

SC200V Series

Hardware Design

Smart Module Series

Version: 1.0.0

Date: 2025-01-16

Status: Preliminary

At Quectel, our aim is to provide timely and comprehensive services to our customers. If you require any assistance, please contact our headquarters:

Quectel Wireless Solutions Co., Ltd.

Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai 200233, China

Tel: +86 21 5108 6236

Email: info@quectel.com

Or our local offices. For more information, please visit:

<http://www.quectel.com/support/sales.htm>.

For technical support, or to report documentation errors, please visit:

<http://www.quectel.com/support/technical.htm>.

Or email us at: support@quectel.com.

Legal Notices

We offer information as a service to you. The provided information is based on your requirements and we make every effort to ensure its quality. You agree that you are responsible for using independent analysis and evaluation in designing intended products, and we provide reference designs for illustrative purposes only. Before using any hardware, software or service guided by this document, please read this notice carefully. Even though we employ commercially reasonable efforts to provide the best possible experience, you hereby acknowledge and agree that this document and related services hereunder are provided to you on an "as available" basis. We may revise or restate this document from time to time at our sole discretion without any prior notice to you.

Copyright

Our and third-party products hereunder may contain copyrighted material. Such copyrighted material shall not be copied, reproduced, distributed, merged, published, translated, or modified without prior written consent. We and the third party have exclusive rights over copyrighted material. No license shall be granted or conveyed under any patents, copyrights, trademarks, or service mark rights. To avoid ambiguities, purchasing in any form cannot be deemed as granting a license other than the normal non-exclusive, royalty-free license to use the material. We reserve the right to take legal action for noncompliance with abovementioned requirements, unauthorized use, or other illegal or malicious use of the material.

Trademarks

Except as otherwise set forth herein, nothing in this document shall be construed as conferring any rights to use any trademark, trade name or name, abbreviation, or counterfeit product thereof owned by Quectel or any third party in advertising, publicity, or other aspects.

Third-Party Rights

This document may refer to hardware, software and/or documentation owned by one or more third parties ("third-party materials"). Use of such third-party materials shall be governed by all restrictions and obligations applicable thereto.

We make no warranty or representation, either express or implied, regarding the third-party materials, including but not limited to any implied or statutory, warranties of merchantability or fitness for a particular purpose, quiet enjoyment, system integration, information accuracy, and non-infringement of any third-party intellectual property rights with regard to the licensed technology or use thereof. Nothing herein constitutes a representation or warranty by us to either develop, enhance, modify, distribute, market, sell, offer for sale, or otherwise maintain production of any our products or any other hardware, software, device, tool, information, or product. We moreover disclaim any and all warranties arising from the course of dealing or usage of trade.

Privacy Policy

To implement module functionality, certain device data are uploaded to Quectel's or third-party's servers, including carriers, chipset suppliers or customer-designated servers. Quectel, strictly abiding by the relevant laws and regulations, shall retain, use, disclose or otherwise process relevant data for the purpose of performing the service only or as permitted by applicable laws. Before data interaction with third parties, please be informed of their privacy and data security policy.

Disclaimer

- a) We acknowledge no liability for any injury or damage arising from the reliance upon the information.
- b) We shall bear no liability resulting from any inaccuracies or omissions, or from the use of the information contained herein.
- c) While we have made every effort to ensure that the functions and features under development are free from errors, it is possible that they could contain errors, inaccuracies, and omissions. Unless otherwise provided by valid agreement, we make no warranties of any kind, either implied or express, and exclude all liability for any loss or damage suffered in connection with the use of features and functions under development, to the maximum extent permitted by law, regardless of whether such loss or damage may have been foreseeable.
- d) We are not responsible for the accessibility, safety, accuracy, availability, legality, or completeness of information, advertising, commercial offers, products, services, and materials on third-party websites and third-party resources.

Copyright © Quectel Wireless Solutions Co., Ltd. 2025. All rights reserved.

Safety Information

The following safety precautions must be observed during all phases of operation, such as usage, service or repair of any terminal or mobile incorporating the module. Manufacturers of the terminal should notify users and operating personnel of the following safety information by incorporating these guidelines into all manuals of the product. Otherwise, Quectel assumes no liability for customers' failure to comply with these precautions.

Full attention must be paid to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. Please comply with laws and regulations restricting the use of wireless devices while driving.

Switch off the terminal or mobile before boarding an aircraft. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. If there is an Airplane Mode, it should be enabled prior to boarding an aircraft. Please consult the airline staff for more restrictions on the use of wireless devices on an aircraft.

Wireless devices may cause interference on sensitive medical equipment, so please be aware of the restrictions on the use of wireless devices when in hospitals, clinics or other healthcare facilities.

Terminals or mobiles operating over radio signal and cellular network cannot be guaranteed to connect in certain conditions, such as when the mobile bill is unpaid or the (U)SIM card is invalid. When emergency help is needed in such conditions, use emergency call if the device supports it. In order to make or receive a call, the terminal or mobile must be switched on in a service area with adequate cellular signal strength. In an emergency, the device with emergency call function cannot be used as the only contact method considering network connection cannot be guaranteed under all circumstances.

The terminal or mobile contains a transceiver. When it is ON, it receives and transmits radio frequency signals. RF interference can occur if it is used close to TV sets, radios, computers or other electric equipment.

In locations with explosive or potentially explosive atmospheres, obey all posted signs and turn off wireless devices such as mobile phone or other terminals. Areas with explosive or potentially explosive atmospheres include fueling areas, below decks on boats, fuel or chemical transfer or storage facilities, and areas where the air contains chemicals or particles such as grain, dust or metal powders.

About the Document

Revision History

Version	Date	Author	Description
-	2024-06-28	Colton LIU/ Jhin LIN/ Anders WANG	Creation of the document
1.0.0	2025-01-16	Colton LIU/ Jhin LIN/ Anders WANG	Preliminary

Contents

Safety Information	3
About the Document	4
Contents	5
Table Index	8
Figure Index	10
1 Introduction	12
1.1. Special Marks	12
2 Product Overview	13
2.1. Frequency Bands and Functions	13
2.2. Key Features	14
2.3. Pins Definition.....	18
2.4. EVB Kit	31
3 Operating Characteristics	32
3.1. Power Supply	32
3.1.1. Power Supply Pins	32
3.1.2. Reference Design for Power Supply.....	32
3.1.3. Requirements for Voltage Stability.....	33
3.2. Turn On.....	34
3.2.1. Turn On with PWRKEY	34
3.2.2. Turn On Automatically with CBL_PWR_N	36
3.3. Restart/Turn Off.....	37
3.4. VRTC	38
3.5. Power Output.....	39
4 Application Interfaces	40
4.1. USB Interface	40
4.1.1. Type-C Interface.....	40
4.1.2. Micro USB Interface	42
4.1.3. USB Interfaces Design Considerations	43
4.2. USB_BOOT	44
4.3. (U)SIM Interface	45
4.4. SD Card Interface.....	47
4.5. UART	49
4.6. SPI	51
4.7. I2C Interface	51
4.8. I2S Interface	51
4.9. UART/SPI/I2C/I2S Multiplexing Relationship.....	52
4.10. Analog Audio Interfaces	55

4.10.1.	Microphone Interface Reference Design	56
4.10.2.	Earpiece Interface Reference Design.....	57
4.10.3.	Headset Interface Reference Design	57
4.10.4.	Lineout Interface Reference Design	58
4.10.5.	Audio Interfaces Design Considerations	58
4.11.	ADC Interface	59
4.12.	LCM Interface	59
4.13.	Camera Interface.....	61
4.13.1.	MIPI Design Considerations	66
4.14.	Touch Panel Interface.....	68
4.15.	Sensor Interface	69
4.16.	GPIO.....	70
5	RF Specifications.....	72
5.1.	Cellular Network	72
5.1.1.	Antenna Interface & Frequency Bands.....	72
5.1.2.	Transmitting Power	74
5.1.3.	Receiver Sensitivity	75
5.1.4.	Reference Design	77
5.2.	GNSS (Optional).....	77
5.2.1.	Antenna Interface & Frequency Bands.....	77
5.2.2.	GNSS Performance	78
5.2.3.	Reference Design	79
5.2.3.1.	Active Antenna.....	79
5.2.3.2.	Passive Antenna.....	80
5.2.3.3.	GNSS RF Design Guidelines	80
5.3.	Wi-Fi & Bluetooth.....	81
5.3.1.	Wi-Fi Overview.....	81
5.3.2.	Bluetooth Overview	84
5.3.3.	Reference Design	85
5.4.	RF Routing Guidelines	85
5.5.	Requirements for Antenna Design	87
5.6.	RF Connector Recommendation.....	88
6	Electrical Characteristics and Reliability	90
6.1.	Absolute Maximum Ratings.....	90
6.2.	Power Supply Ratings	90
6.3.	Power Consumption	91
6.4.	Digital I/O Characteristics.....	93
6.5.	ESD Protection	94
6.6.	Operating and Storage Temperatures	95
7	Mechanical Information	96
7.1.	Mechanical Dimensions	96
7.2.	Recommended Footprint.....	98
7.3.	Top and Bottom Views.....	99

8 Storage, Manufacturing & Packaging.....	100
8.1. Storage Conditions.....	100
8.2. Manufacturing and Soldering	101
8.3. Packaging Specification	103
8.3.1. Carrier Tape.....	103
8.3.2. Plastic Reel	103
8.3.3. Mounting Direction	104
8.3.4. Packaging Process	105
9 Appendix References.....	106

Table Index

Table 1: Special Marks	12
Table 2: Basic Information.....	13
Table 3: Frequency Bands and Functions	13
Table 4: Key Features	14
Table 5: Parameters Definition.....	18
Table 6: Pins Description.....	18
Table 7: VBAT and GND Pins	32
Table 8: Pins Description of PWRKEY	34
Table 9: Pin Description of CBL_PWR_N	36
Table 10: Pin Description of VRTC.....	38
Table 11: Power Information.....	39
Table 12: Pins Description of USB Type-C Interface	40
Table 13: Pins Description of Micro USB	42
Table 14: USB Interface Trace Length Inside the Module (Unit: mm)	43
Table 15: Pins Description of USB_BOOT.....	44
Table 16: Pins Description of (U)SIM Interface	45
Table 17: Pins Description of SD Card Interface	47
Table 18: SD Card Interface Trace Length Inside the Module (Unit: mm).....	48
Table 19: Pins Description of UART.....	49
Table 20: UART/SPI/I2C/I2S Multiplexing Relationship.....	52
Table 21: Pins Description of Analog Audio Interface	55
Table 22: Pins Description of ADC Interface	59
Table 23: Pins Description of LCM Interface.....	59
Table 24: Pins Description of Camera Interface	61
Table 25: MIPI Trace Length Inside the Module (Unit: mm)	66
Table 26: Mapping of CSI Data Rates and Trace Length (D-PHY)	68
Table 27: Mapping of DSI Data Rates and Trace Length (D-PHY)	68
Table 28: Pins Description of Touch Panel Interface	69
Table 29: Pins Description of Sensor Interface.....	69
Table 30: Pins Description of GPIO	70
Table 31: Pins Description of Cellular Antenna Interface.....	72
Table 32: Operating Frequency of SC200V-EM (Unit: MHz).....	72
Table 33: Operating Frequency of SC200V-NA (Unit: MHz).....	73
Table 34: RF Transmitting Power.....	74
Table 35: Conducted RF Receiver Sensitivity of SC200V-EM (Unit: dBm).....	75
Table 36: Pins Description of GNSS Antenna Interface.....	78
Table 37: GNSS Frequency (Unit: MHz).....	78
Table 38: GNSS Performance.....	78
Table 39: Pins Description of Wi-Fi & Bluetooth Antenna Interface.....	81
Table 40: Wi-Fi & Bluetooth Frequency (Unit: MHz).....	81
Table 41: Wi-Fi Transmitting Performance.....	82

Table 42: Wi-Fi Receiving Performance.....	83
Table 43: Bluetooth Data Rates and Versions	84
Table 44: Bluetooth Transmitting and Receiving Performance (Unit: dBm)	84
Table 45: Requirements for Antenna Design	87
Table 46: Absolute Maximum Ratings.....	90
Table 47: Module's Power Supply Ratings.....	90
Table 48: SC200V Power Consumption.....	91
Table 49: LDO9A_1V8 I/O Characteristics (Unit: V)	93
Table 50: SD Card Low-voltage I/O Characteristics (Unit: V).....	93
Table 51: SD Card High-voltage I/O Characteristics (Unit: V)	93
Table 52: (U)SIM Low-voltage I/O Characteristics (Unit: V)	94
Table 53: (U)SIM High-voltage I/O Characteristics (Unit: V).....	94
Table 54: ESD Characteristics (Temperature: 25 – 30° C, Humidity: 40 ± 5 %; Unit: kV).....	94
Table 55: Operating and Storage Temperatures (Unit: ° C).....	95
Table 56: Recommended Thermal Profile Parameters.....	102
Table 57: Carrier Tape Dimension Table (Unit: mm)	103
Table 58: Plastic Reel Dimension Table (Unit: mm).....	104
Table 59: Related Documents	106
Table 60: Terms and Abbreviations	106

Figure Index

Figure 3: Reference Design of Power Input.....	33
Figure 4: Power Supply Limits During Burst Transmission.....	33
Figure 5: Reference Design of Power Supply.....	34
Figure 6: Reference Design of Turn On with Driving Circuit.....	35
Figure 7: Reference Design of Turn On with Keystroke	35
Figure 8: Timing of Turn On with PWRKEY	36
Figure 9: Reference Design of Turn On with CBL_PWR_N	37
Figure 10: Timing of Restart.....	37
Figure 11: RTC Powered by Rechargeable Cell Battery	38
Figure 12: RTC Powered by Large Capacitance Capacitor	38
Figure 13: Reference Design of USB Type-C Mode.....	41
Figure 14: Reference Design of Micro USB Interface	42
Figure 15: Reference Design of USB_BOOT	44
Figure 16: Reference Design of (U)SIM Interface with an 8-pin (U)SIM Card Connector	46
Figure 17: Reference Design of (U)SIM Interface with a 6-pin (U)SIM Card Connector	46
Figure 18: Reference Design of SD Card Interface.....	48
Figure 19: Reference Design of UART with Level-shifting Chip (for UART0)	50
Figure 20: Reference Design of UART with RS-232 Level-shifting Chip (for UART0).....	50
Figure 21: Reference Design of ECM Microphone Interface.....	56
Figure 22: Reference Design of MEMS Microphone Interface.....	56
Figure 23: Reference Design of Earpiece Interface.....	57
Figure 24: Reference Design of Headset Interface	57
Figure 25: Reference Design of Lineout Interface	58
Figure 26: Reference Design of LCM Interface	60
Figure 27: Reference Design of LCM Interface External Backlight Drive	61
Figure 28: Reference Design of triple-Camera Application	64
Figure 29: Reference Design of Quad-Camera Application	65
Figure 30: Reference Design of Touch Panel Interface	69
Figure 31: Reference Design of Main Antenna and Diversity Antenna	77
Figure 32: Reference Design of Active Antenna	79
Figure 33: Reference Design of Passive Antenna	80
Figure 34: Reference Design of Wi-Fi & Bluetooth Antenna	85
Figure 35: Microstrip Design on a 2-layer PCB	85
Figure 36: Coplanar Waveguide Design on a 2-layer PCB	86
Figure 37: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground).....	86
Figure 38: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground).....	86
Figure 39: Dimensions of the Receptacle (Unit: mm)	88
Figure 40: Specifications of Mated Plugs (Unit: mm)	88
Figure 41: Space Factor of Mated Connectors (Unit: mm).....	89
Figure 42: Module Top and Side Dimensions	96
Figure 43: Module Bottom Dimensions (Bottom View)	97

Figure 44: Recommended Footprint	98
Figure 45: Top & Bottom Views of the Module.....	99
Figure 46: Recommended Reflow Soldering Thermal Profile	101
Figure 47: Carrier Tape Dimension Drawing (Unit: mm).....	103
Figure 48: Plastic Reel Dimension Drawing	104
Figure 49: Mounting Direction	104
Figure 50: Packaging Process	105

1 Introduction

This document defines the SC200V series module and describes its air interfaces and hardware interfaces which are connected to your applications.

With this document, you can quickly understand module interface specifications, electrical and mechanical details, as well as other related information of the module. The document, coupled with application notes and user guides, makes it easy to design and set up mobile applications with the module.

1.1. Special Marks

Table 1: Special Marks

Mark	Definition
*	Unless otherwise specified, an asterisk (*) after a function, feature, interface, pin name, command, argument, and so on indicates that it is under development and currently not supported; and the asterisk (*) after a model indicates that the model sample is currently unavailable.
[...]	Brackets [...] used after a pin enclosing a range of numbers indicate all pins of the same type. For example, SDIO_DATA[0:3] refers to all four SDIO pins: SDIO_DATA0, SDIO_DATA1, SDIO_DATA2, and SDIO_DATA3.

