



BUREAU  
VERITAS

## EMC Test Report

### 2024-0451-EMC-TR-25-0067-V01

|                      |                                                                                                                                                                     |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Designation:         | UAP-XR [AWS 1700]                                                                                                                                                   |
| Manufacturer:        | CommScope                                                                                                                                                           |
| Serial No(s):        | SZBEBF2452A0003                                                                                                                                                     |
| ID No.               | 7862380-00 Rev: 00                                                                                                                                                  |
| FCC ID               | XS5-IONEUAPR                                                                                                                                                        |
| ISED ID              | 2237E-IONEUAPR                                                                                                                                                      |
| Test Specifications: | ANSI 63-26:2015<br>FCC Rules and Regulations as listed in 47 CFR, Part 20 and Part 27<br>RSS-139 Issue 4 with RSS-GEN Issue 5, RSS-131 Issue 4 and SRSP-513 Issue 3 |
| Test Plan:           | "BU-PC-2336-58" from customer                                                                                                                                       |
| Test Result:         | <b>Passed</b>                                                                                                                                                       |

|                      |                               |                     |            |
|----------------------|-------------------------------|---------------------|------------|
| Date of issue:       | 12.06.2025                    |                     | Signature: |
| Version:             | 01                            | Technical Reviewer: |            |
| Date of receipt EUT: | 26.02.2025                    |                     |            |
| Performance date:    | 14.03.2025<br>-<br>30.03.2025 | Report Reviewer:    |            |



Bundesnetzagentur

BNetzA-CAB-19/21-20



Deutsche  
Akkreditierungsstelle  
D-PL-12024-06-00

The test results relates only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.

Bureau Veritas  
Consumer Products Services Germany GmbH  
www.bureauveritas.de/cps  
Tel.: +49 (0)40 - 740 41 - 0

Schwerin  
Mettenheimer Straße 12-14, 19061 Schwerin  
cps-schwerin@bureauveritas.com

Tuerkheim  
Businesspark A96, 86842 Tuerkheim  
cps-tuerkheim@bureauveritas.com

Managing Director: Jörg-Timm Kilisch  
VAT-No.: DE164793120  
Reg.No.: Schwerin HRB 3564

Hamburg  
Oehleckerring 40, 22419 Hamburg  
cps-hamburg@bureauveritas.com

Nuremberg  
Thurn-und-Taxis-Str. 18, 90411 Nuremberg  
cps-nuernberg@bureauveritas.com



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

**Client:** CommScope

Andrew Wireless System GmbH  
Industriering 10  
86675 Buchdorf  
Germany

**Test laboratory:** Bureau Veritas Consumer Products Services Germany GmbH

Thurn-und-Taxis-Straße 18  
D-90411 Nürnberg  
Tel.: +49 40 74041 0

**Test location:** Bureau Veritas Consumer Products Services Germany GmbH

Thurn-und-Taxis-Straße 18  
D-90411 Nürnberg

DAkkS D-PL-12024-06-04

Laboratory accreditation no:

BNETZA-CAB-19/21-20

FCC Designation Number: DE0023

FCC Test Firm Registration: 366481

ISED CAB Identifier DE0016

ISED Company Number 3475A

**Versions management:**

V 01.00 Initial release

---

The test results relate only to the tested item. The sample has been provided by the client.  
Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

Test Report No.: 25-0067

Tests performed on UAP-XR [AWS 1700]

## Table of Contents

|     |                                                                         |     |
|-----|-------------------------------------------------------------------------|-----|
| 1   | APPLIED STANDARDS AND TEST SUMMARY.....                                 | 4   |
| 1.1 | CFR APPLIED STANDARDS.....                                              | 4   |
| 1.2 | FCC-ISED CORRELATION TABLE.....                                         | 6   |
| 1.3 | MEASUREMENT SUMMARY/SIGNATURES.....                                     | 7   |
| 2   | ADMINISTRATIVE DATA.....                                                | 11  |
| 2.1 | TESTING LABORATORY.....                                                 | 11  |
| 2.2 | APPLICANT DATA.....                                                     | 11  |
| 2.3 | MANUFACTURER DATA.....                                                  | 11  |
| 3   | TEST OBJECT DATA .....                                                  | 12  |
| 3.1 | GENERAL EUT DESCRIPTION .....                                           | 12  |
| 3.2 | EUT MAIN COMPONENTS .....                                               | 13  |
| 3.3 | ANCILLARY EQUIPMENT .....                                               | 13  |
| 3.4 | AUXILIARY EQUIPMENT .....                                               | 14  |
| 3.5 | EUT SETUPS .....                                                        | 14  |
| 3.6 | OPERATING MODES.....                                                    | 15  |
| 3.7 | PRODUCT LABELLING.....                                                  | 17  |
| 4   | DESCRIPTION OF EMC TEST CENTRE .....                                    | 18  |
| 4.1 | CLIMATIC CONDITIONS DURING MEASUREMENTS .....                           | 18  |
| 4.2 | CONFORMITY STATEMENT/DECISION RULE .....                                | 18  |
| 4.3 | MEASUREMENT UNCERTAINTIES .....                                         | 19  |
| 5   | TEST RESULTS .....                                                      | 20  |
| 5.1 | EFFECTIVE RADIATED POWER, MEAN OUTPUT POWER AND ZONE ENHANCER GAIN..... | 20  |
| 5.2 | PEAK TO AVERAGE RATIO .....                                             | 35  |
| 5.3 | OCCUPIED BANDWIDTH/INPUT-VERSUS-OUTPUT SPECTRUM.....                    | 42  |
| 5.4 | CONDUCTED SPURIOUS EMISSIONS AT ANTENNA TERMINALS.....                  | 53  |
| 5.5 | OUT-OF-BAND EMISSION LIMITS .....                                       | 66  |
| 5.6 | OUT-OF-BAND REJECTION .....                                             | 81  |
| 5.7 | FREQUENCY STABILITY .....                                               | 84  |
| 5.8 | FIELD STRENGTH OF SPURIOUS RADIATION .....                              | 85  |
| 6   | TEST EQUIPMENT .....                                                    | 98  |
| 6.1 | CONDUCTED EMISSIONS.....                                                | 98  |
| 6.2 | RADIATED EMISSIONS .....                                                | 98  |
| 6.3 | ANTENNA FACTORS. CABLE LOSS AND SAMPLE CALCULATION.....                 | 99  |
| 7   | PHOTO REPORT.....                                                       | 100 |
|     | Annex A: Accreditation certificate (for information) .....              | 101 |
|     | Annex B: Additional information provided by client.....                 | 102 |

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

## 1 APPLIED STANDARDS AND TEST SUMMARY

### 1.1 CFR APPLIED STANDARDS

#### **Type of Authorization**

Certification for an Industrial Signal Booster.

#### **Applicable FCC Rules**

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Chapter 1 Parts 2 and 20 and 27. The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 20, Commercial Mobile Services

§ 20.21 Signal Boosters

Part 27; Miscellaneous Wireless Communications Services

Subpart C – Technical standards

§ 27.50 – Power and duty cycle limits

§ 27.54 – Frequency stability

§ 27.53 – Emission limits

The tests were selected and performed with reference to:

- FCC Public Notice 935210 applying "Signal Boosters Basic Certification Requirements" 935210 D02, 2024-11-20.
- FCC Public Notice 935210 applying "Measurement guidance for industrial and non-consumer signal booster, repeater and amplifier devices" 935210 D05, 2020-04-03.
- FCC Public Notice 971168 applying "Measurement guidance for certification of licensed digital transmitters" 971168 D01, 2018-04-09.

---

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

- ANSI C63.26: 2015 "American National Standard for Compliance Testing of Transmitters Used in Licensec Radio Services"
- RSS-139 Issue 4 "Advanced Wireless Services Equipment Operating in the Bands 1710-1780 MHz and 2110-2200 MHz"
- SRSP-513 Issue 3 "Technical Requirements for Advanced Wireless Services (AWS) in the Bands 1710-1780 MHz and 2110-2180 MHz"
- RSS-GEN Issue 5 "General Requirements for Compliance of Radio Apparatus"
- RSS-131 Issue 4 "Zone Enhancers"

---

The test results relate only to the tested item. The sample has been provided by the client.  
Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

## 1.2 FCC-ISED CORRELATION TABLE

### Correlation of measurement requirements for Industrial signal booster from FCC and ISED Canada

| Measurement                                                        | FCC reference                                     | ISED reference                                                            |
|--------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------|
| Effective radiated power, mean output power and zone enhancer gain | § 27.50<br>KDB 935210 D05 v01r04: 3.5             | RSS-GEN Issue 5, 6.12<br>RSS-139 Issue 4, 5.5<br>SRSP-513, Issue 3, 6.1.3 |
| Peak to Average Ratio                                              | § 27.50                                           | RSS-139 Issue 4, 5.5                                                      |
| Occupied bandwidth<br>Input-versus-output spectrum                 | § 2.1049<br>KDB 935210 D05 v01r04: 3.4            | RSS-GEN Issue 5, 6.7<br>RSS-131 Issue 4: 9.2                              |
| Conducted spurious Emission at Antenna Terminal                    | § 2.1051<br>§ 27.53<br>KDB 935210 D05 v01r04: 3.6 | RSS-GEN Issue 5, 6.13<br>RSS-139 Issue 4, 5.6                             |
| Out-of-band emissions limits                                       | § 2.1051<br>§ 27.53<br>KDB 935210 D05 v01r04: 3.6 | RSS-GEN Issue 5, 6.13<br>RSS-139 Issue 4, 5.6                             |
| Frequency stability                                                | § 2.1055<br>§ 27.54                               | RSS-GEN Issue 5, 6.11<br>RSS-131 Issue 4: 9.4<br>RSS-139 Issue 3, 6.4     |
| Out-of-band rejection                                              | KDB 935210 D05 v01r04: 3.3                        | RSS-131 Issue 4: 9.1                                                      |
| Field strength of spurious radiation                               | § 2.1053<br>§ 27.53                               | RSS-GEN Issue 5, 6.13<br>RSS-139 Issue 4, 5.6                             |
| All measurements                                                   | ANSI 63.26                                        | ANSI 63.26                                                                |

The test case frequency stability was not performed since the EUT is not equipped with signal processing capabilities. According KDB 935210 D05 in this case a measurement is not required.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

### 1.3 MEASUREMENT SUMMARY/SIGNATURES

#### **47 CFR CHAPTER I FCC PART 27 Subpart C [Base § 27.50 Stations/Repeater]**

Effective Radiated Power, mean output power and zone enhancer gain  
The measurement was performed according to ANSI C63.26, KDB  
935210 D05 v01r04: 3.5

#### **Final Result**

##### **OP-Mode**

Frequency Band, Direction, Input Power, Signal Type  
AWS 1700, RF downlink, 0.3 dB < AGC, Wideband  
AWS 1700, RF downlink, 3 dB > AGC, Wideband  
AWS 1700, RF downlink, 0.3 dB < AGC, Narrowband  
AWS 1700, RF downlink, 3 dB > AGC, Narrowband  
AWS 1700, RF downlink, 0.3 dB < AGC, Wideband 5G  
AWS 1700, RF downlink, 3 dB > AGC, Wideband 5G

##### **FCC ISED**

|        |        |
|--------|--------|
| Passed | Passed |

#### **47 CFR CHAPTER I FCC PART 27 Subpart C [Base § 27.50 Stations/Repeater]**

Peak to Average Ratio  
The measurement was performed according to ANSI C63.26

#### **Final Result**

AWS 1700, RF downlink, 0.3 dB < AGC, Wideband  
AWS 1700, RF downlink, 3 dB > AGC, Wideband  
AWS 1700, RF downlink, 0.3 dB < AGC, Narrowband  
AWS 1700, RF downlink, 3 dB > AGC, Narrowband  
AWS 1700, RF downlink, 0.3 dB < AGC, Wideband 5G  
AWS 1700, RF downlink, 3 dB > AGC, Wideband 5G

|        |        |
|--------|--------|
| Passed | Passed |

#### **47 CFR CHAPTER I FCC PART 2 § 2.1049**

Occupied Bandwidth/Input-versus-output Spectrum  
The measurement was performed according to ANSI C63.26, KDB  
935210 D05 v01r04: 3.4

#### **Final Result**

##### **OP-Mode**

Frequency Band, Direction, Input Power, Signal Type  
AWS 1700, RF downlink, 0.3 dB < AGC, Wideband  
AWS 1700, RF downlink, 3 dB > AGC, Wideband  
AWS 1700, RF downlink, 0.3 dB < AGC, Narrowband  
AWS 1700, RF downlink, 3 dB > AGC, Narrowband  
AWS 1700, RF downlink, 0.3 dB < AGC, Wideband 5G  
AWS 1700, RF downlink, 3 dB > AGC, Wideband 5G

##### **FCC ISED**

|        |        |
|--------|--------|
| Passed | Passed |

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

**47 CFR CHAPTER I FCC PART 27 Subpart C [Base Stations/Repeater] § 2.1051, § 27.53**

Conducted spurious emissions at antenna terminals  
The measurement was performed according to ANSI C63.26

**Final Result**

**OP-Mode**

Frequency Band, Direction, Input Power, Signal Type

|                                          | <b>FCC</b> | <b>ISED</b> |
|------------------------------------------|------------|-------------|
| AWS 1700, low, RF downlink, Wideband     | Passed     | Passed      |
| AWS 1700, mid, RF downlink, Wideband     | Passed     | Passed      |
| AWS 1700, high, RF downlink, Wideband    | Passed     | Passed      |
| AWS 1700 low, RF downlink, Narrowband    | Passed     | Passed      |
| AWS 1700, mid, RF downlink, Narrowband   | Passed     | Passed      |
| AWS 1700, high, RF downlink, Narrowband  | Passed     | Passed      |
| AWS 1700, low, RF downlink, Wideband 5G  | Passed     | Passed      |
| AWS 1700, mid, RF downlink, Wideband 5G  | Passed     | Passed      |
| AWS 1700, high, RF downlink, Wideband 5G | Passed     | Passed      |

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

Test Report No.: 25-0067

Tests performed on UAP-XR [AWS 1700]

**§2.1051, § 27.53**

**47 CFR CHAPTER I FCC PART 27 Subpart C [Base  
Stations/Repeater]**

Out-of-band emission limits

The measurement was performed according to ANSI C63.26, KDB 935210 D05 v01r04:  
3.6

**OP-Mode**

Band Edge, Frequency Band, Number of signals, Direction, Input Power, Signal Type

|                                                                    | <b>FCC</b> | <b>ISED</b> |
|--------------------------------------------------------------------|------------|-------------|
| Upper, Band 66 AWS 1700, 1, RF downlink, 0.3 dB < AGC, Wideband    | Passed     | Passed      |
| Upper, Band 66 AWS 1700, 1, RF downlink, 3 dB > AGC, Wideband      | Passed     | Passed      |
| Upper, Band 66 AWS 1700, 1, RF downlink, 0.3 dB < AGC, Wideband 5G | Passed     | Passed      |
| Upper, Band 66 AWS 1700, 1, RF downlink, 3 dB > AGC, Wideband 5G   | Passed     | Passed      |
| Upper, Band 66 AWS 1700, 1, RF downlink, 0.3 dB < AGC, Narrowband  | Passed     | Passed      |
| Upper, Band 66 AWS 1700, 1, RF downlink, 3 dB > AGC, Narrowband    | Passed     | Passed      |
| Lower, Band 66 AWS 1700, 1, RF downlink, 0.3 dB < AGC, Wideband    | Passed     | Passed      |
| Lower, Band 66 AWS 1700, 1, RF downlink, 3 dB > AGC, Wideband      | Passed     | Passed      |
| Lower, Band 66 AWS 1700, 1, RF downlink, 0.3 dB < AGC, Wideband 5G | Passed     | Passed      |
| Lower, Band 66 AWS 1700, 1, RF downlink, 3 dB > AGC, Wideband 5G   | Passed     | Passed      |
| Lower, Band 66 AWS 1700, 1, RF downlink, 0.3 dB < AGC, Narrowband  | Passed     | Passed      |
| Lower, Band 66 AWS 1700, 1, RF downlink, 3 dB > AGC, Narrowband    | Passed     | Passed      |
| Upper, Band 66 AWS 1700, 2, RF downlink, 0.3 dB < AGC, Wideband    | Passed     | Passed      |
| Upper, Band 66 AWS 1700, 2, RF downlink, 3 dB > AGC, Wideband      | Passed     | Passed      |
| Upper, Band 66 AWS 1700, 2, RF downlink, 0.3 dB < AGC, Narrowband  | Passed     | Passed      |
| Upper, Band 66 AWS 1700, 2, RF downlink, 3 dB > AGC, Narrowband    | Passed     | Passed      |
| Lower, Band 66 AWS 1700, 2, RF downlink, 0.3 dB < AGC, Wideband    | Passed     | Passed      |
| Lower, Band 66 AWS 1700, 2, RF downlink, 3 dB > AGC, Wideband      | Passed     | Passed      |
| Lower, Band 66 AWS 1700, 2, RF downlink, 0.3 dB < AGC, Narrowband  | Passed     | Passed      |
| Lower, Band 66 AWS 1700, 2, RF downlink, 3 dB > AGC, Narrowband    | Passed     | Passed      |

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

**47 CFR CHAPTER I FCC PART 27 Subpart C [Base Stations/Repeater] KDB 935210 D05 v01r04: 3.3**

Out-of-band rejection

The measurement was performed according to ANSI C63.26; KDB 935210 D05 v01r04: 3.3

**Final Result**

**OP-Mode**

Frequency Band, Direction

Band 66 AWS 1700, RF downlink

**Setup**

**FCC**

**ISED**

Passed

Passed

**47 CFR CHAPTER I FCC PART 27 Subpart C [Base stations/Repeater]**

**§ 2.1053, § 27.53**

Field strength of spurious radiation

The measurement was performed according to ANSI C63.26

**Final Result**

**OP-Mode**

Frequency Band, Direction

AWS 1700, RF downlink

Passed

Passed

The test case frequency stability was not performed, since the EUT is not equipped with signal processing capabilities.

The test results relate only to the tested item. The sample has been provided by the client.  
Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

## 2 ADMINISTRATIVE DATA

### 2.1 TESTING LABORATORY

Bureau Veritas Consumer Products Services

Germany GmbH

Thurn-und-Taxis-Straße 18

D-90411 Nürnberg

Tel.: +49 40 74041 0

Fax: +49 40 74041-2755

### 2.2 APPLICANT DATA

|                 |                              |
|-----------------|------------------------------|
| Company Name:   | CommScope                    |
|                 | Andrew Wireless Systems GmbH |
| Address:        | Industriering 10             |
|                 | 86675 Buchdorf               |
|                 | Germany                      |
| Contact Person: | Mr. Jiri Čečka               |

### 2.3 MANUFACTURER DATA

Company Name: Please see applicant data.

Address:

---

The test results relate only to the tested item. The sample has been provided by the client.  
Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

### 3 TEST OBJECT DATA

#### 3.1 GENERAL EUT DESCRIPTION

|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kind of Device<br>product description    | Cellular repeater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Product name                             | Cellular repeater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Type                                     | UAP-XR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>Declared EUT data by the supplier</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| General Product<br>Description           | <p>The EUT is an industrial signal booster supporting the following:</p> <p>Band 30/WCS 2300: 2350 – 2360 MHz</p> <p>Band 41 (BRS 2500), Broadband Radio Service:</p> <ul style="list-style-type: none"><li>• Lower Band Segment (LBS): 2496- 2568 MHz (Range for FCC)</li><li>• Lower Band Segment (LBS): 2500- 2568 MHz (Range for ISED)</li><li>• Middle Band Segment (MBS): 2572- 2614 MHz</li><li>• Upper Band Segment (UBS): 2618 – 2690 MHz</li></ul> <p>Band 25/PCS 1900</p> <p>Band 66/AWS 1700</p> <p>A RF operation is only supported for the downlink.</p> |
| Booster Type                             | Industrial signal booster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Voltage Type                             | DC, supply about PoE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Voltage Level                            | -60 V - -36 V, -57 V nominal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Maximum Output<br>Donor Port [Uplink]    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Maximum Output<br>Server Port [Downlink] | 18 dBm in all bands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Maximum Gain [Uplink]                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Maximum Gain<br>[Downlink]               | 20 dB in all bands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

**The main components of the EUT are listed and described in chapter 3.2 EUT Main components.**

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

### 3.2 EUT MAIN COMPONENTS

| Sample Parameter | Value              |
|------------------|--------------------|
| Serial Number    | SZBEBF2452A0003    |
| HW Version       | 7862380-00 Rev: 00 |
| SW Version       | 01.03.0012         |
| Comment          | -----              |

NOTE: The short description is used to simplify the identification of the EUT in this test report.

### 3.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

| Device | Details (manufacturer, type model, OUT code) | Description |
|--------|----------------------------------------------|-------------|
| -      | -                                            | -           |

---

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

### 3.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

| <b>Device</b> | <b>Details (manufacturer, type, S/N)</b>          | <b>Description</b>     |
|---------------|---------------------------------------------------|------------------------|
| AUX1          | CommScope; ION-E PSU Shelf AC; HD20882            | Power supply rack      |
| AUX1          | CommScope; ION-E WCS-2; SZAEAJ1952A0032           | Power supply rack      |
| AUX3          | GE Power Electronics Inc.; CAR1212FPBC-Z; FK69111 | Power module           |
| AUX4          | GE Energy; CP2000AC54TEP-CM; LBLNPW13KZ07004506   | Power module           |
| AUX5          | CommScope; ION E SUI; (e1)MA34                    | Ethernet module        |
| AUX6          | CommScope; ION E CAT; SZBEAE1810A0009             | PoE module             |
| AUX8          | CommScope, ION E RFD, SZBEAG1825A0004             | RF card plug-in module |
| AUX8          | CommScope, ION E RFD, SZBEA G1849A0043            | RF card plug-in module |

### 3.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

| <b>Setup</b> | <b>Combination of EUTs</b> | <b>Description and rationale</b> |
|--------------|----------------------------|----------------------------------|
| ,            |                            | Setup for all tests              |

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

### 3.6 OPERATING MODES

This chapter describes the operating modes of the EUT used for testing.

#### 3.6.1 TEST CHANNELS

| <b>Band</b>  | <b>Direction</b> | <b>Lower Frequency Band Edge [MHz]</b> | <b>Upper Frequency Band Edge [MHz]</b> | <b>Center Frequency [MHz]</b> | <b>Port</b> |
|--------------|------------------|----------------------------------------|----------------------------------------|-------------------------------|-------------|
| 66, AWS 1700 | Downlink         | 2110.00                                | 2180                                   | 2145.00                       | Donor       |

#### 3.6.2 DEFINITION OF USED FREQUENCY BANDS

Narrowband: representation by a GSM signal

Wideband : representation by an AWGN signal with 4.1 MHz

Wideband 5G: representation by an AWGN signal with 43.6 MHz

---

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

### 3.6.3 AUTOMATIC GAIN CONTROL LEVELS

### 3.6.4 AUTOMATIC GAIN CONTROL LEVEL

| <b>AGC Levels</b> |                  |                    |                            |                                    |                                  |                        |                  |
|-------------------|------------------|--------------------|----------------------------|------------------------------------|----------------------------------|------------------------|------------------|
| <b>Band</b>       | <b>Direction</b> | <b>Signal Type</b> | <b>AGC Start Pin [dBm]</b> | <b>AGC Start Pin -0.3 dB [dBm]</b> | <b>AGC Start Pin +3 dB [dBm]</b> | <b>Frequency [MHz]</b> | <b>Frequency</b> |
| 66                | Downlink         | Narrowband         | -0.6                       | -0.9                               | 2.5                              | 2145.0                 | Mid              |
| 66                | Downlink         | Wideband           | -1.1                       | -1.4                               | -1,9                             | 2145.0                 |                  |
| 66                | Downlink         | Wideband 5G        | -0.6                       | -0.9                               | 2.5                              | 2145.0                 |                  |
| 66                | Downlink         | Narrowband         | 0.0                        | -0.3                               | 3.0                              | 2110.2                 | Low              |
| 66                | Downlink         | Wideband           | 0.4                        | 0.1                                | 3.4                              | 2112.5                 |                  |
| 66                | Downlink         | Wideband 5G        | 0.1                        | -0.2                               | 2.8                              | 2132.5                 |                  |
| 66                | Downlink         | Narrowband         | 0.0                        | -0.3                               | 3.0                              | 2179.8                 | High             |
| 66                | Downlink         | Wideband           | -0.2                       | -0.5                               | 2.8                              | 2177.5                 |                  |
| 66                | Downlink         | Wideband 5G        | -0.5                       | -0.8                               | 2.2                              | 2157.5                 |                  |
| 66                | Downlink         | Narrowband         | -1.0                       | -1.3                               | 2.1                              | 2152.6                 | Max.Power        |
| 66                | Downlink         | Wideband           | -1.1                       | -1.4                               | 1,9                              | 2152.6                 |                  |
| 66                | Downlink         | Wideband 5G        | -0.6                       | -0.9                               | 2.5                              | 2145.0                 |                  |

Remark:

If the measured frequency  $f_0$  for the max power has a too low distance to the band edges, because in the tests modulated signals must be used: The next possible frequency to the according band edge was used.

For example for minimum distances to the band edges:

GSM signal (narrowband): 0.2 MHz

AWGN signal (wideband): 2.5 MHz

AWGN signal (wideband 5G): Here only measurements at the mid frequency were performed, because of the signal width.

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

### 3.7 PRODUCT LABELLING

#### 3.7.1 FCC ID LABEL

Please refer to the documentation of the applicant.

#### 3.7.2 LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.

---

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

## 4 DESCRIPTION OF EMC TEST CENTRE

### 4.1 CLIMATIC CONDITIONS DURING MEASUREMENTS

The climatic conditions were within the following ranges.

For ESD testing, the conditions during the test were denoted in the corresponding chapter.

Ambient temperature:  $25 \pm 10$  °C

Relative humidity: 20 – 60 %

Air pressure: 860 - 1060 hPa

### 4.2 CONFORMITY STATEMENT/DECISION RULE

#### 4.2.1 EMISSION

If the standard or the customer defines no decision rule, the laboratory applies a decision rule following the "Binary Statement for Simple Acceptance Rule ( $w=0$ )" (chapter 4.2.1) of ILAC Guidelines on Decision Rules and Statements of Conformity (ILAC-G8:09/2019). If the measured value is at the limit value, it is evaluated as PASS. The client has agreed with application of the decision rule prior testing and demanded a statement of conformity by the test laboratory.

---

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

#### 4.3 MEASUREMENT UNCERTAINTIES

| <b>KDB 935210 D05</b>                                                                           | <b>Test laboratory</b> |
|-------------------------------------------------------------------------------------------------|------------------------|
| Power measurement                                                                               | 0,68 dB                |
| Measuring AGC threshold level                                                                   | 0,90 dB                |
| Out of band rejection                                                                           | 0,90 dB                |
| Input-versus-output signal comparison                                                           | 0,91 dB                |
| Mean power output                                                                               | 0,90 dB                |
| Measuring out-of-band/out-of-block (including intermodulation) emissions and spurious emissions | 0,90 dB                |
| Out-of-band/out-of-block emissions conducted measurements                                       | 0,90 dB                |
| Spurious emissions conducted                                                                    | 2,18 dB                |
| Spurious emissions radiated measurements                                                        | 5,38 dB                |
| Total frequency uncertainty                                                                     | $2 \times 10^{-7}$     |

Reference : ECL-MU5.4.6.3-EMC-14-001-V03.00 MU Wireless.xlsx

---

The test results relate only to the tested item. The sample has been provided by the client.  
Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.

