

FCC and ISED Test Report

Sepura Limited
Tetra radio, Model: SCG2221

In accordance with FCC 47 CFR Part 15B and
ICES-003

Prepared for: Sepura Limited
9000 Cambridge Research Park
Beach Drive, Waterbeach
Cambridge, CB25 9TL
United Kingdom

FCC ID: XX6SCG2221M IC: 8739A-SCG2221ME

Add value.
Inspire trust.

COMMERCIAL-IN-CONFIDENCE

Document 75956225-01 Issue 01

SIGNATURE

A handwritten signature in black ink, appearing to read "A. J. Lawson".

NAME

JOB TITLE

RESPONSIBLE FOR

ISSUE DATE

Andrew Lawson

Chief Engineer, EMC

Authorised Signatory

15 March 2023

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD document control rules.

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 15B and ICES-003. The sample tested was found to comply with the requirements defined in the applied rules.

RESPONSIBLE FOR

NAME

DATE

SIGNATURE

Testing

Ahmad Javid

15 March 2023

A handwritten signature in black ink, appearing to read "A. Javid".

FCC Accreditation

ISED Accreditation

90987 Octagon House, Fareham Test Laboratory

12669A Octagon House, Fareham Test Laboratory

EXECUTIVE SUMMARY

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 15B: 2021 and ICES-003: Issue 7: 2020 for the tests detailed in section 1.3.

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD. No part of this document may be reproduced without the prior written approval of TÜV SÜD. © 2023 TÜV SÜD. This report relates only to the actual item/items tested.

ACCREDITATION

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation. Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

TÜV SÜD
is a trading name of TUV SUD Ltd
Registered in Scotland at East Kilbride,
Glasgow G75 0QF, United Kingdom
Registered number: SC215164

TUV SUD Ltd is a
TÜV SÜD Group Company

Phone: +44 (0) 1489 558100
Fax: +44 (0) 1489 558101
www.tuvsud.com/en

TÜV SÜD
Octagon House
Concorde Way
Fareham
Hampshire PO15 5RL
United Kingdom

Contents

1	Report Summary	2
1.1	Report Modification Record	2
1.2	Introduction	2
1.3	Brief Summary of Results	3
1.4	Application Form	4
1.5	Product Information	9
1.6	Deviations from the Standard	11
1.7	EUT Modification Record	11
1.8	Test Location	11
2	Test Details	13
2.1	Radiated Disturbance	13
3	Test Equipment Information	32
3.1	General Test Equipment Used	32
4	Incident Reports	33
5	Measurement Uncertainty	34

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
1	First Issue	15-March-2023

Table 1

1.2 Introduction

Applicant	Sepura Limited
Manufacturer	Sepura Limited
Model Number(s)	SCG2221
Serial Number(s)	1PR002230GP58OM
Hardware Version(s)	B Model
Software Version(s)	1807 007 10138
Number of Samples Tested	1
Test Specification/Issue/Date	FCC 47 CFR Part 15B: 2021 ICES-003: Issue 7: 2020
Order Number	PLC-PO023123-1
Date	26-July-2022
Date of Receipt of EUT	07-November-2022
Start of Test	10-December-2022
Finish of Test	11-December-2022
Name of Engineer(s)	Ahmad Javid
Related Document(s)	ANSI C63.4: 2014

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 15B and ICES-003 is shown below.

Section	Specification Clause		Test Description	Result	Comments/Base Standard
	Part 15B	ICES-003			
Configuration and Mode: DC Powered - Vehicle RSM					
2.1	15.109	3.2	Radiated Disturbance	Pass	ANSI C63.4: 2014
Configuration and Mode: DC Powered - Vehicle HBC3					
2.1	15.109	3.2	Radiated Disturbance	Pass	ANSI C63.4: 2014

Table 2

1.4 Application Form

Equipment Description

Technical Description: <i>(Please provide a brief description of the intended use of the equipment including the technologies the product supports)</i>	The SCG2221 is a TETRA mobile radio in the SCG22 series of radios, operating in the VHF band, with TETRA operating frequencies 136-174 MHz. The SCG2221 supports GNSS, Bluetooth, Bluetooth LE, WLAN at 2.4 GHz and a range of accessories and ancillary equipment. The SCG2221 may be installed in a vehicle or in a desk mount unit.
Manufacturer:	Sepura Limited
Model:	SCG2221
Part Number:	SCG2221
Hardware Version:	B Model
Software Version:	1807 007 10138
FCC ID of the product under test – see guidance here	XX6SCG2221M
IC ID of the product under test – see guidance here	8739A-SCG2221ME

Table 3

Intentional Radiators

Technology	TETRA	Bluetooth	WLAN 802.11b	WLAN 802.11g	WLAN 802.11n	BLE
Frequency Range (MHz to MHz)	136-174	2402-2480	2412-2462	2412-2462	2412-2462	2402-2480
Conducted Declared Output Power (dBm)	40	7.5	17	17	17	7.5
Antenna Gain (dBi)	2	2.2	2.2	2.2	2.2	2.2
Supported Bandwidth(s) (MHz) (e.g. 1 MHz, 20 MHz, 40 MHz)	0.025	1	20	20	20	2
Modulation Scheme(s) (e.g. GFSK, QPSK etc)	$\pi/4$ DQPSK	GFSK / $\pi/4$ -DPSK / 8-DPSK	CCK / DBPSK / DQPSK	OFDM (BPSK / QPSK / 16-QAM / 64-QAM)	BPSK / QPSK / 16-QAM / 64-QAM)	GFSK
ITU Emission Designator (see guidance here) (not mandatory for Part 15 devices)	20K0DXW	1M01F1D 1M01G1D	19M7G1D	19M7G1D	19M7D1D	1M81F1D
Bottom Frequency (MHz)	136	2402	2412	2412	2412	2402
Middle Frequency (MHz)	155	2441	2437	2437	2437	2441
Top Frequency (MHz)	174	2480	2462	2462	2462	2480

Table 4

Un-intentional Radiators

Highest frequency generated or used in the device or on which the device operates or tunes	2480 MHz
Lowest frequency generated or used in the device or on which the device operates or tunes	32.768 kHz
Class A Digital Device (Use in commercial, industrial or business environment)	<input checked="" type="checkbox"/>
Class B Digital Device (Use in residential environment only)	<input type="checkbox"/>

Table 5

AC Power Source

AC supply frequency:		Hz
Voltage		V
Max current:		A
Single Phase <input type="checkbox"/> Three Phase <input type="checkbox"/>		

Table 6

DC Power Source

Nominal voltage:	13.6	V
Extreme upper voltage:	15.6	V
Extreme lower voltage:	10.8	V
Max current:	4	A

Table 7

Battery Power Source

Voltage:		V
End-point voltage:		V (<i>Point at which the battery will terminate</i>)
Alkaline <input type="checkbox"/> Leclanche <input type="checkbox"/> Lithium <input type="checkbox"/> Nickel Cadmium <input type="checkbox"/> Lead Acid* <input type="checkbox"/> * <i>(Vehicle regulated)</i>		
Other <input type="checkbox"/>	Please detail:	

Table 8

Charging

Can the EUT transmit whilst being charged . Unit does not charge	Yes <input type="checkbox"/>	No <input type="checkbox"/>
--	------------------------------	-----------------------------

Table 9

Temperature

Minimum temperature:	-20	°C
Maximum temperature:	+60	°C

Table 10

Cable Loss

Adapter Cable Loss (Conducted sample)	N/A	dB
--	-----	----

Table 11

Antenna Characteristics

Antenna connector <input checked="" type="checkbox"/>		State impedance	50	Ohm
Temporary antenna connector <input type="checkbox"/>		State impedance		Ohm
Integral antenna <input type="checkbox"/>	Type:	Gain		dBi
External antenna <input type="checkbox"/>	Type:	Gain		dBi
For external antenna only:				
Standard Antenna Jack <input type="checkbox"/> If yes, describe how user is prohibited from changing antenna (if not professional installed):				
Equipment is only ever professionally installed <input checked="" type="checkbox"/>				
Non-standard Antenna Jack <input type="checkbox"/>				
All part 15 applications will need to show how the antenna gain was derived either from a manufacturer data sheet or a measurement. Where the gain of the antenna is inherently accounted for as a result of the measurement, such as field strength measurements on a part 15.249 or 15.231 device, so the gain does not necessarily need to be verified. However, enough information regarding the construction of the antenna shall be provided. Such information maybe photographs, length of wire antenna etc.				