2 Product Overview

The module is a Smart LTE module based on Android operating system, and provides industrial-grade performance. It is an SMD module with compact packaging and it supports built-in high performance Adreno™ 610 GPU, multiple audio and video codecs, and multiple audio and video input/output interfaces as well as abundant GPIO interfaces.

Table 2: Basic Information

SC200V Series	
Packaging type	LCC + LGA
Pin counts	278
Dimensions	(40.5 \pm 0.15) mm \times (40.5 \pm 0.15) mm \times (2.85 \pm 0.20) mm
Weight	Approx. 10.6 g
Models	SC200V-EM, SC200V-WF, SC200V-NA

2.1. Frequency Bands and Functions

Table 3: Frequency Bands and Functions

	SC200V-EM	SC200V-NA	SC200V-WF
LTE-FDD	B1/B2/B3/B4/B5/B7/B8/B20/ B28	B2//B4/B5/B7/B12/B13/B14/ B17/B25/B26/B66/B71	-
LTE-TDD	B38/B40/B41 (200 MHz)	B41 (200 MHz)	-
WCDMA	B1/B2/B4/B5/B8	-	-
GSM	GSM850, EGSM900, DCS1800, PCS1900	-	-

GNSS (optional)	GPS/GLONASS/BDS/Galileo /SBAS	GPS/GLONASS/BDS/Galileo /SBAS	-
Wi-Fi 802.11b/g/n	2.4 GHz; 5 GHz, 802.11 a/b/g/n/ac	2.4 GHz; 5 GHz, 802.11 a/b/g/n/ac	2.4 GHz; 5 GHz, 802.11 a/b/g/n/ac
Bluetooth	Bluetooth 5.0 (BR/EDR + BLE)	Bluetooth 5.0 (BR/EDR + BLE)	Bluetooth 5.0 (BR/EDR + BLE)

2.2. Key Features

Table 4: Key Features

Categories	Descriptions
Application Processor	<p>64-bit applications processor (Kryo):</p> <ul style="list-style-type: none"> ● Kryo Gold: One high performance quad-core @ 2.4 GHz with 2 MB L2 cache ● Kryo Silver: One low power consumption quad-core @ 1.9 GHz with 512 KB L2 cache
Modem DSP	Hexagon™ DSP, supports Dual HVX @ 614 MHz
GPU	<ul style="list-style-type: none"> ● Adreno™ 610 GPU ● Operating frequency: 1.1 GHz
Memory	<p>eMMC + LPDDR4X:</p> <ul style="list-style-type: none"> 4 GB LPDDR4X + 64 GB eMMC (default) 3 GB LPDDR4X + 32 GB eMMC 8 GB LPDDR4X + 128 GB eMMC
Operating System	Android 13/14*/15*
Supply Voltage	<ul style="list-style-type: none"> ● 3.55–4.4 V ● Typ.: 3.8 V
SMS	<ul style="list-style-type: none"> ● Text and PDU mode ● Point-to-point MO and MT ● SMS cell broadcast ● SMS storage: module by default
USB Interface	<ul style="list-style-type: none"> ● Complies with USB 3.1 Gen 1 and USB 2.0 specifications ● Data rate: up to 5 Gbps on USB 3.1 Gen 1 and 480 Mbps on USB 2.0 ● Supports USB OTG and USB 3.1 Type-C interface, Micro USB interface ● Use: AT command transmission, data communication with external AP, data transmission, GNSS NMEA sentence output, software debugging, firmware upgrade and voice over USB

(U)SIM Interfaces	<ul style="list-style-type: none"> Two (U)SIM interfaces 1.8 V and 2.95 V Dual SIM Dual Standby (supported by software by default)
SD Card Interface	<ul style="list-style-type: none"> Complies with SD 3.0 protocol 1.8/2.95 V SD card SD card hot-plug
UART Interfaces ¹	<ul style="list-style-type: none"> Up to five groups of UART interfaces, three of them are default configurations, two of them are multiplexed from other interfaces: <ul style="list-style-type: none"> Debug UART: 2-wire UART interface, dedicated for debugging by default UART0: 4-wire UART with the speed rate up to 4 Mbps, which supports RTS and CTS hardware flow control UART1: 2-wire UART interface Two UART interfaces are multiplexed from other interfaces
SPI ¹	<ul style="list-style-type: none"> Up to five groups of SPI interfaces, all of them are multiplexed from other interfaces Master mode only
I2C Interfaces ¹	<ul style="list-style-type: none"> Up to eight groups of I2C interfaces: <ul style="list-style-type: none"> Four dedicated I2C interfaces: used for cameras, sensors and TP Four I2C interfaces are multiplexed from other interfaces
I2S Interfaces ¹	<ul style="list-style-type: none"> Up to two groups of I2S interfaces: Two I2S interfaces are multiplexed from other interfaces
Audio inputs:	
<ul style="list-style-type: none"> Three analog microphone inputs, MIC1/MIC3 has no internal bias, MIC2 has internal bias 	
Audio Interfaces	Audio outputs: <ul style="list-style-type: none"> Class AB stereo headphone output Class AB earpiece differential output Class AB differential lineout output
Audio Codec	<ul style="list-style-type: none"> EVS, EVRC, EVRC-B, EVRC-WB G.711, G.729A/AB GSM-FR, GSM-EFR, and GSM-HR AMR-NB, AMR-WB
Video Codec	<ul style="list-style-type: none"> Encoding: 1080P @ 60 fps, HEVC/H.264/H.265 Decoding: 1080P @ 60 fps, HEVC/H.264/H.265/VP9
ADC Interfaces	<ul style="list-style-type: none"> Two generic ADC interfaces Resolution: up to 15-bit
LCM Interface	<ul style="list-style-type: none"> One group of 4-lane MIPI_DSI Data rate: up to 1.5 Gbps/lane Supports up to FHD + 1080 × 2520 @ 60/90 fps
Camera Interfaces	<ul style="list-style-type: none"> Three groups of 4-lane MIPI_CSI Data rate: up to 2.5 Gbps/lane

¹ For details about the multiplexing and conflict relationships of UART, I2C, SPI and I2S interfaces, see **Table 20**

	<ul style="list-style-type: none"> Supports 3 concurrent working cameras (Triple ISP), supports up to (13 MP + 13 MP + 5 MP 30 fps @ ZSL) or up to (25 MP + 5 MP or 16 MP + 16 MP 30 fps @ ZSL) or up to 32 MP (30 fps @ ZSL) or 64 MP (no ZSL)
Antenna Interfaces	<ul style="list-style-type: none"> Main antenna interface (ANT_MAIN) Rx-diversity antenna interface (ANT_DRX) GNSS antenna interface (ANT_GNSS) Wi-Fi & Bluetooth antenna interface (ANT_WIFI/BT)² 50 Ω characteristic impedance
Transmitting Power	<ul style="list-style-type: none"> LTE-TDD: Class 3 (23 dBm ±2 dB) LTE-FDD: Class 3 (23 dBm ±2 dB) WCDMA: Class 3 (23 dBm ±2 dB) PCS1900 8-PSK: Class E2 (26 dBm ±3 dB) DCS1800 8-PSK: Class E2 (26 dBm ±3 dB) EGSM900 8-PSK: Class E2 (27 dBm ±3 dB) GSM850 8-PSK: Class E2 (27 dBm ±3 dB) PCS1900: Class 1 (30 dBm ±2 dB) DCS1800: Class 1 (30 dBm ±2 dB) EGSM900: Class 4 (33 dBm ±2 dB) GSM850: Class 4 (33 dBm ±2 dB)
LTE Features	<ul style="list-style-type: none"> The module complies with 3GPP Rel-10 FDD and TDD Max. LTE category: <ul style="list-style-type: none"> DL CA: Cat 4 UL CA: Cat 4 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz and 20 MHz RF bandwidths DL modulations: QPSK, 16QAM, 64QAM UL modulations: QPSK, 16QAM DL 2 × 2 MIMO LTE-FDD max. data rates: <ul style="list-style-type: none"> DL: 150 Mbps UL: 50 Mbps LTE-TDD max. data rates: <ul style="list-style-type: none"> DL: 130 Mbps UL: 30 Mbps
UMTS Features	<ul style="list-style-type: none"> The module complies with 3GPP Rel-9 DC-HSDPA, HSPA+, HSDPA, HSUPA and WCDMA Modulations: QPSK, 16QAM and 64QAM DC-HSDPA max. data rate: 42 Mbps (DL) HSUPA max. data rate: 5.76 Mbps (UL) WCDMA max. data rates: <ul style="list-style-type: none"> DL: 384 kbps UL: 384 kbps

² SC200V-WF only supports Wi-Fi and Bluetooth antenna.

	R99:
	<ul style="list-style-type: none"> ● CSD data rate: <ul style="list-style-type: none"> - DL: 14.4 kbps - UL: 9.6 kbps
	GPRS:
	<ul style="list-style-type: none"> ● GPRS multi-slot class 33 (33 by default) ● Coding scheme: CS 1–4 ● Max. data rates: <ul style="list-style-type: none"> - DL: 107 kbps - UL: 85.6 kbps
GSM Features	EDGE:
	<ul style="list-style-type: none"> ● EDGE multi-slot class 33 (33 by default) ● Coding scheme: GMSK and 8-PSK ● DL coding schemes: MCS 1–9 ● UL coding schemes: MCS 1–9 ● Max. data rates: <ul style="list-style-type: none"> - DL: 296 kbps - UL: 236.8 kbps
GNSS Features (optional)	<ul style="list-style-type: none"> ● GPS, GLONASS, BDS, Galileo and SBAS ● Data update rate: 1 Hz ● Support AGNSS
Wi-Fi Features	<ul style="list-style-type: none"> ● Operating modes: AP and STA ● Operating frequency: 2.4 GHz, 5 GHz ● Protocol features: IEEE 802.11a/b/g/n/ac ● Data rate: 2.4 GHz up to 150 Mbps; 5 GHz up to 433 Mbps
Bluetooth Features	<ul style="list-style-type: none"> ● <i>Bluetooth Core Specification Version 5.0</i> ● Bluetooth Classic & Bluetooth Low Energy (BLE)
Real Time Clock	The module supports RTC function
Temperature Ranges	<ul style="list-style-type: none"> ● Normal operating temperature ³: -35 to +75 °C ● Storage temperature: -40 to +90 °C
Firmware Upgrade	Use USB interface or OTA to upgrade
RoHS	All hardware components fully comply with EU RoHS directive

³ Within this range, the module's indicators comply with 3GPP specification requirements.

2.3. Pins Definition

Table 5: Parameters Definition

Parameters	Descriptions
AI	Analog Input
AO	Analog Output
AIO	Analog Input/Output
DI	Digital Input
DO	Digital Output
DIO	Digital Input/Output
OD	Open Drain
PI	Power Input
PO	Power Output
PIO	Power Input/Output
PU	Pull Up
PD	Pull Down

DC characteristics include power domain and rated current in the table below.

Table 6: Pins Description

Power Supply						
Pin Name	Pin No.	I/O	Status after Reset	Description	DC Characteristics	Comment
VBAT	1, 2, 145, 146	PI	-	Power supply for the module	Vmin = 3.55 V Vnom = 3.8 V Vmax = 4.4 V	Provide sufficient current up to 3 A. It is suggested to use a TVS for surge protection.
VPH_PWR	184	PI	-	Power supply for	Vmin = 3.55 V	Directly

				peripherals	V _{nom} = 3.8 V V _{max} = 4.4 V	connected to VBAT inside the module.
LDO9A_1V8	111	PO	-	1.8 V output power for external I/O pull up circuits and level-shifting circuit	V _{nom} = 1.8 V I _{max} = 200 mA	
ELDO1_3V0	156	PO	-	3.0 V output power for TP and sensor	V _{nom} = 3.0 V I _{max} = 300 mA	
ELDO3_1V8	125	PO	-	1.8 V output power for LCM, sensor, cameras and I ₂ C pull-up circuits	V _{nom} = 1.8 V I _{max} = 300 mA	This voltage is not adjustable.
VRTC	126	PIO	-	Power supply for RTC	V _{max} = 3.2 V V _{min} = 2.5 V V _{max} = 3.2 V	If unused, keep it open.
ELDO2_2V8	129	PO	-	2.8 V output power for camera's AVDD	V _{nom} = 2.8 V I _{max} = 500 mA	This voltage is not adjustable.

Audio Interfaces

Pin Name	Pin No.	I/O	Status after Reset	Description	DC Characteristics	Comment
MIC_BIAS1	147	PO	-	Bias voltage 1 output for microphone	V _{min} = 1.0 V V _{max} = 2.85 V	The rated output current is 3 mA.
MIC1_P	4	AI	-	Microphone input for channel 1 (+)		
MIC1_M	5	AI	-	Microphone input for channel 1 (-)		
MIC2_P	6	AI	-	Microphone input for headset (+)		
MIC3_P	148	AI	-	Microphone input for channel 3 (+)		
MIC3_M	149	AI	-	Microphone input for channel 3 (-)		
MIC_BIAS3	155	PO	-	Bias voltage 3 output for microphone	V _{min} = 1.0 V V _{max} = 2.85 V	The rated output current is 3 mA.

EAR_P	8	AO	-	Earpiece output (+)
EAR_M	9	AO	-	Earpiece output (-)
LINEOUT_P	10	AO	-	Audio line differential output (+)
LINEOUT_M	11	AO	-	Audio line differential output (-)
HPH_R	136	AO	-	Headphone right channel output
HPH_GND	137	AO	-	Headphone reference ground
HPH_L	138	AO	-	Headphone left channel output
HS_DET	139	AI	-	Headset hot-plug detect High level by default.

USB Interface

Pin Name	Pin No.	I/O	Status after Reset	Description	DC Characteristics	Comment
USB_VBUS	141, 142	PI	-	USB insertion detection	Vmax = 6.0 V Vmin = 4.0 V Vnom = 5.0 V	A test point must be reserved.
USB_DM	13	AIO	-	USB 2.0 differential data (-)		90 Ω differential impedance.
USB_DP	14	AIO	-	USB 2.0 differential data (+)		USB 2.0 standard compliant. Test points must be reserved.
USB_SS1_RX_P	252	AI	-	USB 3.1 channel 1 SuperSpeed receive (+)		
USB_SS1_RX_M	270	AI	-	USB 3.1 channel 1 SuperSpeed receive (-)		90 Ω differential impedance.
USB_SS1_TX_P	254	AO	-	USB 3.1 channel 1 SuperSpeed transmit (+)		USB 3.1 standard compliant.
USB_SS1_TX_M	253	AO	-	USB 3.1 channel 1 SuperSpeed		

					transmit (-)	
USB_SS2_RX_P	152	AI	-		USB 3.1 channel 2 SuperSpeed receive (+)	
USB_SS2_RX_M	192	AI	-		USB 3.1 channel 2 SuperSpeed receive (-)	
USB_SS2_TX_P	150	AO	-		USB 3.1 channel 2 SuperSpeed transmit (+)	
USB_SS2_TX_M	151	AO	-		USB 3.1 channel 2 SuperSpeed transmit (-)	
USB_CC1	249	AI	-		USB Type-C configuration channel 1	CC does not support PD Charging.
USB_CC2	246	AI	-		USB Type-C configuration channel 2	
USB_ID	16	DI	PD	USB ID detect	LDO9A_1V8	High level by default. If unused, keep it open.

(U)SIM Interfaces

Pin Name	Pin No.	I/O	Status after Reset	Description	DC Characteristics	Comment
USIM1_VDD	26	PO	-	(U)SIM1 card power supply	I _{max} = 300 mA Low-voltage: V _{max} = 1.85 V V _{min} = 1.75 V High-voltage: V _{max} = 3.1 V V _{min} = 2.8 V	Either 1.8 V or 2.95 V (U)SIM card is supported.
USIM1_DATA	25	DIO	PD	(U)SIM1 card data		
USIM1_CLK	24	DO	PD	(U)SIM1 card clock	USIM1_VDD	Cannot be multiplexed into a generic GPIO.
USIM1_RST	23	DO	PD	(U)SIM1 card reset		

USIM1_DET	22	DI	PD	(U)SIM1 card hot-plug detect	LDO9A_1V8	Active low. Externally pull it up to 1.8 V. If unused, keep it open.
						I _{max} = 300 mA
USIM2_VDD	21	PO	-	(U)SIM2 card power supply	V _{max} = 1.85 V V _{min} = 1.75 V	Low-voltage: Either 1.8 V or 2.95 V (U)SIM card is supported.
USIM2_DATA	20	DIO	PD	(U)SIM2 card data	V _{max} = 3.1 V V _{min} = 2.8 V	High-voltage:
USIM2_CLK	19	DO	PD	(U)SIM2 card clock	USIM2_VDD	Cannot be multiplexed into a generic GPIO.
USIM2_RST	18	DO	PD	(U)SIM2 card reset		
USIM2_DET	17	DI	PD	(U)SIM2 card hot-plug detect	LDO9A_1V8	Active low. Externally pull it up to 1.8 V. If unused, keep it open.

