

REPORT No. : SZ17100089W01

TEST REPORT

APPLICANT : Y Soft Corporation, a.s.

PRODUCT NAME : USB Card Reader

MODEL NAME : MU03028

BRAND NAME : Y Soft SafeQ

FCC ID : XUY0YX0MU03028

STANDARD(S) : 47 CFR Part 15 Subpart C

TEST DATE : 2017-11-01 to 2017-11-03

ISSUE DATE : 2017-11-03

Tested by:

Wu Zhongwen
(Test Engineer)

Approved by:

Andy Yeh
(Technical Director)

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.
FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525
Http://www.morlab.cn E-mail: service@morlab.cn

DIRECTORY

1. Technical Information	4
1.1. Applicant and Manufacturer Information	4
1.2. Equipment Under Test (EUT) Description	4
1.3. Test Standards and Results	5
1.4. Environmental Conditions	5
2. 47 CFR Part 15C Requirements	6
2.1. Antenna requirement	6
2.2. Conducted Emission	7
2.3. Radiated Emission	10
2.4. 20dB Bandwidth	16
Annex A Test Uncertainty	18
Annex B Testing Laboratory Information	19

Change History		
Issue	Date	Reason for change
1.0	2017-11-03	First edition

1. Technical Information

Note: Provide by applicant.

1.1. Applicant and Manufacturer Information

Applicant:	Y Soft Corporation, a.s.
Applicant Address:	U Kněžské louky 2151/18, Praha 3, 130 00, Czech Republic
Manufacturer:	Y Soft Corporation, a.s.
Manufacturer Address:	U Kněžské louky 2151/18, Praha 3, 130 00, Czech Republic

1.2. Equipment Under Test (EUT) Description

Product Name:	USB Card Reader
Serial No:	(N/A, marked #1 by test site)
Hardware Version:	N/A
Software Version:	N/A
Operating Frequency:	125KHz
Transmit Power:	< 100mW
Modulation Type:	AM
Antenna Type:	PCB Antenna

Note 1: The EUT is a USB Card Reader which supports 125 KHz band.

Note 2: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

1.3. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C for the EUT FCC ID Certification:

No	Identity	Document Title
1	47 CFR Part 15 (10-1-15 Edition)	Radio Frequency Devices

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Test Engineer	Result
1	15.203	Antenna Requirement	Wu Zhongwen	PASS
2	15.207	Conducted Emission	Wu Zhongwen	PASS
3	15.209(a)	Radiated Emission	Wu Zhongwen	PASS
4	15.215(c)	20dB Bandwidth	Wu Zhongwen	PASS

Note: The tests were performed according to the method of measurements prescribed in ANSI C63.10-2013. The EUT has been tested under continuous operating condition.

1.4. Environmental Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86-106

2. 47 CFR Part 15C Requirements

2.1. Antenna requirement

2.1.1. Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

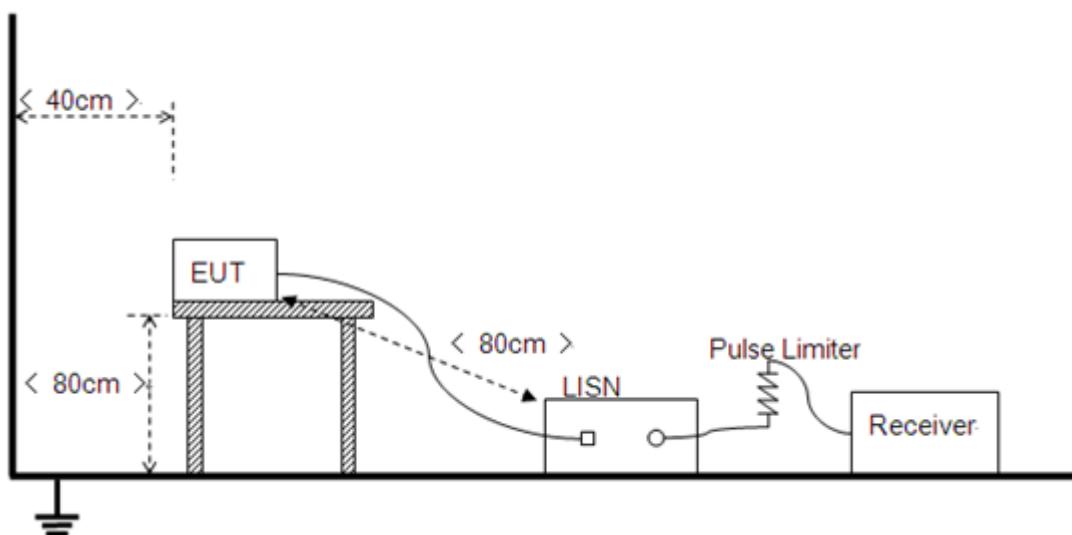
2.1.2. Result:

