

InterLab®

Final Report on

SARA-R410M-02B CAT-M1 and NB-IoT Module

FCC ID: XPY2AGQN4NNN
IC: 8595A-2AGQN4NNN

according to FCC Part 22, Subpart H, Part 24, Subpart E and
Part 27, Subpart C

Report Reference: MDE_UBLOX_1708_FCCb_rev1

Date: February 08, 2018

Test Laboratory:

7layers GmbH
Borsigstraße 11
40880 Ratingen
Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH

Borsigstraße 11
40880 Ratingen, Germany
T +49 (0) 2102 749 0
F +49 (0) 2102 749 350
www.7layers.com

Geschäftsführer /
Managing Directors:
Frank Spiller
Bernhard Retka
Alexandre Norré-Oudard

Registergericht registered in:
Düsseldorf, HRB 75554
USt-IdNr VAT No.:
DE203159652
TAX No. 147/5869/0385
A Bureau Veritas Group Company

1 Administrative Data

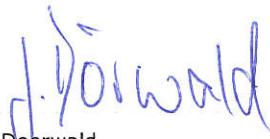
1.1 Project Data

Project Responsible: Patrick Lomax
Date Of Test Report: 2018/02/08
Date of first test: 2017/12/12
Date of last test: 2018/01/12

1.2 Test Laboratory Data

The following list shows all places and laboratories involved for test result generation:

7 layers DE



Company Name : 7layers GmbH
Street : Borsigstrasse 11
City : 40880 Ratingen
Country : Germany
Contact Person : Mr. Michael Albert
Phone : +49 2102 749 201
Fax : +49 2102 749 444
E Mail : Michael.Albert@7Layers.com

Laboratory Details

Lab ID	Identification	Responsible	Accreditation Info
Lab 1	Radiated Emissions	Mr. Marco Kullik Mr. Jens Dörwald	DAkkS-Registration no. D-PL-12140-01-00 ISEDC OATS registration number 3699A-1 FCC accreditation registration number 929146
Lab 2	Radio Lab	Mr. Dobrin Dobrinov Mr. Daniel Gall	DAkkS-Registration no. D-PL-12140-01-00 ISEDC OATS registration number 3699A-1 FCC accreditation registration number 929146

1.3 Signature of the Testing Responsible

Jens Doerwald
responsible for tests performed in: Lab 1, Lab 2

7 layers GmbH, Borsigstr. 11
40880 Ratingen, Germany
Phone +49 (0)2102 749 0

1.4 Signature of the Accreditation Responsible

Accreditation scope responsible person
responsible for Lab 1, Lab 2

2 Test Object Data

2.1 General OUT Description

The following section lists all OUTs (Object's Under Test) involved during testing.

OUT: SARA-R410M-02B

Type / Model / Family:

SARA-R410M-02B CAT-M1 and NB-IoT Module

FCC ID: XPY2AGQN4NNN

IC: 8595A-2AGQN4NNN

Product Category:

Module

Manufacturer:

Company Name:

see applicant data

Contact Person:

see applicant data

Parameter List:

Parameter name	Value
AC Power Supply	120V / 60Hz (V)
DC Power Supply	12V via AC/DC Adapter (V)
highest channel	20649 (848.9MHz) for NB-IoT eFDD5, 19199 (1909.9MHz) for NB-IoT eFDD2, 23179 (715.9MHz) for eFDD12, 23279 (786.9MHz) for NB-IoT eFDD13
lowest channel	20401 (824.1MHz) for NB-IoT eFDD5, 18601 (1850.1MHz) for NB-IoT eFDD2, 23011 (699.1MHz) for NB-IoT eFDD12, 23181 (777.1MHz) for NB-IoT eFDD13
LTE_Operating Frequencies	See Annex
mid channel	20525 (834.1MHz) for NB-IoT eFDD5, 18900 (1880.0MHz) for NB-IoT eFDD2, 23095 (707.5MHz) for NB-IoT eFDD12, 23230 (782.0MHz) for NB-IoT eFDD13

2.2 Detailed Description of OUT Samples

Sample : ah01

<i>OUT Identifier</i>	SARA-R410M-02B		
<i>Sample Description</i>	Standard Sample		
<i>Serial No.</i>	3527350900140757		
<i>HW Status</i>	306A05		
<i>SW Status</i>	L0.00.00.05.01, A.01.01		
<i>Low Voltage</i>	3.3 V	<i>Low Temp.</i>	-20 °C
<i>High Voltage</i>	4.4 V	<i>High Temp.</i>	65 °C
<i>Nominal Voltage</i>	3.8 V	<i>Normal Temp.</i>	25 °C

2.3 OUT Features

Features for OUT: SARA-R410M-02B

<i>Designation</i>	<i>Description</i>	<i>Allowed Values</i>	<i>Supported Value(s)</i>
Features for scope: FCC_v2			
Eant	removable antenna supplied and type tested with the radio equipment, designed as an indispensable part of the equipment		
eFDD2			
eFDD4			
eFDD5			
eFDD12			
eFDD13			
TantC	temporary antenna connector, which may be only built-in for testing, designed as an example part of the equipment		

2.4 Setups used for Testing

For each setup a relation is given to determine if and which samples and auxiliary equipment is used. The left side list all OUT samples and the right side lists all auxiliary equipment for the given setup.

<i>Setup No.</i>	<i>List of OUT samples</i>	<i>List of auxiliary equipment</i>		
	<i>Sample No.</i>	<i>Sample Description</i>	<i>AE No.</i>	<i>AE Description</i>
S01_ah01				
	Sample: ah01	Standard Sample	AE AE01	Evaluation test board
			AE AE02	AC/DC converter

3 Results

3.1 General

Documentation of tested devices:

Available at the test laboratory.

Interpretation of the test results:

The results of the inspection are described on the following pages, where 'Conformity' or 'Passed' means that the certification criteria were verified and that the tested device is conform to the applied standard.

In cases where 'Declaration' is printed, the required documents are available in the manufacturers product documentation.

In cases where 'not applicable' is printed, the test case requirements are not relevant to the specific equipment implementation.

Note:

1. All tests are performed under environmental conditions within the requirements of the specifications. Environmental conditions are available at the laboratory.
2. The SARA-R410M-02B module is a CAT-M1 and NB-IoT module. This report is related only to the NB-IoT bands 2, 5, 12 and 13.
3. This report replaces report MDE_UBLOX_1708_FCCb. Changes made: added BPSK measurements to table of parts 22.5, 24.5 and 27.5.

3.2 List of the Applicable Body

(Bodies for Scope: FCC_v2)

<i>Designation</i>	<i>Description</i>
FCC47CFRChIPART22PUBLIC MOBILE SERVICES	Part 22, Subpart H - Cellular Radiotelephone Service
FCC47CFRChIPART24PERSONAL COMMUNICATIONS SERVICES	Part 24, Subpart E - Broadband PCS
FCC47CFRChIPART27MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES	Part 27, Subpart C - Technical Standards

3.3 List of Test Specification

Test Specification: **FCC part 2 and 22**

Version 10-1-16 Edition

Title: PART 2 - GENERAL RULES AND REGULATIONS
PART 22 - PUBLIC MOBILE SERVICES

<i>Applicable Errata</i>	<i>Activate Date</i>	<i>Comment</i>
ANSI C63.26-2015	17/07/01	

Test Specification: **FCC part 2 and 24**

Date / Version 2015/10/01 Version: 10-1-16 Edition

Title: PART 2 - GENERAL RULES AND REGULATIONS
PART 24 - PERSONAL COMMUNICATIONS SERVICES

<i>Applicable Errata</i>	<i>Activate Date</i>	<i>Comment</i>
ANSI C63.26-2015	17/07/01	

Test Specification: **FCC part 2 and 27**

Version 10-1-16 Edition

Title: PART 2 - GENERAL RULES AND REGULATIONS
PART 27 - MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES

<i>Applicable Errata</i>	<i>Activate Date</i>	<i>Comment</i>
ANSI C63.26-2015	17/07/01	

3.4 Summary

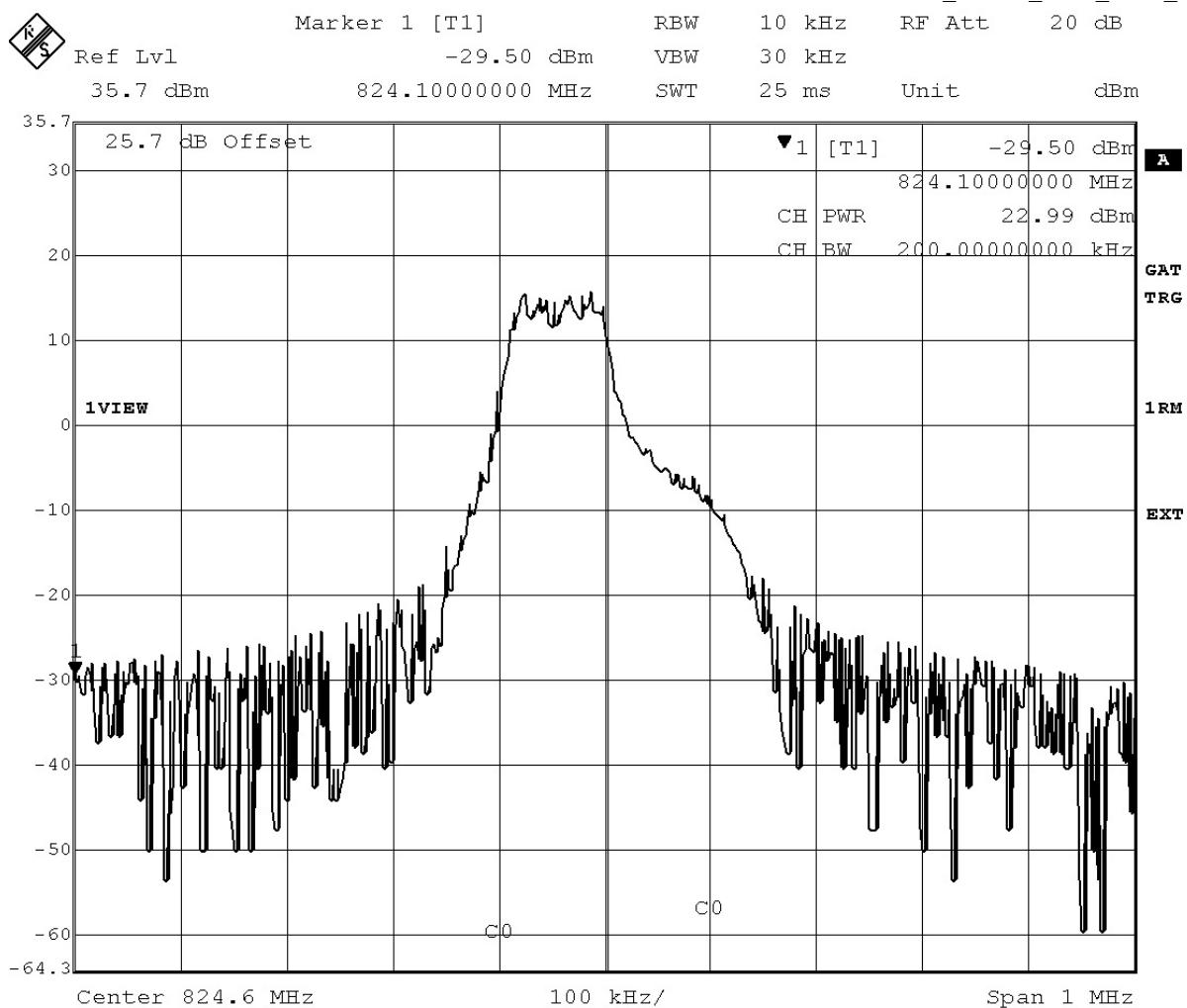
Test Case Identifier / Name Test (condition)	Result	Date of Test	Lab Ref.	Setup
Test Specification: FCC part 2 and 22				
22.1 RF Power Output §2.1046, §22.913 22.1; _RF Power Output Summary §2.1046, §22.913	Passed	2018/01/08	Lab 2	S01_ah01
22.2 Frequency stability §2.1055 22.2; _Frequency stability Summary §2.1055	Passed	2017/12/17	Lab 2	S01_ah01
22.3 Spurious emissions at antenna terminals §2.1051, §22.917 22.3; Spurious emissions at antenna terminals summary §2.1051, §22.917	Passed	2017/12/17	Lab 2	S01_ah01
22.4 Field strength of spurious radiation §2.1053, §22.917 22.4; Field strength of spurious radiation Summary §2.1053, §22.917	Passed	2017/12/12	Lab 1	S01_ah01
22.5 Emission and Occupied Bandwidth §2.1049, §22.917 22.5; _Emission and Occupied Bandwidth Summary §2.1049, §22.917	Passed	2018/01/08	Lab 2	S01_ah01
22.6 Band edge compliance §2.1053, §22.917 22.6; _Band edge compliance Summary §2.1053, §22.917	Passed	2018/01/08	Lab 2	S01_ah01
22.7 Peak-to-Average Ratio Summary §2.1046 22.7; Peak-to-Average Ratio Summary §2.1046	Passed	2018/01/08	Lab 2	S01_ah01
Test Specification: FCC part 2 and 24				
24.1 RF Power Output §2.1046, §24.232 24.1; RF Power Output Summary §2.1046, §24.232	Passed	2018/01/08	Lab 2	S01_ah01
24.2 Frequency stability §2.1055, §24.235 24.2; Frequency stability Summary §2.1055, 24.235	Passed	2018/01/08	Lab 2	S01_ah01
24.3 Spurious emissions at antenna terminals §2.1051, §24.238 24.3; Spurious emissions at antenna terminals Summary §2.1051, §24.238	Passed	2017/12/17	Lab 2	S01_ah01
24.4 Field strength of spurious radiation §2.1053, §24.238 24.4; Field strength of spurious radiation Summary §2.1053, §24.238	Passed	2017/12/12	Lab 1	S01_ah01
24.5 Emission and Occupied Bandwidth §2.1049, §24.238 24.5; Emission and Occupied Bandwidth Summary §2.1049, §24.238	Passed	2018/01/08	Lab 2	S01_ah01
24.6 Band edge compliance §2.1053, §24.238 24.6; Band edge compliance summary §2.1053, §24.238	Passed	2018/01/08	Lab 2	S01_ah01
24.7 Peak-to-Average ratio §2.1046, §24.232 24.7; Peak-to-Average Ratio Summary §2.1046, §24.232	Passed	2018/01/08	Lab 2	S01_ah01
Test Specification: FCC part 2 and 27				
27.1 RF Power Output §2.1046, §27.250 27.1; RF Power Output Summary §2.1046, §27.250	Passed	2018/01/08	Lab 2	S01_ah01

<i>Test Case Identifier / Name</i>		Reference: MDE_UBLOX_1708_FCCb_rev1			
<i>Test (condition)</i>	<i>Result</i>	<i>Date of Test</i>	<i>Lab</i>	<i>Ref.</i>	<i>Setup</i>
27.2 Frequency stability §2.1055, §27.54 27.2; Frequency stability Summary §2.1055, §27.54	Passed	2018/01/12	Lab 2	S01_ah01	
27.3 Spurious emissions at antenna terminals §2.1051, §27.53 27.3; Spurious emissions at antenna terminals Summary §2.1051, §27.53	Passed	2017/12/17	Lab 2	S01_ah01	
27.4 Field strength of spurious radiation §2.1053, §27.53 27.4; Field strength of spurious radiation Summary §2.1053, §27.53	Passed	2017/12/12	Lab 1	S01_ah01	
27.5 Emission and Occupied Bandwidth §2.1049 27.5; Emission and Occupied Bandwidth Summary §2.1049	Passed	2017/12/17	Lab 2	S01_ah01	
27.6 Band edge compliance §2.1053, §27.53 27.6; Band edge compliance summary §2.1053, §27.53	Passed	2018/01/08	Lab 2	S01_ah01	
27.7 Peak-to-Average ratio §2.1046, §27.50 27.7; Peak-to-Average Ratio Summary §2.1046, §27.50	Passed	2018/01/08	Lab 2	S01_ah01	

3.5 Detailed Results

3.5.1 22.1 RF Power Output §2.1046, §22.913

Test: 22.1; _RF Power Output Summary §2.1046, §22.913


Result: Passed
Setup No.: S01_ah01
Date of Test: 2018/01/08 10:21
Body: FCC47CFRChIPART22PUBLIC MOBILE SERVICES
Test Specification: FCC part 2 and 22

Detailed Results:

Radio Technology	Reference Test Frequencies	Channel	Sub-carrier	RMS Conducted Power (dBm)	FCC EIRP Limit (W)	IC EIRP Limit (W)	Maximum Antenna Gain (dBi)
NB-IoT eFDD 5 QPSK	standalone	20401	12	20.52	11.48	11.5	20.08
NB-IoT eFDD 5 QPSK	standalone	20525	12	20.29	11.48	11.5	20.31
NB-IoT eFDD 5 QPSK	standalone	20649	12	20.13	11.48	11.5	20.47
NB-IoT eFDD 5 QPSK	in-band	20406	12	20.66	11.48	11.5	19.94
NB-IoT eFDD 5 QPSK	in-band	20460	12	20.53	11.48	11.5	20.07
NB-IoT eFDD 5 QPSK	in-band	20469	12	20.41	11.48	11.5	20.19
NB-IoT eFDD 5 QPSK	in-band	20516	12	20.25	11.48	11.5	20.35
NB-IoT eFDD 5 QPSK	in-band	20535	12	20.25	11.48	11.5	20.35
NB-IoT eFDD 5 QPSK	in-band	20544	12	20.26	11.48	11.5	20.34
NB-IoT eFDD 5 QPSK	in-band	20644	12	20.02	11.48	11.5	20.58
NB-IoT eFDD 5 QPSK	in-band	20610	12	19.89	11.48	11.5	20.71
NB-IoT eFDD 5 QPSK	in-band	20619	12	20.2	11.48	11.5	20.4
NB-IoT eFDD 5 BPSK	guard-band	20401	12	20.52	11.48	11.5	20.08
NB-IoT eFDD 5 BPSK	guard-band	20501	12	20.31	11.48	11.5	20.29
NB-IoT eFDD 5 BPSK	guard-band	20649	12	20.01	11.48	11.5	20.59
NB-IoT eFDD 5 QPSK	standalone	20401	6	21.3	11.48	11.5	19.3
NB-IoT eFDD 5 QPSK	standalone	20525	6	21.26	11.48	11.5	19.34
NB-IoT eFDD 5 QPSK	standalone	20649	6	21.67	11.48	11.5	18.93
NB-IoT eFDD 5 QPSK	in-band	20406	6	22.99	11.48	11.5	17.61
NB-IoT eFDD 5 QPSK	in-band	20460	6	21.5	11.48	11.5	19.1
NB-IoT eFDD 5 QPSK	in-band	20469	6	21.44	11.48	11.5	19.16
NB-IoT eFDD 5 QPSK	in-band	20516	6	21.62	11.48	11.5	18.98
NB-IoT eFDD 5 QPSK	in-band	20535	6	21.24	11.48	11.5	19.36
NB-IoT eFDD 5 QPSK	in-band	20544	6	21.1	11.48	11.5	19.5
NB-IoT eFDD 5 QPSK	in-band	20644	6	21.17	11.48	11.5	19.43
NB-IoT eFDD 5 QPSK	in-band	20610	6	21.22	11.48	11.5	19.38
NB-IoT eFDD 5 QPSK	in-band	20619	6	21.19	11.48	11.5	19.41
NB-IoT eFDD 5 BPSK	guard-band	20401	6	20.83	11.48	11.5	19.77
NB-IoT eFDD 5 BPSK	guard-band	20501	6	21.36	11.48	11.5	19.24
NB-IoT eFDD 5 BPSK	guard-band	20649	6	21.71	11.48	11.5	18.89
NB-IoT eFDD 5 QPSK	standalone	20401	3	22.14	11.48	11.5	18.46
NB-IoT eFDD 5 QPSK	standalone	20525	3	21.75	11.48	11.5	18.85
NB-IoT eFDD 5 QPSK	standalone	20649	3	22.39	11.48	11.5	18.21
NB-IoT eFDD 5 QPSK	in-band	20406	3	20.57	11.48	11.5	20.03
NB-IoT eFDD 5 QPSK	in-band	20460	3	21.51	11.48	11.5	19.09
NB-IoT eFDD 5 QPSK	in-band	20469	3	21.97	11.48	11.5	18.63
NB-IoT eFDD 5 QPSK	in-band	20516	3	21.18	11.48	11.5	19.42
NB-IoT eFDD 5 QPSK	in-band	20535	3	21.43	11.48	11.5	19.17
NB-IoT eFDD 5 QPSK	in-band	20544	3	21.77	11.48	11.5	18.83
NB-IoT eFDD 5 QPSK	in-band	20644	3	21.93	11.48	11.5	18.67
NB-IoT eFDD 5 QPSK	in-band	20610	3	21.64	11.48	11.5	18.96
NB-IoT eFDD 5 QPSK	in-band	20619	3	22.24	11.48	11.5	18.36

Radio Technology	Reference Test Frequencies	Channel	Sub-carrier	RMS Conducted Power (dBm)	FCC EIRP Limit (W)	IC EIRP Limit (W)	Maximum Antenna Gain (dBi)
NB-IoT eFDD 5 BPSK	guard-band	20401	3	22.11	11.48	11.5	18.49
NB-IoT eFDD 5 BPSK	guard-band	20501	3	21.64	11.48	11.5	18.96
NB-IoT eFDD 5 BPSK	guard-band	20649	3	22.28	11.48	11.5	18.32
NB-IoT eFDD 5 QPSK	standalone	20401	1	21.56	11.48	11.5	19.04
NB-IoT eFDD 5 QPSK	standalone	20525	1	21.31	11.48	11.5	19.29
NB-IoT eFDD 5 QPSK	standalone	20649	1	21.17	11.48	11.5	19.43
NB-IoT eFDD 5 QPSK	in-band	20406	1	21.47	11.48	11.5	19.13
NB-IoT eFDD 5 QPSK	in-band	20460	1	21.61	11.48	11.5	18.99
NB-IoT eFDD 5 QPSK	in-band	20469	1	21.57	11.48	11.5	19.03
NB-IoT eFDD 5 QPSK	in-band	20516	1	21.82	11.48	11.5	18.78
NB-IoT eFDD 5 QPSK	in-band	20535	1	21.69	11.48	11.5	18.91
NB-IoT eFDD 5 QPSK	in-band	20544	1	21.87	11.48	11.5	18.73
NB-IoT eFDD 5 QPSK	in-band	20644	1	21.2	11.48	11.5	19.4
NB-IoT eFDD 5 QPSK	in-band	20610	1	21.38	11.48	11.5	19.22
NB-IoT eFDD 5 QPSK	in-band	20619	1	21.25	11.48	11.5	19.35
NB-IoT eFDD 5 QPSK	guard-band	20401	1	21.28	11.48	11.5	19.32
NB-IoT eFDD 5 QPSK	guard-band	20501	1	21.39	11.48	11.5	19.21
NB-IoT eFDD 5 QPSK	guard-band	20649	1	21.11	11.48	11.5	19.49
NB-IoT eFDD 5 BPSK	standalone	20401	1	21.86	11.48	11.5	18.74
NB-IoT eFDD 5 BPSK	standalone	20525	1	21.73	11.48	11.5	18.87
NB-IoT eFDD 5 BPSK	standalone	20649	1	21.79	11.48	11.5	18.81
NB-IoT eFDD 5 BPSK	in-band	20406	1	21.78	11.48	11.5	18.82
NB-IoT eFDD 5 BPSK	in-band	20460	1	21.97	11.48	11.5	18.63
NB-IoT eFDD 5 BPSK	in-band	20460	1	21.97	11.48	11.5	18.63
NB-IoT eFDD 5 BPSK	in-band	20469	1	21.61	11.48	11.5	18.99
NB-IoT eFDD 5 BPSK	in-band	20516	1	21.75	11.48	11.5	18.85
NB-IoT eFDD 5 BPSK	in-band	20535	1	21.72	11.48	11.5	18.88
NB-IoT eFDD 5 BPSK	in-band	20544	1	21.6	11.48	11.5	19
NB-IoT eFDD 5 BPSK	in-band	20644	1	21.61	11.48	11.5	18.99
NB-IoT eFDD 5 BPSK	in-band	20610	1	21.56	11.48	11.5	19.04
NB-IoT eFDD 5 BPSK	in-band	20619	1	21.61	11.48	11.5	18.99
NB-IoT eFDD 5 BPSK	guard-band	20401	1	21.6	11.48	11.5	19
NB-IoT eFDD 5 BPSK	guard-band	20501	1	22	11.48	11.5	18.6
NB-IoT eFDD 5 BPSK	guard-band	20649	1	21.38	11.48	11.5	19.22

Reference: MDE_UBLOX_1708_FCCb_rev1

Date: 3.JAN.2018 10:38:16

eFDD5 NB-IoT QPSK, Subcarrier 6, Channel 20406

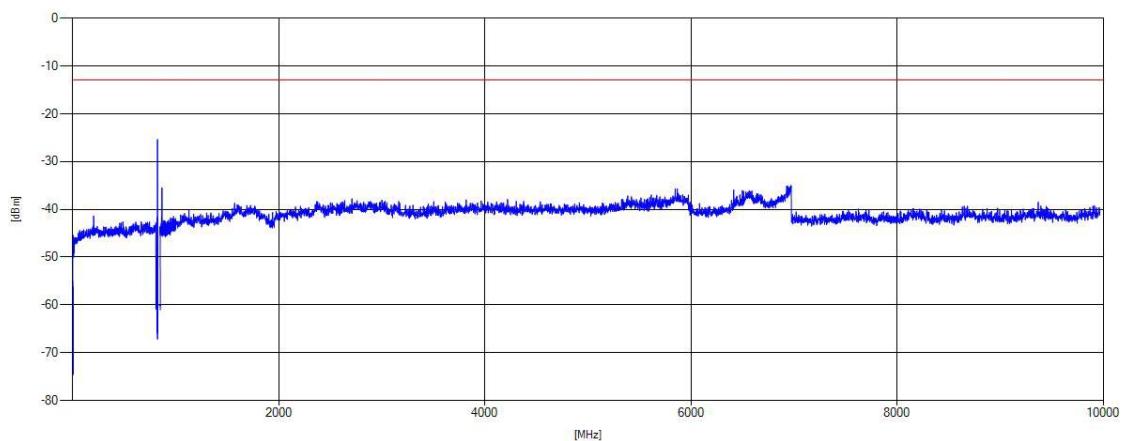
3.5.2 22.2 Frequency stability §2.1055

Test: 22.2; _Frequency stability Summary §2.1055

Result: Passed
 Setup No.: S01_ah01
 Date of Test: 2017/12/17 10:59
 Body: FCC47CFRChIPART22PUBLIC MOBILE SERVICES
 Test Specification: FCC part 2 and 22

Detailed Results:

Temp. °C	Duration min	Voltage	Limit Hz	Freq. error Average (Hz)	Freq. error Max. (Hz)	Verdict
-30	0	normal	2091.25	-3	6	passed
-30	5			-5	12	passed
-30	10			-5	-8	passed
-20	0	normal	2091.25	-6	-10	passed
-20	5			-5	3	passed
-20	10			10	15	passed
-10	0	normal	2091.25	-17	-16	passed
-10	5			-3	-11	passed
-10	10			-6	-9	passed
0	0	normal	2091.25	-6	15	passed
0	5			-17	10	passed
0	10			-3	12	passed
10	0	normal	2091.25	-11	6	passed
10	5			-10	12	passed
10	10			-10	13	passed
20	0	low	2091.25	-4	-8	passed
20	5			6	10	passed
20	10			12	16	passed
20	0	normal = high ¹⁾	2091.25	-3	5	passed
20	5			6	-6	passed
20	10			5	-6	passed
20	0	high	2091.25	4	10	passed
20	5			-6	-10	passed
20	10			-3	6	passed
30	0	normal	2091.25	5	-2	passed
30	5			-4	-3	passed
30	10			-6	-15	passed
40	0	normal	2091.25	-14	12	passed
40	5			-3	-13	passed
40	10			-12	-2	passed
50	0	normal	2091.25	10	-3	passed
50	5			-3	-4	passed
50	10			-4	-6	passed