SD Card Interface

Pin Name	Pin No.	I/O	Status after Reset	Description	DC Characteristics	Comment
SD_CLK	39	DO	-	SD card clock		
SD_CMD	40	DIO	-	SD card command		
SD_DATA0	41	DIO	-	SDIO data bit 0	SD_PU_VDD	45 Ω characteristic impedance.
SD_DATA1	42	DIO	-	SDIO data bit 1		
SD_DATA2	43	DIO	-	SDIO data bit 2		
SD_DATA3	44	DIO	-	SDIO data bit 3		
SD_DET	45	DI	PD	SD card hot-plug detect	LDO9A_1V8	Active low.

SD_VDD	38	PO	-	SD card power supply	V _{nom} = 2.95 V I _{omax} = 600 mA I _{omax} = 50 mA
SD_PU_VDD	32	PO	-	1.8/2.95 V output power for SD card pull-up circuits	Low-voltage: V _{nom} = 1.8 V High-voltage: V _{nom} = 2.95 V

Touch Panel Interface

Pin Name	Pin No.	I/O	Status after Reset	Description	DC Characteristics	Comment
TP_RST	31	DO	PD	TP reset	LDO9A_1V8	Active low.
TP_INT	30	DI	PD	TP interrupt	LDO9A_1V8	
TP_I2C_SCL	47	OD	PD	TP I2C clock		Need to be pulled up to 1.8 V externally.
TP_I2C_SDA	48	OD	PD	TP I2C data		Can be used for other I2C devices.

LCM Interface

Pin Name	Pin No.	I/O	Status after Reset	Description	DC Characteristics	Comment
LCD_RST	49	DO	PD	LCD reset	LDO9A_1V8	
LCD_TE	50	DI	PD	LCD tearing effect		
DSI_CLK_N	52	AO	-	LCD MIPI clock (-)		
DSI_CLK_P	53	AO	-	LCD MIPI clock (+)		
DSI_LN0_N	54	AO	-	LCD MIPI lane 0 data (-)		
DSI_LN0_P	55	AO	-	LCD MIPI lane 0 data (+)		
DSI_LN1_N	56	AO	-	LCD MIPI lane 1 data (-)		
DSI_LN1_P	57	AO	-	LCD MIPI lane 1 data (+)		

DSI_LN2_N	58	AO	-	LCD MIPI lane 2 data (-)		
DSI_LN2_P	59	AO	-	LCD MIPI lane 2 data (+)		
DSI_LN3_N	60	AO	-	LCD MIPI lane 3 data (-)		
DSI_LN3_P	61	AO	-	LCD MIPI lane 3 data (+)		
PWM	29	DO	PD	PWM output	1.8 V	Cannot be multiplexed into a generic GPIO.

Camera Interfaces

Pin Name	Pin No.	I/O	Status after Reset	Description	DC Characteristics	Comment
CSI1_CLK_N	63	AI	-	MIPI CSI1 clock (-)		
CSI1_CLK_P	64	AI	-	MIPI CSI1 clock (+)		
CSI1_LN0_N	65	AI	-	MIPI CSI1 lane 0 data (-)		
CSI1_LN0_P	66	AI	-	MIPI CSI1 lane 0 data (+)		
CSI1_LN1_N	67	AI	-	MIPI CSI1 lane 1 data (-)		
CSI1_LN1_P	68	AI	-	MIPI CSI1 lane 1 data (+)		
CSI1_LN2_N	72	AI	-	MIPI CSI1 lane 2 data (-)		
CSI1_LN2_P	73	AI	-	MIPI CSI1 lane 2 data (+)		
CSI1_LN3_N	70	AI	-	MIPI CSI1 lane 3 data (-)		
CSI1_LN3_P	71	AI	-	MIPI CSI1 lane 3 data (+)		
CSI0_CLK_N	157	AI	-	MIPI CSI0 clock (-)		
CSI0_CLK_P	196	AI	-	MIPI CSI0 clock (+)		
CSI0_LN0_N	158	AI	-	MIPI CSI0 lane 0 data (-)		

CSI0_LN0_P	197	AI	-	MIPI CSI0 lane 0 data (+)	
CSI0_LN1_N	159	AI	-	MIPI CSI0 lane 1 data (-)	
CSI0_LN1_P	198	AI	-	MIPI CSI0 lane 1 data (+)	
CSI0_LN2_N	160	AI	-	MIPI CSI0 lane 2 data (-)	
CSI0_LN2_P	199	AI	-	MIPI CSI0 lane 2 data (+)	
CSI0_LN3_N	161	AI	-	MIPI CSI0 lane 3 data (-)	
CSI0_LN3_P	200	AI	-	MIPI CSI0 lane 3 data (+)	
CSI2_CLK_N	257	AI	-	MIPI CSI2 clock (-)	
CSI2_CLK_P	232	AI	-	MIPI CSI2 clock (+)	
CSI2_LN0_N	167	AI	-	MIPI CSI2 lane 0 data (-)	
CSI2_LN0_P	168	AI	-	MIPI CSI2 lane 0 data (+)	
CSI2_LN1_N	169	AI	-	MIPI CSI2 lane 1 data (-)	
CSI2_LN1_P	170	AI	-	MIPI CSI2 lane 1 data (+)	
CSI2_LN2_N	178	AI	-	MIPI CSI2 lane 2 data (-)	
CSI2_LN2_P	179	AI	-	MIPI CSI2 lane 2 data (+)	
CSI2_LN3_N	174	AI	-	MIPI CSI2 lane 3 data (-)	
CSI2_LN3_P	175	AI	-	MIPI CSI2 lane 3 data (+)	
CAM_I2C0_SCL	83	OD	PD	I2C0 clock of camera	Need to be pulled up to 1.8 V externally.
CAM_I2C0_SDA	84	OD	PD	I2C0 data of camera	Can only be used for camera I2C devices.
CAM0_PWDN	80	DO	PD	Power down of camera 0	LDO9A_1V8

CAM1_PWDN	82	DO	PD	Power down of camera 1	
CAM2_PWDN	163	DO	PD	Power down of camera 2	
CAM3_PWDN	105	DO	PD	Power down of camera 3	
CAM0_MCLK	74	DO	PD	Master clock of camera 0	
CAM1_MCLK	75	DO	PD	Master clock of camera 1	
CAM2_MCLK	165	DO	PD	Master clock of camera 2	
CAM3_MCLK	33	DO	PD	Master clock of camera 3	
CAM0_RST	79	DO	PD	Reset of camera 0	
CAM1_RST	81	DO	PD	Reset of camera 1	
CAM2_RST	164	DO	PD	Reset of camera 2	
CAM3_RST	99	DO	PD	Reset of camera 3	
CAM_I2C1_SCL	166	OD	PD	I2C1 clock of camera	Need to be pulled up to 1.8 V externally.
CAM_I2C1_SDA	205	OD	PD	I2C1 data of camera	Can only be used for camera I2C devices.

Flash & Torch Interface

Pin Name	Pin No.	I/O	Status after Reset	Description	DC Characteristics	Comment
FLASH_LED	180	AO	-	Flash/torch driver output	I _{omax} = 1.5 A	Supports flash and torch modes.

Keypad Interfaces

Pin Name	Pin No.	I/O	Status after Reset	Description	DC Characteristics	Comment
PWRKEY	114	DI	-	Turn on/off the module		Pulled up to 1.1 V internally. Active low.

VOL_UP	95	DI	PD	Volume up		If unused, keep it open.
VOL_DOWN	96	DI	PD	Volume down	LDO9A_1V8	Cannot be externally pulled up.
RESET_N	225	DI	-	Reset the module		Disabled by default and it can be enabled via software configuration. A test point is recommended to be reserved if unused.

UART Interfaces

Pin Name	Pin No.	I/O	Status after Reset	Description	DC Characteristics	Comment
DBG_TXD	94	DO	PD	Debug UART transmit		Test points must be reserved.
DBG_RXD	93	DI	PD	Debug UART receive		If unused, keep them open.
UART0_TXD	34	DO	PD	UART0 transmit		
UART0_RXD	35	DI	PD	UART0 receive		
UART0_RTS	37	DO	PD	Request to send signal from the module	LDO9A_1V8	
UART0_CTS	36	DI	PD	Clear to send signal to the module		
UART1_TXD	154	DO	PD	UART1 transmit		
UART1_RXD	153	DI	PD	UART1 receive		

Sensor Interface

Pin Name	Pin No.	I/O	Status after Reset	Description	DC Characteristics	Comment
SENSOR_I2C_SCL	91	OD	PD	I2C clock for external sensor		Need to be pulled up to

SENSOR_I2C_SDA	92	OD	PD	I2C data for external sensor	1.8 V externally. Can only be used for sensors of the ADSP architecture.
ALPS_INT	107	DI	PD	Light/proximity sensor interrupt	
GYRO_INT	108	DI	PD	Gyroscopic sensor interrupt	
MAG_INT	109	DI	PD	Magnetic sensor interrupt	LDO9A_1V8
ACCEL_INT	110	DI	PD	Acceleration sensor interrupt	

RF Antenna Interfaces

Pin Name	Pin No.	I/O	Status after Reset	Description	DC Characteristics	Comment
ANT_MAIN	87	AIO	-	Main antenna interface		
ANT_GNSS	121	AI	-	GNSS antenna interface		
ANT_DRX	131	AI	-	Diversity antenna interface		50 Ω impedance.
ANT_WIFI/BT	77	AIO	-	Wi-Fi/Bluetooth antenna interface		

Antenna Tuner Control Interfaces

Pin Name	Pin No.	I/O	Status after Reset	Description	DC Characteristics	Comment
GRFC_0	173	DIO	PD	Generic RF controller		The software driver is
GRFC_1	260	DIO	PD	Generic RF controller		configured with GRFC_1 and GRFC_9 by default, and GRFC_0 is not configured, so it is recommended to use GRFC_1 and GRFC_9, not
GRFC_9	262	DIO	PD	Generic RF controller		

GRFC_0.
These pins
Cannot be
multiplexed
into generic
GPIOs.
GRFC_9
cannot be
pulled up when
the module is
turning on.

ADC Interface

Pin Name	Pin No.	I/O	Status after Reset	Description	DC Characteristics	Comment
ADC0	128	AI	PD	General-purpose ADC0 interface		The maximum input voltage is 1.875 V.
ADC1	185	AI	PD	General-purpose ADC1 interface		

Other Interfaces

Pin Name	Pin No.	I/O	Status after Reset	Description	DC Characteristics	Comment
USB_BOOT	46	DI	PD	Force the module into download mode		Force the module to enter download mode by pulling this pin up to LDO9A_1V8 before the module turns on. A test point is recommended to be reserved.
GNSS_LNA_EN	194	DO	PD	GNSS LNA enable control		
NFC_CLK	181	DO	-	NFC clock		The default output frequency is 38.4 MHz.
CBL_PWR_N	186	DI	-	Initiate power-on when grounded		The module cannot be turned off when this pin is pulled down. If

unused, keep it
open.

GPIO Interfaces

Pin Name	Pin No.	I/O	Status after Reset	Description	DC Characteristics	Comment
GPIO_31	97	DIO	PD	General-purpose input/output		
GPIO_84	100	DIO	PD	General-purpose input/output		
GPIO_54	106	DIO	PD	General-purpose input/output		
GPIO_65	112	DIO	PD	General-purpose input/output		
GPIO_60	113	DIO	PD	General-purpose input/output		
GPIO_67	123	DIO	PD	General-purpose input/output		
GPIO_66	182	DIO	PD	General-purpose input/output		
GPIO_112	177	DIO	PD	General-purpose input/output		
GPIO_111	267	DIO	PD	General-purpose input/output	LDO9A_1V8	
GPIO_98	265	DIO	PD	General-purpose input/output		
GPIO_100	264	DIO	PD	General-purpose input/output		
GPIO_101	239	DIO	PD	General-purpose input/output		
GPIO_102	104	DIO	PD	General-purpose input/output		
GPIO_103	103	DIO	PD	General-purpose input/output		
GPIO_104	101	DIO	PD	General-purpose input/output		
GPIO_105	102	DIO	PD	General-purpose input/output		
GPIO_106	90	DIO	PD	General-purpose input/output		
GPIO_107	98	DIO	PD	General-purpose		

input/output				
GPIO_14	118	DIO	PD	General-purpose input/output
GPIO_15	119	DIO	PD	General-purpose input/output
GPIO_16	116	DIO	PD	General-purpose input/output
GPIO_17	117	DIO	PD	General-purpose input/output
PMU_GPIO05	124	DIO	PD	General-purpose input/output
GPIO_93	115	DIO	PD	General-purpose input/output
GPIO_85	127	DIO	PD	General-purpose input/output
GPIO_86	201	DIO	PD	General-purpose input/output
GND				
Pin Name	Pin No.			
GND	3, 7, 12, 15, 27, 51, 62, 69, 76, 78, 85, 86, 88, 89, 120, 122, 130, 132, 135, 140, 143, 144, 162, 171, 172, 176, 187–191, 202–204, 206–224, 226–231, 233–238, 240, 241, 243–245, 247, 248, 250, 251, 255, 256, 258, 259, 261, 266, 268, 269, 271–274			
RESERVED				
Pin Name	Pin No.			
RESERVED	28, 133, 134, 183, 193, 195, 242, 263, 275, 276, 277, 278			

2.4. EVB Kit

Quectel supplies a Smart_EVB_G5 with accessories to develop and test the module. For more details, see **document [1]**.

3 Operating Characteristics

3.1. Power Supply

3.1.1. Power Supply Pins

The module provides four VBAT pins dedicated to connecting with the external power supply. The power supply range of the module is 3.55–4.4 V, and the recommended value is 3.8 V.

Table 7: VBAT and GND Pins

Pin Name	Pin No.	I/O	Description	Comment
VBAT	1, 2, 145, 146	PI	Power supply for the module	Provide sufficient current up to 3 A. It is suggested to use a TVS for surge protection.
GND	3, 7, 12, 15, 27, 51, 62, 69, 76, 78, 85, 86, 88, 89, 120, 122, 130, 132, 135, 140, 143, 144, 162, 171, 172, 176, 187–191, 202–204, 206–224, 226–231, 233–238, 240, 241, 243–245, 247, 248, 250, 251, 255, 256, 258, 259, 261, 266, 268, 269, 271–274			

3.1.2. Reference Design for Power Supply

The power source is critical to the module's performance. The power supply of the module should be able to provide sufficient current of 3 A at least. If the voltage difference between input voltage and the supply voltage is small, it is suggested to use an LDO; if the voltage difference is big, a buck converter is recommended.

The following figure shows a reference design for 5 V input power supply:

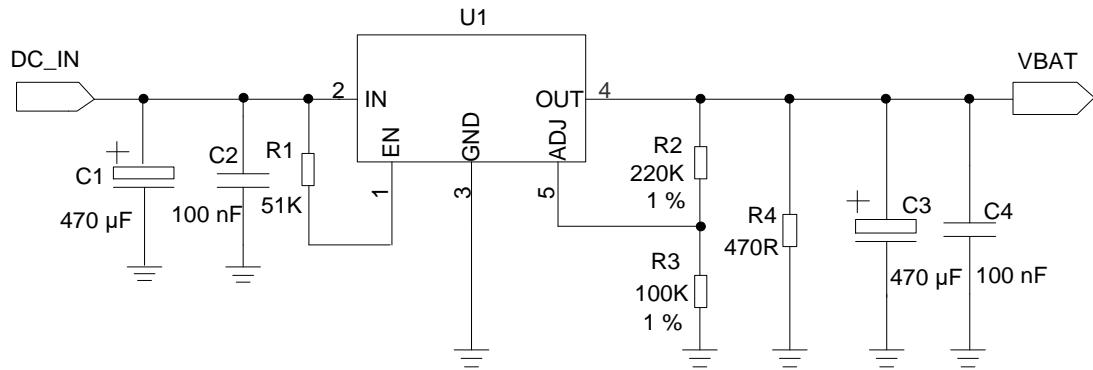


Figure 1: Reference Design of Power Input

NOTE

To avoid corrupting the data in the internal flash, do not switch off the power supply to turn off the module when the module works normally. Only after turning off the module with PWRKEY, then you can cut off the power supply.

3.1.3. Requirements for Voltage Stability

The recommended power supply voltage of the module is 3.8 V. The power supply performance, such as load capacity, voltage ripple will directly influence the module's performance and stability. Under ultimate conditions, the module may have a transient peak current up to 3 A. If the power supply capability is not sufficient, there will be voltage drops, and if the voltage drops below 3.1 V, the module will turn off automatically. Therefore, ensure the input voltage never drops below 3.1 V.

