

RADIO TEST REPORT – 444710-5TRFWL

Type of assessment: Limited Modular approval	
Applicant: Technologies HumanWare Inc.	Product: BT + WIFI module
Model: PCBA-0131-A1.0	
FCC ID:	IC Registration number:
XT5-0131	8670A-0131
 Specifications: FCC 47 CFR Part 15 Subpart E, §15.407 RSS-247, Issue 2, Feb 2017, Section 6 	
Date of issue: December 17, 2021	
Yong Huang, Wireless/EMC Specialist	1973
Tested by	Sígráture
Andrey Adelberg, Senior EMC/RF Specialist	adelberg pl

Reviewed by

Lab locations			

Company name	Nemko Canada I	nc.			
Facilities	Ottawa site:	Monti	réal site:	Cambridge site:	Almonte site:
	303 River Road	292 La	abrosse Avenue	1-130 Saltsman Drive	1500 Peter Robinson Road
	Ottawa, Ontario	Pointe	e-Claire, Québec	Cambridge, Ontario	West Carleton, Ontario
	Canada	Canad	la	Canada	Canada
	K1V 1H2	H9R 5	L8	N3E 0B2	KOA 1LO
	Tel: +1 613 737 9	9680 Tel: +1	1 514 694 2684	Tel: +1 519 650 4811	Tel: +1 613 256-9117
	Fax: +1 613 737 9	9691 Fax: +	1 514 694 3528		
Test site identifier	Organization	Ottawa/Almonte	Montreal	Cambridge	
	FCC:	CA2040	CA2041	CA0101	
	ISED:	2040A-4	2040G-5	24676	
Website	www.nemko.com	<u>n</u>			

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contained in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

© Nemko Canada Inc.

Table of Contents

Table of 0	Contents	. 3
Section 1	Report summary	. 4
1.1	Test specifications	. 4
1.2	Test methods	. 4
1.3	Exclusions	. 4
1.4	Statement of compliance	. 4
1.5	Test report revision history	. 4
Section 2	Engineering considerations	. 5
2.1	Modifications incorporated in the EUT for compliance	. 5
2.1	Modifications incorporated in the EUT for compliance	. 5
2.2	Technical judgment	. 5
2.3	Deviations from laboratory tests procedures	. 5
Section 3	Test conditions	. 6
3.1	Atmospheric conditions	. 6
3.2	Power supply range	. 6
Section 4	Measurement uncertainty	. 7
4.1	Uncertainty of measurement	. 7
Section 5	Information provided by the applicant	. 8
5.1	Disclaimer	. 8
5.2	Applicant/Manufacture	
5.3	EUT information	. 8
5.4	Radio technical information	
5.5	EUT setup details	10
Section 6	,	
6.1	Testing location	
6.2	Testing period	13
6.3	Sample information	13
6.4	FCC Part 15 Subpart A and C, general requirements test results	13
6.5	FCC Part §15.407 test results	13
6.6	ISED RSS-Gen, Issue 5, test results	14
6.7	ISED RSS-247, Issue 2, test results	14
Section 7	Test equipment	15
7.1	Test equipment list	15
Section 8	Testing data	16
8.1	Variation of power source	16
8.2	Number of frequencies	
8.3	Antenna requirement	
8.4	AC power line conducted emissions limits	
8.5	Emission bandwidth	
8.6	Occupied bandwidth	
8.7	Transmitter output power and e.i.r.p. requirements for 5150–5250 MHz band	
8.8	Spurious unwanted (undesirable) emissions	
8.9	Frequency stability	
Section 9	•	46
0.1	External photos	16

Section 1 Report summary

1.1 Test specifications

FCC 47 CFR Part 15, Subpart E, Clause 15.407	Unlicensed National Information Infrastructure Devises operating in the 5.15–5.35 GHz, 5.47–5.725 GHz, 5.725–5.85 GHz, and 5.925–7.125 GHz bands.
RSS-247, Issue 2, Feb 2017, Section 6	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices. Technical requirements for licence-exempt local area network devices and digital transmission systems operating in the 5 GHz band

1.2 Test methods

789033 D02 General U-NII Test Procedures	Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices Part
New Rules v02r01 (December 14, 2017)	15, Subpart E
ANSI C63.10 v2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

1.3 Exclusions

None.

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was performed against all relevant requirements of the test standard except as noted in section 1.3 above. Results obtained indicate that the product under test complies In full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.5 Test report revision history

Table 1.5-1: Test report revision history

Revision #	Date of issue	Details of changes made to test report
TRF	December 17, 2021	Original report issued

Section 2 Engineering considerations

2.1 Modifications incorporated in the EUT for compliance

2.1 Modifications incorporated in the EUT for compliance

There were no modifications performed to the EUT during this assessment.

2.2 Technical judgment

As provided by client, the RF module under test is applying for limited single- modular approval, compliance is demonstrated with specific host.

2.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 3 Test conditions

3.1 Atmospheric conditions

Temperature	15 °C – 35 °C
Relative humidity	20 % – 75 %
Air pressure	86 kPa (860 mbar) – 106 kPa (1060 mbar)

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

3.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 4 Measurement uncertainty

4.1 Uncertainty of measurement

UKAS Lab 34 and TIA-603-B have been used as guidance for measurement uncertainty reasonable estimations with regards to previous experience and validation of data. Nemko Canada, Inc. follows these test methods in order to satisfy ISO/IEC 17025 requirements for estimation of uncertainty of measurement for wireless products.

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of K = 2 with 95% certainty.

Table 4.1-1: Measurement uncertainty calculations

Test name	Measurement uncertainty, ±dB
All antenna port measurements	0.55
Occupied bandwidth	4.45
Conducted spurious emissions	1.13
Radiated spurious emissions	3.78
AC power line conducted emissions	3.55

Report reference ID: 444710-5TRFWL

Section 5 Information provided by the applicant

5.1 Disclaimer

This section contains information provided by the applicant and has been utilized to support the test plan. Inaccurate information provided by the applicant can affect the validity of the results contained within this test report. Nemko accepts no responsibility for the information contained within this section and the impact it may have on the test plan and resulting measurements.

5.2 Applicant/Manufacture

Applicant name	Technologies HumanWare Inc.
Applicant address	1800, Jean-Berchmans-Michaud street Drummondville, (Quebec), Canada J2C 7G7
Manufacture name	Same as applicant
Manufacture address	Same as applicant

5.3 EUT information

Product	BT + WIFI module
Model	PCBA-0131-A1.0
Host Model	DA2
Model variant(s)	None
Serial number	None
Part number	PCBA-0131
Power supply requirements	3.0 to 3.6 Vdc, 300 mA , From host AC: 120 V, 50/60 Hz power cord
Product description and theory	The PCBA-0131 RF module integrates a PCB antenna. The module allows the host to connect to Wifi networks via a SDIO
of operation	interface. It also allows the host to use the Bluetooth protocol via a UART interface.

Report reference ID: 444710-5TRFWL Page 8 of 48

5.4 Radio technical information

Device type	☐ Outdoor access point	
	☐ Indoor access point	
	☐ Fixed point-to-point access point	
	☐ Client device	
	☐ Device installed in vehicles	
Frequency band	5150–5250 MHz (U-NII-1)	
Frequency Min (MHz)	20 MHz bandwidth: 5180	
	40 MHz bandwidth: 5190	
	80 MHz bandwidth: 5210	
Frequency Max (MHz)	20 MHz bandwidth: 5240	
	40 MHz bandwidth: 5230	
	80 MHz bandwidth:5210	
Channel numbers	20 MHz bandwidth: 36 to 48	
	40 MHz bandwidth: 38 to 46	
	80 MHz bandwidth:42	
RF power Max (W), Conducted	20 MHz bandwidth:0.0135 (11.3 dBm)	
	40 MHz bandwidth: 0.0132 (11.2 dBm)	
	80 MHz bandwidth: 0.0135 (11.3 dBm)	
Field strength, dBμV/m @ 3 m	N/A	
Measured BW (kHz), 99% OBW	20 MHz bandwidth: 17780	
	40 MHz bandwidth: 36360	
	80 MHz bandwidth: 75600	
Type of modulation	802.11a/n/ac: OFDM (QPSK, BPSK, 16-QAM, 64-QAM)	
Emission classification	W7D	
Transmitter spurious, dBμV/m @ 3 m	50.85 average @ 5.15 GHz	
Antenna information	Molex 211964 2.4GHz/5GHz Ceramic SMT antenna, max peak gain: 2.1 dBi at 2.4 GHz band and 2.2 dBi at 5 GHz	
	band.	
Firmware/Software information	8821cs-txpowerlimits-addition to wifi-bt-continous-2021-06-29".	