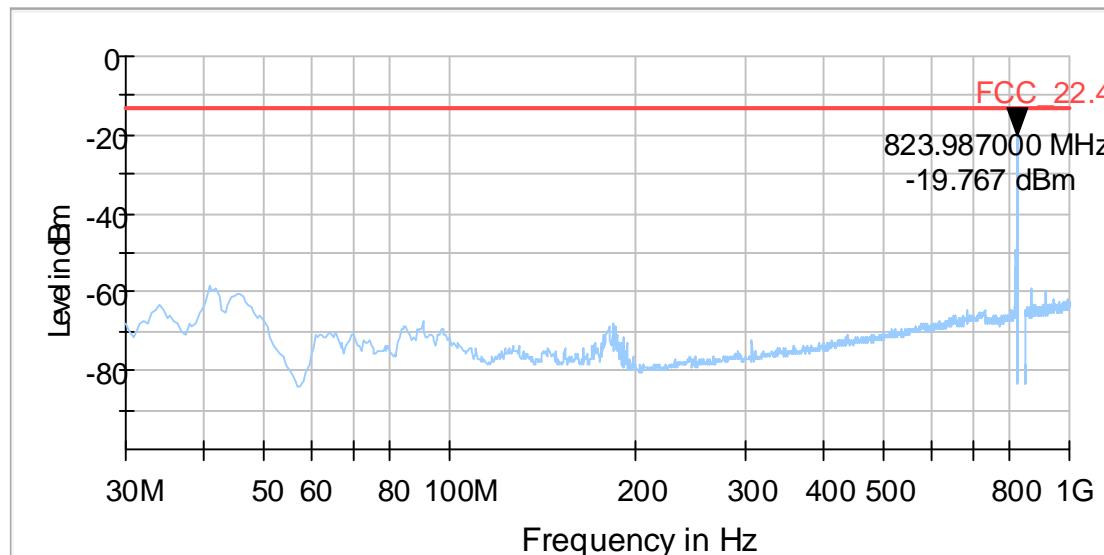

3.5.3 22.3 Spurious emissions at antenna terminals §2.1051, §22.917

Test: 22.3; Spurious emissions at antenna terminals summary §2.1051, §22.917

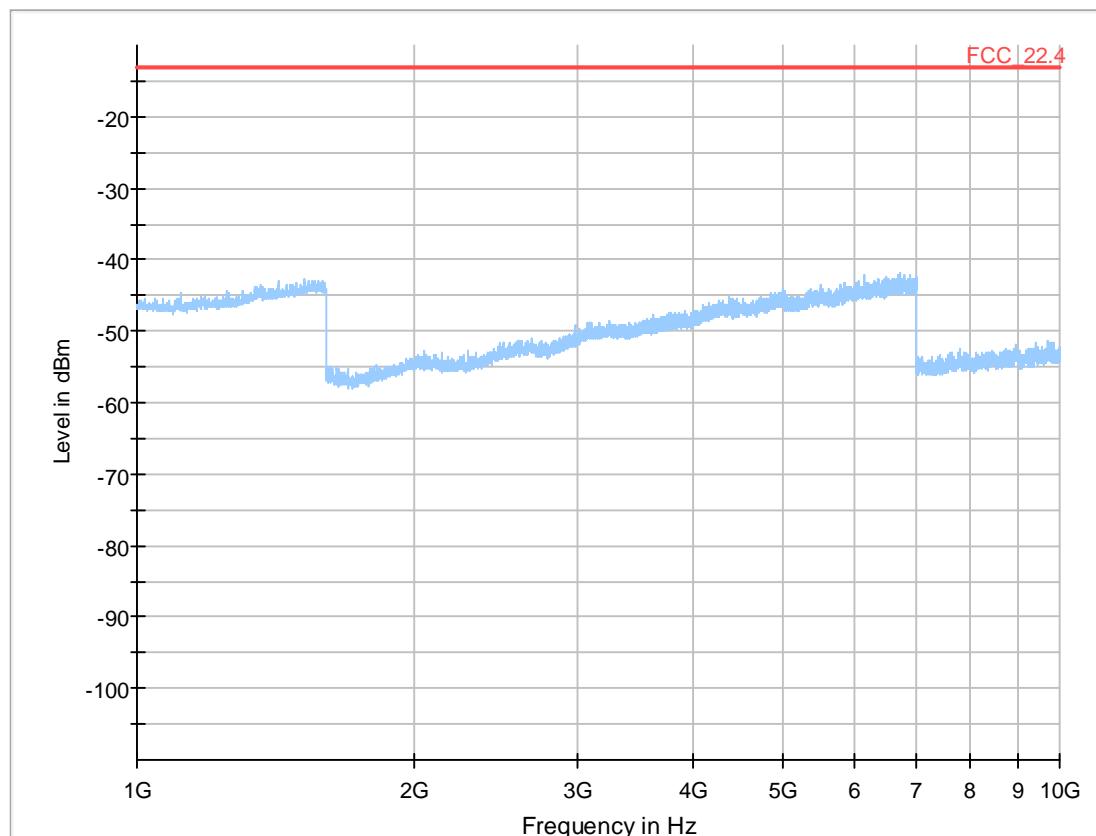
Result: Passed
 Setup No.: S01_ah01
 Date of Test: 2017/12/17 11:00
 Body: FCC47CFRChIPART22PUBLIC MOBILE SERVICES
 Test Specification: FCC part 2 and 22

Detailed Results:

Radio Technology	Channel	Detector	Trace	Resolution Bandwidth /kHz	Frequency /MHz	Max Value /dBm	Limit /dBm	Margin to Limit /dB
eFDD 5 QPSK NB-IoT	low	rms	maxhold	5	823	-25.4	-13	12.4
eFDD 5 QPSK NB-IoT	mid	rms	maxhold	-	-	-	-13	>20
eFDD 5 QPSK NB-IoT	high	rms	maxhold	5	849	-25.5	-13	12.5


eFDD5 NB-IoT QPSK, Channel 20401

3.5.4 22.4 Field strength of spurious radiation §2.1053, §22.917**Test: 22.4; Field strength of spurious radiation Summary §2.1053, §22.917**


Result: Passed
Setup No.: S01_ah01
Date of Test: 2017/12/12 11:23
Body: FCC47CFRChIPART22PUBLIC MOBILE SERVICES
Test Specification: FCC part 2 and 22

Detailed Results:

Radio Technology	Channel	Detector	Trace	Resolution Bandwidth /kHz	Frequency /MHz	Max Value /dBm	Limit /dBm	Margin to Limit /dB
eFDD 5 QPSK NB-IoT	low	peak	maxhold	5	823.98	-19.77	-13	6.77
eFDD 5 QPSK NB-IoT	mid	peak	maxhold	-	-	-	-13	>20
eFDD 5 QPSK NB-IoT	high	peak	maxhold	5	849	-25.39	-13	12.39

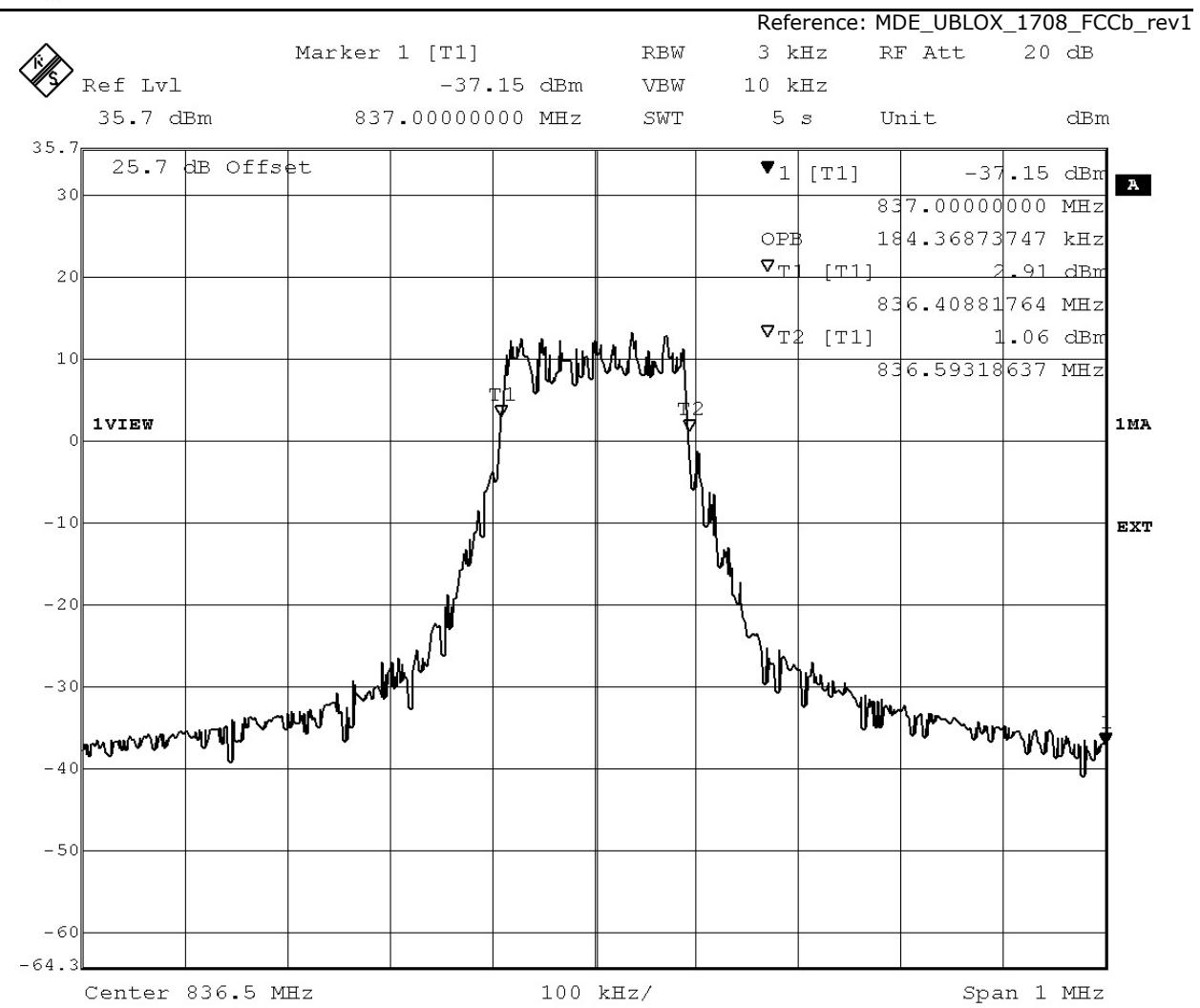
eFDD5 NB-IoT QPSK, Channel 20401

eFDD5 NB-IoT QPSK, Channel 20401

3.5.5 22.5 Emission and Occupied Bandwidth §2.1049, §22.917**Test: 22.5; _Emission and Occupied Bandwidth Summary §2.1049, §22.917**

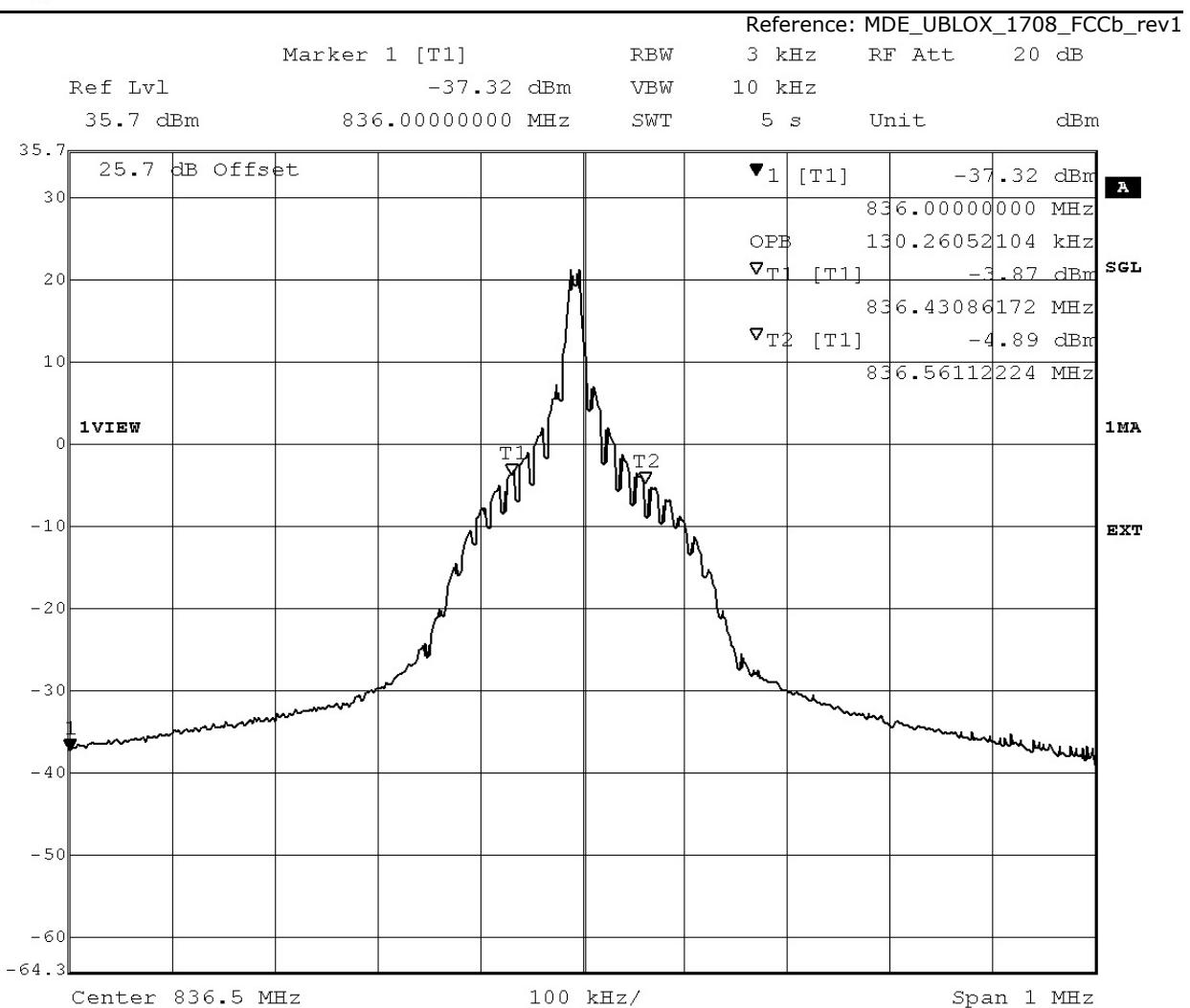
Result: Passed

Setup No.: S01_ah01


Date of Test: 2018/01/08 11:02

Body: FCC47CFRChIPART22PUBLIC MOBILE SERVICES

Test Specification: FCC part 2 and 22


Detailed Results:

Radio Technology	Reference Test Frequencies	Channel	Subcarrier	Nominal BW [kHz]	99 % BW [kHz]
NB-IoT eFDD 5 QPSK	standalone	20401	12	200	192.4
NB-IoT eFDD 5 QPSK	standalone	20525	12	200	184.4
NB-IoT eFDD 5 QPSK	standalone	20649	12	200	186.4
NB-IoT eFDD 5 QPSK	in-band	20406	12	200	186.4
NB-IoT eFDD 5 QPSK	in-band	20460	12	200	186.4
NB-IoT eFDD 5 QPSK	in-band	20469	12	200	186.4
NB-IoT eFDD 5 QPSK	in-band	20516	12	200	186.4
NB-IoT eFDD 5 QPSK	in-band	20535	12	200	184.4
NB-IoT eFDD 5 QPSK	in-band	20544	12	200	188.4
NB-IoT eFDD 5 QPSK	in-band	20644	12	200	186.4
NB-IoT eFDD 5 QPSK	in-band	20610	12	200	188.4
NB-IoT eFDD 5 QPSK	in-band	20619	12	200	188.4
NB-IoT eFDD 5 QPSK	guard-band	20401	12	200	186.4
NB-IoT eFDD 5 QPSK	guard-band	20501	12	200	186.4
NB-IoT eFDD 5 QPSK	guard-band	20649	12	200	188.4
NB-IoT eFDD 5 BPSK	standalone	20401	1	200	132.3
NB-IoT eFDD 5 BPSK	standalone	20525	1	200	130.3
NB-IoT eFDD 5 BPSK	standalone	20649	1	200	132.3
NB-IoT eFDD 5 BPSK	in-band	20406	1	200	130.3
NB-IoT eFDD 5 BPSK	in-band	20460	1	200	130.3
NB-IoT eFDD 5 BPSK	in-band	20469	1	200	130.3
NB-IoT eFDD 5 BPSK	in-band	20516	1	200	130.3
NB-IoT eFDD 5 BPSK	in-band	20535	1	200	128.3
NB-IoT eFDD 5 BPSK	in-band	20544	1	200	130.3
NB-IoT eFDD 5 BPSK	in-band	20644	1	200	128.3
NB-IoT eFDD 5 BPSK	in-band	20610	1	200	132.3
NB-IoT eFDD 5 BPSK	in-band	20619	1	200	130.3
NB-IoT eFDD 5 BPSK	guard-band	20401	1	200	130.3
NB-IoT eFDD 5 BPSK	guard-band	20501	1	200	130.3
NB-IoT eFDD 5 BPSK	guard-band	20649	1	200	132.3

Date: 8.JAN.2018 18:30:24

eFDD5 NB-IoT QPSK, Channel 20525

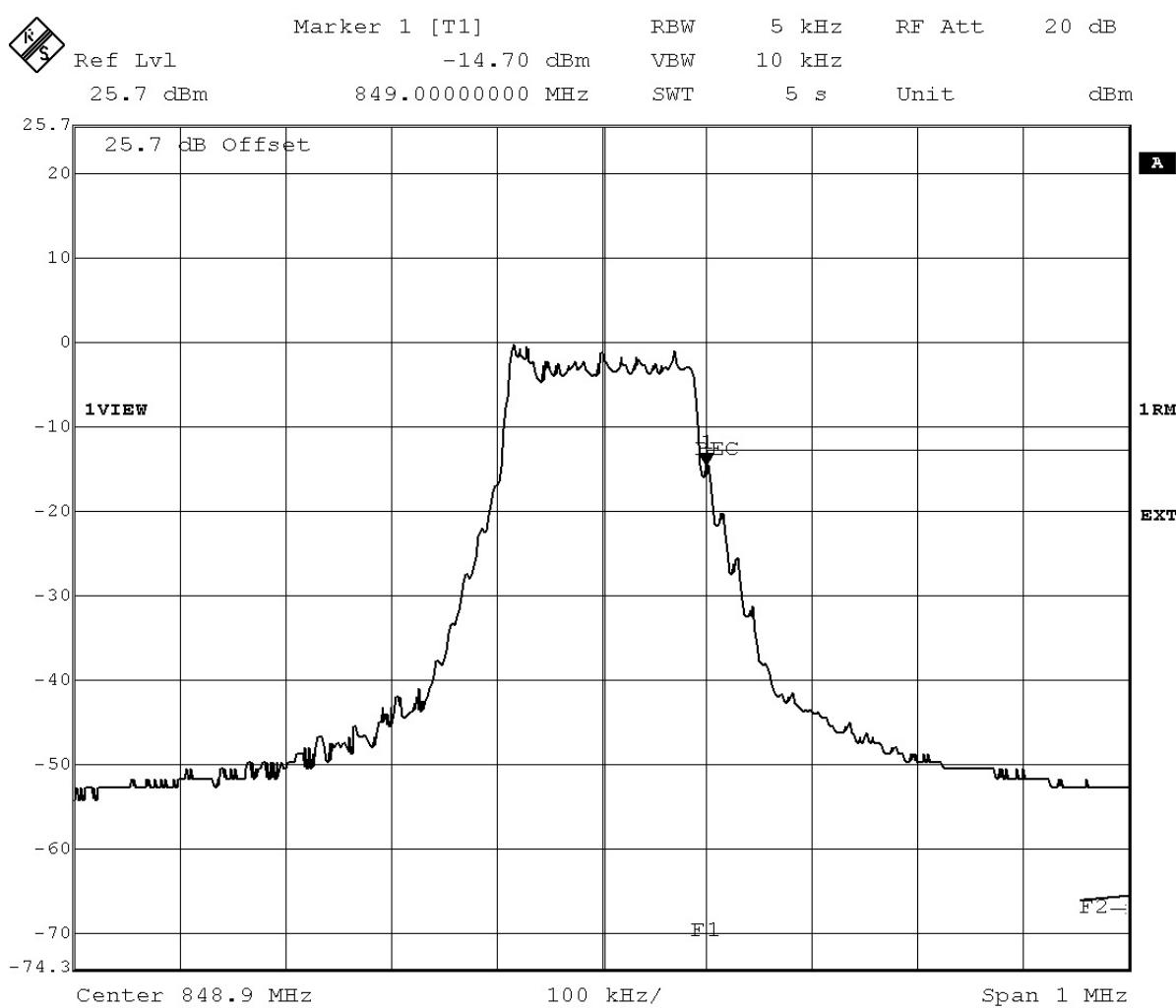
Date: 5.FEB.2018 17:03:22

eFDD5 NB-IoT BPSK, Channel 20525

3.5.6 22.6 Band edge compliance §2.1053, §22.917**Test: 22.6; _Band edge compliance Summary §2.1053, §22.917**

Result: Passed

Setup No.: S01_ah01


Date of Test: 2018/01/08 11:03

Body: FCC47CFRChIPART22PUBLIC MOBILE SERVICES

Test Specification: FCC part 2 and 22

Detailed Results:

Radio Technology	Reference Test Frequencies	Channel	Sub-carrier	RMS [dBm]	Limit /dBm	Margin to Limit /dB
NB-IoT eFDD 5 QPSK	standalone	20401	12	-16.55	-13	3.55
NB-IoT eFDD 5 QPSK	standalone	20649	12	-14.7	-13	1.7
NB-IoT eFDD 5 QPSK	guard-band	20401	12	-18.5	-13	5.5
NB-IoT eFDD 5 QPSK	guard-band	20649	12	-20.04	-13	7.04
NB-IoT eFDD 5 BPSK	standalone	20401	1	-16.71	-13	3.71
NB-IoT eFDD 5 BPSK	standalone	20649	1	-18.25	-13	5.25
NB-IoT eFDD 5 BPSK	guard-band	20401	1	-17.28	-13	4.28
NB-IoT eFDD 5 BPSK	guard-band	20649	1	-18.98	-13	5.98

Date: 8.DEC.2017 17:29:30

eFDD12 NB-IoT QPSK, Channel 20649

3.5.7 22.7 Peak-to-Average Ratio Summary §2.1046

Test: 22.7; Peak-to-Average Ratio Summary §2.1046

Result: Passed
 Setup No.: S01_ah01
 Date of Test: 2018/01/08 11:08
 Body: FCC47CFRChIPART22PUBLIC MOBILE SERVICES
 Test Specification: FCC part 2 and 22

Detailed Results:

Radio Technology	Reference Test Frequencies	Channel	Sub-carrier	Peak to Average Ratio	Limit /dB	Margin to Limit /dB
NB-IoT eFDD 5 QPSK	standalone	20401	12	8	13	5
NB-IoT eFDD 5 QPSK	standalone	20525	12	8.43	13	4.57
NB-IoT eFDD 5 QPSK	standalone	20649	12	8.58	13	4.42
NB-IoT eFDD 5 BPSK	standalone	20401	1	4.84	13	8.16
NB-IoT eFDD 5 BPSK	standalone	20525	1	4.49	13	8.51
NB-IoT eFDD 5 BPSK	standalone	20649	1	4.46	13	8.54

Date: 9.JAN.2018 09:54:56

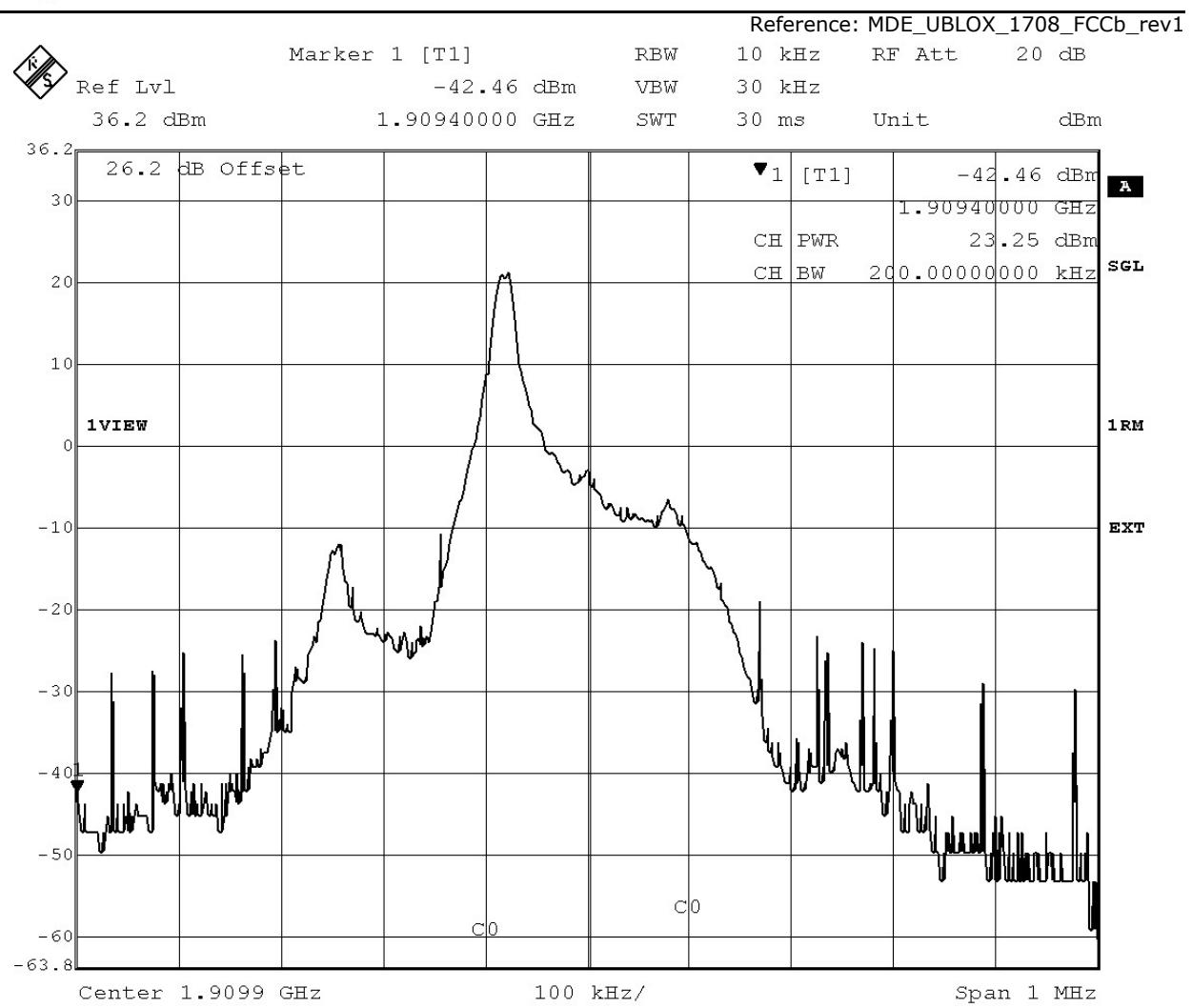
eFDD5 QPSK CH20469

3.5.8 24.1 RF Power Output §2.1046, §24.232**Test: 24.1; RF Power Output Summary §2.1046, §24.232**

Result: Passed

Setup No.: S01_ah01

Date of Test: 2018/01/08 11:09


Body: FCC47CFRChIPART24PERSONAL COMMUNICATIONS SERVICES

Test Specification: FCC part 2 and 24

Detailed Results:

Radio Technology	Reference Test Frequencies	Channel	Sub-carrier	RMS Conducted Power (dBm)	FCC / IC EIRP Limit (W)	Maximum Antenna Gain (dBi)
NB-IoT eFDD 2 QPSK	standalone	18601	12	20.72	2	12.28
NB-IoT eFDD 2 QPSK	standalone	18900	12	20.25	2	12.75
NB-IoT eFDD 2 QPSK	standalone	19199	12	20.36	2	12.64
NB-IoT eFDD 2 QPSK	in-band	18606	12	20.22	2	12.78
NB-IoT eFDD 2 QPSK	in-band	18660	12	20.4	2	12.6
NB-IoT eFDD 2 QPSK	in-band	18669	12	20.34	2	12.66
NB-IoT eFDD 2 QPSK	in-band	18891	12	19.23	2	13.77
NB-IoT eFDD 2 QPSK	in-band	18910	12	19.94	2	13.06
NB-IoT eFDD 2 QPSK	in-band	18919	12	20.18	2	12.82
NB-IoT eFDD 2 QPSK	in-band	19194	12	20.42	2	12.58
NB-IoT eFDD 2 QPSK	in-band	19160	12	20.07	2	12.93
NB-IoT eFDD 2 QPSK	in-band	19169	12	20.09	2	12.91
NB-IoT eFDD 2 QPSK	guard-band	18601	12	20.49	2	12.51
NB-IoT eFDD 2 QPSK	guard-band	18876	12	20.13	2	12.87
NB-IoT eFDD 2 QPSK	guard-band	19199	12	20.49	2	12.51
NB-IoT eFDD 2 QPSK	standalone	18601	6	21.47	2	11.53
NB-IoT eFDD 2 QPSK	standalone	18900	6	21.93	2	11.07
NB-IoT eFDD 2 QPSK	standalone	19199	6	21.8	2	11.2
NB-IoT eFDD 2 QPSK	in-band	18606	6	21.32	2	11.68
NB-IoT eFDD 2 QPSK	in-band	18660	6	21.53	2	11.47
NB-IoT eFDD 2 QPSK	in-band	18669	6	21.33	2	11.67
NB-IoT eFDD 2 QPSK	in-band	18891	6	21.74	2	11.26
NB-IoT eFDD 2 QPSK	in-band	18910	6	21.76	2	11.24
NB-IoT eFDD 2 QPSK	in-band	18919	6	21.81	2	11.19
NB-IoT eFDD 2 QPSK	in-band	19194	6	21.86	2	11.14
NB-IoT eFDD 2 QPSK	in-band	19160	6	22.56	2	10.44
NB-IoT eFDD 2 QPSK	in-band	19169	6	21.74	2	11.26
NB-IoT eFDD 2 QPSK	guard-band	18601	6	21.67	2	11.33
NB-IoT eFDD 2 QPSK	guard-band	18876	6	21.74	2	11.26
NB-IoT eFDD 2 QPSK	guard-band	19199	6	22	2	11
NB-IoT eFDD 2 QPSK	standalone	18601	3	21.82	2	11.18
NB-IoT eFDD 2 QPSK	standalone	18900	3	22.87	2	10.13
NB-IoT eFDD 2 QPSK	standalone	19199	3	22.07	2	10.93
NB-IoT eFDD 2 QPSK	in-band	18606	3	21.39	2	11.61
NB-IoT eFDD 2 QPSK	in-band	18660	3	22.59	2	10.41
NB-IoT eFDD 2 QPSK	in-band	18669	3	21.84	2	11.16
NB-IoT eFDD 2 QPSK	in-band	18891	3	22.56	2	10.44
NB-IoT eFDD 2 QPSK	in-band	18910	3	22.71	2	10.29
NB-IoT eFDD 2 QPSK	in-band	18919	3	22.3	2	10.7
NB-IoT eFDD 2 QPSK	in-band	19194	3	22.66	2	10.34
NB-IoT eFDD 2 QPSK	in-band	19160	3	22.23	2	10.77
NB-IoT eFDD 2 QPSK	in-band	19169	3	22.33	2	10.67