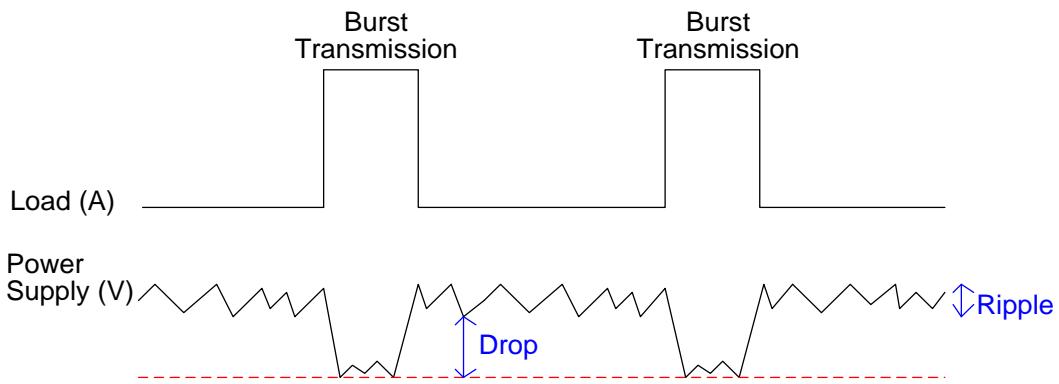


Figure 2: Power Supply Limits During Burst Transmission

To prevent the voltage from dropping below 3.1 V, it is recommended to connect a 100 μF bypass capacitor with low ESR as well as 100 nF, 33 pF, 10 pF and 4.7 μF filter capacitors in parallel near the VBAT pins

of the module. It is also recommended that the PCB traces of VBAT should be as short as possible and wide enough to reduce the equivalent impedance of the VBAT traces and ensure that there will be no large voltage drop under high current at the maximum transmission power. The width of VBAT trace should be at least 5 mm. As per design rules, the longer the VBAT trace is, the wider it should be. Additionally, the ground plane of the power supply part should be as complete as possible.

To suppress the impact of power fluctuations and ensure the stability of the output power supply, it is suggested to add a TVS and place it as close to the VBAT pins as possible to enhance surge protection. The following figure shows a reference circuit:

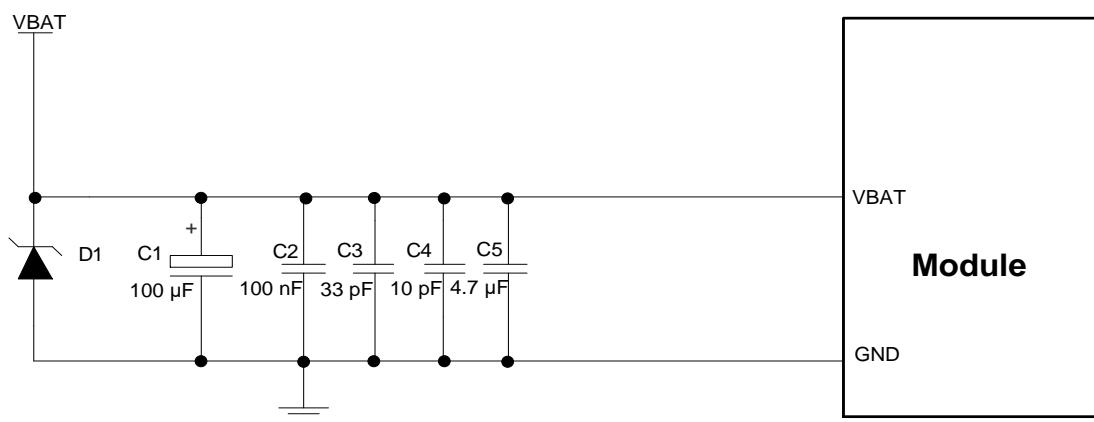


Figure 3: Reference Design of Power Supply

3.2. Turn On

3.2.1. Turn On with PWRKEY

Table 8: Pins Description of PWRKEY

Pin Name	Pin No.	I/O	Description	Comment
PWRKEY	114	DI	Turn on/off the module	Pulled up to 1.1 V internally. Active low.

When powering up the VBAT, the module can be turned on by driving PWRKEY low for at least 1.6 s. It is recommended to use an open drain/collector driver to control the PWRKEY. PWRKEY is pulled up to 1.1 V internally.

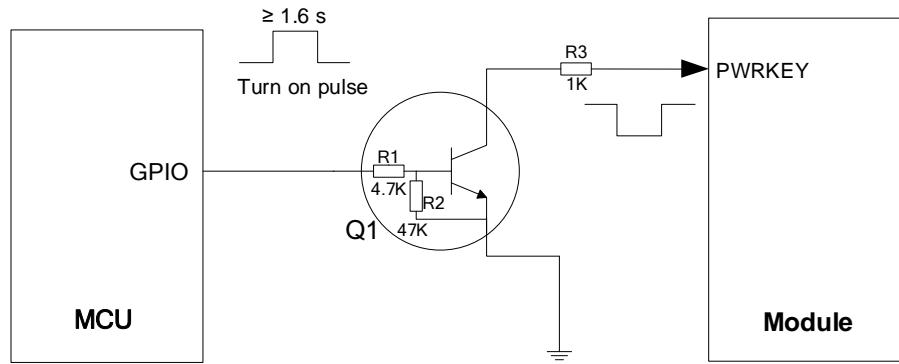


Figure 4: Reference Design of Turn On with Driving Circuit

Another way to control the PWRKEY is using a keystroke directly. When pressing the keystroke, an electrostatic strike may be generated from finger. Therefore, you should place a TVS component near the keystroke for ESD protection. Additionally, a 1 k Ω resistor is connected in series to PWRKEY for ESD protection.

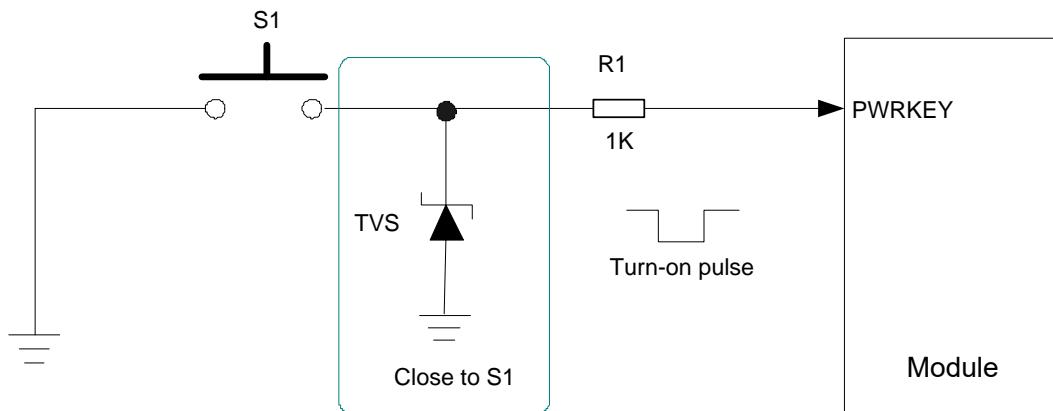


Figure 5: Reference Design of Turn On with Keystroke

VBAT (Typ. 3.8 V)

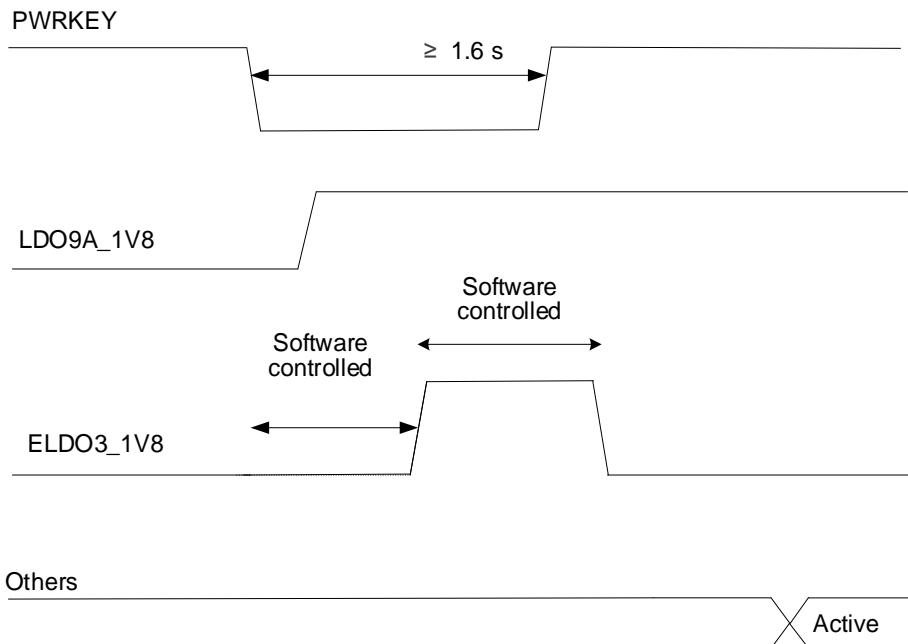


Figure 6: Timing of Turn On with PWRKEY

NOTE

1. When the module is powered up for the first time, its turn on timing may be different from that shown in the figure above.
2. Ensure the voltage of VBAT is stable before driving the PWRKEY low. It is recommended to drive PWRKEY low after VBAT reaches 3.8 V and remains stable for 30 ms. PWRKEY cannot be driven low all the time.

3.2.2. Turn On Automatically with CBL_PWR_N

Table 9: Pin Description of CBL_PWR_N

Pin Name	Pin No.	I/O	Description	Comment
CBL_PWR_N	186	DI	Initiate power-on when grounded	The module cannot be turned off when this pin is pulled down. If unused, keep it open.

The module can turn on automatically through CBL_PWR_N:

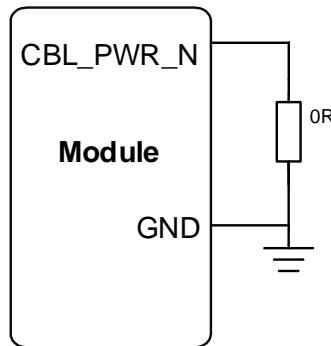


Figure 7: Reference Design of Turn On with CBL_PWR_N

NOTE

If the module turns on automatically through CBL_PWR_N, it cannot be turned off manually. In such case, it can be turned off only by cutting off the power supply of the system.

3.3. Restart/Turn Off

The module can be turned off by driving the PWRKEY low for at least 0.6 s, and then choose to turn off or to restart the module when the prompt window comes up. The other way to execute the forced shut-down is to drive the PWRKEY low for a long time (for at least 8 s).

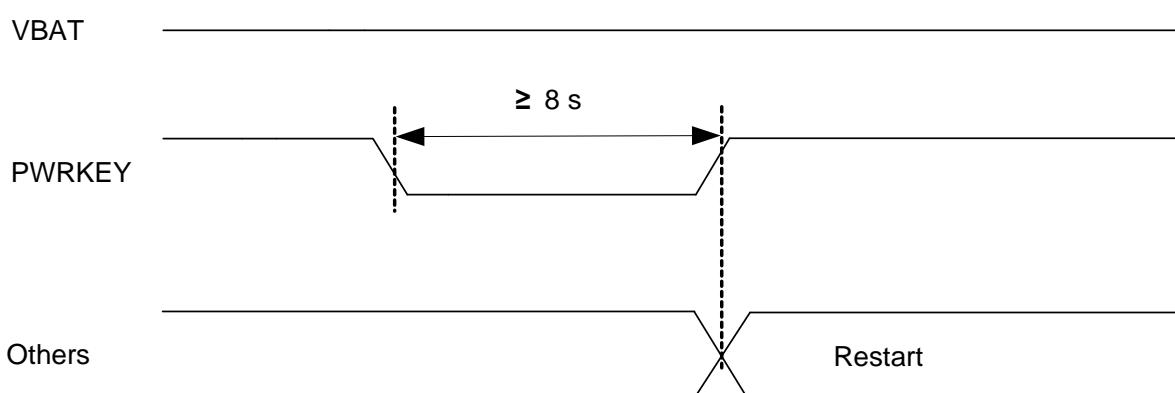


Figure 8: Timing of Restart

3.4. VRTC

Table 10: Pin Description of VRTC

Pin Name	Pin No.	I/O	Description	Comment
VRTC	126	PIO	Power supply for RTC	If unused, keep it open.

The RTC of the module can be powered by an external power supply pin VRTC. When VBAT is disconnected and you need to reserve RTC function, then VRTC cannot be kept unconnected. The RTC can be powered by an external power source when the module is powered down and there is no power supply for the VBAT. The power source can be an external battery or capacitor according to application demands. The following are some reference circuit designs when an external battery or capacitor is utilized for powering RTC.

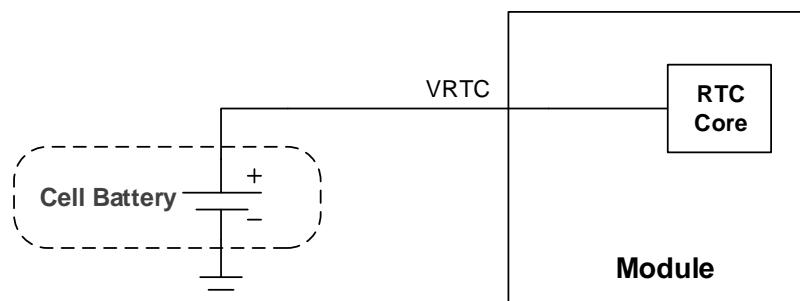


Figure 9: RTC Powered by Rechargeable Cell Battery

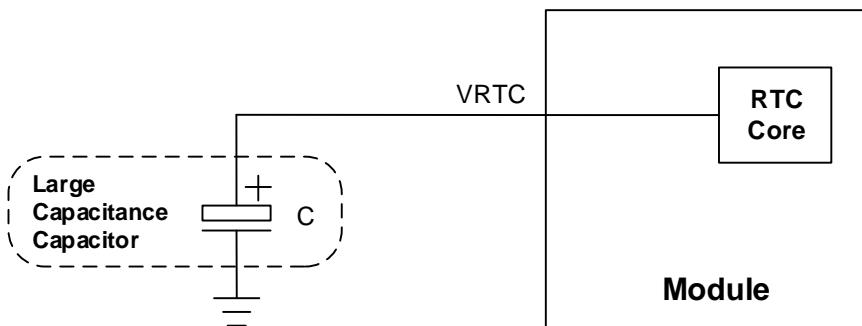


Figure 10: RTC Powered by Large Capacitance Capacitor

If RTC fails, the module can synchronize time over the network after being powering up.

- The recommended input voltage range for VRTC is 2.5–3.2 V and the recommended typical value is 3 V. The average power consumption is 10 μ A when VBAT is disconnected.

- When powered by VBAT, the RTC deviation is 50 ppm. When powered by VRTC, the RTC deviation is about 200 ppm.
- If a rechargeable button battery is used, ESR of the battery should be less than 2 kΩ. It is recommended to use MS621FE-FL11E of SEIKO.
- If you do not need RTC function, a 4.7 μF capacitor need to be connected to VRTC.

3.5. Power Output

The module supports multiple regulated voltage output for peripheral circuits. In practical application, it is recommended to use a 10 pF and a 33 pF capacitor in parallel to suppress high-frequency noise.

Table 11: Power Information

Pin Name	Default Voltage (V)	Drive Current (mA)	Standby
LDO9A_1V8	1.8	200	Keeps on
ELDO3_1V8	1.8	300	-
ELDO2_2V8	2.8	500	-
ELDO1_3V0	3.0	300	-

4 Application Interfaces

4.1. USB Interface

The module provides one USB interface which complies with USB 3.1 Gen 1 and USB 2.0 specifications and supports USB OTG. It supports USB Type-C interface and Micro USB interface. It also supports SuperSpeed mode (5 Gbps) for USB 3.1 Gen 1, high-speed (480 Mbps) and full-speed (12 Mbps) modes for USB 2.0. The USB interface is used for AT command transmission, data communication with external AP, data transmission, GNSS NMEA sentence output, software debugging, firmware upgrade and voice over USB.

4.1.1. Type-C Interface

Table 12: Pins Description of USB Type-C Interface

Pin Name	Pin No.	I/O	Description	Comment
USB_VBUS	141, 142	PI	USB insertion detection	A test point must be reserved.
USB_DM	13	AI	USB 2.0 differential data (-)	90 Ω differential impedance. USB 2.0 standard compliant.
USB_DP	14	AI	USB 2.0 differential data (+)	Test points must be reserved.
USB_SS1_RX_P	252	AI	USB 3.1 channel 1 SuperSpeed receive (+)	
USB_SS1_RX_M	270	AI	USB 3.1 channel 1 SuperSpeed receive (-)	
USB_SS1_TX_P	254	AO	USB 3.1 channel 1 SuperSpeed transmit (+)	90 Ω differential impedance.
USB_SS1_TX_M	253	AO	USB 3.1 channel 1 SuperSpeed transmit (-)	USB 3.1 standard compliant.
USB_SS2_RX_P	152	AI	USB 3.1 channel 2 SuperSpeed receive (+)	
USB_SS2_RX_M	192	AI	USB 3.1 channel 2 SuperSpeed receive (-)	

USB_SS2_TX_P	150	AO	USB 3.1 channel 2 SuperSpeed transmit (+)	
USB_SS2_TX_M	151	AO	USB 3.1 channel 2 SuperSpeed transmit (-)	
USB_CC1	249	AI	USB Type-C configuration channel 1	CC does not support PD Charging.
USB_CC2	246	AI	USB Type-C configuration channel 2	
USB_ID	16	DI	USB ID detect	High level by default. If unused, keep it open.