5.5 **EUT** setup details

5.5.1 Radio exercise details

0 " "	THE SHEET HE ALL HE SHEET HE S
Operating conditions	The EUT is soldered on Humanware Digital Talking Book Machine Main PCB, the DA2. The DA2 provides 3.1Vdc power
	to the EUT. The DA2 also interfaces to the EUT with a digital interface (SDIO and UART). The DA2 runs on Linux and has
	the appropriate drivers to control the EUT.
	In order to control the EUT in the appropriate mode, the DA2 is connected to a laptop with a serial to USB
	communication adapter. The operator uses a terminal interface on the laptop to communicate with the DA2.
	The DA2 has a special build for this purpose, the "8821cs-txpowerlimits-addition to wifi-bt-continous-2021-06-29"
Transmitter state	Transmitter set in to continuous mode.

Test Channel for 802.11a/n(HT20)/ac(VHT20)

Band	Channel	Frequency	
U-NII Band I	<u> </u>	•	
Low	36	5180MHz	
Mid	40	5200MHz	
High	48	5240MHz	
U-NII Band II-A	•	·	
Low	52	5260MHz	
Mid	60	5300MHz	
High	64	5320MHz	
U-NII Band II-C	<u>.</u>	·	
Low	100	5500MHz	
Mid	116	5580MHz	
High	140	5700MHz	
U-NII Band III			
Low	149	5745MHz	
Mid	157	5785MHz	
High	165	5825MHz	

Test Channel for 802.11n(HT40)/ac(VHT40)

Band	Channel	Frequency		
U-NII Band I				
Low	38	5190MHz		
High	46	5230MHz		
U-NII Band II-A				
Low	54	5270MHz		
High	62	5310MHz		
U-NII Band II-C	U-NII Band II-C			
Low	102	5510MHz		
Mid	110	5550MHz		
High	134	5670MHz		
U-NII Band III	U-NII Band III			
Low	151	5755MHz		
High	159	5795MHz		

Report reference ID: 444710-5TRFWL Page 10 of 48

5.5.1 EUT setup configuration

Test Channel for 802.11ac(VHT80)

Band	Channel	Frequency	
U-NII Band I			
Only	42	5210MHz	
U-NII Band II-A			
Only	58 5290MHz		
U-NII Band II-C			
Low	106	5530MHz	
High	122	5610MHz	
U-NII Band III			
Only	155	5775MHz	

Test Mode:

Mode	Data rate
802.11a	6 Mbps
802.11n(HT20) / 802.11ac(VHT20)	6.5 Mbps
802.11n(HT40) / 802.11ac(VHT40)	13.5 Mbps
802.11ac(VHT80)	29.3 Mbps

5.5.1 EUT setup configuration

Table 5.5-1: EUT sub assemblies

Description	Brand name Model, Part number, Serial number, Revision level	
Digital Talking Book Machine	Humanware	MN: DA2 SN: ALPHA-COND-1 PN: ASSY-1100
BT + WIFI module	Humanware	MN: PCBA-0131-A1.0, PN: PCBA-0131 Rev: A1.0

Table 5.5-2: Support equipment

Description	Brand name	Brand name Model, Part number, Serial number, Revision level	
Serial communication board	Humanware	PN: PCBA-0097B Rev: P2	
AC power adapter	InnoVision	MN: GW18W-050300UV	

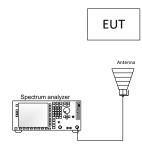


Figure 5.5-1: Radiated testing block diagram

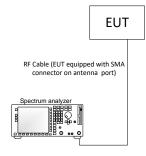


Figure 5.5-2: Antenna port testing block diagram

Section 6 Summary of test results

6.1 Testing location

Test location (s) Montreal

6.2 Testing period

Test start date	June 10, 2021	Test end date	July 31, 2021

6.3 Sample information

			_
Receipt date	June 10, 2021	Nemko sample ID number(s)	2

6.4 FCC Part 15 Subpart A and C, general requirements test results

Table 6.4-1: FCC general requirements results

Part	Test description	Verdict
§15.207(a)	Conducted limits	Pass
§15.31I	Variation of power source	Pass
§15.31(m)	Number of tested frequencies	Pass
§15.203	Antenna requirement	Pass
Notes:	EUT is an AC powered device.	

6.5 FCC Part §15.407 test results

Table 6.5-1: FCC §15.407 requirements results

Part	Test description	Verdict
§15.403	Emission bandwidth	Pass
§15.407(a)(1)	Power and density limits within 5.15–5.25 GHz band	Pass
§15.407(b)(1)	Undesirable emission limits for 5.15–5.25 GHz band	Pass
§15.407(b)(8)	AC power line conducted limits	Pass
§15.407(g)	Frequency stability	Pass
§15.407(h)(1) ¹	Transmit power control (TPC)	Not applicable
§15.407(h)(2) ¹	Dynamic Frequency Selection (DFS)	Not applicable
§15.407(k)	Automated frequency coordination (AFC) system	Not applicable

Notes ¹DFS and TPC requirements are only applicable to 5.25–5.35 GHz and 5.47–5.725 GHz bands

6.6 ISED RSS-Gen, Issue 5, test results

Table 6.6-1: RSS-Gen requirements results

Clause	Test description	Verdict
7.3	Receiver radiated emission limits	Not applicable
7.4	Receiver conducted emission limits	Not applicable
6.9	Operating bands and selection of test frequencies	Pass
8.8	AC power-line conducted emissions limits	Pass
Notes:	¹ According to sections 5.2 and 5.3 of RSS-Gen, Issue 5 the EUT does not have a stand-alone receiver neither scanner receiver, therefore exempt from receiver	

requirements.

EUT is an AC powered device.

6.7 ISED RSS-247, Issue 2, test results

Table 6.7-1: ISED RSS-247 requirements results

Section	Test description	Verdict
6.1 ¹	Types of Modulation	Pass
6.2.1.1	Power limits for 5150–5250 MHz band	Pass
6.2.1.2	Unwanted emission limits for 5150–5250 MHz band	Pass

Notes: ¹ The EUT employs digital modulations, such as: 802.11a/n/ac (20–80 MHz)

Section 7 Test equipment

7.1 Test equipment list

Table 7.1-1: Equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
3 m EMI test chamber (Emissions)	TDK	SAC-3	FA002532e	2 year	February 25, 2022
Flush mount turntable	Sunol	FM2022	FA002550	_	NCR
Controller	Sunol	SC104V	FA002551	_	NCR
Antenna mast	Sunol	TLT2	FA002552	_	NCR
3 Phase AC Power Supply	apc AC Power	AFC-33045T	FA002677	_	VOU
Power Meter	НІОКІ	PW3337	FA002727	1 year	March 15, 2022
Receiver/spectrum analyzer	Rohde & Schwarz	ESU 40	FA002071	1 year	March 16, 2022
Bilog antenna (20–2000 MHz)	Sunol	JB1	FA002517	1 year	March 3, 2022
Horn antenna (1–18 GHz)	EMCO	3115	FA001451	1 year	February 16, 2022
Horn antenna (18–40 GHz)	EMCO	3116	FA002487	2 year	March 4, 2023
Pre-amplifier (0.5–18 GHz)	Com-Power	PAM-118A	FA002561	1 year	September 22, 2021
Pre-amplifier (18–40 GHz)	Com-Power	PAM-840	FA002508	1 year	September 24, 2021
2.4 GHz band Notch Filter	Microwave Circuits	N0324413	FA002693	_	VOU
Spectrum analyzer	Rohde & Schwarz	FSV 40	FA002731	1 year	March 23, 2022
Temperature chamber	Thermotron	S-4	FA002534	1 year	July 13, 2022
LISN	Rohde & Schwarz	ENV216	FA002514	1 year	January 29, 2022
50 Ω coax cable	C.C.A.	None	FA002605	_	VOU
50 Ω coax cable	C.C.A.	None	FA002831	_	VOU

Notes: NCR - no calibration required, VOU - verify on use

Testing data Variation of power source FCC Part 15 Subpart A

Section 8 Testing data

8.1	Variation of power s	source				
8.1.1	References, definitio	ns and limits				
the e	ntentional radiators, measu emission, as appropriate, sh	urements of the variation of the input power or the nall be performed with the supply voltage varied be ne equipment tests shall be performed using a new	etween 85% and 115% o			
8.1.2	Test summary					
Verdict		Pass				
Tested by	′	Yong Huang	Test date		July 24, 2	2021
a) b) c) d)	provided with the device For devices, where opera to minimum and maximu For devices with wide rar voltage. For devices obtaining pov a support power supply, v	NSI C63.10 Section 5.13. Inded to be powered from an external power adapt at the time of sale. If the device is not marketed outing at a supply voltage deviating ±15% from the num allowable voltage per manufacturer's specificatinge of rated supply voltage, test at 15% below the lower from an input/output (I/O) port (USB, firewire, while maintaining the functionalities of the device.	r sold with a specific add ominal rated value may ion and document in the lowest and 15% above t etc.), a test jig is necess	apter, then cause dan e report. he highest	n a typical p nages or lo	power adapter shall be used ss of intended function, tes nominal rated supply
For batte	ry-operated equipment, the	e equipment tests shall be performed using a varia	ble power supply.			
8.1.4	Test data					
EUT Powe	If EUT is battery operated	owered, was the noticeable output power variation d, was the testing performed using fresh batteries? ttery operated, was the testing performed using fu		☑ AC☐ YES☐ YES☐ YES	□ DC ⊠ NO □ NO □ NO	□ Battery □ N/A ☑ N/A ☑ N/A

Report reference ID: 444710-5TRFWL Page 16 of 48

Testing data
Number of frequencies

FCC Part 15 Subpart A and RSS-Gen, Issue 5

8.2 Number of frequencies

8.2.1 References, definitions and limits

FCC §15.31:

(m) Measurements on intentional radiators or receivers shall be performed and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table.