Table 12

Ancillaries (if applicable)

Manufacturer:	Panorama Antennas	Part Number:	AFQNT-H5
Model:	TETRA antenna	Country of Origin:	UK
Manufacturer:	Microchip	Part Number:	RN-SMA-4
Model:	WLAN Antenna	Country of Origin:	Unknown
Manufacturer:	Sepura	Part Number:	300-00063
Model:	GNSS Antenna	Country of Origin:	UK
Manufacturer:	Sepura	Part Number:	300-02012 rev001
Model:	Extended SCG Loudspeaker / IO USB Host lead	Country of Origin:	Unknown
Manufacturer:	Sepura	Part Number:	300-02014 rev001
Model:	Extended SCG Expansion Board Loudspeaker / 8 GPIO lead	Country of Origin:	Unknown
Manufacturer:	Sepura	Part Number:	Netgear GS105 ProSAFE Gigabit Switch
Model:	Netgear GS105 ProSAFE Gigabit Switch	Country of Origin:	Unknown
Manufacturer:	Sepura	Part Number:	300-02010
Model:	SCG Power/ignition Lead	Country of Origin:	Unknown
Manufacturer:	Sepura	Part Number:	300-00069
Model:	Mobile Remote Cable 5.0M	Country of Origin:	Unknown
Manufacturer:	Sepura	Part Number:	300-00670
Model:	HBC Interface and Hands-free Box	Country of Origin:	Unknown
Manufacturer:	Sepura	Part Number:	300-00079
Model:	Remote Microphone And	Country of Origin:	Unknown

	Switch Set		
Manufacturer:	Sepura	Part Number:	300-00292
Model:	Remote Microphone (Handsfree Kit) 3m	Country of Origin:	Unknown
Manufacturer:	Sepura	Part Number:	300-01801
Model:	Handset Based Console (HBC3)	Country of Origin:	Unknown
Manufacturer:	Sepura	Part Number:	300-00062
Model:	Fist microphone	Country of Origin:	Unknown
Manufacturer:	Sepura	Part Number:	300-01808
Model:	SCC3 (colour console)	Country of Origin:	Unknown
Manufacturer:	Sepura	Part Number:	300-01961
Model:	CC VAC RSM (Long Cable)	Country of Origin:	Unknown
Manufacturer:	Sepura	Part Number:	300-00719
Model:	Loudspeaker	Country of Origin:	Unknown
Manufacturer:	Sepura	Part Number:	300-02009
Model:	USB Data/Programming Lead	Country of Origin:	UK
Manufacturer:	Sepura	Part Number:	300-02012
Model:	SCG Loudspeaker / IO USB Host lead	Country of Origin:	UK
Manufacturer:	Sepura	Part Number:	300-02014
Model:	SCG Expansion Board Loud Speaker / 8 GPIO Lead	Country of Origin:	UK
Manufacturer:	Sepura	Part Number:	300-00784
Model:	AMPS attachments	Country of Origin:	UK
Manufacturer:	Sepura	Part Number:	300-00068
Model:	Mobile Remote Cable 3.0M	Country of Origin:	UK

Table 13

I hereby declare that the information supplied is correct and complete.

Name: Chris Beecham
Position held: Conformance Engineer
Date: 14 October 2022

1.5 Product Information

1.5.1 Technical Description

The Equipment under test (EUT) was a Sepura Limited Tetra radio, Model: SCG2221.

It is a TETRA mobile radio in the SCG22 series of radios operating in the VHF band with TETRA operating frequencies of 136 to 174 MHz.

The EUT supports GNSS, Bluetooth, Bluetooth LE, WLAN at 2.4 GHz and a range of accessories and ancillary equipment.

The SCG2221 may be installed in a vehicle or in a desk mount unit.

Figure 1 – EUT Front view

Figure 2 – EUT Rear view

Figure 3 – EUT ID Label

1.5.2 EUT Port/Cable Identification

Port	Max Cable Length specified	Usage	Type	Screened
Ethernet Port	100 m	Ethernet	Data	FTP
GPS Antenna Port	15 m	Connection to GPS Antenna	Data	Coax
Tetra Antenna Port	15 m	Connection to Tetra Antenna	Data	Coax
WLAN & Bluetooth Port	8 m	Connection to WLAN Antenna	Data	Coax
DC Positive Permanent	5 m	DC Power to EUT	Positive	No
DC Positive Switched	5 m	DC Power to EUT	Positive	No
DC Negative	5 m	DC Power to EUT	Negative	Yes
USB Port	30 m	Connection to USB	Data	No
SCC3 / HBC3 Port	0.5 m	Connection to SCC3 / HBC3 Port	Data	No
IO Cable	6 m	Data	Data	No

Table 14

1.5.3 Test Configuration

Configuration	Description
DC Powered, Vehicle RSM	The EUT was powered from a 13.6 V DC supply. The EUT was populated with two SCC3 units each with a Vehicle RSM connected. Also, a Hands-Free Kit was connected to each of the SCC3 units. Two loudspeakers of type 300-01837 were connected.
DC Powered, Vehicle HBC3	The EUT was powered from a 13.6 V DC supply. The EUT was populated with two HBC3 units each with a Hands-Free Kit connected. Two Loudspeakers of type 300-01837 were connected.

Table 15

1.5.4 Modes of Operation

Mode	Description
Idle	All transmitters were configured to idle.

Table 16

1.6 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

1.7 EUT Modification Record

The table below details modifications made to the EUT during the test programme.

The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted
Model: SCG2221, Serial Number: 1PR002230GP58OM			
0	As supplied by the customer	Not Applicable	Not Applicable

Table 17

1.8 Test Location

TÜV SÜD conducted the following tests at our Octagon House Test Laboratory.

Test Name	Name of Engineer(s)	Accreditation
Configuration and Mode: DC Powered - Vehicle RSM		
Radiated Disturbance	Ahmad Javid	UKAS
Configuration and Mode: DC Powered - Vehicle HBC3		
Radiated Disturbance	Ahmad Javid	UKAS

Table 18

Office Address:

TÜV SÜD
Octagon House
Concorde Way
Fareham
Hampshire
PO15 5RL
United Kingdom

2 Test Details

2.1 Radiated Disturbance

2.1.1 Specification Reference

FCC 47 CFR Part 15B, Clause 15.109
ICES-003, Clause 3.2

2.1.2 Equipment Under Test and Modification State

SCG2221, S/N: 1PR002230GP58OM - Modification State 0

2.1.3 Date of Test

10-December-2022 to 11-December-2022

2.1.4 Test Method

The EUT was set up on a non-conductive table 0.8 m above a reference ground plane within a semi-anechoic chamber on a remotely controlled turntable.