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.

Result: Compliant

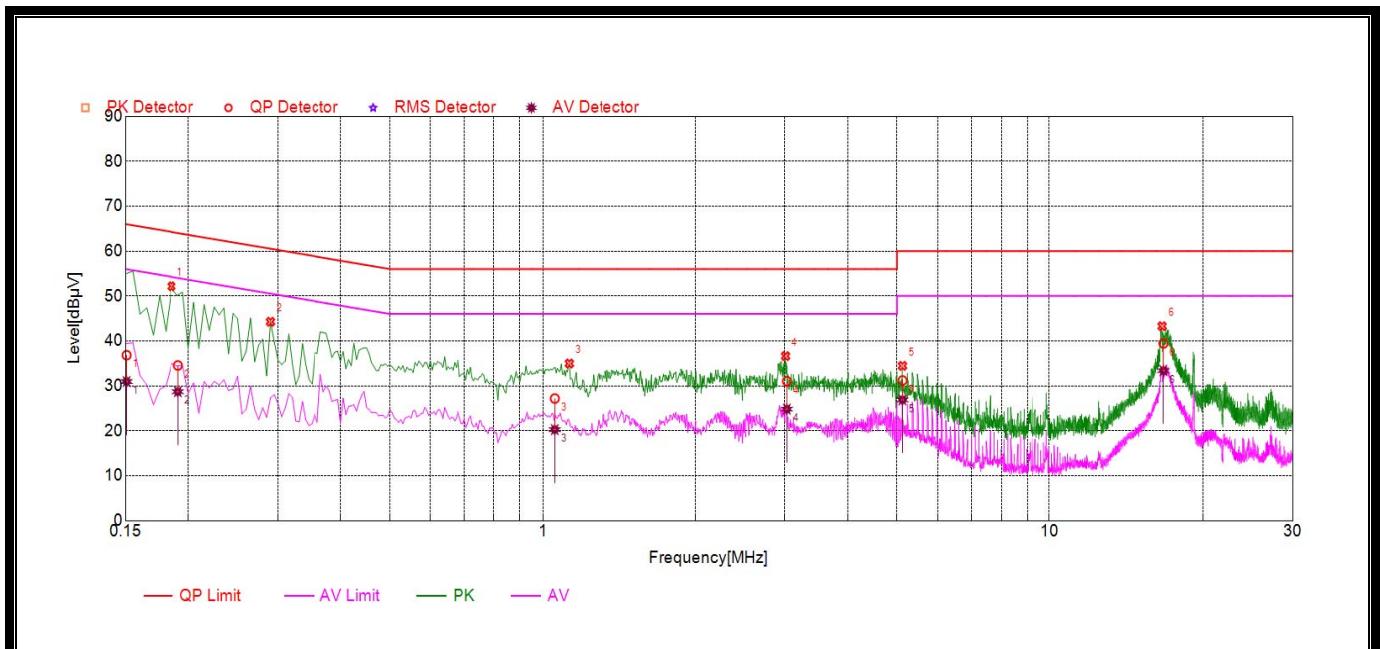
2.2. Conducted Emission

2.2.1. Test Requirement

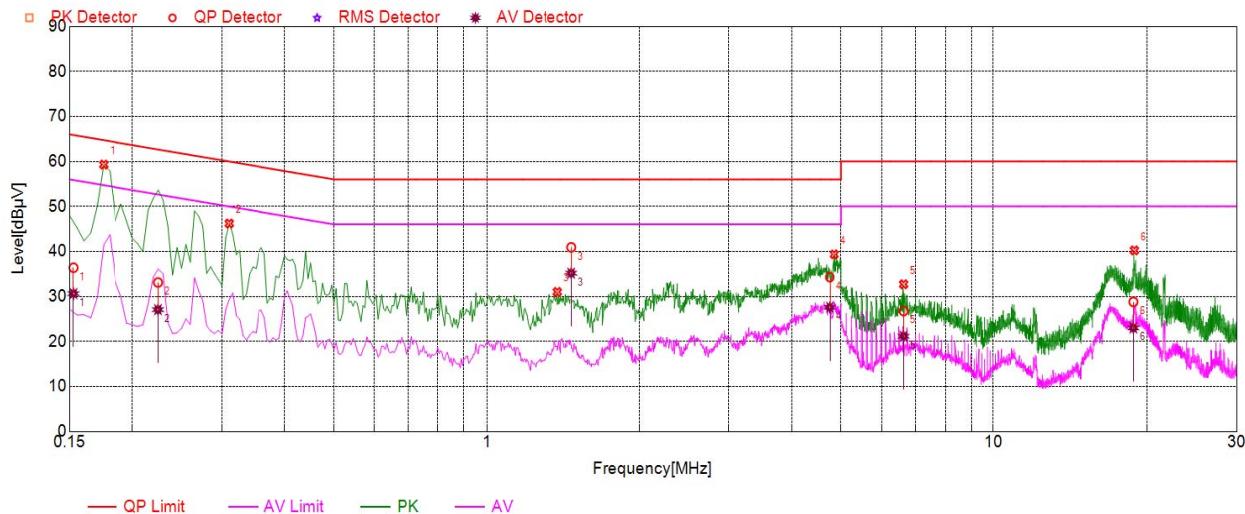

According to FCC section 15.207, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN).

Frequency range (MHz)	Conducted Limit (dB μ V)	
	Quasi-peak	Average
0.15 - 0.50	66 to 56	56 to 46
0.50 - 5	56	46
5 - 30	60	50

NOTE:


- a) The limit subjects to the Class B digital device.
- b) The lower limit shall apply at the band edges.
- c) The limit decreases linearly with the logarithm of the frequency in the range 0.15 - 0.50MHz.

2.2.2. Test Setup


The EUT is placed on a 0.8m high insulating table, which stands on the grounded conducting floor, and keeps 0.4m away from the grounded conducting wall. The EUT is connected to the power mains through a LISN which provides 50 Ω /50 μ H of coupling impedance for the measuring instrument. A Pulse Limiter is used to protect the measuring instrument. The factors of the whole test system are calibrated to correct the reading.

2.2.3. Test Result

(Plot A: L Phase)

NO.	Fre. (MHz)	Emission Level (dB μ V)		Limit (dB μ V)		Power-line	Verdict
		Quai-peak	Average	Quai-peak	Average		
1	0.1506	36.83	30.96	65.97	55.97	Line	PASS
2	0.191	34.54	28.70	63.99	53.99		PASS
3	1.0532	27.18	20.26	56.00	46.00		PASS
4	3.0274	31.05	24.82	56.00	46.00		PASS
5	5.125	31.20	26.88	60.00	50.00		PASS
6	16.7168	39.44	33.39	60.00	50.00		PASS