Radio Technology	Reference Test Frequencies	Channel	Sub-carrier	RMS Conducted Power (dBm)	FCC / IC EIRP Limit (W)	Maximum Antenna Gain (dBi)
NB-IoT eFDD 2 QPSK	guard-band	18601	3	22.06	2	10.94
NB-IoT eFDD 2 QPSK	guard-band	18876	3	22.54	2	10.46
NB-IoT eFDD 2 QPSK	guard-band	19199	3	22.38	2	10.62
NB-IoT eFDD 2 QPSK	standalone	18601	1	22.84	2	10.16
NB-IoT eFDD 2 QPSK	standalone	18900	1	22.55	2	10.45
NB-IoT eFDD 2 QPSK	standalone	19199	1	22.75	2	10.25
NB-IoT eFDD 2 QPSK	in-band	18606	1	22.62	2	10.38
NB-IoT eFDD 2 QPSK	in-band	18660	1	22.57	2	10.43
NB-IoT eFDD 2 QPSK	in-band	18669	1	22.53	2	10.47
NB-IoT eFDD 2 QPSK	in-band	18891	1	22.53	2	10.47
NB-IoT eFDD 2 QPSK	in-band	18910	1	22.5	2	10.5
NB-IoT eFDD 2 QPSK	in-band	18919	1	22.52	2	10.48
NB-IoT eFDD 2 QPSK	in-band	19194	1	22.3	2	10.7
NB-IoT eFDD 2 QPSK	in-band	19160	1	22.55	2	10.45
NB-IoT eFDD 2 QPSK	in-band	19169	1	22.55	2	10.45
NB-IoT eFDD 2 QPSK	guard-band	18601	1	23.3	2	9.7
NB-IoT eFDD 2 QPSK	guard-band	18876	1	22.52	2	10.48
NB-IoT eFDD 2 QPSK	guard-band	19199	1	23.19	2	9.81
NB-IoT eFDD 2 BPSK	standalone	18601	1	22.6	2	10.4
NB-IoT eFDD 2 BPSK	standalone	18900	1	22.67	2	10.33
NB-IoT eFDD 2 BPSK	standalone	19199	1	22.35	2	10.65
NB-IoT eFDD 2 BPSK	in-band	18606	1	21.72	2	11.28
NB-IoT eFDD 2 BPSK	in-band	18660	1	21.71	2	11.29
NB-IoT eFDD 2 BPSK	in-band	18669	1	21.83	2	11.17
NB-IoT eFDD 2 BPSK	in-band	18891	1	21.68	2	11.32
NB-IoT eFDD 2 BPSK	in-band	18910	1	21.76	2	11.24
NB-IoT eFDD 2 BPSK	in-band	18919	1	21.44	2	11.56
NB-IoT eFDD 2 BPSK	in-band	19194	1	21.7	2	11.3
NB-IoT eFDD 2 BPSK	in-band	19160	1	21.74	2	11.26
NB-IoT eFDD 2 BPSK	in-band	19169	1	21.69	2	11.31
NB-IoT eFDD 2 BPSK	guard-band	18601	1	22.6	2	10.4
NB-IoT eFDD 2 BPSK	guard-band	18876	1	22.29	2	10.71
NB-IoT eFDD 2 BPSK	guard-band	19199	1	23.25	2	9.75

Date: 5.JAN.2018 17:47:21

eFDD2 NB-IoT BPSK, Channel 19199

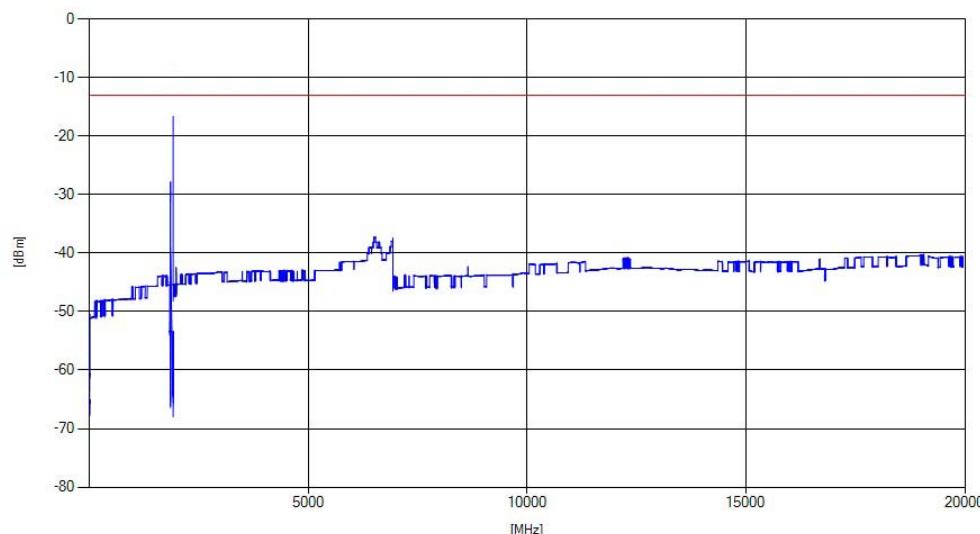
3.5.9 24.2 Frequency stability §2.1055, §24.235

Test: 24.2; Frequency stability Summary §2.1055, 24.235

Result: Passed
 Setup No.: S01_ah01
 Date of Test: 2018/01/08 11:14
 Body: FCC47CFRChIPART24PERSONAL COMMUNICATIONS SERVICES
 Test Specification: FCC part 2 and 24

Detailed Results:

Temp. °C	Duration min	Voltage	Limit Hz	Freq. error Average (Hz)	Freq. error Max. (Hz)	Verdict
-30	0	normal	4700	-10	-15	passed
-30	5			-9	-15	passed
-30	10			-6	-12	passed
-20	0	normal	4700	-10	-4	passed
-20	5			-12	-3	passed
-20	10			-5	10	passed
-10	0	normal	4700	-10	16	passed
-10	5			-12	12	passed
-10	10			3	-3	passed
0	0	normal	4700	-6	-6	passed
0	5			-18	-14	passed
0	10			-9	-13	passed
10	0	normal	4700	6	-2	passed
10	5			9	-6	passed
10	10			10	-4	passed
20	0	low	4700	4	-8	passed
20	5			12	14	passed
20	10			6	-10	passed
20	0	normal = high ¹⁾	4700	12	-6	passed
20	5			-13	-15	passed
20	10			6	-12	passed
20	0	high	4700	3	-9	passed
20	5			-5	10	passed
20	10			4	12	passed
30	0	normal	4700	4	7	passed
30	5			9	6	passed
30	10			8	8	passed
40	0	normal	4700	6	-2	passed
40	5			-5	-11	passed
40	10			-6	-10	passed
50	0	normal	4700	3	-9	passed
50	5			-4	-10	passed
50	10			-10	-10	passed


3.5.10 24.3 Spurious emissions at antenna terminals §2.1051, §24.238

Test: 24.3; Spurious emissions at antenna terminals Summary §2.1051, §24.238

Result: Passed
 Setup No.: S01_ah01
 Date of Test: 2017/12/17 11:15
 Body: FCC47CFRChIPART24PERSONAL COMMUNICATIONS SERVICES
 Test Specification: FCC part 2 and 24

Detailed Results:

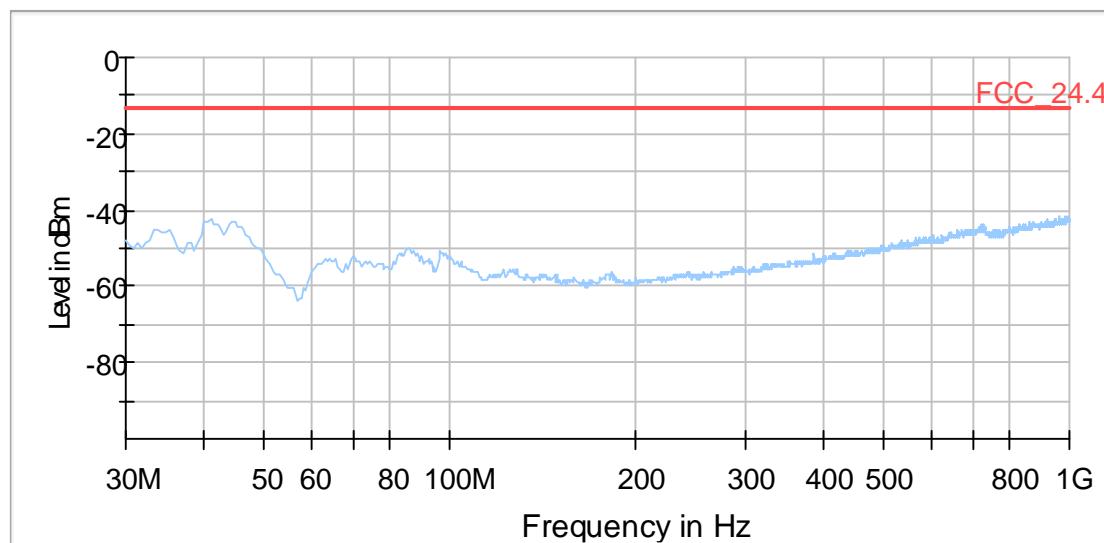
Radio Technology	Channel	Detector	Trace	Resolution Bandwidth /kHz	Frequency /MHz	Max Value /dBm	Limit /dBm	Margin to Limit /dB
eFDD 2 QPSK NB-IoT	low	rms	maxhold	5	1849.9	-23.65	-13	10.65
eFDD 2 QPSK NB-IoT	mid	rms	maxhold	-			-13	>20
eFDD 2 QPSK NB-IoT	high	rms	maxhold	5	1910.1	-15.83	-13	2.83

eFDD2 NB-IoT QPSK, Channel 19199

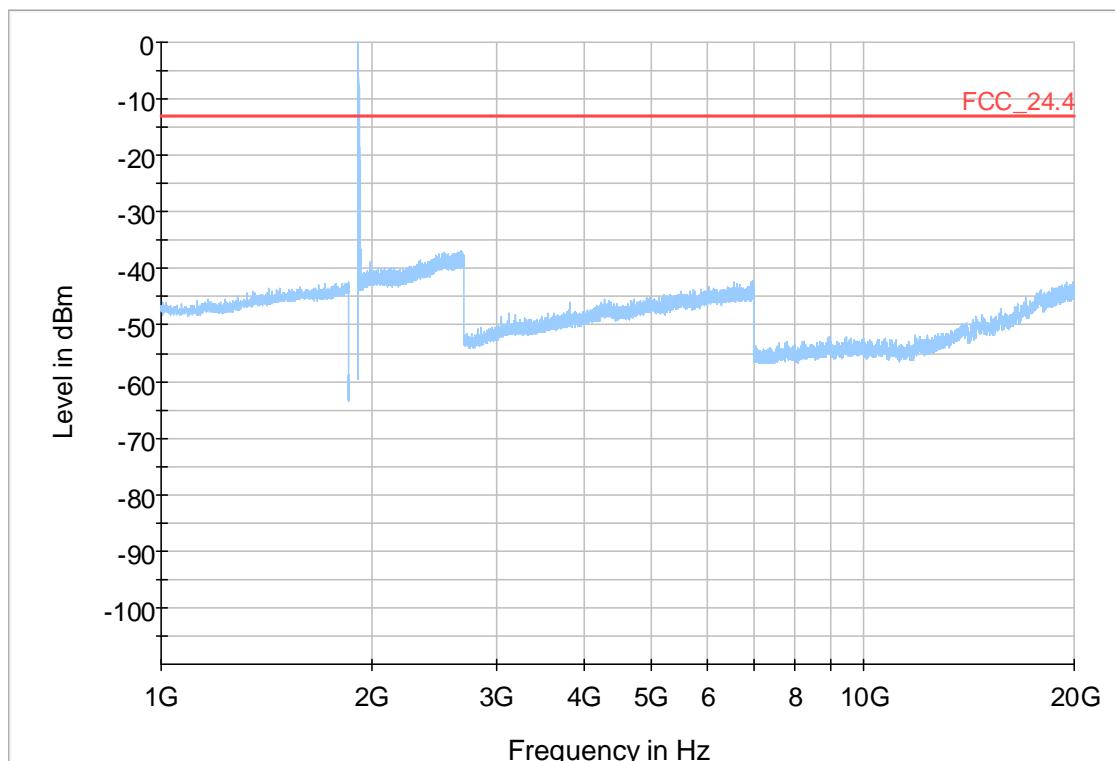
3.5.11 24.4 Field strength of spurious radiation §2.1053, §24.238**Test: 24.4; Field strength of spurious radiation Summary §2.1053, §24.238**

Result: Passed

Setup No.: S01_ah01


Date of Test: 2017/12/12 11:27

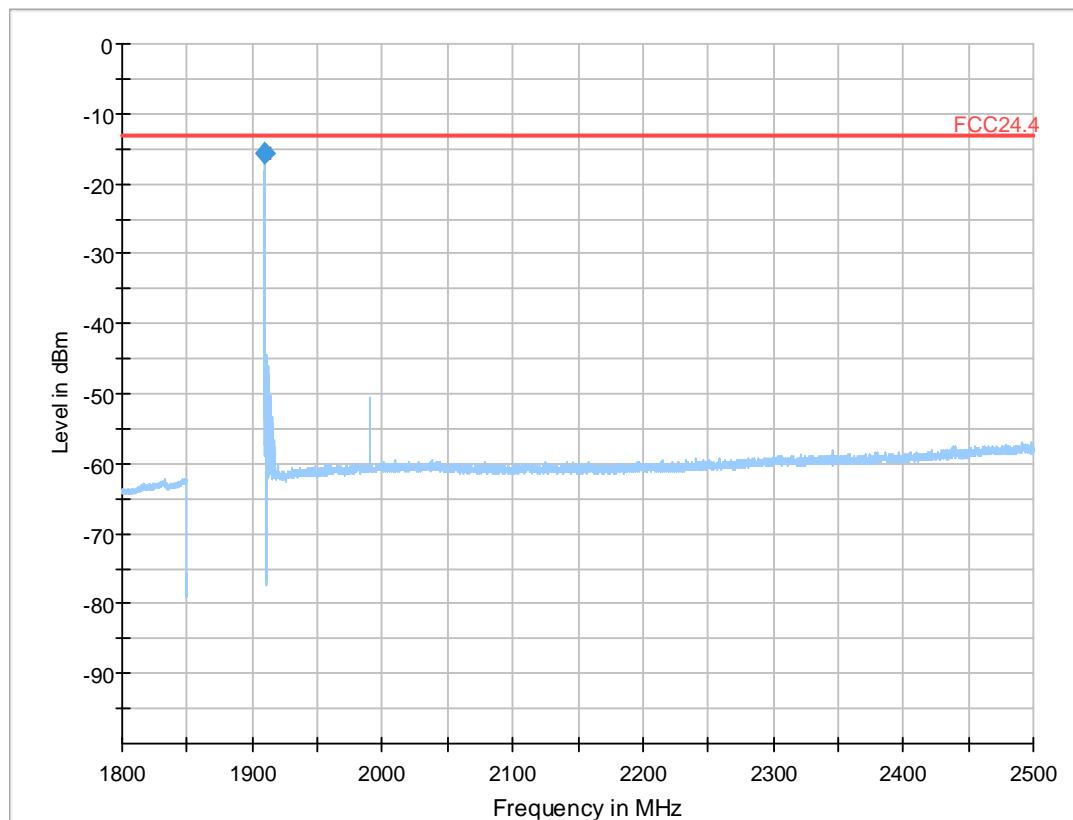
Body: FCC47CFRChIPART24PERSONAL COMMUNICATIONS SERVICES


Test Specification: FCC part 2 and 24

Detailed Results:

Radio Technology	Channel	Detector	Trace	Resolution Bandwidth /kHz	Frequency /MHz	Max Value /dBm	Limit /dBm	Margin to Limit /dB
eFDD 2 QPSK NB-IoT	low	peak	maxhold	2	1849.9	-20.28	-13	7.28
eFDD 2 QPSK NB-IoT	mid	peak	maxhold	-			-13	>20
eFDD 2 QPSK NB-IoT	high	peak	maxhold	2	1910	-15.62	-13	2.62

eFDD2 NB-IoT QPSK, Channel 19199


Critical_Freqs

Frequency (MHz)	MaxPeak (dBm)	Limit (dBm)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Elevation (deg)	Corr. (dB)
---	---	---	---	---	---	---	---	---	---	---

Final_Result

Frequency (MHz)	MaxPeak (dBm)	Limit (dBm)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Elevation (deg)	Corr. (dB)
---	---	---	---	---	---	---	---	---	---	---

eFDD2 NB-IoT QPSK, Channel 19199

Final_Result

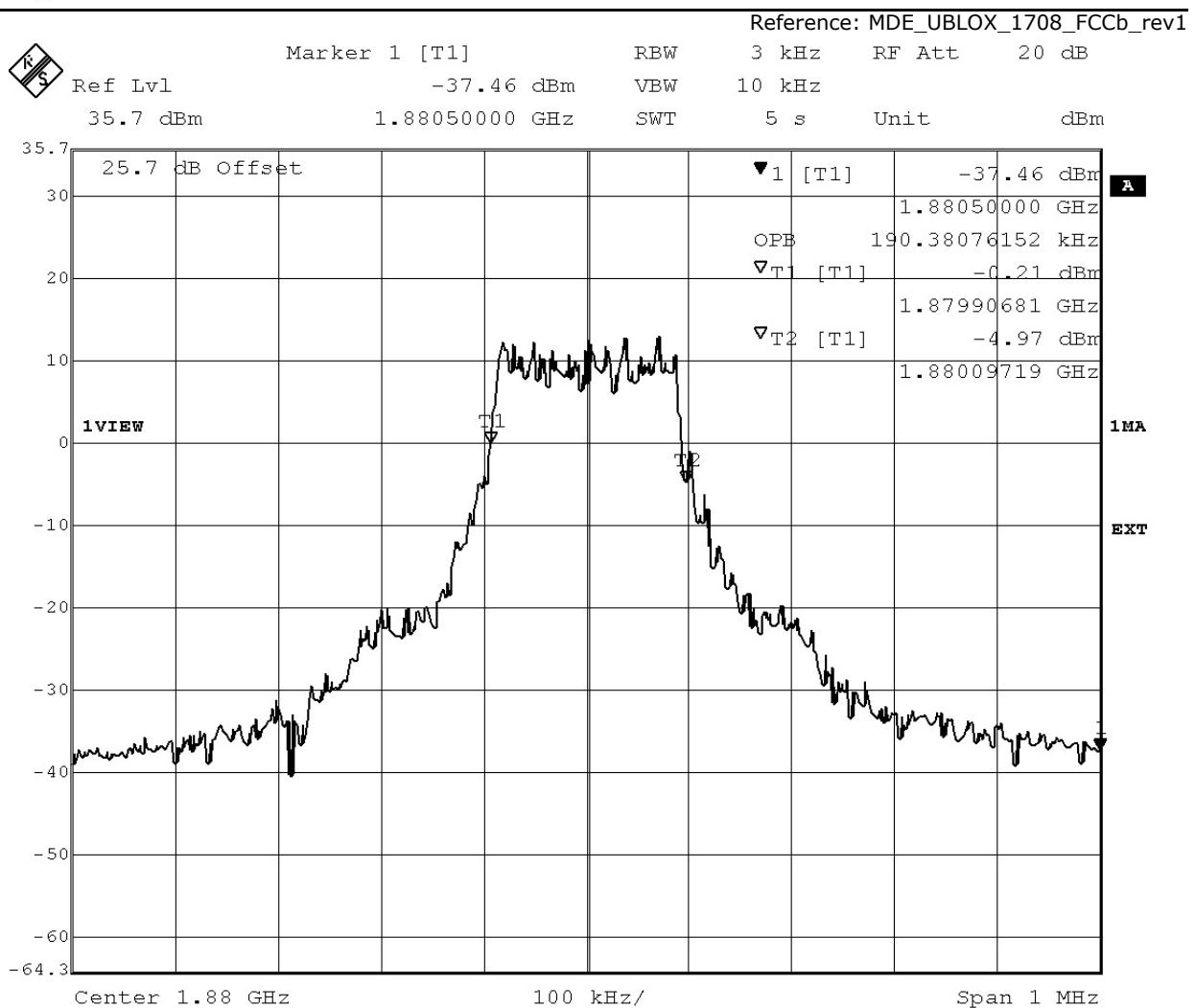
Frequency (MHz)	RMS (dBm)	Limit (dBm)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Elevation (deg)	Corr. (dB)
1910.004000	-15.62	-13.00	2.26	3000.0	2.000	150.0	V	-45.0	90.0	-64.7

re-measurement: eFDD2 NB-IoT QPSK, Channel 19199

3.5.12 24.5 Emission and Occupied Bandwidth §2.1049, §24.238**Test: 24.5; Emission and Occupied Bandwidth Summary §2.1049, §24.238**

Result: Passed

Setup No.: S01_ah01


Date of Test: 2018/01/08 11:20

Body: FCC47CFRChIPART24PERSONAL COMMUNICATIONS SERVICES

Test Specification: FCC part 2 and 24


Detailed Results:

Radio Technology	Reference Test Frequencies	Channel	Subcarrier	Nominal BW [kHz]	99 % BW [kHz]
NB-IoT eFDD 2 QPSK	standalone	18601	12	200	192.4
NB-IoT eFDD 2 QPSK	standalone	18900	12	200	190.4
NB-IoT eFDD 2 QPSK	standalone	19199	12	200	192.4
NB-IoT eFDD 2 QPSK	in-band	18606	12	200	186.4
NB-IoT eFDD 2 QPSK	in-band	18660	12	200	192.4
NB-IoT eFDD 2 QPSK	in-band	18669	12	200	190.4
NB-IoT eFDD 2 QPSK	in-band	18891	12	200	188.4
NB-IoT eFDD 2 QPSK	in-band	18910	12	200	190.4
NB-IoT eFDD 2 QPSK	in-band	18919	12	200	190.4
NB-IoT eFDD 2 QPSK	in-band	19194	12	200	192.4
NB-IoT eFDD 2 QPSK	in-band	19160	12	200	192.4
NB-IoT eFDD 2 QPSK	in-band	19169	12	200	192.4
NB-IoT eFDD 2 QPSK	guard-band	18601	12	200	188.4
NB-IoT eFDD 2 QPSK	guard-band	18876	12	200	190.4
NB-IoT eFDD 2 QPSK	guard-band	19199	12	200	192.4
NB-IoT eFDD 2 BPSK	standalone	18601	1	200	130.3
NB-IoT eFDD 2 BPSK	standalone	18900	1	200	132.3
NB-IoT eFDD 2 BPSK	standalone	19199	1	200	130.3
NB-IoT eFDD 2 BPSK	in-band	18606	1	200	132.3
NB-IoT eFDD 2 BPSK	in-band	18660	1	200	132.3
NB-IoT eFDD 2 BPSK	in-band	18669	1	200	130.3
NB-IoT eFDD 2 BPSK	in-band	18891	1	200	136.3
NB-IoT eFDD 2 BPSK	in-band	18910	1	200	126.3
NB-IoT eFDD 2 BPSK	in-band	18919	1	200	130.3
NB-IoT eFDD 2 BPSK	in-band	19194	1	200	130.3
NB-IoT eFDD 2 BPSK	in-band	19160	1	200	132.3
NB-IoT eFDD 2 BPSK	in-band	19169	1	200	130.3
NB-IoT eFDD 2 BPSK	guard-band	18601	1	200	132.3
NB-IoT eFDD 2 BPSK	guard-band	18876	1	200	132.3
NB-IoT eFDD 2 BPSK	guard-band	19199	1	200	130.3

Date: 8.JAN.2018 16:26:44

eFDD2 NB-IoT QPSK, Channel 18900

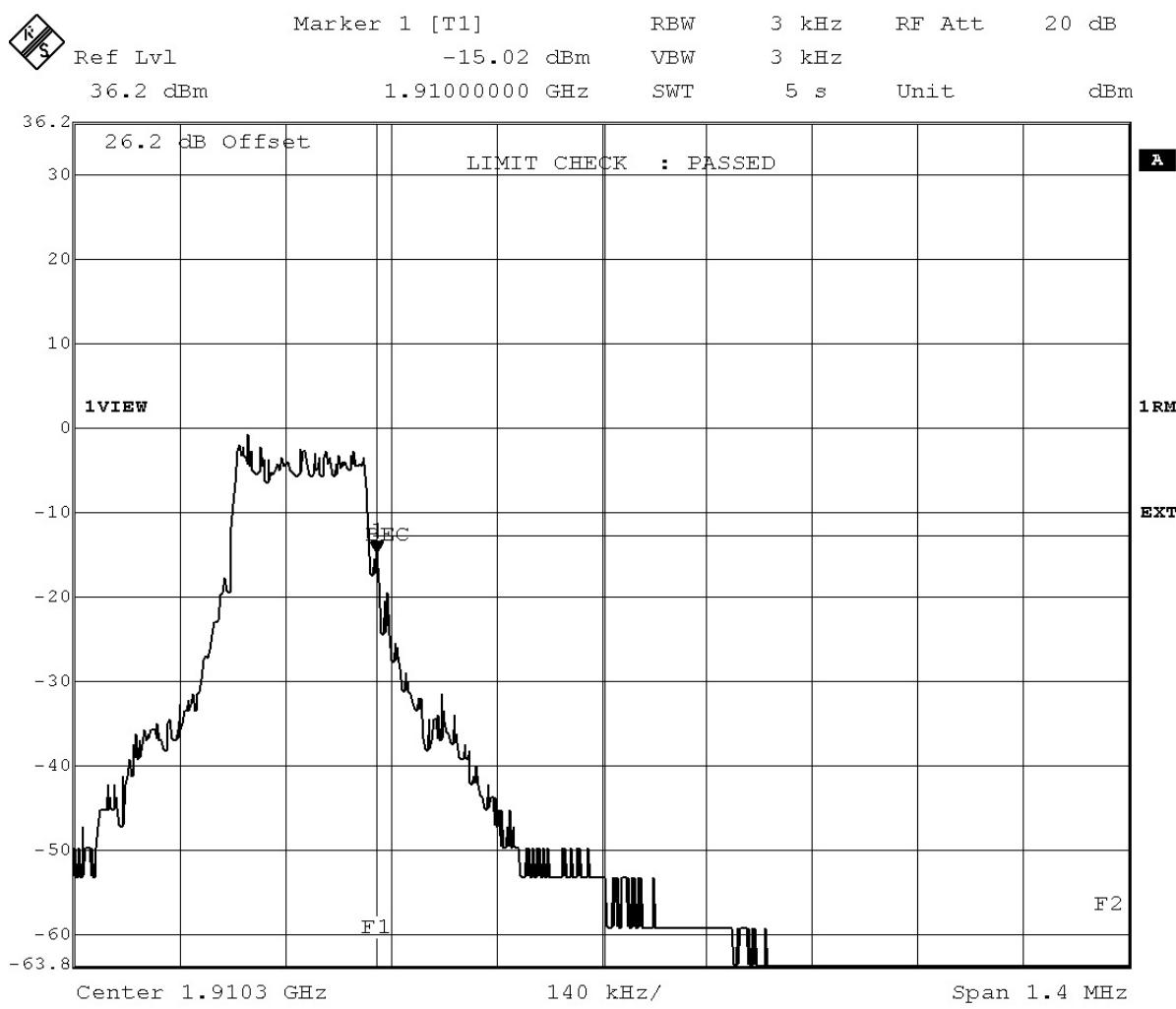
Date: 5.FEB.2018 13:10:08

eFDD2 NB-IoT QPSK, Channel 19199

3.5.13 24.6 Band edge compliance §2.1053, §24.238**Test: 24.6; Band edge compliance summary §2.1053, §24.238**

Result: Passed

Setup No.: S01_ah01


Date of Test: 2018/01/08 11:21

Body: FCC47CFRChIPART24PERSONAL COMMUNICATIONS SERVICES

Test Specification: FCC part 2 and 24

Detailed Results:

Radio Technology	Reference Test Frequencies	Channel	Sub-carrier	RMS [dBm]	Limit /dBm	Margin to Limit /dB
NB-IoT eFDD 2 QPSK	standalone	18601	12	-18.46	-13	5.46
NB-IoT eFDD 2 QPSK	standalone	19199	12	-15.02	-13	2.02
NB-IoT eFDD 2 QPSK	guard-band	18601	12	-18.54	-13	5.54
NB-IoT eFDD 2 QPSK	guard-band	19199	12	-15.12	-13	2.12
NB-IoT eFDD 2 BPSK	standalone	18601	1	-15.18	-13	2.18
NB-IoT eFDD 2 BPSK	standalone	19199	1	-15.61	-13	2.61
NB-IoT eFDD 2 BPSK	guard-band	18601	1	-15.23	-13	2.23
NB-IoT eFDD 2 BPSK	guard-band	19199	1	-16.23	-13	3.23

Date: 14.DEC.2017 14:29:53

eFDD2 NB-IoT QPSK, Channel 19199


3.5.14 24.7 Peak-to-Average ratio §2.1046, §24.232

Test: 24.7; Peak-to-Average Ratio Summary §2.1046, §24.232

Result: Passed
 Setup No.: S01_ah01
 Date of Test: 2018/01/08 11:22
 Body: FCC47CFRChIPART24PERSONAL COMMUNICATIONS SERVICES
 Test Specification: FCC part 2 and 24

Detailed Results:

Radio Technology	Reference Test Frequencies	Channel	Sub-carrier	Peak to Average Ratio	Limit /dB	Margin to Limit /dB
NB-IoT eFDD 2 QPSK	standalone	18601	12	8.61	13	4.39
NB-IoT eFDD 2 QPSK	standalone	18900	12	8.58	13	4.42
NB-IoT eFDD 2 QPSK	standalone	19199	12	8.78	13	4.22
NB-IoT eFDD 2 BPSK	standalone	18601	1	4.41	13	8.59
NB-IoT eFDD 2 BPSK	standalone	18900	1	4.9	13	8.1
NB-IoT eFDD 2 BPSK	standalone	19199	1	4.55	13	8.45

Date: 9.JAN.2018 10:15:33

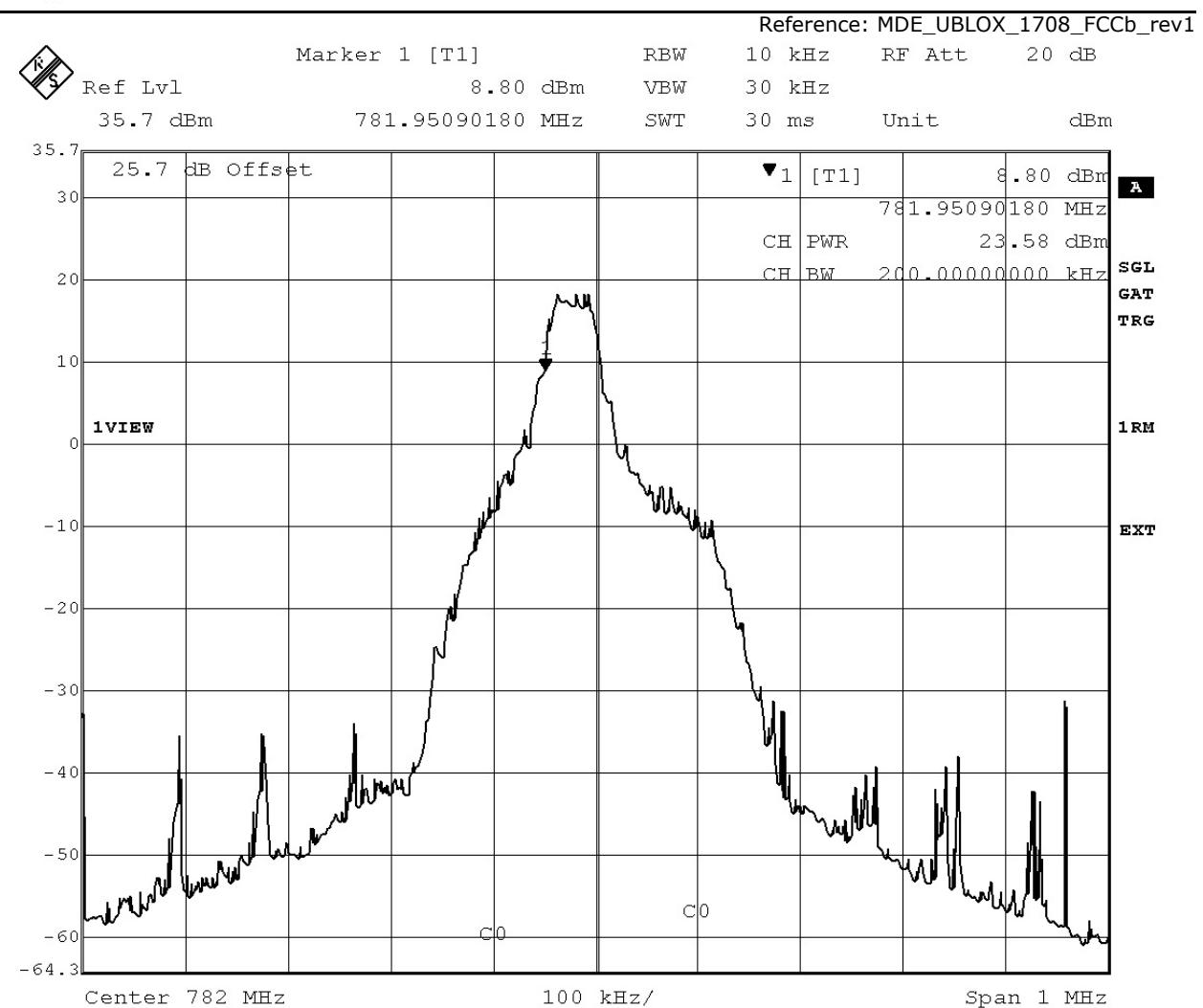
eFDD2 QPSK CH19199

3.5.15 27.1 RF Power Output §2.1046, §27.250**Test: 27.1; RF Power Output Summary §2.1046, §27.250**

Result: Passed

Setup No.: S01_ah01

Date of Test: 2018/01/08 9:58


Body: FCC47CFRChIPART27MISCELLANEOUS WIRELESS COMMUNICATIONS SERV.