A pre-scan of the EUT emissions profile using a peak detector was made at a 3 m antenna distance whilst varying the antenna-to-EUT azimuth and polarisation.

For an EUT which could reasonable be used in multiple planes, pre-scans were performed with the EUT orientated in X, Y and Z planes with reference to the ground plane.

Using a list of the highest emissions detected during the pre-scan along with their bearing and associated antenna polarisation, the EUT was then formally measured using a Quasi-Peak, Peak or CISPR Average detector as appropriate.

The readings were maximised by adjusting the antenna height, polarisation and turntable azimuth, in accordance with the specification.

2.1.5 Example Calculation

Below 1 GHz:

$$\begin{aligned}\text{Quasi-Peak level (dB}\mu\text{V/m)} &= \text{Receiver level (dB}\mu\text{V)} + \text{Correction Factor (dB/m)} \\ \text{Margin (dB)} &= \text{Quasi-Peak level (dB}\mu\text{V/m)} - \text{Limit (dB}\mu\text{V/m)}\end{aligned}$$

Above 1 GHz:

$$\begin{aligned}\text{CISPR Average level (dB}\mu\text{V/m)} &= \text{Receiver level (dB}\mu\text{V)} + \text{Correction Factor (dB/m)} \\ \text{Margin (dB)} &= \text{CISPR Average level (dB}\mu\text{V/m)} - \text{Limit (dB}\mu\text{V/m)}\end{aligned}$$

$$\begin{aligned}\text{Peak level (dB}\mu\text{V/m)} &= \text{Receiver level (dB}\mu\text{V)} + \text{Correction Factor (dB/m)} \\ \text{Margin (dB)} &= \text{Peak level (dB}\mu\text{V/m)} - \text{Limit (dB}\mu\text{V/m)}\end{aligned}$$

2.1.6 Example Test Setup Diagram

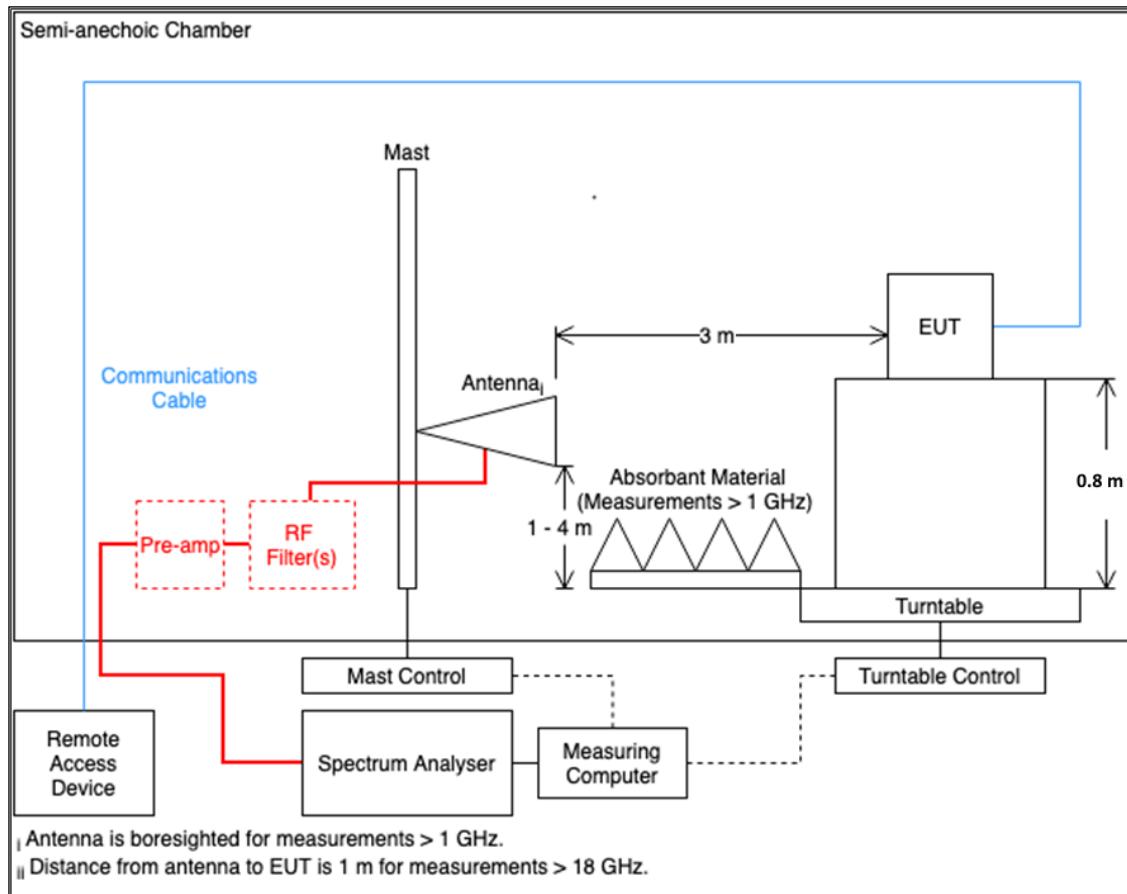


Figure 4 – Radiated Emissions

2.1.7 Environmental Conditions

Ambient Temperature 19.8 °C
Relative Humidity 35.4 %
Atmospheric Pressure 995.0 mbar

2.1.8 Specification Limits

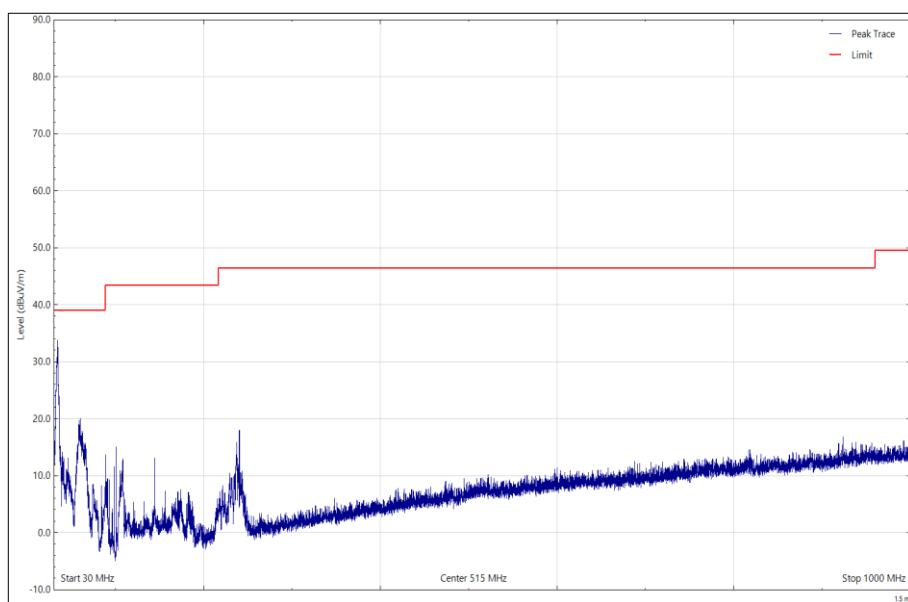
Required Specification Limits, Field Strength - Class B Test Limit at a 3 m Measurement Distance		
Frequency Range (MHz)	Test Limit (µV/m)	Test Limit (dBµV/m)
30 to 88	100	40.0
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

Supplementary information:

Note 1. A Quasi-peak detector is to be used for measurements below 1 GHz.
Note 2. A CISPR Average detector is to be used for measurements above 1 GHz.
Note 3. The Peak test limit above 1 GHz is 20 dB higher than the CISPR Average test limit.