(Plot B: N Phase)

NO.	Fre. (MHz)	Emission Level (dBμV)		Limit (dBμV)		Power-line	Verdict
		Quai-peak	Average	Quai-peak	Average		
1	0.1526	36.38	30.63	65.86	55.86	Line	PASS
2	0.2248	33.10	27.07	62.64	52.64		PASS
3	1.4694	40.91	35.17	56.00	46.00		PASS
4	4.7462	34.27	27.59	56.00	46.00		PASS
5	6.629	26.75	21.16	60.00	50.00		PASS
6	18.8332	28.79	23.00	60.00	50.00		PASS

2.3. Radiated Emission

2.3.1. Test Requirement

- 1) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.
- 2) The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. For intentional radiators which operate under the provisions of other Sections within this Part and which are required to reduce their unwanted emissions to the limits specified in this table, the limits in this table are based on the frequency of the unwanted emissions and not the fundamental frequency. However, the level of any unwanted emission shall not exceed the level of the fundamental frequency.

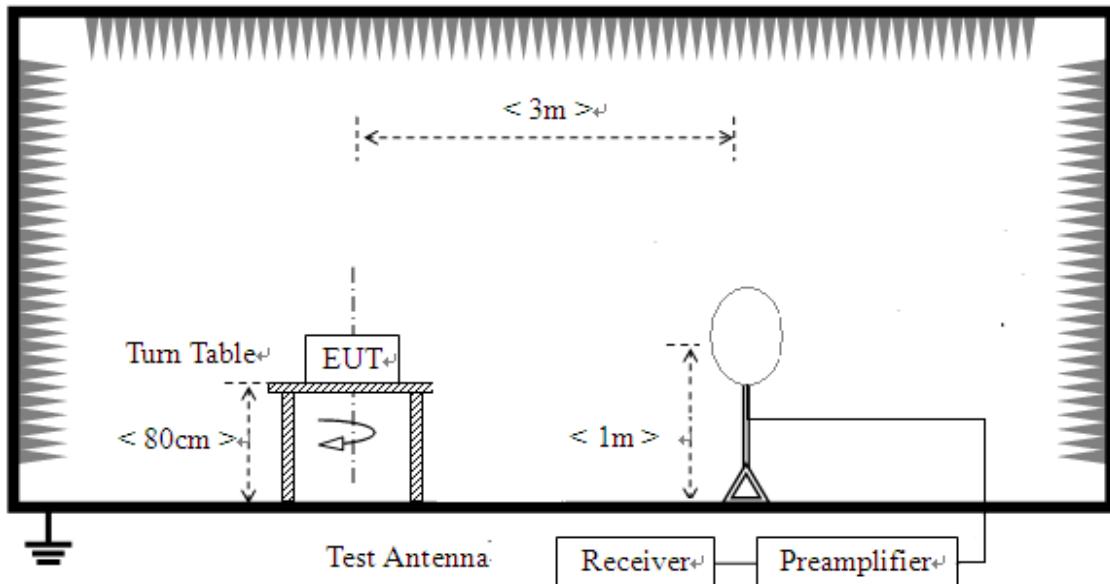
The emission limits shown in the following table are based on measurements employing a CISPR quasi-peak detector except for the frequency 9-90kHz, 110-490kHz and above 1000MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

Frequency range (MHz)	Field Strength(μ V/m)	Distance(m)
0.009 ~ 0.490	2400/F(KHz)	300
0.490 ~ 1.705	24000/F(KHz)	30
1.705 ~ 30	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