## 5 TEST RESULTS

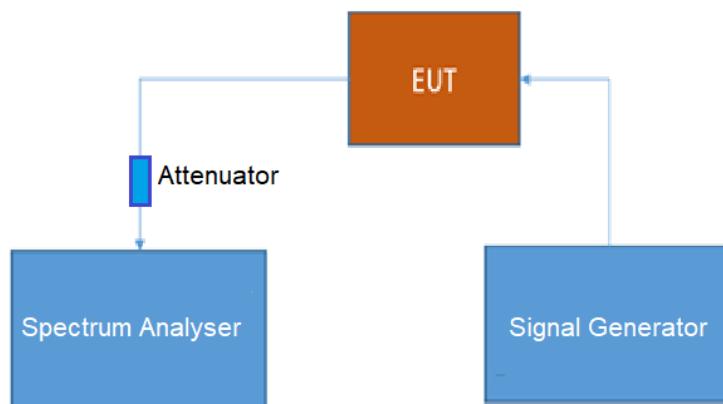
### 5.1 EFFECTIVE RADIATED POWER, MEAN OUTPUT POWER AND ZONE ENHANCER GAIN

Standard FCC Part 27, §27.50

**The test was performed according to:**

ANSI C63.26, KDB 935210 D05 v01r04: 3.5

**Test date:** 2025-03-20 – 2025-03-21


**Environmental conditions:** 24.7 °C; 23 % r. H./25.7 °C; 25 % r. H.

**Test engineer:** Thomas Hufnagel

#### 5.1.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the signal booster power and gain limits and requirements for industrial signal boosters.

The EUT was connected to the test setup according to the following diagram:



The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

## 5.1.2 TEST REQUIREMENTS/LIMITS

### **Part 27; Miscellaneous Wireless Communication Services**

#### **Subpart C – Technical standards**

##### **§ 27.50**

###### Abstract § 27.50 from FCC:

(d) The following power and antenna height requirements apply to stations transmitting in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz and 2180-2200 MHz bands:

(1) The power of each fixed or base station transmitting in the 1995-2000 MHz, 2110-2155 MHz, 2155-2180 MHz or 2180-2200 MHz band and located in any county with population density of 100 or fewer persons per square mile, based upon the most recently available population statistics from the Bureau of the Census, is limited to:

(i) An equivalent isotropically radiated power (EIRP) of 3280 watts when transmitting with an emission bandwidth of 1 MHz or less;

(ii) An EIRP of 3280 watts/MHz when transmitting with an emission bandwidth greater than 1 MHz.

(2) The power of each fixed or base station transmitting in the 1995-2000 MHz, the 2110-2155 MHz 2155-2180 MHz band, or 2180-2200 MHz band and situated in any geographic location other than that described in paragraph (d)(1) of this section is limited to:

(i) An equivalent isotropically radiated power (EIRP) of 1640 watts when transmitting with an emission bandwidth of 1 MHz or less;

(ii) An EIRP of 1640 watts/MHz when transmitting with an emission bandwidth greater than 1 MHz.

---

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

Abstract RSS-139 from ISED:

### **5.5 Transmitter output power**

The maximum output power of the equipment shall comply with the limits specified below. In the tables, maximum power refers to the equivalent isotropically radiated power (e.i.r.p.) or total radiated power (TRP), measured in terms of average values.

The limits in this RSS are specified for the purpose of certification and may not apply to all deployment scenarios. Consult SRSP-513 and SRSP-519 for more details on the bands 2110-2180 MHz and 2180-2200 MHz respectively.

**Table 3: Maximum power of equipment in the band 1710-1780 MHz**

| Equipment type                 | Maximum power                     |
|--------------------------------|-----------------------------------|
| Fixed station and base station | 30 dBm e.i.r.p./channel bandwidth |
| Subscriber equipment           | 30 dBm e.i.r.p./channel bandwidth |

**Table 4: Maximum power of equipment in the band 2110-2180 MHz**

| Equipment type                         | Maximum power                     |
|----------------------------------------|-----------------------------------|
| Non-AAS fixed station and base station | 65 dBm e.i.r.p./MHz               |
| AAS fixed station and base station     | 46 dBm TRP/MHz                    |
| Subscriber equipment                   | 30 dBm e.i.r.p./channel bandwidth |

**Table 5: Maximum power of equipment in the band 2180-2200 MHz**

| Equipment type       | Maximum power       |
|----------------------|---------------------|
| Non-AAS base station | 65 dBm e.i.r.p./MHz |
| AAS base station     | 46 dBm TRP/MHz      |

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



Abstract RSS-132 from ISED:

### **6.1.3 E.i.r.p. limits and antenna height limits for non-AAS systems**

19. In non-AAS uncorrelated transmission, multiple non-AAS antennas can be used at a station to each transmit different digital data in a given symbol period (i.e. space-time codes) or independent parallel data streams over the same frequency bandwidth in order to increase data rates (i.e. spatial multiplexing), or to form any other transmission mode where signals from different antennas are completely uncorrelated. For these uses, the e.i.r.p. shall be calculated based on the aggregate power conducted across all antennas and the maximum antenna gain ( $G_{max}$ ).

### **6.1.3 E.i.r.p. limits and antenna height limits for non-AAS systems**

20. For fixed and base stations operating in the band 2110-2180 MHz with a channel bandwidth equal to or less than 1 MHz, the maximum permissible e.i.r.p. is 62 dBm, with an antenna height above average terrain (HAAT) of up to 300 m.

21. For fixed and base stations operating in the band 2110-2180 MHz with a channel bandwidth greater than 1 MHz, the maximum permissible e.i.r.p. is 62 dBm/MHz (i.e. no more than 62 dBm e.i.r.p. in any 1 MHz band segment), with an antenna HAAT of up to 300 m.

22. Fixed and base stations operating in the band 2110-2180 MHz and located in geographic areas at a distance greater than 26 km from large or medium population centres may increase their e.i.r.p. to a maximum of 65 dBm/MHz (i.e. no more than 65 dBm e.i.r.p. in any 1 MHz band segment), with an antenna HAAT of up to 300 m. According to Statistics Canada's [Census Dictionary](#), a large urban population centre has a population of 100,000 or more and a population density of 400 persons or more per km<sup>2</sup>, and a medium population centre has a population of between 30,000 and 99,999 and a population density of 400 persons or more per km<sup>2</sup>. MapInfo files describing the [boundaries of these centres](#) are available online.

23. Within 26 km of any large or medium population centre, fixed and base stations may operate with an increased e.i.r.p. if more than 50% of the population within a particular sector's coverage is located outside a large or medium population centre. The population within the sector's coverage may be determined using the MapInfo spectrum grid-cell data available online at ISED's [Service areas for competitive licensing](#) web page.

24. Fixed and base stations operating with an increased e.i.r.p., as specified above, must not be used to provide coverage to large and medium population centres. However, some incidental coverage of these population centres by stations operating with an increased e.i.r.p. is permitted.

25. The above provisions to allow increased e.i.r.p. limits also apply to fixed and base stations with a channel bandwidth equal to or less than 1 MHz. The e.i.r.p. may be increased up to a maximum of 65 dBm.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

26. Fixed and base stations with an antenna HAAT exceeding 300 m shall apply a reduction in e.i.r.p. according to the following formula:

$$\text{e.i.r.p.}_{\text{reduction}} = 20 \log_{10}(\text{HAAT}/300) \text{ dB}$$

HAAT of a fixed or base station with multiple antennas shall be calculated based on the measurements of the highest antenna.

---

The test results relate only to the tested item. The sample has been provided by the client.  
Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

Test Report No.: 25-0067

Tests performed on UAP-XR [AWS 1700]

### 5.1.3 TEST PROTOCOL

#### FCC Table

| <b>Band 66 AWS 1700, downlink,</b> |                    |                        |                          |                                           |                                         |                             |                  |
|------------------------------------|--------------------|------------------------|--------------------------|-------------------------------------------|-----------------------------------------|-----------------------------|------------------|
| <b>Signal type</b>                 | <b>Input power</b> | <b>Frequency [MHz]</b> | <b>Input power [dBm]</b> | <b>Maximum average output power [dBm]</b> | <b>Limit average output power [dBm]</b> | <b>Margin to limit [dB]</b> | <b>Gain [dB]</b> |
| Wideband                           | 0.3 dB < AGC       | 2152.6                 | -1.4                     | 17.8                                      | 62.1                                    | 44.3                        | 19.2             |
| Wideband                           | 3 dB > AGC         | 2152.6                 | 1.9                      | 17.5                                      | 62.1                                    | 44.6                        | 15.6             |
| Narrowband                         | 0.3 dB < AGC       | 2152.6                 | -1.3                     | 18.0                                      | 62.1                                    | 44.1                        | 19.3             |
| Narrowband                         | 3 dB > AGC         | 2152.6                 | 2.1                      | 17.7                                      | 62.1                                    | 44.4                        | 15.7             |
| Wideband 5G                        | 0.3 dB < AGC       | 2145.0                 | -0.9                     | 18.0                                      | 62.1                                    | 44.1                        | 18.9             |
| Wideband 5G                        | 3 dB > AGC         | 2145.0                 | 2.5                      | 18.2                                      | 62.1                                    | 43.9                        | 15.8             |

For the output power limit the lowest value of the FCC table from § 27.50 is taken. This is 1640 W which equates 62.1. dBm according the given formula:

$$P_{dBm} = 10 \log_{10} \frac{1640 \text{ W}}{0.001 \text{ W}} = \text{dBm}$$

#### ISED Table

| <b>Band 66 AWS 1700, downlink,</b> |                    |                        |                          |                                           |                                         |                             |                  |
|------------------------------------|--------------------|------------------------|--------------------------|-------------------------------------------|-----------------------------------------|-----------------------------|------------------|
| <b>Signal type</b>                 | <b>Input power</b> | <b>Frequency [MHz]</b> | <b>Input power [dBm]</b> | <b>Maximum average output power [dBm]</b> | <b>Limit average output power [dBm]</b> | <b>Margin to limit [dB]</b> | <b>Gain [dB]</b> |
| Wideband                           | 0.3 dB < AGC       | 2152.6                 | -1.4                     | 17.8                                      | 62.0                                    | 44.2                        | 19.2             |
| Wideband                           | 3 dB > AGC         | 2152.6                 | 1.9                      | 17.5                                      | 62.0                                    | 44.5                        | 15.6             |
| Narrowband                         | 0.3 dB < AGC       | 2152.6                 | -1.3                     | 18.0                                      | 62.0                                    | 44.0                        | 19.3             |
| Narrowband                         | 3 dB > AGC         | 2152.6                 | 2.1                      | 17.7                                      | 62.0                                    | 44.3                        | 15.7             |
| Wideband 5G                        | 0.3 dB < AGC       | 2145.0                 | -0.9                     | 18.0                                      | 62.0                                    | 44.0                        | 18.9             |
| Wideband 5G                        | 3 dB > AGC         | 2145.0                 | -1.4                     | 17.8                                      | 62.0                                    | 44.2                        | 19.2             |

Remark:

Please see next sub-clause for the measurement plot.

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

### 5.1.4 SAMPLE CALCULATION OF OUTPUT POWER

FCC calculation:

#### **Maximum output power (EIRP) in consideration together with the send antenna**

The highest power level in the tables above is

$p_{\text{highest}} = 18.0 \text{ dBm}$  at the channel which has the most output power of all channels.

Hereby at an antenna gain of  $G_{\text{dBi}} = 13 \text{ dB}$  the highest effective radiated output power EIRP  $p_{\text{EIRP 1CH}}$  of one channel is:

$$p_{\text{EIRP 1CH}} = p_{\text{highest}} + G_{\text{dBi}}$$

This results in:

$$p_{\text{EIRP 1CH}} = 18.0 \text{ dBm} + 13.0 \text{ dB} = 31.0 \text{ dBm}$$

The equivalent power P is according the given formula:

$$P_{\text{EIRP 1CH}} =$$

$$P_{\text{EIRP 1CH}} [W] = 10 \text{EXP} \left( p_{\text{EIRP 1CH}} [\text{dBm}] / 10 \right) * 0.001 [W]$$

This results in:

$$P_{\text{EIRP 1CH}} [W] = 10 \text{EXP} \left( 31.0 [\text{dBm}] / 10 \right) * 0.001 [W] = 1.26 \text{ W}$$

Because only one conducted antenna port is available no calculation for MIMO operation must be done.

Final result of this consideration:

$p_{\text{EIRP all channels}} = 1.26 \text{ W} < 1640 \text{ W/MHz}$ , hereby 1640 W/MHz is the highest allowed limit in this band which equates 62.1 dBm/MHz.

**The DUT doesn't exceed the limit.**



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

ISED calculation:

**Maximum output power (EIRP) in consideration together with the send antenna**

The highest power level in the tables above is

$p_{\text{highest}} = 18.0 \text{ dBm}$  at the channel which has the most output power of all channels.

Hereby at an antenna gain of  $G_{\text{dBi}} = 13 \text{ dB}$  the highest effective radiated output power EIRP  $p_{\text{EIRP 1CH}}$  of one channel is:

$$p_{\text{EIRP 1CH}} = p_{\text{highest}} + G_{\text{dBi}}$$

This results in:

$$p_{\text{EIRP 1CH}} = 18.0 \text{ dBm} + 13.0 \text{ dB} = 31.0 \text{ dBm}$$

Because only one conducted antenna port is available no calculation for MIMO operation must be done.

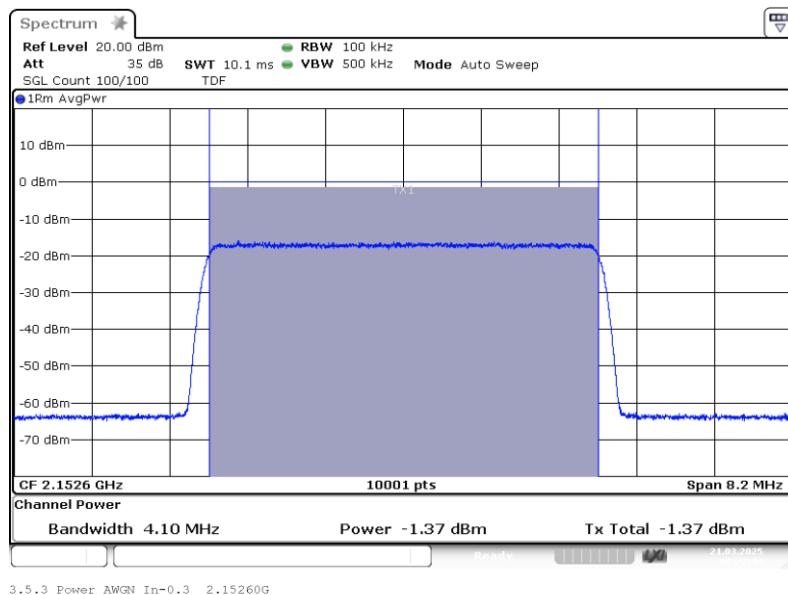
Final result of this consideration:

$p_{\text{EIRP all channels}} = 31.0 \text{ dBm} < 61.0 \text{ dBm/MHz}$ , hereby the limit of 61.0 dBm/MHz equates the ISED limit of 68 dBm/5 MHz

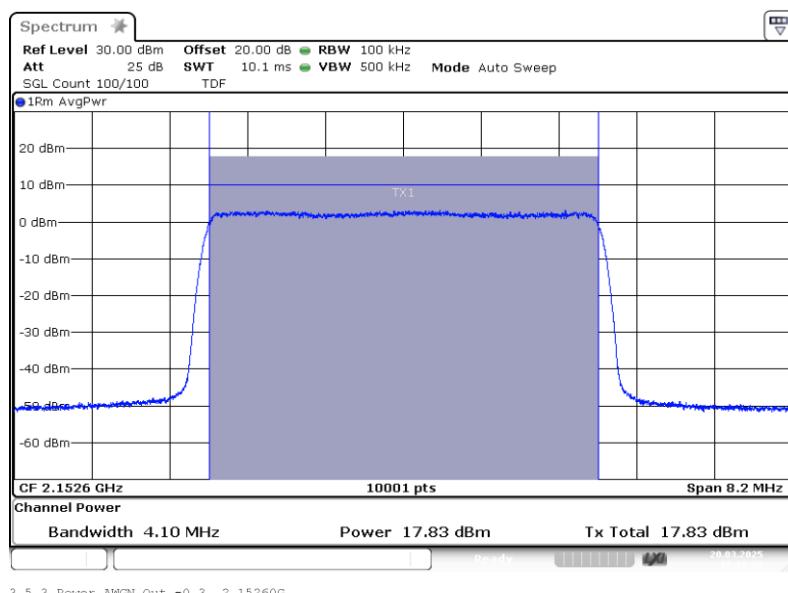
**The DUT doesn't exceed the limit.**



BUREAU  
VERITAS


**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]


### 5.1.5 MEASUREMENT PLOT

#### Combined FCC and ISED Plots

Band: AWS 1700; Frequency: 2.1526 GHz; Band edge: f0; Mod: AWGN;  
Input power 0.3 dB < AGC

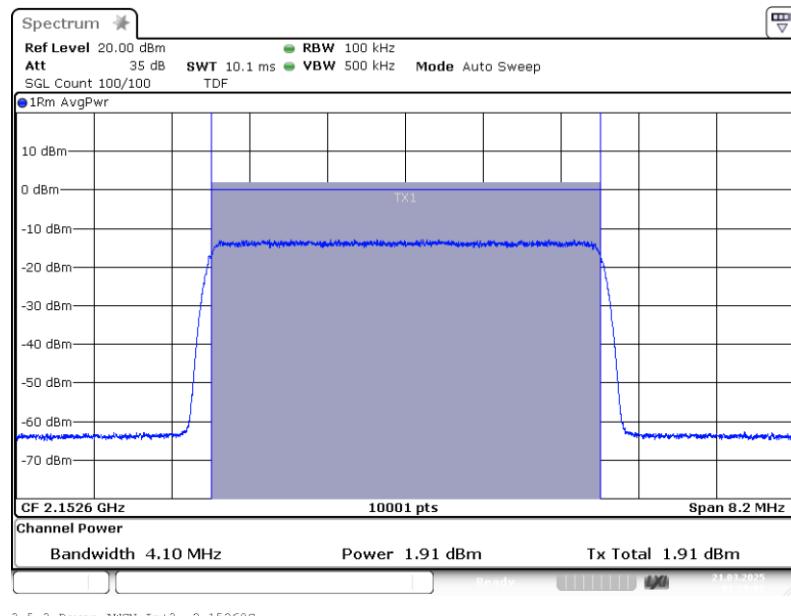


Band: AWS 1700; Frequency: 2.1526 GHz; Band edge: f0; Mod: AWGN;  
Output power 0.3 dB < AGC

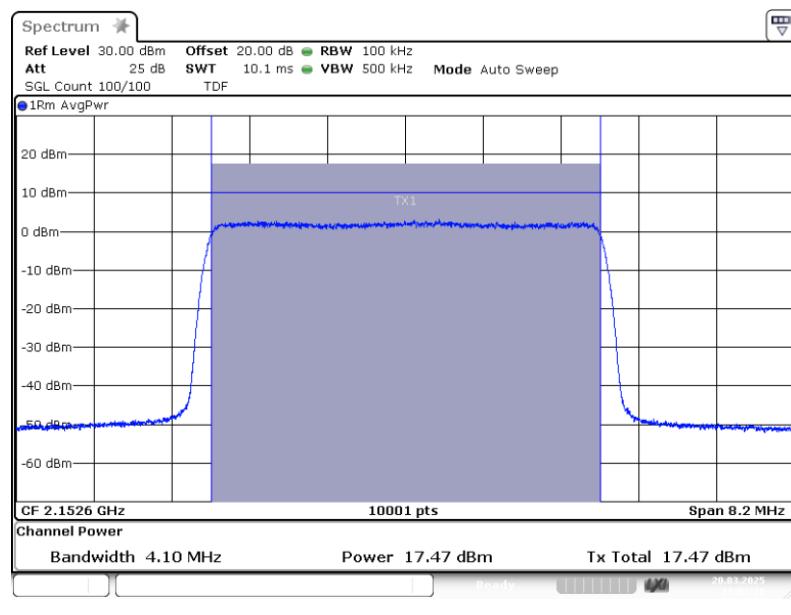


The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.




BUREAU  
VERITAS


**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

Band: AWS 1700; Frequency: 2.1526 GHz; Band edge: f0; Mod: AWGN;  
Input power 3 dB > AGC

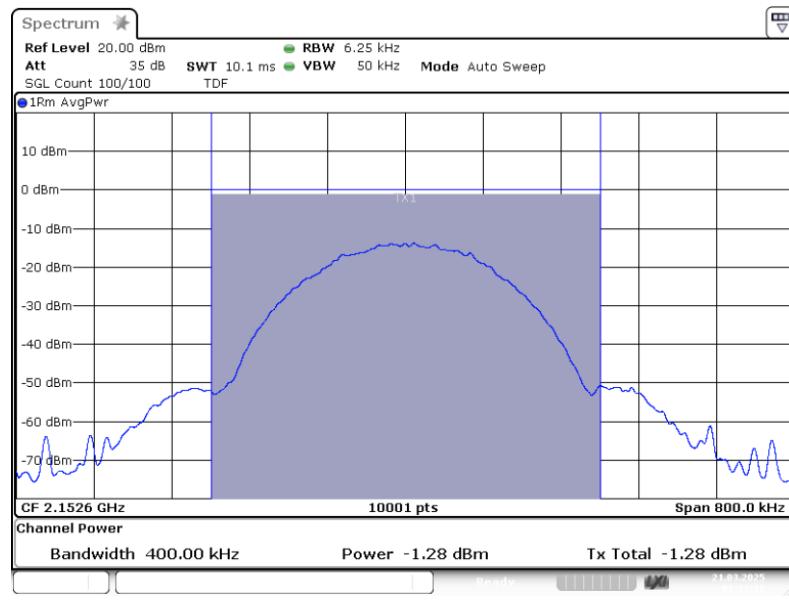


Band: AWS 1700; Frequency: 2.1526 GHz; Band edge: f0; Mod: AWGN;  
Output power 3 dB > AGC

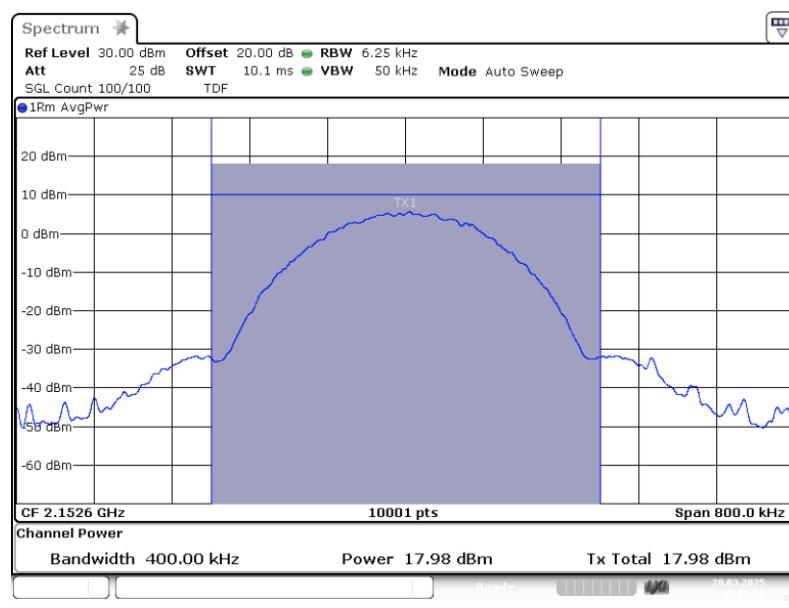


The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.




BUREAU  
VERITAS


Test Report No.: 25-0067

Tests performed on UAP-XR [AWS 1700]

Band: AWS 1700; Frequency: 2.1526 GHz; Band edge: f0; Mod: GSM;  
Input power 0.3 dB < AGC

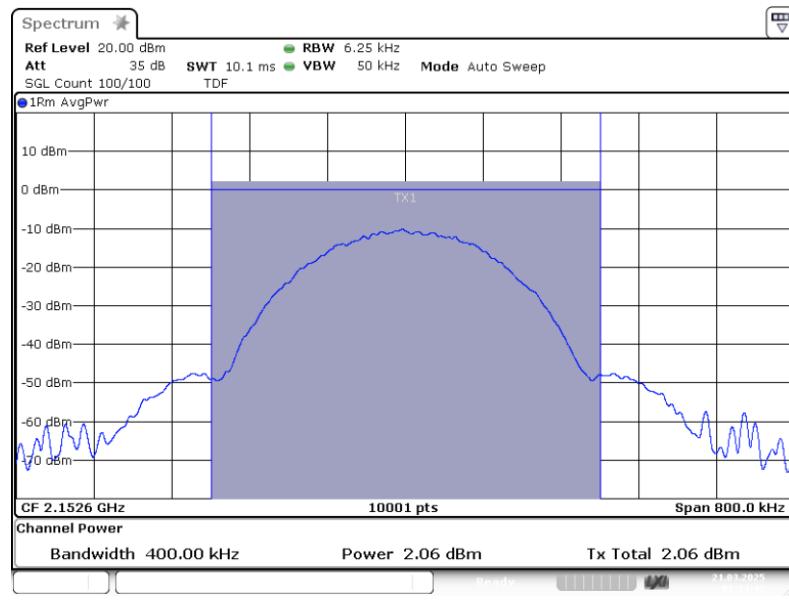


Band: AWS 1700; Frequency: 2.1526 GHz; Band edge: f0; Mod: GSM;  
Output power 0.3 dB < AGC

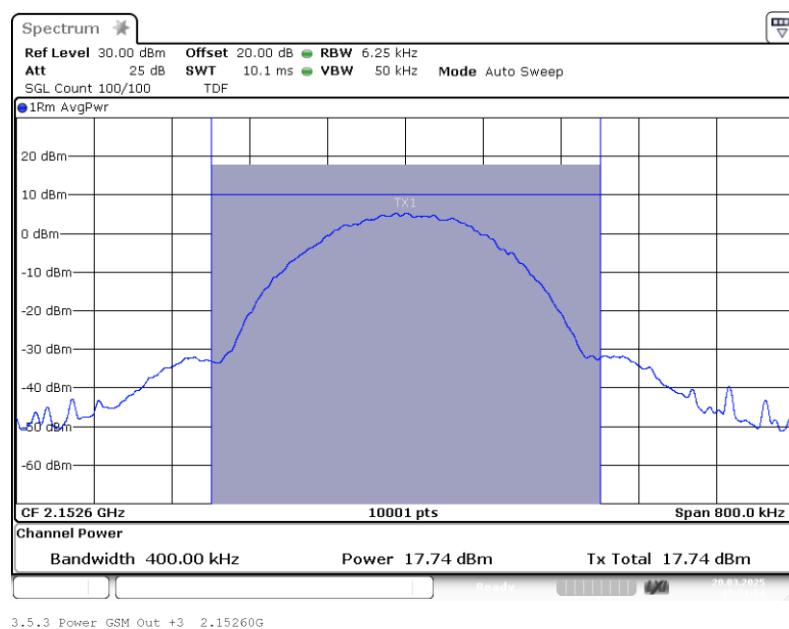


The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.