Table 19

2.1.9 Test Results


Results for Configuration and Mode: DC Powered - Vehicle RSM.

This test was performed to the requirements of the Class B limits.

Performance assessment of the EUT made during this test: Pass.

Detailed results are shown below.

Highest frequency generated or used within the EUT: 2.48 GHz
Which necessitates an upper frequency test limit of: 13.00 GHz

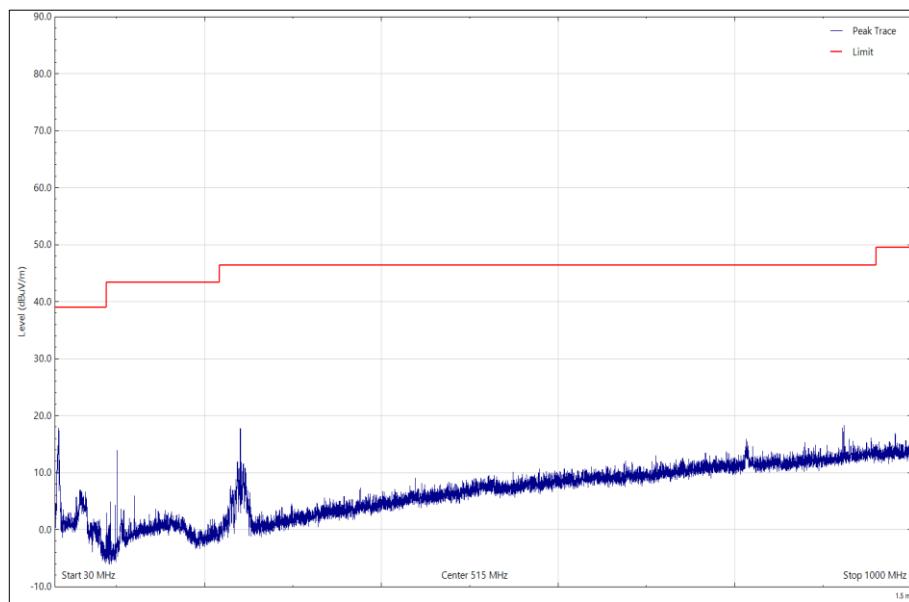


Figure 5 - 30 MHz to 1 GHz, Quasi-Peak, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
33.673	26.49	39.08	-12.59	qpk	241	101	Vertical	-

Table 20

*No other final measurements were made as all other peak emissions seen above the measurement system noise floor during the pre-scan were greater than 10 dB below the test limit.

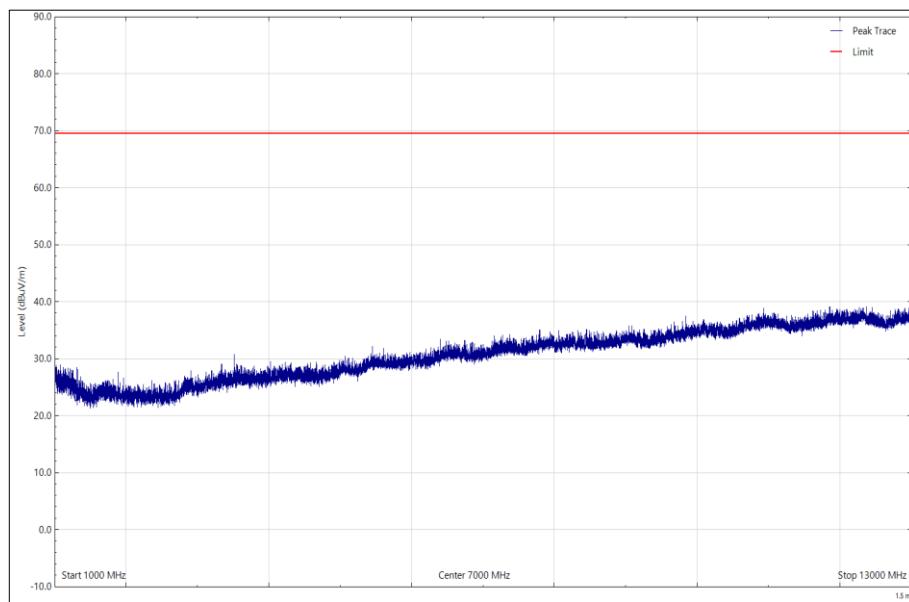


Figure 6 - 30 MHz to 1 GHz, Quasi-Peak, Horizontal

Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 21

*No final measurements were made as all peak emissions seen above the measurement system noise floor during the pre-scan were greater than 10 dB below the test limit.

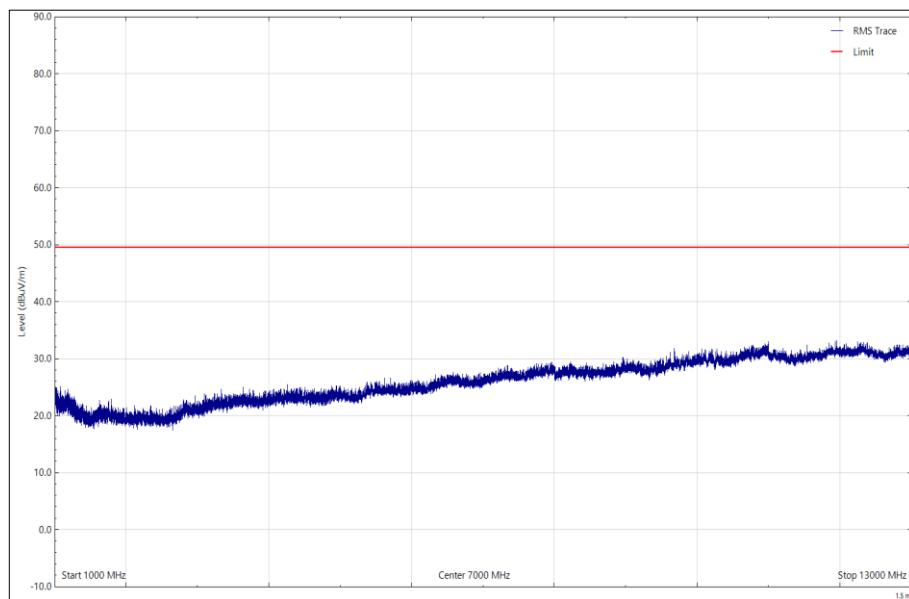


Figure 7 - 1 GHz to 13 GHz, Peak, Vertical

Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 22

*No final measurements were made as all peak emissions seen above the measurement system noise floor during the pre-scan were greater than 10 dB below the test limit.