RSS-Gen, Clause 6.9:

Except where otherwise specified, measurements shall be performed for each frequency band of operation for which the radio apparatus is to be certified, with the device operating at the frequencies in each band of operation shown in table below. The frequencies selected for measurements shall be reported in the test report.

Table 8.2-1: Frequency Range of Operation

Frequency range over which the device		Location of measurement frequency inside the
operates (in each band)	Number of test frequencies required	operating frequency range
1 MHz or less	1	Center (middle of the band)
1–10 MHz	2	1 near high end, 1 near low end
Greater than 10 MHz	3	1 near high end, 1 near center and 1 near low end

Notes: "near" means as close as possible to or at the centre / low end / high end of the frequency range over which the device operates.

8.2.2 Test summary

Verdict	Pass		
Tested by	Yong Huang	Test date	July 24, 2021

8.2.3 Observations, settings and special notes

ANSI C63.10, Clause 5.6.2.1:

The number of channels tested can be reduced by measuring the center channel bandwidth first and then applying the following relaxations as appropriate:

- a) For each operating mode, if the measured channel bandwidth on the middle channel is at least 150% of the minimum permitted bandwidth, then it is not necessary to measure the bandwidth on the high and low channels.
- b) For multiple-input multiple-output (MIMO) systems, if the measured channel bandwidth on testing the middle channel exceeds the minimum permitted bandwidth by more than 50% on one transmit chain, then it is not necessary to repeat testing on the other chains.
- c) If the measured channel bandwidth on the middle channel is less than 50% of the maximum permitted bandwidth, then it is not necessary to measure the bandwidth on the high and low channels.

ANSI C63.10, Clause 5.6.2.2:

For devices with multiple operating modes, measurements on the middle channel can be used to determine the worst-case mode(s). The worst-case modes are as follows:

- a) Band edge requirements—Measurements on the mode with the widest bandwidth can be used to cover the same channel (center frequency) on modes with narrower bandwidth that have the same or lower output power for each modulation family (e.g., OFDM and direct sequence spread spectrum).
- b) Spurious emissions—Measure the mode with the highest output power and the mode with the highest output power spectral density for each modulation family (e.g., OFDM and direct sequence spread spectrum).
- c) In-band PSD—Measurements on the mode with the narrowest bandwidth can be used to cover all modes within the same modulation family of an equal or lower output power provided the result is less than 50% of the limit.

Report reference ID: 444710-5TRFWL Page 17 of 48

Testing data Number of frequencies

FCC Part 15 Subpart A and RSS-Gen, Issue 5

8.2.4 Test data

Table 8.2-2: Test channels selection

Modulation	Start of Frequency range, MHz	End of Frequency range, MHz	Frequency range bandwidth, MHz	Low channel, MHz	Mid channel, MHz	High channel, MHz
802.11a	5150	5250	100	5180	5200	5240
802.11n HT20/ 802.11ac VHT20	5150	5250	100	5180	5200	5240
802.11n HT40/ 802.11ac VHT40	5150	5250	100	5190		5230
802.11ac VHT80	5150	5250	100		5210	

Report reference ID: 444710-5TRFWL Page 18 of 48

Testing data
Antenna requirement
FCC Part 15 Subpart C and RSS-Gen, Issue 5

8.3 Antenna requirement

8.3.1 References, definitions and limits

FCC §15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

RSS-Gen, Clause 6.8:

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report.

8.3.2 Test summary

Verdict		Pass					
Tested by		Yong Huang		Test date		July 24, 2021	
8.3.3	Observations, setting	s and special notes					
None							
8.3.4	Test data						
	EUT be professionally insta EUT have detachable anter If detachable, is the anter		☐ YES ☐ YES ☐ YES	⊠ NO ⊠ NO □ NO	⊠ N/A		

Table 8.3-1: Antenna information

Antenna type	Manufacturer	Model number	Maximum gain	Connector type
PCB Ceramic SMT antenna	Molex	211964	2.1 dBi for 2.4 GHz band	Surface mount
			2.2 dBi for 5 GHz band	

Report reference ID: 444710-5TRFWL Page 19 of 48

Testing data

AC power line conducted emissions limits FCC Part 15 Subpart E, C and RSS-Gen, Issue 5

8.4 AC power line conducted emissions limits

8.4.1 References, definitions and limits

FCC §15.407(b):

(8) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in § 15.207.

FCC §15.207:

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μH/50 Ω line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

ANSI C63.10, Clause 6.2:

If the EUT normally receives power from another device that in turn connects to the public utility ac power lines, measurements shall be made on that device with the EUT in operation to demonstrate that the device continues to comply with the appropriate limits while providing the EUT with power. If the EUT is operated only from internal or dedicated batteries, with no provisions for connection to the public utility ac power lines (600 VAC or less) to operate the EUT (such as an adapter), then ac power-line conducted measurements are not required.

For direct current (dc) powered devices where the ac power adapter is not supplied with the device, an "off-the-shelf" unmodified ac power adapter shall be used. If the device is supposed to be installed in a host (e.g., the device is a module or PC card), then it is tested in a typical compliant host.

RSS-Gen, Clause 8.8:

A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz, shall not exceed the limits in table below.

Unless the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in table below. The more stringent limit applies at the frequency range boundaries.

Table 8.4-1: Conducted emissions limit

	Conducted emissions limit, dBμV		
Frequency of emission, MHz	Quasi-peak	Average**	
0.15-0.5	66 to 56*	56 to 46*	
0.5–5	56	46	
5–30	60	50	

Notes:

- * The level decreases linearly with the logarithm of the frequency.
- ** A linear average detector is required.

8.4.2 Test summary

Verdict	Pass		
Tested by	Yong Huang	Test date	June 10, 2021

Report reference ID: 444710-5TRFWL Page 20 of 48

Testing data

AC power line conducted emissions limits FCC Part 15 Subpart E, C and RSS-Gen, Issue 5

8.4.3 Observations, settings and special notes

Port under test – Coupling device	AC input of host – Artificial Mains Network (AMN)
EUT power input during test	120 V _{AC} , 60 Hz;
EUT setup configuration	Table top
Measurement details	A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 10 dB
	or above the limit were re-measured with the appropriate detector against the correlating limit and recorded as the
	final measurement.
Additional notes:	The EUT was set up as tabletop configuration per ANSI C63.10-2013 measurement procedure.
	- The spectral scan has been corrected with transducer factors (i.e. cable loss, LISN factors, and attenuators) for
	determination of compliance. Correction factor (dB) = LISN factor IL (dB) + cable loss (dB) + attenuator (dB)
	– Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15
	seconds observation period were considered valid emissions. The maximum value of valid emissions has been
	recorded.

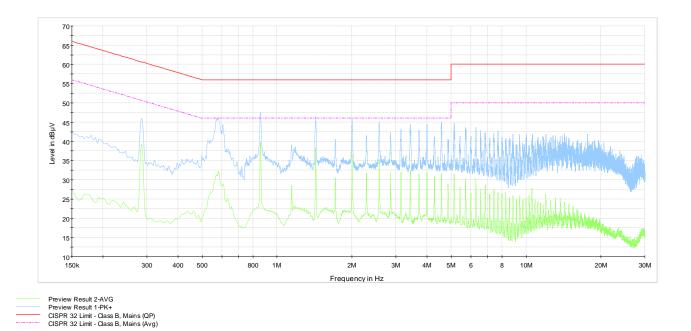
Receiver settings:

Resolution bandwidth	9 kHz
Video bandwidth	30 kHz
Detector mode	Peak and Average (Preview), Quasi-peak and CAverage (Final)
Trace mode	Max Hold
Measurement time	100 ms (Preview), 160 ms (Final)

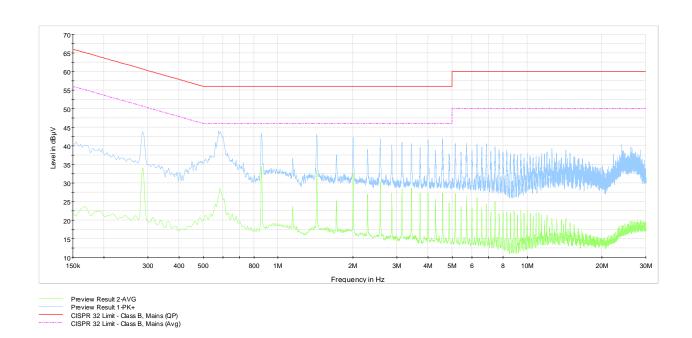
8.4.4 Test data

Table 8.4-2: Conducted emissions results on phase line

Frequency, MHz	Quasi-Peak result, dBμV	Quasi-Peak limit, dBμV	Quasi-Peak margin, dB	Correction factor, dB
0.580	43.2	56.0	12.8	10.0
0.859	44.0	56.0	12.0	9.9
1.430	43.6	56.0	12.4	9.9
Frequency, MHz	CAverage result, dBμV	CAverage limit, dBμV	CAverage margin, dB	Correction factor, dB
0.857	CAverage result, dBμV 38.0	CAverage limit, dBμV 46.0	CAverage margin, dB 8.0	Correction factor, dB 9.9
<u> </u>			<u> </u>	<u> </u>