Test Specification: FCC part 2 and 27

Detailed Results:

Radio Technology	Reference Test Frequencies	Channel	Sub-carrier	RMS Conducted Power (dBm)	FCC / IC EIRP Limit (W)	Maximum Antenna Gain (dBi)
NB-IoT eFDD 12 QPSK	standalone	23011	12	21.18	1	8.82
NB-IoT eFDD 12 QPSK	standalone	23095	12	21.04	1	8.96
NB-IoT eFDD 12 QPSK	standalone	23179	12	21.22	1	8.78
NB-IoT eFDD 12 QPSK	in-band	23016	12	21.1	1	8.9
NB-IoT eFDD 12 QPSK	in-band	23070	12	22.36	1	7.64
NB-IoT eFDD 12 QPSK	in-band	23079	12	20.81	1	9.19
NB-IoT eFDD 12 QPSK	in-band	23086	12	20.94	1	9.06
NB-IoT eFDD 12 QPSK	in-band	23105	12	21	1	9
NB-IoT eFDD 12 QPSK	in-band	23114	12	20.97	1	9.03
NB-IoT eFDD 12 QPSK	in-band	23174	12	21.32	1	8.68
NB-IoT eFDD 12 QPSK	in-band	23140	12	20.87	1	9.13
NB-IoT eFDD 12 QPSK	in-band	23149	12	21	1	9
NB-IoT eFDD 12 QPSK	guard-band	23011	12	20.96	1	9.04
NB-IoT eFDD 12 QPSK	guard-band	23071	12	21.08	1	8.92
NB-IoT eFDD 12 QPSK	guard-band	23179	12	21.28	1	8.72
NB-IoT eFDD 12 QPSK	standalone	23011	6	21.89	1	8.11
NB-IoT eFDD 12 QPSK	standalone	23095	6	21.97	1	8.03
NB-IoT eFDD 12 QPSK	standalone	23179	6	22.31	1	7.69
NB-IoT eFDD 12 QPSK	in-band	23016	6	21.94	1	8.06
NB-IoT eFDD 12 QPSK	in-band	23070	6	22.2	1	7.8
NB-IoT eFDD 12 QPSK	in-band	23079	6	21.98	1	8.02
NB-IoT eFDD 12 QPSK	in-band	23086	6	22.19	1	7.81
NB-IoT eFDD 12 QPSK	in-band	23105	6	21.65	1	8.35
NB-IoT eFDD 12 QPSK	in-band	23114	6	21.69	1	8.31
NB-IoT eFDD 12 QPSK	in-band	23174	6	21.94	1	8.06
NB-IoT eFDD 12 QPSK	in-band	23140	6	21.72	1	8.28
NB-IoT eFDD 12 QPSK	in-band	23149	6	21.6	1	8.4
NB-IoT eFDD 12 QPSK	guard-band	23011	6	21.89	1	8.11
NB-IoT eFDD 12 QPSK	guard-band	23071	6	21.98	1	8.02
NB-IoT eFDD 12 QPSK	guard-band	23179	6	22.44	1	7.56
NB-IoT eFDD 12 QPSK	standalone	23011	3	21.79	1	8.21
NB-IoT eFDD 12 QPSK	standalone	23095	3	22.39	1	7.61
NB-IoT eFDD 12 QPSK	standalone	23179	3	23.39	1	6.61
NB-IoT eFDD 12 QPSK	in-band	23016	3	22.48	1	7.52
NB-IoT eFDD 12 QPSK	in-band	23070	3	22.26	1	7.74
NB-IoT eFDD 12 QPSK	in-band	23079	3	22.01	1	7.99
NB-IoT eFDD 12 QPSK	in-band	23086	3	22.01	1	7.99
NB-IoT eFDD 12 QPSK	in-band	23105	3	21.97	1	8.03
NB-IoT eFDD 12 QPSK	in-band	23114	3	22.24	1	7.76
NB-IoT eFDD 12 QPSK	in-band	23174	3	22.65	1	7.35
NB-IoT eFDD 12 QPSK	in-band	23140	3	22	1	8
NB-IoT eFDD 12 QPSK	in-band	23149	3	22.41	1	7.59
NB-IoT eFDD 12 QPSK	guard-band	23011	3	21.79	1	8.21
NB-IoT eFDD 12 QPSK	guard-band	23071	3	22.6	1	7.4
NB-IoT eFDD 12 QPSK	guard-band	23179	3	23.2	1	6.8
NB-IoT eFDD 12 QPSK	standalone	23011	1	21.1	1	8.9
NB-IoT eFDD 12 QPSK	standalone	23095	1	21.12	1	8.88
NB-IoT eFDD 12 QPSK	standalone	23179	1	21.45	1	8.55
NB-IoT eFDD 12 QPSK	in-band	23016	1	21.03	1	8.97
NB-IoT eFDD 12 QPSK	in-band	23070	1	21.22	1	8.78
NB-IoT eFDD 12 QPSK	in-band	23079	1	20.83	1	9.17
NB-IoT eFDD 12 QPSK	in-band	23086	1	21.25	1	8.75
NB-IoT eFDD 12 QPSK	in-band	23105	1	20.89	1	9.11
NB-IoT eFDD 12 QPSK	in-band	23114	1	20.95	1	9.05
NB-IoT eFDD 12 QPSK	in-band	23174	1	21.36	1	8.64
NB-IoT eFDD 12 QPSK	in-band	23140	1	20.69	1	9.31
NB-IoT eFDD 12 QPSK	in-band	23149	1	20.8	1	9.2
NB-IoT eFDD 12 QPSK	guard-band	23011	1	21.04	1	8.96
NB-IoT eFDD 12 QPSK	guard-band	23071	1	21.1	1	8.9
NB-IoT eFDD 12 QPSK	guard-band	23179	1	21.44	1	8.56
NB-IoT eFDD 12 BPSK	standalone	23011	1	21.23	1	8.77
NB-IoT eFDD 12 BPSK	standalone	23095	1	21.52	1	8.48
NB-IoT eFDD 12 BPSK	standalone	23179	1	21.56	1	8.44
NB-IoT eFDD 12 BPSK	in-band	23016	1	21.54	1	8.46
NB-IoT eFDD 12 BPSK	in-band	23070	1	21.66	1	8.34
NB-IoT eFDD 12 BPSK	in-band	23079	1	21.58	1	8.42
NB-IoT eFDD 12 BPSK	in-band	23086	1	21.61	1	8.39
NB-IoT eFDD 12 BPSK	in-band	23105	1	21.59	1	8.41
NB-IoT eFDD 12 BPSK	in-band	23114	1	21.53	1	8.47
NB-IoT eFDD 12 BPSK	in-band	23174	1	21.55	1	8.45

Radio Technology	Reference Test Frequencies	Channel	Sub-carrier	RMS Conducted Power (dBm)	FCC / IC EIRP Limit (W)	Maximum Antenna Gain (dBi)
NB-IoT eFDD 12 BPSK	in-band	23140	1	21.42	1	8.58
NB-IoT eFDD 12 BPSK	in-band	23149	1	21.51	1	8.49
NB-IoT eFDD 12 BPSK	guard-band	23011	1	21.48	1	8.52
NB-IoT eFDD 12 BPSK	guard-band	23071	1	21.7	1	8.3
NB-IoT eFDD 12 BPSK	guard-band	23179	1	21.18	1	8.82
NB-IoT eFDD 13 QPSK	standalone	23181	12	20.94	3	13.83
NB-IoT eFDD 13 QPSK	standalone	23230	12	20.66	3	14.11
NB-IoT eFDD 13 QPSK	standalone	23279	12	21.07	3	13.7
NB-IoT eFDD 13 QPSK	in-band	23187	12	20.62	3	14.15
NB-IoT eFDD 13 QPSK	in-band	23221	12	20.71	3	14.06
NB-IoT eFDD 13 QPSK	in-band	23240	12	20.56	3	14.21
NB-IoT eFDD 13 QPSK	in-band	23249	12	20.79	3	13.98
NB-IoT eFDD 13 QPSK	in-band	23273	12	20.74	3	14.03
NB-IoT eFDD 13 QPSK	guard-band	23181	12	20.82	3	13.95
NB-IoT eFDD 13 QPSK	guard-band	23206	12	20.74	3	14.03
NB-IoT eFDD 13 QPSK	guard-band	23279	12	20.96	3	13.81
NB-IoT eFDD 13 QPSK	standalone	23181	6	21.55	3	13.22
NB-IoT eFDD 13 QPSK	standalone	23230	6	21.52	3	13.25
NB-IoT eFDD 13 QPSK	standalone	23279	6	21.52	3	13.25
NB-IoT eFDD 13 QPSK	in-band	23187	6	21.5	3	13.27
NB-IoT eFDD 13 QPSK	in-band	23221	6	21.42	3	13.35
NB-IoT eFDD 13 QPSK	in-band	23240	6	21.51	3	13.26
NB-IoT eFDD 13 QPSK	in-band	23249	6	22	3	12.77
NB-IoT eFDD 13 QPSK	in-band	23273	6	21.58	3	13.19
NB-IoT eFDD 13 QPSK	guard-band	23181	6	21.48	3	13.29
NB-IoT eFDD 13 QPSK	guard-band	23206	6	21.61	3	13.16
NB-IoT eFDD 13 QPSK	guard-band	23279	6	21.79	3	12.98
NB-IoT eFDD 13 QPSK	standalone	23181	3	22.69	3	12.08
NB-IoT eFDD 13 QPSK	standalone	23230	3	23.58	3	11.19
NB-IoT eFDD 13 QPSK	standalone	23279	3	22.78	3	11.99
NB-IoT eFDD 13 QPSK	in-band	23187	3	22.55	3	12.22
NB-IoT eFDD 13 QPSK	in-band	23221	3	21.42	3	13.35
NB-IoT eFDD 13 QPSK	in-band	23240	3	22.44	3	12.33
NB-IoT eFDD 13 QPSK	in-band	23249	3	22.35	3	12.42
NB-IoT eFDD 13 QPSK	in-band	23273	3	23.46	3	11.31
NB-IoT eFDD 13 QPSK	guard-band	23181	3	21.94	3	12.83
NB-IoT eFDD 13 QPSK	guard-band	23206	3	22.58	3	12.19
NB-IoT eFDD 13 QPSK	guard-band	23279	3	22.25	3	12.52
NB-IoT eFDD 13 QPSK	standalone	23181	1	22.43	3	12.34
NB-IoT eFDD 13 QPSK	standalone	23230	1	22.65	3	12.12
NB-IoT eFDD 13 QPSK	standalone	23279	1	23.01	3	11.76
NB-IoT eFDD 13 QPSK	in-band	23187	1	21.02	3	13.75
NB-IoT eFDD 13 QPSK	in-band	23221	1	20.83	3	13.94
NB-IoT eFDD 13 QPSK	in-band	23240	1	20.9	3	13.87
NB-IoT eFDD 13 QPSK	in-band	23249	1	20.95	3	13.82
NB-IoT eFDD 13 QPSK	in-band	23273	1	20.88	3	13.89
NB-IoT eFDD 13 QPSK	guard-band	23181	1	20.61	3	14.16
NB-IoT eFDD 13 QPSK	guard-band	23206	1	20.79	3	13.98
NB-IoT eFDD 13 BPSK	standalone	23181	1	21.65	3	13.12
NB-IoT eFDD 13 BPSK	standalone	23230	1	21.12	3	13.65
NB-IoT eFDD 13 BPSK	standalone	23279	1	21.17	3	13.6
NB-IoT eFDD 13 BPSK	in-band	23187	1	21.33	3	13.44
NB-IoT eFDD 13 BPSK	in-band	23221	1	21.12	3	13.65
NB-IoT eFDD 13 BPSK	in-band	23240	1	21.1	3	13.67
NB-IoT eFDD 13 BPSK	in-band	23249	1	21.09	3	13.68
NB-IoT eFDD 13 BPSK	in-band	23273	1	20.98	3	13.79
NB-IoT eFDD 13 BPSK	guard-band	23206	1	21.14	3	13.63
NB-IoT eFDD 13 BPSK	guard-band	23279	1	21.09	3	13.68

eFDD13 NB-IoT QPSK, Subcarrier 3, Channel 23230

3.5.16 27.2 Frequency stability §2.1055, §27.54**Test: 27.2; Frequency stability Summary §2.1055, §27.54**

Result: Passed

Setup No.: S01_ah01

Date of Test: 2018/01/12 10:07

Body: FCC47CFRChIPART27MISCELLANEOUS WIRELESS COMMUNICATIONS SERV.

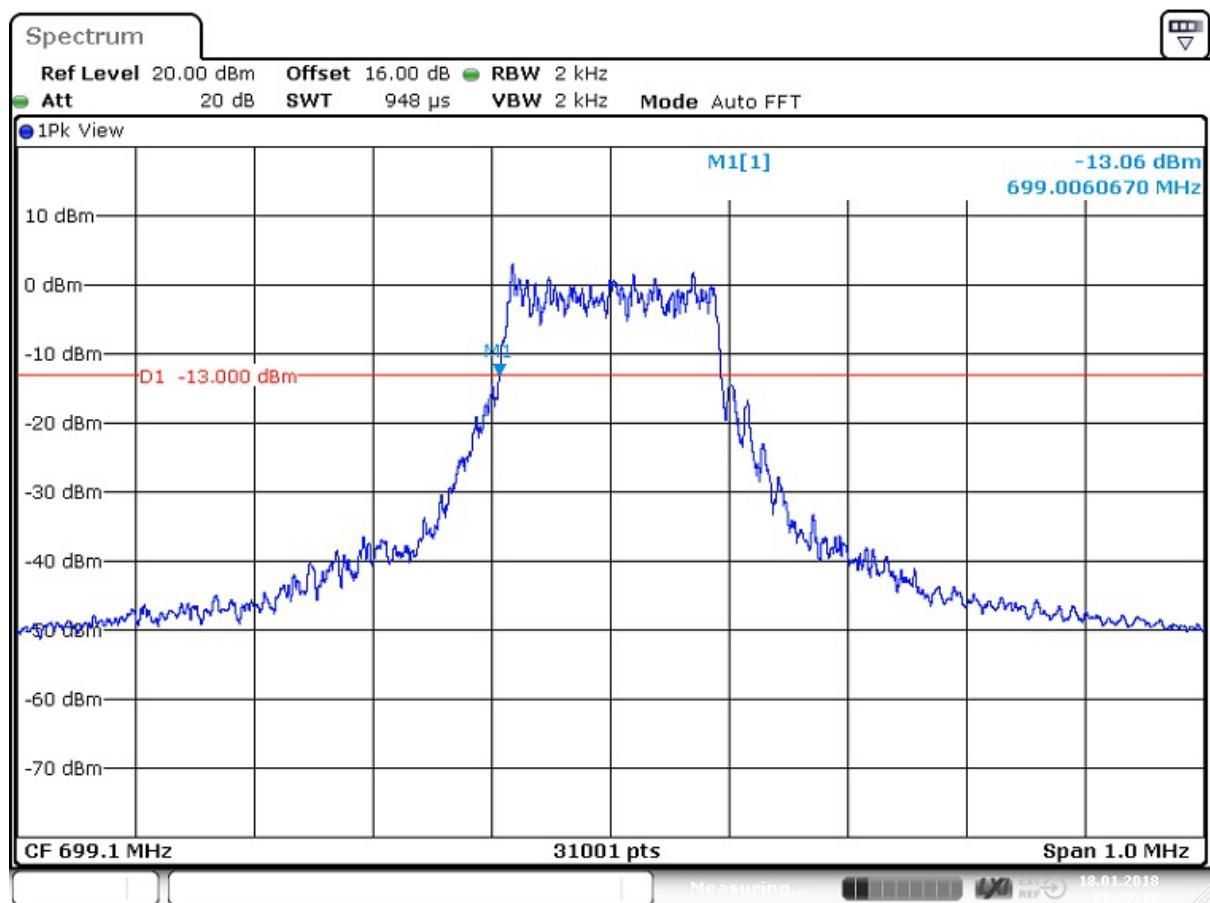
Test Specification: FCC part 2 and 27

Detailed Results:

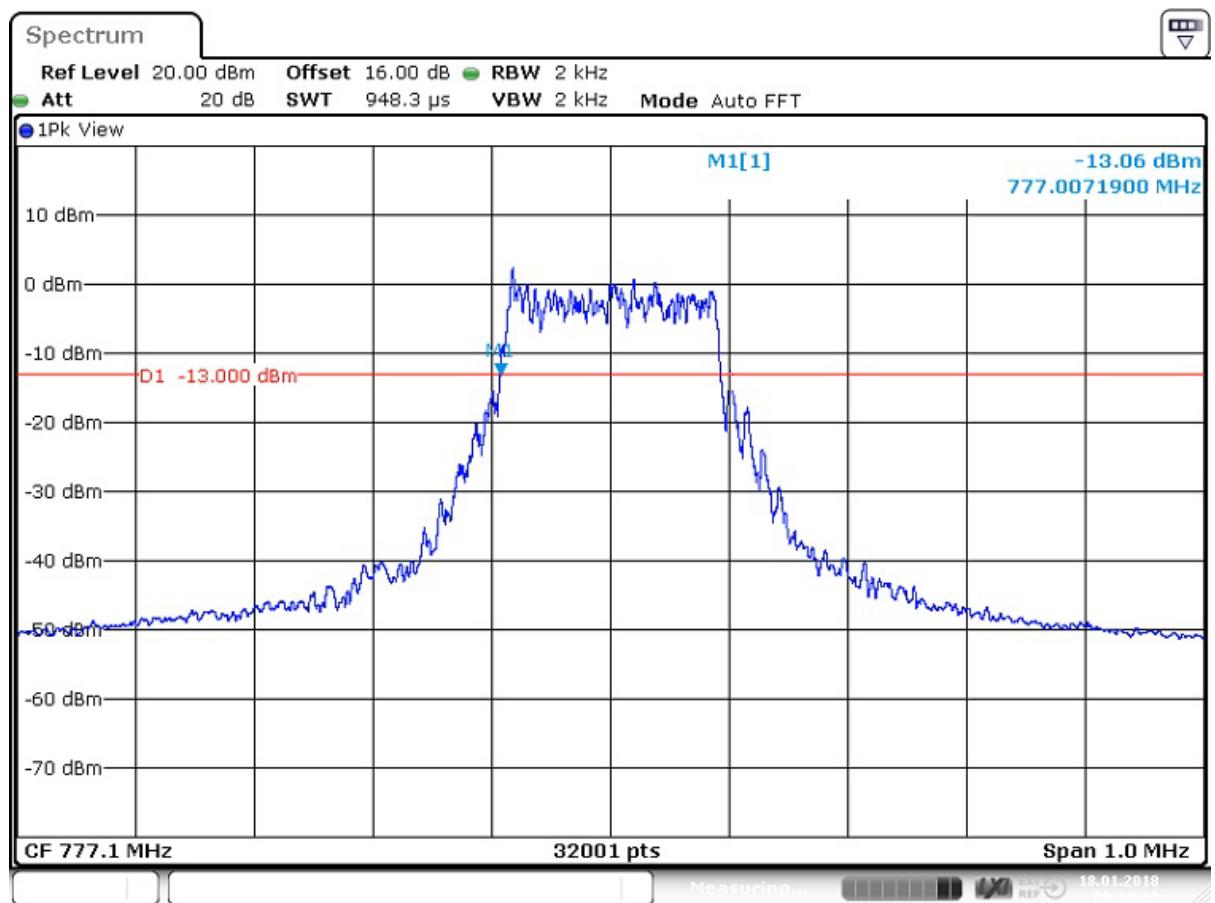
Temp. °C	Duration min	Voltage	Limit Hz	Freq. error Average (Hz)	Freq. error Max. (Hz)	Verdict
-30	0	normal	1955	-6	-21	passed
-30	5			-4	-9	passed
-30	10			10	-10	passed
-20	0	normal	1955	-12	-16	passed
-20	5			-15	-2	passed
-20	10			-4	14	passed
-10	0	normal	1955	-6	10	passed
-10	5			-9	11	passed
-10	10			-4	14	passed
0	0	normal	1955	1	6	passed
0	5			3	10	passed
0	10			-2	-11	passed
10	0	normal	1955	-15	8	passed
10	5			-10	-10	passed
10	10			-18	-7	passed
20	0	low	1955	-4	10	passed
20	5			-8	-12	passed
20	10			6	8	passed
20	0	normal = high ¹⁾	1955	2	-15	passed
20	5			3	-3	passed
20	10			2	-3	passed
20	0	high	1955	2	4	passed
20	5			-4	-12	passed
20	10			6	10	passed
30	0	normal	1955	-4	-11	passed
30	5			-6	12	passed
30	10			-3	19	passed
40	0	normal	1955	-5	-12	passed
40	5			-6	-13	passed
40	10			-3	-4	passed
50	0	normal	1955	-5	-6	passed
50	5			-9	-3	passed
50	10			-7	-5	passed

eFDD12 NB-IoT

Temp. °C	Duration min	Voltage	Limit Hz	Freq. error Average (Hz)	Freq. error Max. (Hz)	Verdict
-30	0	normal	1955	-14	-14	passed
-30	5			-16	-6	passed
-30	10			-11	-18	passed
-20	0	normal	1955	13	-16	passed
-20	5			13	-14	passed
-20	10			12	10	passed
-10	0	normal	1955	-10	6	passed
-10	5			-11	8	passed
-10	10			-10	-10	passed
0	0	normal	1955	23	-12	passed
0	5			5	10	passed
0	10			6	11	passed
10	0	normal	1955	12	13	passed
10	5			11	-10	passed
10	10			11	-4	passed
20	0	low	1955	10	-12	passed
20	5			4	8	passed
20	10			-6	-10	passed
20	0	normal = high ¹⁾	1955	-6	-1	passed
20	5			-2	-2	passed
20	10			1	3	passed
20	0	high	1955	3	6	passed
20	5			4	8	passed
20	10			-6	-12	passed
30	0	normal	1955	4	5	passed
30	5			3	6	passed
30	10			1	17	passed
40	0	normal	1955	2	6	passed
40	5			6	2	passed
40	10			3	-4	passed
50	0	normal	1955	-3	6	passed
50	5			-4	3	passed
50	10			-2	-12	passed


eFDD13 NB-IoT

Reference: MDE_UBLOX_1708_FCCb_rev1


LTE eFDD12						
BW (kHz) / Subcarrier	f_L (MHz)	f_H (MHz)	Max. Frequency Error (Hz)	Resulting Freq. (MHz)	Limit (MHz)	Result
200 / 12	699.0066	-	21	699.01	698	Passed
	-	715.992	21	715.99	716	Passed

LTE eFDD13						
BW (kHz) / Subcarrier	f_L (MHz)	f_H (MHz)	Max. Frequency Error (Hz)	Resulting Freq. (MHz)	Limit (MHz)	Result
200 / 12	777.0072	-	18	777.01	777	Passed
	-	786.9921	18	786.99	787	Passed

eFDD12 NB-IoT & eFDD13 NB-IoT

eFDD12 NB-IoT QPSK, Subcarrier 12, Channel 23011

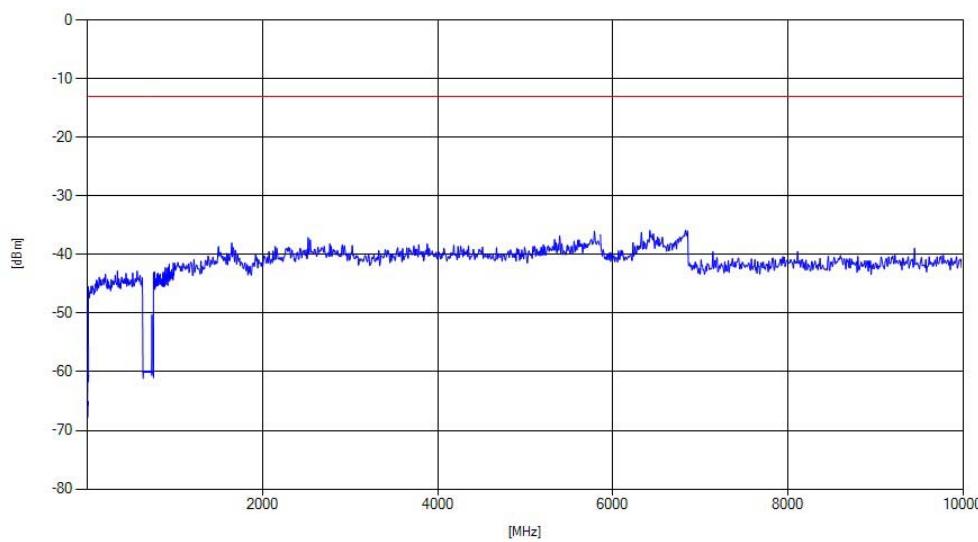
Date: 18.JAN.2018 09:10:28

eFDD13 NB-IoT QPSK, Subcarrier 12, Channel 23181

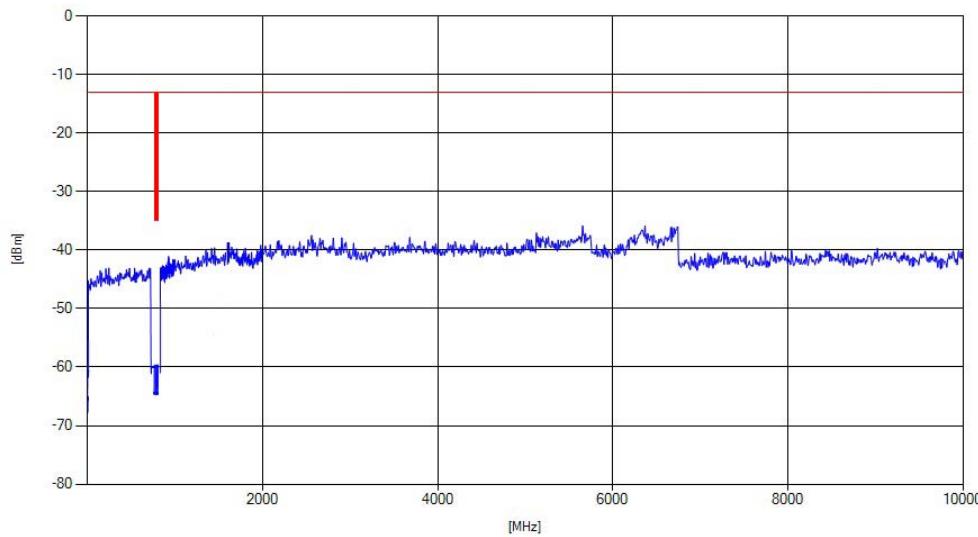
3.5.17 27.3 Spurious emissions at antenna terminals §2.1051, §27.53**Test: 27.3; Spurious emissions at antenna terminals Summary §2.1051, §27.53**

Result: Passed

Setup No.: S01_ah01


Date of Test: 2017/12/17 10:11

Body: FCC47CFRChIPART27MISCELLANEOUS WIRELESS COMMUNICATIONS SERV.