BUREAU  
VERITAS


**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

Band: AWS 1700; Frequency: 2.1526 GHz; Band edge: f0; Mod: GSM;  
Input power 3 dB > AGC

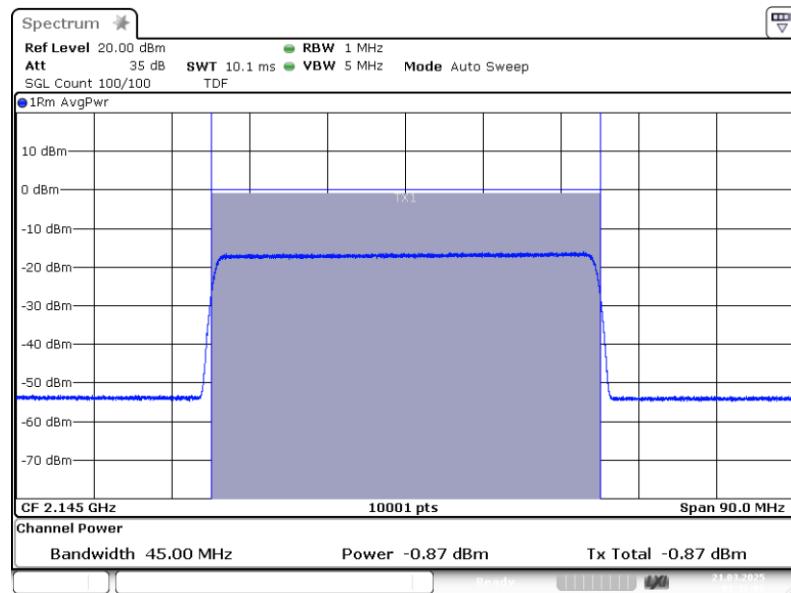


Band: AWS 1700; Frequency: 2.1526 GHz; Band edge: f0; Mod: GSM;  
Output power 3 dB > AGC

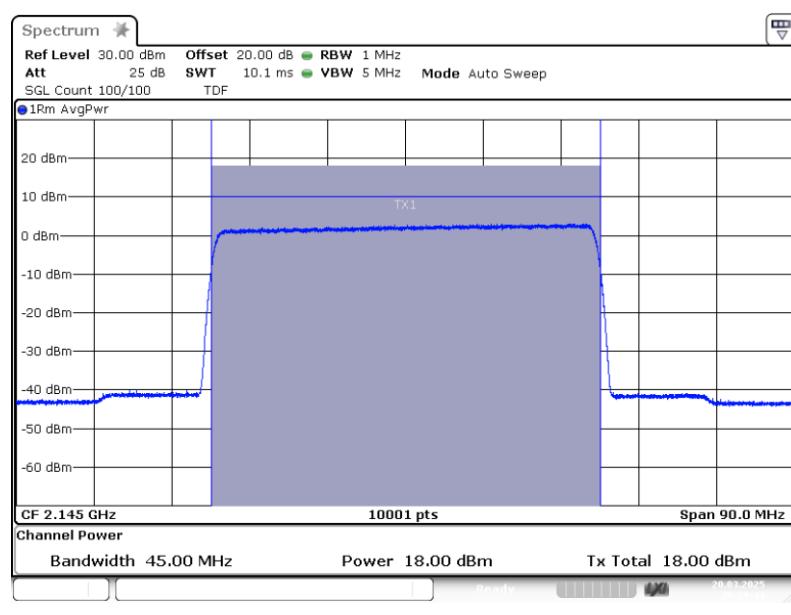


The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.




BUREAU  
VERITAS


Test Report No.: 25-0067

Tests performed on UAP-XR [AWS 1700]

Band: AWS 1700; Frequency: 2.1450 GHz; Band edge: mid; Mod: AWGN 45M;  
Input power 0.3 dB < AGC

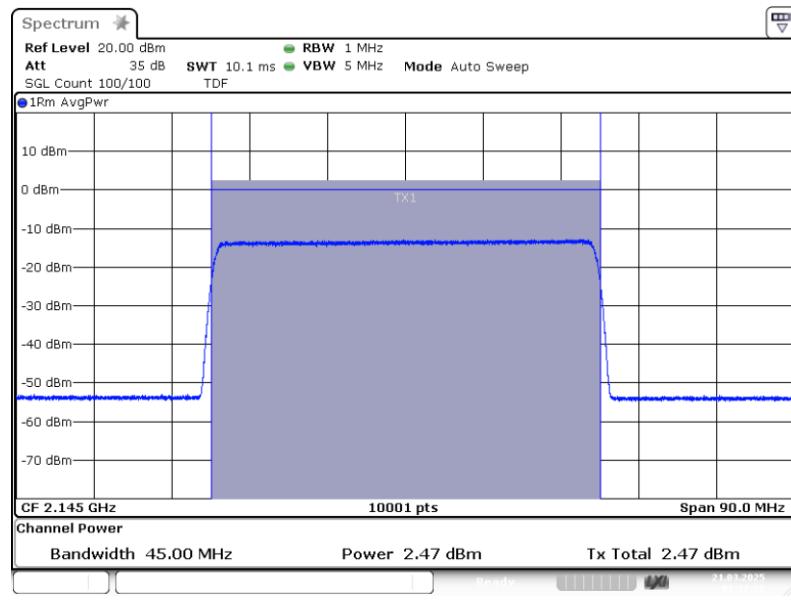


Band: AWS 1700; Frequency: 2.1450 GHz; Band edge: mid; Mod: AWGN 45M;  
Output power 0.3 dB < AGC



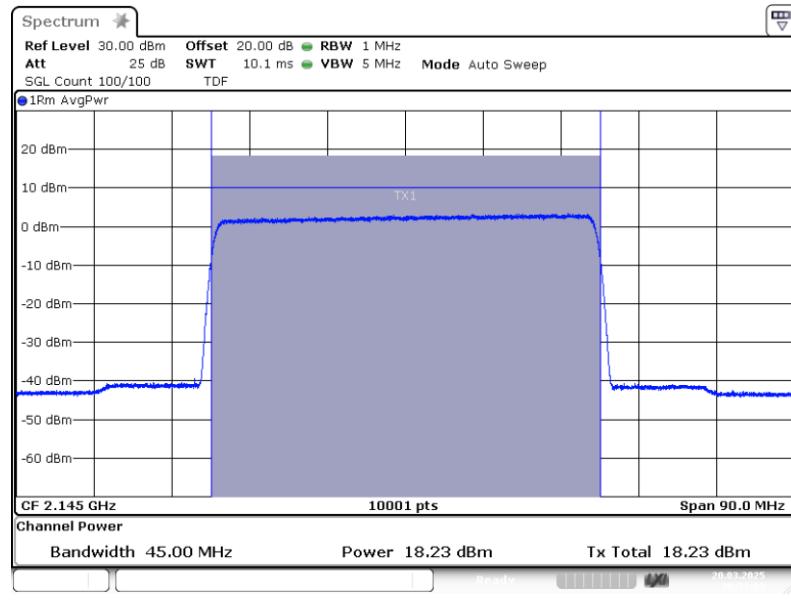
The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.




BUREAU  
VERITAS

**Test Report No.: 25-0067**


Tests performed on UAP-XR [AWS 1700]

Band: AWS 1700; Frequency: 2.1450 GHz; Band edge: mid; Mod: AWGN 45M;  
Input power 3 dB > AGC



3.5.3 Power AWGN 45M In+3 2.14500G

Band: AWS 1700; Frequency: 2.1450 GHz; Band edge: mid; Mod: AWGN 45M;  
Output power 3 dB > AGC



3.5.3 Power AWGN 45M Out +3 2.14500G

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

#### 5.1.6 TEST EQUIPMENT USED

- Conducted

---

The test results relate only to the tested item. The sample has been provided by the client.  
Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

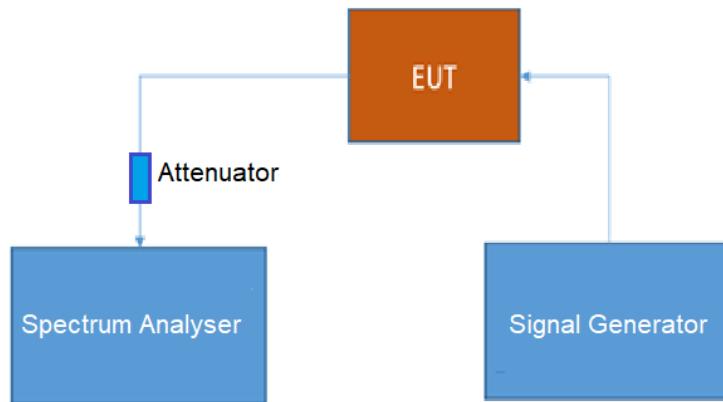
## 5.2 PEAK TO AVERAGE RATIO

Standard FCC Part 27, §27.50

**The test was performed according to:**

ANSI C63.26

**Test date:** 2025-03-20 – 2025-03-21


**Environmental conditions:** 24.7 °C; 23 % r. H./25.7 °C; 25 % r. H.

**Test engineer:** Thomas Hufnagel

### 5.2.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the signal booster power and gain limits and requirements for industrial signal boosters.

The EUT was connected to the test setup according to the following diagram:



The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

## 5.2.2 TEST REQUIREMENTS/LIMITS

### **Subpart C – Technical standards**

#### **§ 27.50**

##### Abstract § 27.50 from FCC:

(d) The following power and antenna height requirements apply to stations transmitting in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz and 2180-2200 MHz bands:

(5) Equipment employed must be authorized in accordance with the provisions of §24.51. Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (d)(6) of this section. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

##### Abstract RSS-139 from ISED:

#### **5.5 Transmitter output power**

In addition, the peak to average power ratio (PAPR) of the equipment shall not exceed 13 dB for more than 0.1% of the time, using a signal that corresponds to the highest PAPR during periods of continuous transmission.

---

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

### 5.2.3 TEST PROTOCOL

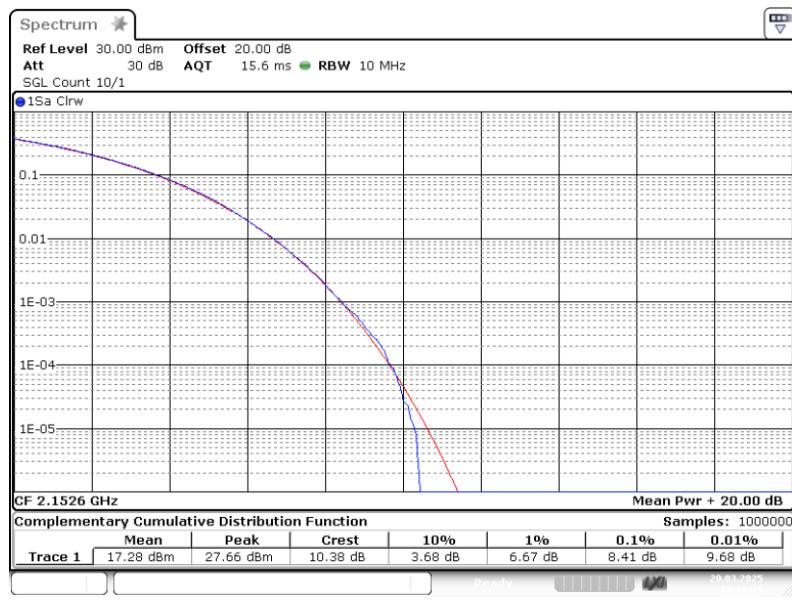
| <b>Band 66 AWS 1700, downlink</b> |                    |                        |                          |                  |                        |                             |
|-----------------------------------|--------------------|------------------------|--------------------------|------------------|------------------------|-----------------------------|
| <b>Signal type</b>                | <b>Input power</b> | <b>Frequency [MHz]</b> | <b>Input power [dBm]</b> | <b>PAPR [dB]</b> | <b>Limit PAPR [dB]</b> | <b>Margin to limit [dB]</b> |
| Wideband                          | 0.3 dB < AGC       | 2152.6                 | 8,4                      | 8,4              | 13,0                   | 4,6                         |
| Wideband                          | 3 dB > AGC         | 2152.6                 | 8,4                      | 8,4              | 13,0                   | 4,6                         |
| Narrowband                        | 0.3 dB < AGC       | 2152.6                 | 0,2                      | 0,2              | 13,0                   | 12,8                        |
| Narrowband                        | 3 dB > AGC         | 2152.6                 | 0,1                      | 0,2              | 13,0                   | 12,8                        |
| Wideband 5G                       | 0.3 dB < AGC       | 2145.0                 | 8,5                      | 8,4              | 13,0                   | 4,6                         |
| Wideband 5G                       | 3 dB > AGC         | 2145.0                 | 8,4                      | 8,5              | 13,0                   | 4,5                         |

Remark: Please see next sub-clause for the measurement plot.

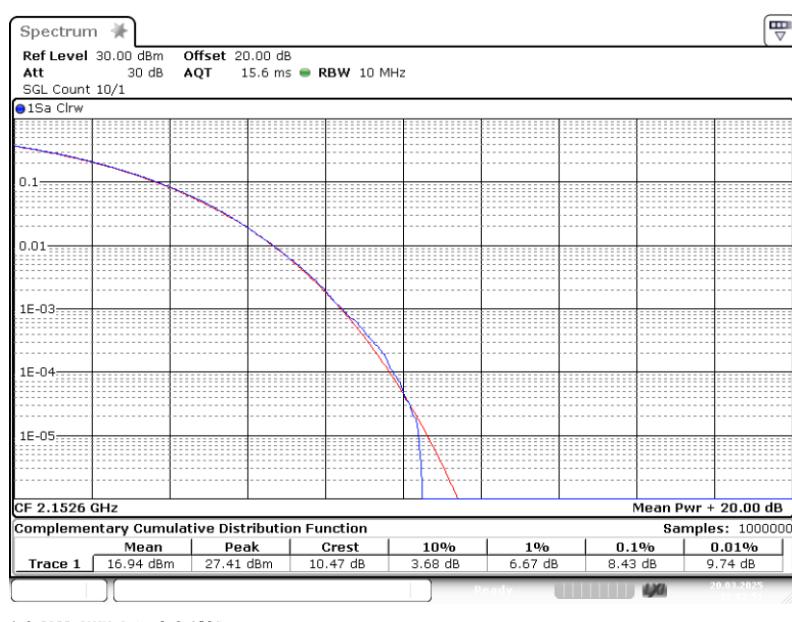
---

The test results relate only to the tested item. The sample has been provided by the client.  
Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.




BUREAU  
VERITAS

**Test Report No.: 25-0067**


Tests performed on UAP-XR [AWS 1700]

#### 5.2.4 MEASUREMENT PLOT

Band: AWS 1700; Frequency: 2.1526 GHz; Band edge: f0; Mod: AWGN; PAPR 0.3 dB < AGC

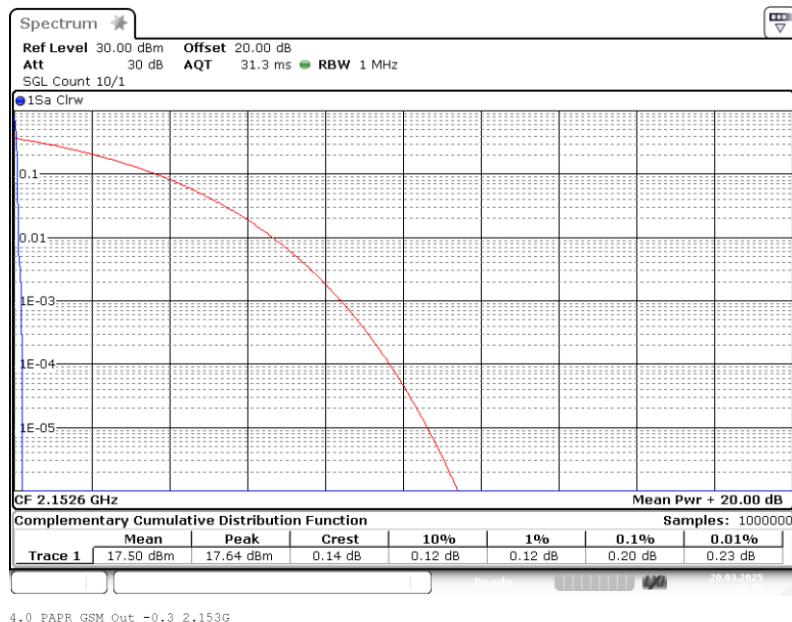


Band: AWS 1700; Frequency: 2.1526 GHz; Band edge: f0; Mod: AWGN; PAPR 3 dB > AGC

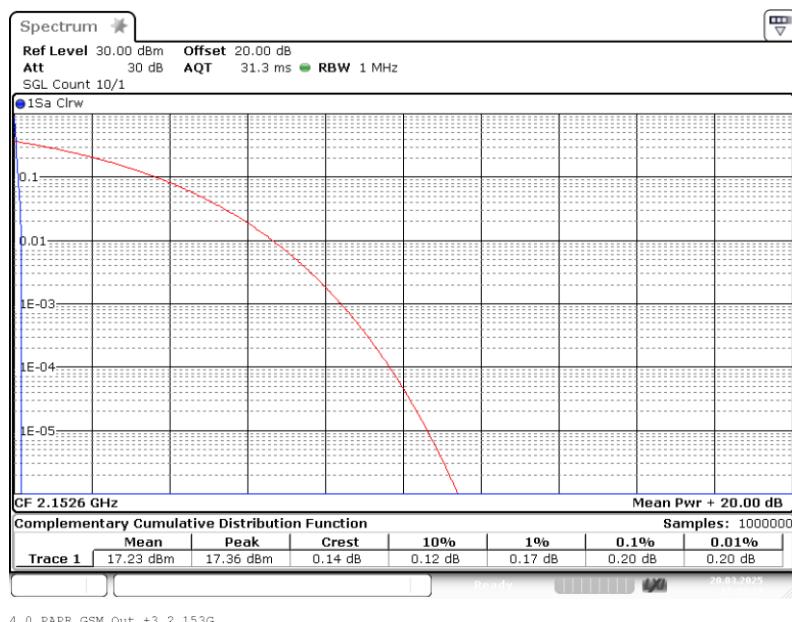


The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.




BUREAU  
VERITAS


**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

Band: AWS 1700; Frequency: 2.1526 GHz; Band edge: f0; Mod: GSM; PAPR 0.3 dB < AGC

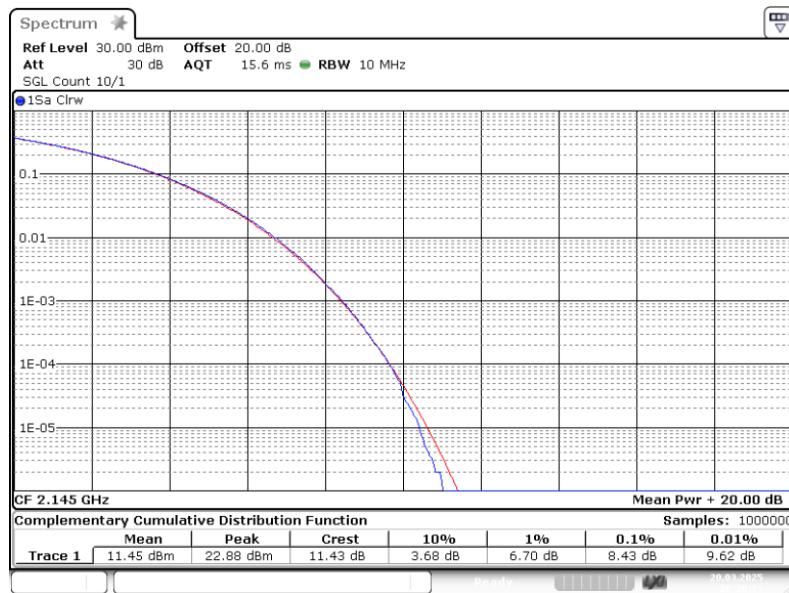


Band: AWS 1700; Frequency: 2.1526 GHz; Band edge: f0; Mod: GSM; PAPR 3 dB > AGC



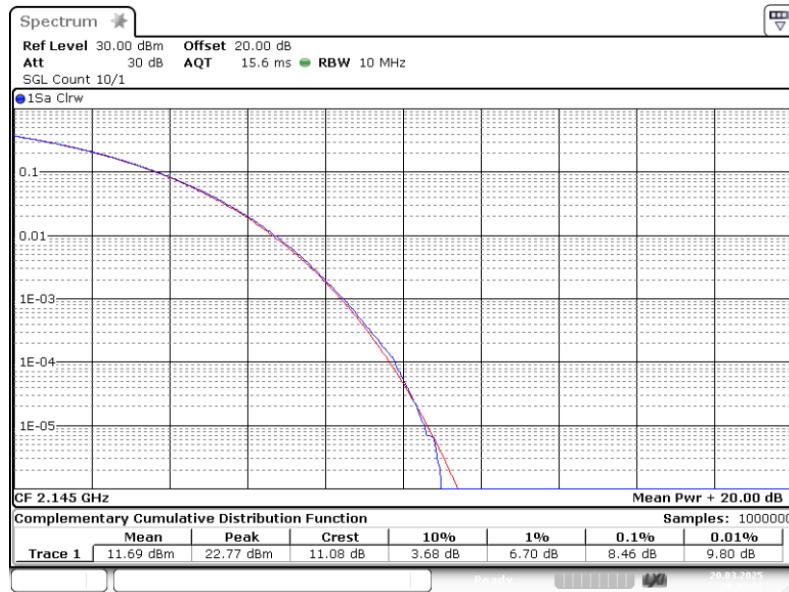
The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.




BUREAU  
VERITAS

**Test Report No.: 25-0067**


Tests performed on UAP-XR [AWS 1700]

Band: AWS 1700; Frequency: 2.1450 GHz; Band edge: mid; Mod: AWGN 45M; PAPR 0.3 dB < AGC



4.0 PAPR AWGN 45M Out -0.3 2.145G

Band: AWS 1700; Frequency: 2.1450 GHz; Band edge: mid; Mod: AWGN 45M; PAPR 3 dB > AGC



4.0 PAPR AWGN 45M Out +3 2.145G

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

#### 5.2.5 TEST EQUIPMENT USED

- Conducted

---

The test results relate only to the tested item. The sample has been provided by the client.  
Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

### 5.3 OCCUPIED BANDWIDTH/INPUT-VERSUS-OUTPUT SPECTRUM

Standard FCC Part 2.1049; Occupied bandwidth

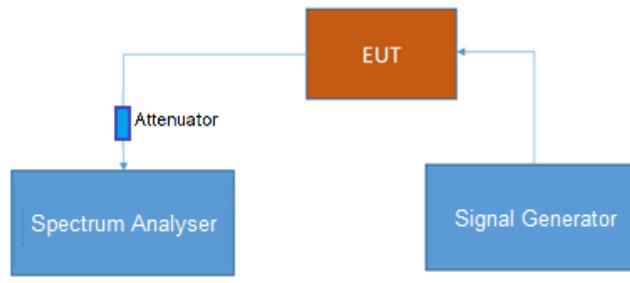
**The test was performed according to:**

ANSI C63.26, KDB 935210 D05 v01r04: 3.4

**Test date:** 2025-03-20 – 2025-03-21

**Environmental conditions:** 24.7 °C; 23 % r. H./25.7 °C; 25 % r. H.

**Test engineer:** Thomas Hufnagel


#### 5.3.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the occupied bandwidth in comparison between the input and output signal of a booster.

The EUT was connected to the test setups according to the following diagram:



Test Setup step 1: Measuring characteristics of test signals



Test Setup step 2; Occupied Bandwidth/Input-versus-output spectrum

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

### 5.3.2 TEST REQUIREMENTS/LIMITS

Abstract § 2.1049 from FCC:

**FCC Part 2.1049; Occupied Bandwidth:**

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.3 percent of the total mean power radiated by a given emission shall be measured under the following conditions as applicable:

- (h) Transmitters employing digital modulation techniques—when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudo-random generators or other devices required in normal service. Additionally, the occupied bandwidth shall be shown for operation with any devices used for modifying the spectrum when such devices are optional at the discretion of the user.
- (i) Transmitters designed for other types of modulation—when modulated by an appropriate signal of sufficient amplitude to be representative of the type of service in which used. A description of the input signal should be supplied.

---

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

Abstract RSS-GEN from ISED:

### **RSS-GEN; 6.7 Occupied Bandwidth**

The occupied bandwidth or the “99% emission bandwidth” is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

In some cases, the “x dB bandwidth” is required, which is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated x dB below the maximum in-band power level of the modulated signal, where the two points are on the outskirts of the in-band emission.

The following conditions shall be observed for measuring the occupied bandwidth and x dB bandwidth:

- The transmitter shall be operated at its maximum carrier power measured under normal test conditions.
- The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.
- The detector of the spectrum analyzer shall be set to “Sample”. However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or “Max Hold”) may be necessary to determine the occupied / x dB bandwidth if the device is not transmitting continuously.
- The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / x dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

---

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

Abstract RSS-131 from ISED:

### **RSS-131; 9.2 Input-versus-output spectrum**

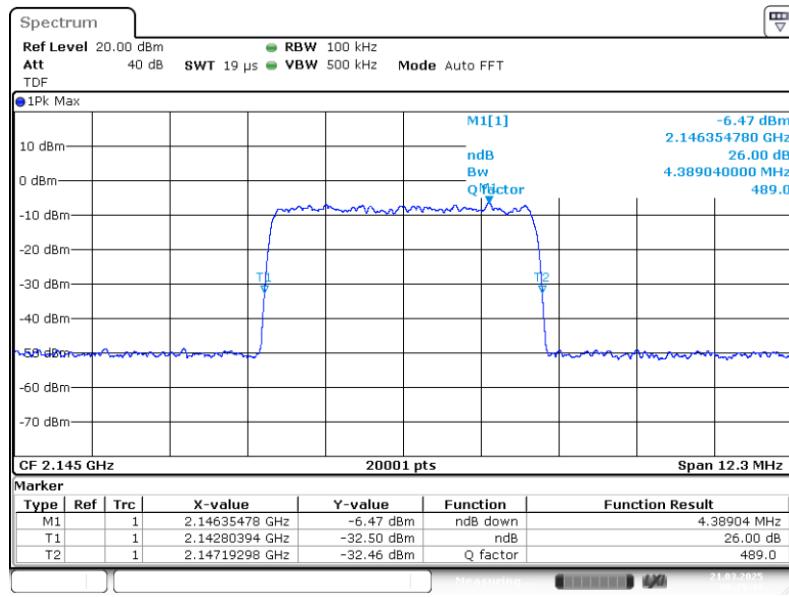
The spectral growth of the 26 dB bandwidth or occupied bandwidth of the output signal shall be less than 5% of the input signal spectrum.

#### 5.3.3 TEST PROTOCOL

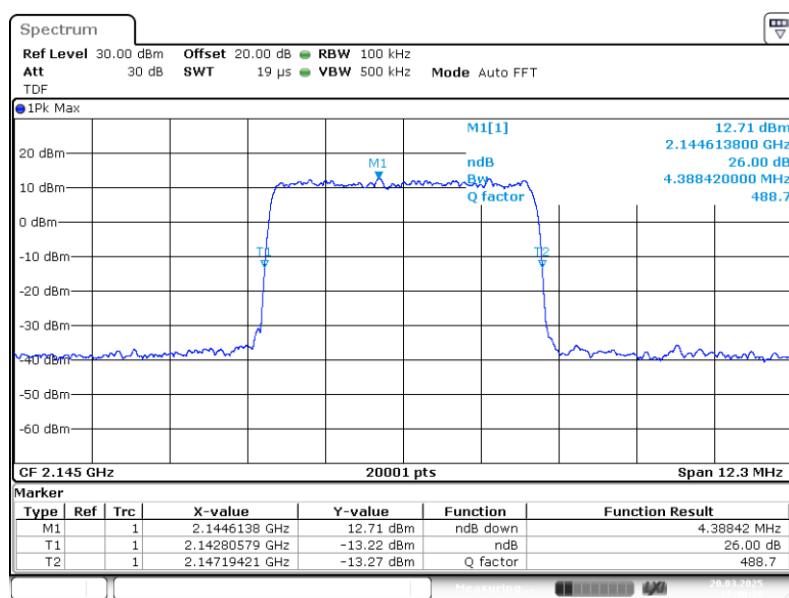
| <b>Band 66 AWS 1700, downlink</b> |                    |                               |                                    |                                         |                                       |                                             |                              |
|-----------------------------------|--------------------|-------------------------------|------------------------------------|-----------------------------------------|---------------------------------------|---------------------------------------------|------------------------------|
| <b>Signal type</b>                | <b>Input power</b> | <b>Signal frequency [MHz]</b> | <b>Occupied bandwidth SG [kHz]</b> | <b>Occupied bandwidth booster [kHz]</b> | <b>Delta occupied bandwidth [kHz]</b> | <b>Limit delta occupied bandwidth [kHz]</b> | <b>Margin to limit [kHz]</b> |
| Wideband                          | 0.3 dB < AGC       | 2145.0                        | 4389.0                             | 4388.4                                  | 0.6                                   | 205.0                                       | 204.4                        |
| Wideband                          | 3 dB > AGC         | 2145.0                        | 4387.8                             | 4390.3                                  | 2.5                                   | 205.0                                       | 202.5                        |
| Narrowband                        | 0.3 dB < AGC       | 2145.0                        | 314.1                              | 314.7                                   | 0.7                                   | 10.0                                        | 9.3                          |
| Narrowband                        | 3 dB > AGC         | 2145.0                        | 314.4                              | 315.8                                   | 1.3                                   | 10.0                                        | 8.7                          |
| Wideband 5G                       | 0.3 dB < AGC       | 2145.0                        | 46221.7                            | 46059.7                                 | 162.0                                 | 1195.0                                      | 1033.0                       |
| Wideband 5G                       | 3 dB > AGC         | 2145.0                        | 46019.2                            | 45965.2                                 | 54.0                                  | 1195.0                                      | 1141.0                       |

Remark: Please see next sub-clause for the measurement plot.