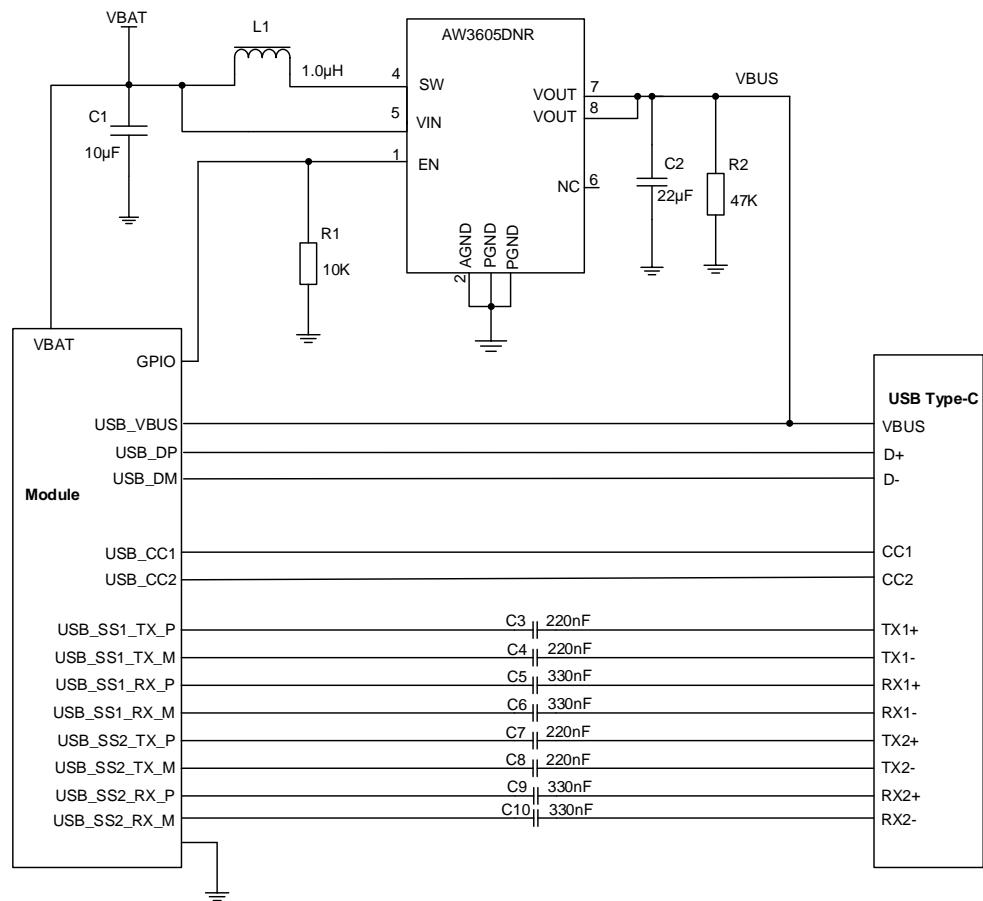


Figure 11: Reference Design of USB Type-C Mode

NOTE

The USB interface of the module supports OTG function. If this function is required, please follow the design above to add an external 5 V power supply.

4.1.2. Micro USB Interface

The module supports USB Type-C interface by default. Micro USB can be used via hardware configuration. The following table shows the pin definition of Micro USB interface:

Table 13: Pins Description of Micro USB

Pin Name	Pin No.	I/O	Description	Comment
USB_VBUS	141, 142	PI	USB insertion detection	A test point must be reserved.
USB_DM	13	AO	USB 2.0 differential data (-)	90 Ω differential impedance. USB 2.0 standard compliant.
USB_DP	14	AO	USB 2.0 differential data (+)	Test points must be reserved.
USB_ID	16	DI	USB ID detect	

The reference design of Micro USB interface configured with USB is shown below:

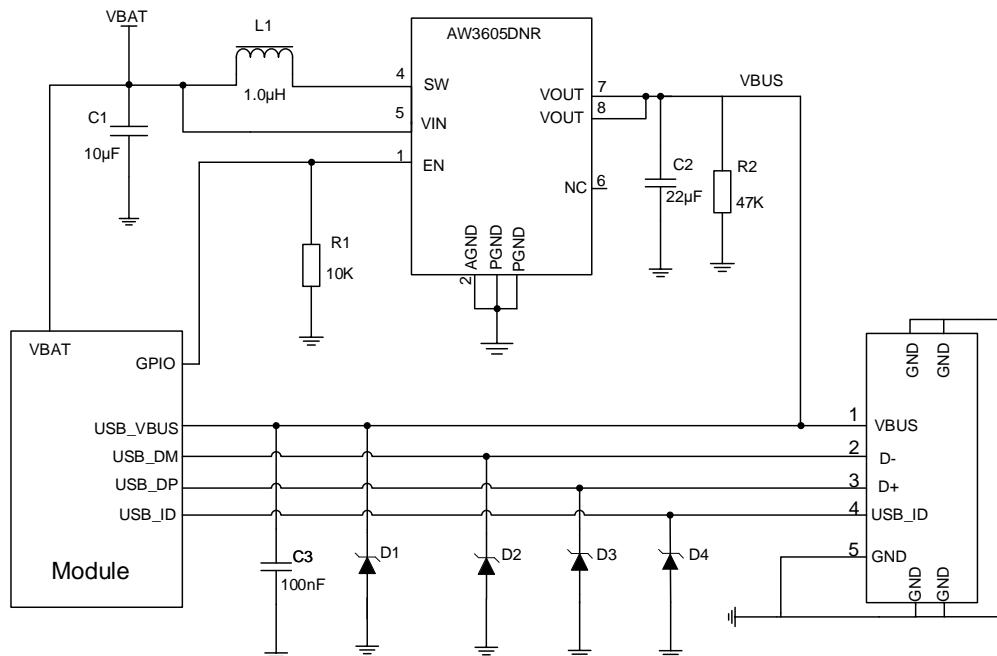


Figure 12: Reference Design of Micro USB Interface

4.1.3. USB Interfaces Design Considerations

Table 14: USB Interface Trace Length Inside the Module (Unit: mm)

Pin No.	Pin Name	Length	Length Matching
14	USB_DP	36.68	0.17
13	USB_DM	36.51	
252	USB_SS1_RX_P	29.88	0.67
270	USB_SS1_RX_M	30.55	
254	USB_SS1_TX_P	8.30	0.60
253	USB_SS1_TX_M	8.90	
152	USB_SS2_RX_P	23.42	0.28
192	USB_SS2_RX_M	23.14	
150	USB_SS2_TX_P	35.79	0.59
151	USB_SS2_TX_M	35.20	

To ensure performance, you should follow the following principles when designing USB interface:

- Route USB signal traces as differential pairs with surrounded ground. The impedance of USB differential trace is $90\ \Omega$.
- Route USB differential traces at the inner-layer of the PCB, and surround the traces with ground on that layer and ground planes above and below. For signal traces, provide spacing from power supply traces, crystal-oscillators, magnetic devices, sensitive signals such as RF signals, analog signals, and noise signals generated by clock, DC-DC.
- The reference ground plane under the USB signal traces must be continuous without any cuts or vias to ensure impedance continuity.
- Pay attention to the impact caused by stray capacitance of the ESD protection component on USB data lines. Typically, stray capacitance should be less than 2 pF for USB 2.0, and less than 0.5 pF for USB 3.1 Gen 1.
- Do not route USB 3.1 Gen 1 signal traces under RF signal traces. Crossing or being parallel with RF signal traces is forbidden. Isolation between USB 3.1 Gen 1 signals and RF signals should be over 90 dB. Otherwise, the RF signals will be seriously affected.
- For USB 3.1 Gen 1 signal traces, length matching of each differential data pair (Tx/Rx) should be less than 0.7 mm.
- For USB 3.1 Gen 1, the spacing between Rx and Tx signal traces should be three times the signal trace width. The spacing between USB 3.1 Gen 1 signal traces and other signal traces should be four

times the signal trace width.

- For USB 2.0 signal traces, the differential data pair matching (P/M) should be less than 2 mm.
- For USB 2.0, the spacing between DP and DM signal traces should be three times the signal trace width and the spacing between USB 2.0 signal traces and other signal traces should be four times the signal trace width.

4.2. USB_BOOT

The module provides a USB_BOOT for forced download. Pulling up USB_BOOT to LDO9A_1V8 before turning on the module, and then the module will enter forced download mode. This is an emergency option when failures such as abnormal start-up or running occur. For firmware upgrade and software debugging in the future, reserve the following reference design.

Table 15: Pins Description of USB_BOOT

Pin Name	Pin No.	I/O	Description	Comment
USB_BOOT	46	DI	Force the module into download mode	Force the module to enter download mode by pulling this pin up to LDO9A_1V8 before the module turns on. A test point is recommended to be reserved.

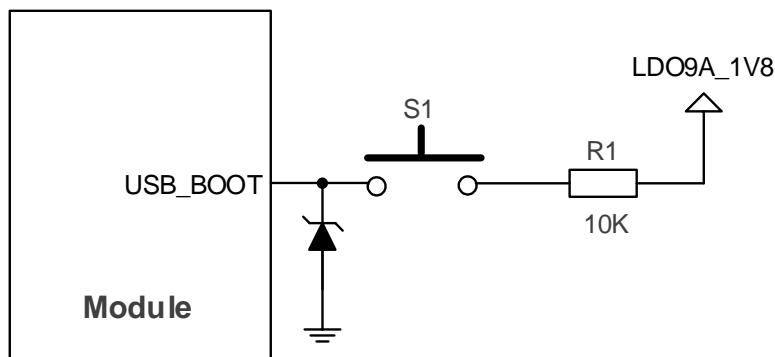


Figure 13: Reference Design of USB_BOOT

4.3. (U)SIM Interface

The (U)SIM interface meets ETSI and IMT-2000 requirements. Dual SIM Dual Standby function is supported by default. Either 1.8 V or 2.95 V (U)SIM card is supported, and the (U)SIM card is powered by the internal power supply of the module.

Table 16: Pins Description of (U)SIM Interface

Pin Name	Pin No.	I/O	Description	Comment
USIM1_VDD	26	PO	(U)SIM1 card power supply	Either 1.8 V or 2.95 V (U)SIM card is supported.
USIM1_DATA	25	DIO	(U)SIM1 card data	
USIM1_CLK	24	DO	(U)SIM1 card clock	Cannot be multiplexed into a generic GPIO.
USIM1_RST	23	DO	(U)SIM1 card reset	
USIM1_DET	22	DI	(U)SIM1 card hot-plug detect	Active low. Externally pull it up to 1.8 V. If unused, keep it open.
USIM2_VDD	21	PO	(U)SIM2 card power supply	Either 1.8 V or 2.95 V (U)SIM card is supported.
USIM2_DATA	20	DIO	(U)SIM2 card data	
USIM2_CLK	19	DO	(U)SIM2 card clock	Cannot be multiplexed into a generic GPIO.
USIM2_RST	18	DO	(U)SIM2 card reset	
USIM2_DET	17	DI	(U)SIM2 card hot-plug detect	Active low. Externally pull it up to 1.8 V. If unused, keep it open.

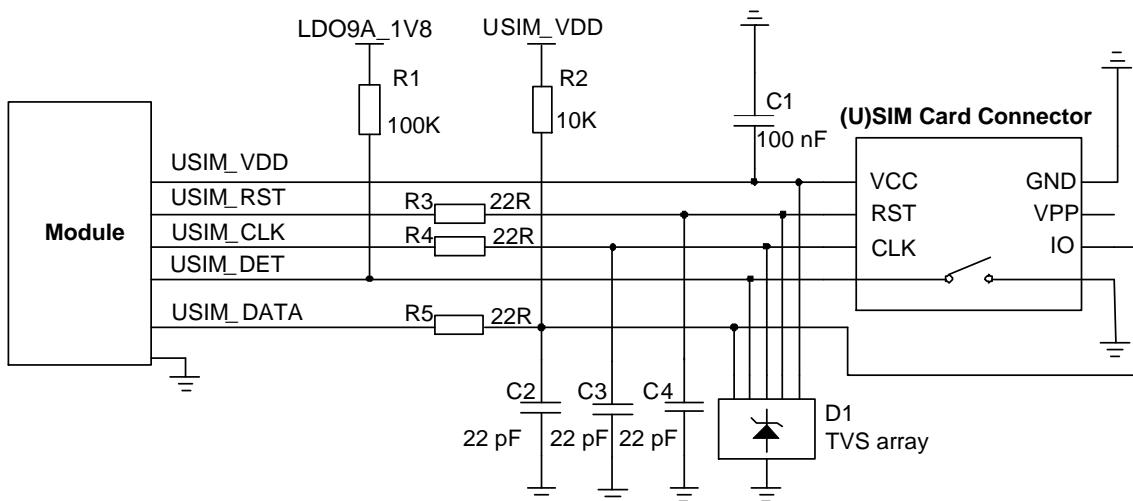


Figure 14: Reference Design of (U)SIM Interface with an 8-pin (U)SIM Card Connector

If the function of (U)SIM card hot-plug is not needed, keep USIM_DET disconnected.

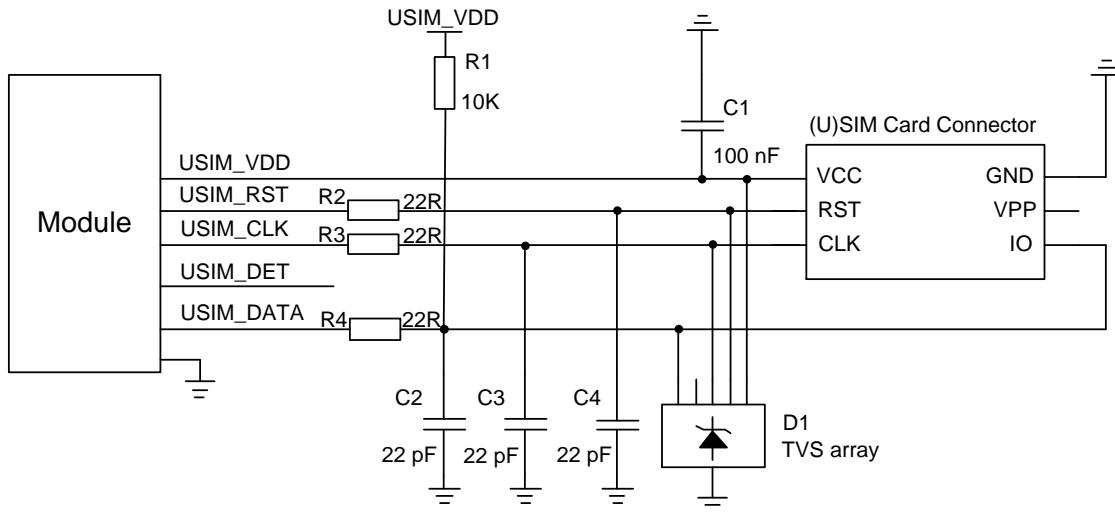


Figure 15: Reference Design of (U)SIM Interface with a 6-pin (U)SIM Card Connector

To enhance the reliability and availability of the (U)SIM card in applications, you should follow the principles below in the (U)SIM circuit design:

- Place the (U)SIM card connector close to the module. Keep the trace length less than 200 mm if possible.
- Route (U)SIM card traces at the inner-layer of the PCB, and surround the traces with ground on that layer and ground planes above and below. For signal traces, provide space from power supply traces,

crystal-oscillators, magnetic devices, sensitive signals such as RF signals, analog signals, and noise signals generated by clock, DC-DC.

- Ensure the tracing between the (U)SIM card connector and the module is short and wide. Keep the trace width of ground and USIM_VDD at least 0.5 mm to maintain the same electric potential.
- To avoid cross-talk between USIM_DATA and USIM_CLK, keep the traces away from each other and shield them with surrounded ground.
- To offer better ESD protection, you can add a TVS array of which the parasitic capacitance should be less than 10 pF. Add 22 Ω resistors in series between the module and the (U)SIM card connector to facilitate debugging and improve ESD protection. Additionally, add 22 pF capacitors in parallel among USIM_DATA, USIM_CLK and USIM_RST signal traces to filter out RF interference.
- For USIM_DATA, it is recommended to add a 10 k Ω pull-up resistor near the (U)SIM card connector to improve the anti-jamming capability of the (U)SIM card.

