

Prediction of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density

P = power input to the antenna

G = antenna gain

R = distance

Conducted output power:	9.24	(dBm)
Tune up tolerance	0.00	(dB)
Number of carriers	1	(N)
	8	(mW)
	0.0084	(W)
Antenna gain:	3.0	(dBi)
Maximum antenna gain:	2.0	(numeric)
EIRP	0.017	(W)
ERP	0	(W)
Distance:	20	(cm)
Duty Cycle:	100	(%)
Frequency:	2480	(MHz)
MPE Limit:	1.0	(mW/cm ²)
Power density:	0.0033	(mW/cm ²)
	0.033	(W/m ²)
Margin	24.77	(dB)