BUREAU  
VERITAS

Test Report No.: 25-0067


Tests performed on UAP-XR [AWS 1700]

### 5.3.4 MEASUREMENT PLOT

Band: AWS 1700; Frequency: 2.1450 GHz; Band edge: mid; Mod: AWGN;  
Input OCBw 0.3 dB < AGC

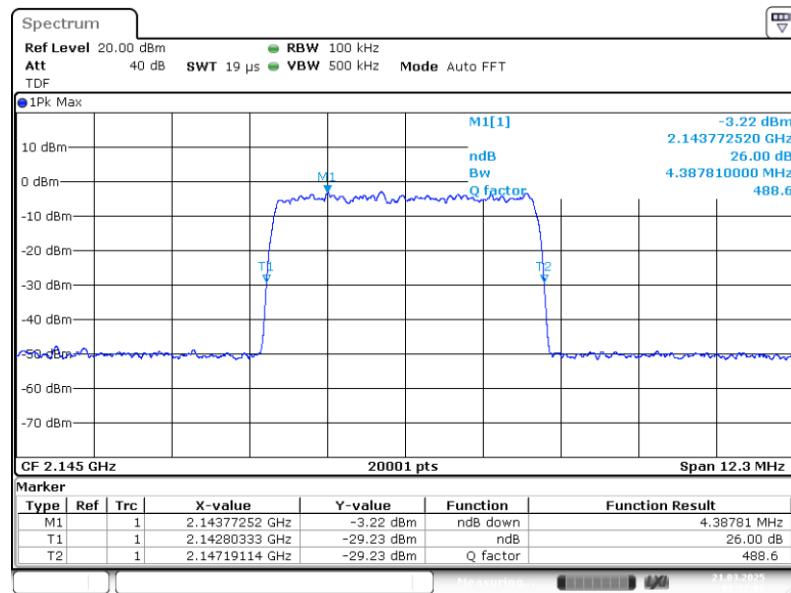


Band: AWS 1700; Frequency: 2.1450 GHz; Band edge: mid; Mod: AWGN;  
Output OCBw 0.3 dB < AGC

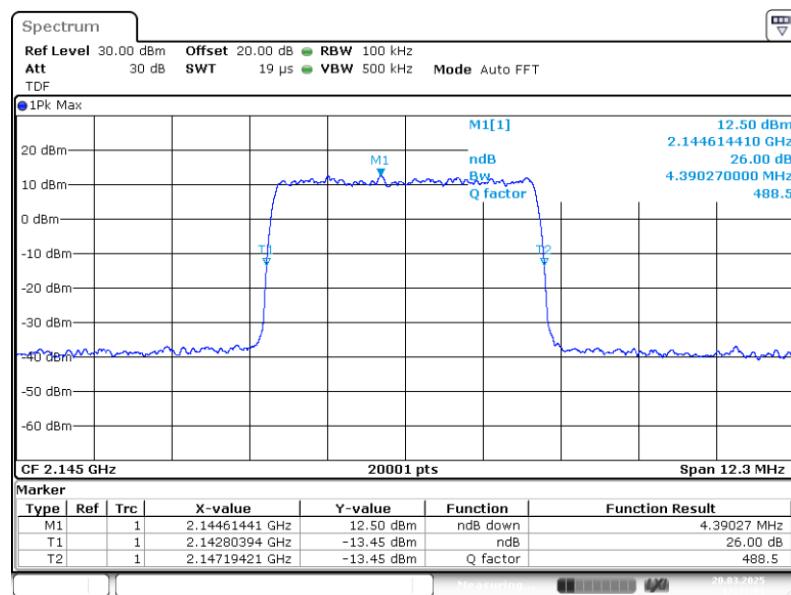


The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.




BUREAU  
VERITAS


Test Report No.: 25-0067

Tests performed on UAP-XR [AWS 1700]

Band: AWS 1700; Frequency: 2.1450 GHz; Band edge: mid; Mod: AWGN;  
Input OCBw 3 dB > AGC

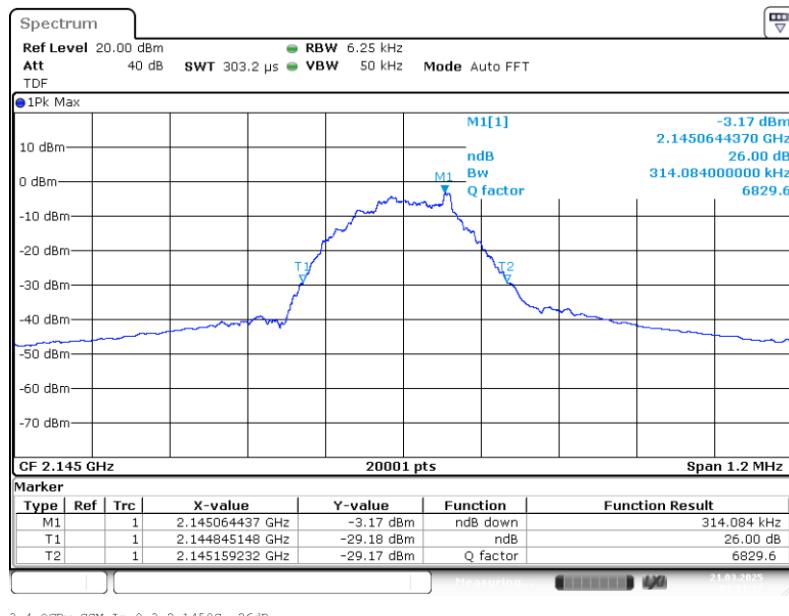


Band: AWS 1700; Frequency: 2.1450 GHz; Band edge: mid; Mod: AWGN;  
Output OCBw 3 dB > AGC

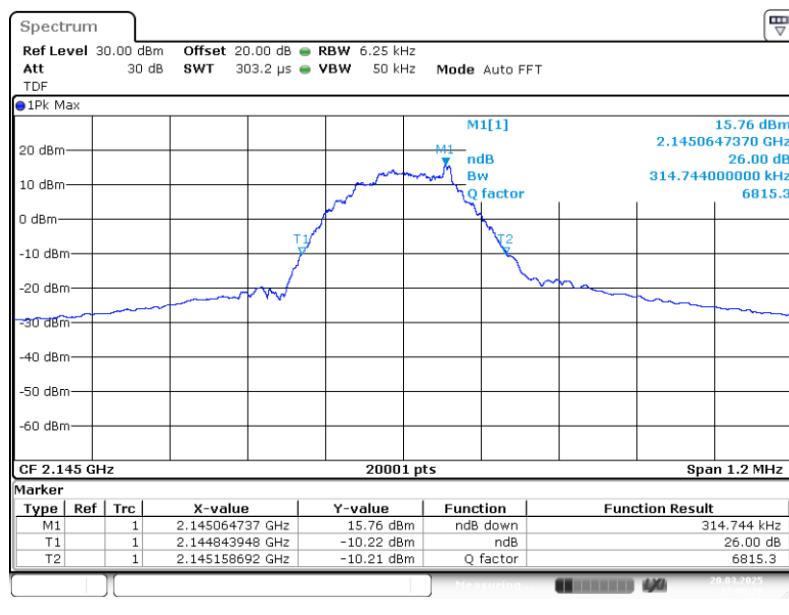


The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.




BUREAU  
VERITAS


Test Report No.: 25-0067

Tests performed on UAP-XR [AWS 1700]

Band: AWS 1700; Frequency: 2.1450 GHz; Band edge: mid; Mod: GSM;  
Input OCBw 0.3 dB < AGC



Band: AWS 1700; Frequency: 2.1450 GHz; Band edge: mid; Mod: GSM;  
Output OCBw 0.3 dB < AGC

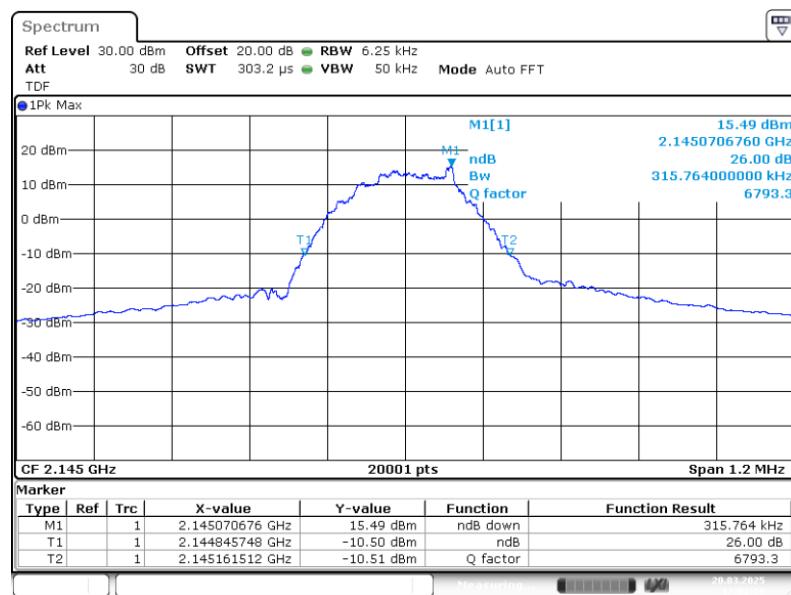


The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS


**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

Band: AWS 1700; Frequency: 2.1450 GHz; Band edge: mid; Mod: GSM;  
Input OCBw 3 dB > AGC

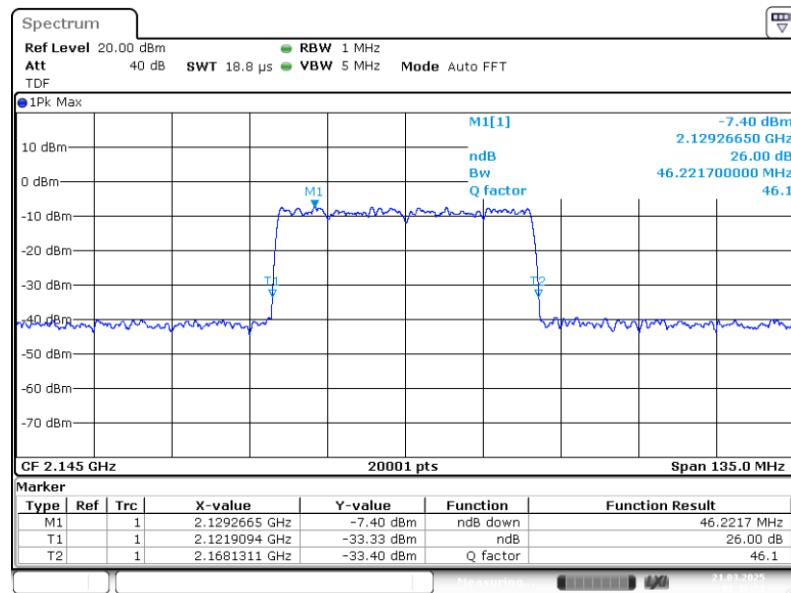


Band: AWS 1700; Frequency: 2.1450 GHz; Band edge: mid; Mod: GSM;  
Output OCBw 3 dB > AGC

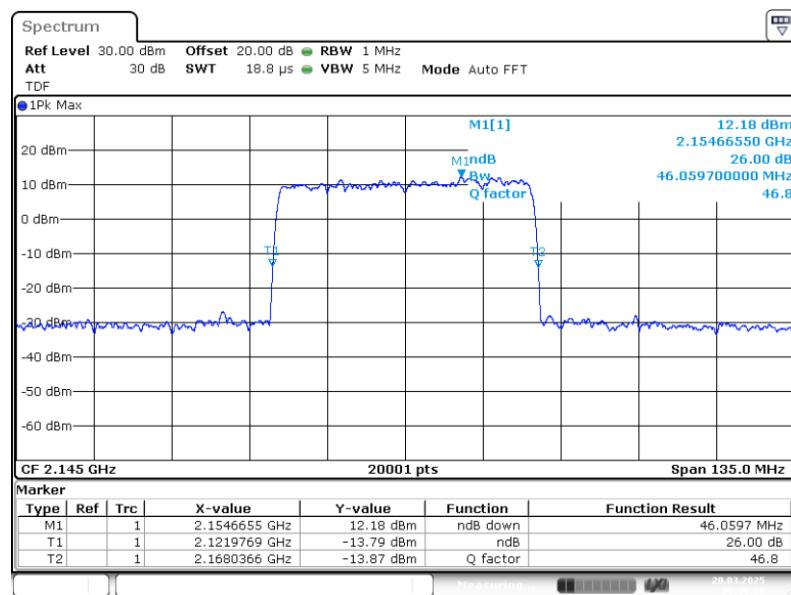


The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.




BUREAU  
VERITAS


Test Report No.: 25-0067

Tests performed on UAP-XR [AWS 1700]

Band: AWS 1700; Frequency: 2.1450 GHz; Band edge: mid; Mod: AWGN 45M;  
Input OCBw 0.3 dB < AGC

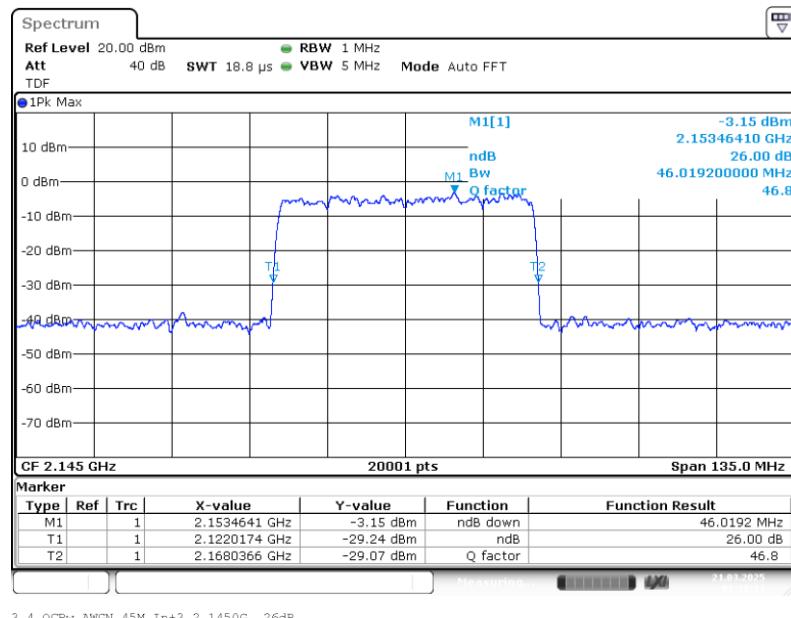


Band: AWS 1700; Frequency: 2.1450 GHz; Band edge: mid; Mod: AWGN 45M;  
Output OCBw 0.3 dB < AGC

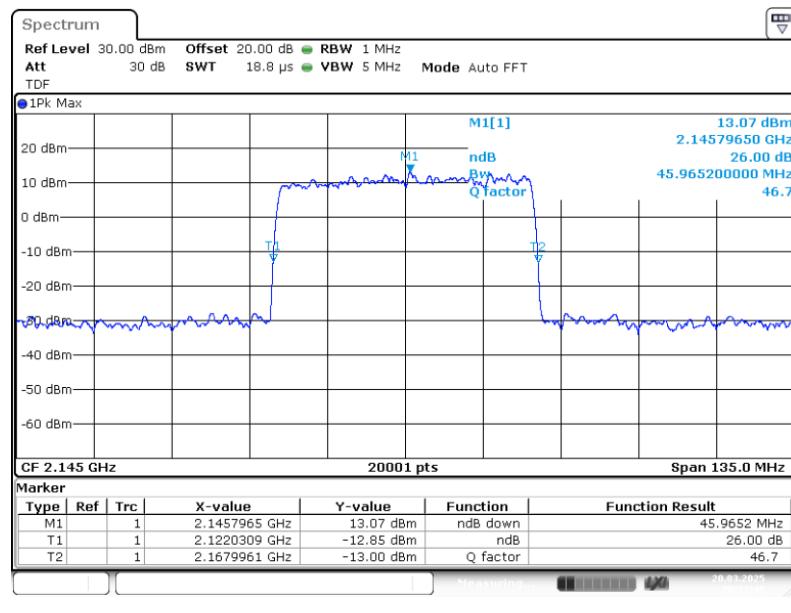


The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.




BUREAU  
VERITAS


Test Report No.: 25-0067

Tests performed on UAP-XR [AWS 1700]

Band: AWS 1700; Frequency: 2.1450 GHz; Band edge: mid; Mod: AWGN 45M;  
Input OCBw 3 dB > AGC



Band: AWS 1700; Frequency: 2.1450 GHz; Band edge: mid; Mod: AWGN 45M;  
Output OCBw 3 dB > AGC



The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

### 5.3.5 TEST EQUIPMENT USED

- Conducted

---

The test results relate only to the tested item. The sample has been provided by the client.  
Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

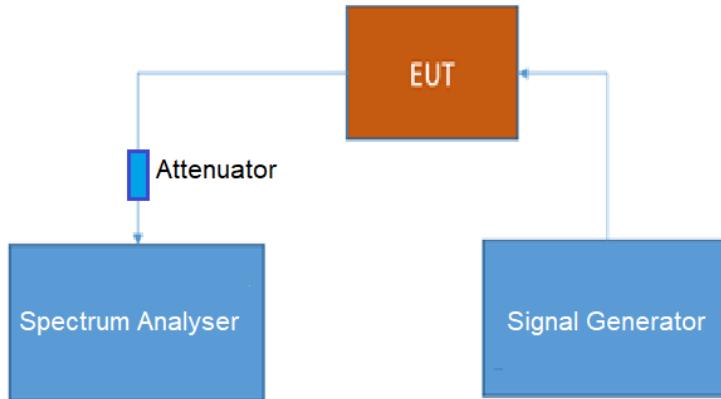
## 5.4 CONDUCTED SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Standard FCC Part §2.1051, §27.53

**The test was performed according to:**

ANSI C63.26

**Test date:** 2025-03-20 – 2025-03-21


**Environmental conditions:** 24.7 °C; 23 % r. H./25.7 °C; 25 % r. H.

**Test engineer:** Thomas Hufnagel

### 5.4.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the signal booster power and gain limits and requirements for industrial signal boosters.

The EUT was connected to the test setup according to the following diagram:



The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

#### 5.4.2 TEST REQUIREMENTS/LIMITS

Abstract § 2.1051 from FCC:

**FCC Part 2.1051; Measurement required: Spurious emissions at antenna terminal:**

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in § 2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

**Part 27; Miscellaneous Wireless Communication Services**

**Subpart C – Technical standards**

**§27.53 – Emission limits**

Abstract § 27.53 FCC:

(h) AWS emission limits—(1) General protection levels. Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least  $43 + 10 \log_{10} (P)$  dB.

---

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

Abstract RSS-133 from ISED

## 5.6 Unwanted emission limits

Unwanted emissions shall be measured in terms of average value.

For all equipment, the TRP or total conducted power (sum of conducted power across all antenna connectors) of the unwanted emissions outside the frequency block or frequency block group shall not exceed the limits shown in table 6.

**Table 6: Unwanted emission limits**

| <b>Offset from the edge of the frequency block or frequency block group</b> | <b>Unwanted emission limits</b> |
|-----------------------------------------------------------------------------|---------------------------------|
| ≤1 MHz                                                                      | -13 dBm/(1% of OB*)             |
| >1 MHz                                                                      | -13 dBm/MHz                     |

\*OB is the occupied bandwidth.

In addition to complying with the above limits, equipment operating in the band 2180-2200 MHz may require additional filtering (see SRSP-519).

---

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

#### 5.4.3 TEST PROTOCOL

General considerations concerning the limits:

The measuring bandwidth of 1 MHz was chosen according the test requirements except at the band edges: At the band edges reducing of measurement bandwidth was necessary to prevent overlaying the RF-signal over the spurious emissions.

Also outside the downlink frequency band at lower frequencies the measurement bandwidths were reduced to have the possibility to record the spurious emissions at these lower frequencies.

At frequencies where measuring bandwidths were reduced also the limit lines were reduced according the given formula:

$$p \text{ RBW}_{\text{reduced}} [\text{dBm}] = 10 * \log \left( \text{RBW}_{\text{reduced}} [\text{kHz}] / 1000 \text{ kHz} \right) + p \text{ RBW} \text{ 1000 kHz} [\text{dBm}]$$

Hereby "p" are the limit lines' values.



Test Report No.: 25-0067

Tests performed on UAP-XR [AWS 1700]

BUREAU  
VERITAS

| Band 66, AWS 1700, downlink |             |                      |                      |          |           |             |                      |
|-----------------------------|-------------|----------------------|----------------------|----------|-----------|-------------|----------------------|
| Test frequency              | Signal type | Spurious freq. [MHz] | Spurious level [dBm] | Detector | RBW [kHz] | Limit [dBm] | Margin to limit [dB] |
| low                         | Wideband    | 0.01938              | -74.0                | RMS      | 1         | -43.0       | 31.0                 |
| low                         | Wideband    | 0.31746              | -63.9                | RMS      | 10        | -33.0       | 30.9                 |
| low                         | Wideband    | 951.3                | -63.0                | RMS      | 100       | -23.0       | 40.0                 |
| low                         | Wideband    | 1784.4               | -55.6                | RMS      | 1000      | -13.0       | 42.6                 |
| low                         | Wideband    | 2108.6               | -55.7                | RMS      | 100       | -23.0       | 32.7                 |
| low                         | Wideband    | 2184.8               | -65.9                | RMS      | 100       | -23.0       | 42.9                 |
| low                         | Wideband    | 2784.6               | -41.1                | RMS      | 1000      | -13.0       | 28.1                 |
| low                         | Wideband    | 6857.1               | -50.8                | RMS      | 1000      | -13.0       | 37.8                 |
| low                         | Wideband    | 19868.3              | -51.1                | RMS      | 1000      | -13.0       | 38.1                 |
| low                         | Wideband    | 20312.2              | -50.5                | RMS      | 1000      | -13.0       | 37.5                 |
| low                         | Wideband    | 30001.5              | -51.4                | RMS      | 1000      | -13.0       | 38.4                 |
| low                         | Wideband    | 39983.8              | -53.0                | RMS      | 1000      | -13.0       | 40.0                 |
| mid                         | Wideband    | 0.00955              | -74.0                | RMS      | 1         | -43.0       | 31.0                 |
| mid                         | Wideband    | 0.36745              | -64.7                | RMS      | 10        | -33.0       | 31.7                 |
| mid                         | Wideband    | 953.2                | -64.2                | RMS      | 100       | -23.0       | 41.2                 |
| mid                         | Wideband    | 1821.4               | -55.5                | RMS      | 1000      | -13.0       | 42.5                 |
| mid                         | Wideband    | 2106.6               | -65.5                | RMS      | 100       | -23.0       | 42.5                 |
| mid                         | Wideband    | 2182.7               | -66.7                | RMS      | 100       | -23.0       | 43.7                 |
| mid                         | Wideband    | 2784.6               | -41.2                | RMS      | 1000      | -13.0       | 28.2                 |
| mid                         | Wideband    | 6889.1               | -50.7                | RMS      | 1000      | -13.0       | 37.7                 |
| mid                         | Wideband    | 19530.3              | -51.1                | RMS      | 1000      | -13.0       | 38.1                 |
| mid                         | Wideband    | 20303.2              | -50.6                | RMS      | 1000      | -13.0       | 37.6                 |
| mid                         | Wideband    | 30313.0              | -51.0                | RMS      | 1000      | -13.0       | 38.0                 |
| mid                         | Wideband    | 39983.3              | -52.8                | RMS      | 1000      | -13.0       | 39.8                 |
| high                        | Wideband    | 0.00943              | -74.0                | RMS      | 1         | -43.0       | 31.0                 |
| high                        | Wideband    | 0.25247              | -65.6                | RMS      | 10        | -33.0       | 32.6                 |
| high                        | Wideband    | 949.6                | -63.0                | RMS      | 100       | -23.0       | 40.0                 |
| high                        | Wideband    | 1751.4               | -56.1                | RMS      | 1000      | -13.0       | 43.1                 |
| high                        | Wideband    | 2105.6               | -66.5                | RMS      | 100       | -23.0       | 43.5                 |
| high                        | Wideband    | 2181.2               | -58.0                | RMS      | 100       | -23.0       | 35.0                 |
| high                        | Wideband    | 2784.6               | -41.0                | RMS      | 1000      | -13.0       | 28.0                 |
| high                        | Wideband    | 6926.6               | -50.8                | RMS      | 1000      | -13.0       | 37.8                 |
| high                        | Wideband    | 19579.8              | -50.8                | RMS      | 1000      | -13.0       | 37.8                 |
| high                        | Wideband    | 20368.7              | -50.0                | RMS      | 1000      | -13.0       | 37.0                 |
| high                        | Wideband    | 30301.0              | -51.7                | RMS      | 1000      | -13.0       | 38.7                 |
| high                        | Wideband    | 39991.3              | -52.8                | RMS      | 1000      | -13.0       | 39.8                 |

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



Test Report No.: 25-0067

Tests performed on UAP-XR [AWS 1700]

BUREAU  
VERITAS

| Band 66, AWS 1700, downlink |             |                      |                      |          |           |             |                      |
|-----------------------------|-------------|----------------------|----------------------|----------|-----------|-------------|----------------------|
| Test frequency              | Signal type | Spurious freq. [MHz] | Spurious level [dBm] | Detector | RBW [kHz] | Limit [dBm] | Margin to limit [dB] |
| low                         | Narrowband  | 0.00902              | -79.4                | RMS      | 1         | -43.0       | 36.4                 |
| low                         | Narrowband  | 0.08249              | -73.7                | RMS      | 10        | -33.0       | 40.7                 |
| low                         | Narrowband  | 949.6                | -64.1                | RMS      | 100       | -23.0       | 41.1                 |
| low                         | Narrowband  | 1759.4               | -55.6                | RMS      | 1000      | -13.0       | 42.6                 |
| low                         | Narrowband  | 2108.5               | -63.4                | RMS      | 100       | -23.0       | 40.4                 |
| low                         | Narrowband  | 2185.4               | -66.5                | RMS      | 100       | -23.0       | 43.5                 |
| low                         | Narrowband  | 2784.6               | -41.2                | RMS      | 1000      | -13.0       | 28.2                 |
| low                         | Narrowband  | 6856.6               | -50.7                | RMS      | 1000      | -13.0       | 37.7                 |
| low                         | Narrowband  | 19560.3              | -51.5                | RMS      | 1000      | -13.0       | 38.5                 |
| low                         | Narrowband  | 20301.2              | -50.8                | RMS      | 1000      | -13.0       | 37.8                 |
| low                         | Narrowband  | 30317.0              | -51.6                | RMS      | 1000      | -13.0       | 38.6                 |
| low                         | Narrowband  | 39985.3              | -53.0                | RMS      | 1000      | -13.0       | 40.0                 |
| mid                         | Narrowband  | 0.01246              | -79.5                | RMS      | 1         | -43.0       | 36.5                 |
| mid                         | Narrowband  | 0.06750              | -73.7                | RMS      | 10        | -33.0       | 40.7                 |
| mid                         | Narrowband  | 953.7                | -63.7                | RMS      | 100       | -23.0       | 40.7                 |
| mid                         | Narrowband  | 1600.0               | -55.7                | RMS      | 1000      | -13.0       | 42.7                 |
| mid                         | Narrowband  | 2108.8               | -65.5                | RMS      | 100       | -23.0       | 42.5                 |
| mid                         | Narrowband  | 2186.7               | -66.4                | RMS      | 100       | -23.0       | 43.4                 |
| mid                         | Narrowband  | 2784.6               | -41.2                | RMS      | 1000      | -13.0       | 28.2                 |
| mid                         | Narrowband  | 6927.6               | -51.0                | RMS      | 1000      | -13.0       | 38.0                 |
| mid                         | Narrowband  | 19995.3              | -51.2                | RMS      | 1000      | -13.0       | 38.2                 |
| mid                         | Narrowband  | 20317.2              | -50.2                | RMS      | 1000      | -13.0       | 37.2                 |
| mid                         | Narrowband  | 30130.0              | -51.7                | RMS      | 1000      | -13.0       | 38.7                 |
| mid                         | Narrowband  | 39963.3              | -52.6                | RMS      | 1000      | -13.0       | 39.6                 |
| high                        | Narrowband  | 0.00902              | -79.5                | RMS      | 1         | -43.0       | 36.5                 |
| high                        | Narrowband  | 0.07250              | -73.7                | RMS      | 10        | -33.0       | 40.7                 |
| high                        | Narrowband  | 949.1                | -63.7                | RMS      | 100       | -23.0       | 40.7                 |
| high                        | Narrowband  | 2040.8               | -54.7                | RMS      | 1000      | -13.0       | 41.7                 |
| high                        | Narrowband  | 2108.5               | -66.0                | RMS      | 100       | -23.0       | 43.0                 |
| high                        | Narrowband  | 2181.0               | -61.0                | RMS      | 100       | -23.0       | 38.0                 |
| high                        | Narrowband  | 2784.6               | -41.2                | RMS      | 1000      | -13.0       | 28.2                 |
| high                        | Narrowband  | 6877.1               | -50.5                | RMS      | 1000      | -13.0       | 37.5                 |
| high                        | Narrowband  | 19206.8              | -51.3                | RMS      | 1000      | -13.0       | 38.3                 |
| high                        | Narrowband  | 20310.2              | -51.0                | RMS      | 1000      | -13.0       | 38.0                 |
| high                        | Narrowband  | 30305.5              | -51.5                | RMS      | 1000      | -13.0       | 38.5                 |
| high                        | Narrowband  | 39988.8              | -52.8                | RMS      | 1000      | -13.0       | 39.8                 |