Table 8.4-3: Conducted emissions results on neutral line

Frequency, MHz	Quasi-Peak result, dBμV	Quasi-Peak limit, dBμV	Quasi-Peak margin, dB	Correction factor, dB
0.578	38.7	56.0	17.3	10.0
0.857	40.5	56.0	15.5	9.9
1.430	40.0	56.0	16.0	9.9
Frequency, MHz	CAverage result, dBμV	CAverage limit, dBμV	CAverage margin, dB	Correction factor, dB
		10.0		
0.859	34.4	46.0	11.6	9.9
0.859 1.430	34.4 31.5	46.0 46.0	11.6 14.5	9.9


Report reference ID: 444710-5TRFWL Page 21 of 48

Test data, continued

Plot 8.4-1: Conducted emissions on phase line

Plot 8.4-2: Conducted emissions on neutral line

Report reference ID: 444710-5TRFWL Page 22 of 48

Testing data Emission bandwidth FCC Part 15 Subpart E

8.5 Emission bandwidth

8.5.1 References, definitions and limits

FCC §15.403:

For purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Determination of the emissions bandwidth is based on the use of measurement instrumentation employing a peak detector function with an instrument resolution bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

8.5.2 Test summary

Verdict	Pass		
Tested by	Yong Huang	Test date	July 24, 2021

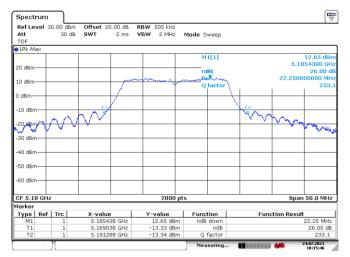
8.5.3 Observations, settings and special notes

The emission bandwidth was tested per ANSI C63.10, Clause 12.4 and KDB 789033 D02, Clause II(C)(1). Spectrum analyser settings:

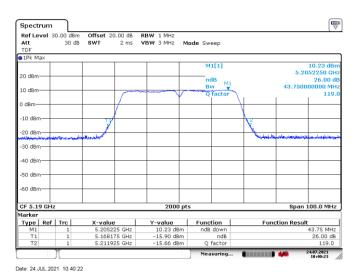
Resolution bandwidth	approximately 1% of the emission bandwidth	
Video bandwidth > RBW		
Detector mode	Peak	
Trace mode	Max Hold	

8.5.4 Test data

Table 8.5-1: 26 dB bandwidth results


Modulation	Frequency, MHz	26 dB bandwidth, MHz
	5180	22.25
802.11a	5200	22.03
	5240	21.85
	5180	22.28
802.11n HT20/802.11ac VHT20	5200	22.23
	5240	22.10
802.11n HT40/802.11ac VHT40	5190	43.75
802.1111 H140/802.11dC VH140	5230	43.60
802.11ac VHT80	5210	82.73

Report reference ID: 444710-5TRFWL Page 23 of 48


Testing data Emission bandwidth FCC Part 15 Subpart E

Test data, continued

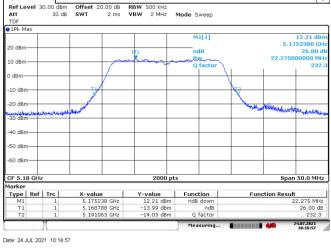

Date: 24.JUL.2021 10:15:47

Figure 8.5-1: 26 dB bandwidth on 802.11a, sample plot

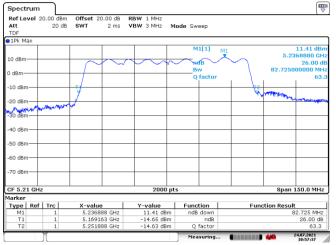

plot

Figure 8.5-3: 26 dB bandwidth on 802.11n HT40/802.11ac VHT40, sample

Spectrum

Figure 8.5-2: 26 dB bandwidth on 802.11n HT20/802.11ac VHT20, sample plot

Date: 24.JUL.2021 10:57:37

Figure 8.5-4: 26 dB bandwidth on 802.11ac VHT80

Report reference ID: 444710-5TRFWL Page 24 of 48

Testing data
Occupied bandwidth
ANSI C63.10-2013 and RSS-Gen, Issue 5

8.6 Occupied bandwidth

8.6.1 References, definitions and limits

ANSI C63.10-2013, Clause 6.9.3:

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

RSS-Gen, Clause 6.7:

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

8.6.2 Test summary

Verdict	Pass		
Tested by	Yong Huang	Test date	July 24, 2021

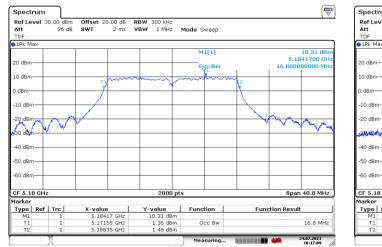
8.6.3 Observations, settings and special notes

The emission bandwidth was tested per ANSI C63.10, Clause 6.9.3 and KDB 789033 D02, Clause II(D). Spectrum analyser settings:

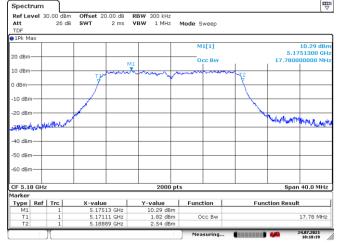
Resolution bandwidth:	≥ 1 % of span
Video bandwidth:	≥3 × RBW
Detector mode:	Peak
Trace mode:	Max Hold

8.6.4 Test data

Table 8.6-1: 99% bandwidth results


Modulation	Frequency, MHz	99% bandwidth, MHz
	5180	16.80
802.11a	5200	16.84
	5240	16.80
	5180	17.78
802.11n HT20/802.11ac VHT20	5200	17.78
	5240	17.78
802.11n HT40/802.11ac VHT40	5190	36.32
802.1111 H140/802.11ac VH140	5230	36.36
802.11ac VHT80	5210	75.60

Report reference ID: 444710-5TRFWL Page 25 of 48


Testing data
Occupied bandwidth
ANSI C63.10-2013 and RSS-Gen, Issue 5

Test data, continued

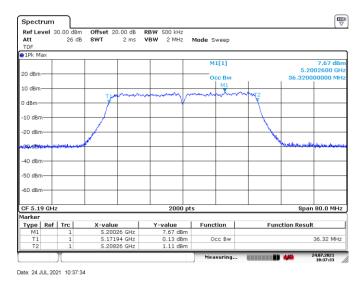

Date: 24.JUL.2021 10:17:10

Figure 8.6-1: 99% bandwidth on 802.11a, sample plot

Date: 24.JUL.2021 10:18:20

Figure 8.6-2: 99% bandwidth on 802.11n HT20/802.11ac VHT20, sample plot

Figure 8.6-3: 99% bandwidth on 802.11n HT40/802.11ac VHT40, sample plot

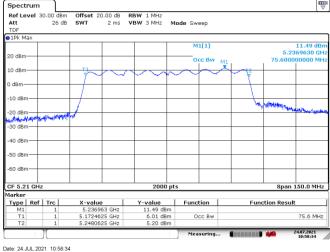


Figure 8.6-4: 99% bandwidth on 802.11ac VHT80, sample plot

Report reference ID: 444710-5TRFWL Page 26 of 48

Section 8
Test name

Testing data

Transmitter output power and e.i.r.p. requirements for 5150–5250 MHz band FCC Part 15 Subpart E and RSS-247, Issue 2

8.7 Transmitter output power and e.i.r.p. requirements for 5150–5250 MHz band

8.7.1 References, definitions and limits

FCC §15.407:

- (a) Power limits:
- (1) For the band 5.15-5.25 GHz.
- (iv) For client devices in the 5.15–5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (11) The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage.
- (12) Power spectral density measurement. The maximum power spectral density is measured as either a conducted emission by direct connection of a calibrated test instrument to the equipment under test or a radiated measurement. Measurements in the 5.725–5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in all other bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth

RSS-247, Clause 6.2:

Power and unwanted emissions limits

The output power and e.i.r.p. of the equipment wanted emission shall be measured in terms of average value.

6.2.1 Frequency band 5150-5250 MHz

LE-LAN devices are restricted to indoor operation only in the band 5150–5250 MHz. However, original equipment manufacturer (OEM) devices, which are installed in vehicles by vehicles manufacturers, are permitted.