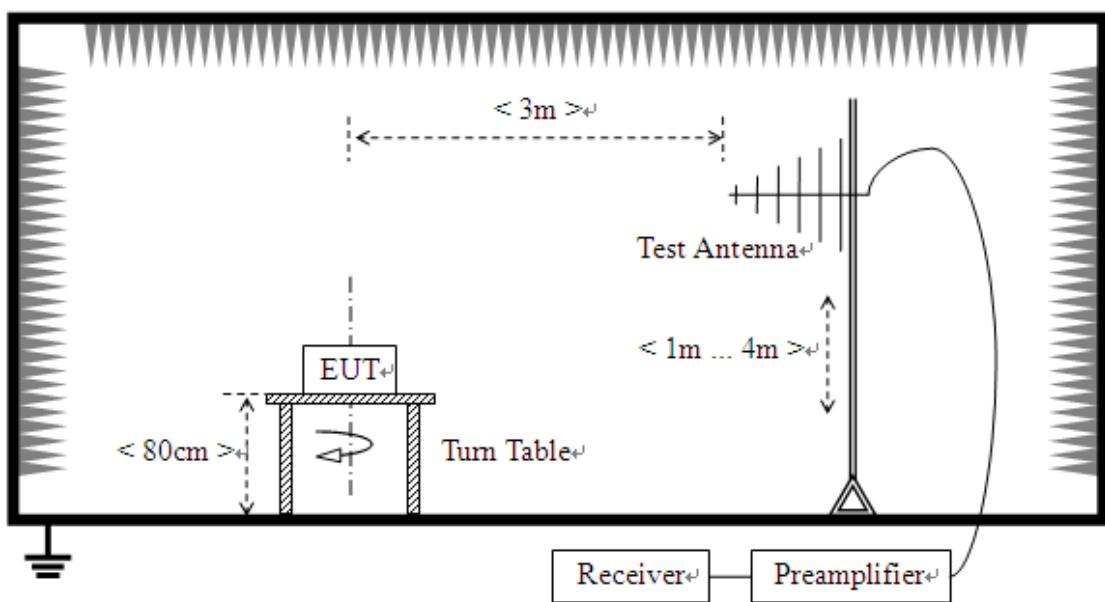
NOTE:

- a) Field Strength ($\text{dB}\mu\text{V/m}$) = $20 * \log[\text{Field Strength } (\mu\text{V/m})]$.
- b) If measurement is made at 3m distance, then F.S Limitation at 3m distance is adjusted by using the formula of $Ld1 = Ld2 * (d2/d1)^2$.

Example:


F.S Limit at 30m distance is 30uV/m, then F.S Limitation at 3m distance is adjusted as

$$Ld1 = 30\text{uV/m} * (10)^2 = 100 * 30\text{uV/m}$$


- c) In the emission tables above, the tighter limit applies at the band edges.

2.3.2. Test Setup

- 1) For radiated emissions below 30MHz

- 2) For radiated emissions from 30MHz to 1GHz

The test is performed in a 3m Semi-Anechoic Chamber; the antenna factor, cable loss and so on of the site (factors) is calculated to correct the reading. The EUT is placed on a 0.8m high insulating Turn Table, and keeps 3m away from the Test Antenna, which is mounted on a variable-height antenna master tower.

For the test Antenna:

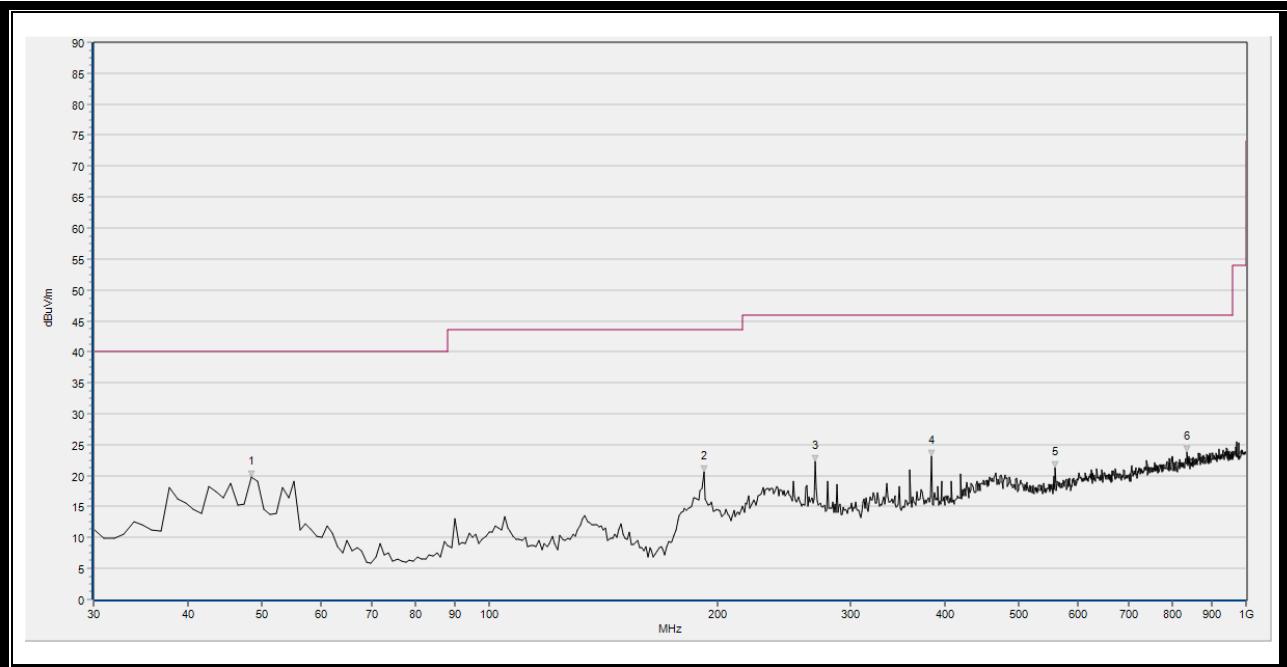

- 1) In the frequency range of 9KHz to 30MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.
- 2) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength. The emission levels at both horizontal and vertical polarizations should be tested.