4.4. SD Card Interface

SD card interface of the module complies with SD 3.0 protocol:

Table 17: Pins Description of SD Card Interface

Pin Name	Pin No.	I/O	Description	Comment
SD_CLK	39	DO	SD card clock	
SD_CMD	40	DIO	SD card command	
SD_DATA0	41	DIO	SDIO data bit 0	45 Ω characteristic impedance.
SD_DATA1	42	DIO	SDIO data bit 1	
SD_DATA2	43	DIO	SDIO data bit 2	
SD_DATA3	44	DIO	SDIO data bit 3	
SD_DET	45	DI	SD card hot-plug detect	Active low.
SD_VDD	38	PO	SD card power supply	
SD_PU_VDD	32	PO	1.8/2.95 V output power for SD card pull-up circuits	

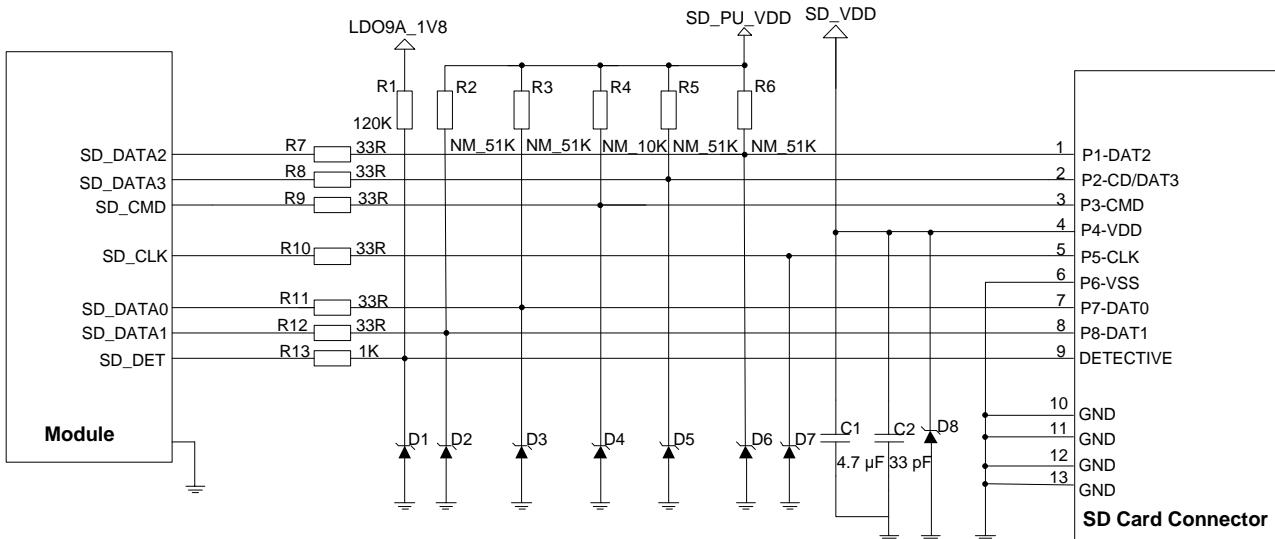


Figure 16: Reference Design of SD Card Interface

SD_VDD is a peripheral driver power supply for SD card. The maximum drive current is 600 mA. Because of the high drive current, it is recommended to keep the trace width as at least 0.5 mm. To ensure the stability of drive power, you should add a 4.7 μ F and a 33 pF capacitor in parallel near the SD card connector.

SD_CMD, SD_CLK and SD_DATA[0:3] are all high-speed signal traces. In PCB design, control the characteristic impedance of these traces as 45 Ω , shield them and do not cross them with other traces. It is recommended to route these traces on the inner layer of PCB and keep their lengths the same. Additionally, SD_CLK needs separate ground shielding.

Layout guidelines:

- Control impedance to $45 \Omega \pm 10\%$, and add ground shielding.
- Trace length matching between SD_CLK and SD_CMD/SD_DATA should be less than 2 mm.
- Trace length requirements: less than 150 mm for SDR50 mode.
- Spacing between signal traces should be 1.5 times the trace width.
- The capacitive reactance of SD_DATA[0:3], SD_CLK and SD_CMD traces should be less than 8 pF.

Table 18: SD Card Interface Trace Length Inside the Module (Unit: mm)

Pin No.	Pin Name	Length
39	SD_CLK	78.39
40	SD_CMD	78.01

41	SD_DATA0	78.50
42	SD_DATA1	78.00
43	SD_DATA2	77.85
44	SD_DATA3	79.54

4.5. UART

The module supports up to five groups of UART. Three of them are configured by default, see **Table 19**. Two of them are multiplexed from other interfaces, see **Table 20**.

Three UART:

- UART0: 4-wire UART, supports RTS and CTS hardware flow control, up to 4 Mbps.
- UART1: 2-wire UART.
- Debug UART: 2-wire UART, used for debugging only.

Table 19: Pins Description of UART

Pin Name	Pin No.	I/O	Description	Comment
DBG_TXD	94	DO	Debug UART transmit	Test points must be reserved.
DBG_RXD	93	DI	Debug UART receive	If unused, keep them open.
UART0_TXD	34	DO	UART0 transmit	
UART0_RXD	35	DI	UART0 receive	
UART0_RTS	37	DO	Request to send signal from the module	
UART0_CTS	36	DI	Clear to send signal to the module	
UART1_TXD	154	DO	UART1 transmit	
UART1_RXD	153	DI	UART1 receive	

UART0 is a 4-wire UART with 1.8 V power domain. You can use a level-shifting chip between the module and MCU's UART if the MCU is equipped with a 3.3 V UART:

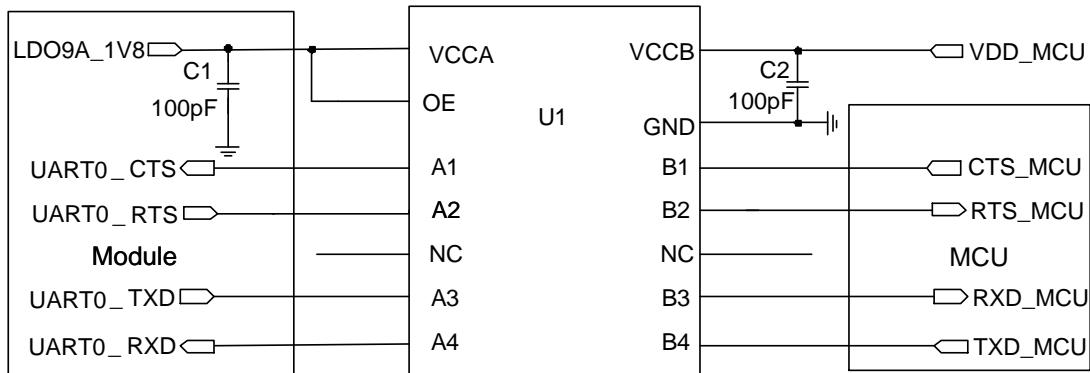


Figure 17: Reference Design of UART with Level-shifting Chip (for UART0)

The following circuit shows a reference design for the communication between the module and a PC with a standard RS-232 level-shifting chip:

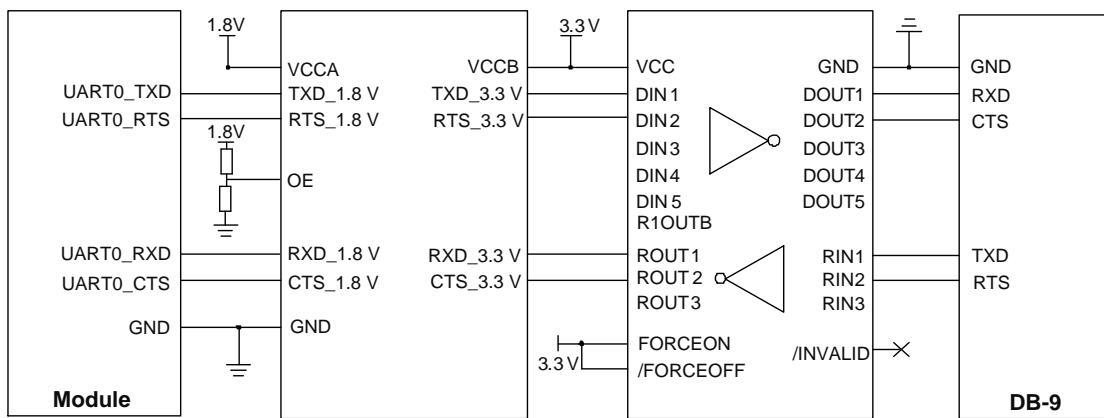


Figure 18: Reference Design of UART with RS-232 Level-shifting Chip (for UART0)

NOTE

The level-shifting circuits (**Figure 17** and **Figure 18**) take the UART0 as an example. The circuits of the debug UART and UART1 are connected in the same way as UART0.

4.6. SPI

The module provides five groups of SPI, which are multiplexed from interfaces. These interfaces only support the master mode, which can be used for fingerprint recognition. see **Table 20**.

4.7. I2C Interface

The module supports up to eight groups of I2C interfaces. Four of them are dedicated I2C interface for cameras, sensors and TP; four of them are multiplexed from other interfaces, see **Table 20**. All I2C interfaces are open drain signals and therefore you must pull them up externally. The reference power domain is 1.8 V. SENSOR_I2C only supports sensors of ADSP architecture. CAM_I2C0/CAM_I2C1 signals are controlled by Linux Kernel code and supports connection with video-output-related devices.

4.8. I2S Interface

The module supports up to two groups of I2S interfaces. All of them are multiplexed from other interfaces. The reference power domain is 1.8 V, see **Table 20**.

4.9. UART/SPI/I2C/I2S Multiplexing Relationship

The module supports up to five groups of configurable interfaces, which can be configured as UART, SPI, I2C or I2S interfaces. Specific multiplexing relationship is shown in the following table (dedicated I2C interfaces, dedicated debug UART and interfaces already used inside the module are not included):

Table 20: UART/SPI/I2C/I2S Multiplexing Relationship

Channels	Pin No.	Pin Name	GPIO No.	Multiplexing Functions			
				UART	SPI	I2C	I2S
QUP0-SE0	36	UART0_CTS	GPIO_0	UART_CTS	SPI_MISO	I2C_SDA	-
	37	UART0_RTS	GPIO_1	UART_RTS	SPI_MOSI	I2C_SCL	-
	34	UART0_TXD	GPIO_2	UART_TX	SPI_SCLK	-	-
	35	UART0_RXD	GPIO_3	UART_RX	SPI_CS_N_0	-	-
	49	LCD_RST	GPIO_82	-	SPI_CS_N_1	-	-
	201	GPIO_86	GPIO_86	-	SPI_CS_N_2	-	-
QUP0-SE1	80	CAM0_PWDN	GPIO_4	UART_CTS	SPI_MISO	I2C_SDA	-
	82	CAM1_PWDN	GPIO_5	UART_RTS	SPI_MOSI	I2C_SCL	-
	154	UART1_TXD	GPIO_69	UART_TX	SPI_SCLK	-	-

	153	UART1_RXD	GPIO_70	UART_RX	SPI_CS_N	-	-
QUP0-SE2	48	TP_I2C_SDA	GPIO_6	UART_CTS	SPI_MISO	I2C_SDA	-
	47	TP_I2C_SCL	GPIO_7	UART_RTS	SPI_MOSI	I2C_SCL	-
	31	TP_RST	GPIO_71	UART_TX	SPI_SCLK	-	-
	30	TP_INT	GPIO_80	UART_RX	SPI_CS_N	-	-
QUP0-SE4	95	VOL_UP	GPIO_96	UART_CTS	SPI_MISO	I2C_SDA	-
	96	VOL_DOWN	GPIO_97	UART_RTS	SPI_MOSI	I2C_SCL	-
	94	DBG_TXD	GPIO_12	UART_TX	SPI_SCLK	-	-
	93	DBG_RXD	GPIO_13	UART_RX	SPI_CS_N	-	-
QUP0-SE5	118	GPIO_14	GPIO_14	UART_CTS	SPI_MISO	I2C_SDA	-
	119	GPIO_15	GPIO_15	UART_RTS	SPI_MOSI	I2C_SCL	-
	116	GPIO_16	GPIO_16	UART_TX	SPI_SCLK	-	-
	117	GPIO_17	GPIO_17	UART_RX	SPI_CS_N	-	-
	265	GPIO_98	GPIO_98	-	-	-	LPI_MI2S1_CLK
	105	CAM3_PWDN	GPIO_99	-	-	-	LPI_MI2S1_WS
	264	GPIO_100	GPIO_100	-	-	-	LPI_MI2S1_DATA0
	239	GPIO_101	GPIO_101	-	-	-	LPI_MI2S1_DATA1/MI2S_MCLK1_B

98	GPIO_107	GPIO_107	-	-	-	MI2S_MCLK1_C
104	GPIO_102	GPIO_102	-	-	-	LPI_MI2S2_CLK
103	GPIO_103	GPIO_103	-	-	-	LPI_MI2S2_WS
101	GPIO_104	GPIO_104	-	-	-	LPI_MI2S2_DATA0
102	GPIO_105	GPIO_105	-	-	-	LPI_MI2S2_DATA1/MI2S_MCLK0_A
163	CAM2_PWDN	GPIO_108	-	-	-	MI2S_MCLK1_A

NOTE

1. QUP-SE is flexible and supports four types of interfaces: UART, SPI, I2C and I2S.
2. Note that the same set of QUP-SE cannot support two protocols at the same time. For example: the same set of QUP cannot support UART and I2C at the same time. If a protocol only occupies part of the pins of this group of QUP, other pins can only be used for GPIO.

4.10. Analog Audio Interfaces

The module provides three analog input channels and three analog output channels:

Table 21: Pins Description of Analog Audio Interface

Pin Name	Pin No.	I/O	Description	Comment
MIC_BIAS1	147	PO	Bias voltage 1 output for microphone	The rated output current is 3 mA.
MIC1_P	4	AI	Microphone input for channel 1 (+)	
MIC1_M	5	AI	Microphone input for channel 1 (-)	
MIC2_P	6	AI	Microphone input for headset (+)	
MIC3_P	148	AI	Microphone input for channel 3 (+)	
MIC3_M	149	AI	Microphone input for channel 3 (-)	
MIC_BIAS3	155	PO	Bias voltage 3 output for microphone	The rated output current is 3 mA.
EAR_P	8	AO	Earpiece output (+)	
EAR_M	9	AO	Earpiece output (-)	
LINEOUT_P	10	AO	Audio line differential output (+)	
LINEOUT_M	11	AO	Audio line differential output (-)	
HPH_R	136	AO	Headphone right channel output	
HPH_GND	137	AO	Headphone reference ground	
HPH_L	138	AO	Headphone left channel output	
HS_DET	139	AI	Headset hot-plug detect	High level by default.

- The module offers three audio input channels, including two differential input pair and one single-ended input channels.

- The output voltage range of two MIC_BIAS is programmable from 1.0 V to 2.85 V, and the maximum output current is 3 mA.
- The earpiece interface uses differential output.
- The lineout interface uses the differential output, lineout is used as audio PA input.
- The headset interface features stereo left and right channel output, and headset insert detection function is supported.