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



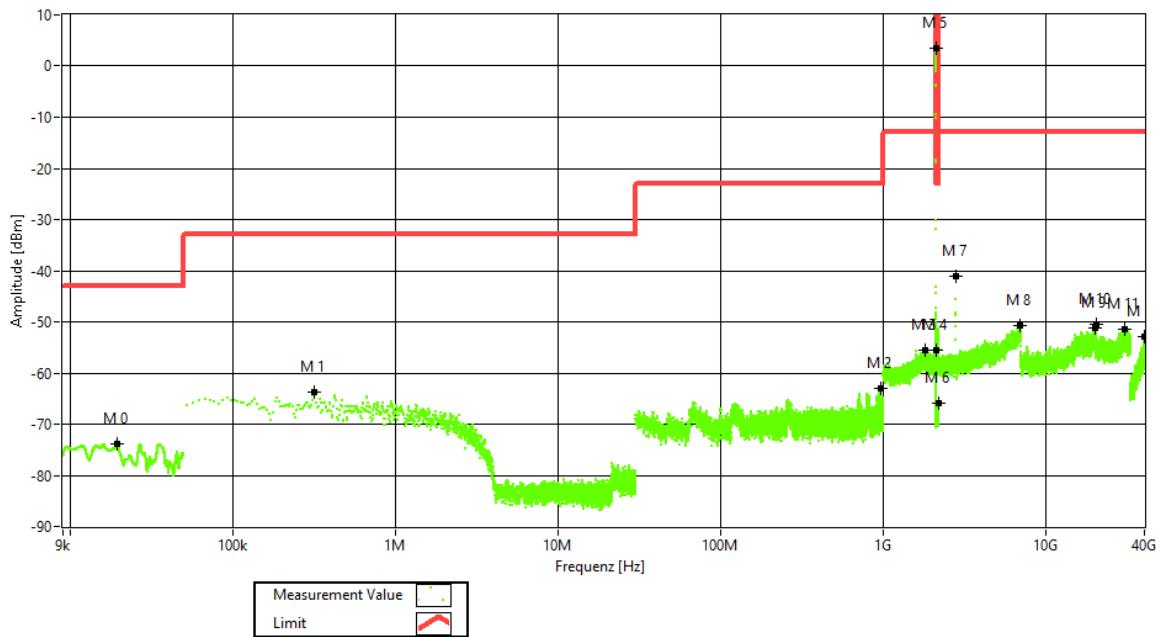
BUREAU  
VERITAS

Test Report No.: 25-0067

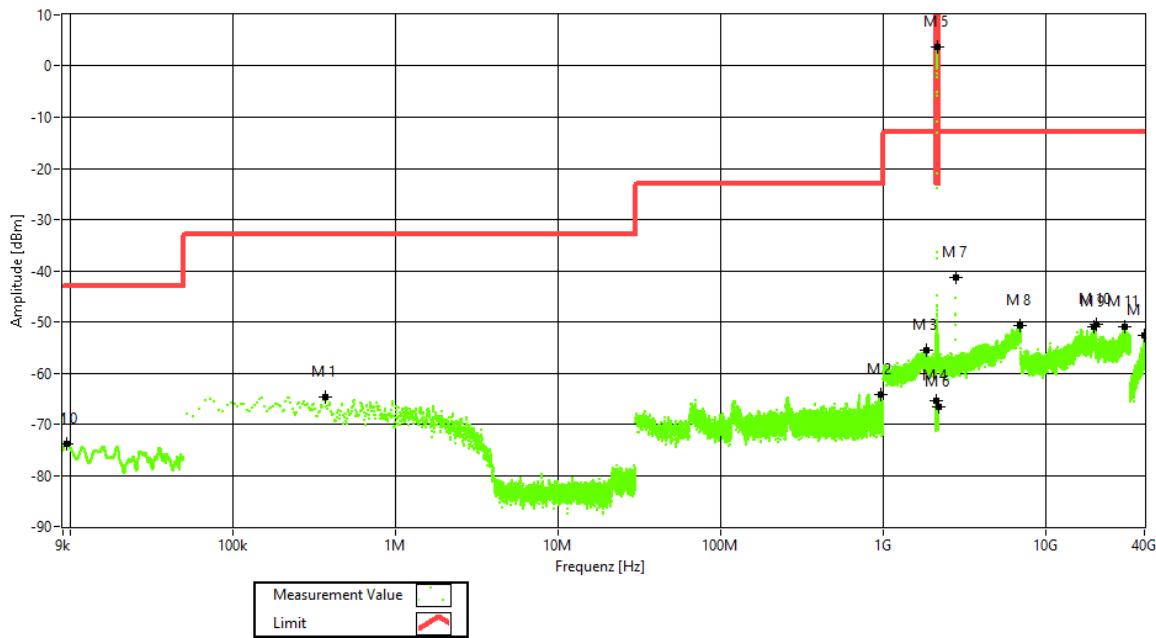
Tests performed on UAP-XR [AWS 1700]

| Band 66, AWS 1700, downlink |             |                      |                      |          |           | Margin to limit [dB] |      |
|-----------------------------|-------------|----------------------|----------------------|----------|-----------|----------------------|------|
| Test frequency              | Signal type | Spurious freq. [MHz] | Spurious level [dBm] | Detector | RBW [kHz] | Limit [dBm]          |      |
| low                         | Wideband 5G | 0.01537              | -79.7                | RMS      | 1         | -43.0                | 36.7 |
| low                         | Wideband 5G | 0.13749              | -72.7                | RMS      | 10        | -33.0                | 39.7 |
| low                         | Wideband 5G | 950.0                | -63.8                | RMS      | 100       | -23.0                | 40.8 |
| low                         | Wideband 5G | 2099.3               | -52.6                | RMS      | 1000      | -13.0                | 39.6 |
| low                         | Wideband 5G | 2105.3               | -60.0                | RMS      | 100       | -23.0                | 37.0 |
| low                         | Wideband 5G | 2182.2               | -64.6                | RMS      | 100       | -23.0                | 41.6 |
| low                         | Wideband 5G | 2784.6               | -41.0                | RMS      | 1000      | -13.0                | 28.0 |
| low                         | Wideband 5G | 6821.6               | -50.8                | RMS      | 1000      | -13.0                | 37.8 |
| low                         | Wideband 5G | 19897.8              | -51.5                | RMS      | 1000      | -13.0                | 38.5 |
| low                         | Wideband 5G | 20323.2              | -50.6                | RMS      | 1000      | -13.0                | 37.6 |
| low                         | Wideband 5G | 30306.0              | -51.6                | RMS      | 1000      | -13.0                | 38.6 |
| low                         | Wideband 5G | 39969.3              | -53.2                | RMS      | 1000      | -13.0                | 40.2 |
| mid                         | Wideband 5G | 0.00902              | -78.5                | RMS      | 1         | -43.0                | 35.5 |
| mid                         | Wideband 5G | 0.05250              | -71.5                | RMS      | 10        | -33.0                | 38.5 |
| mid                         | Wideband 5G | 953.5                | -64.0                | RMS      | 100       | -23.0                | 41.0 |
| mid                         | Wideband 5G | 2098.8               | -55.7                | RMS      | 1000      | -13.0                | 42.7 |
| mid                         | Wideband 5G | 2105.4               | -60.0                | RMS      | 100       | -23.0                | 37.0 |
| mid                         | Wideband 5G | 2183.2               | -65.5                | RMS      | 100       | -23.0                | 42.5 |
| mid                         | Wideband 5G | 2784.6               | -41.0                | RMS      | 1000      | -13.0                | 28.0 |
| mid                         | Wideband 5G | 6909.1               | -50.7                | RMS      | 1000      | -13.0                | 37.7 |
| mid                         | Wideband 5G | 19569.8              | -51.3                | RMS      | 1000      | -13.0                | 38.3 |
| mid                         | Wideband 5G | 20289.7              | -50.7                | RMS      | 1000      | -13.0                | 37.7 |
| mid                         | Wideband 5G | 29999.5              | -51.3                | RMS      | 1000      | -13.0                | 38.3 |
| mid                         | Wideband 5G | 39985.8              | -52.4                | RMS      | 1000      | -13.0                | 39.4 |
| high                        | Wideband 5G | 0.00902              | -79.2                | RMS      | 1         | -43.0                | 36.2 |
| high                        | Wideband 5G | 0.05250              | -72.4                | RMS      | 10        | -33.0                | 39.4 |
| high                        | Wideband 5G | 953.6                | -63.3                | RMS      | 100       | -23.0                | 40.3 |
| high                        | Wideband 5G | 1600.5               | -55.7                | RMS      | 1000      | -13.0                | 42.7 |
| high                        | Wideband 5G | 2108.1               | -63.9                | RMS      | 100       | -23.0                | 40.9 |
| high                        | Wideband 5G | 2181.1               | -63.0                | RMS      | 100       | -23.0                | 40.0 |
| high                        | Wideband 5G | 2784.6               | -40.9                | RMS      | 1000      | -13.0                | 27.9 |
| high                        | Wideband 5G | 6938.1               | -50.9                | RMS      | 1000      | -13.0                | 37.9 |
| high                        | Wideband 5G | 19560.8              | -51.1                | RMS      | 1000      | -13.0                | 38.1 |
| high                        | Wideband 5G | 20336.2              | -50.8                | RMS      | 1000      | -13.0                | 37.8 |
| high                        | Wideband 5G | 30011.5              | -51.4                | RMS      | 1000      | -13.0                | 38.4 |
| high                        | Wideband 5G | 39986.7              | -52.4                | RMS      | 1000      | -13.0                | 39.4 |

Remark: Please see next sub-clause for the measurement plot.


The test results relate only to the tested item. The sample has been provided by the client.  
Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.

**Test Report No.: 25-0067**


Tests performed on UAP-XR [AWS 1700]

#### 5.4.4 MEASUREMENT PLOT

Frequency Band = AWS 1700; Test frequency = low; Direction = RF downlink;  
Signal type = Wideband

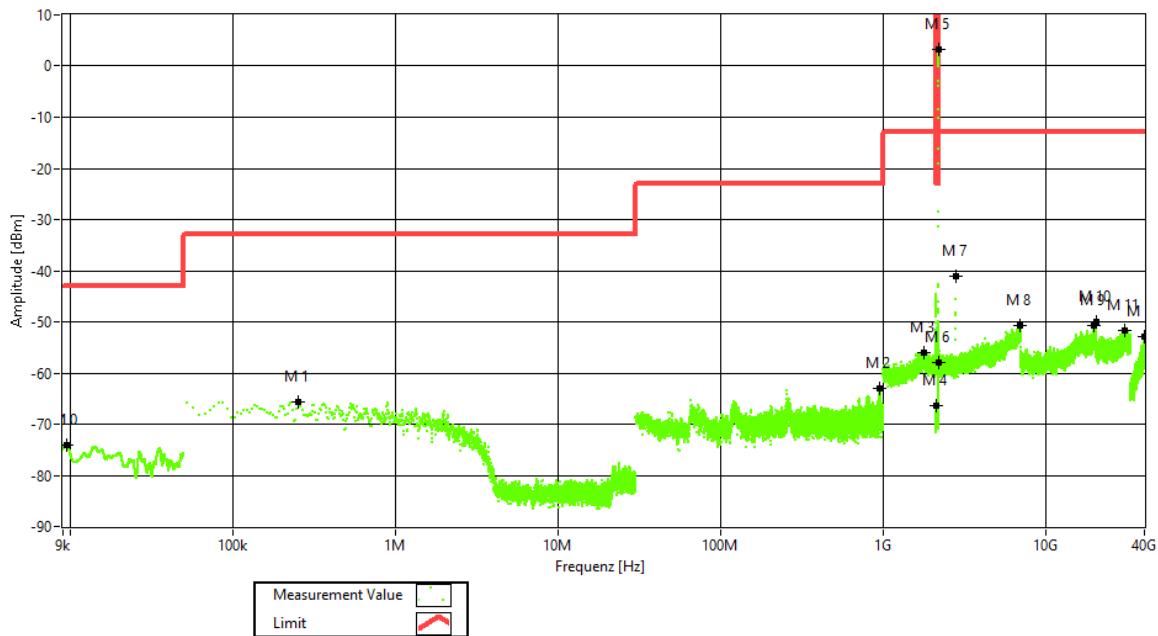


Frequency Band = AWS 1700; Test frequency = mid; Direction = RF downlink;  
Signal type = Wideband



The test results relate only to the tested item. The sample has been provided by the client.

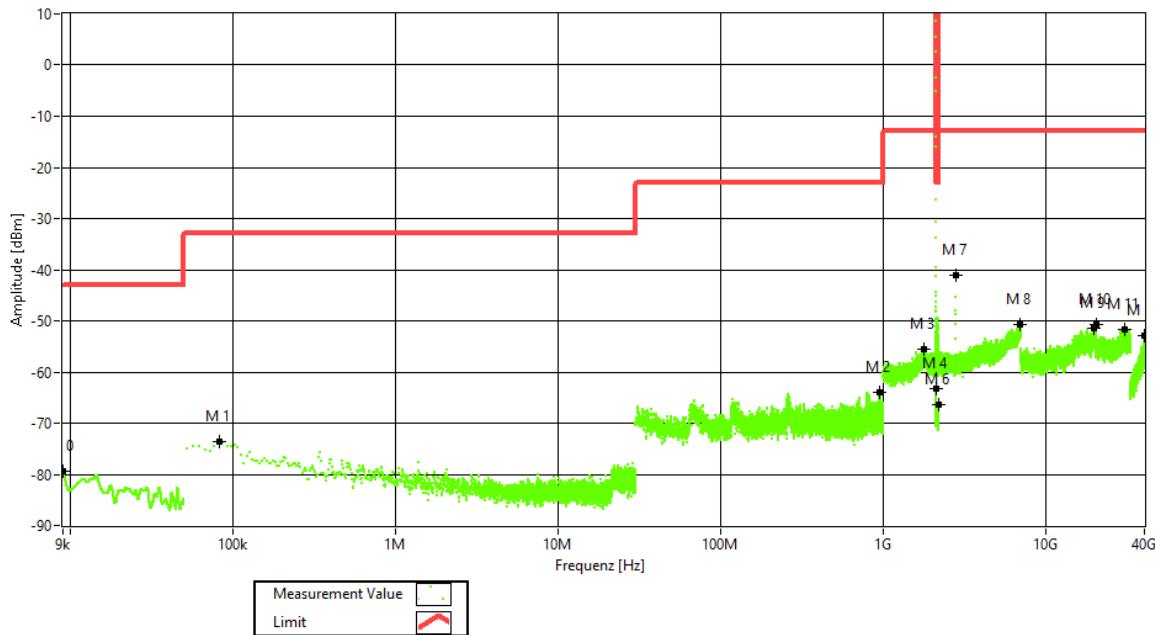
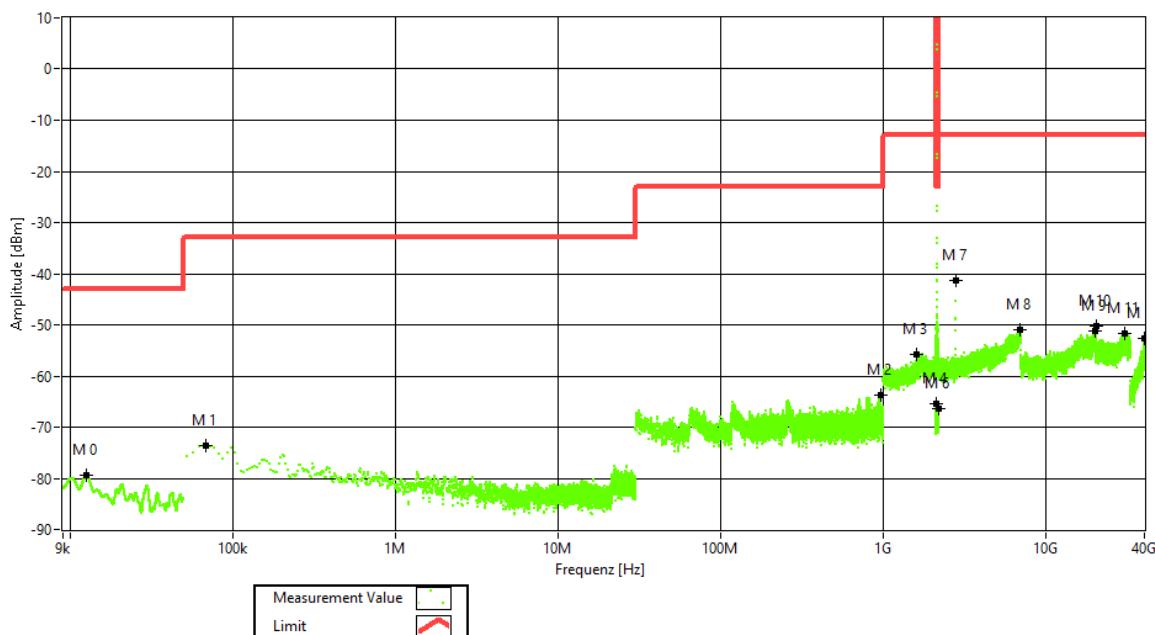
Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.




BUREAU  
VERITAS

Test Report No.: 25-0067

Tests performed on UAP-XR [AWS 1700]



Frequency Band = AWS 1700; Test frequency = high; Direction = RF downlink;  
Signal type = Wideband



The test results relate only to the tested item. The sample has been provided by the client.  
Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.

**Test Report No.: 25-0067**

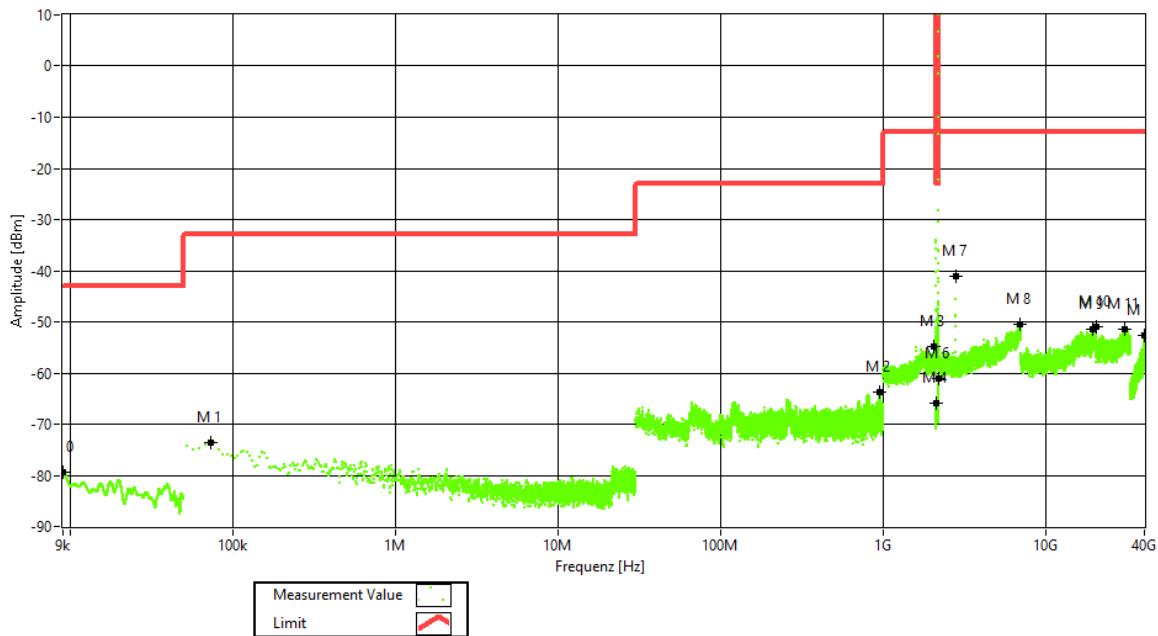
Tests performed on UAP-XR [AWS 1700]

 Frequency Band = AWS 1700; Test frequency = low; Direction = RF downlink;  
 Signal type = Narrowband

 Frequency Band = AWS 1700; Test frequency = mid; Direction = RF downlink;  
 Signal type = Narrowband


The test results relate only to the tested item. The sample has been provided by the client.

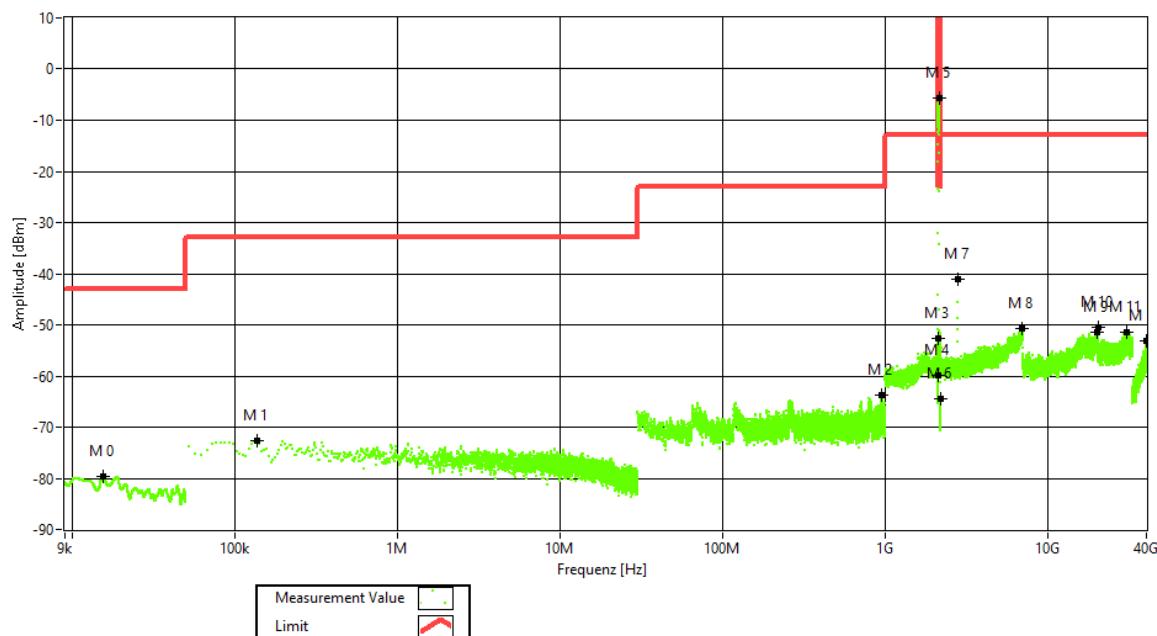
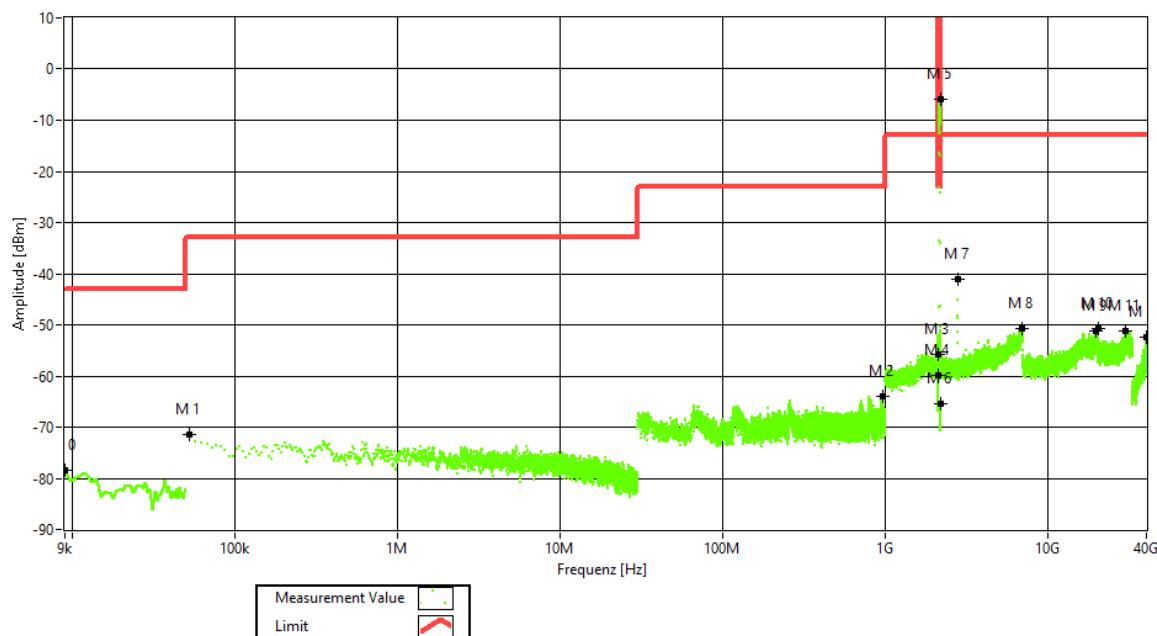
Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.