2.3.3. Test Result

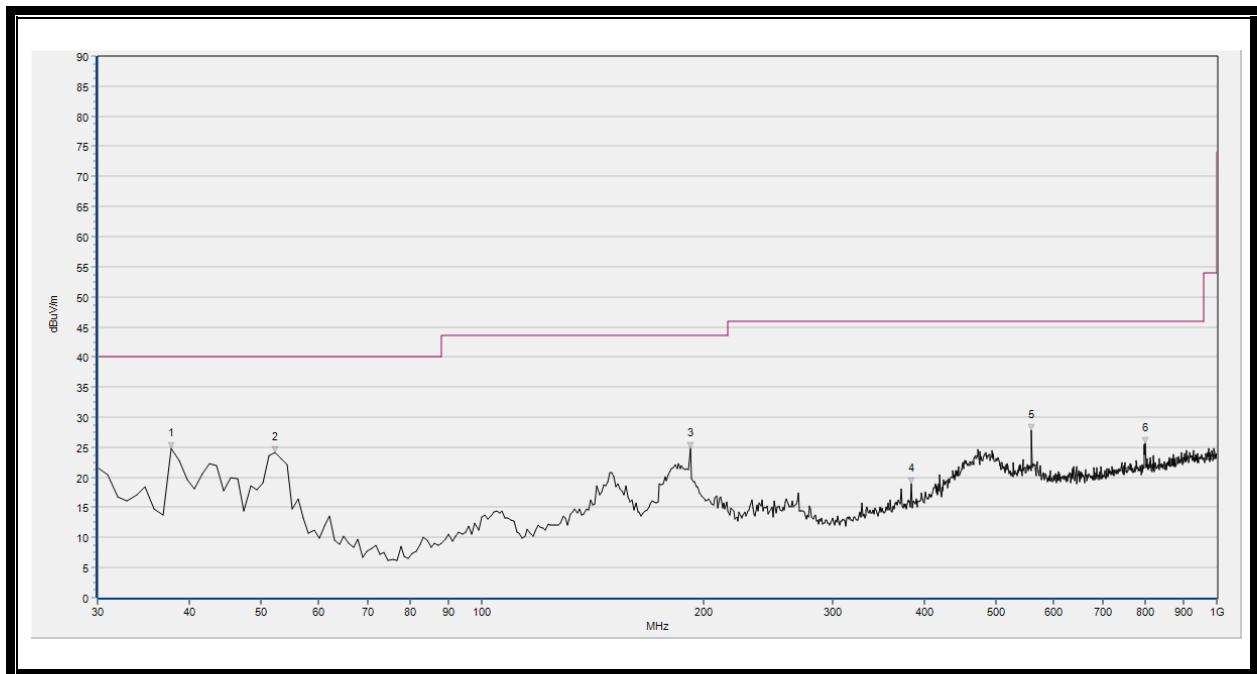
A. Fundamental


Fre. (KHz)	PK Reading (dB μ V)	AV Reading (dB μ V)	Correction Factor (dB)	PK Result (dB μ V/m)	AV Result (dB μ V/m)	PK Limits (dB μ V/m)	AV Limits (dB μ V/m)	Verdict
125	44.01	43.85	25.75	69.76	69.60	105.7	85.7	PASS

Please refer to the following plot:


B. Radiated Emission <30MHz (9KHz-30MHz)

NOTE: The emissions are too small to be measured and are at least 6 dB below the limit, so all the data of marked are pass.

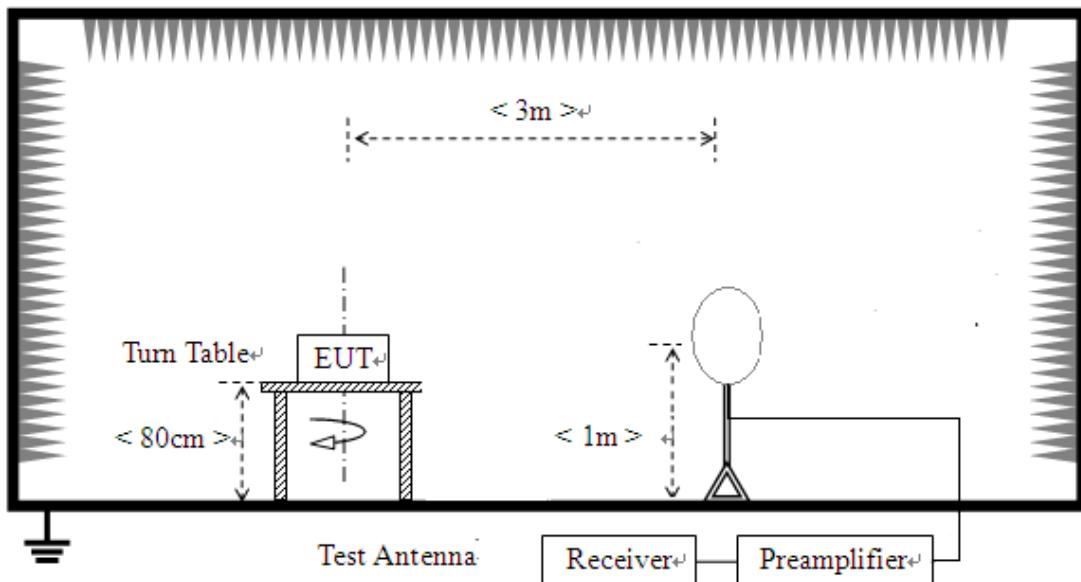

(Plot A: 9KHz – 30MHz)

C. Radiated Emission >30MHz (30MHz-1GHz)

(Plot B: 30MHz – 1GHz, Test Antenna Horizontal)