4.10.1. Microphone Interface Reference Design

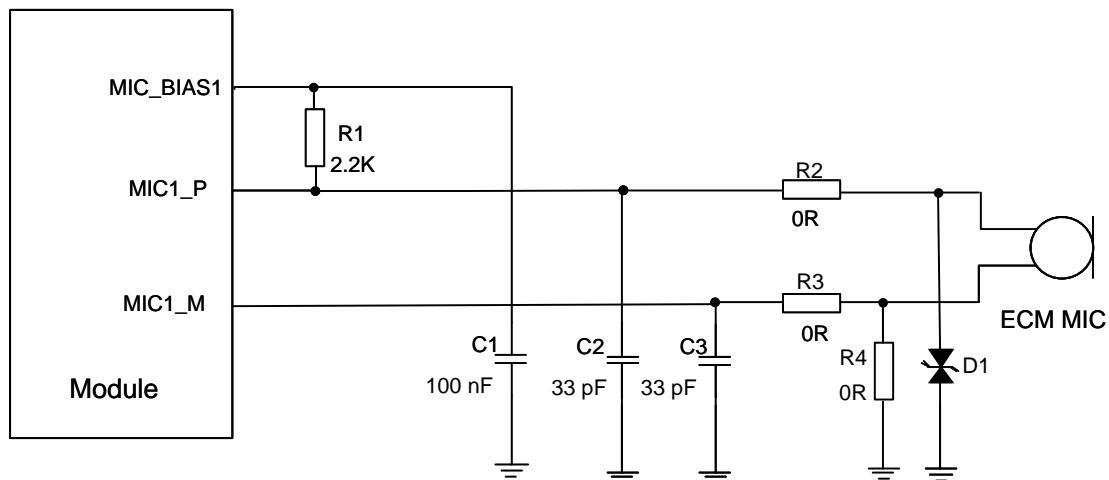


Figure 19: Reference Design of ECM Microphone Interface

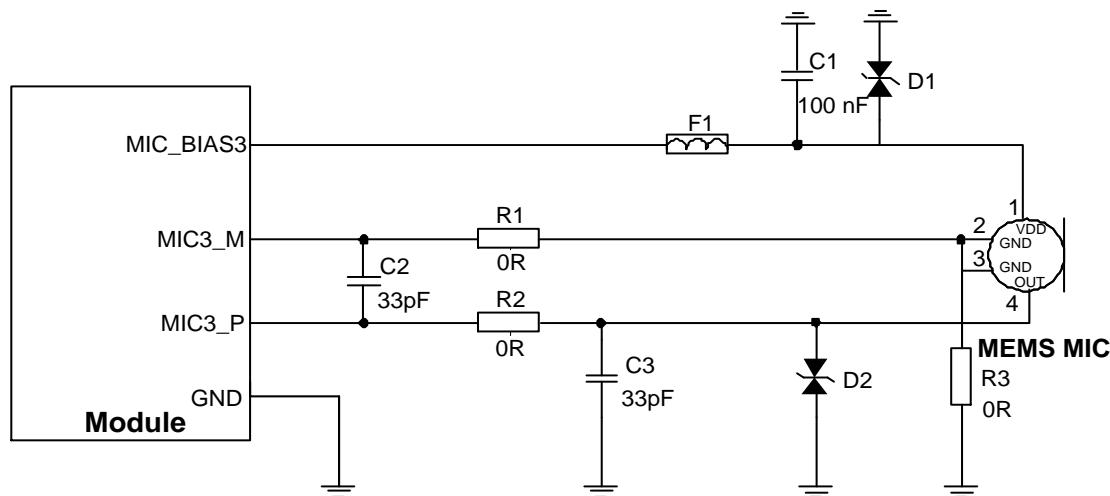


Figure 20: Reference Design of MEMS Microphone Interface

4.10.2. Earpiece Interface Reference Design

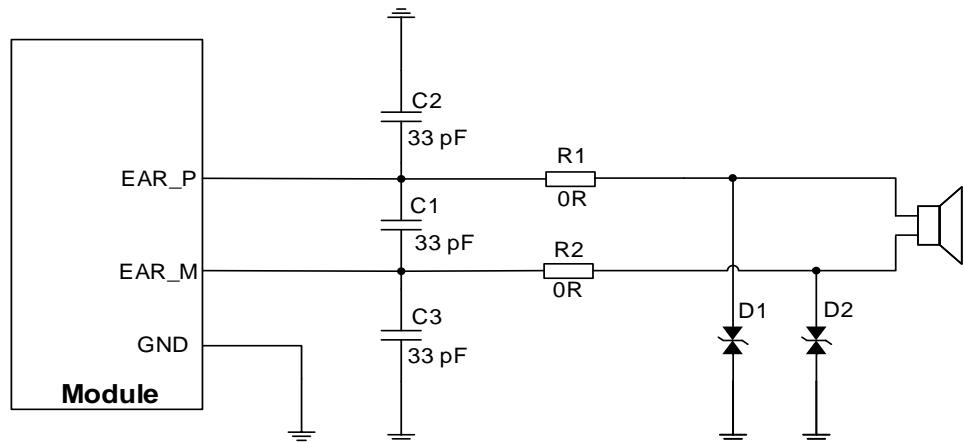


Figure 21: Reference Design of Earpiece Interface

4.10.3. Headset Interface Reference Design

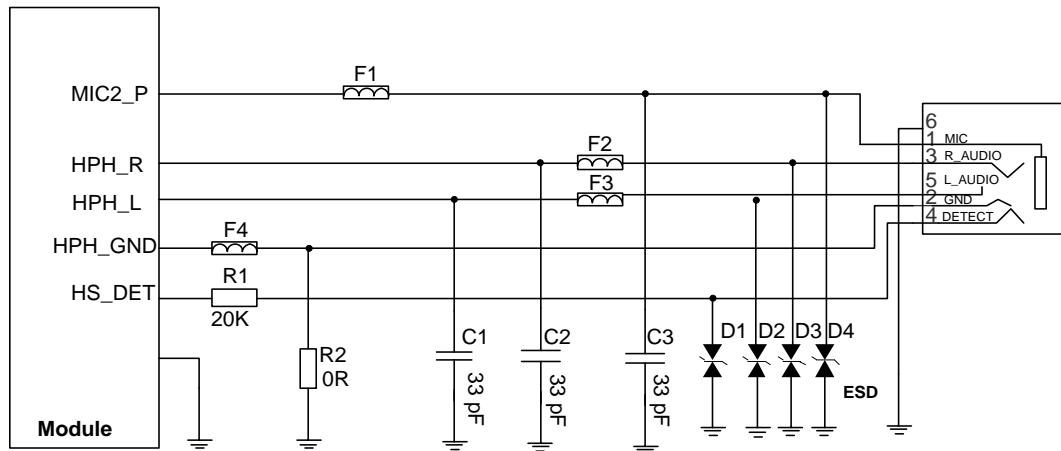


Figure 22: Reference Design of Headset Interface

4.10.4. Lineout Interface Reference Design

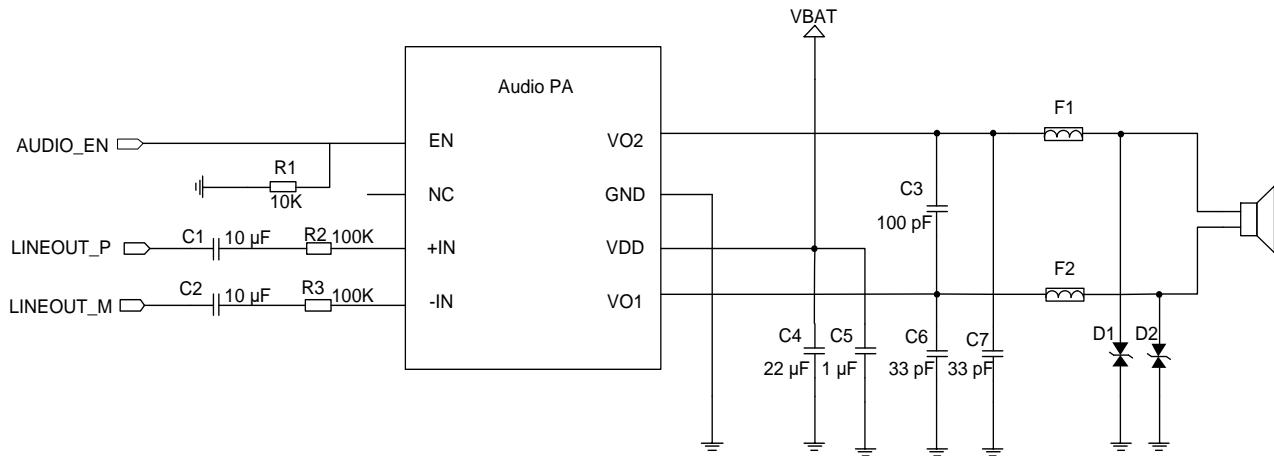


Figure 23: Reference Design of Lineout Interface

4.10.5. Audio Interfaces Design Considerations

It is recommended to use the electret microphone with dual built-in capacitors (e.g., 10 pF and 33 pF) to filter out RF interference, thus reducing TDD noise. Without this capacitor, TDD noise could be heard during the call. Note that the resonant frequency point of a capacitor largely depends on the material and production technique. Therefore, you need to discuss with your capacitor vendors to choose the most suitable capacitor to filter out high-frequency noises.

For model that supports GSM, the severity degree of the RF interference in the voice channel during GSM transmitting largely depends on the application design. Therefore, a suitable capacitor can be selected based on the test results. Sometimes, even no RF filtering capacitor is required. The filter capacitor on the PCB should be placed near the audio device or audio interface as close as possible, and the trace should be as short as possible. The filter capacitor should be passed before reaching other connection points.

To decrease signal interferences, RF antennas should be placed away from audio interfaces and audio traces. Power traces and audio traces should not be parallel, and they should be far away from each other.

The differential audio traces must be routed according to the differential signal layout rule.

4.11. ADC Interface

The module provides two ADC interfaces which support up to 15-bit resolution.

Table 22: Pins Description of ADC Interface

Pin Name	Pin No.	I/O	Description	Comment
ADC0	128	AI	General-purpose ADC0 interface	
ADC1	185	AI	General-purpose ADC1 interface	The maximum input voltage is 1.875 V.

4.12. LCM Interface

The module provides one LCM interface, which is MIPI_DSI standard compliant. The interface supports one group of 4-lane for high-speed differential data transmission. The data rate can reach up to 1.5 Gbps/lane. The interface supports FHD + display (1080 × 2520 @ 60/90 fps).

Table 23: Pins Description of LCM Interface

Pin Name	Pin No.	I/O	Description	Comment
LCD_RST	49	DO	LCD reset	
LCD_TE	50	DI	LCD tearing effect	
DSI_CLK_N	52	AO	LCD MIPI clock (-)	
DSI_CLK_P	53	AO	LCD MIPI clock (+)	
DSI_LN0_N	54	AO	LCD MIPI lane 0 data (-)	
DSI_LN0_P	55	AO	LCD MIPI lane 0 data (+)	
DSI_LN1_N	56	AO	LCD MIPI lane 1 data (-)	
DSI_LN1_P	57	AO	LCD MIPI lane 1 data (+)	
DSI_LN2_N	58	AO	LCD MIPI lane 2 data (-)	
DSI_LN2_P	59	AO	LCD MIPI lane 2 data (+)	

DSI_LN3_N	60	AO	LCD MIPI lane 3 data (-)	
DSI_LN3_P	61	AO	LCD MIPI lane 3 data (+)	
PWM	29	DO	PWM output	Cannot be multiplexed into a generic GPIO.

A reference circuit for the LCM interface is shown below.

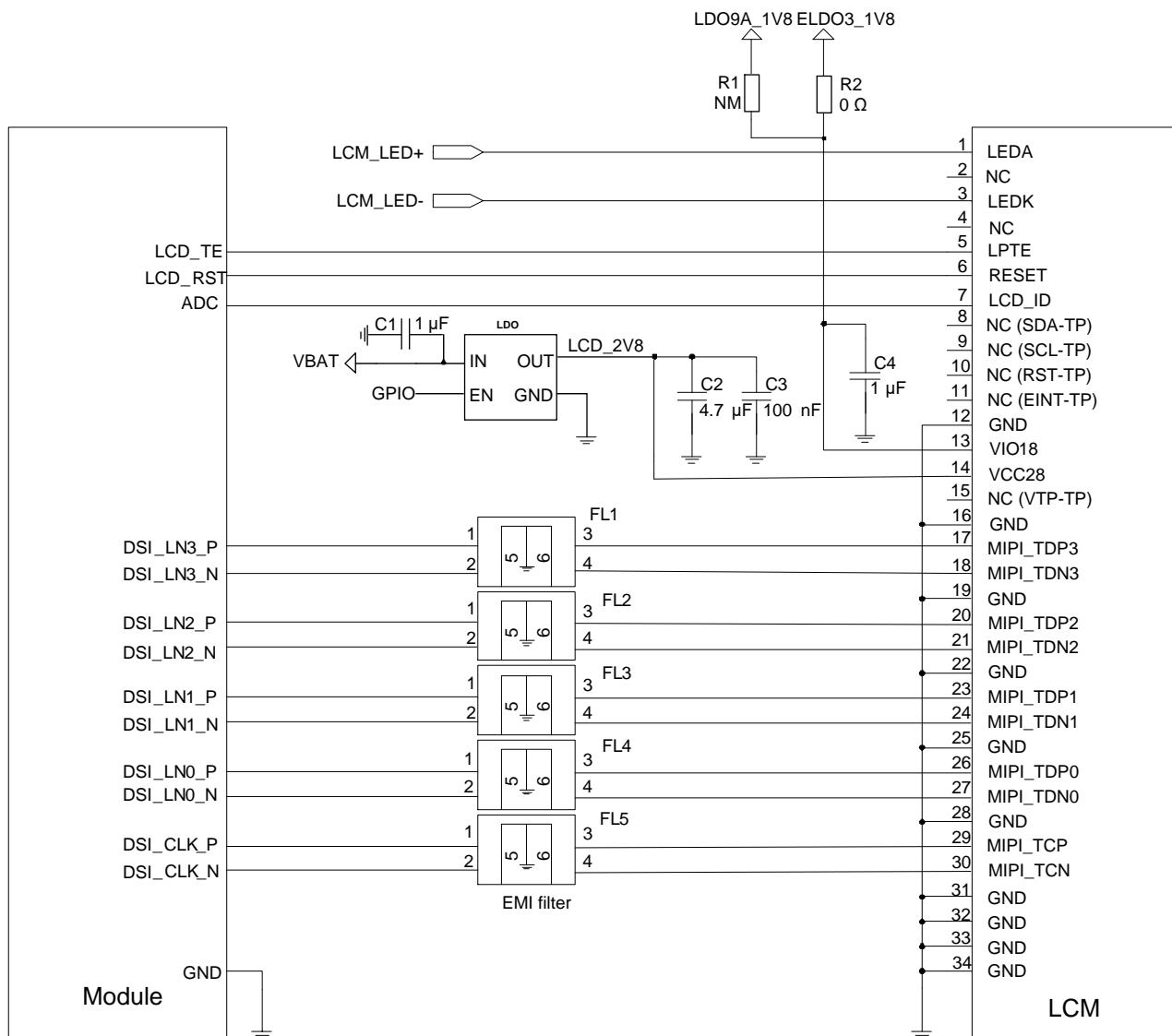


Figure 24: Reference Design of LCM Interface

MIPI are high-speed signal traces. It is recommended to add common-mode chokes in series near the LCM connector to reduce electromagnetic radiation interference.

It is recommended to read the LCM ID register through MIPI when compatible design with other displays

is required. If several LCMs share the same IC, it is recommended that LCM factory burn an OTP register to distinguish different screens. You can also connect the LCD_ID of LCM to the ADC of the module to distinguish different screens by level detection. But note that the output voltage of LCD_ID should not exceed the voltage range of the ADC pin.

You can design the external backlight driving circuit for LCM according to actual requirements. A reference circuit design is shown in the following figure, in which the PWM pin is used to adjust the backlight brightness.

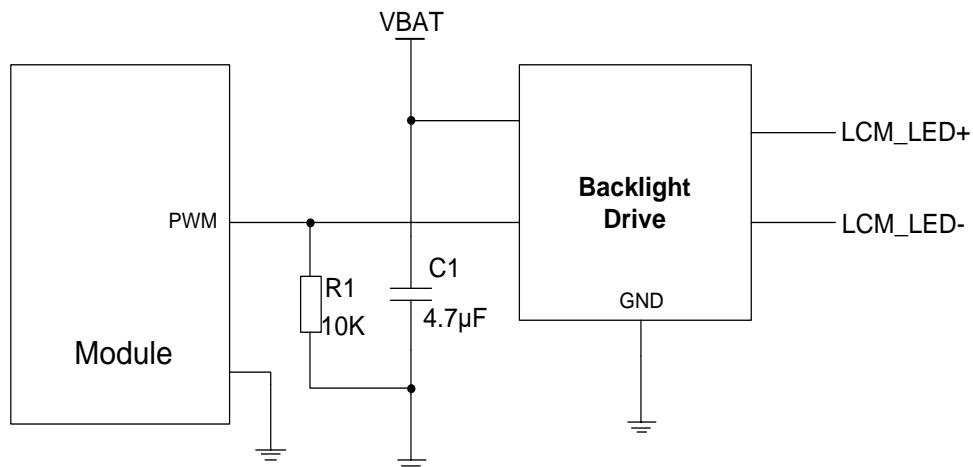


Figure 25: Reference Design of LCM Interface External Backlight Drive

4.13. Camera Interface

Based on MIPI_CSI standard, the maximum data rate is up to 2.5 Gbps/lane. The module supports up to four cameras and supports 3 concurrently working cameras. It supports up to (13 MP + 13 MP + 5 MP 30 fps @ ZSL) or up to (25 MP + 5 MP or 16 MP + 16 MP 30 fps @ ZSL) or up to 32 MP (30 fps @ ZSL) or 64 MP (no ZSL). The video and photo quality are determined by various factors such as the camera sensor, camera lens.