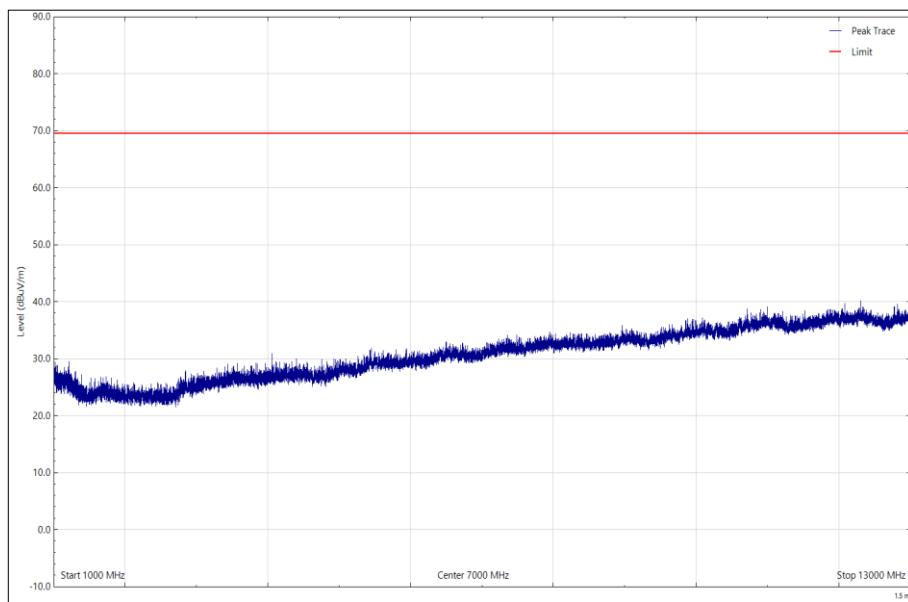


Figure 8 - 1 GHz to 13 GHz, Average, Vertical

Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 23

*No final measurements were made as all peak emissions seen above the measurement system noise floor during the pre-scan were greater than 10 dB below the test limit.

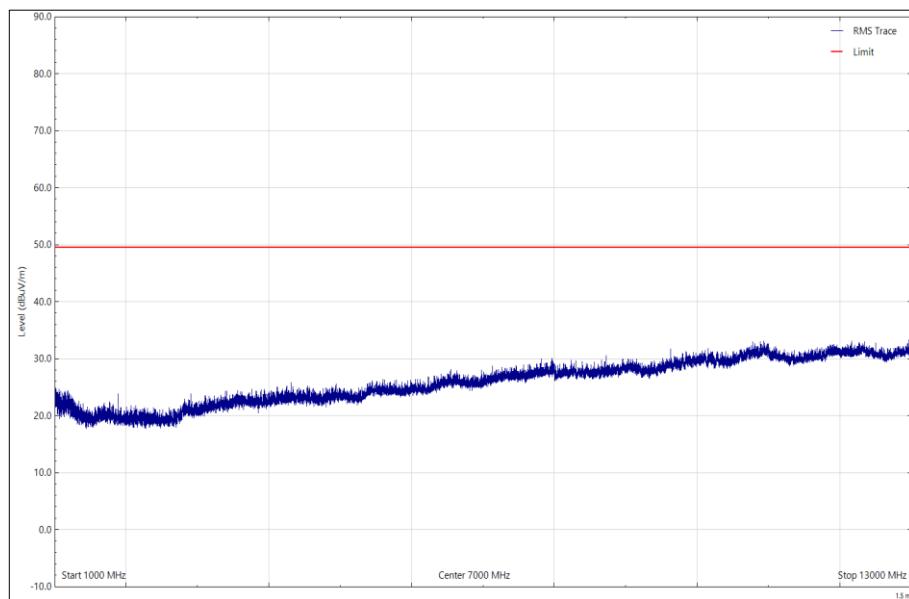


Figure 9 - 1 GHz to 13 GHz, Peak, Horizontal

Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 24

*No final measurements were made as all peak emissions seen above the measurement system noise floor during the pre-scan were greater than 10 dB below the test limit.