No.	Fre. MHz	Pk dB μ V/m	QP dB μ V/m	AV dB μ V/m	Limit-PK dB μ V/m	Limit-QP dB μ V/m	Limit-AV dB μ V/m	ANT	Verdict
1	48.430	19.74	N/A	N/A	N/A	40.00	N/A	H	Pass
2	191.990	20.70	N/A	N/A	N/A	43.50	N/A	H	Pass
3	269.590	22.37	N/A	N/A	N/A	46.00	N/A	H	Pass
4	384.050	23.09	N/A	N/A	N/A	46.00	N/A	H	Pass
5	559.620	21.22	N/A	N/A	N/A	46.00	N/A	H	Pass
6	836.070	23.77	N/A	N/A	N/A	46.00	N/A	H	Pass

(Plot C: 30MHz – 1GHz, Test Antenna Vertical)


No.	Fre. MHz	Pk dBµV/m	QP dBµV/m	AV dBµV/m	Limit-PK dBµV/m	Limit-QP dBµV/m	Limit-AV dBµV/m	ANT	Verdict
1	37.760	24.78	N/A	N/A	N/A	40.00	N/A	V	Pass
2	52.310	24.10	N/A	N/A	N/A	40.00	N/A	V	Pass
3	191.990	24.81	N/A	N/A	N/A	43.50	N/A	V	Pass
4	384.050	18.88	N/A	N/A	N/A	46.00	N/A	V	Pass
5	559.620	27.76	N/A	N/A	N/A	46.00	N/A	V	Pass
6	800.180	25.60	N/A	N/A	N/A	46.00	N/A	V	Pass

2.4. 20dB Bandwidth

2.4.1. Standard Applicable

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. In the case of intentional radiators operating under the provisions of subpart E, the emission bandwidth may span across multiple contiguous frequency bands identified in that subpart. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

2.4.2. Test Setup

2.4.3. Test Result

Frequency(KHz)	20dB Bandwidth (KHz)
125	0.465

Please refer to the following plot:

Annex A Test Uncertainty

The uncertainty is calculated using the methods suggested in the "Guide to the Expression of Uncertainty in Measurement" (GUM) published by ISO.

Uncertainty of Radiated Emission:	±3.1dB
Uncertainty of Conducted Emission:	±1.8dB

Annex B Testing Laboratory Information

1. Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.
Department:	Morlab Laboratory
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang Road, Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R. China
Responsible Test Lab Manager:	Mr. Su Feng
Telephone:	+86 755 36698555
Facsimile:	+86 755 36698525

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang Road, Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

3. Facilities and Accreditations

Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L3572.

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013 and CISPR Publication 22; the FCC designation number is CN1192.

4. Test Equipments Utilized

4.1 Test Equipments

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Receiver	Agilent	N9038A	MY54130016	2017.05.17	2018.05.16
LISN	Schwarzbeck	NSLK 8127	812744	2017.05.17	2018.05.16
Pulse Limiter (20dB)	Schwarzbeck	VTSD 9561-D	9537	2017.05.24	2018.05.23
Coaxial Cable	Morlab	EMC01	CB05	(n.a.)	(n.a.)
Coaxial Cable	Morlab	EMC02	CB06	(n.a.)	(n.a.)
MXE EMI Receiver	Agilent	N9038A	MY54130016	2017.05.17	2018.05.16
Anechoic Chamber	Changning	9m*6m*6m	N/A	2017.01.11	2018.01.10
Test Antenna – Bi-Log	Schwarzbeck	VULB 9163	9163-274	2016.12.09	2017.12.08
Test Antenna -Loop	Schwarzbeck	FMZB 1519	1519-022	2017.03.07	2018.03.06

4.2 Test Software Utilized

Model	Version Number	Producer
TS+ -[JS32-CE]	Version 2.5.0.0	Tonscend
MORLAB EMCR V1.2	Version 1.0	MORLAB

— END OF REPORT —