6.2.1.1 Power limits

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or $1.76 + 10 \log_{10}$ B, dBm, whichever is less. Devices shall implement transmitter power control (TPC) in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.

For other devices, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log₁₀B, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

Report reference ID: 444710-5TRFWL Page 27 of 48

Testing data

Transmitter output power and e.i.r.p. requirements for 5150–5250 MHz band FCC Part 15 Subpart E and RSS-247, Issue 2

8.7.2 Test summary

Verdict	Pass		
Tested by	Yong Huang	Test date	July 24, 2021

8.7.3 Observations, settings and special notes

The 99 % measured occupied bandwidth for 802.11a was 16.84 MHz, for 802.11n HT20 was 17.78 MHz, for 802.11n HT40 was 36.36 MHz and for 802.11n HT80 was 75.60 MHz..

IC EIRP limit for 802.11a was calculated as follows: $10 + 10 \times Log_{10}$ (16.83) = 22.26 dBm < 23 dBm

IC EIRP limit for 802.11n HT20 was calculated as follows: $10 + 10 \times Log_{10}$ (17.88) = 22.50 dBm < 23 dBm

IC EIRP limit for 802.11n HT40 was calculated as follows: $10 + 10 \times Log_{10}$ (36.54) = 25.60 dBm > 23 dBm, therefore the limit is 23 dBm

IC EIRP limit for 802.11n HT80 was calculated as follows: $10 + 10 \times Log_{10}$ (75.60) = 28.98 dBm > 23 dBm, therefore the limit is 23 dBm

Power spectral density was tested per ANSI C63.10, Clause 12.5 and 789033 D02, Clause II(F).

Conducted output power was tested per ANSI C63.10, Clause 12.3 and 789033 D02, Clause II(E) using method PM (Measurement using an RF average power meter).

Spectrum analyser settings:

Resolution bandwidth	1 MHz	
Video bandwidth ≥ 3 MHz		
Frequency span	Enough to encompass the entire 26 dB EBW or 99% OBW of the signal	
Detector mode	RMS	
Trace mode	Power Averaging over 100 sweeps	

8.7.4 Test data

Table 8.7-1: Output power measurements results for FCC

Modulation	Frequency, MHz	Conducted output power, dBm	Power limit, dBm	Margin, dB
	5180	10.5	24.0	13.5
802.11a	5200	10.8	24.0	13.2
	5240	11.1	24.0	12.9
802.11n HT20/802.11ac	5180	10.8	24.0	13.2
VHT20	5200	11.2	24.0	12.8
VHIZO	5240	11.3	24.0	12.7
802.11n HT40/802.11ac	5190	8.5	24.0	15.5
VHT40	5230	11.2	24.0	12.8
802.11ac VHT80	5210	11.3	24.0	12.7

Table 8.7-2: PSD measurements results for FCC

Modulation	Frequency, MHz	PSD, dBm/MHz	PSD limit, dBm/MHz	Margin, dB
	5180	-0.6	11.0	11.6
802.11a	5200	-0.3	11.0	11.3
	5240	-0.4	11.0	11.4
802.11n HT20/802.11ac	5180	-0.3	11.0	11.3
VHT20	5200	-0.4	11.0	11.4
VHIZO	5240	-0.7	11.0	11.7
802.11n HT40/802.11ac	5190	-6.5	11.0	17.5
VHT40	5230	-3.8	11.0	14.8
802.11ac VHT80	5210	-5.4	11.0	16.4

Report reference ID: 444710-5TRFWL Page 28 of 48

Testing data

Transmitter output power and e.i.r.p. requirements for 5150–5250 MHz band

FCC Part 15 Subpart E and RSS-247, Issue 2

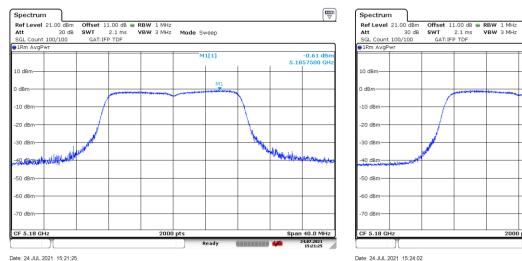
Test data, continued

 Table 8.7-3: Output power measurements and EIRP calculations results for ISED

Modulation	Frequency, MHz	Conducted output power, dBm	Antenna gain, dBi	EIRP, dBm	EIRP limit, dBm	Margin, dB
	5180	10.5	2.2	12.7	22.3	9.6
802.11a	5200	10.8	2.2	13.0	22.3	9.3
	5240	11.1	2.2	13.3	22.3	9.0
802.11n HT20/802.11ac VHT20	5180	10.8	2.2	13.0	22.5	9.5
	5200	11.2	2.2	13.4	22.5	9.1
	5240	11.3	2.2	13.5	22.5	9.0
802.11n HT40/802.11ac	5190	8.5	2.2	10.7	23.0	12.3
VHT40	5230	11.2	2.2	13.4	23.0	9.6
802.11ac VHT80	5210	11.3	2.2	13.5	23.0	9.5

Table 8.7-4: PSD measurements results for ISED

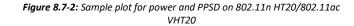
	Frequency,			EIRP PSD,	EIRP PSD limit,	
Modulation	MHz	PSD, dBm/MHz	Antenna gain, dBi	dBm/MHz	dBm/MHz	Margin, dB
	5180	-0.6	2.2	1.6	10.0	8.4
802.11a	5200	-0.3	2.2	1.9	10.0	8.1
	5240	-0.4	2.2	1.8	10.0	8.2
802.11n HT20/802.11ac VHT20	5180	-0.3	2.2	1.9	10.0	8.1
	5200	-0.4	2.2	1.8	10.0	8.2
	5240	-0.7	2.2	1.5	10.0	8.5
802.11n HT40/802.11ac	5190	-6.5	2.2	-4.3	10.0	14.3
VHT40	5230	-3.8	2.2	-1.6	10.0	11.6
802.11ac VHT80	5210	-5.4	2.2	-3.2	10.0	13.2

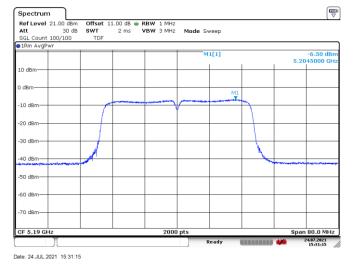

Report reference ID: 444710-5TRFWL Page 29 of 48

Testing data

Transmitter output power and e.i.r.p. requirements for 5150-5250 MHz band FCC Part 15 Subpart E and RSS-247, Issue 2

Test data, continued


M1[1]


Mode Sweep

Date: 24.JUL.2021 15:24:02

Date: 24.JUL.2021 15:30:12

Figure 8.7-1: Sample plot for power and PPSD on 802.11a

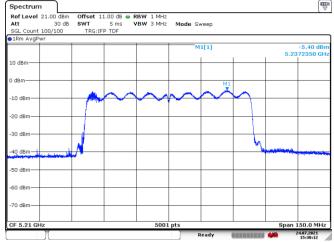


Figure 8.7-3: Sample plot for power and PPSD on 802.11n HT40/802.11ac VHT40

Figure 8.7-4: Sample plot for power and PPSD on 802.11ac VHT80

Report reference ID: 444710-5TRFWL Page 30 of 48

Testing data

Spurious unwanted (undesirable) emissions FCC Part 15 Subpart E and RSS-247, Issue 2

8.8 Spurious unwanted (undesirable) emissions

8.8.1 References, definitions and limits

FCC §15.407:

- (b) Undesirable emission limits.
 - Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:
- (1) For transmitters operating in the 5.15–5.25 GHz band: All emissions outside of the 5.15–5.35 GHz band shall not exceed an e.i.r.p. of –27 dBm/MHz.
- (7) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (8) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in § 15.207.
- (9) The provisions of § 15.205 apply to intentional radiators operating under this section.
- (10) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

RSS-247, Clause 6.2:

Power and unwanted emissions limits

The power and e.i.r.p. of the equipment unwanted emission shall be measured in peak value. However, the equipment is required to comply with the provisions in RSS-Gen with respect to emissions falling within restricted frequency bands which are listed in the same standard.

If the transmission is in bursts, the provisions of RSS-Gen for pulsed operation shall apply.

The outermost carrier frequencies or channels shall be used when measuring unwanted emissions. Such carrier or channel centre frequencies are to be indicated in the test report.

6.2.1 Frequency band 5150-5250 MHz

LE-LAN devices are restricted to indoor operation only in the band 5150–5250 MHz. However, original equipment manufacturer (OEM) devices, which are installed in vehicles by vehicles manufacturers, are permitted.