Test Specification: FCC part 2 and 27

Detailed Results:

Radio Technology	Channel	Detector	Trace	Resolution Bandwidth /kHz	Frequency /MHz	Max Value /dBm	Limit /dBm	Margin to Limit /dB
eFDD 12 QPSK NB-IoT	low	rms	maxhold	-	-	-	-13	>20
eFDD 12 QPSK NB-IoT	mid	rms	maxhold	-	-	-	-13	>20
eFDD 12 QPSK NB-IoT	high	rms	maxhold	-	-	-	-13	>20
eFDD 13 QPSK NB-IoT	low	rms	maxhold	-	-	-	-13	>20
eFDD 13 QPSK NB-IoT	mid	rms	maxhold	-	-	-	-13	>20
eFDD 13 QPSK NB-IoT	high	rms	maxhold	-	-	-	-13	>20

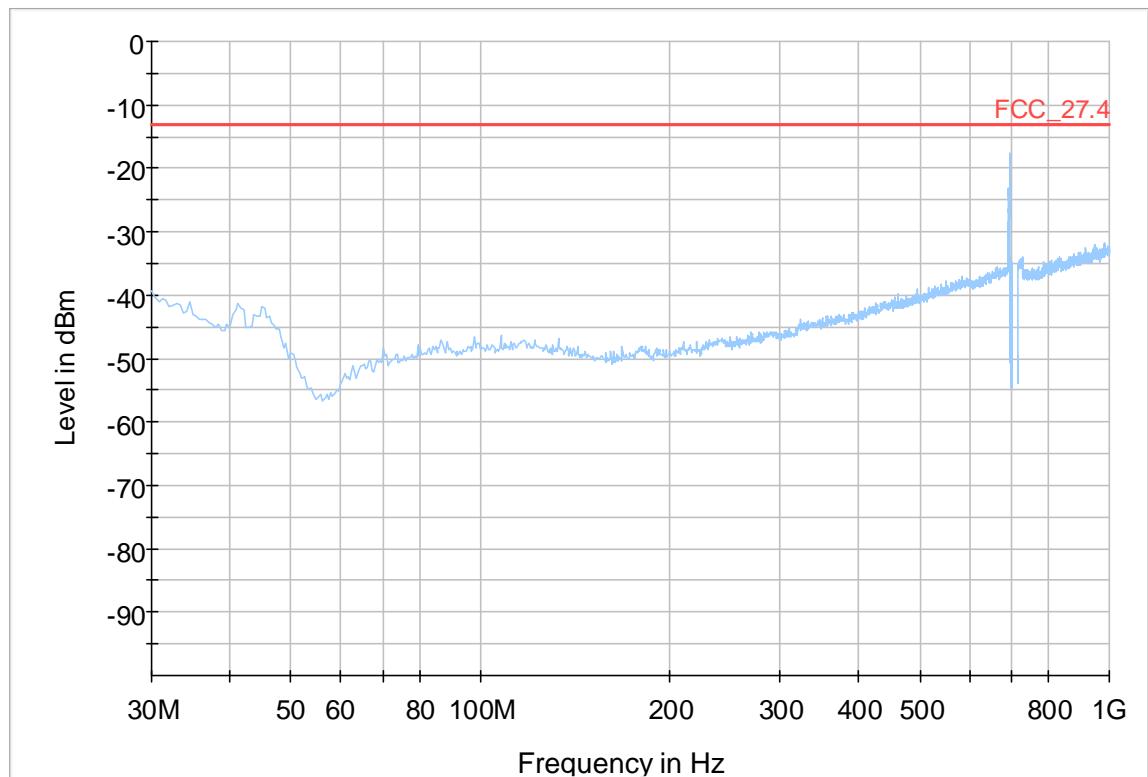
eFDD12 NB-IoT QPSK, Channel 23095

eFDD13 NB-IoT QPSK, Channel 23230

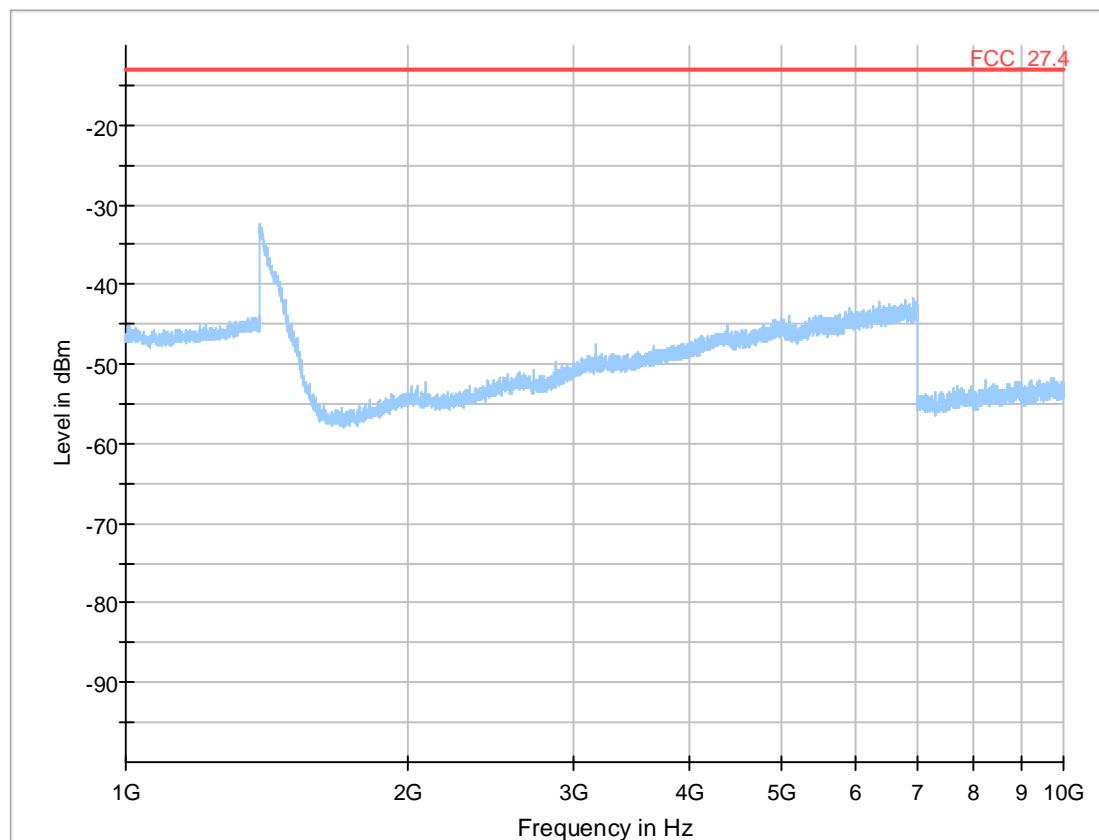
3.5.18 27.4 Field strength of spurious radiation §2.1053, §27.53**Test: 27.4; Field strength of spurious radiation Summary §2.1053, §27.53**

Result: Passed

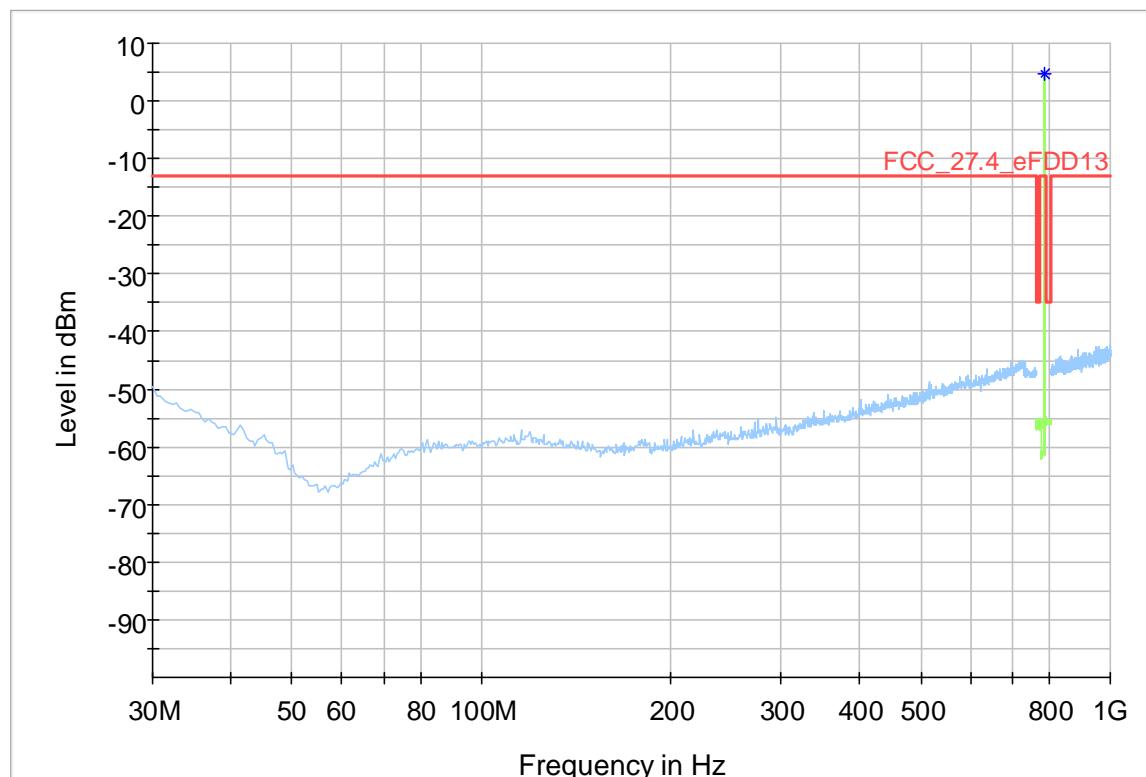
Setup No.: S01_ah01

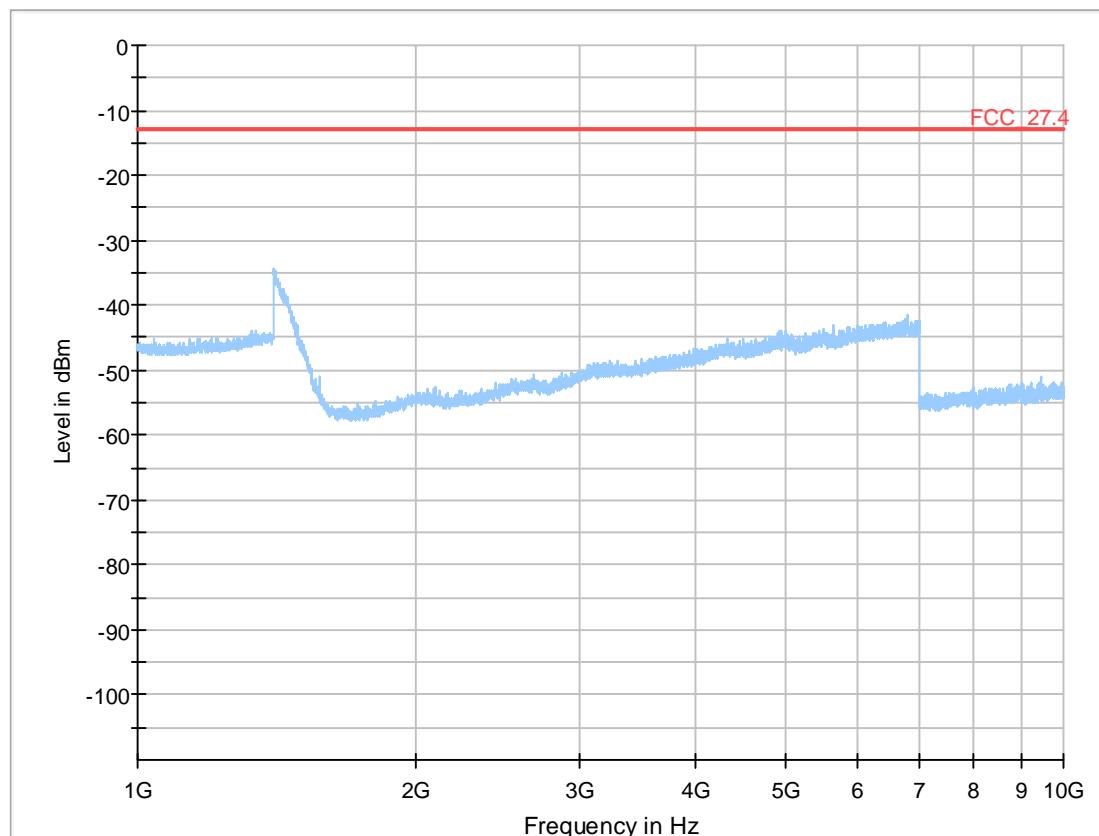

Date of Test: 2017/12/12 11:29

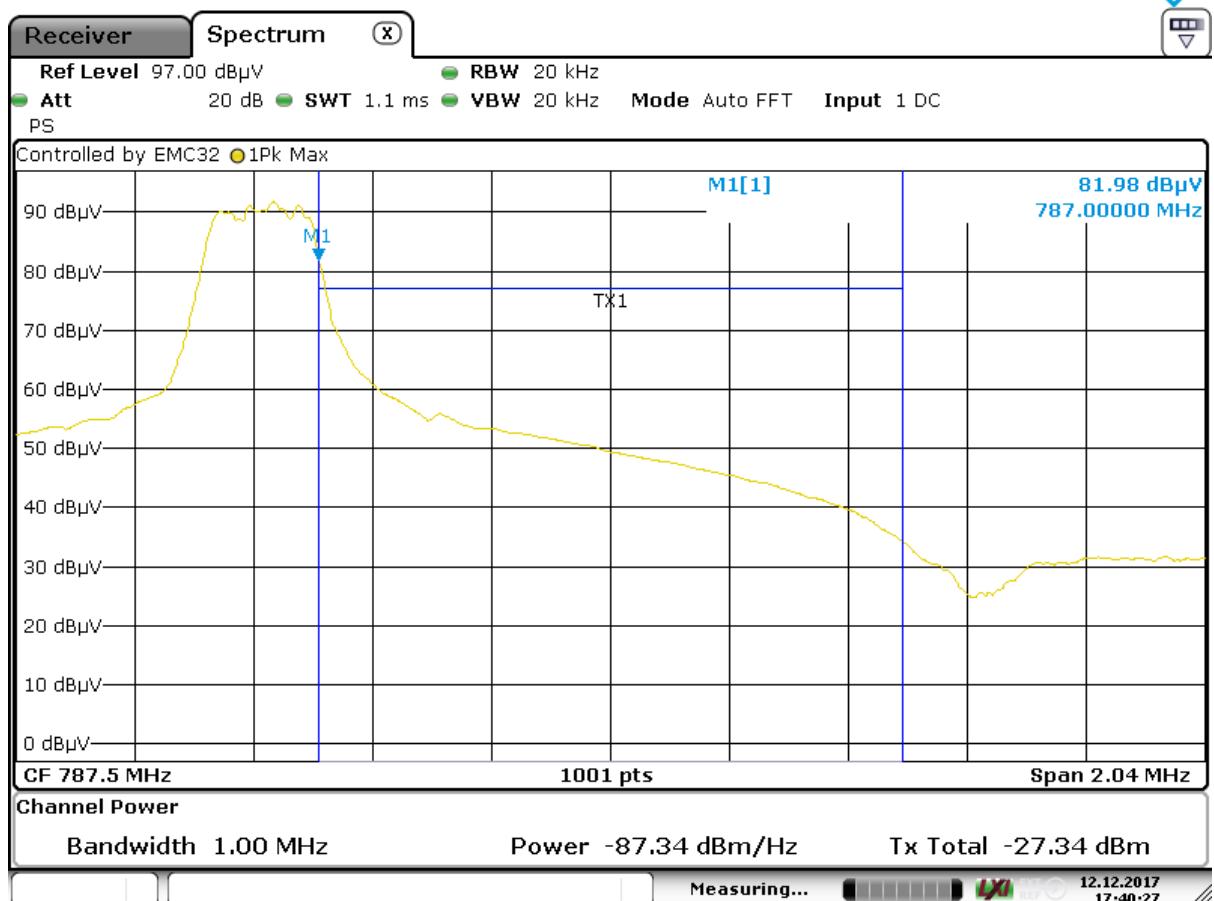
Body: FCC47CFRChIPART27MISCELLANEOUS WIRELESS COMMUNICATIONS SERV.


Test Specification: FCC part 2 and 27

Detailed Results:


Radio Technology	Channel	Detector	Trace	Resolution Bandwidth /kHz	Frequency /MHz	Max Value /dBm	Limit /dBm	Margin to Limit /dB
eFDD 12 QPSK NB-IoT	low	peak	maxhold	30	695.9	-17.66	-13	4.66
eFDD 12 QPSK NB-IoT	mid	-	maxhold	-	-	-	-13	>20
eFDD 12 QPSK NB-IoT	high	peak	maxhold	30	716	-27.81	-13	14.81
eFDD 13 QPSK NB-IoT	low	-	maxhold	-	-	-	-13	>20
eFDD 13 QPSK NB-IoT	mid	-	maxhold	-	-	-	-13	>20
eFDD 13 QPSK NB-IoT	high	peak	maxhold	20	787.5	-27.34	-13	14.34


eFDD12 NB-IoT QPSK, Channel 23011


eFDD12 NB-IoT QPSK, Channel 23011

eFDD13 NB-IoT QPSK, Channel 23279

eFDD13 NB-IoT QPSK, Channel 23279

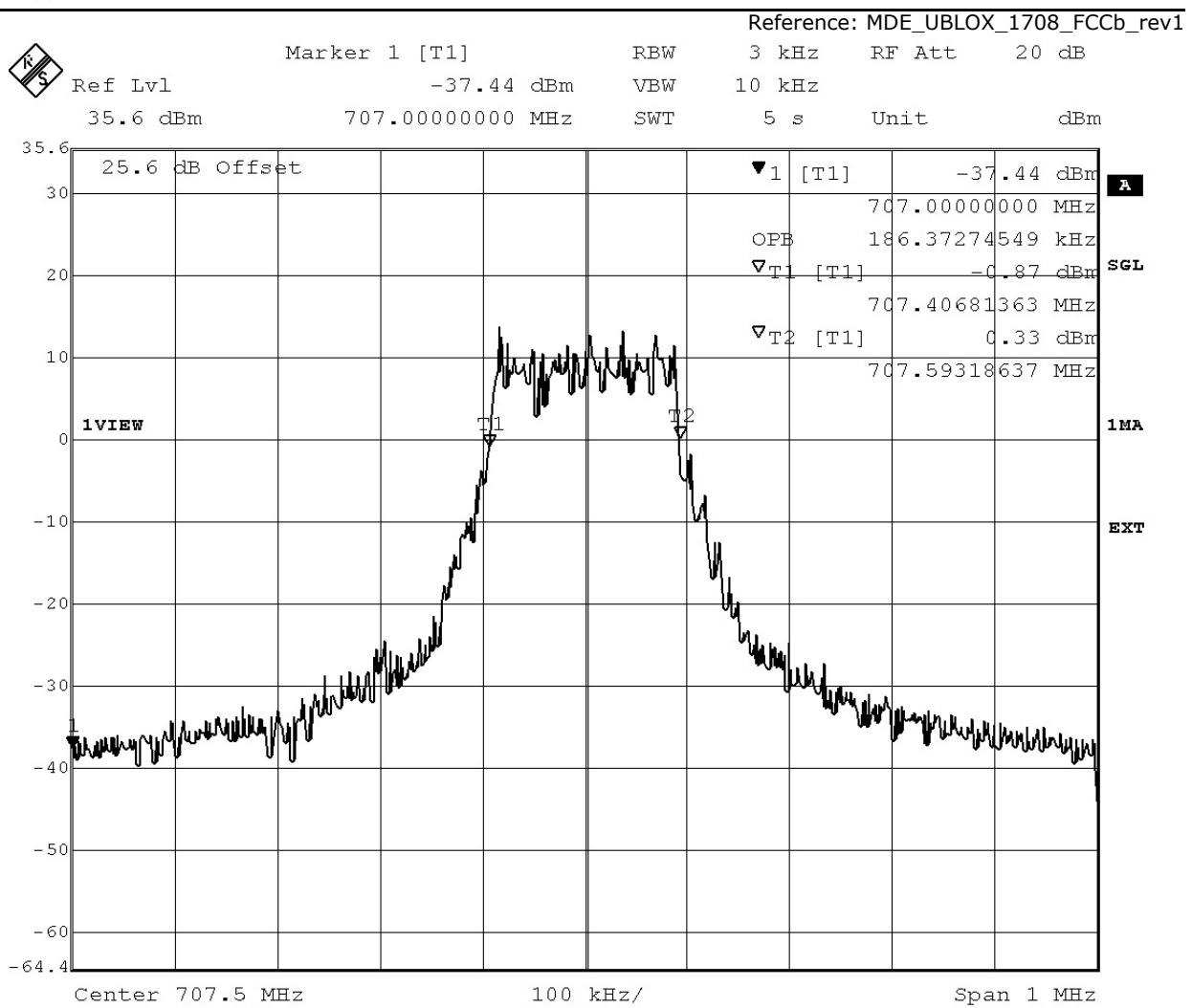
Date: 12.DEC.2017 17:40:27

eFDD13 NB-IoT QPSK, Channel 23279

3.5.19 27.5 Emission and Occupied Bandwidth §2.1049**Test: 27.5; Emission and Occupied Bandwidth Summary §2.1049**

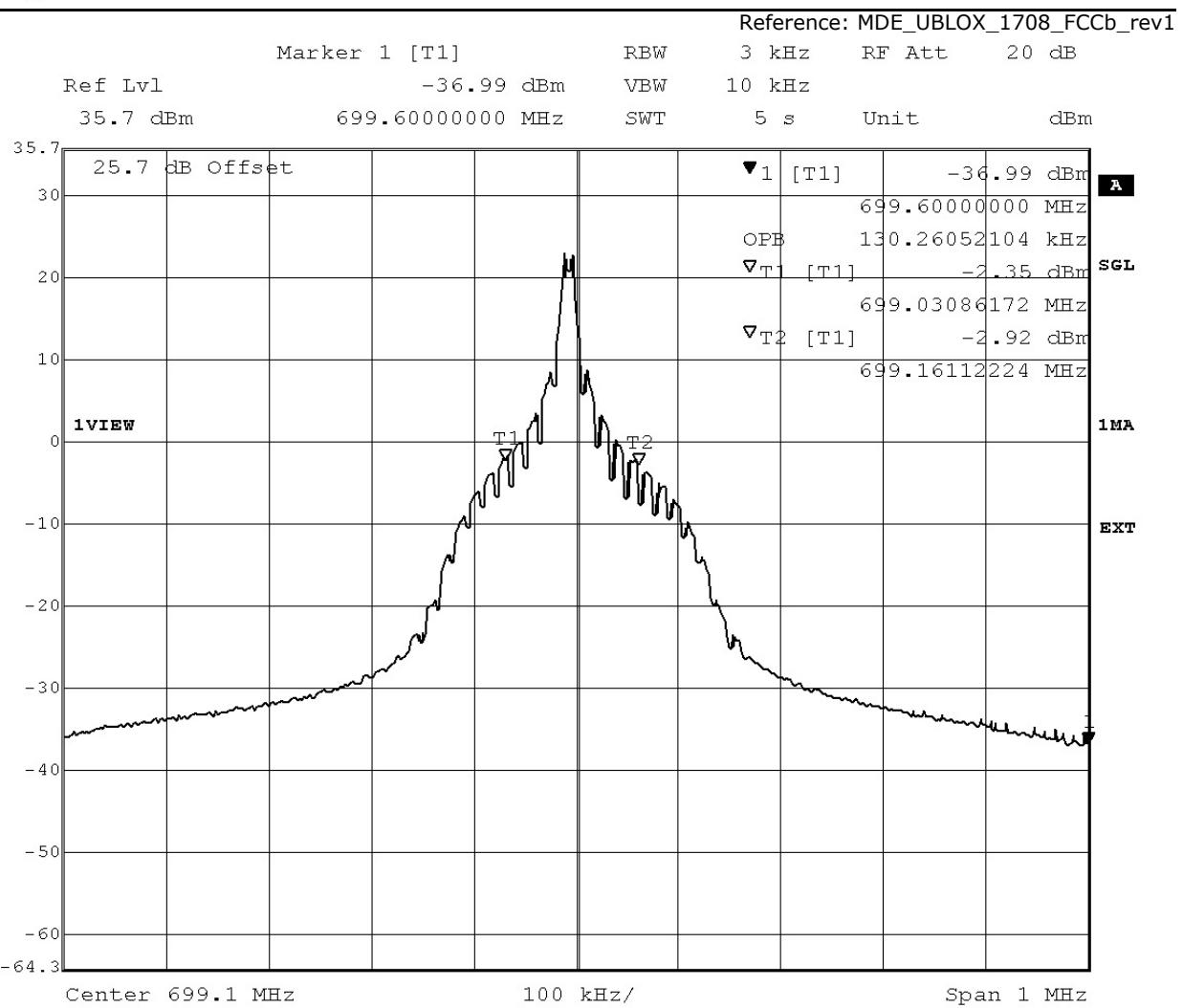
Result: Passed

Setup No.: S01_ah01


Date of Test: 2017/12/17 10:16

Body: FCC47CFRChIPART27MISCELLANEOUS WIRELESS COMMUNICATIONS SERV.

Test Specification: FCC part 2 and 27


Detailed Results:

Radio Technology	Reference Test Frequencies	Channel	Subcarrier	Nominal BW [kHz]	99 % BW [kHz]
NB-IoT eFDD 12 QPSK	standalone	23011	12	200	184.4
NB-IoT eFDD 12 QPSK	standalone	23095	12	200	186.4
NB-IoT eFDD 12 QPSK	standalone	23179	12	200	184.4
NB-IoT eFDD 12 QPSK	in-band	23016	12	200	186.4
NB-IoT eFDD 12 QPSK	in-band	23070	12	200	184.4
NB-IoT eFDD 12 QPSK	in-band	23079	12	200	186.4
NB-IoT eFDD 12 QPSK	in-band	23086	12	200	188.4
NB-IoT eFDD 12 QPSK	in-band	23105	12	200	184.4
NB-IoT eFDD 12 QPSK	in-band	23114	12	200	186.4
NB-IoT eFDD 12 QPSK	in-band	23174	12	200	186.4
NB-IoT eFDD 12 QPSK	in-band	23140	12	200	186.4
NB-IoT eFDD 12 QPSK	in-band	23149	12	200	190.4
NB-IoT eFDD 12 QPSK	guard-band	23011	12	200	186.4
NB-IoT eFDD 12 QPSK	guard-band	23071	12	200	184.4
NB-IoT eFDD 12 QPSK	guard-band	23179	12	200	186.4
NB-IoT eFDD 12 BPSK	standalone	23011	1	200	130.3
NB-IoT eFDD 12 BPSK	standalone	23095	1	200	130.3
NB-IoT eFDD 12 BPSK	standalone	23179	1	200	130.3
NB-IoT eFDD 12 BPSK	in-band	23016	1	200	130.3
NB-IoT eFDD 12 BPSK	in-band	23070	1	200	130.3
NB-IoT eFDD 12 BPSK	in-band	23079	1	200	130.3
NB-IoT eFDD 12 BPSK	in-band	23086	1	200	132.3
NB-IoT eFDD 12 BPSK	in-band	23105	1	200	132.3
NB-IoT eFDD 12 BPSK	in-band	23114	1	200	130.3
NB-IoT eFDD 12 BPSK	in-band	23174	1	200	130.3
NB-IoT eFDD 12 BPSK	in-band	23140	1	200	130.3
NB-IoT eFDD 12 BPSK	in-band	23149	1	200	128.3
NB-IoT eFDD 12 BPSK	guard-band	23011	1	200	130.3
NB-IoT eFDD 12 BPSK	guard-band	23071	1	200	130.3
NB-IoT eFDD 12 BPSK	guard-band	23179	1	200	132.3
NB-IoT eFDD 13 QPSK	standalone	23181	12	200	186.4
NB-IoT eFDD 13 QPSK	standalone	23230	12	200	188.4
NB-IoT eFDD 13 QPSK	standalone	23279	12	200	188.4
NB-IoT eFDD 13 QPSK	in-band	23187	12	200	184.4
NB-IoT eFDD 13 QPSK	in-band	23240	12	200	186.4
NB-IoT eFDD 13 QPSK	in-band	23249	12	200	186.4
NB-IoT eFDD 13 QPSK	in-band	23221	12	200	184.4
NB-IoT eFDD 13 QPSK	in-band	23240	12	200	184.4
NB-IoT eFDD 13 QPSK	in-band	23249	12	200	184.4
NB-IoT eFDD 13 QPSK	in-band	23273	12	200	186.4
NB-IoT eFDD 13 QPSK	in-band	23240	12	200	184.4
NB-IoT eFDD 13 QPSK	in-band	23249	12	200	184.4
NB-IoT eFDD 13 QPSK	guard-band	23181	12	200	190.4
NB-IoT eFDD 13 QPSK	guard-band	23206	12	200	190.4
NB-IoT eFDD 13 QPSK	guard-band	23279	12	200	186.4
NB-IoT eFDD 13 BPSK	standalone	23181	1	200	132.3
NB-IoT eFDD 13 BPSK	standalone	23230	1	200	134.3
NB-IoT eFDD 13 BPSK	standalone	23279	1	200	132.3
NB-IoT eFDD 13 BPSK	in-band	23187	1	200	132.3
NB-IoT eFDD 13 BPSK	in-band	23240	1	200	130.3
NB-IoT eFDD 13 BPSK	in-band	23249	1	200	128.3
NB-IoT eFDD 13 BPSK	in-band	23221	1	200	130.3
NB-IoT eFDD 13 BPSK	in-band	23240	1	200	130.3
NB-IoT eFDD 13 BPSK	in-band	23249	1	200	128.3
NB-IoT eFDD 13 BPSK	in-band	23273	1	200	128.3
NB-IoT eFDD 13 BPSK	in-band	23240	1	200	130.3
NB-IoT eFDD 13 BPSK	guard-band	23181	1	200	128.3
NB-IoT eFDD 13 BPSK	guard-band	23206	1	200	126.3
NB-IoT eFDD 13 BPSK	guard-band	23279	1	200	130.3

Date: 10.JAN.2018 10:35:24

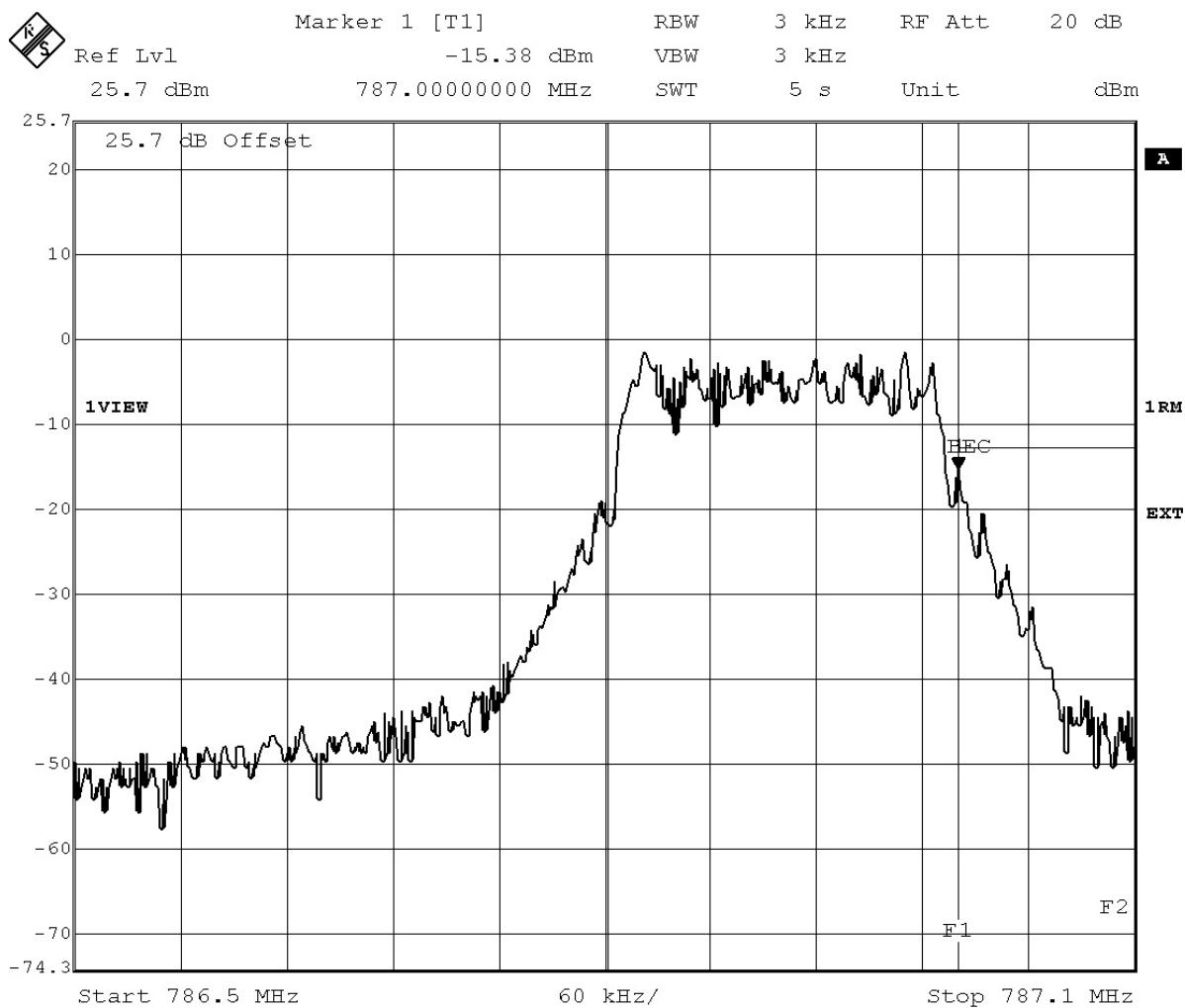
eFDD12 NB-IoT QPSK, Channel 23095

eFDD12 NB-IoT QPSK, Channel 23011

3.5.20 27.6 Band edge compliance §2.1053, §27.53**Test: 27.6; Band edge compliance summary §2.1053, §27.53**

Result: Passed

Setup No.: S01_ah01


Date of Test: 2018/01/08 10:18

Body: FCC47CFRChIPART27MISCELLANEOUS WIRELESS COMMUNICATIONS SERV.