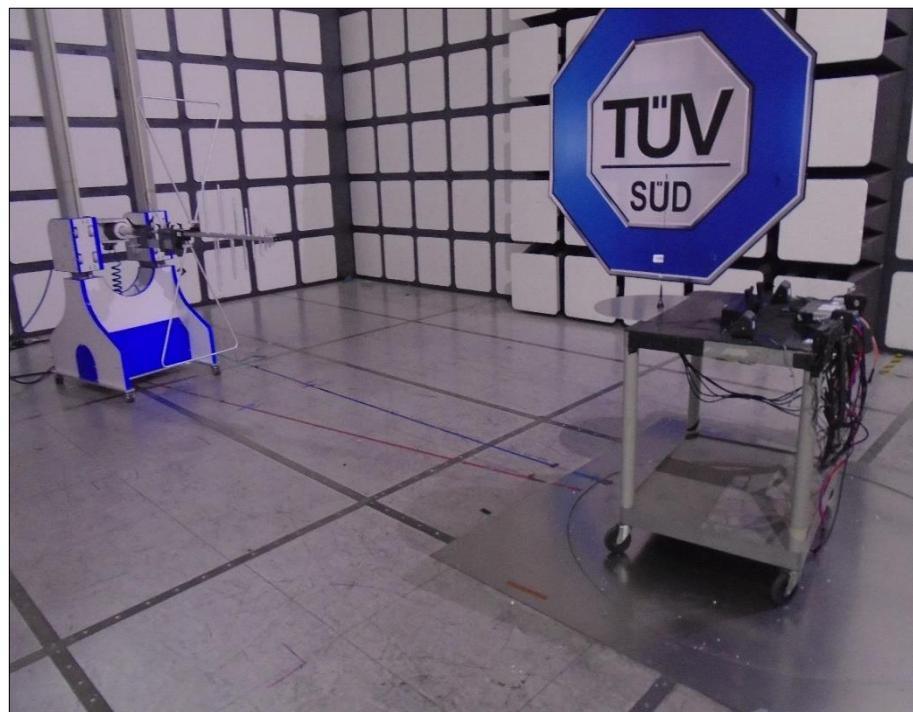


Figure 10 - 1 GHz to 13 GHz, Average, Horizontal

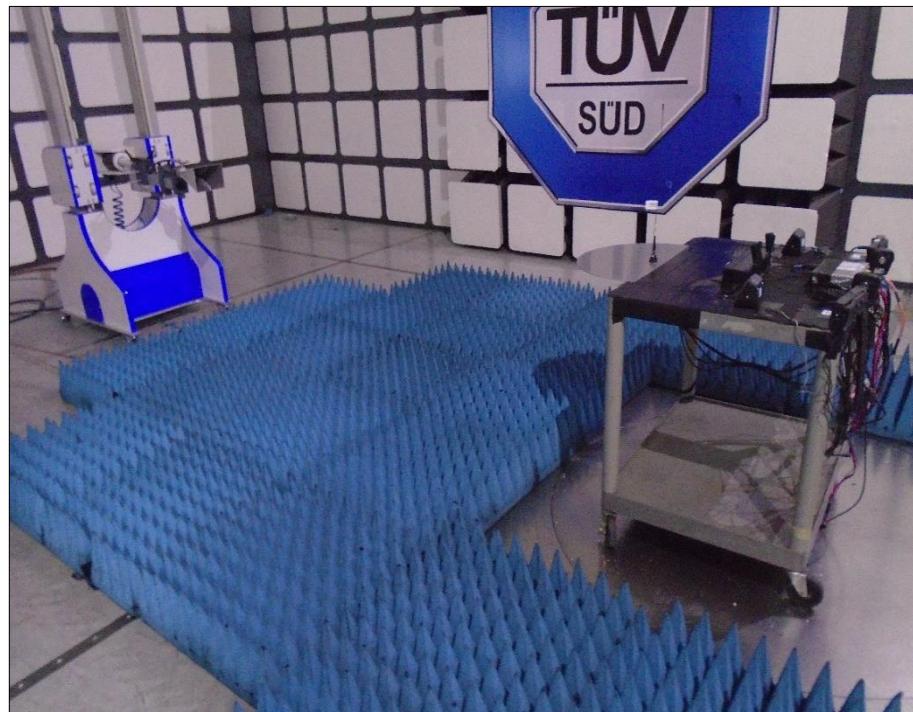

Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 25

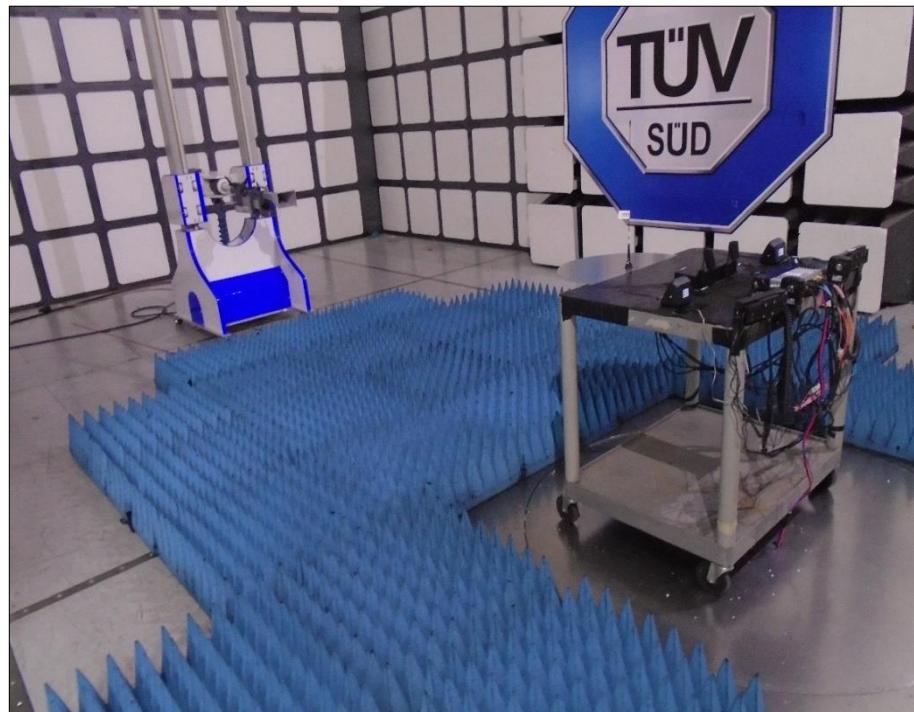
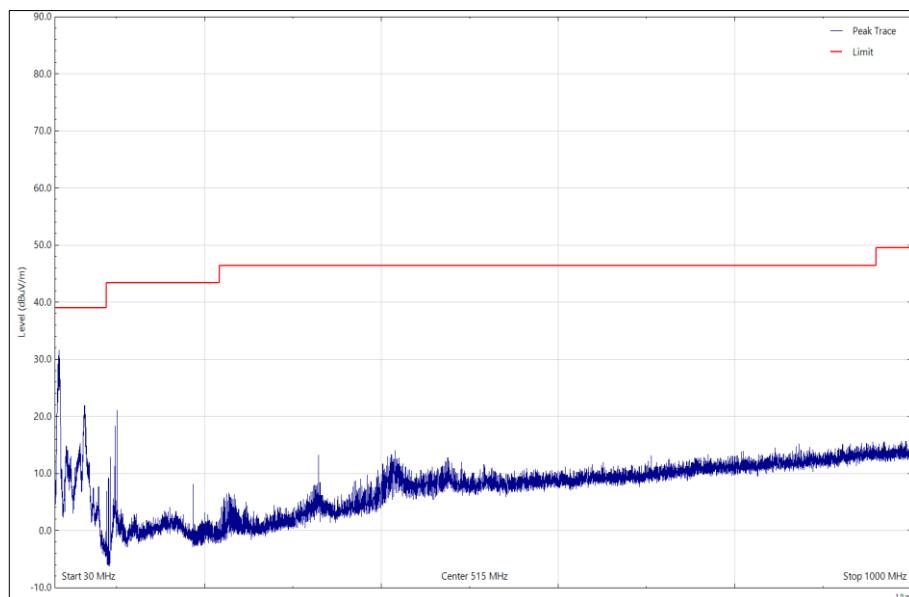

*No final measurements were made as all peak emissions seen above the measurement system noise floor during the pre-scan were greater than 10 dB below the test limit.

Figure 11 - Test Setup - 30 MHz to 1 GHz

Figure 12 - Test Setup - 1 GHz to 8 GHz

Figure 13 - Test Setup - 8 GHz to 13 GHz


Results for Configuration and Mode: DC Powered - Vehicle HBC3.

This test was performed to the requirements of the Class B limits.

Performance assessment of the EUT made during this test: Pass.

Detailed results are shown below.

Highest frequency generated or used within the EUT: 2480 MHz
Which necessitates an upper frequency test limit of: 13 GHz

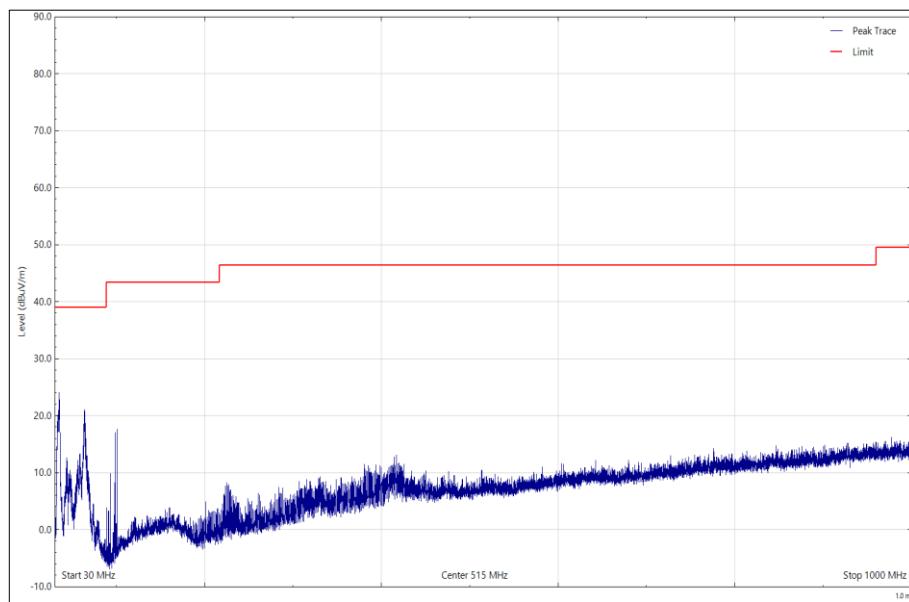


Figure 14 - 30 MHz to 1 GHz, Quasi-Peak, Vertical

Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
34.624	26.1	39.08	-12.98	qpk	119	100	Vertical	-

Table 26

*No final measurements were made as all peak emissions seen above the measurement system noise floor during the pre-scan were greater than 10 dB below the test limit.