BUREAU  
VERITAS

Test Report No.: 25-0067

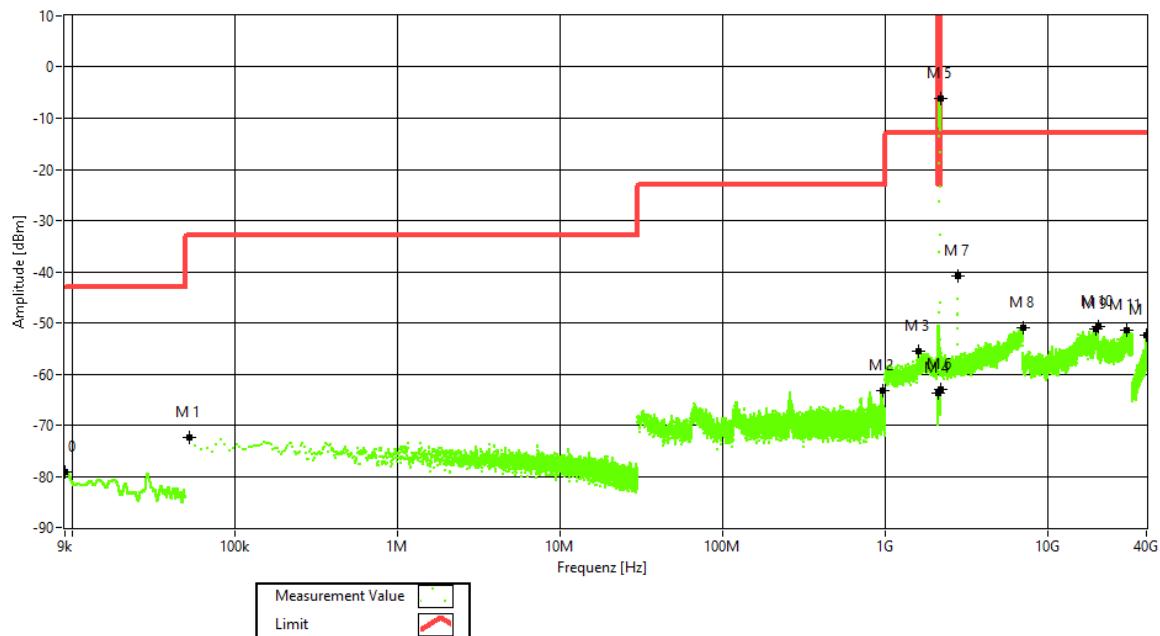
Tests performed on UAP-XR [AWS 1700]



Frequency Band = AWS 1700; Test frequency = high; Direction = RF downlink;  
Signal type = Narrowband



The test results relate only to the tested item. The sample has been provided by the client.  
Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.

**Test Report No.: 25-0067**


Tests performed on UAP-XR [AWS 1700]

 Frequency Band = AWS 1700; Test frequency = low; Direction = RF downlink;  
 Signal type = Wideband 5G

 Frequency Band = AWS 1700; Test frequency = mid; Direction = RF downlink;  
 Signal type = Wideband 5G


The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.

Frequency Band = AWS 1700; Test frequency = high; Direction = RF downlink;  
Signal type = Wideband 5G



#### 5.4.5 TEST EQUIPMENT USED

- Conducted



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

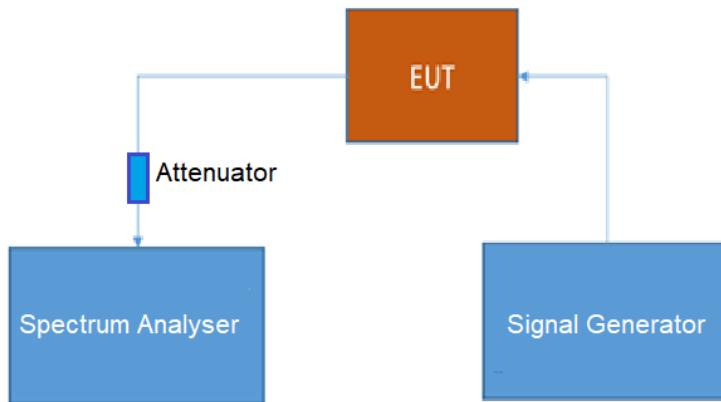
## 5.5 OUT-OF-BAND EMISSION LIMITS

Standard FCC Part §2.1051, §27.53

**The test was performed according to:**

ANSI C63.26, KDB 935210 D05 v01r04: 3.6

**Test date:** 2025-03-20 – 2025-03-21


**Environmental conditions:** 24.7 °C; 23 % r. H./25.7 °C; 25 % r. H.

**Test engineer:** Thomas Hufnagel

### 5.5.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the out-of-band emission limit for industrial signal boosters. The limits itself come from the applicable rule part for each operating band.

The EUT was connected to the test setup according to the following diagram:



The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

## 5.5.2 TEST REQUIREMENTS/LIMITS

Abstract § 2.1051 from FCC:

### **FCC Part 2.1051; Measurement required: Spurious emissions at antenna terminal:**

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in § 2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

## **Part 27; Miscellaneous Wireless Communication Services**

### **Subpart C – Technical standards**

#### **§27.53 – Emission limits**

Abstract § 27.53 FCC:

(h) AWS emission limits—(1) General protection levels. Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least  $43 + 10 \log_{10} (P)$  dB.

---

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

Abstract RSS-133 from ISED

## 5.6 Unwanted emission limits

Unwanted emissions shall be measured in terms of average value.

For all equipment, the TRP or total conducted power (sum of conducted power across all antenna connectors) of the unwanted emissions outside the frequency block or frequency block group shall not exceed the limits shown in table 6.

**Table 6: Unwanted emission limits**

| <b>Offset from the edge of the frequency block or frequency block group</b> | <b>Unwanted emission limits</b> |
|-----------------------------------------------------------------------------|---------------------------------|
| ≤1 MHz                                                                      | -13 dBm/(1% of OB*)             |
| >1 MHz                                                                      | -13 dBm/MHz                     |

\*OB is the occupied bandwidth.

In addition to complying with the above limits, equipment operating in the band 2180-2200 MHz may require additional filtering (see SRSP-519).

---

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

Test Report No.: 25-0067

Tests performed on UAP-XR [AWS 1700]

### 5.5.3 TEST PROTOCOL

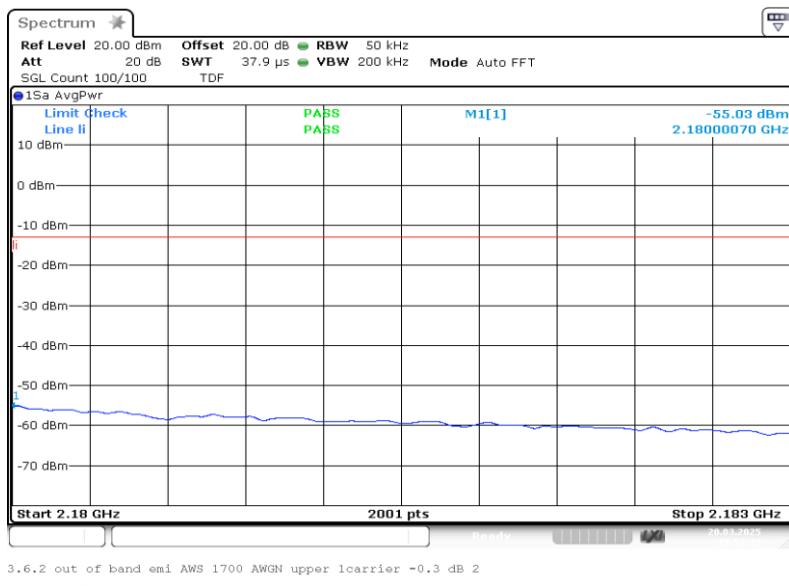
| <b>Band 66 AWS 1700, downlink, Number of input signals = 1</b> |                    |                  |                               |                          |                                        |                                      |                             |
|----------------------------------------------------------------|--------------------|------------------|-------------------------------|--------------------------|----------------------------------------|--------------------------------------|-----------------------------|
| <b>Signal type</b>                                             | <b>Input power</b> | <b>Band edge</b> | <b>Signal frequency [MHz]</b> | <b>Input power [dBm]</b> | <b>Maximum out-of-band power [dBm]</b> | <b>Limit out-of-band power [dBm]</b> | <b>Margin to limit [dB]</b> |
| Wideband                                                       | 0.3 dB < AGC       | upper            | 2177.50                       | -0.5                     | -55.0                                  | -13.0                                | 42.0                        |
| Wideband                                                       | 3 dB > AGC         | upper            | 2177.50                       | 2.8                      | -53.6                                  | -13.0                                | 40.6                        |
| Wideband 5G                                                    | 0.3 dB < AGC       | upper            | 2157.50                       | -0.8                     | -53.7                                  | -13.0                                | 40.7                        |
| Wideband 5G                                                    | 3 dB > AGC         | upper            | 2157.50                       | 2.2                      | -53.1                                  | -13.0                                | 40.1                        |
| Narrowband                                                     | 0.3 dB < AGC       | upper            | 2179.80                       | -0.3                     | -42.3                                  | -13.0                                | 29.3                        |
| Narrowband                                                     | 3 dB > AGC         | upper            | 2179.80                       | 3.0                      | -42.6                                  | -13.0                                | 29.6                        |
| Wideband                                                       | 0.3 dB < AGC       | lower            | 2112.50                       | 0.1                      | -52.8                                  | -13.0                                | 39.8                        |
| Wideband                                                       | 3 dB > AGC         | lower            | 2112.50                       | 3.4                      | -53.5                                  | -13.0                                | 40.5                        |
| Wideband 5G                                                    | 0.3 dB < AGC       | lower            | 2132.50                       | -0.2                     | -51.9                                  | -13.0                                | 38.9                        |
| Wideband 5G                                                    | 3 dB > AGC         | lower            | 2132.50                       | 2.8                      | -52.6                                  | -13.0                                | 39.6                        |
| Narrowband                                                     | 0.3 dB < AGC       | lower            | 2110.20                       | -0.3                     | -40.7                                  | -13.0                                | 27.7                        |
| Narrowband                                                     | 3 dB > AGC         | lower            | 2110.20                       | 3.0                      | -40.3                                  | -13.0                                | 27.3                        |

| <b>Band 66 AWS 1700, downlink, Number of input signals = 2</b> |                    |                  |                                  |                                  |                          |                                        |                                      |
|----------------------------------------------------------------|--------------------|------------------|----------------------------------|----------------------------------|--------------------------|----------------------------------------|--------------------------------------|
| <b>Signal type</b>                                             | <b>Input power</b> | <b>Band edge</b> | <b>Signal frequency f1 [MHz]</b> | <b>Signal frequency f2 [MHz]</b> | <b>Input power [dBm]</b> | <b>Maximum out-of-band power [dBm]</b> | <b>Limit out-of-band power [dBm]</b> |
| Wideband                                                       | 0.3 dB < AGC       | upper            | 2177.5                           | 2175.0                           | -0.7                     | -56.5                                  | -13.0                                |
| Wideband                                                       | 3 dB > AGC         | upper            | 2177.5                           | 2175.0                           | 2.6                      | -57.6                                  | -13.0                                |
| Narrowband                                                     | 0.3 dB < AGC       | upper            | 2179.8                           | 2179.6                           | -0.3                     | -44.9                                  | -13.0                                |
| Narrowband                                                     | 3 dB > AGC         | upper            | 2179.8                           | 2179.6                           | 3.0                      | -44.1                                  | -13.0                                |
| Wideband                                                       | 0.3 dB < AGC       | lower            | 2112.5                           | 2115.0                           | 0.1                      | -55.9                                  | -13.0                                |
| Wideband                                                       | 3 dB > AGC         | lower            | 2112.5                           | 2115.0                           | 3.4                      | -56.3                                  | -13.0                                |
| Narrowband                                                     | 0.3 dB < AGC       | lower            | 2110.2                           | 2110.4                           | -0.1                     | -44.0                                  | -13.0                                |
| Narrowband                                                     | 3 dB > AGC         | lower            | 2110.2                           | 2110.4                           | 3.2                      | -43.8                                  | -13.0                                |

Remark: Please see next sub-clause for the measurement plot.

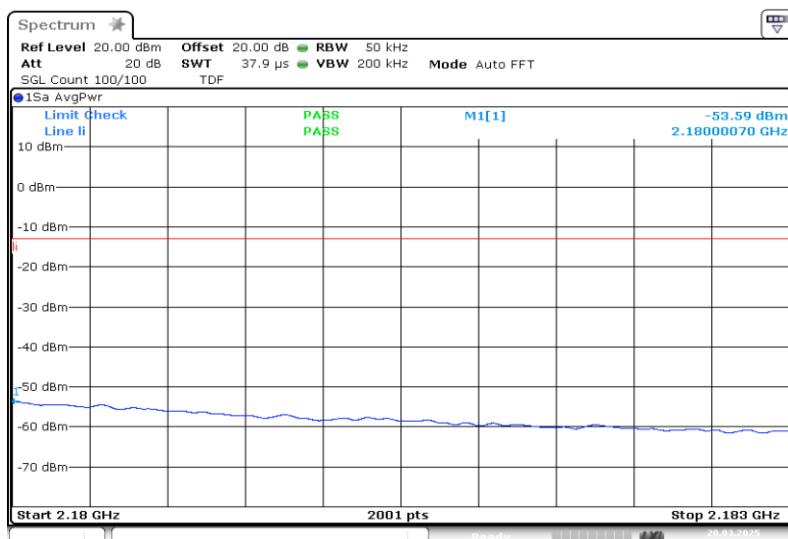
The test results relate only to the tested item. The sample has been provided by the client.  
Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.




BUREAU  
VERITAS

Test Report No.: 25-0067

Tests performed on UAP-XR [AWS 1700]


#### 5.5.4 MEASUREMENT PLOT

Band: AWS 1700; Frequency: 2.1100 GHz to 2.1800 GHz; Band edge: upper; Mod: AWGN;  
Input power = 0.3 dB < AGC; Number of signals 1



3.6.2 out of band emi AWS 1700 AWGN upper lcarrier -0.3 dB 2  
.180G 2.183G

Band: AWS 1700; Frequency: 2.1100 GHz to 2.1800 GHz; Band edge: upper; Mod: AWGN;  
Input power = 3 dB > AGC; Number of signals 1



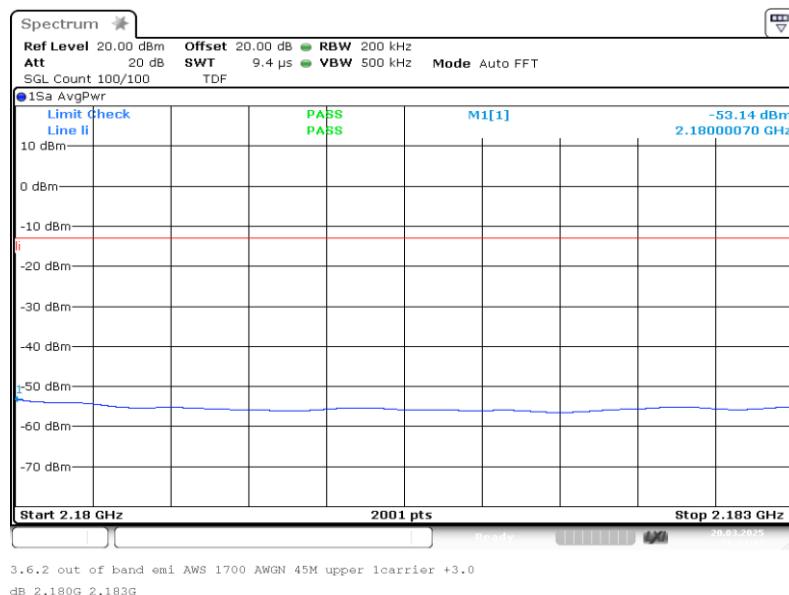
3.6.2 out of band emi AWS 1700 AWGN upper lcarrier +3.0 dB 2  
.180G 2.183G

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS


**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

Band: AWS 1700; Frequency: 2.1100 GHz to 2.1800 GHz; Band edge: upper;  
Mod: AWGN 45M; Input power = 0.3 dB < AGC; Number of signals 1

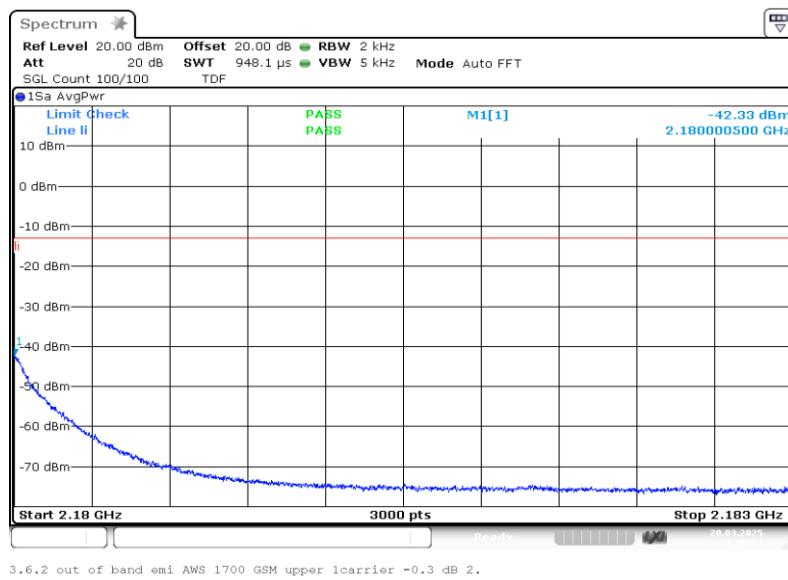


Band: AWS 1700; Frequency: 2.1100 GHz to 2.1800 GHz; Band edge: upper;  
Mod: AWGN 45M; Input power = 3 dB > AGC; Number of signals 1

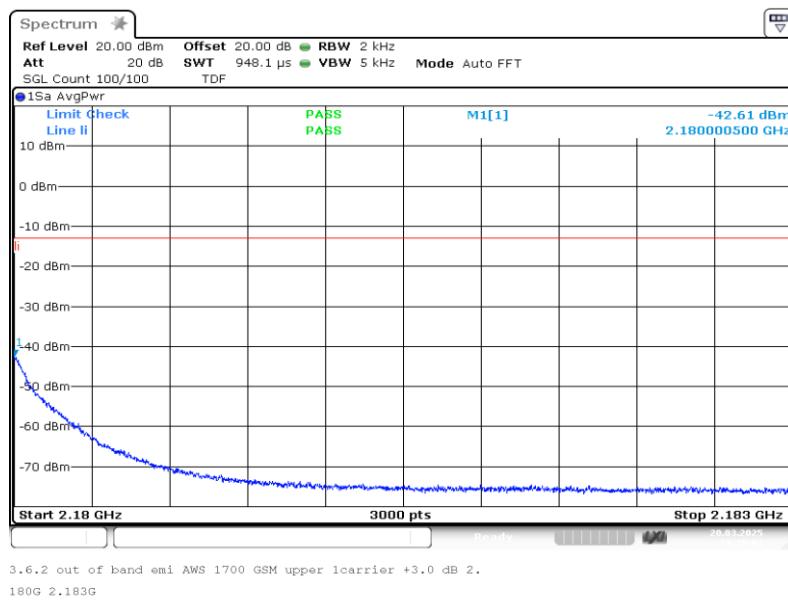


The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.




BUREAU  
VERITAS


**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

Band: AWS 1700; Frequency: 2.1100 GHz to 2.1800 GHz; Band edge: upper; Mod: GSM;  
Input power = 0.3 dB < AGC; Number of signals 1

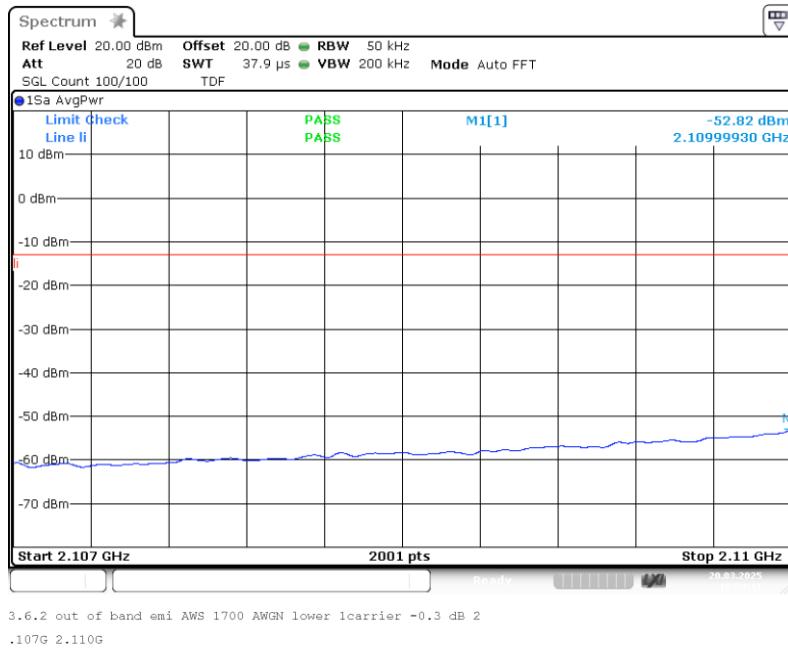


Band: AWS 1700; Frequency: 2.1100 GHz to 2.1800 GHz; Band edge: upper; Mod: GSM;  
Input power = 3 dB > AGC; Number of signals 1



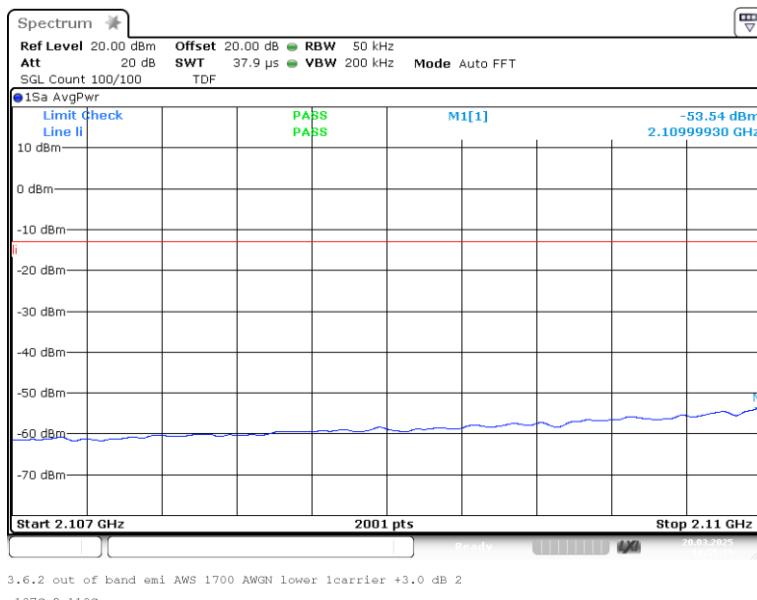
The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.




BUREAU  
VERITAS

**Test Report No.: 25-0067**


Tests performed on UAP-XR [AWS 1700]

Band: AWS 1700; Frequency: 2.1100 GHz to 2.1800 GHz; Band edge: lower; Mod: AWGN;  
Input power = 0.3 dB < AGC; Number of signals 1



3.6.2 out of band emi AWS 1700 AWGN lower lcarrier -0.3 dB 2  
.107G 2.110G

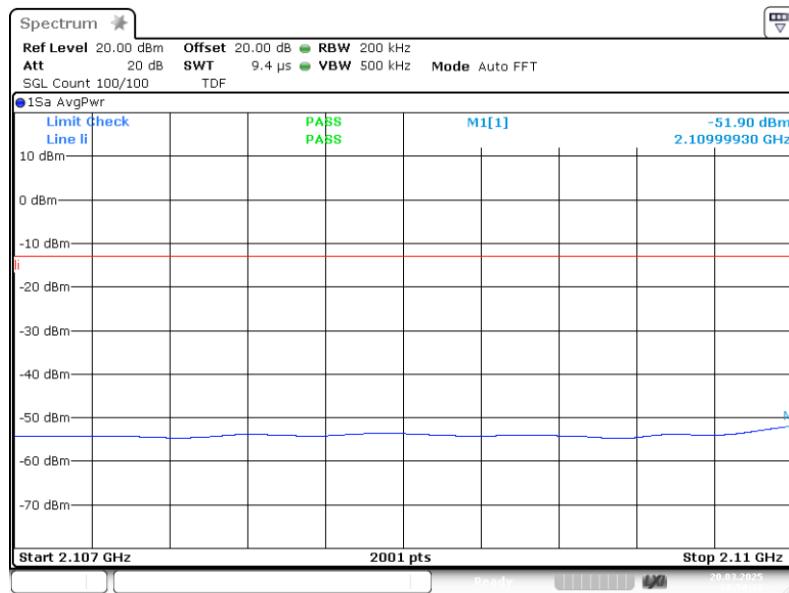
Band: AWS 1700; Frequency: 2.1100 GHz to 2.1800 GHz; Band edge: lower; Mod: AWGN;  
Input power = 3 dB > AGC; Number of signals 1



3.6.2 out of band emi AWS 1700 AWGN lower lcarrier +3.0 dB 2  
.107G 2.110G

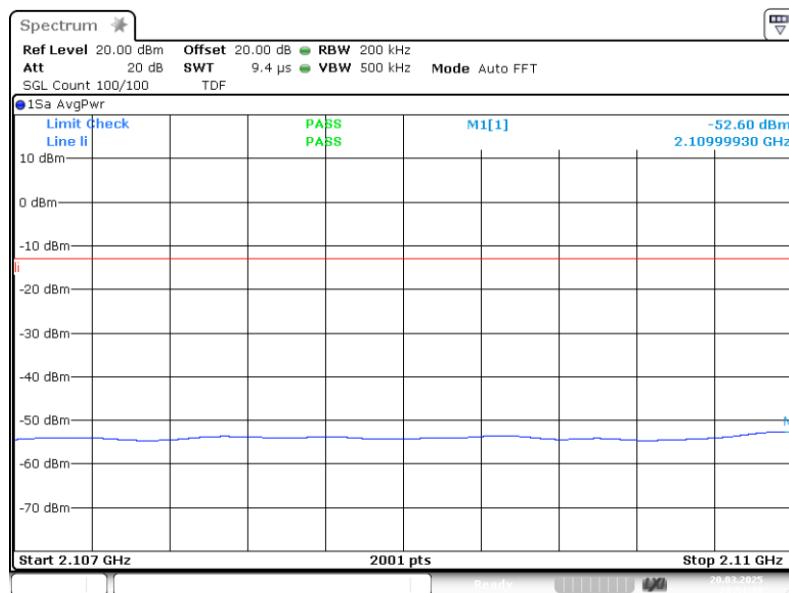
The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.




BUREAU  
VERITAS

**Test Report No.: 25-0067**


Tests performed on UAP-XR [AWS 1700]

Band: AWS 1700; Frequency: 2.1100 GHz to 2.1800 GHz; Band edge: lower; Mod: AWGN 45M; Input power = 0.3 dB < AGC; Number of signals 1



3.6.2 out of band emi AWS 1700 AWGN 45M lower lcarrier -0.3  
dB 2.107G 2.110G

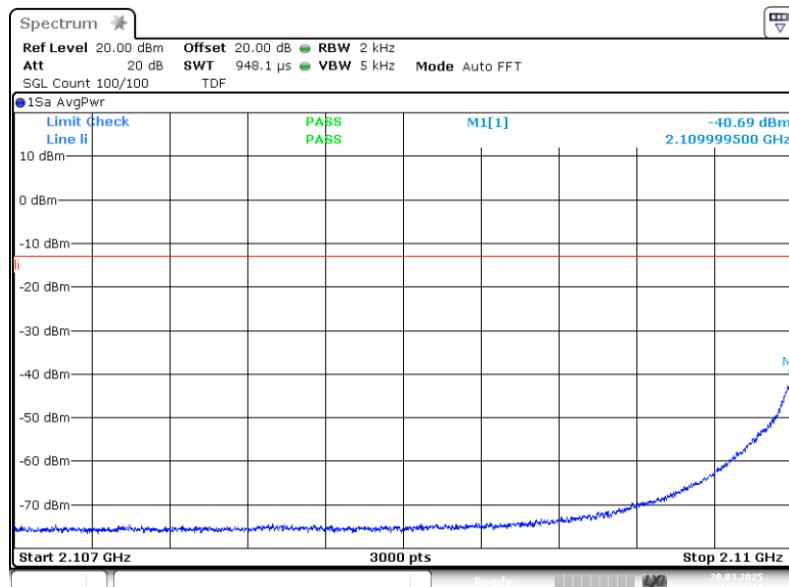
Band: AWS 1700; Frequency: 2.1100 GHz to 2.1800 GHz; Band edge: lower; Mod: AWGN 45M; Input power = 3 dB > AGC; Number of signals 1



3.6.2 out of band emi AWS 1700 AWGN 45M lower lcarrier +3.0  
dB 2.107G 2.110G

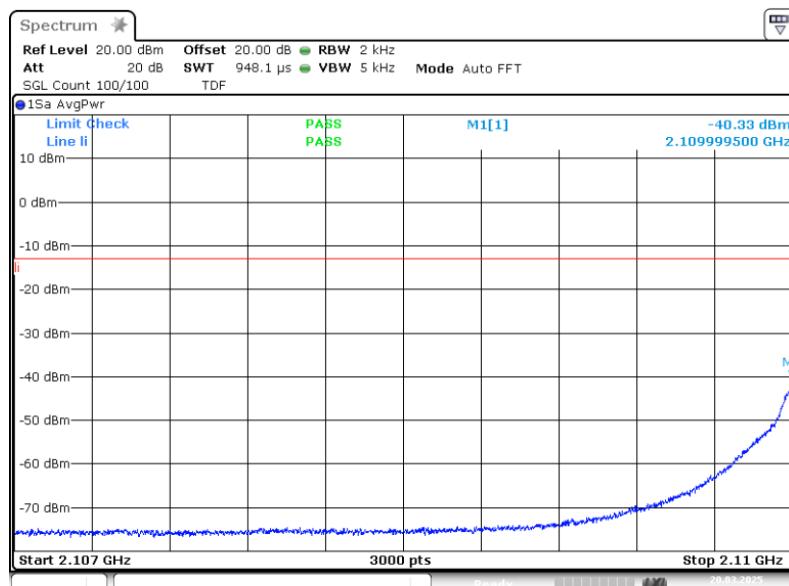
The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.