Test Specification: FCC part 2 and 27

Detailed Results:

Radio Technology	Reference Test Frequencies	Channel	Sub-carrier	RMS [dBm]	Limit /dBm	Margin to Limit /dB
NB-IoT eFDD 12 QPSK	standalone	23011	12	-18.48	-13	5.48
NB-IoT eFDD 12 QPSK	standalone	23179	12	-18.13	-13	5.13
NB-IoT eFDD 12 QPSK	guard-band	23011	12	-20.38	-13	7.38
NB-IoT eFDD 12 QPSK	guard-band	23179	12	-16.35	-13	3.35
NB-IoT eFDD 12 BPSK	standalone	23011	1	-16.69	-13	3.69
NB-IoT eFDD 12 BPSK	standalone	23179	1	-19.26	-13	6.26
NB-IoT eFDD 12 BPSK	guard-band	23011	1	-16.82	-13	3.82
NB-IoT eFDD 12 BPSK	guard-band	23179	1	-18.09	-13	5.09
NB-IoT eFDD 13 QPSK	standalone	23181	12	-18.84	-13	5.84
NB-IoT eFDD 13 QPSK	standalone	23279	12	-15.38	-13	2.38
NB-IoT eFDD 13 QPSK	guard-band	23181	12	-19.01	-13	6.01
NB-IoT eFDD 13 QPSK	guard-band	23279	12	-16.76	-13	3.76
NB-IoT eFDD 13 BPSK	standalone	23181	1	-15.46	-13	2.46
NB-IoT eFDD 13 BPSK	standalone	23279	1	-17.46	-13	4.46
NB-IoT eFDD 13 BPSK	guard-band	23181	1	-17.26	-13	4.26
NB-IoT eFDD 13 BPSK	guard-band	23279	1	-15.92	-13	2.92

Date: 14.DEC.2017 12:15:28

eFDD13 NB-IoT QPSK, Channel 23279

3.5.21 27.7 Peak-to-Average ratio §2.1046, §27.50**Test: 27.7; Peak-to-Average Ratio Summary §2.1046, §27.50**

Result: Passed

Setup No.: S01_ah01


Date of Test: 2018/01/08 10:20

Body: FCC47CFRChIPART27MISCELLANEOUS WIRELESS COMMUNICATIONS SERV.

Test Specification: FCC part 2 and 27

Detailed Results:

Radio Technology	Reference Test Frequencies	Channel	Sub-carrier	Peak to Average Ratio	Limit /dB	Margin to Limit /dB
NB-IoT eFDD 12 QPSK	standalone	23011	12	8.23	13	4.77
NB-IoT eFDD 12 QPSK	standalone	23095	12	8.41	13	4.59
NB-IoT eFDD 12 QPSK	standalone	23179	12	8.38	13	4.62
NB-IoT eFDD 12 BPSK	standalone	23011	1	4.35	13	8.65
NB-IoT eFDD 12 BPSK	standalone	23095	1	4.43	13	8.57
NB-IoT eFDD 12 BPSK	standalone	23179	1	4.49	13	8.51
NB-IoT eFDD 13 QPSK	standalone	23181	12	8.55	13	4.45
NB-IoT eFDD 13 QPSK	standalone	23230	12	8.06	13	4.94
NB-IoT eFDD 13 QPSK	standalone	23279	12	8.2	13	4.8
NB-IoT eFDD 13 BPSK	standalone	23181	1	4.49	13	8.51
NB-IoT eFDD 13 BPSK	standalone	23230	1	4.75	13	8.25
NB-IoT eFDD 13 BPSK	standalone	23279	1	4.49	13	8.51

Date: 9.JAN.2018 10:00:28

eFDD13 QPSK CH23181

4 Test Equipment Details

4.1 List of Used Test Equipment

The calibration, hardware and software states are shown for the testing period.

Test Equipment Anechoic Chamber

Lab ID: **Lab 1**
Description: Anechoic Chamber for radiated testing

Single Devices for Anechoic Chamber

Single Device Name	Type	Serial Number	Manufacturer
Air compressor	none	-	
Anechoic Chamber	10.58 x 6.38 x 6.00 m ³	none	
Anechoic Chamber	8.8m x 4.6m x 4.05 m	B83117-S40-X191	Albatross Projects GmbH
Controller Maturo	MCU	961208	Maturo GmbH
EMC camera	CE-CAM/1	-	
EMC camera Nr.2	CCD-400E	0005033	
Filter ISDN	B84312-C110-E1		
Filter Universal 1A	BB4312-C30-H3	-	

Test Equipment Auxiliary Equipment for Radiated emissions

Lab ID: **Lab 1**
Description: Equipment for emission measurements
Serial Number: see single devices

Single Devices for Auxiliary Equipment for Radiated emissions

Single Device Name	Type	Serial Number	Manufacturer
Antenna mast	AM 4.0	AM4.0/180/11920	Maturo GmbH
		513	
Biconical Broadband Antenna	SBA 9119	9119-005	
Biconical dipole	VUBA 9117	9117-108	
Broadband Amplifier 1 GHz - 4 GHz	AFS4-01000400-1Q-10P-4	-	
Broadband Amplifier 18 GHz - 26 GHz	JS4-18002600-32-5P	849785	
Broadband Amplifier 30 MHz - 18 GHz	JS4-00101800-35-5P	896037	
Cable "ESI to EMI Antenna"	EcoFlex10	W18.01-2+W38.01-2	
Cable "ESI to Horn Antenna"	SucoFlex	W18.02-2+W38.02-2	
Double-ridged horn	HF 906	357357/002	Rohde & Schwarz GmbH & Co. KG
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Execution</i>
	Standard Calibration		2015/06/23 2018/06/22
Double-ridged horn	HF 907	102444	Rohde & Schwarz GmbH & Co. KG
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Execution</i>
	Standard Calibration		2015/05/11 2018/05/10

Single Devices for Auxiliary Equipment for Radiated emissions (continued)

Single Device Name	Type	Serial Number	Manufacturer
Double-ridged horn-duplicated 2015-07-15 10:47:55	HF 906	357357/001	Rohde & Schwarz GmbH & Co. KG
High Pass Filter	4HC1600/12750-1.5-KK	9942011	
High Pass Filter	5HC2700/12750-1.5-KK	9942012	
High Pass Filter	5HC3500/18000-1.2-KK	200035008	
High Pass Filter	WHKX 7.0/18G-8SS	09	
Horn Antenna Schwarzbeck 15-26.5 GHz BBHA 9170	BBHA 9170	BBHA9170262	
Log.-per. Antenna	HL 562 Ultralog	100609	Rohde & Schwarz GmbH & Co. KG
Log.-per. Antenna (upgraded)	HL 562 Ultralog new biconicals	830547/003	Rohde & Schwarz GmbH & Co. KG
<i>Calibration Details</i>		<i>Last Execution Next Execution</i>	
Standard Calibration		2015/06/30	2018/06/29
Loop Antenna	HFH2-Z2	829324/006	Rohde & Schwarz GmbH & Co. KG
Standard Gain / Pyramidal Horn Antenna 40 GHz	3160-10	00086675	
Tilt device Maturo (Rohacell)	Antrieb TD1.5-10kg	TD1.5-10kg/024/3790709	Maturo GmbH

Test Equipment Auxiliary Test Equipment

Lab ID: **Lab 1, Lab 2**
Description: Single Devices for various Test Equipment
Type: various
Serial Number: none

Single Devices for Auxiliary Test Equipment

Single Device Name	Type	Serial Number	Manufacturer
Broadband Power Divider N (Aux)	1506A / 93459	LM390	
Broadband Power Divider SMA	WA1515	A855	
Digital Multimeter 03 (Multimeter)	Fluke 177	86670383	
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Execution</i>
	DAkkS Calibration		2016/02/04 2018/02/28
Digital Multimeter 13 (Clamp Meter)	Fluke 325	31270091WS	FLUKE
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Execution</i>
	DAkkS-Calibration		2016/02/04 2019/02/28
Fibre optic link Satellite (Aux)	FO RS232 Link	181-018	
Fibre optic link Transceiver (Aux)	FO RS232 Link	182-018	
Isolating Transformer	LTS 604	1888	
Notch Filter Ultra Stable (Aux)	WRCA800/960-6EEK	24	
Signal Analyzer	FSV30	103005	Rohde & Schwarz GmbH & Co. KG
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Execution</i>
	DKD calibration		2016/02/25 2018/02/24
Spectrum Analyser	FSU26	200418	
Spectrum Analyzer	FSP3	836722/011	Rohde & Schwarz GmbH & Co. KG
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Execution</i>
	DKD calibration		2015/06/23 2018/06/22
Vector Signal Generator	SMIQ 03B	832492/061	

Test Equipment Digital Signalling Devices

Lab ID: **Lab 1, Lab 2**
Description: Signalling equipment for various wireless technologies.

Single Devices for Digital Signalling Devices

Single Device Name	Type	Serial Number	Manufacturer
CMW500	CMW500	107500	
Digital Radio Communication Tester	CMD 55	831050/020	Rohde & Schwarz GmbH & Co. KG
Universal Radio Communication Tester	CMU 200	837983/052	Rohde & Schwarz GmbH & Co. KG
Vector Signal Generator	SMU200A	100912	Rohde & Schwarz GmbH & Co. KG

Test Equipment Emission measurement devices
Lab ID:
Lab 1

Description:

Equipment for emission measurements

Serial Number:

see single devices

Single Devices for Emission measurement devices

Single Device Name	Type	Serial Number	Manufacturer
EMI Receiver / Spectrum Analyzer	ESR 7	101424	
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Execution</i>
	DKD Calibration		2016/11/29 2018/11/28
Personal Computer	Dell	30304832059	
Power Meter	NRVD	828110/016	
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Execution</i>
	Standard calibration		2017/05/17 2018/05/16
Sensor Head A	NRV-Z1	827753/005	
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Execution</i>
	Standard calibration		2017/05/18 2018/05/17
Signal Generator	SMR 20	846834/008	Rohde & Schwarz GmbH & Co. KG
Spectrum Analyzer	ESIB 26	830482/004	Rohde & Schwarz GmbH & Co. KG
	<i>HW/SW Status</i>		<i>Date of Start</i> <i>Date of End</i>
	Firmware-Update 4.34.4 from 3.45 during calibration		2009/12/03
Spectrum Analyzer	FSW 43	103779	
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Execution</i>
	DKD calibration		2016/12/02 2018/12/01

Test Equipment Multimeter 03
Lab ID:
Lab 1, Lab 2

Description:

Fluke 177

Serial Number:

86670383

Single Devices for Multimeter 03

Single Device Name	Type	Serial Number	Manufacturer
Digital Multimeter 03 (Multimeter)	Fluke 177	86670383	
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Execution</i>
	DAkkS Calibration		2016/02/04 2018/02/28

Test Equipment Radio Lab Test Equipment

Lab ID: **Lab 2**
Description: Radio Lab Test Equipment

Single Devices for Radio Lab Test Equipment

Single Device Name	Type	Serial Number	Manufacturer
Broadband Power Divider SMA	WA1515	A856	
Coax Attenuator 10dB 4T-10 SMA 2W		F9401	
Coax Attenuator 10dB 56-10 SMA 2W		W3702	
Coax Attenuator 10dB 56-10 SMA 2W		W3711	
Coax Cable Huber&Suhner	Sucotest 2,0m		Huber&Suhner
Coax Cable Rosenberger Micro Coax FA210A0010003030	FA210A0010003030	54491-2	
Power Meter	NRVD	828110/016	
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Execution</i>
	Standard calibration		2017/05/17 2018/05/16
RF Step Attenuator RSP	RSP	833695/001	
Rubidium Frequency Standard	Datum, Model: MFS	5489/001	
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Execution</i>
	Standard calibration		2017/07/11 2018/07/10
Sensor Head A	NRV-Z1	827753/005	
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Execution</i>
	Standard calibration		2017/05/18 2018/05/17
Signal Generator SME	SME03	827460/016	
Signal Generator SMP	SMP02	833286/0014	Rohde & Schwarz GmbH & Co. KG
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Execution</i>
	Standard calibration		2016/05/24 2019/05/23
Spectrum Analyzer	FSIQ26	840061/005	Rohde & Schwarz GmbH & Co. KG

Test Equipment T/A Logger 13

Lab ID: **Lab 1, Lab 2**
Description: Lufft Opus10 TPR
Type: Opus10 TPR
Serial Number: 13936

Single Devices for T/A Logger 13

Single Device Name	Type	Serial Number	Manufacturer
ThermoAirpressure Datalogger 13 (Environ)	Opus10 TPR (8253.00)	13936	
	<i>Calibration Details</i>		<i>Last Execution</i> <i>Next Execution</i>
	Customized calibration		2017/04/10 2019/04/09

Test Equipment T/H Logger 03

Lab ID: **Lab 2**
Description: Lufft Opus10
Serial Number: 7482

Single Devices for T/H Logger 03

Single Device Name	Type	Serial Number	Manufacturer
ThermoHygro Datalogger 03 (Environ)	Opus10 THI (8152.00)	7482	
	<i>Calibration Details</i>		<i>Last Execution Next Execution</i>
	Customized calibration	2017/03/30	2019/03/29

Test Equipment T/H Logger 12

Lab ID: **Lab 1**
Description: Lufft Opus10
Serial Number: 12482

Single Devices for T/H Logger 12

Single Device Name	Type	Serial Number	Manufacturer
ThermoHygro Datalogger 12 (Environ)	Opus10 THI (8152.00)	12482	
	<i>Calibration Details</i>		<i>Last Execution Next Execution</i>
	Customized calibration	2017/03/30	2019/03/29

Test Equipment Temperature Chamber 05

Lab ID: **Lab 2**
Description: Temperature Chamber VT4002
Type: Vötsch
Serial Number: see single devices

Single Devices for Temperature Chamber 05

Single Device Name	Type	Serial Number	Manufacturer
Temperature Chamber Vötsch 05	VT 4002	58566080550010	
	<i>Calibration Details</i>		<i>Last Execution Next Execution</i>
	Customized calibration	2016/03/09	2018/03/08

5 Annex

5.1 Additional Information for Report

Summary of Test Results

The EUT complied with all performed tests as listed in the summary section of this report.

Technical Report Summary

Type of Authorization :

Certification for a GSM/WCDMA/CDMA2000 cellular radiotelephone device

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 0 to 69. The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

§ 2.1046 Measurement required: RF power output
§ 2.1049 Measurement required: Occupied bandwidth
§ 2.1051 Measurement required: Spurious emissions at antenna terminals
§ 2.1053 Measurement required: Field strength of spurious radiation
§ 2.1055 Measurement required: Frequency stability
§ 2.1057 Frequency spectrum to be investigated

Part 22, Subpart C – Operational and Technical Requirements

§ 22.355 Frequency tolerance

Part 22, Subpart H – Cellular Radiotelephone Service

§ 22.913 Effective radiated power limits
§ 22.917 Emission limitations for cellular equipment

additional documents

ANSI C63.26-2015

Description of Methods of Measurements

RF Power Output

Standard FCC Part 22, Subpart H

The test was performed according to: FCC §2.1046

Test Description (conducted measurement procedure)

- 1) The EUT was coupled to a Spectrum Analyser and a Digital Communication Tester through a Power Divider. Refer to chapter "Setup Drawings".
- 2) The total insertion losses for signal path 1 and signal path 2 were measured. The values were used to correct the readings from the Spectrum Analyser and the Digital Communication Tester.
- 3) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Channel (Frequency): please refer to the detailed results
- 4) The transmitted power of the EUT was recorded by using a spectrum analyser.

Test Description (radiated measurement procedure)

- 1) The EUT was placed inside an anechoic chamber. Refer to chapter "Setup Drawings". The EUT was coupled to a Digital Communication Tester which was located outside the chamber via a small signalling antenna.
- 2) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum
- Channel: please refer to the detailed results
- 3) A substitution procedure is used so that the readings from the spectrum analyser are corrected and represent directly the equivalent radiated power (related to a lamda/2 dipole).
- 4) The output power was measured in both vertical and horizontal antenna polarisation during the call is established on the lowest channel, mid channel and on the highest channel. To find the worst case power all orientations (X, Y, Z) of the EUT have been measured.
- 5) The test procedure according to ANSI C63.26-2015 has been considered.

Test Requirements / Limits

§2.1046 Measurements Required: RF Power Output

(a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in § 2.1033(c)(8). The electrical characteristics of the output terminals when this test is made shall be stated.

§22.913 Effective radiated power limits

(a)(2) Maximum ERP. ... The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

Emission and Occupied Bandwidth

Standard FCC Part 22, Subpart H

The test was performed according to: FCC §2.1049

Test Description

- 1) The EUT was coupled to a Spectrum Analyser and a Digital Communication Tester through a Power Divider. Refer to chapter "Setup Drawings".
- 2) The total insertion losses for signal path 1 and signal path 2 were measured. The values were used to correct the readings from the Spectrum Analyser and the Digital Communication Tester.
- 3) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum
- Channel: please refer to the detailed results
- 4) Important Analyser Settings:
 - Resolution Bandwidth: >1% of the manufacturer's stated occupied bandwidth
 - 5) The maximum spectral level of the modulated signal was recorded as the reference.
 - 6) The emission bandwidth is measured as follows:
the two furthest frequencies above and below the frequency of the maximum reference level where the spectrum is -26 dB down have to be found.
 - 7) The occupied bandwidth (99% Bandwidth) is measured as follows:
the occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5 percent of the total mean power.

Test Requirements / Limits

§ 2.1049 Measurements required: Occupied bandwidth

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured under the following conditions (as applicable):

(h) Transmitters employing digital modulation techniques - when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudo-random generators or other devices required in normal service. Additionally, the occupied bandwidth shall be shown for operation with any devices used for modifying the spectrum when such devices are optional at the discretion of the user.

Spurious emissions at antenna terminals

Standard FCC Part 22, Subpart H

The test was performed according to FCC §2.1051

Test Description

- 1) The EUT was coupled to a Spectrum Analyser and a Digital Communication Tester through a Power Divider. Refer to chapter "Setup Drawings".
- 2) The total insertion losses for signal path 1 and signal path 2 were measured. The values were used to correct the readings from the Spectrum Analyser and the Digital Communication Tester.
- 3) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum
- Channel: please refer to the detailed results
- 4) Important Analyser Settings
- [Resolution Bandwidth]:
 - a) [$>=1\%$ of wanted signal bandwidth] in the Span of 1 MHz directly below and above the PCS-Band,
 - b) otherwise [100 kHz] (or [1 MHz] for accelerated sweep times)
 - c) [reduced resolution bandwidth] in case the curve of the analyser IF-Filter or the wanted EUT signal leads to an exceeding of the limit, in this case a correction factor was used
- Sweep Time: depending on the transmitting signal, the span and the resolution bandwidth
- 5) The spurious emissions peaks were measured in the frequency range from 9 kHz to 10 GHz (up to the 10th harmonic) during the call was established

Test Requirements / Limits

§ 2.1051 Spurious emissions at antenna terminals

The radio frequency voltage or power generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in Sec. 2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

§ 2.1057 Frequency spectrum to be investigated.

- (a) In all of the measurements set forth in Secs. 2.1051 and 2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without going below 9 kHz, up to at least the frequency shown below:
 - (1) If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
 - (b) Particular attention should be paid to harmonics and subharmonics of the carrier frequency as well as to those frequencies removed from the carrier by multiples of the oscillator frequency. Radiation at the frequencies of multiplier stages should also be checked.
 - (c) The amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value

need not be reported.

(d) Unless otherwise specified, measurements above 40 GHz shall be performed using a minimum resolution bandwidth of 1 MHz.

§ 22.917 Emission limitations for cellular equipment

(a) The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

Remark of the test laboratory: This is calculated to be -13 dBm.

(b) Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 100 kHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

(c) Licensees in this service may establish an alternative out of band emission limit to be used at specified band edge(s) in specified geographical areas [...].

(d) If any emission from a transmitter operating in this service results in interference to users of another radio service, the FCC may require a greater attenuation of that emission than specified in this section.

For reporting only spurious emission levels reaching to the 20dB margin to limit were noted.

Field strength of spurious radiation

Standard FCC Part 22, Subpart H

The test was performed according to: FCC §2.1053

Test Description

1) The EUT was placed inside an anechoic chamber. Refer to chapter "Setup Drawings". The EUT was coupled to a Digital Communication Tester which was located outside the chamber via a small signalling antenna.

2) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum

- Channel: please refer to the detailed results

3) A pre-calibration procedure is used so that the readings from the spectrum analyser are corrected and represent directly the equivalent radiated power (related to a lambda/2 dipole).

4) All spurious radiation measurements were made with spectrum analyser and the appropriate calibrated antennas for the frequency range of 30 MHz to 10 GHz (up to the 10th harmonic of the transmit frequency). The frequency range from 9 kHz to 30 MHz has been examined during the conducted spurious emission measurements.

5) Important Analyser Settings

- [Resolution Bandwidth / Video Bandwidth]:

a) [3 kHz / 10 kHz] in the Span of 1 MHz directly below and above the Band,

b) [10 kHz / 30 kHz] in case the curve of the analyser IF-Filter leads to an exceeding of the limit, in this case a worst case correction factor of 20 dB (1 MHz -> 10 kHz) was used

c) [1 MHz / 3 MHz] otherwise

- Sweep Time: depending on the transmitting signal, the span and the resolution bandwidth

6) The spurious emissions peaks were measured in both vertical and horizontal antenna polarization during the call is established on the lowest channel, mid channel and on the highest channel. To find the worst case peaks all orientations (X, Y, Z) of the EUT have been measured.

7) After this initial test, a final test according to ANSI C63.26-2015 Unwanted Emissions is performed on signals which are identified as being close to the limit. For any emissions found to be within 10 dB of the limit, a specific signal substitution measurement is performed at the frequency of the emission to determine the exact e.i.r.p. value.

Test Requirements / Limits

§ 2.1053 Measurements required: Field strength of spurious radiation.

Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of Sec. 2.1049, as appropriate. For equipment operating on frequencies below 890 MHz, an open field test is normally required, with the measuring instrument antenna located in the far-field at all test frequencies. In the event it is either impractical or impossible to make open field measurements (e.g. a broadcast transmitter installed in a building) measurements will be accepted of the equipment as installed. Such measurements must be accompanied by a description of the site where the measurements were made showing the location of any possible source of reflections which might distort the field strength measurements. Information submitted shall include the relative radiated power of each spurious emission with reference to the rated power output of the transmitter, assuming all emissions are radiated from halfwave dipole antennas.

(b) The measurements specified in paragraph (a) of this section shall be made for the following equipment:
(2) All equipment operating on frequencies higher than 25 MHz.

§ 2.1057 Frequency spectrum to be investigated.

(a) In all of the measurements set forth in Secs. 2.1051 and 2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without going below 9 kHz, up to at least the frequency shown below:
(1) If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
(b) Particular attention should be paid to harmonics and subharmonics of the carrier frequency as well as to those frequencies removed from the carrier by multiples of the oscillator frequency. Radiation at the frequencies of multiplier stages should also be checked.
(c) The amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be reported.
(d) Unless otherwise specified, measurements above 40 GHz shall be performed using a minimum resolution bandwidth of 1 MHz.

§ 22.917 Emission limitations for cellular equipment

(a) The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.
This is calculated to be -13 dBm (effective radiated power) which corresponds to 84.6 dB μ V/m (field strength) in a distance of 3 m.

(b) Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 100 kHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
(c) Licensees in this service may establish an alternative out of band emission limit to be used at specified band edge(s) in specified geographical areas [...].
(d) If any emission from a transmitter operating in this service results in interference to users of another radio service, the FCC may require a greater attenuation of that emission than specified in this section.

For reporting only spurious emission levels reaching to the 20dB margin to limit were noted.

Frequency stability

Standard FCC Part 22, Subpart H

The test was performed according to FCC §2.1055

Test Description

- 1) The EUT was placed inside a temperature chamber.
- 2) The EUT was coupled to a Digital Communication Tester. Refer to chapter "Setup Drawings".

- 3) The climatic chamber was cycled down/up to a certain temperature, starting with the EUT minimum temperature.
- 4) After the temperature was stabilized the EUT was switched on and a call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum
- Mid Channel

- 5) The frequency error of the EUT was recorded by using an internal measurement function of the Digital Communication Tester immediately after the call was established, five minutes after the call was established and ten minutes after the call was established.
- 6) This measurement procedure was performed for temperature variation from -30°C to +50°C in increments of 10°C, if not otherwise stated in the detailed results.

When the EUT did not operate at certain temperature levels, these measurements were left out.

Test Requirements / Limits

§2.1055 Measurements required: Frequency stability

(a) The frequency stability shall be measured with variation of ambient temperature as follows:

- (1) From -30° to +50° centigrade for all equipment except that specified in paragraphs (a) (2) and (3) of this section.
- (b) Frequency measurements shall be made at the extremes of the specified temperature range and at intervals of not more than 10° centigrade through the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. The short term transient effects on the frequency of the transmitter due to keying (except for broadcast transmitters) and any heating element cycling normally occurring at each ambient temperature level also shall be shown. Only the portion or portions of the transmitter containing the frequency determining and stabilizing circuitry need be subjected to the temperature variation test.
- (d) The frequency stability shall be measured with variation of primary supply voltage as follows:
- (1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
- (2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.
- (3) The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided. Effects on frequency of transmitter keying (except for broadcast transmitters) and any heating element cycling at the nominal supply voltage and at each extreme also shall be shown.

§22.355 Frequency tolerance

...the carrier frequency of each transmitter in the Public Mobile Service must be maintained within the tolerances given in table C-1 of this section.

Table C-1.- Frequency Tolerance for Transmitters in the Public Mobile Services

Frequency range (MHz)	Base, fixed (ppm)	Mobile up to 3 watts (ppm)	Mobile above 3 watts (ppm)
25 to 50	20.0	20.0	50.0
50 to 450	5.0	5.0	50.0
450 to 512	2.5	5.0	5.0
821 to 896	1.5	2.5	2.5
928 to 929	5.0	n/a	n/a
929 to 960	1.5	n/a	n/a
2110 to 2220	10.0	n/a	n/a

For the mid channel (836.6 MHz) the frequency tolerance is 2.5 ppm (2091.5 Hz).

Band edge compliance

Standard FCC Part 22, Subpart H

The test was performed according to: FCC §22.913

Test Description

- 1) The EUT was coupled to a Spectrum Analyser and a Digital Communication Tester through a Power Divider.

Refer to chapter "Setup Drawings".

2) The total insertion losses for signal path 1 and signal path 2 were measured. The values were used to correct the readings from the Spectrum Analyser and the Digital Communication Tester.

3) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum

- Channel: please refer to the detailed results

4) Important Analyser Settings:

- Resolution Bandwidth = Video Bandwidth: >1% of the manufacturer's stated occupied bandwidth

Test Requirements / Limits

§ 22.917 Emission limitations for cellular equipment

Refer to chapter "Field strength of spurious radiation".

Summary of Test Results

The EUT complied with all performed tests as listed in the summary section of this report.