6.2.1.2 Unwanted emission limits

For transmitters with operating frequencies in the band 5150–5250 MHz, all emissions outside the band 5150–5350 MHz shall not exceed –27 dBm/MHz e.i.r.p. Any unwanted emissions that fall into the band 5250–5350 MHz shall be attenuated below the channel power by at least 26 dB, when measured using a resolution bandwidth between 1 and 5% of the occupied bandwidth (i.e. 99% bandwidth), above 5250 MHz. The 26 dB bandwidth may fall into the 5250–5350 MHz band; however, if the occupied bandwidth also falls within the 5250–5350 MHz band, the transmission is considered as intentional and the devices shall comply with all requirements in the band 5250–5350 MHz including implementing dynamic frequency selection (DFS) and TPC, on the portion of the emission that resides in the 5250–5350 MHz band.

Table 8.8-1: FCC §15.209 and RSS-Gen – Radiated emission limits

	Field strength of emissions					
Frequency, MHz	μV/m	dBμV/m	Measurement distance, m			
0.009-0.490	2400/F	67.6 - 20 × log ₁₀ (F)	300			
0.490-1.705	24000/F	87.6 – 20 × log ₁₀ (F)	30			
1.705–30.0	30	29.5	30			
30–88	100	40.0	3			
88–216	150	43.5	3			
216–960	200	46.0	3			
above 960	500	54.0	3			

Notes: In the emission table above, the tighter limit applies at the band edges.

For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test

Report reference ID: 444710-5TRFWL Page 31 of 48

Testing data

Spurious unwanted (undesirable) emissions FCC Part 15 Subpart E and RSS-247, Issue 2

References, definitions and limits, continued

Table 8.8-2: ISED restricted frequency bands

MHz	MHz	MHz	GHz
0.090-0.110	12.57675–12.57725	399.9–410	7.25–7.75
0.495-0.505	13.36–13.41	608–614	8.025–8.5
2.1735–2.1905	16.42–16.423	960–1427	9.0–9.2
3.020-3.026	16.69475-16.69525	1435–1626.5	9.3–9.5
4.125-4.128	16.80425-16.80475	1645.5–1646.5	10.6–12.7
4.17725-4.17775	25.5–25.67	1660–1710	13.25–13.4
4.20725-4.20775	37.5–38.25	1718.8–1722.2	14.47–14.5
5.677-5.683	73–74.6	2200–2300	15.35–16.2
6.215-6.218	74.8–75.2	2310–2390	17.7–21.4
6.26775-6.26825	108–138	2483.5–2500	22.01–23.12
6.31175-6.31225	149.9–150.05	2655–2900	23.6–24.0
8.291-8.294	156.52475-156.52525	3260–3267	31.2–31.8
8.362-8.366	156.7–156.9	3332–3339	36.43–36.5
8.37625-8.38675	162.0125–167.17	3345.8–3358	
8.41425-8.41475	167.72–173.2	3500–4400	Above 38.6
12.29–12.293	240–285	4500–5150	Above 38.6
12.51975–12.52025	322–335.4	5350-5460	

Note:

Certain frequency bands listed in Table 8.8-2 and above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

Table 8.8-3: FCC restricted frequency bands

MHz	MHz	MHz	GHz
0.090-0.110	16.42–16.423	399.9–410	4.5–5.15
0.495-0.505	16.69475-16.69525	608–614	5.35–5.46
2.1735–2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125–4.128	25.5–25.67	1300–1427	8.025–8.5
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291–8.294	149.9–150.05	2310–2390	15.35–16.2
8.362-8.366	156.52475–156.52525	2483.5–2500	17.7–21.4
8.37625-8.38675	156.7–156.9	2690–2900	22.01–23.12
8.41425-8.41475	162.0125-167.17	3260–3267	23.6–24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358	36.43–36.5
12.57675–12.57725	322–335.4	3600-4400	Above 38.6
13.36–13.41			

8.8.2 Test summary

Verdict	Pass		
Tested by	Yong Huang	Test date	July 28 to 31, 2021

Testing data

Spurious unwanted (undesirable) emissions FCC Part 15 Subpart E and RSS-247, Issue 2

8.8.3 Observations, settings and special notes

- As part of the current assessment, the test range of 9 kHz to 40 GHz has been fully considered and compared to the actual frequencies utilized within
 the EUT. Since the EUT contains a transmitter in the GHz range, the EUT has been deemed compliant without formal testing in the 9 kHz to 30 MHz test
 range, therefore formal test results (tabular data and/or plots) are not provided within this test report.
- EUT was set to transmit continuously.
- Conducted measurements were performed on antenna port, the reference level offset was adjusted to include antenna gains. Cabinet radiation were
 performed while the antenna connectors was terminated with 50 Ω load.
- Radiated measurements were performed at a distance of 3 m below 18 GHz and 1 m above 18 GHz.
- The spurious emission was tested per ANSI C63.10, Clause 12.7 and 789033 D02, Clause II(G).

Spectrum analyser for peak conducted measurements within restricted bands below 1 GHz:

Resolution bandwidth:	100 kHz
Video bandwidth:	300 kHz
Detector mode:	Peak
Trace mode:	Max Hold

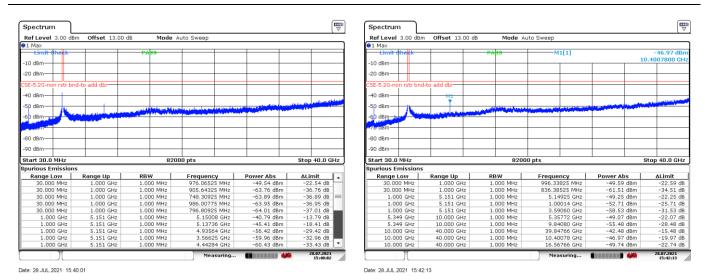
Spectrum analyser for peak conducted measurements within restricted bands above 1 GHz:

Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Detector mode:	Peak
Trace mode:	Max Hold

Spectrum analyser for average conducted measurements within restricted bands above 1 GHz for frequencies where peak results were above the average limit:

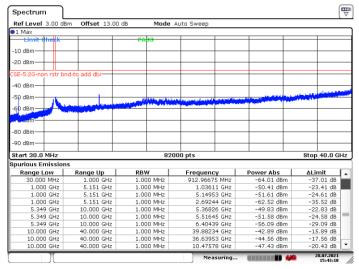
Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Detector mode:	RMS
Trace mode:	Power average
Number of averaging traces:	100

Spectrum analyser for peak conducted measurements outside restricted bands:


Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Detector mode:	Peak
Trace mode:	Max Hold

Report reference ID: 444710-5TRFWL Page 33 of 48

Testing data


Spurious unwanted (undesirable) emissions FCC Part 15 Subpart E and RSS-247, Issue 2

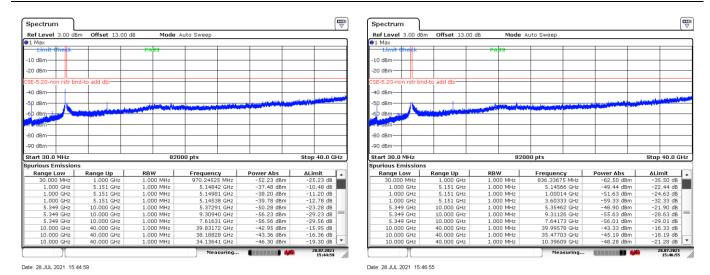
8.8.4 Test data

Figure 8.8-1: Spurious emissions outside restricted bands, Tx on low channel, 802.11a

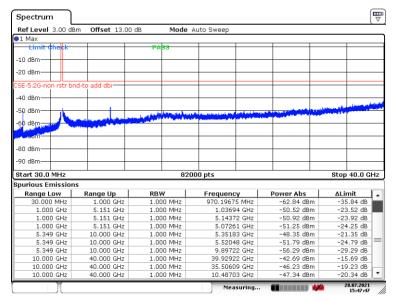
Figure 8.8-2: Spurious emissions outside restricted bands, Tx on mid channel, 802.11a

Date: 28.JUL.2021 15:43:10

Figure 8.8-3: Spurious emissions outside restricted bands, Tx on high channel, 802.11a


Report reference ID: 444710-5TRFWL Page 34 of 48

Testing data


Spurious unwanted (undesirable) emissions FCC Part 15 Subpart E and RSS-247, Issue 2

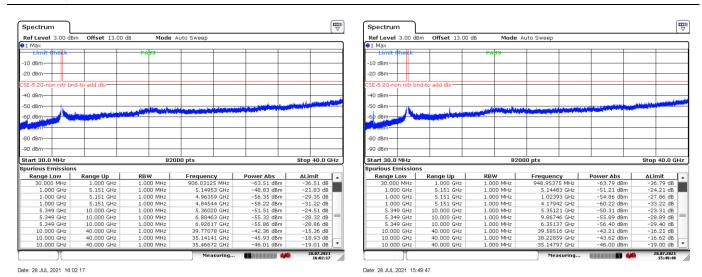
Test data, continued

Figure 8.8-4: Spurious emissions outside restricted bands, Tx on low channel, 802.11n HT20/802.11ac VHT20

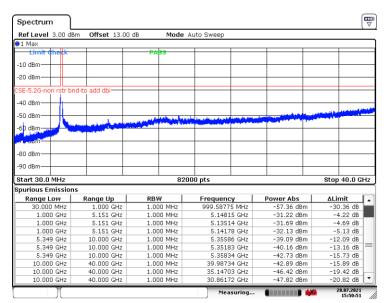
Figure 8.8-5: Spurious emissions outside restricted bands, Tx on mid channel, 802.11n HT20/802.11ac VHT20