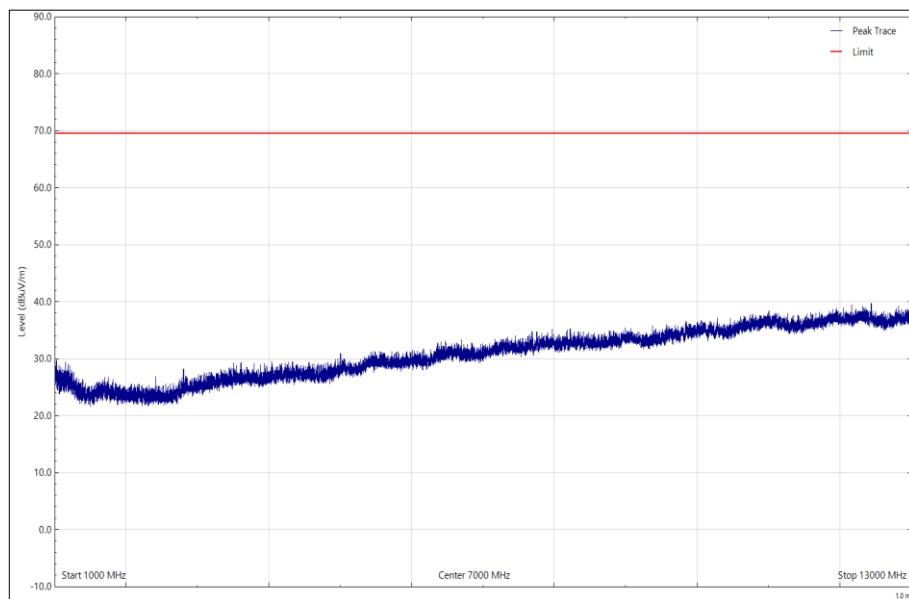


Figure 15 - 30 MHz to 1 GHz, Quasi-Peak, Horizontal

Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 27

*No final measurements were made as all peak emissions seen above the measurement system noise floor during the pre-scan were greater than 10 dB below the test limit.

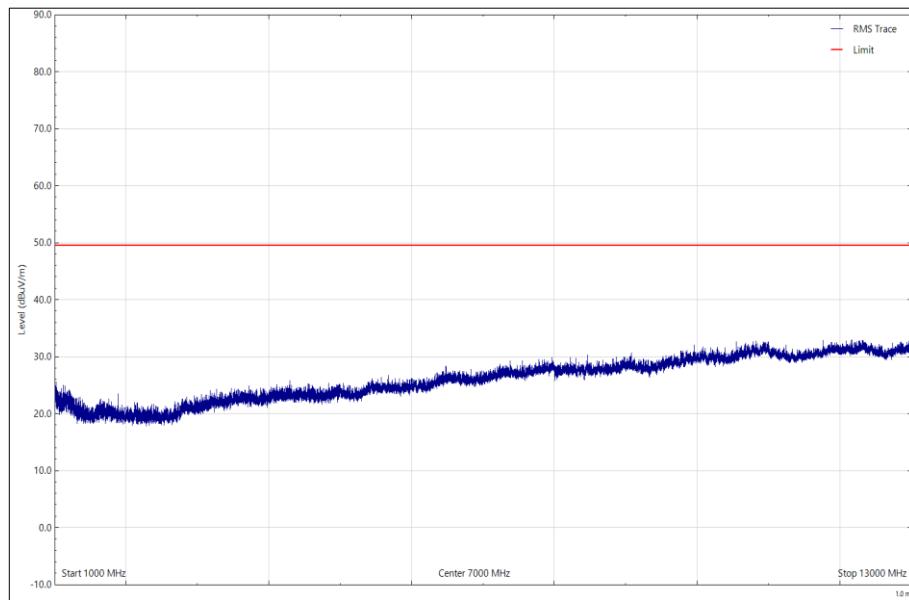


Figure 16 - 1 GHz to 13 GHz, Peak, Vertical

Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 28

*No final measurements were made as all peak emissions seen above the measurement system noise floor during the pre-scan were greater than 10 dB below the test limit.

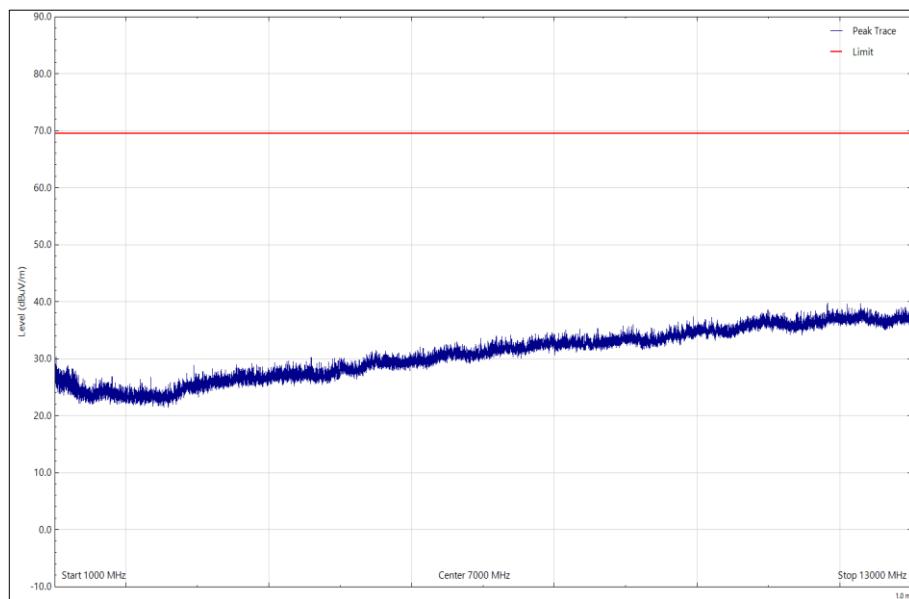


Figure 17 - 1 GHz to 13 GHz, Average, Vertical

Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 29

*No final measurements were made as all peak emissions seen above the measurement system noise floor during the pre-scan were greater than 10 dB below the test limit.

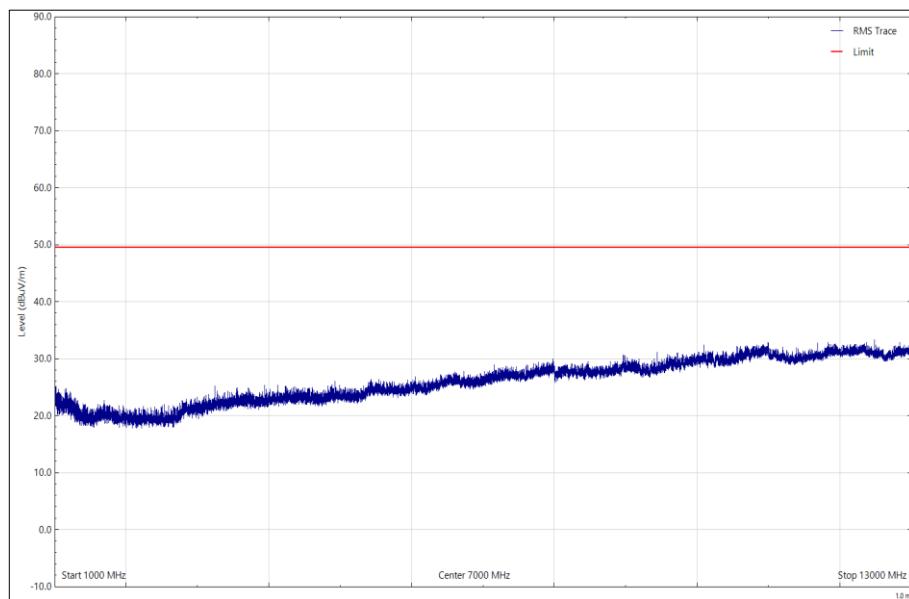


Figure 18 - 1 GHz to 13 GHz, Peak, Horizontal

Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 30

*No final measurements were made as all peak emissions seen above the measurement system noise floor during the pre-scan were greater than 10 dB below the test limit.