BUREAU  
VERITAS

**Test Report No.: 25-0067**


Tests performed on UAP-XR [AWS 1700]

Band: AWS 1700; Frequency: 2.1100 GHz to 2.1800 GHz; Band edge: lower; Mod: GSM; Input power = 0.3 dB < AGC; Number of signals 1



3.6.2 out of band emi AWS 1700 GSM lower lcarrier -0.3 dB 2.  
107G 2.110G

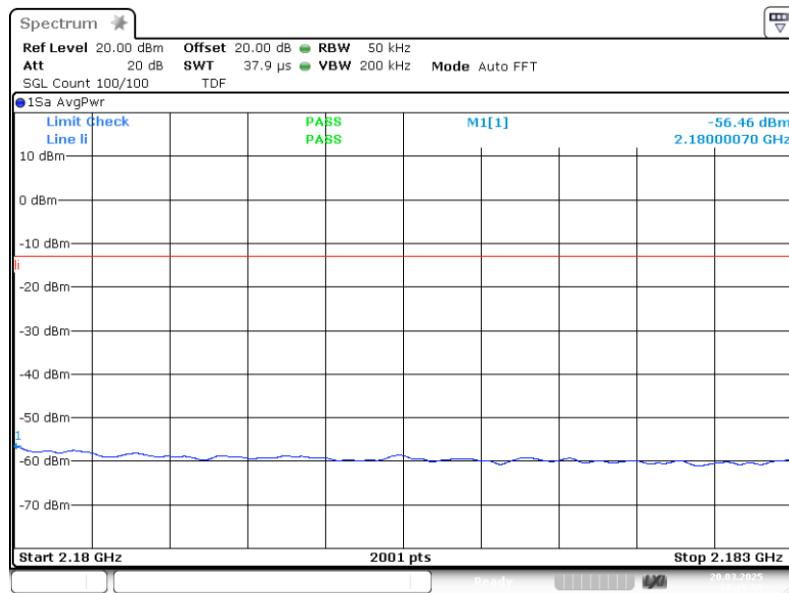
Band: AWS 1700; Frequency: 2.1100 GHz to 2.1800 GHz; Band edge: lower; Mod: GSM; Input power = 3 dB > AGC; Number of signals 1



3.6.2 out of band emi AWS 1700 GSM lower lcarrier +3.0 dB 2.  
107G 2.110G

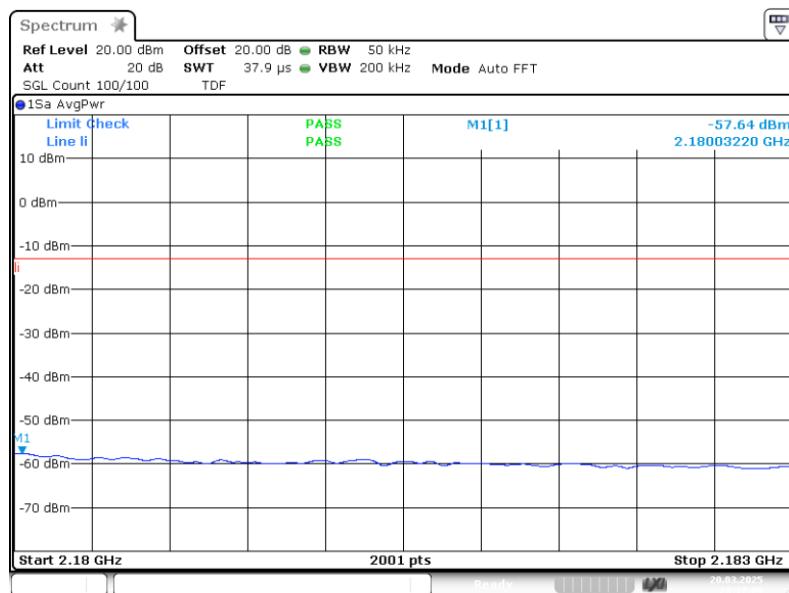
The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.




BUREAU  
VERITAS

**Test Report No.: 25-0067**


Tests performed on UAP-XR [AWS 1700]

Band: AWS 1700; Frequency: 2.1100 GHz to 2.1800 GHz; Band edge: upper; Mod: AWGN;  
Input power = 0.3 dB < AGC; Number of signals 2



3.6.2 out of band emi AWS 1700 AWGN upper 2carriers -0.3 dB  
2.180G 2.183G

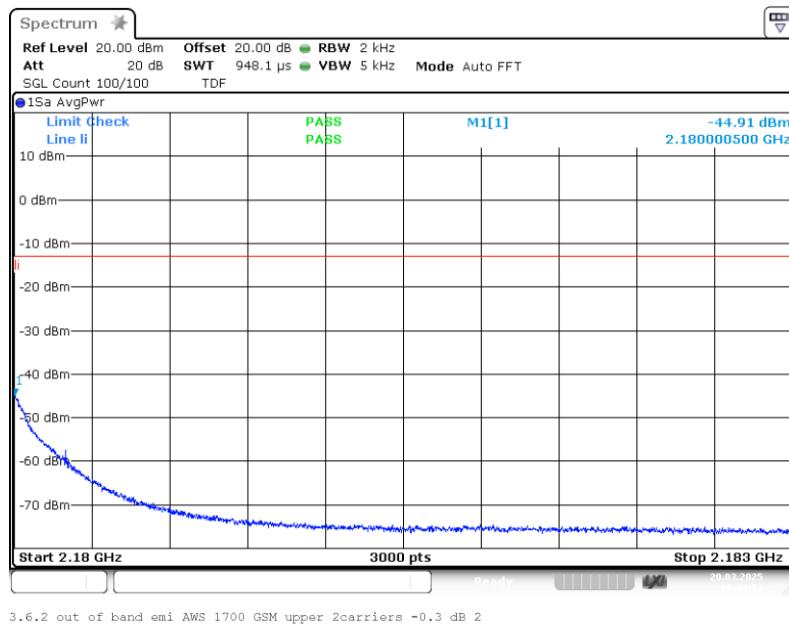
Band: AWS 1700; Frequency: 2.1100 GHz to 2.1800 GHz; Band edge: upper; Mod: AWGN;  
Input power = 3 dB > AGC; Number of signals 2



3.6.2 out of band emi AWS 1700 AWGN upper 2carriers +3.0 dB  
2.180G 2.183G

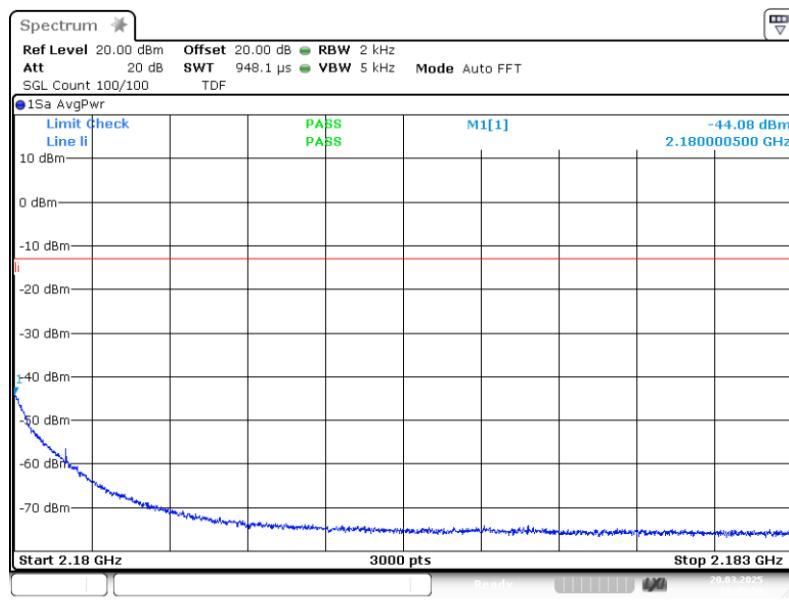
The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.




BUREAU  
VERITAS

**Test Report No.: 25-0067**


Tests performed on UAP-XR [AWS 1700]

Band: AWS 1700; Frequency: 2.1100 GHz to 2.1800 GHz; Band edge: upper; Mod: GSM;  
Input power = 0.3 dB < AGC; Number of signals 2



3.6.2 out of band emi AWS 1700 GSM upper 2carriers -0.3 dB 2  
.180G 2.183G

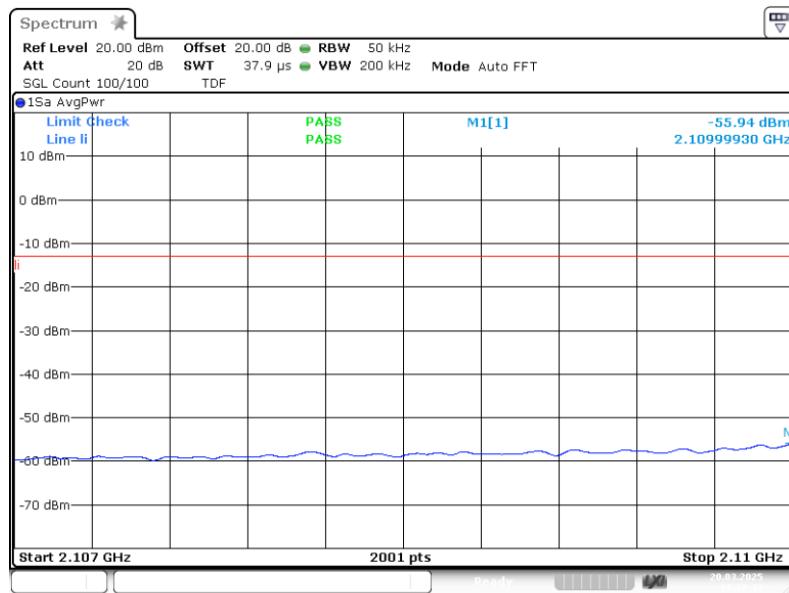
Band: AWS 1700; Frequency: 2.1100 GHz to 2.1800 GHz; Band edge: upper; Mod: GSM;  
Input power = 3 dB > AGC; Number of signals 2



3.6.2 out of band emi AWS 1700 GSM upper 2carriers +3.0 dB 2  
.180G 2.183G

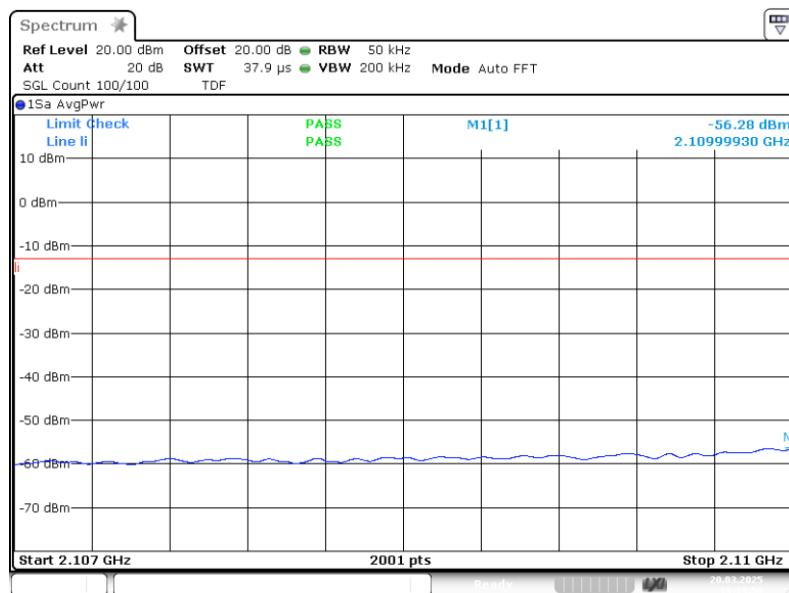
The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.




BUREAU  
VERITAS

**Test Report No.: 25-0067**


Tests performed on UAP-XR [AWS 1700]

Band: AWS 1700; Frequency: 2.1100 GHz to 2.1800 GHz; Band edge: lower; Mod: AWGN;  
Input power = 0.3 dB < AGC; Number of signals 2



3.6.2 out of band emi AWS 1700 AWGN lower 2carriers -0.3 dB  
2.107G 2.110G

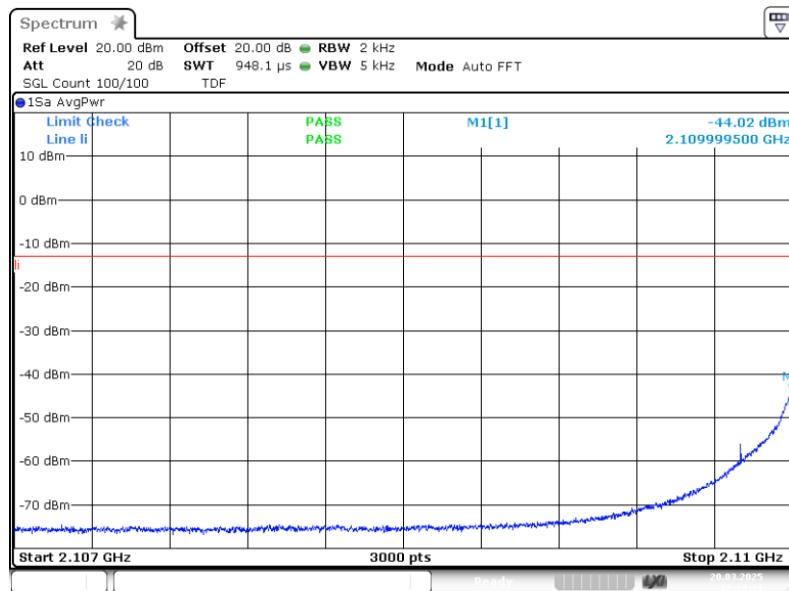
Band: AWS 1700; Frequency: 2.1100 GHz to 2.1800 GHz; Band edge: lower; Mod: AWGN;  
Input power = 3 dB > AGC; Number of signals 2



3.6.2 out of band emi AWS 1700 AWGN lower 2carriers +3.0 dB  
2.107G 2.110G

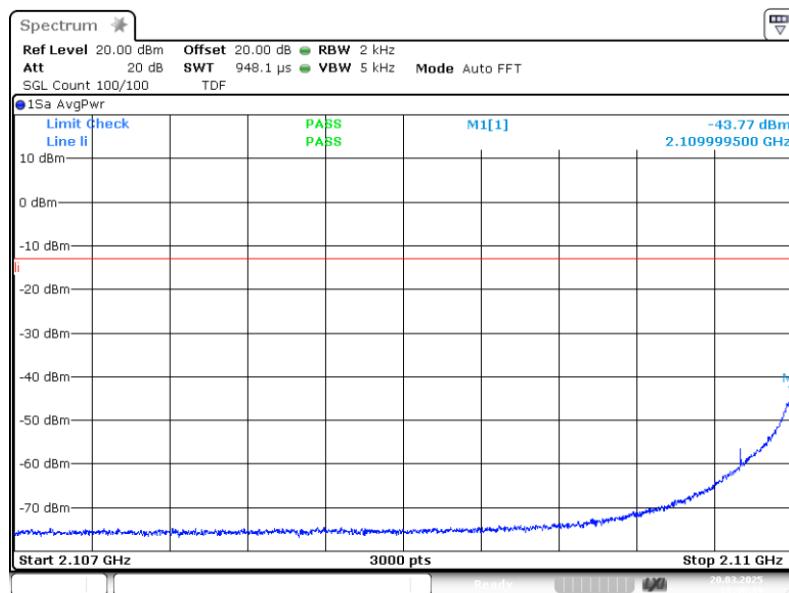
The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.




BUREAU  
VERITAS

**Test Report No.: 25-0067**


Tests performed on UAP-XR [AWS 1700]

Band: AWS 1700; Frequency: 2.1100 GHz to 2.1800 GHz; Band edge: lower; Mod: GSM; Input power = 0.3 dB < AGC; Number of signals 2



3.6.2 out of band emi AWS 1700 GSM lower 2carriers -0.3 dB 2  
.107G 2.110G

Band: AWS 1700; Frequency: 2.1100 GHz to 2.1800 GHz; Band edge: lower; Mod: GSM; Input power = 3 dB > AGC; Number of signals 2



3.6.2 out of band emi AWS 1700 GSM lower 2carriers +3.0 dB 2  
.107G 2.110G

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

#### 5.5.5 TEST EQUIPMENT USED

- Conducted

---

The test results relate only to the tested item. The sample has been provided by the client.  
Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

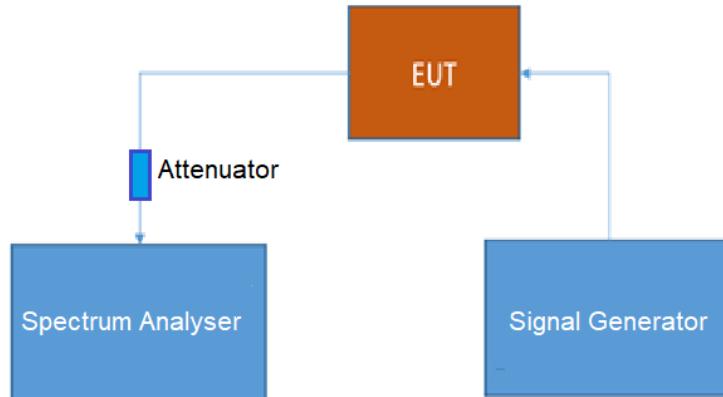
## 5.6 OUT-OF-BAND REJECTION

Standard FCC Part 27

**The test was performed according to:**

ANSI C63.26

**Test date:** 2025-03-20


**Environmental conditions:** 24.7 °C; 23 % r. H.

**Test engineer:** Thomas Hufnagel

### 5.6.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the out-of-band rejection test case for industrial signal boosters.

The EUT was connected to the test setup according to the following diagram:



The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

## 5.6.2 TEST REQUIREMENTS/LIMITS

### TEST REQUIREMENTS/LIMITS

Abstract RSS-131 from ISED:

#### **9.1 Out-of-band rejection**

The gain-versus-frequency response and the 20 dB passband bandwidth of the zone enhancer shall be reported. The zone enhancer shall reject amplification of other signals outside the passband of the zone enhancer.

---

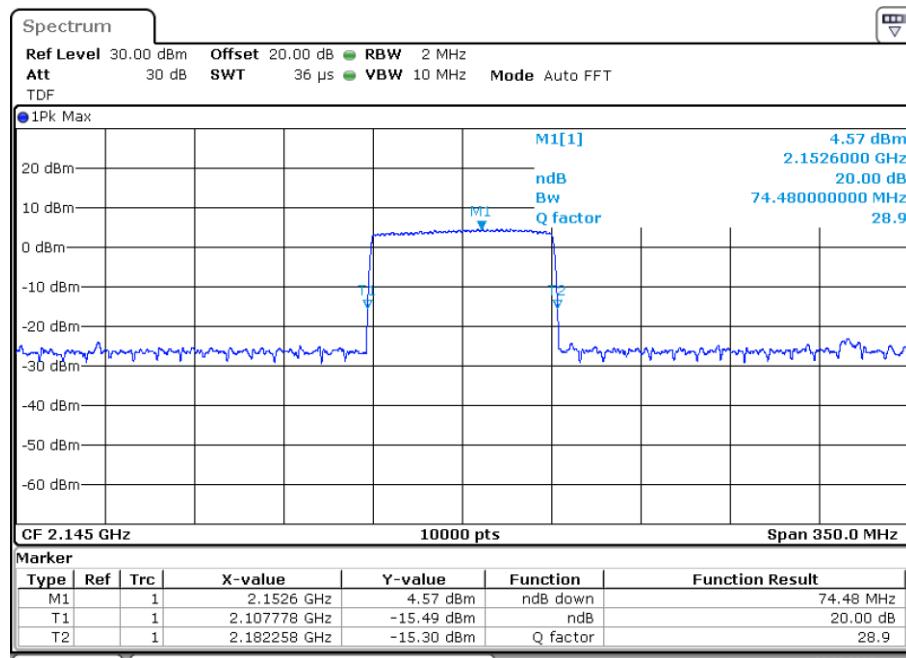
The test results relate only to the tested item. The sample has been provided by the client.  
Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

Test Report No.: 25-0067

Tests performed on UAP-XR [AWS 1700]


### 5.6.3 TEST PROTOCOL

| <b>Band 66 AWS 1700, downlink</b>    |                           |                                                   |                                                   |                              |
|--------------------------------------|---------------------------|---------------------------------------------------|---------------------------------------------------|------------------------------|
| <b>Highest power frequency [MHz]</b> | <b>Output power [dBm]</b> | <b>Lower highest power -20 dB frequency [MHz]</b> | <b>Upper highest power -20 dB frequency [MHz]</b> | <b>20 dB bandwidth [MHz]</b> |
| 2152.60                              | 4.57                      | 2107.778                                          | 2182.258                                          | 74.480                       |

Remark: Please see next sub-clause for the measurement plot.

### 5.6.4 MEASUREMENT PLOT

Frequency Band = AWS 1700, Direction = RF downlink



### 5.6.5 TEST EQUIPMENT USED

- Conducted

The test results relate only to the tested item. The sample has been provided by the client.  
Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

## 5.7 FREQUENCY STABILITY

The frequency stability test case was not carried out, as any frequency errors are eliminated by the given system architecture. This is achieved by generating the LOs in the head-end station and the LOs in the remote unit with a common reference clock. This reference clock is transmitted from the head-end station to the remote unit and regenerated there. This means that the same reference frequency is used for all signal conversions (up- and down-conversion as well as analog-to-digital and digital-to-analog conversion) and any frequency error in the reference clock is compensated therefore. This is already clear from the measurement markings for the occupied bandwidth (26dB bandwidth). It can be seen that the DUT has no influence on the frequency (comparison between input and output signal). In addition, it is operationally necessary for the frequency deviation to be significantly smaller than the spectral distance between the transmission bandwidth edge and the channel bandwidth edge in order to meet the signal quality requirement (signal purity) and such ensure that the fundamental emissions remain within the authorized bands of operation.

---

The test results relate only to the tested item. The sample has been provided by the client.  
Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.

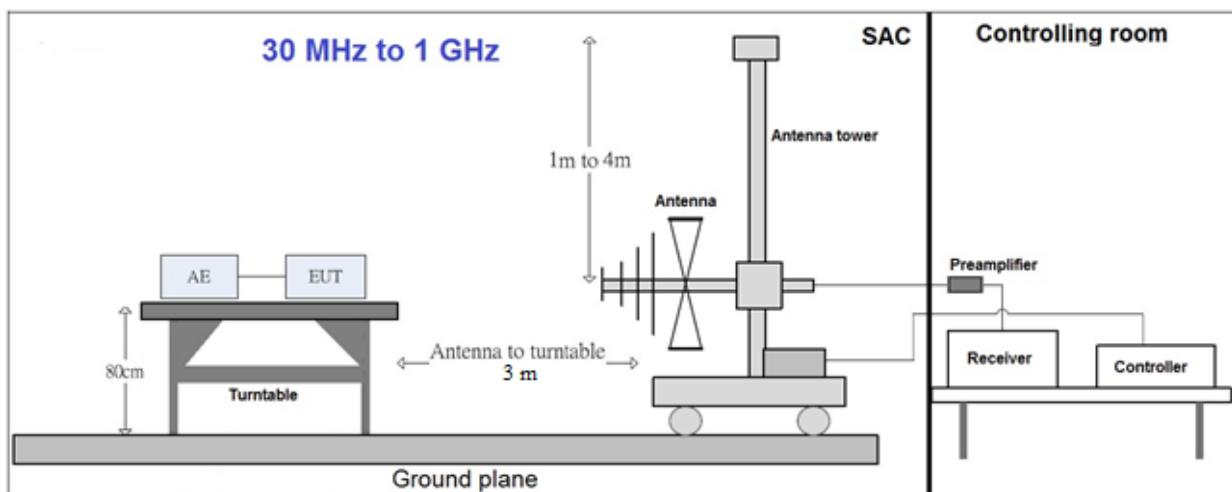
## 5.8 FIELD STRENGTH OF SPURIOUS RADIATION

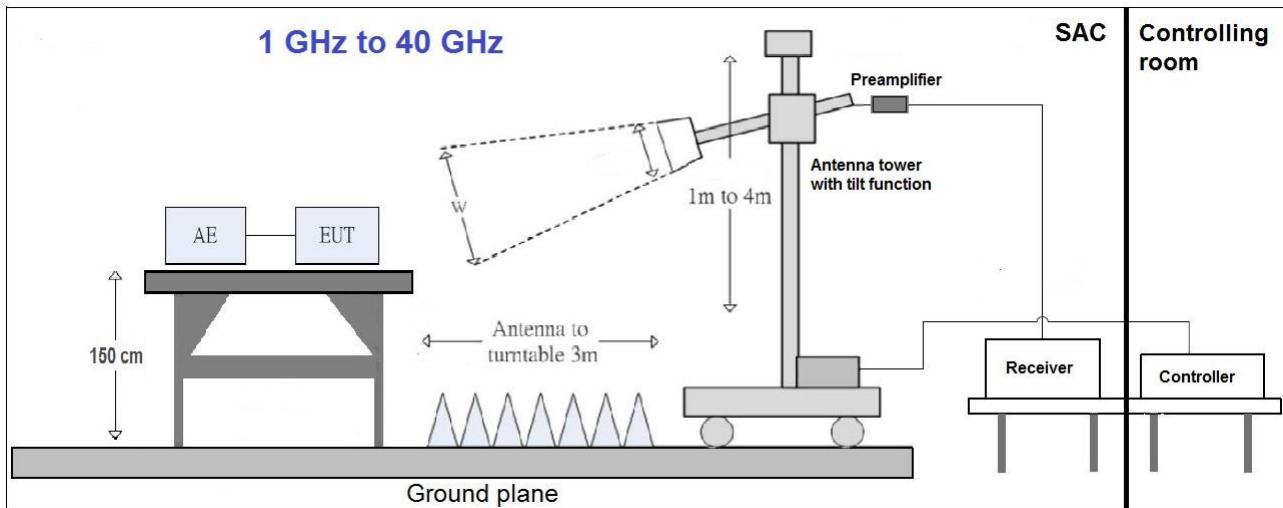
Standard FCC Part 27, §24.53

**The test was performed according to:**

ANSI C63.26

**Test date:** 2025-03-30


**Environmental conditions:** 23.5 °C; 28 % r. H.


**Test engineer:** Thomas Hufnagel

### 5.8.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable radiated spurious emission measurements per § 2.1053

The EUT was connected to the test setup according to the following diagram:





The test set-up was made in accordance to the general provisions of ANSI C63.4 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table 1.5 x 1.5 m<sup>2</sup> in the semi-anechoic chamber. 0.8 meters above the ground or floor-standing arrangement shall be placed on the horizontal ground reference plane. The influence of the EUT support table that is used between 30–1000 MHz was evaluated. For the initial measurements, the receiving antenna is varied from 1-4 meters height and is changed in the vertical plane from vertical to horizontal polarization at each frequency. The highest emissions between 30 MHz to 1000 MHz were analyzed in details by operating the spectrum analyzer and/or EMI receiver in quasi-peak mode to determine the precise amplitude of the emissions.