Date: 28.JUL.2021 15:47:47

Figure 8.8-6: Spurious emissions outside restricted bands, Tx on high channel, 802.11n HT20/802.11ac VHT20


Report reference ID: 444710-5TRFWL Page 35 of 48

Testing data


Spurious unwanted (undesirable) emissions FCC Part 15 Subpart E and RSS-247, Issue 2

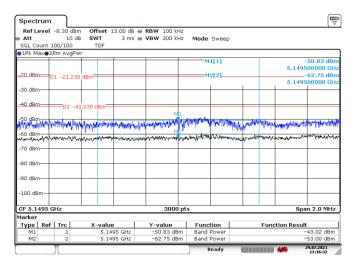
Test data, continued

Figure 8.8-7: Spurious emissions outside restricted bands, Tx on low channel, 802.11n HT40/802.11ac VHT40

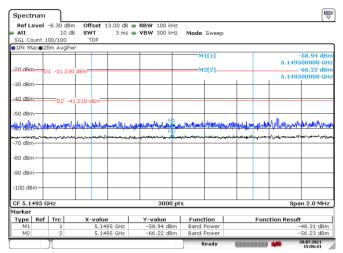
Figure 8.8-8: Spurious emissions outside restricted bands, Tx on mid channel, 802.11n HT40/802.11ac VHT40

Date: 28.JUL.2021 15:50:50

Figure 8.8-9: Spurious emissions outside restricted bands, 802.11ac VHT80


Report reference ID: 444710-5TRFWL Page 36 of 48

Testing data


Spurious unwanted (undesirable) emissions FCC Part 15 Subpart E and RSS-247, Issue 2

Test data, continued

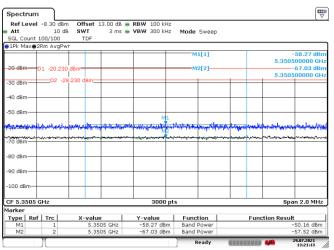

Date: 29.JUL.2021 13:16:32

Figure 8.8-10: Lower band edge, Tx on low channel, 802.11a

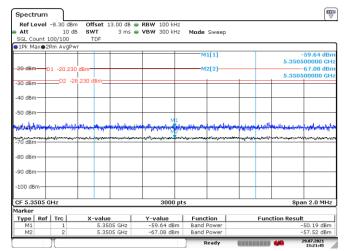

Date: 28.JUL.2021 15:56:31

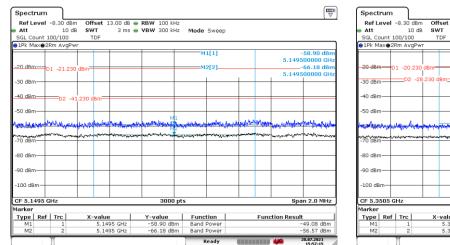
Figure 8.8-12: Lower band edge, Tx on low channel, 802.11n HT20/802.11ac VHT20

Date: 29.JUL.2021 13:21:14

Figure 8.8-11: Upper band edge, Tx on mid channel, 802.11a

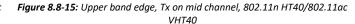
Date: 29.JUL.2021 13:21:45

Figure 8.8-13: Upper band edge, Tx on mid channel, 802.11n HT20/802.11ac


Report reference ID: 444710-5TRFWL

Testing data

Spurious unwanted (undesirable) emissions FCC Part 15 Subpart E and RSS-247, Issue 2


Test data, continued

Date: 29.JUL.2021 13:22:10

Date: 28.JUL.2021 15:57:15

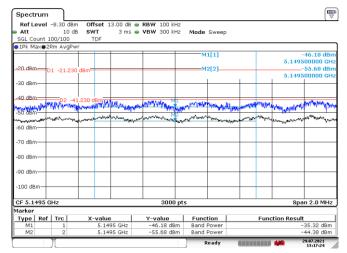
Figure 8.8-14: Lower band edge, Tx on low channel, 802.11n HT40/802.11ac VHT40

3000 nts

 Y-value
 Function

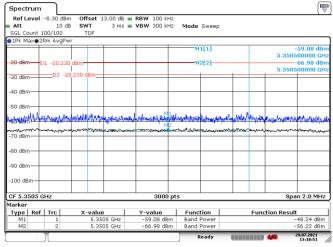
 -58.35 dBm
 Band Power

 -67.21 dBm
 Band Power


13.00 dB • RBW 100 kHz 3 ms • VBW 300 kHz

Mode Sweep

-67.21 di


Span 2.0 MHz

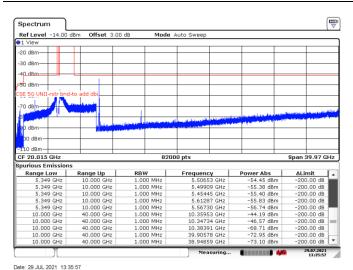
Function Result

Date: 29.JUL.2021 13:17:24

Figure 8.8-16: Lower band edge, Tx on low channel, 802.11ac VHT80

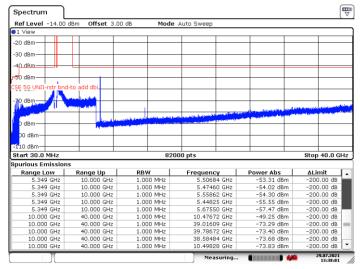
Date: 29.JUL.2021 13:18:51

Figure 8.8-17: Upper band edge, Tx on hi channel, 802.11ac VHT80


Report reference ID: 444710-5TRFWL Page 38 of 48

Testing data

Spurious unwanted (undesirable) emissions FCC Part 15 Subpart E and RSS-247, Issue 2


Test data, continued

Spectrum Ref Level -14.00 dBm Offset 3.00 dB Mode Auto Sweep 20 dBm 30 dBm Stop 40.0 GHz 82000 pts Start 30.0 MHz 5.47522 GHz 5.47522 GHz 5.44670 GHz 5.57102 GHz 5.52668 GHz 5.61318 GHz 10.38578 GHz 38.63172 GHz 39.85891 GHz 38.75078 GHz 5.349 GHz 5.349 GHz 5.349 GHz 5.349 GHz 5.349 GHz 10.000 GHz 10.000 GHz 10.000 GHz 10.000 GHz 5.52668 5.61318 10.38578 38.63172 39.85891 38.75078 37.45516

Figure 8.8-18: Spurious emissions within restricted bands, Tx on low channel, 802.11a

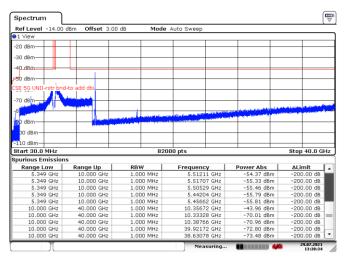
Figure 8.8-19: Spurious emissions within restricted bands, Tx on mid channel, 802.11a

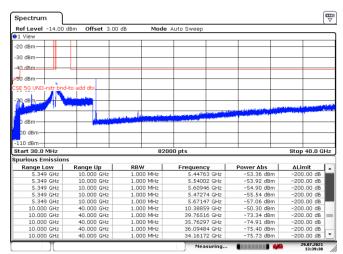
Date: 29.JUL.2021 13:37:04

Date: 29.JUL.2021 13:38:01

Figure 8.8-20: Spurious emissions within restricted bands, Tx on high channel, 802.11a

Note: Peak limit EIRP equivalent: 74 dB μ V/m – 95.23 dB = -21.23 dBm Average limit EIRP equivalent: 54 dB μ V/m - 95.23 dB = -41.23 dBm


Report reference ID: 444710-5TRFWL Page 39 of 48



Testing data

Spurious unwanted (undesirable) emissions FCC Part 15 Subpart E and RSS-247, Issue 2

Test data, continued

Date: 29.JUL.2021 13:38:33

Figure 8.8-21: Spurious emissions within restricted bands, Tx on low channel, 802.11n HT20/802.11ac VHT20

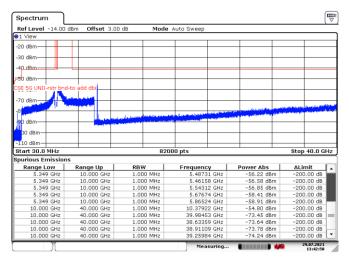
Figure 8.8-22: Spurious emissions within restricted bands, Tx on mid channel, 802.11n HT20/802.11ac VHT20

Date: 29.JUL.2021 13:39:31

Date: 29.JUL.2021 13:40:07

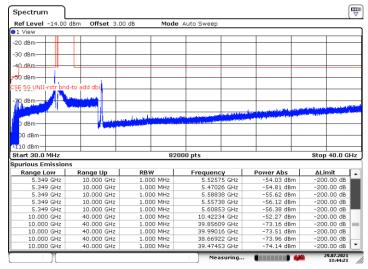
Figure 8.8-23: Spurious emissions within restricted bands, Tx on high channel, 802.11n HT20/802.11ac VHT20

