Radio Frequency Exposure

Velodyne Acoustics, Inc.

YRD-WIC

FCC ID:

Product Description:	WiConnect System	
Model No.:	WiConnect System	
Brand Name:	Velodyne	
Prepared for:	Velodyne Acoustics, Inc.	
	345 Digital Drive, Morgan Hill, CA 95037, USA	
Prepared by:	Shenzhen Laker Testing Technology Co.,Ltd	
	15C , Block 1, Sunshine Huayi Building, Nanhai West Road,	
	Nanshan, Shenzhen, China	
	Tel: 86-755-27617110	
	Fax: 86-755-27617110	
Report No.:	LK11CR-00059E-M	
Issue Date:	July 17, 2011	
Test Date:	July 01~17, 2011	
Test by:	Reviewed By:	
	Ower Li Falmmal Lon	
	Owen Li Edmund Zou	

LIMIT

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See FCC part 15.247(i)and §1.1307(b)(1) of this chapter.

EUT Specification

EUT	WiConnect System
Type of Modulation:	FHSS
Frequency Band:	2406MHz ~ 2472 MHz
Hopping Channels of each Sequences:	15
Number of Sequences:	4
Minimum Channel Bandwidth:	2 MHz
Device category	Portable (<20cm separation) Mobile (>20cm separation) Others
Exposure classification	Occupational/Controlled exposure $(S = 5mW/cm^2)$ General Population/Uncontrolled exposure $(S=1mW/cm^2)$
Antenna diversity	 Single antenna Multiple antennas ☐ Tx diversity ☐ Rx diversity ☐ Tx/Rx diversity
Max. output power	15.99dBm (39.72mW)
Antenna gain (Max)	1.0 dBi
Evaluation applied	✓ MPE Evaluation✓ SAR Evaluation
<u>antenna gain</u> .) 2. For mobile or fixed location	is 15.99dBm (39.72mW)) at 2406MHz (with 1.0 numeric transmitters, no SAR consideration applied. The minimum d is at least 20 cm, even if the calculations indicate that the er.

TEST RESULT

No non-compliance noted.

Calculation

$$E = \frac{\sqrt{30 \times P \times G}}{d} \& S = \frac{E^2}{3770}$$

Where E = Field Strength in Volts / meter

P = Power in Watts

G=Numeric antenna gain

d=*Distance in meters*

S=Power Density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and $d(cm) = 100 * d(m)$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$

Equation 1

Where

d = distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power Density in mW/cm^2$

Maximum Permissible Exposure

EUT Output Power=39.72mW

Numeric antenna gain=1.0

Substituting the MPE safe distance using d=20 cm into *Equation 1*:

Yields

$$S=0.000199\times P\times G$$

Where

P = Power in mW

G = Numeric antenna gain

 $S = Power\ Density\ in\ mW/cm2$

The power density $S = 0.000199 \times 39.72 \times 1.0 = 0.0079 \text{ mW/cm2}$

(For mobile or fixed location transmitters, the maximum power density is $1.0 \, mW/cm^2$ even if the calculation indicates that the power density would be larger.)

Evaluation reslut: PASS