The measurement procedure is implemented into the EMI test software BAT EMC from NEXIO. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered by a DC power source.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

## 1. Measurement above 30 MHz and up to 1 GHz

### Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

- Antenna distance: 3 m
- Detector: PEAK
- Frequency range: 30 – 1000 MHz
- Frequency steps: 30 kHz
- IF-Bandwidth: 100 kHz
- Turntable angle range: -180° to 180°
- Turntable step size: 15°
- Height variation range: 1 – 4 m
- Height variation step size: 1 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

### Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by ±15° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by ± 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: PEAK
- Measured frequencies: in step 1 determined frequencies
- IF – Bandwidth: 100 kHz
- Turntable angle range: ±15 ° around the determined value
- Antenna Polarisation: max. value determined in step 1

### Step 3: Final measurement with RMS detector

With the settings determined in step 2, the final measurement will be performed:

EMI receiver settings for step 3:

- Detector: RMS (< 1 GHz)
- Measured frequencies: in step 1 and step 2 determined frequencies
- IF – Bandwidth: 100 kHz

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

### **3. Measurement above 1 GHz**

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

#### **Step 1:**

The Equipment Under Test (EUT) was set up on a non-conductive support at 1.5 m height in the semi-anechoic chamber. Absorbers are placed around and between the turn table and the antenna tower.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis. with a step size of 15 °.

The turn table step size (azimuth angle) for the preliminary measurement is 15 °.

#### **Step 2:**

The maximum RFI field strength was determined during the measurement by rotating the turntable ( $\pm 180$  degrees) and varying the height of the receive antenna ( $h = 1 \dots 4$  m) with a additional tilt function of the antenna. The turn table azimuth will slowly vary by  $\pm 15^\circ$ .

EMI receiver settings (for all steps):

- Detector: PEAK
- IF Bandwidth = 1 MHz

#### **Step 3:**

Final measurement with RMS detector

Spectrum analyser settings for step 3:

- Detector: RMS
- Measured frequencies: in step 2 determined frequencies
- IF – Bandwidth: 1 MHz

---

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

## 5.8.2 TEST REQUIREMENTS/LIMITS

Abstract from FCC Part 2:

### **FCC Part 2.1053; Measurement required: Field strength of spurious radiation:**

Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of §2.1049, as appropriate.

## **Part 27; Miscellaneous Wireless Communication Services**

### **Subpart C – Technical standards**

#### **§27.53 – Emission limits**

Abstract § 27.53 FCC:

(h) AWS emission limits—(1) General protection levels. Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least  $43 + 10 \log_{10} (P)$  dB.

---

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

Abstract RSS-139 from ISED:

### **RSS-139; 6.6 Unwanted emission limits**

Unwanted emissions shall be measured in terms of average values.

For all equipment, the TRP or total conducted power (sum of conducted power across all antenna connectors) of the unwanted emissions outside the frequency block or frequency block group shall not exceed the limits shown in table 6.

**Table 6: Unwanted emission limits**

| <b>Offset from the edge of the frequency block or frequency block group</b> | <b>Unwanted emission limits</b> |
|-----------------------------------------------------------------------------|---------------------------------|
| ≤1 MHz                                                                      | -13 dBm/(1% of OB*)             |
| >1 MHz                                                                      | -13 dBm/MHz                     |

\*OB is the occupied bandwidth.

In addition to complying with the above limits, equipment operating in the band 2180-2200 MHz may require additional filtering (see SRSP-519).

---

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

### 5.8.3 TEST PROTOCOL

General considerations concerning the limits:

The measuring bandwidth of 1 MHz was chosen according the test requirements except at the bands from 30 MHz to 1 GHz: At these bands reducing of measurement bandwidth was done. Also outside the downlink frequency band at lower frequencies the measurement bandwidths were reduced to have the possibility to record the spurious emissions at these lower frequencies.

At frequencies where measuring bandwidths were reduced also the limit lines were reduced according the given formula:

$$p_{RBW\text{reduced}} [dBm] = 10 * \log \left( \frac{RBW_{\text{reduced}} [kHz]}{1000 \text{ kHz}} \right) + p_{RBW \text{ 1000 kHz}} [dBm]$$

Hereby "p" are the limit lines' values.

Considerations to MIMO operation:

Because only one antenna port is available not MIMO operation mode was tested.



BUREAU  
VERITAS

Test Report No.: 25-0067

Tests performed on UAP-XR [AWS 1700]

## Measurement tables with one antenna

30 MHz to 1 GHz:

| Band 66, 2110 MHz – 2180 MHz,<br>downlink; |                            |                             |          |              |                |                            |
|--------------------------------------------|----------------------------|-----------------------------|----------|--------------|----------------|----------------------------|
| Spurious<br>Freq.<br>[MHz]                 | Spurious<br>Level<br>[dBm] | Pin (Sum<br>Level)<br>[dBm] | Detector | RBW<br>[kHz] | Limit<br>[dBm] | Margin<br>to Limit<br>[dB] |
| 98.4/hor.                                  | -77.1                      | -0.9                        | RMS      | 100          | -23.0          | 54.1                       |
| 158.7/hor                                  | -86.4                      | -0.9                        | RMS      | 100          | -23.0          | 63.4                       |
| 359.5/hor                                  | -75.3                      | -0.9                        | RMS      | 100          | -23.0          | 52.3                       |
| 98.4/vert.                                 | -81.8                      | -0.9                        | RMS      | 100          | -23.0          | 58.78                      |
| 161.2/vert.                                | -89.0                      | -0.9                        | RMS      | 100          | -23.0          | 66.0                       |
| 359.8/vert.                                | -80.1                      | -0.9                        | RMS      | 100          | -23.0          | 57.1                       |

Above 1 GHz to 18 GHz:

| Band 66, 2110 MHz – 2180 MHz,<br>downlink; |                            |                             |          |              |                |                            |
|--------------------------------------------|----------------------------|-----------------------------|----------|--------------|----------------|----------------------------|
| Spurious<br>Freq.<br>[MHz]                 | Spurious<br>Level<br>[dBm] | Pin (Sum<br>Level)<br>[dBm] | Detector | RBW<br>[kHz] | Limit<br>[dBm] | Margin<br>to Limit<br>[dB] |
| 1875.2/hor                                 | -58.8                      | -0.9                        | RMS      | 1000         | -13.0          | 45.8                       |
| 2144.8/hor                                 | -36.2                      | -0.9                        | RMS      | 1000         | -13.0          | 23.2                       |
| 5122/hor                                   | -53.7                      | -0.9                        | RMS      | 1000         | -13.0          | 40.7                       |
| 17093.2/hor                                | -56.1                      | -0.9                        | RMS      | 1000         | -13.0          | 43.1                       |
| 2110/vert.                                 | -36.8                      | -0.9                        | RMS      | 1000         | -13.0          | 23.8                       |
| 2144.8/vert.                               | -40.9                      | -0.9                        | RMS      | 1000         | -13.0          | 27.9                       |
| 2179.8/vert.                               | -37.1                      | -0.9                        | RMS      | 1000         | -13.0          | 24.1                       |

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

Test Report No.: 25-0067

Tests performed on UAP-XR [AWS 1700]

Above 18 GHz to 27 GHz:

| <b>Band 66, 2110 MHz – 2180 MHz,<br/>downlink;</b> |                                     |                                      |                 |                      |                        |                                     |
|----------------------------------------------------|-------------------------------------|--------------------------------------|-----------------|----------------------|------------------------|-------------------------------------|
| <b>Spurious<br/>Freq.<br/>[MHz]</b>                | <b>Spurious<br/>Level<br/>[dBm]</b> | <b>Pin (Sum<br/>Level)<br/>[dBm]</b> | <b>Detector</b> | <b>RBW<br/>[kHz]</b> | <b>Limit<br/>[dBm]</b> | <b>Margin<br/>to Limit<br/>[dB]</b> |
| 18367.8/hor.                                       | -70.9                               | -0.9                                 | RMS             | 1000                 | -13.0                  | 57.9                                |
| 20624.7/hor                                        | -60.3                               | -0.9                                 | RMS             | 1000                 | -13.0                  | 47.3                                |
| 18887.1/vert.                                      | -71.6                               | -0.9                                 | RMS             | 1000                 | -13.0                  | 71.6                                |
| 20624.7/vert.                                      | -62.8                               | -0.9                                 | RMS             | 1000                 | -13.0                  | 62.8                                |

Abbreviations:

"hor.": horizontal position

"vert.": vertical position

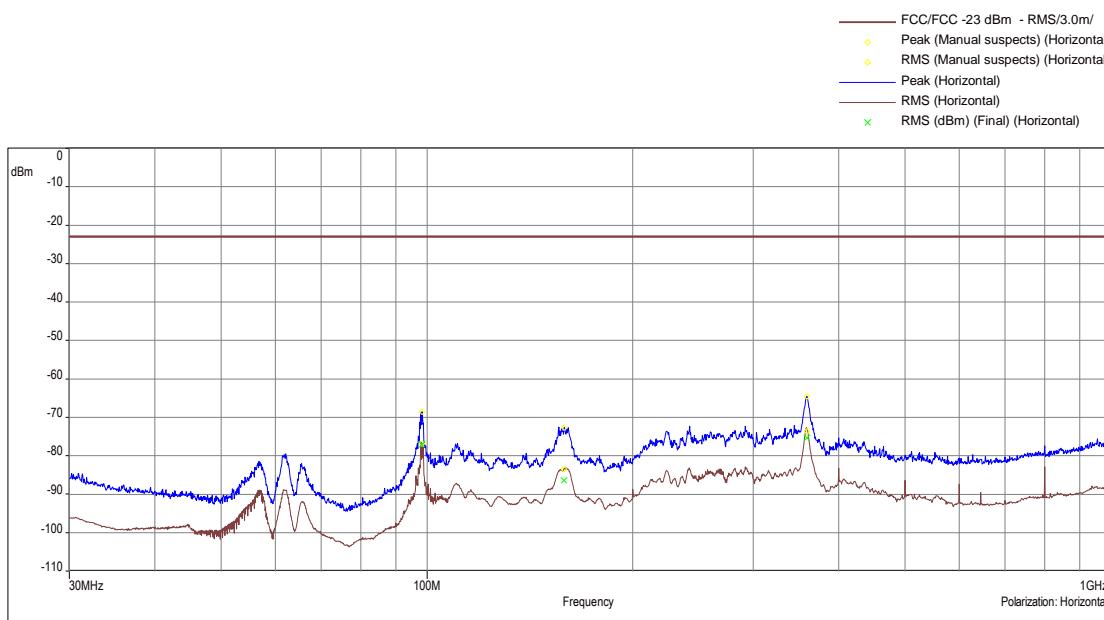
Remarks: Please see next sub-clause for the measurement plot.

The test results relate only to the tested item. The sample has been provided by the client.

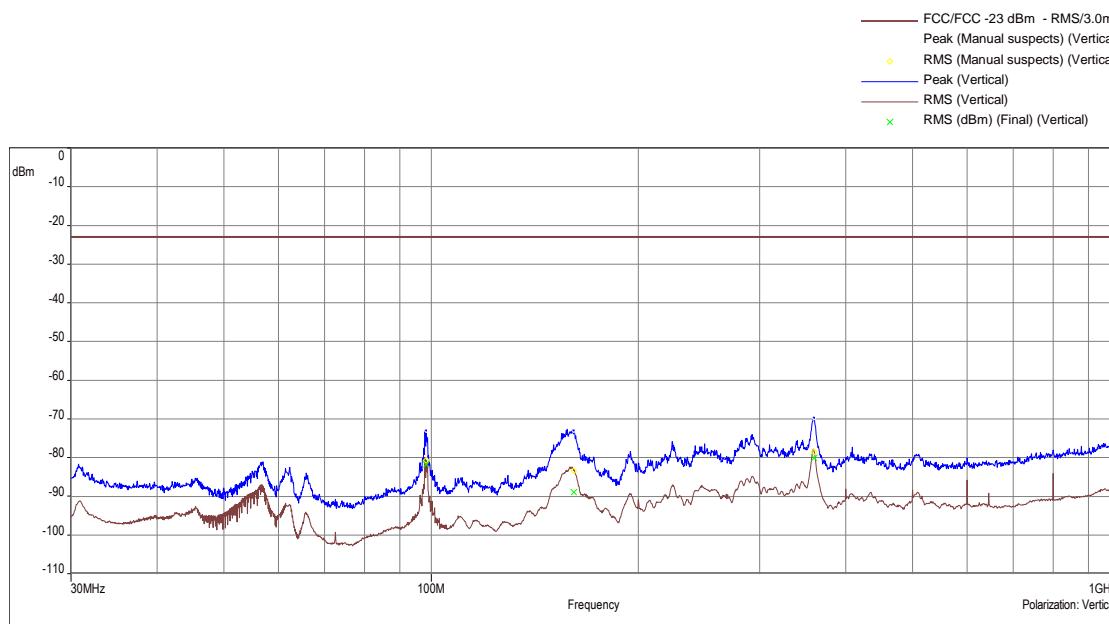
Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS


**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]


## 5.8.4 MEASUREMENT PLOT WITH ONE ANTENNA

### 5.8.4.1 Frequency band = ASW 1700; Direction = RF downlink

30 MHz - 1 GHz. horizontal

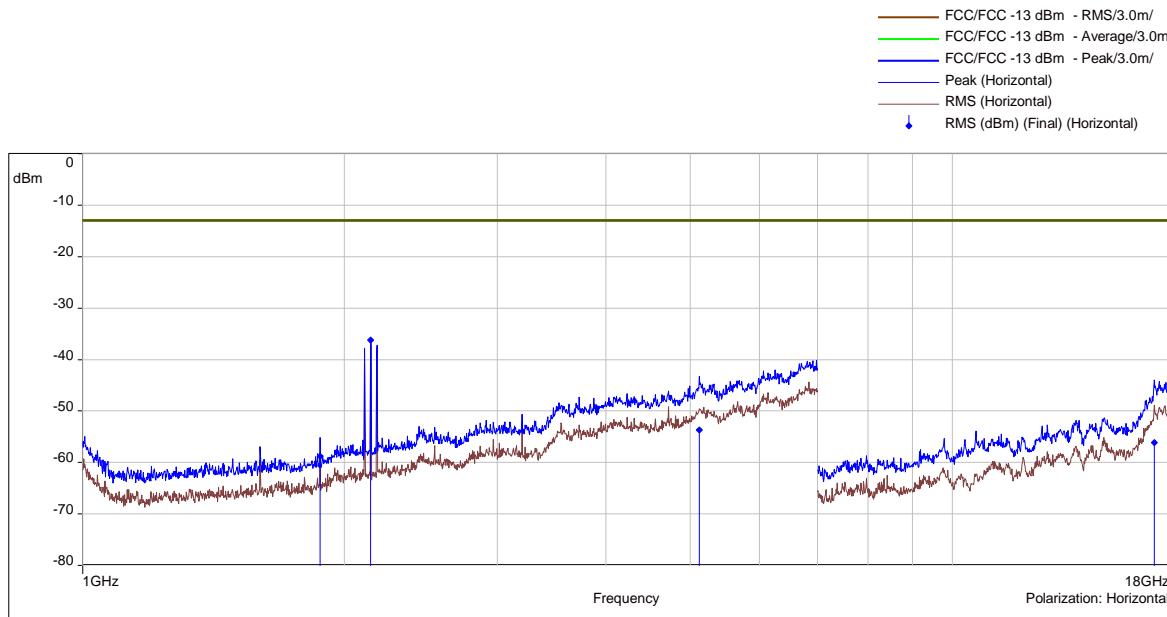


30 MHz - 1 GHz. vertical

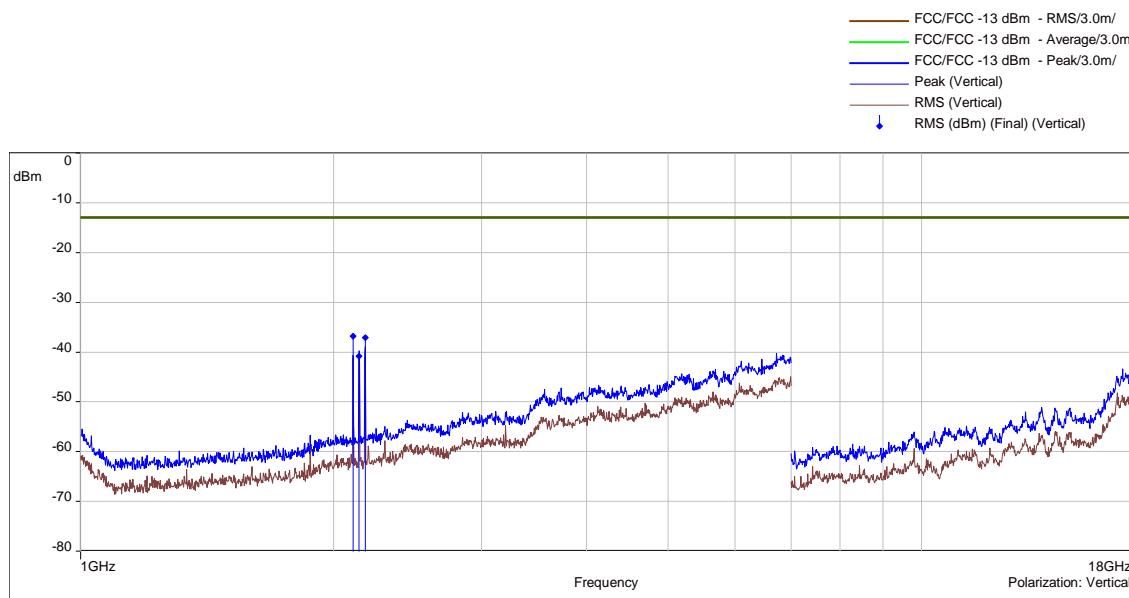


The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.




Test Report No.: 25-0067


Tests performed on UAP-XR [AWS 1700]

BUREAU  
VERITAS

### 1 GHz - 18 GHz. horizontal

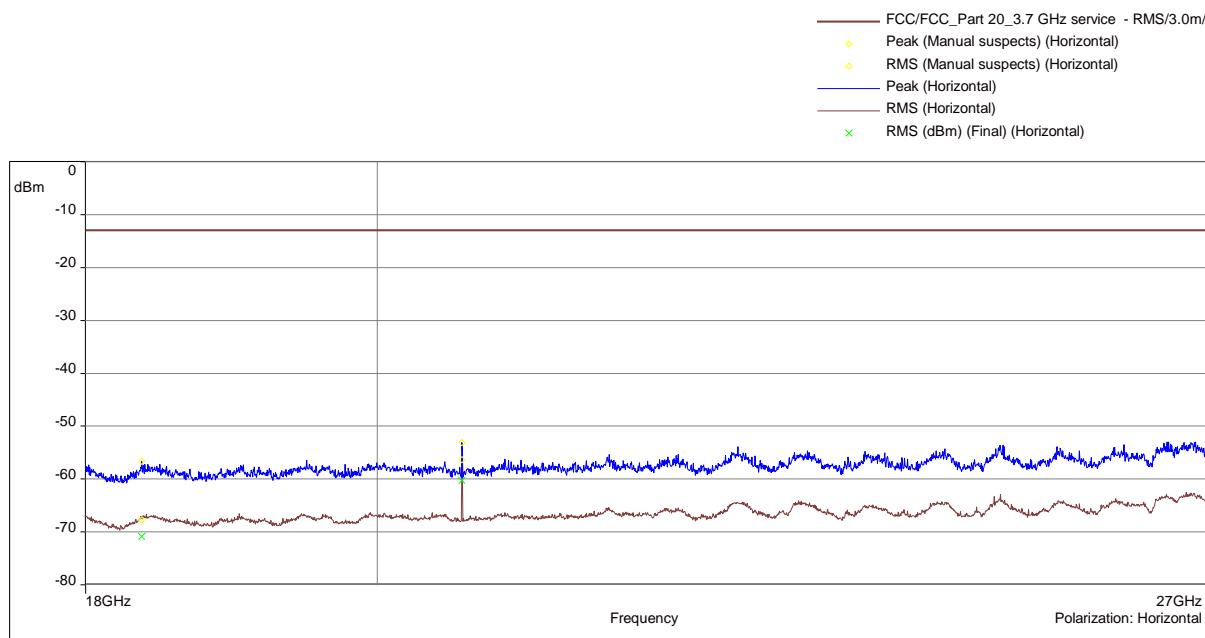


### 1 GHz - 18 GHz. vertical

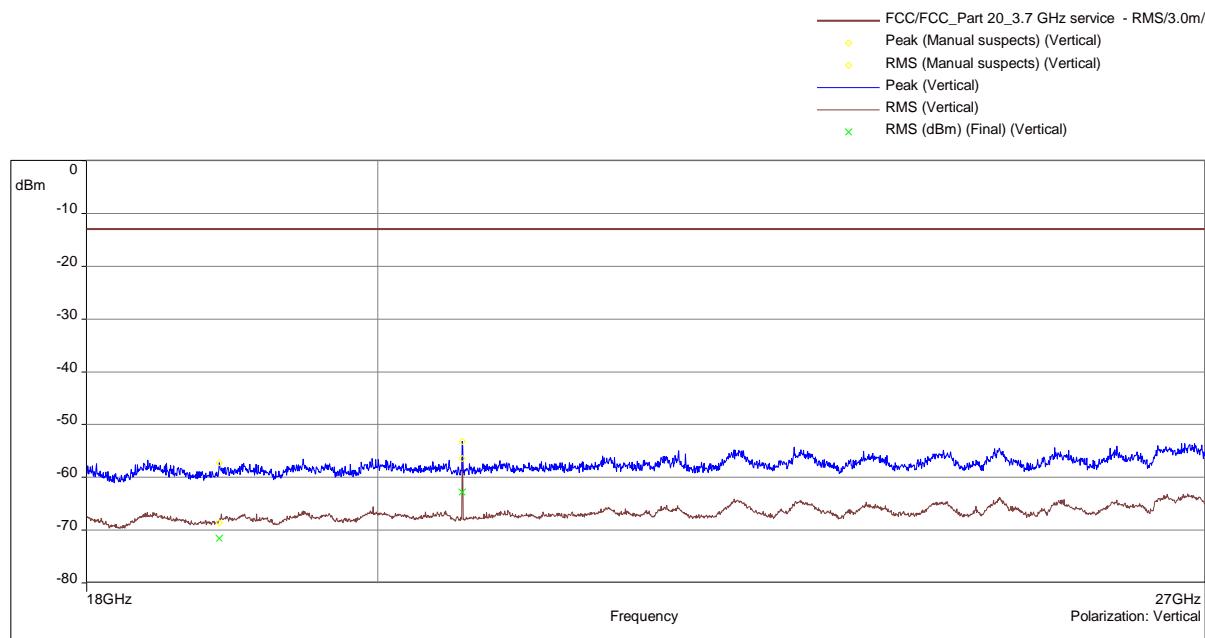


The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.




BUREAU  
VERITAS


**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

### 18 GHz - 27 GHz. horizontal



### 18 GHz - 267 GHz. vertical



The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

### 5.8.5 FIELD STRENGTH CALCULATIONS

$$\mathbf{FS} = \mathbf{SA} + \mathbf{AF} + \mathbf{CL} + \mathbf{PA}$$

Where as:

- FS** = Field strength
- SA** = EMC test receiver reading
- AF** = Antenna factor
- CL** = Cable loss
- PA** = Preamplifier

### 5.8.6 TEST EQUIPMENT USED

- Radiated Emissions

---

The test results relate only to the tested item. The sample has been provided by the client.  
Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

## 6 TEST EQUIPMENT

### 6.1 CONDUCTED EMISSIONS

| Ref.No. | Type                        | Description                           | Manufacturer    | Inventory no. | Last calibration | Calibration due |
|---------|-----------------------------|---------------------------------------|-----------------|---------------|------------------|-----------------|
| 1.1     | FSV40                       | Signal Analyzer 10 Hz - 40 GHz        | Rohde & Schwarz | E-003138      | 2023-10          | 2025-10         |
| 1.2     | SMBV100A                    | Vector Signal Generator 9 kHz - 6 GHz | Rohde & Schwarz | E-003206      | 2023-01          | 2026-01         |
| 1.3     | CA-2.9MF-20-40-10W-RDC      | Attenuator 20 dB                      | Tactron         | E-004057      | 2024-10          | 2026-10         |
| 1.4     | testo 175 H1                | Thermo-Hygrometer                     | Testo           | E-003922      | 2024-12          | 2025-12         |
| 1.5     | Auto Messung 1 Channel V8.1 | Software                              | Bureau Veritas  | Software V8.1 | ---              | ---             |

The calibration interval is the time interval between "Last Calibration" and "Calibration Due".

### 6.2 RADIATED EMISSIONS

| Ref.No. | Type                        | Description                      | Manufacturer       | Inventory no.                  | Last calibration | Calibration due |
|---------|-----------------------------|----------------------------------|--------------------|--------------------------------|------------------|-----------------|
| 1.6     | ESU40                       | EMI test receiver 10 Hz - 40 GHz | Rohde & Schwarz    | E-003138                       | 2024-10          | 2025-10         |
| 1.7     | CBL 6111C                   | Antenna 30 MHz - 1 GHz           | Chase              | E-003226                       | 2024-02          | 2026-02         |
| 1.8     | LB-8180-SF                  | Antenna 0.8 GHz - 18 GHz         | A-Info Inc.        | E-004052                       | 2024-08          | 2025-08         |
| 1.9     | MWH-1826/B                  | Antenna 18 GHz - 26.5 GHz        | ARA Inc.           | E-004044                       | 2024-08          | 2025-08         |
| 1.10    | AM1431                      | Pre amplifier 10 kHz - 1 GHz     | Miteq              | E-003365                       | 2024-10          | 2025-10         |
| 1.11    | ZX60-06183LN+               | Pre amplifier 6 GHz - 18 GHz     | Miteq              | E-003952                       | 2024-10          | 2025-10         |
| 1.12    | AMP-18000-40000-60-18-2.9-F | Preampifier 18 GHz - 40 GHz      | Miteq              | E-004003                       | 2024-10          | 2025-10         |
| 1.13    | CO3000                      | Controller SAC                   | Innco systems GmbH | E-003052 with Software 1.02.62 | ---              | ---             |
| 1.14    | testo 176 P1                | Thermo-Hygrometer                | Testo              | E-003918                       | 2024-07          | 2025-07         |
| 1.15    | BAT-EMC                     | Software                         | Nexio              | V 2024.0.12.0                  | ---              | ---             |

The calibration interval is the time interval between "Last Calibration" and "Calibration Due".

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

### 6.3 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATION

The used factors for antennas, cables etc. are deposited in the used test systems (LabView program and BAT EMC programm). They are actualised by the returing calibration control.

#### Sample calculation

$$E (\text{dB } \mu\text{V/m}) = U (\text{dB } \mu\text{V}) + AF (\text{dB } 1/\text{m}) + \text{Corr. (dB)}$$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)

Linear interpolation will be used for frequencies in between the values in the table.

distance correction =  $-20 * \text{LOG} (d_{\text{Limit}}/ d_{\text{used}})$

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

---

The test results relate only to the tested item. The sample has been provided by the client.

Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

## 7 PHOTO REPORT

Please see separate photo report.

---

The test results relate only to the tested item. The sample has been provided by the client.  
Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

## Annex A: Accreditation certificate (for information)

The accreditation relates to competences stated on the accreditation certificate. The current certificate is available on the homepage of the DAkkS and can be downloaded under accredited bodies with the processing number:

<https://www.dakks.de/en>

---

The test results relate only to the tested item. The sample has been provided by the client.  
Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.



BUREAU  
VERITAS

**Test Report No.: 25-0067**

Tests performed on UAP-XR [AWS 1700]

## Annex B: Additional information provided by client

None.

\*\*\*\*\* End of test report \*\*\*\*\*

---

The test results relate only to the tested item. The sample has been provided by the client.  
Without the written consent of Bureau Veritas Consumer Products Services Germany GmbH excerpts of this report shall not be reproduced.