Technical Report Summary

Type of Authorization :

Certification for a GSM/WCDMA/CDMA2000 cellular radiotelephone device

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 0 to 69. The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

§ 2.1046 Measurement required: RF power output

§ 2.1049 Measurement required: Occupied bandwidth

§ 2.1051 Measurement required: Spurious emissions at antenna terminals

§ 2.1053 Measurement required: Field strength of spurious radiation

§ 2.1055 Measurement required: Frequency stability

§ 2.1057 Frequency spectrum to be investigated

Part 24, Subpart E - Broadband PCS

§ 24.232 Power and antenna height limits

§ 24.235 Frequency stability

§ 24.236 Field strength limits

§ 24.238 Emission limitations for Broadband PCS equipment

additional documents

ANSI C63.26-2015

Description of Methods of Measurements

RF Power Output

Standard: FCC Part 24, Subpart E

The test was performed according to: FCC §2.1046

Test Description (conducted measurement procedure)

- 1) The EUT was coupled to a Spectrum Analyser and a Digital Communication Tester through a Power Divider. Refer to chapter "Setup Drawings".
- 2) The total insertion losses for signal path 1 and signal path 2 were measured. The values were used to correct the readings from the Spectrum Analyser and the Digital Communication Tester.
- 3) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.
Important Settings:
 - Channel (Frequency): please refer to the detailed results
- 4) The transmitted power of the EUT was recorded by using a spectrum analyser.

Test Description (radiated measurement procedure)

- 1) The EUT was placed inside an anechoic chamber. Refer to chapter "Setup Drawings". The EUT was coupled to a Digital Communication Tester which was located outside the chamber via a small signalling antenna.
- 2) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.
Important Settings:
 - Output Power: Maximum
 - Channel: please refer to the detailed results
- 3) A substitution procedure is used so that the readings from the spectrum analyser are corrected and represent directly the equivalent radiated power (related to a lambda/2 dipole).
- 4) The output power was measured in both vertical and horizontal antenna polarisation during the call is established on the lowest channel, mid channel and on the highest channel. To find the worst case power all orientations (X, Y, Z) of the EUT have been measured.
- 5) The test procedure according to ANSI C63.26-2015 has been considered.

Test Requirements / Limits

§2.1046 Measurements Required: RF Power Output

- (a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in § 2.1033(c)(8). The electrical characteristics of the output terminals when this test is made shall be stated.
- §24.232 Power and antenna height limits
- (c) Mobile/portable stations are limited to 2 watts EIRP peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.
- (e) Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage. The measurement results shall be properly adjusted for any instrument limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, etc., so as to obtain a true peak measurement for the emission in question over the full bandwidth of the channel.

Emission and Occupied Bandwidth

Standard: FCC Part 24, Subpart E

The test was performed according to: FCC §2.1049

Test Description

- 1) The EUT was coupled to a Spectrum Analyser and a Digital Communication Tester through a Power Divider. Refer to chapter "Setup Drawings".
- 2) The total insertion losses for signal path 1 and signal path 2 were measured. The values were used to correct the readings from the Spectrum Analyser and the Digital Communication Tester.

- 3) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum
- Channel: please refer to the detailed results

4) Important Analyser Settings:

- Resolution Bandwidth: $>1\%$ of the manufacturer's stated occupied bandwidth
- 5) The maximum spectral level of the modulated signal was recorded as the reference.

- 6) The emission bandwidth is measured as follows:

the two furthest frequencies above and below the frequency of the maximum reference level where the spectrum is -26 dB down have to be found.

- 7) The occupied bandwidth (99% Bandwidth) is measured as follows:

the occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5 percent of the total mean power.

Test Requirements / Limits

§ 2.1049 Measurements required: Occupied bandwidth

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured under the following conditions (as applicable):

(h) Transmitters employing digital modulation techniques - when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudo-random generators or other devices required in normal service. Additionally, the occupied bandwidth shall be shown for operation with any devices used for modifying the spectrum when such devices are optional at the discretion of the user.

Spurious emissions at antenna terminals

Standard: FCC Part 24, Subpart E

The test was performed according to FCC §2.1051

Test Description

- 1) The EUT was coupled to a Spectrum Analyser and a Digital Communication Tester through a Power Divider. Refer to chapter "Setup Drawings".

- 2) The total insertion losses for signal path 1 and signal path 2 were measured. The values were used to correct the readings from the Spectrum Analyser and the Digital Communication Tester.

- 3) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum
- Channel: please refer to the detailed results

4) Important Analyser Settings

- [Resolution Bandwidth]:

- a) $[>=1\%$ of wanted signal bandwidth] in the Span of 1 MHz directly below and above the Band,
- b) otherwise [1 MHz]

- c) [reduced resolution bandwidth] in case the curve of the analyser IF-Filter or the wanted EUT signal leads to an exceeding of the limit, in this case a correction factor was used

- Sweep Time: depending on the transmitting signal, the span and the resolution bandwidth

- 5) The spurious emissions peaks were measured in the frequency range from 9 kHz to 20 GHz (up to the 10th harmonic) during the call was established

Test Requirements / Limits

§ 2.1051 Spurious emissions at antenna terminals

The radio frequency voltage or power generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in Sec. 2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

§ 2.1057 Frequency spectrum to be investigated.

(a) In all of the measurements set forth in Secs. 2.1051 and 2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without going below 9 kHz, up to at least the frequency shown below:

- (1) If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- (b) Particular attention should be paid to harmonics and subharmonics of the carrier frequency as well as to those frequencies removed from the carrier by multiples of the oscillator frequency. Radiation at the frequencies of multiplier stages should also be checked.
- (c) The amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be reported.
- (d) Unless otherwise specified, measurements above 40 GHz shall be performed using a minimum resolution bandwidth of 1 MHz.

§ 24.238 Emission limitations for Broadband PCS equipment

(a) The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

Remark of the test laboratory: This is calculated to be -13 dBm.

(b) Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

(c) Licensees in this service may establish an alternative out of band emission limit to be used at specified band edge(s) in specified geographical areas [...].

(d) If any emission from a transmitter operating in this service results in interference to users of another radio service, the FCC may require a greater attenuation of that emission than specified in this section.

For reporting only spurious emission levels reaching to the 20dB margin to limit were noted.

Field strength of spurious radiation

Standard: FCC Part 24, Subpart E

The test was performed according to: FCC §2.1053

Test Description

- 1) The EUT was placed inside an anechoic chamber. Refer to chapter "Setup Drawings". The EUT was coupled to a Digital Communication Tester which was located outside the chamber via a small signalling antenna.
- 2) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum
- Channel: please refer to the detailed results

- 3) A pre-calibration procedure is used so that the readings from the spectrum analyser are corrected and represent directly the equivalent radiated power (related to a lamda/2 dipole).

4) All spurious radiation measurements were made with spectrum analyser and the appropriate calibrated antennas for the frequency range of 30 MHz to 20 GHz (up to the 10th harmonic of the transmit frequency). The frequency range from 9 kHz to 30 MHz has been examined during the conducted spurious emission measurements.

5) Important Analyser Settings

- [Resolution Bandwidth / Video Bandwidth]:
 - a) [3 kHz / 10 kHz] in the Span of 1 MHz directly below and above the Band,
 - b) [10 kHz / 30 kHz] in case the curve of the analyser IF-Filter leads to an exceeding of the limit, in this case a worst case correction factor of 20 dB (1 MHz -> 10 kHz) was used
 - c) [1 MHz / 3 MHz] otherwise
- Sweep Time: depending on the transmitting signal, the span and the resolution bandwidth

6) The spurious emissions peaks were measured in both vertical and horizontal antenna polarisation during the call is established on the lowest channel, mid channel and on the highest channel. To find the worst case peaks all orientations (X, Y, Z) of the EUT have been measured.

7) After this initial test, a final test according to ANSI C63.26-2015 Unwanted Emissions is performed on signals which are identified as being close to the limit. For any emissions found to be within 10 dB of the limit, a specific signal substitution measurement is performed at the frequency of the emission to determine the exact e.i.r.p. value.

Test Requirements / Limits

§ 2.1053 Measurements required: Field strength of spurious radiation.

Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of Sec. 2.1049, as appropriate. For equipment operating on frequencies below 890 MHz, an open field test is normally required, with the measuring instrument antenna located in the far-field at all test frequencies. In the event it is either impractical or impossible to make open field measurements (e.g. a broadcast transmitter installed in a building) measurements will be accepted of the equipment as installed. Such measurements must be accompanied by a description of the site where the measurements were made showing the location of any possible source of reflections which might distort the field strength measurements. Information submitted shall include the relative radiated power of each spurious emission with reference to the rated power output of the transmitter, assuming all emissions are radiated from halfwave dipole antennas.

(b) The measurements specified in paragraph (a) of this section shall be made for the following equipment:
(2) All equipment operating on frequencies higher than 25 MHz.

§ 2.1057 Frequency spectrum to be investigated.

(a) In all of the measurements set forth in Secs. 2.1051 and 2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without going below 9 kHz, up to at least the frequency shown below:

- (1) If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- (b) Particular attention should be paid to harmonics and subharmonics of the carrier frequency as well as to those frequencies removed from the carrier by multiples of the oscillator frequency. Radiation at the frequencies of multiplier stages should also be checked.
- (c) The amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be reported.
- (d) Unless otherwise specified, measurements above 40 GHz shall be performed using a minimum resolution bandwidth of 1 MHz.

§ 24.238 Emission limitations for Broadband PCS equipment

(a) The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB. This is calculated to be -13 dBm (effective radiated power) which corresponds to 84.6 dB μ V/m (field strength) in a distance of 3 m.

(b) Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below

the transmitter power.

(c) Licensees in this service may establish an alternative out of band emission limit to be used at specified band edge(s) in specified geographical areas [...].

(d) If any emission from a transmitter operating in this service results in interference to users of another radio service, the FCC may require a greater attenuation of that emission than specified in this section.

For reporting only spurious emission levels reaching to the 20dB margin to limit were noted.

Frequency stability

Standard: FCC Part 24, Subpart E

The test was performed according to FCC §2.1055

Test Description

- 1) The EUT was placed inside a temperature chamber.
- 2) The EUT was coupled to a Digital Communication Tester. Refer to chapter "Setup Drawings".
- 3) The climatic chamber was cycled down/up to a certain temperature, starting with the EUT minimum temperature.
- 4) After the temperature was stabilized the EUT was switched on and a call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum
- Mid Channel

5) The frequency error of the EUT was recorded by using an internal measurement function of the Digital Communication Tester immediately after the call was established, five minutes after the call was established and ten minutes after the call was established.

6) This measurement procedure was performed for temperature variation from -30°C to +50°C in increments of 10°C, if not otherwise stated in the detailed results.

When the EUT did not operate at certain temperature levels, these measurements were left out.

Test Requirements / Limits

§2.1055 Measurements required: Frequency stability

(a) The frequency stability shall be measured with variation of ambient temperature as follows:

(1) From -30° to +50° centigrade for all equipment except that specified in paragraphs (a) (2) and (3) of this section.

(b) Frequency measurements shall be made at the extremes of the specified temperature range and at intervals of not more than 10° centigrade through the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. The short term transient effects on the frequency of the transmitter due to keying (except for broadcast transmitters) and any heating element cycling normally occurring at each ambient temperature level also shall be shown. Only the portion or portions of the transmitter containing the frequency determining and stabilizing circuitry need be subjected to the temperature variation test.

(d) The frequency stability shall be measured with variation of primary supply voltage as follows:

(1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

(2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.

(3) The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided. Effects on frequency of transmitter keying (except for broadcast transmitters) and any heating element cycling at the nominal supply voltage and at each extreme also shall be shown.

§24.235 Frequency stability

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

7Layers interpretation of limit:

To ensure that the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block following limit was used:

+/- 2.5 ppm = 4700 Hz for a frequency of 1880.0 MHz

in accordance with FCC Part 22, Subpart H, §22.355, table C-1: Frequency tolerance for the carrier frequency of mobile transmitters in the Public Mobile Service in the frequency range 821 to 896 MHz.

Band edge compliance

Standard: FCC Part 24, Subpart E

The test was performed according to: FCC §24.238

Test Description

1) The EUT was coupled to a Spectrum Analyser and a Digital Communication Tester through a Power Divider. Refer to chapter "Setup Drawings".

2) The total insertion losses for signal path 1 and signal path 2 were measured. The values were used to correct the readings from the Spectrum Analyser and the Digital Communication Tester.

3) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum

- Channel: please refer to the detailed results

4) Important Analyser Settings:

- Resolution Bandwidth = Video Bandwidth: >1% of the manufacturer's stated occupied bandwidth

Test Requirements / Limits

§ 24.238 Effective radiated power limits

Refer to chapter "Field strength of spurious radiation".

Subtests HSDPA

Sub-test	β_c	β_d	β_d (SF)	β_c/β_d	β_{HS} (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Note 1: $\beta_{ACK}, \beta_{NACK}$ and $\beta_{CQI} = 30/15$ with $\beta_{hs} = 30/15 * \beta_c$.
 Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, β_{ACK} and $\beta_{NACK} = 30/15$ with $\beta_{hs} = 30/15 * \beta_c$, and $\beta_{CQI} = 24/15$ with $\beta_{hs} = 24/15 * \beta_c$.
 Note 3: CM = 1 for $\beta_c/\beta_d = 12/15, \beta_{hs}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.
 Note 4: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 11/15$ and $\beta_d = 15/15$.

Subtests HSUPA

Subtest	Mode	Loopback Mode	Rel99 RMC	HSDPA FRC	HSUPA Test	Number of E-DPDCH Channels
1	Rel6 HSUPA	Test Mode 1	12.2kbps RMC	H-Set1	HSUPA Loopback	1
2	Rel6 HSUPA	Test Mode 1	12.2kbps RMC	H-Set1	HSUPA Loopback	1
3	Rel6 HSUPA	Test Mode 1	12.2kbps RMC	H-Set1	HSUPA Loopback	2
4	Rel6 HSUPA	Test Mode 1	12.2kbps RMC	H-Set1	HSUPA Loopback	1
5	Rel6 HSUPA	Test Mode 1	12.2kbps RMC	H-Set1	HSUPA Loopback	1

Subtest	Max UL Data Rate (kb/s)	β_c/β_d	β_{hs}	β_{ed}	CM
1	242.1	11/15	22/15	1309/225	1
2	161.3	6/15	12/15	94/75	3
3	524.7	15/9	30/15	47/15	2
4	197.6	2/15	4/15	56/75	3
5	299.6	15/15	30/15	134/15	1

Summary of Test Results

The EUT complied with all performed tests as listed in the summary section of this report.

Technical Report Summary

Type of Authorization :

Certification for a GSM/WCDMA/CDMA2000 cellular radiotelephone device

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 0 to 69. The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

§ 2.1046 Measurement required: RF power output
§ 2.1049 Measurement required: Occupied bandwidth
§ 2.1051 Measurement required: Spurious emissions at antenna terminals
§ 2.1053 Measurement required: Field strength of spurious radiation
§ 2.1055 Measurement required: Frequency stability
§ 2.1057 Frequency spectrum to be investigated

Part 22, Subpart C – Operational and Technical Requirements

§ 22.355 Frequency tolerance

Part 22, Subpart H – Cellular Radiotelephone Service

§ 22.913 Effective radiated power limits
§ 22.917 Emission limitations for cellular equipment

additional documents

ANSI C63.26-2015

Description of Methods of Measurements

RF Power Output

Standard FCC Part 22, Subpart H

The test was performed according to: FCC §2.1046

Test Description (conducted measurement procedure)

- 1) The EUT was coupled to a Spectrum Analyser and a Digital Communication Tester through a Power Divider. Refer to chapter "Setup Drawings".
- 2) The total insertion losses for signal path 1 and signal path 2 were measured. The values were used to correct the readings from the Spectrum Analyser and the Digital Communication Tester.
- 3) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Channel (Frequency): please refer to the detailed results
- 4) The transmitted power of the EUT was recorded by using a spectrum analyser.

Test Description (radiated measurement procedure)

- 1) The EUT was placed inside an anechoic chamber. Refer to chapter "Setup Drawings". The EUT was coupled to a Digital Communication Tester which was located outside the chamber via a small signalling antenna.
- 2) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum
- Channel: please refer to the detailed results
- 3) A substitution procedure is used so that the readings from the spectrum analyser are corrected and represent directly the equivalent radiated power (related to a lamda/2 dipole).
- 4) The output power was measured in both vertical and horizontal antenna polarisation during the call is established on the lowest channel, mid channel and on the highest channel. To find the worst case power all orientations (X, Y, Z) of the EUT have been measured.
- 5) The test procedure according to ANSI C63.26-2015 has been considered.

Test Requirements / Limits

§2.1046 Measurements Required: RF Power Output

(a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in § 2.1033(c)(8). The electrical characteristics of the output terminals when this test is made shall be stated.

§22.913 Effective radiated power limits

(a)(2) Maximum ERP. ... The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

Emission and Occupied Bandwidth

Standard FCC Part 22, Subpart H

The test was performed according to: FCC §2.1049

Test Description

- 1) The EUT was coupled to a Spectrum Analyser and a Digital Communication Tester through a Power Divider. Refer to chapter "Setup Drawings".
- 2) The total insertion losses for signal path 1 and signal path 2 were measured. The values were used to correct the readings from the Spectrum Analyser and the Digital Communication Tester.
- 3) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum
- Channel: please refer to the detailed results
- 4) Important Analyser Settings:
 - Resolution Bandwidth: >1% of the manufacturer's stated occupied bandwidth
 - 5) The maximum spectral level of the modulated signal was recorded as the reference.
 - 6) The emission bandwidth is measured as follows:
the two furthest frequencies above and below the frequency of the maximum reference level where the spectrum is -26 dB down have to be found.
 - 7) The occupied bandwidth (99% Bandwidth) is measured as follows:
the occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5 percent of the total mean power.

Test Requirements / Limits

§ 2.1049 Measurements required: Occupied bandwidth

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured under the following conditions (as applicable):

(h) Transmitters employing digital modulation techniques - when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudo-random generators or other devices required in normal service. Additionally, the occupied bandwidth shall be shown for operation with any devices used for modifying the spectrum when such devices are optional at the discretion of the user.

Spurious emissions at antenna terminals

Standard FCC Part 22, Subpart H

The test was performed according to FCC §2.1051

Test Description

- 1) The EUT was coupled to a Spectrum Analyser and a Digital Communication Tester through a Power Divider. Refer to chapter "Setup Drawings".
- 2) The total insertion losses for signal path 1 and signal path 2 were measured. The values were used to correct the readings from the Spectrum Analyser and the Digital Communication Tester.
- 3) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum
- Channel: please refer to the detailed results
- 4) Important Analyser Settings
- [Resolution Bandwidth]:
 - a) [$>=1\%$ of wanted signal bandwidth] in the Span of 1 MHz directly below and above the PCS-Band,
 - b) otherwise [100 kHz] (or [1 MHz] for accelerated sweep times)
 - c) [reduced resolution bandwidth] in case the curve of the analyser IF-Filter or the wanted EUT signal leads to an exceeding of the limit, in this case a correction factor was used
- Sweep Time: depending on the transmitting signal, the span and the resolution bandwidth
- 5) The spurious emissions peaks were measured in the frequency range from 9 kHz to 10 GHz (up to the 10th harmonic) during the call was established

Test Requirements / Limits

§ 2.1051 Spurious emissions at antenna terminals

The radio frequency voltage or power generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in Sec. 2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

§ 2.1057 Frequency spectrum to be investigated.

- (a) In all of the measurements set forth in Secs. 2.1051 and 2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without going below 9 kHz, up to at least the frequency shown below:
 - (1) If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
 - (b) Particular attention should be paid to harmonics and subharmonics of the carrier frequency as well as to those frequencies removed from the carrier by multiples of the oscillator frequency. Radiation at the frequencies of multiplier stages should also be checked.
 - (c) The amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value

need not be reported.

(d) Unless otherwise specified, measurements above 40 GHz shall be performed using a minimum resolution bandwidth of 1 MHz.

§ 22.917 Emission limitations for cellular equipment

(a) The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

Remark of the test laboratory: This is calculated to be -13 dBm.

(b) Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 100 kHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

(c) Licensees in this service may establish an alternative out of band emission limit to be used at specified band edge(s) in specified geographical areas [...].

(d) If any emission from a transmitter operating in this service results in interference to users of another radio service, the FCC may require a greater attenuation of that emission than specified in this section.

For reporting only spurious emission levels reaching to the 20dB margin to limit were noted.

Field strength of spurious radiation

Standard FCC Part 22, Subpart H

The test was performed according to: FCC §2.1053

Test Description

1) The EUT was placed inside an anechoic chamber. Refer to chapter "Setup Drawings". The EUT was coupled to a Digital Communication Tester which was located outside the chamber via a small signalling antenna.

2) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum

- Channel: please refer to the detailed results

3) A pre-calibration procedure is used so that the readings from the spectrum analyser are corrected and represent directly the equivalent radiated power (related to a lambda/2 dipole).

4) All spurious radiation measurements were made with spectrum analyser and the appropriate calibrated antennas for the frequency range of 30 MHz to 10 GHz (up to the 10th harmonic of the transmit frequency). The frequency range from 9 kHz to 30 MHz has been examined during the conducted spurious emission measurements.

5) Important Analyser Settings

- [Resolution Bandwidth / Video Bandwidth]:

a) [3 kHz / 10 kHz] in the Span of 1 MHz directly below and above the Band,

b) [10 kHz / 30 kHz] in case the curve of the analyser IF-Filter leads to an exceeding of the limit, in this case a worst case correction factor of 20 dB (1 MHz -> 10 kHz) was used

c) [1 MHz / 3 MHz] otherwise

- Sweep Time: depending on the transmitting signal, the span and the resolution bandwidth

6) The spurious emissions peaks were measured in both vertical and horizontal antenna polarization during the call is established on the lowest channel, mid channel and on the highest channel. To find the worst case peaks all orientations (X, Y, Z) of the EUT have been measured.

7) After this initial test, a final test according to ANSI C63.26-2015 Unwanted Emissions is performed on signals which are identified as being close to the limit. For any emissions found to be within 10 dB of the limit, a specific signal substitution measurement is performed at the frequency of the emission to determine the exact e.i.r.p. value.

Test Requirements / Limits

§ 2.1053 Measurements required: Field strength of spurious radiation.

Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of Sec. 2.1049, as appropriate. For equipment operating on frequencies below 890 MHz, an open field test is normally required, with the measuring instrument antenna located in the far-field at all test frequencies. In the event it is either impractical or impossible to make open field measurements (e.g. a broadcast transmitter installed in a building) measurements will be accepted of the equipment as installed. Such measurements must be accompanied by a description of the site where the measurements were made showing the location of any possible source of reflections which might distort the field strength measurements. Information submitted shall include the relative radiated power of each spurious emission with reference to the rated power output of the transmitter, assuming all emissions are radiated from halfwave dipole antennas.

(b) The measurements specified in paragraph (a) of this section shall be made for the following equipment:
(2) All equipment operating on frequencies higher than 25 MHz.

§ 2.1057 Frequency spectrum to be investigated.

(a) In all of the measurements set forth in Secs. 2.1051 and 2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without going below 9 kHz, up to at least the frequency shown below:
(1) If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
(b) Particular attention should be paid to harmonics and subharmonics of the carrier frequency as well as to those frequencies removed from the carrier by multiples of the oscillator frequency. Radiation at the frequencies of multiplier stages should also be checked.
(c) The amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be reported.
(d) Unless otherwise specified, measurements above 40 GHz shall be performed using a minimum resolution bandwidth of 1 MHz.

§ 22.917 Emission limitations for cellular equipment

(a) The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.
This is calculated to be -13 dBm (effective radiated power) which corresponds to 84.6 dB μ V/m (field strength) in a distance of 3 m.

(b) Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 100 kHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
(c) Licensees in this service may establish an alternative out of band emission limit to be used at specified band edge(s) in specified geographical areas [...].
(d) If any emission from a transmitter operating in this service results in interference to users of another radio service, the FCC may require a greater attenuation of that emission than specified in this section.

For reporting only spurious emission levels reaching to the 20dB margin to limit were noted.

Frequency stability

Standard FCC Part 22, Subpart H

The test was performed according to FCC §2.1055

Test Description

- 1) The EUT was placed inside a temperature chamber.
- 2) The EUT was coupled to a Digital Communication Tester. Refer to chapter "Setup Drawings".

- 3) The climatic chamber was cycled down/up to a certain temperature, starting with the EUT minimum temperature.
- 4) After the temperature was stabilized the EUT was switched on and a call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum
- Mid Channel

- 5) The frequency error of the EUT was recorded by using an internal measurement function of the Digital Communication Tester immediately after the call was established, five minutes after the call was established and ten minutes after the call was established.
- 6) This measurement procedure was performed for temperature variation from -30°C to +50°C in increments of 10°C, if not otherwise stated in the detailed results.

When the EUT did not operate at certain temperature levels, these measurements were left out.

Test Requirements / Limits

§2.1055 Measurements required: Frequency stability

(a) The frequency stability shall be measured with variation of ambient temperature as follows:

- (1) From -30° to +50° centigrade for all equipment except that specified in paragraphs (a) (2) and (3) of this section.
- (b) Frequency measurements shall be made at the extremes of the specified temperature range and at intervals of not more than 10° centigrade through the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. The short term transient effects on the frequency of the transmitter due to keying (except for broadcast transmitters) and any heating element cycling normally occurring at each ambient temperature level also shall be shown. Only the portion or portions of the transmitter containing the frequency determining and stabilizing circuitry need be subjected to the temperature variation test.
- (d) The frequency stability shall be measured with variation of primary supply voltage as follows:
- (1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
- (2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.
- (3) The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided. Effects on frequency of transmitter keying (except for broadcast transmitters) and any heating element cycling at the nominal supply voltage and at each extreme also shall be shown.

§22.355 Frequency tolerance

...the carrier frequency of each transmitter in the Public Mobile Service must be maintained within the tolerances given in table C-1 of this section.

Table C-1.- Frequency Tolerance for Transmitters in the Public Mobile Services

Frequency range (MHz)	Base, fixed (ppm)	Mobile up to 3 watts (ppm)	Mobile above 3 watts (ppm)
25 to 50	20.0	20.0	50.0
50 to 450	5.0	5.0	50.0
450 to 512	2.5	5.0	5.0
821 to 896	1.5	2.5	2.5
928 to 929	5.0	n/a	n/a
929 to 960	1.5	n/a	n/a
2110 to 2220	10.0	n/a	n/a

For the mid channel (836.6 MHz) the frequency tolerance is 2.5 ppm (2091.5 Hz).

Band edge compliance

Standard FCC Part 22, Subpart H

The test was performed according to: FCC §22.913

Test Description

- 1) The EUT was coupled to a Spectrum Analyser and a Digital Communication Tester through a Power Divider.

Refer to chapter "Setup Drawings".

2) The total insertion losses for signal path 1 and signal path 2 were measured. The values were used to correct the readings from the Spectrum Analyser and the Digital Communication Tester.

3) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum

- Channel: please refer to the detailed results

4) Important Analyser Settings:

- Resolution Bandwidth = Video Bandwidth: >1% of the manufacturer's stated occupied bandwidth

Test Requirements / Limits

§ 22.917 Emission limitations for cellular equipment

Refer to chapter "Field strength of spurious radiation".

Summary of Test Results

The EUT complied with all performed tests as listed in the summary section of this report.

Technical Report Summary

Type of Authorization :

Certification for a GSM/WCDMA/CDMA2000 cellular radiotelephone device

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 0 to 69. The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

§ 2.1046 Measurement required: RF power output

§ 2.1049 Measurement required: Occupied bandwidth

§ 2.1051 Measurement required: Spurious emissions at antenna terminals

§ 2.1053 Measurement required: Field strength of spurious radiation

§ 2.1055 Measurement required: Frequency stability

§ 2.1057 Frequency spectrum to be investigated

Part 24, Subpart E - Broadband PCS

§ 24.232 Power and antenna height limits

§ 24.235 Frequency stability

§ 24.236 Field strength limits

§ 24.238 Emission limitations for Broadband PCS equipment

additional documents

ANSI C63.26-2015

Description of Methods of Measurements

RF Power Output

Standard: FCC Part 24, Subpart E

The test was performed according to: FCC §2.1046

Test Description (conducted measurement procedure)

- 1) The EUT was coupled to a Spectrum Analyser and a Digital Communication Tester through a Power Divider. Refer to chapter "Setup Drawings".
- 2) The total insertion losses for signal path 1 and signal path 2 were measured. The values were used to correct the readings from the Spectrum Analyser and the Digital Communication Tester.
- 3) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.
Important Settings:
 - Channel (Frequency): please refer to the detailed results
- 4) The transmitted power of the EUT was recorded by using a spectrum analyser.

Test Description (radiated measurement procedure)

- 1) The EUT was placed inside an anechoic chamber. Refer to chapter "Setup Drawings". The EUT was coupled to a Digital Communication Tester which was located outside the chamber via a small signalling antenna.
- 2) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.
Important Settings:
 - Output Power: Maximum
 - Channel: please refer to the detailed results
- 3) A substitution procedure is used so that the readings from the spectrum analyser are corrected and represent directly the equivalent radiated power (related to a lambda/2 dipole).
- 4) The output power was measured in both vertical and horizontal antenna polarisation during the call is established on the lowest channel, mid channel and on the highest channel. To find the worst case power all orientations (X, Y, Z) of the EUT have been measured.
- 5) The test procedure according to ANSI C63.26-2015 has been considered.

Test Requirements / Limits

§2.1046 Measurements Required: RF Power Output

- (a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in § 2.1033(c)(8). The electrical characteristics of the output terminals when this test is made shall be stated.
- §24.232 Power and antenna height limits
- (c) Mobile/portable stations are limited to 2 watts EIRP peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.
- (e) Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage. The measurement results shall be properly adjusted for any instrument limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, etc., so as to obtain a true peak measurement for the emission in question over the full bandwidth of the channel.

Emission and Occupied Bandwidth

Standard: FCC Part 24, Subpart E

The test was performed according to: FCC §2.1049

Test Description

- 1) The EUT was coupled to a Spectrum Analyser and a Digital Communication Tester through a Power Divider. Refer to chapter "Setup Drawings".
- 2) The total insertion losses for signal path 1 and signal path 2 were measured. The values were used to correct the readings from the Spectrum Analyser and the Digital Communication Tester.
- 3) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum
- Channel: please refer to the detailed results

4) Important Analyser Settings:

- Resolution Bandwidth: $>1\%$ of the manufacturer's stated occupied bandwidth
- 5) The maximum spectral level of the modulated signal was recorded as the reference.

6) The emission bandwidth is measured as follows:

the two furthest frequencies above and below the frequency of the maximum reference level where the spectrum is -26 dB down have to be found.