Figure 19 - 1 GHz to 13 GHz, Average, Horizontal

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 31

*No final measurements were made as all peak emissions seen above the measurement system noise floor during the pre-scan were greater than 10 dB below the test limit.

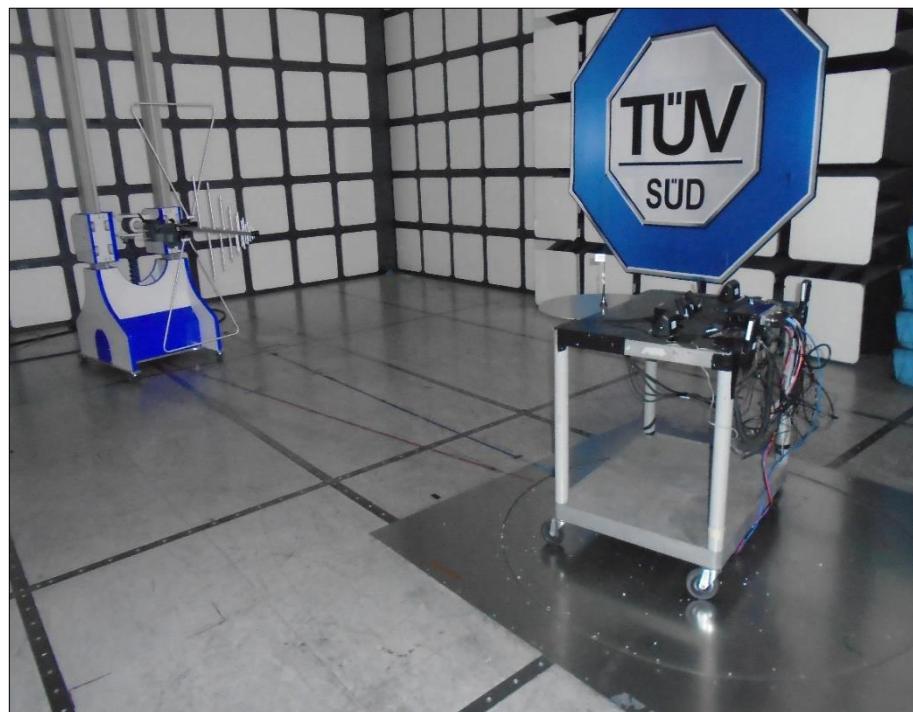
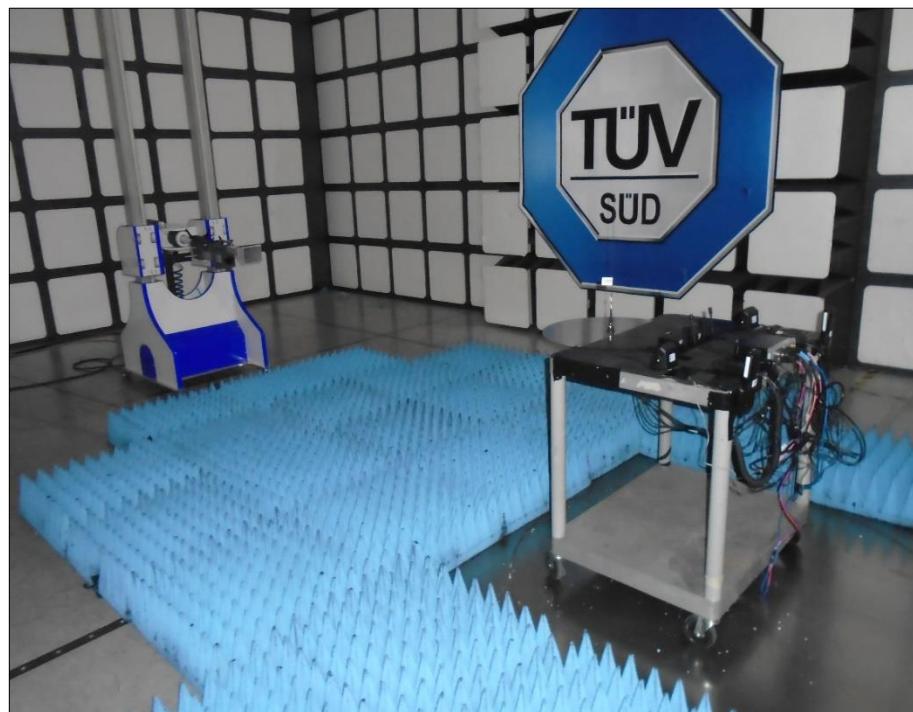



Figure 20 - Test Setup - 30 MHz to 1 GHz

Figure 21 - Test Setup - 1 GHz to 8 GHz

Figure 22 - Test Setup - 8 GHz to 13 GHz

2.1.10 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 5.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Expires
Screened Room (5)	Rainford	Rainford	1545	36	15-Apr-2024
Emissions Software	TÜV SUD	EmX V3.1.6	5125	-	Software
Turntable Controller	Inn-Co GmbH	CO 1000	1606	-	TU
Mast Controller	Maturo GmbH	NCD	4810	-	TU
Tilt Antenna Mast	Maturo GmbH	TAM 4.0-P	4811	-	TU
Cable (SMA to SMA 1m)	Junkosha	MWX221-01000AMSAMS/A	5514	12	12-Apr-2023
Cable (SMA to SMA, 2 m)	Junkosha	MWX221-02000AMSAMS/A	5517	12	12-Apr-2023
Cable (N to N 8m)	Junkosha	MWX221-08000NMSNMS/B	5519	12	07-Mar-2023
EMI Test Receiver	Rohde & Schwarz	ESW44	5527	12	28-Apr-2023
Preamplifier (30dB 1GHz to 18GHz)	Schwarzbeck	BBV 9718 C	5261	12	08-Apr-2023
TRILOG Super Broadband Test Antenna	Schwarzbeck	VULB 9168	5942	24	03-Feb-2024
Antenna (DRG 1-10.5GHz)	Schwarzbeck	BBHA9120B	4848	12	28-May-2023
Antenna (DRG, 7.5 GHz to 18 GHz)	Schwarzbeck	HWRD750	5610	12	16-Oct-2023

Table 32

TU - Traceability Unscheduled

3 Test Equipment Information

3.1 General Test Equipment Used

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Dual Power Supply Unit	Hewlett Packard	6253A	292	-	O/P Mon
True RMS Multimeter	Fluke	179	4006	12	29-Mar-2023
Thermo-Hygro-Barometer	PCE Instruments	OCE-THB-40	5470	12	07-Apr-2023

Table 33

O/P Mon – Output Monitored using calibrated equipment

4 Incident Reports

No incidents reports were raised.

5 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Test Name	Measurement Uncertainty
Radiated Disturbance	30 MHz to 1 GHz, Bilog Antenna, ± 5.2 dB 1 GHz to 40 GHz, Horn Antenna, ± 6.3 dB

Table 34

Worst case error for both Time and Frequency measurement 12 parts in 10^6 .

Measurement Uncertainty Decision Rule

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115:2021, Clause 4.4.3 (Procedure 2). The measurement results are directly compared with the test limit to determine conformance with the requirements of the standard.

Risk: The uncertainty of measurement about the measured result is negligible with regard to the final pass/fail decision. The measurement result can be directly compared with the test limit to determine conformance with the requirement (compare IEC Guide 115). The level of risk to falsely accept and falsely reject items is further described in ILAC-G8.