
Probe: ENV216_101683_Filter On	Polarity: Line
EUT: Full HD Video Conferencing System	Power: AC 120V/60Hz
Note: Mode 1	



No	Flag	Mark	Frequency (MHz)	Measure Level (dB μ V)	Reading Level (dB μ V)	Over Limit (dB)	Limit (dB μ V)	Factor (dB)	Type
1		*	0.150	58.362	47.194	-7.638	66.000	11.168	QP
2			0.150	42.365	31.196	-13.635	56.000	11.168	AV
3			0.170	52.895	42.817	-12.065	64.960	10.078	QP
4			0.170	34.815	24.738	-20.145	54.960	10.078	AV
5			0.194	49.609	39.592	-14.255	63.864	10.017	QP
6			0.194	31.087	21.070	-22.777	53.864	10.017	AV
7			0.206	48.067	38.086	-15.298	63.365	9.981	QP
8			0.206	30.446	20.465	-22.919	53.365	9.981	AV
9			0.530	38.296	28.145	-17.704	56.000	10.151	QP
10			0.530	29.503	19.352	-16.497	46.000	10.151	AV
11			0.626	27.191	17.090	-28.809	56.000	10.101	QP
12			0.626	18.096	7.994	-27.904	46.000	10.101	AV

Note: Measure Level (dB μ V) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + LISN Factor (dB)

Site: SR2	Time: 2015/12/18 - 13:13
Limit: FCC_Part15.207_CE_AC Power	Engineer: Vince Yu
Probe: ENV216_101683_Filter On	Polarity: Neutral
EUT: Full HD Video Conferencing System	Power: AC 120V/60Hz
Note: Mode 1	

No	Flag	Mark	Frequency (MHz)	Measure Level (dB μ V)	Reading Level (dB μ V)	Over Limit (dB)	Limit (dB μ V)	Factor (dB)	Type
1		*	0.150	57.646	46.504	-8.354	66.000	11.142	QP
2			0.150	40.887	29.745	-15.113	56.000	11.142	AV
3			0.174	51.957	41.900	-12.810	64.767	10.057	QP
4			0.174	35.061	25.004	-19.707	54.767	10.057	AV
5			0.190	49.303	39.275	-14.734	64.037	10.028	QP
6			0.190	27.501	17.473	-26.536	54.037	10.028	AV
7			0.218	44.707	34.726	-18.187	62.895	9.981	QP
8			0.218	26.063	16.082	-26.832	52.895	9.981	AV
9			0.258	39.398	29.391	-22.097	61.496	10.007	QP
10			0.258	21.422	11.415	-30.073	51.496	10.007	AV
11			0.534	38.863	28.695	-17.137	56.000	10.168	QP
12			0.534	30.829	20.662	-15.171	46.000	10.168	AV

Note: Measure Level (dB μ V) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + LISN Factor (dB)

The End