7) The occupied bandwidth (99% Bandwidth) is measured as follows:

the occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5 percent of the total mean power.

Test Requirements / Limits

§ 2.1049 Measurements required: Occupied bandwidth

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured under the following conditions (as applicable):

(h) Transmitters employing digital modulation techniques - when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudo-random generators or other devices required in normal service. Additionally, the occupied bandwidth shall be shown for operation with any devices used for modifying the spectrum when such devices are optional at the discretion of the user.

Spurious emissions at antenna terminals

Standard: FCC Part 24, Subpart E

The test was performed according to FCC §2.1051

Test Description

- 1) The EUT was coupled to a Spectrum Analyser and a Digital Communication Tester through a Power Divider. Refer to chapter "Setup Drawings".

- 2) The total insertion losses for signal path 1 and signal path 2 were measured. The values were used to correct the readings from the Spectrum Analyser and the Digital Communication Tester.

- 3) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum
- Channel: please refer to the detailed results

4) Important Analyser Settings

- [Resolution Bandwidth]:

- a) $[>=1\%$ of wanted signal bandwidth] in the Span of 1 MHz directly below and above the Band,
- b) otherwise [1 MHz]

- c) [reduced resolution bandwidth] in case the curve of the analyser IF-Filter or the wanted EUT signal leads to an exceeding of the limit, in this case a correction factor was used

- Sweep Time: depending on the transmitting signal, the span and the resolution bandwidth

- 5) The spurious emissions peaks were measured in the frequency range from 9 kHz to 20 GHz (up to the 10th harmonic) during the call was established

Test Requirements / Limits

§ 2.1051 Spurious emissions at antenna terminals

The radio frequency voltage or power generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in Sec. 2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

§ 2.1057 Frequency spectrum to be investigated.

(a) In all of the measurements set forth in Secs. 2.1051 and 2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without going below 9 kHz, up to at least the frequency shown below:

- (1) If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- (b) Particular attention should be paid to harmonics and subharmonics of the carrier frequency as well as to those frequencies removed from the carrier by multiples of the oscillator frequency. Radiation at the frequencies of multiplier stages should also be checked.
- (c) The amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be reported.
- (d) Unless otherwise specified, measurements above 40 GHz shall be performed using a minimum resolution bandwidth of 1 MHz.

§ 24.238 Emission limitations for Broadband PCS equipment

(a) The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

Remark of the test laboratory: This is calculated to be -13 dBm.

(b) Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

(c) Licensees in this service may establish an alternative out of band emission limit to be used at specified band edge(s) in specified geographical areas [...].

(d) If any emission from a transmitter operating in this service results in interference to users of another radio service, the FCC may require a greater attenuation of that emission than specified in this section.

For reporting only spurious emission levels reaching to the 20dB margin to limit were noted.

Field strength of spurious radiation

Standard: FCC Part 24, Subpart E

The test was performed according to: FCC §2.1053

Test Description

- 1) The EUT was placed inside an anechoic chamber. Refer to chapter "Setup Drawings". The EUT was coupled to a Digital Communication Tester which was located outside the chamber via a small signalling antenna.
- 2) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum
- Channel: please refer to the detailed results

- 3) A pre-calibration procedure is used so that the readings from the spectrum analyser are corrected and represent directly the equivalent radiated power (related to a lamda/2 dipole).

4) All spurious radiation measurements were made with spectrum analyser and the appropriate calibrated antennas for the frequency range of 30 MHz to 20 GHz (up to the 10th harmonic of the transmit frequency). The frequency range from 9 kHz to 30 MHz has been examined during the conducted spurious emission measurements.

5) Important Analyser Settings

- [Resolution Bandwidth / Video Bandwidth]:
- a) [3 kHz / 10 kHz] in the Span of 1 MHz directly below and above the Band,
- b) [10 kHz / 30 kHz] in case the curve of the analyser IF-Filter leads to an exceeding of the limit, in this case a worst case correction factor of 20 dB (1 MHz -> 10 kHz) was used
- c) [1 MHz / 3 MHz] otherwise

- Sweep Time: depending on the transmitting signal, the span and the resolution bandwidth

6) The spurious emissions peaks were measured in both vertical and horizontal antenna polarisation during the call is established on the lowest channel, mid channel and on the highest channel. To find the worst case peaks all orientations (X, Y, Z) of the EUT have been measured.

7) After this initial test, a final test according to ANSI C63.26-2015 Unwanted Emissions is performed on signals which are identified as being close to the limit. For any emissions found to be within 10 dB of the limit, a specific signal substitution measurement is performed at the frequency of the emission to determine the exact e.i.r.p. value.

Test Requirements / Limits

§ 2.1053 Measurements required: Field strength of spurious radiation.

Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of Sec. 2.1049, as appropriate. For equipment operating on frequencies below 890 MHz, an open field test is normally required, with the measuring instrument antenna located in the far-field at all test frequencies. In the event it is either impractical or impossible to make open field measurements (e.g. a broadcast transmitter installed in a building) measurements will be accepted of the equipment as installed. Such measurements must be accompanied by a description of the site where the measurements were made showing the location of any possible source of reflections which might distort the field strength measurements. Information submitted shall include the relative radiated power of each spurious emission with reference to the rated power output of the transmitter, assuming all emissions are radiated from halfwave dipole antennas.

(b) The measurements specified in paragraph (a) of this section shall be made for the following equipment:

(2) All equipment operating on frequencies higher than 25 MHz.

§ 2.1057 Frequency spectrum to be investigated.

(a) In all of the measurements set forth in Secs. 2.1051 and 2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without going below 9 kHz, up to at least the frequency shown below:

(1) If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(b) Particular attention should be paid to harmonics and subharmonics of the carrier frequency as well as to those frequencies removed from the carrier by multiples of the oscillator frequency. Radiation at the frequencies of multiplier stages should also be checked.

(c) The amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be reported.

(d) Unless otherwise specified, measurements above 40 GHz shall be performed using a minimum resolution bandwidth of 1 MHz.

§ 24.238 Emission limitations for Broadband PCS equipment

(a) The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB. This is calculated to be -13 dBm (effective radiated power) which corresponds to 84.6 dB μ V/m (field strength) in a distance of 3 m.

(b) Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below

the transmitter power.

(c) Licensees in this service may establish an alternative out of band emission limit to be used at specified band edge(s) in specified geographical areas [...].

(d) If any emission from a transmitter operating in this service results in interference to users of another radio service, the FCC may require a greater attenuation of that emission than specified in this section.

For reporting only spurious emission levels reaching to the 20dB margin to limit were noted.

Frequency stability

Standard: FCC Part 24, Subpart E

The test was performed according to FCC §2.1055

Test Description

- 1) The EUT was placed inside a temperature chamber.
- 2) The EUT was coupled to a Digital Communication Tester. Refer to chapter "Setup Drawings".
- 3) The climatic chamber was cycled down/up to a certain temperature, starting with the EUT minimum temperature.
- 4) After the temperature was stabilized the EUT was switched on and a call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum
- Mid Channel

5) The frequency error of the EUT was recorded by using an internal measurement function of the Digital Communication Tester immediately after the call was established, five minutes after the call was established and ten minutes after the call was established.

6) This measurement procedure was performed for temperature variation from -30°C to +50°C in increments of 10°C, if not otherwise stated in the detailed results.

When the EUT did not operate at certain temperature levels, these measurements were left out.

Test Requirements / Limits

§2.1055 Measurements required: Frequency stability

(a) The frequency stability shall be measured with variation of ambient temperature as follows:

(1) From -30° to +50° centigrade for all equipment except that specified in paragraphs (a) (2) and (3) of this section.

(b) Frequency measurements shall be made at the extremes of the specified temperature range and at intervals of not more than 10° centigrade through the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. The short term transient effects on the frequency of the transmitter due to keying (except for broadcast transmitters) and any heating element cycling normally occurring at each ambient temperature level also shall be shown. Only the portion or portions of the transmitter containing the frequency determining and stabilizing circuitry need be subjected to the temperature variation test.

(d) The frequency stability shall be measured with variation of primary supply voltage as follows:

(1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

(2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.

(3) The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided. Effects on frequency of transmitter keying (except for broadcast transmitters) and any heating element cycling at the nominal supply voltage and at each extreme also shall be shown.

§24.235 Frequency stability

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

7Layers interpretation of limit:

To ensure that the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block following limit was used:

+/- 2.5 ppm = 4700 Hz for a frequency of 1880.0 MHz

in accordance with FCC Part 22, Subpart H, §22.355, table C-1: Frequency tolerance for the carrier frequency of mobile transmitters in the Public Mobile Service in the frequency range 821 to 896 MHz.

Band edge compliance

Standard: FCC Part 24, Subpart E

The test was performed according to: FCC §24.238

Test Description

1) The EUT was coupled to a Spectrum Analyser and a Digital Communication Tester through a Power Divider. Refer to chapter "Setup Drawings".

2) The total insertion losses for signal path 1 and signal path 2 were measured. The values were used to correct the readings from the Spectrum Analyser and the Digital Communication Tester.

3) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum

- Channel: please refer to the detailed results

4) Important Analyser Settings:

- Resolution Bandwidth = Video Bandwidth: >1% of the manufacturer's stated occupied bandwidth

Test Requirements / Limits

§ 24.238 Effective radiated power limits

Refer to chapter "Field strength of spurious radiation".

Summary of Test Results

The EUT complied with all performed tests as listed in the summary section of this report.

Technical Report Summary

Type of Authorization :

Certification for a GSM cellular radiotelephone device

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 0 to 69. The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

- § 2.1046 Measurement required: RF power output
- § 2.1049 Measurement required: Occupied bandwidth
- § 2.1051 Measurement required: Spurious emissions at antenna terminals
- § 2.1053 Measurement required: Field strength of spurious radiation
- § 2.1055 Measurement required: Frequency stability
- § 2.1057 Frequency spectrum to be investigated

Part 27, Subpart C—Technical Standards

- § 27.50 Power and antenna height limits
- § 27.53 Emissions limits
- § 27.54 Frequency stability

additional documents

ANSI C63.26-2015

Description of Methods of Measurements

RF Power Output

Standard FCC Part 27, Subpart C

The test was performed according to: FCC §2.1046

Test Description (conducted measurement procedure)

- 1) The EUT was coupled to a Spectrum Analyser and a Digital Communication Tester through a Power Divider. Refer to chapter "Setup Drawings".
- 2) The total insertion losses for signal path 1 and signal path 2 were measured. The values were used to correct the readings from the Spectrum Analyser and the Digital Communication Tester.
- 3) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Channel (Frequency): please refer to the detailed results

- 4) The transmitted power of the EUT was recorded by using a spectrum analyser.

Test Description (radiated measurement procedure)

- 1) The EUT was placed inside an anechoic chamber. Refer to chapter "Setup Drawings". The EUT was coupled to a Digital Communication Tester which was located outside the chamber via a small signalling antenna.
- 2) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum
- Channel: please refer to the detailed results

- 3) A substitution procedure is used so that the readings from the spectrum analyser are corrected and represent directly the equivalent radiated power (related to a $\lambda/2$ dipole).
- 4) The output power was measured in both vertical and horizontal antenna polarisation during the call is established on the lowest channel, mid channel and on the highest channel. To find the worst case power all orientations (X, Y, Z) of the EUT have been measured.
- 5) The test procedure according to ANSI C63.26-2015 has been considered.

Test Requirements / Limits

§2.1046 Measurements Required: RF Power Output

- (a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone,

power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in § 2.1033(c)(8). The electrical characteristics of the output terminals when this test is made shall be stated. §27.50 Power and antenna height limits.

(d) The following power and antenna height requirements apply to stations transmitting in the 1710–1755 MHz and 2110–2155 MHz bands:

(2) Fixed, mobile, and portable (hand-held) stations operating in the 1710–1755 MHz band are limited to a peak EIRP of 1 watt. Fixed stations operating in this band are limited to a maximum antenna height of 10 meters above ground, and mobile and portable stations must employ a means for limiting power to the minimum necessary for successful communications.

Emission and Occupied Bandwidth

Standard FCC Part 27, Subpart C

The test was performed according to: FCC §2.1049

Test Description

1) The EUT was coupled to a Spectrum Analyser and a Digital Communication Tester through a Power Divider. Refer to chapter "Setup Drawings".

2) The total insertion losses for signal path 1 and signal path 2 were measured. The values were used to correct the readings from the Spectrum Analyser and the Digital Communication Tester.

3) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum

- Channel: please refer to the detailed results

4) Important Analyser Settings:

- Resolution Bandwidth: >1% of the manufacturer's stated occupied bandwidth

5) The maximum spectral level of the modulated signal was recorded as the reference.

6) The emission bandwidth is measured as follows:

the two furthest frequencies above and below the frequency of the maximum reference level where the spectrum is -26 dB down have to be found.

7) The occupied bandwidth (99% Bandwidth) is measured as follows:

the occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5 percent of the total mean power.

Test Requirements / Limits

§ 2.1049 Measurements required: Occupied bandwidth

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured under the following conditions (as applicable):

(h) Transmitters employing digital modulation techniques - when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudo-random generators or other devices required in normal service. Additionally, the occupied bandwidth shall be shown for operation with any devices used for modifying the spectrum when such devices are optional at the discretion of the user.

Spurious emissions at antenna terminals

Standard FCC Part 27, Subpart C

The test was performed according to FCC §2.1051

Test Description

- 1) The EUT was coupled to a Spectrum Analyser and a Digital Communication Tester through a Power Divider. Refer to chapter "Setup Drawings".
- 2) The total insertion losses for signal path 1 and signal path 2 were measured. The values were used to correct the readings from the Spectrum Analyser and the Digital Communication Tester.
- 3) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum
- Channel: please refer to the detailed results

- 4) Important Analyser Settings

- [Resolution Bandwidth]:
 - a) [$>=1\%$ of wanted signal bandwidth] in the Span of 1 MHz directly below and above the Band,
 - b) otherwise [1 MHz]
- c) [reduced resolution bandwidth] in case the curve of the analyser IF-Filter or the wanted EUT signal leads to an exceeding of the limit, in this case a correction factor was used

- Sweep Time: depending on the transmitting signal, the span and the resolution bandwidth

- 5) The spurious emissions peaks were measured in the frequency range from 9 kHz to 18 GHz (up to the 10th harmonic) during the call is established

Test Requirements / Limits

§ 2.1051 Spurious emissions at antenna terminals

The radio frequency voltage or power generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in Sec. 2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

§ 2.1057 Frequency spectrum to be investigated.

- (a) In all of the measurements set forth in Secs. 2.1051 and 2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without going below 9 kHz, up to at least the frequency shown below:
 - (1) If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
 - (b) Particular attention should be paid to harmonics and subharmonics of the carrier frequency as well as to those frequencies removed from the carrier by multiples of the oscillator frequency. Radiation at the frequencies of multiplier stages should also be checked.
 - (c) The amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be reported.
 - (d) Unless otherwise specified, measurements above 40 GHz shall be performed using a minimum resolution bandwidth of 1 MHz.

§ 27.53 Emission limits

(h) For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least $43 + 10 \log_{10}(P)$ dB. Remark of the test laboratory: This is calculated to be -13 dBm.

- (1) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
- (2) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.
- (3) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

For reporting only spurious emission levels reaching to the 20dB margin to limit were noted.

Field strength of spurious radiation

The test was performed according to: FCC §2.1053

Test Description

- 1) The EUT was placed inside an anechoic chamber. Refer to chapter "Setup Drawings". The EUT was coupled to a Digital Communication Tester which was located outside the chamber via a small signalling antenna.
- 2) A call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum
- Channel : please refer to the detailed results
- 3) A pre-calibration procedure is used so that the readings from the spectrum analyser are corrected and represent directly the equivalent radiated power (related to a lambda/2 dipole).
- 4) All spurious radiation measurements were made with spectrum analyser and the appropriate calibrated antennas for the frequency range of 30 MHz to 18 GHz (up to the 10th harmonic of the transmit frequency). The frequency range from 9 kHz to 30 MHz has been examined during the conducted spurious emission measurements.
- 5) Important Analyser Settings
 - [Resolution Bandwidth / Video Bandwidth]:
 - a) [3 kHz / 10 kHz] in the Span of 1 MHz directly below and above the Band,
 - b) [10 kHz / 30 kHz] in case the curve of the analyser IF-Filter leads to an exceeding of the limit, in this case a worst case correction factor of 20 dB (1 MHz -> 10 kHz) was used
 - c) [1 MHz / 3 MHz] otherwise
 - Sweep Time: depending on the transmitting signal, the span and the resolution bandwidth
- 6) The spurious emissions peaks were measured in both vertical and horizontal antenna polarisation during the call is established on the lowest channel, mid channel and on the highest channel. To find the worst case peaks all orientations (X, Y, Z) of the EUT have been measured.
- 7) After this initial test, a final test according to ANSI C63.26-2015 Unwanted Emissions is performed on signals which are identified as being close to the limit. For any emissions found to be within 10 dB of the limit, a specific signal substitution measurement is performed at the frequency of the emission to determine the exact e.i.r.p. value.

Test Requirements / Limits

§ 2.1053 Measurements required: Field strength of spurious radiation.

Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of Sec. 2.1049, as appropriate. For equipment operating on frequencies below 890 MHz, an open field test is normally required, with the measuring instrument antenna located in the far-field at all test frequencies. In the event it is either impractical or impossible to make open field measurements (e.g. a broadcast transmitter installed in a building) measurements will be accepted of the equipment as installed. Such measurements must be accompanied by a description of the site where the measurements were made showing the location of any possible source of reflections which might distort the field strength measurements. Information submitted shall include the relative radiated power of each spurious emission with reference to the rated power output of the transmitter, assuming all emissions are radiated from halfwave dipole antennas.

(b) The measurements specified in paragraph (a) of this section shall be made for the following equipment:

(2) All equipment operating on frequencies higher than 25 MHz.

§ 2.1057 Frequency spectrum to be investigated.

(a) In all of the measurements set forth in Secs. 2.1051 and 2.1053, the spectrum shall be investigated from the lowest radio frequency signal generated in the equipment, without going below 9 kHz, up to at least the frequency shown below:

(1) If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(b) Particular attention should be paid to harmonics and subharmonics of the carrier frequency as well as to those frequencies removed from the carrier by multiples of the oscillator frequency. Radiation at the frequencies of multiplier stages should also be checked.

(c) The amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be reported.

(d) Unless otherwise specified, measurements above 40 GHz shall be performed using a minimum resolution bandwidth of 1 MHz.

§ 27.53 Emission limits

(h) For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least $43 + 10 \log_{10}(P)$ dB.

Remark of the test laboratory: This is calculated to be -13 dBm (effective radiated power) which corresponds to 84.6 dB μ V/m (field strength) in a distance of 3 m.

(1) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

(2) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.

(3) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

For reporting only spurious emission levels reaching to the 20dB margin to limit were noted.

Frequency stability

Standard FCC Part 27, Subpart C

The test was performed according to FCC §2.1055

Test Description

- 1) The EUT was placed inside a temperature chamber.
- 2) The EUT was coupled to a Digital Communication Tester. Refer to chapter "Setup Drawings".
- 3) The climatic chamber was cycled down/up to a certain temperature, starting with the EUT minimum temperature.
- 4) After the temperature was stabilized the EUT was switched on and a call was established on a Traffic Channel between the EUT and the Digital Communication Tester.

Important Settings:

- Output Power: Maximum
- Mid Channel

5) The frequency error of the EUT was recorded by using an internal measurement function of the Digital Communication Tester immediately after the call was established, five minutes after the call was established and ten minutes after the call was established.

6) This measurement procedure was performed for temperature variation from -30°C to +50°C in increments of 10°C, if not otherwise stated in the detailed results.

When the EUT did not operate at certain temperature levels, these measurements were left out.

Test Requirements / Limits

§2.1055 Measurements required: Frequency stability

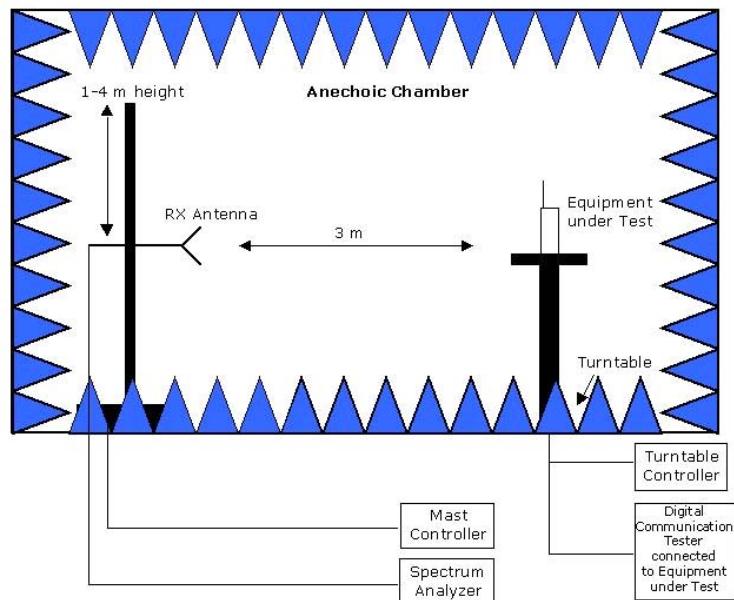
- (a) The frequency stability shall be measured with variation of ambient temperature as follows:
 - (1) From -30° to +50° centigrade for all equipment except that specified in paragraphs (a) (2) and (3) of this section.
 - (b) Frequency measurements shall be made at the extremes of the specified temperature range and at intervals of not more than 10° centigrade through the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. The short term transient effects on the frequency of the transmitter due to keying (except for broadcast transmitters) and any heating element cycling normally occurring at each ambient temperature level also shall be shown. Only the portion or portions of the transmitter containing the frequency determining and stabilizing circuitry need be subjected to the temperature variation test.
 - (d) The frequency stability shall be measured with variation of primary supply voltage as follows:
 - (1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
 - (2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.
 - (3) The supply voltage shall be measured at the input to the cable normally provided with the equipment, or

at the power supply terminals if cables are not normally provided. Effects on frequency of transmitter keying (except for broadcast transmitters) and any heating element cycling at the nominal supply voltage and at each extreme also shall be shown.

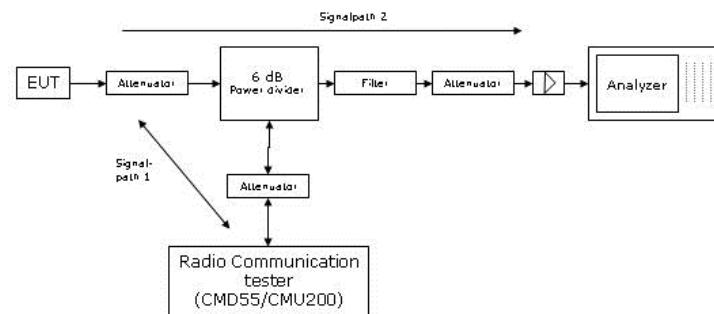
§27.54 Frequency stability

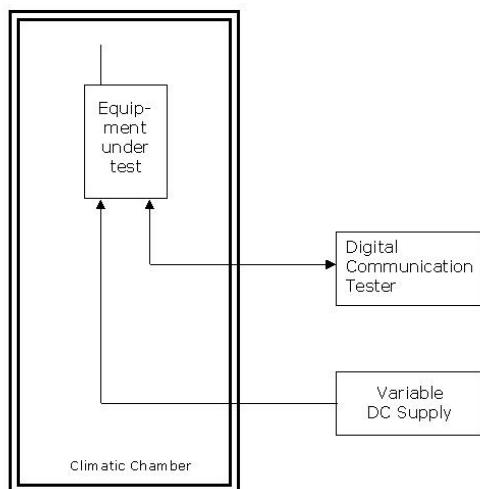
The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

7Layers interpretation of limit:


To ensure that the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block following limit was used:

+/- 2.5 ppm = 4350 Hz for channel 1450, frequency 1740.0 MHz
+/- 2.5 ppm = 4331 Hz for channel 1412, frequency 1732.4 MHz


Setup Drawings


Remark: Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Principle set-up for radiated measurements

Remark: Depending on the frequency range suitable attenuators and/or filters and/or amplifiers are used.

Principle set-up for conducted measurements under nominal conditions

Principle set-up for tests under extreme test conditions

NB-IoT standalone Test frequencies				NB-IoT in-band Test frequencies			
Band	Range	Channel	Uplink Frequency [MHz]	Band	Range	Channel	Uplink Frequency [MHz]
eFDD2 NB-IoT	low	18601	1850.1	eFDD2 NB-IoT	low	18606	1850.6
	mid	18900	1880		low	18660	1859.99
	high	19199	1909.9		low	18669	1856.89
					mid	18891	1879.1
eFDD5 NB-IoT	low	20401	824.1		mid	18910	1880.99
	mid	20525	834.1		mid	18919	1881.89
	high	20649	848.9		high	19194	1909.4
					high	19160	1905.99
eFDD12 NB-IoT	low	23011	699.1		high	19169	1906.89
	mid	23095	707.5				
	high	23179	715.9				
eFDD13 NB-IoT	low	23181	777.1	eFDD5 NB-IoT	low	20406	824.6
	mid	23230	782		low	20460	829.99
	high	23279	786.9		low	20469	830.89
					mid	20516	835.6
					mid	20535	837.49
					mid	20544	838.39
					high	20644	848.4
					high	20610	844.99
					high	20619	845.89
NB-IoT guard-band Test frequencies							
Band	Range	Channel	Uplink Frequency [MHz]				
eFDD2 NB-IoT	low	18601	1850.1	eFDD12 NB-IoT			
	mid	18876	1877.6		low	23016	699.6
	high	19199	1909.9		low	23070	704.99
eFDD5 NB-IoT	low	20401	824.1		low	23079	705.89
	mid	20501	834.1		mid	23086	706.6
	high	20649	848.9		mid	23105	708.49
eFDD12 NB-IoT	low	23011	699.1		mid	23114	709.39
	mid	23071	705.1		high	23174	715.4
	high	23179	715.9		high	23140	711.99
eFDD13 NB-IoT	low	23181	777.115		high	23149	712.89
	mid	23206	779.615	eFDD13 NB-IoT	low	23187	777.7
	high	23279	786.885		mid	23221	781.1
					mid	23240	782.99
					mid	23249	783.89
					high	23273	786.3

NB-IoT frequencies

Correlation of measurement requirements for Cellular Equipment from FCC and IC

Test name - FCC	FCC reference CFR47				Test name - IC		IC reference				
	Part 2	Part 22	Part 24	Part 27			RSS-Gen	RSS-130 SRSP-518	RSS-132 SRSP-503	RSS-133 SRSP-510	RSS-199 SRSP-517
						Issue:	4, 2014	1, 2013	3, 2013	6, 2013	3, 2016
RF power output	§ 2.1046	§ 22.913	§ 24.232	§ 27.50	Transmitter output power	6.12	4.4	5.4	6.4	6.5	4.4
Frequency stability	§ 2.1055	§ 22.355	§ 24.235	§ 27.54	Frequency stability	6.11	4.3	5.3	6.3	6.4	4.3
Spurious emissions at antenna terminals	§ 2.1051	§ 22.917	§ 24.238	§ 27.53	Transmitter unwanted emissions conducted	6.13	4.6	5.5	6.5	6.6	4.5
-	-	-	-	-	Receiver unwanted emissions conducted	5/7 *), 7.1.3	-	5.6	6.6	-	-
Field strength of spurious radiation	§ 2.1053	§ 22.917	§ 24.238	§ 27.53	Transmitter unwanted emissions radiated	6.13	4.6	5.5	6.5	6.6	4.5
-	-	-	-	-	Receiver unwanted emissions radiated	5/7 *), 7.1.2	-	5.6	6.6	-	-
Emission and Occupied Bandwidth	§ 2.1049	-	-	-	Emission and Occupied Bandwidth	6.6	-	5.5	2.3; 6.5	-	-
Band edge compliance	§ 2.1053	§ 22.917	§ 24.238	§ 27.53	Band edge compliance	6.13	4.6	5.5	6.5	6.6	4.5

*) Receivers are exempted from certification besides if operating in stand-alone mode in the frequency range 30–960 MHz or if these are scanner receivers.

FCC to ISED Correlation table

6 Index

1	Administrative Data	2
1.1	Project Data	2
1.2	Test Laboratory Data	2
1.3	Signature of the Testing Responsible	3
1.4	Signature of the Accreditation Responsible	3
2	Test Object Data	3
2.1	General OUT Description	3
2.2	Detailed Description of OUT Samples	4
2.3	OUT Features	4
2.4	Setups used for Testing	4
3	Results	5
3.1	General	5
3.2	List of the Applicable Body	5
3.3	List of Test Specification	6
3.4	Summary	7
3.5	Detailed Results	9
3.5.1	22.1 RF Power Output §2.1046, §22.913	9
3.5.2	22.2 Frequency stability §2.1055	13
3.5.3	22.3 Spurious emissions at antenna terminals §2.1051, §22.917	14
3.5.4	22.4 Field strength of spurious radiation §2.1053, §22.917	15
3.5.5	22.5 Emission and Occupied Bandwidth §2.1049, §22.917	18
3.5.6	22.6 Band edge compliance §2.1053, §22.917	22
3.5.7	22.7 Peak-to-Average Ratio Summary §2.1046	24
3.5.8	24.1 RF Power Output §2.1046, §24.232	25
3.5.9	24.2 Frequency stability §2.1055, §24.235	29
3.5.10	24.3 Spurious emissions at antenna terminals §2.1051, §24.238	30
3.5.11	24.4 Field strength of spurious radiation §2.1053, §24.238	31
3.5.12	24.5 Emission and Occupied Bandwidth §2.1049, §24.238	35
3.5.13	24.6 Band edge compliance §2.1053, §24.238	39
3.5.14	24.7 Peak-to-Average ratio §2.1046, §24.232	41
3.5.15	27.1 RF Power Output §2.1046, §27.250	42
3.5.16	27.2 Frequency stability §2.1055, §27.54	46
3.5.17	27.3 Spurious emissions at antenna terminals §2.1051, §27.53	51
3.5.18	27.4 Field strength of spurious radiation §2.1053, §27.53	53
3.5.19	27.5 Emission and Occupied Bandwidth §2.1049	59
3.5.20	27.6 Band edge compliance §2.1053, §27.53	63
3.5.21	27.7 Peak-to-Average ratio §2.1046, §27.50	66

4	Test Equipment Details	68
4.1	List of Used Test Equipment	68
5	Annex	74
5.1	Additional Information for Report	74
6	Index	111