Note: Peak limit EIRP equivalent: 74 dB μ V/m - 95.23 dB = -21.23 dBm Average limit EIRP equivalent: 54 dB μ V/m - 95.23 dB = -41.23 dBm


Report reference ID: 444710-5TRFWL Page 40 of 48

Testing data

Spurious unwanted (undesirable) emissions FCC Part 15 Subpart E and RSS-247, Issue 2


Test data, continued

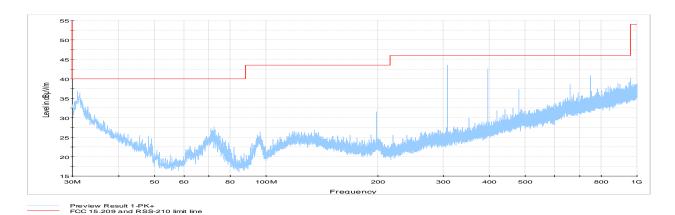
Date: 29.JUL.2021 13:42:50

Figure 8.8-24: Spurious emissions within restricted bands, Tx on low channel, 802.11n HT40/802.11ac VHT40

Figure 8.8-25: Spurious emissions within restricted bands, Tx on high channel, 802.11n HT40/802.11ac VHT40

Date: 29.JUL.2021 13:41:57

Date: 29.JUL.2021 13:44:20


Figure 8.8-26: Spurious emissions within restricted bands, 802.11ac VHT80

Note: Peak limit EIRP equivalent: 74 dB μ V/m - 95.23 dB = -21.23 dBm Average limit EIRP equivalent: 54 dB μ V/m - 95.23 dB = -41.23 dBm

Report reference ID: 444710-5TRFWL Page 41 of 48

Test data, continued

 $\textbf{\textit{Figure 8.8-27:}} \ \textit{Cabinet Radiated spurious emission 30 MHz to 1 GHz} \ , \textit{Tx on low channel}$

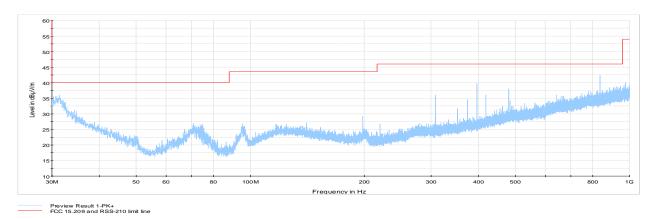


Figure 8.8-28: Cabinet Radiated spurious emission 30 MHz to 1 GHz , Tx on mid channel

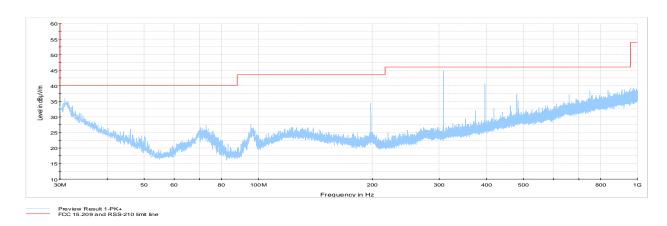


Figure 8.8-29: Cabinet Radiated spurious emission 30 MHz to 1 GHz, Tx on high channel

Note: EUT was investigated in all modulation modes, only worst case is presented. Emissions were verified to be below the $-27~\mathrm{dBm/MHz}$ limit.

Test data, continued

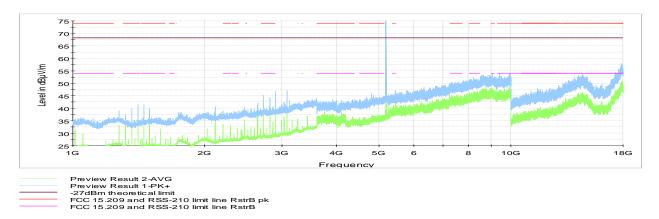


Figure 8.8-30: Cabinet Radiated spurious emission 1 to 18 GHz, Tx on low channel

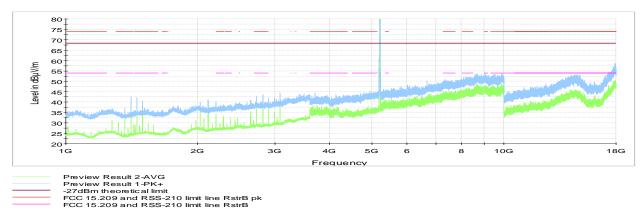


Figure 8.8-31: Cabinet Radiated spurious emission 1 to 18 GHz , Tx on mid channel

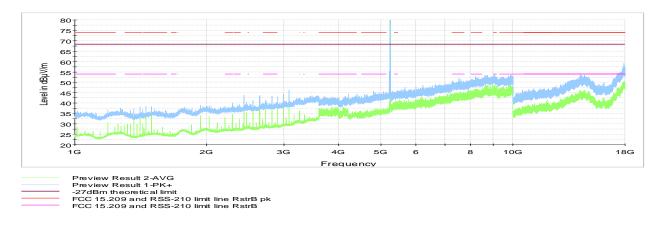


Figure 8.8-32: Cabinet Radiated spurious emission 1 to 18 GHz, Tx on high channel

EUT was investigated in high/mid/low channels of 802.11a/802.11ac modes, only worst case is presented. Note: Above 18 GHz, no emissions related to RF portion were found within 10 dB below the limit.

Section 8
Test name

Testing data Frequency stability

FCC Part 15 Subpart E and RSS-Gen, Issue 5

8.9 Frequency stability

8.9.1 References, definitions and limits

FCC §15.407:

(g) Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

RSS-Gen, Clause 8.11:

If the frequency stability of the licence-exempt radio apparatus is not specified in the applicable RSS, the fundamental emissions of the radio apparatus should be kept within at least the central 80% of its permitted operating frequency band in order to minimize the possibility of out-of-band operation.

8.9.2 Test summary

Verdict	Pass		
Tested by	Yong Huang	Test date	June 26, 2021

8.9.3 Observations, settings and special notes

Frequency stability test was performed as per ANSI C63.10, Clause 6.8 and 789033 D02, Clause II(A)(3). Spectrum analyser settings:

Resolution bandwidth:	10 Hz
Video bandwidth:	10 Hz
Detector mode:	Peak
Trace mode:	Max Hold

Report reference ID: 444710-5TRFWL Page 44 of 48

Section 8
Test name

Testing data
Frequency stability

Specification FCC Part 15 Subpart E and RSS-Gen, Issue 5

8.9.1 Test data

Table 8.9-1: Frequency drift measurement

Test conditions	Nominal frequency, GHz	Frequency, GHz	Drift, Hz
+45 °C, Nominal	5.2000000	5.20001809	18090
+30 °C, Nominal	5.2000000	5.20000217	2170
+20 °C, +15 %	5.2000000	5.2000000	0
+20 °C, Nominal	5.2000000	5.2000000	reference
+20 °C, −15 %	5.2000000	5.2000000	0
+10 °C, Nominal	5.2000000	5.19999522	-4780
0 °C, Nominal	5.2000000	5.19999928	-720

Table 8.9-2: Lower band edge drift calculation

	99% bandwidth lower		Drifted lower cross		
Modulation	cross point, GHz	Max negative drift, Hz	point, GHz	Band edge, GHz	Margin, MHz
802.11a	5.1715500	4780	5.17154522	5.15000000	21.54522000
802.11n HT20	5.1711100	4780	5.17110522	5.15000000	21.10522000
/802.11ac VHT20	5.1711100	4700	5.17110522	3.13000000	21.10322000
802.11n HT40	5.1719400	4780	5.17193522	5.15000000	21.93522000
/802.11ac VHT40	3.1713400	4780	3.17193322	3.13000000	21.93322000
802.11ac VHT80	5.1724625	4780	5.17245772	5.15000000	22.45772000

Notes: Drifted lower cross point = -26 dBc lower cross point – max negative drift.

Table 8.9-3: Upper band edge drift calculation

	99% bandwidth upper		Drifted upper cross		
Modulation	cross point, GHz	Max positive drift, Hz	point, GHz	Band edge, GHz	Margin, MHz
802.11a	5.2483500	18090	5.2483681	5.2500000	1.6319100
802.11n HT20 /802.11ac VHT20	5.2488900	18090	5.2489081	5.2500000	1.0919100
802.11n HT40 /802.11ac VHT40	5.2482600	18090	5.2482781	5.2500000	1.7219100
802.11ac VHT80	5.2480625	18090	5.2480806	5.2500000	1.9194100

Notes: Drifted upper cross point = -26 dBc upper cross point + max positive drift.

Section 9 EUT photos

9.1 External photos

Figure 9.1-1: Front view photo

Figure 9.1-2: Rear view photo

Figure 9.1-3: Side view photo

Figure 9.1-4: Side view photo

Figure 9.1-5: Top view photo

Figure 9.1-6: Bottom view photo

End of the test report