Table 24: Pins Description of Camera Interface

Pin Name	Pin No.	I/O	Description	Comment
CSI1_CLK_N	63	AI	MIPI CSI1 clock (-)	
CSI1_CLK_P	64	AI	MIPI CSI1 clock (+)	

CSI1_LN0_N	65	AI	MIPI CSI1 lane 0 data (-)
CSI1_LN0_P	66	AI	MIPI CSI1 lane 0 data (+)
CSI1_LN1_N	67	AI	MIPI CSI1 lane 1 data (-)
CSI1_LN1_P	68	AI	MIPI CSI1 lane 1 data (+)
CSI1_LN2_N	72	AI	MIPI CSI1 lane 2 data (-)
CSI1_LN2_P	73	AI	MIPI CSI1 lane 2 data (+)
CSI1_LN3_N	70	AI	MIPI CSI1 lane 3 data (-)
CSI1_LN3_P	71	AI	MIPI CSI1 lane 3 data (+)
CSI0_CLK_N	157	AI	MIPI CSI0 clock (-)
CSI0_CLK_P	196	AI	MIPI CSI0 clock (+)
CSI0_LN0_N	158	AI	MIPI CSI0 lane 0 data (-)
CSI0_LN0_P	197	AI	MIPI CSI0 lane 0 data (+)
CSI0_LN1_N	159	AI	MIPI CSI0 lane 1 data (-)
CSI0_LN1_P	198	AI	MIPI CSI0 lane 1 data (+)
CSI0_LN2_N	160	AI	MIPI CSI0 lane 2 data (-)
CSI0_LN2_P	199	AI	MIPI CSI0 lane 2 data (+)
CSI0_LN3_N	161	AI	MIPI CSI0 lane 3 data (-)
CSI0_LN3_P	200	AI	MIPI CSI0 lane 3 data (+)
CSI2_CLK_N	257	AI	MIPI CSI2 clock (-)
CSI2_CLK_P	232	AI	MIPI CSI2 clock (+)
CSI2_LN0_N	167	AI	MIPI CSI2 lane 0 data (-)
CSI2_LN0_P	168	AI	MIPI CSI2 lane 0 data (+)
CSI2_LN1_N	169	AI	MIPI CSI2 lane 1 data (-)
CSI2_LN1_P	170	AI	MIPI CSI2 lane 1 data (+)
CSI2_LN2_N	178	AI	MIPI CSI2 lane 2 data (-)

CSI2_LN2_P	179	AI	MIPI CSI2 lane 2 data (+)	
CSI2_LN3_N	174	AI	MIPI CSI2 lane 3 data (-)	
CSI2_LN3_P	175	AI	MIPI CSI2 lane 3 data (+)	
CAM_I2C0_SCL	83	OD	I2C0 clock of camera	Need to be pulled up to 1.8 V externally.
CAM_I2C0_SDA	84	OD	I2C0 data of camera	Can only be used for camera I2C devices.
CAM0_PWDN	80	DO	Power down of camera 0	
CAM1_PWDN	82	DO	Power down of camera 1	
CAM2_PWDN	163	DO	Power down of camera 2	
CAM3_PWDN	105	DO	Power down of camera 3	
CAM0_MCLK	74	DO	Master clock of camera 0	
CAM1_MCLK	75	DO	Master clock of camera 1	LDO9A_1V8
CAM2_MCLK	165	DO	Master clock of camera 2	
CAM3_MCLK	33	DO	Master clock of camera 3	
CAM0_RST	79	DO	Reset of camera 0	
CAM1_RST	81	DO	Reset of camera 1	
CAM2_RST	164	DO	Reset of camera 2	
CAM3_RST	99	DO	Reset of camera 3	
CAM_I2C1_SCL	166	OD	I2C1 clock of camera	Need to be pulled up to 1.8 V externally.
CAM_I2C1_SDA	205	OD	I2C1 data of camera	Can only be used for camera I2C devices.

The following is a reference design of triple-camera application:

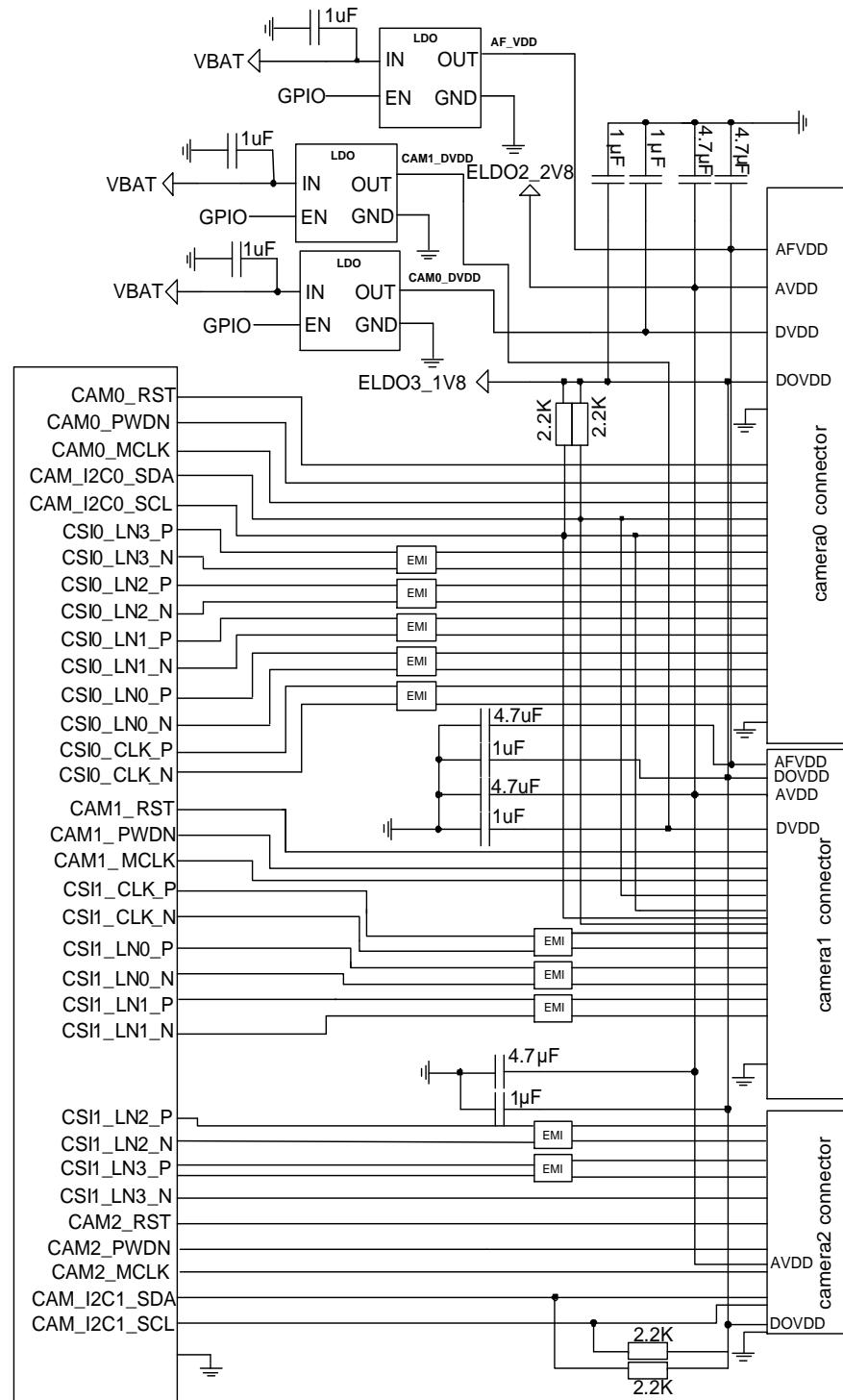


Figure 26: Reference Design of triple-Camera Application

The following is a reference design of Quad-camera application:

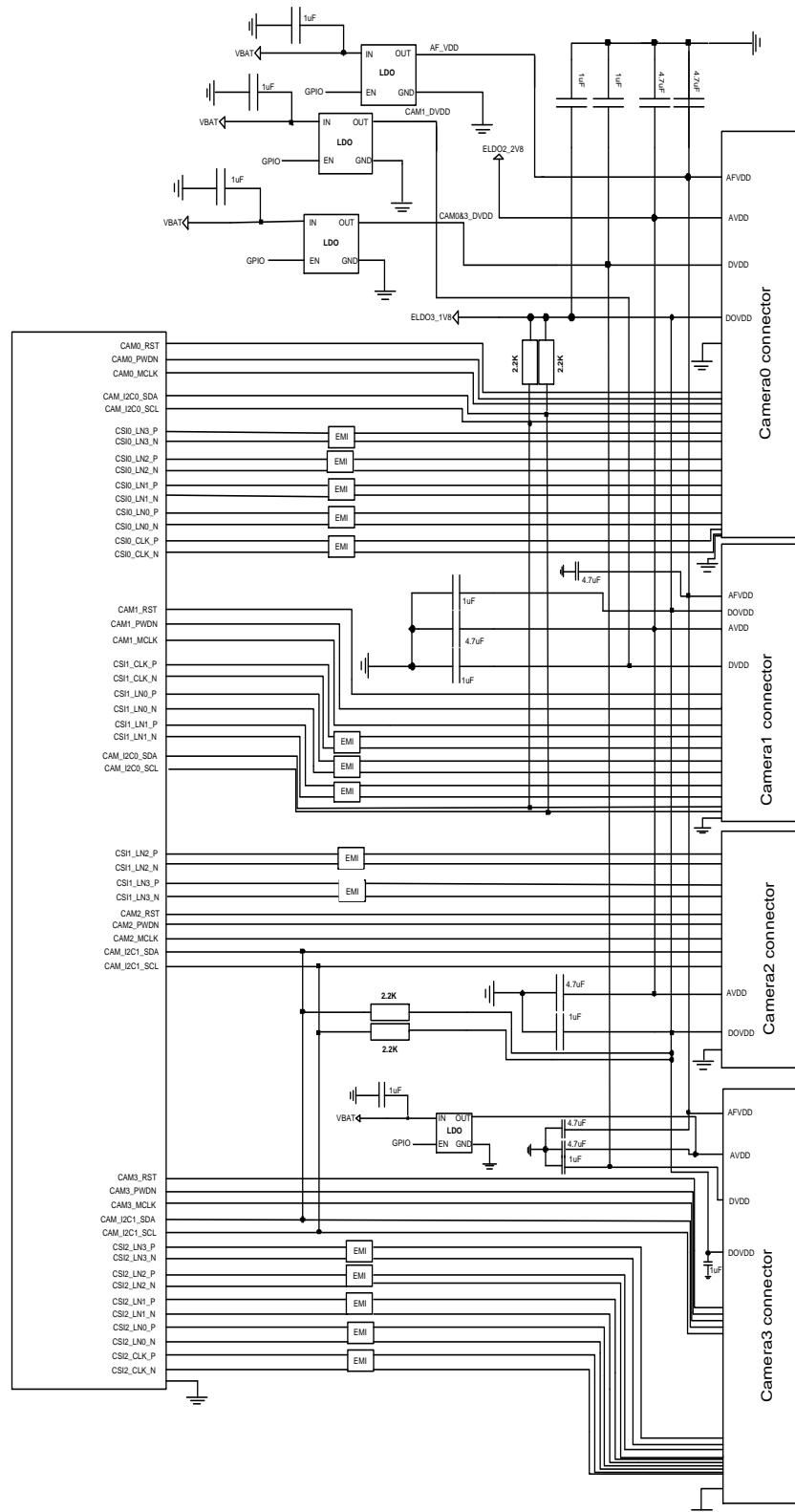


Figure 27: Reference Design of Quad-Camera Application

4.13.1. MIPI Design Considerations

To ensure performance, the following principles should be complied with when designing LCM and camera interfaces:

- Special attention should be paid to the pin description of LCM and camera interfaces. Different video devices will have varied definitions for their corresponding connectors. Ensure that the devices and the connectors are correctly connected.
- MIPI are high-speed signal traces, supporting maximum data rate up to 1.5 Gbps for DSI-supported traces and up to 2.5 Gbps for CSI-supported traces. The differential impedance should be controlled to 85Ω . Additionally, it is recommended to route the traces on the inner layer of PCB and do not cross it with other traces. For the same video device, keep all the MIPI traces be of the same length. To avoid crosstalk, a spacing of 1.5 times the trace width is recommended among MIPI signal traces. During impedance matching, do not connect MIPI signal traces to GND on different planes to ensure impedance consistency.
- It is recommended to select a TVS component of low capacitance for ESD protection and the recommended parasitic capacitance should be lower than 1 pF.
- Route MIPI traces according to the following requirements:
 - When the MIPI signal line rate is 1.5 Gbps/lane, the FPC trace length is 76.2 mm and the insertion loss of the FPC cable is -0.9 dB , and the PCB trace length should not exceed 135 mm;
 - Control the differential impedance to $85 \Omega \pm 10\%$;
 - Control intra-lane length matching within 0.7 mm;
 - Control inter-lane length matching within 1.4 mm.

Table 25: MIPI Trace Length Inside the Module (Unit: mm)

Pin No.	Pin Name	Length	Length Mismatch
52	DSI_CLK_N	42.03	0.00
53	DSI_CLK_P	42.03	
54	DSI_LN0_N	41.80	0.30
55	DSI_LN0_P	42.10	
56	DSI_LN1_N	42.02	0.70
57	DSI_LN1_P	42.72	
58	DSI_LN2_N	41.75	0.34
59	DSI_LN2_P	42.09	
60	DSI_LN3_N	42.20	0.53

61	DSI_LN3_P	42.73	
157	CSI0_CLK_N	44.63	0.39
196	CSI0_CLK_P	44.24	
158	CSI0_LN0_N	44.69	0.61
197	CSI0_LN0_P	44.08	
159	CSI0_LN1_N	44.60	0.69
198	CSI0_LN1_P	43.91	
160	CSI0_LN2_N	43.90	0.20
199	CSI0_LN2_P	43.70	
161	CSI0_LN3_N	43.65	0.47
200	CSI0_LN3_P	44.12	
63	CSI1_CLK_N	29.58	0.03
64	CSI1_CLK_P	29.55	
65	CSI1_LN0_N	29.41	0.20
66	CSI1_LN0_P	29.21	
67	CSI1_LN1_N	30.19	0.09
68	CSI1_LN1_P	30.28	
72	CSI1_LN2_N	29.51	0.27
73	CSI1_LN2_P	29.24	
70	CSI1_LN3_N	29.77	0.16
71	CSI1_LN3_P	29.93	
257	CSI2_CLK_N	30.05	0.53
232	CSI2_CLK_P	30.58	
167	CSI2_LN0_N	30.12	0.60
168	CSI2_LN0_P	29.52	

169	CSI2_LN1_N	30.14	0.66
170	CSI2_LN1_P	29.48	
178	CSI2_LN2_N	29.93	0.18
179	CSI2_LN2_P	30.11	
174	CSI2_LN3_N	30.22	0.44
175	CSI2_LN3_P	29.78	

Table 26: Mapping of CSI Data Rates and Trace Length (D-PHY)

Data Rates	Cable Length (mm)	Cable Insertion Loss (dB)	Trace Length (mm)
2.5 Gbps/lane	76.2	-2.1	< 210
	152.4	-3.5	< 150

Table 27: Mapping of DSI Data Rates and Trace Length (D-PHY)

Data Rates	Cable Length (mm)	Cable Insertion Loss (dB)	Trace Length (mm)
1.5 Gbps/lane	76.2	-0.9	< 135
	152.4	-1.8	< 40

NOTE

1. The cable length listed above is an example with specified insertion loss.
2. The cable insertion loss can be obtained from the cable datasheet provided by the related manufacturer. The cable insertion loss on the design should not be worse than what is listed in this table.
3. The length in the above table includes the length of the trace inside the module.

4.14. Touch Panel Interface

The module provides one I²C interface for connection with Touch Panel (TP), and provides the corresponding power supply and interrupt pins.

Table 28: Pins Description of Touch Panel Interface

Pin Name	Pin No.	I/O	Description	Comment
TP_RST	31	DO	TP reset	Active low.
TP_INT	30	DI	TP interrupt	
TP_I2C_SCL	47	OD	TP I2C clock	Need to be pulled up to 1.8 V externally.
TP_I2C_SDA	48	OD	TP I2C data	Can be used for other I2C devices.

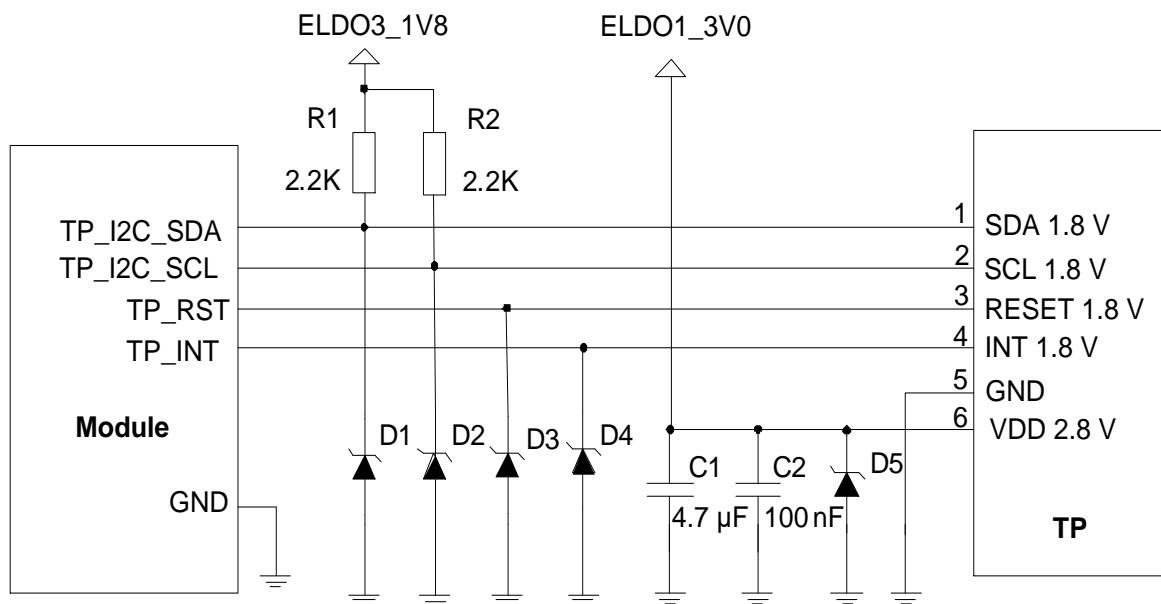


Figure 28: Reference Design of Touch Panel Interface

4.15. Sensor Interface

The module supports communication with sensors via I2C interface, and it supports various sensors such as acceleration sensor, gyroscopic sensor, compass, light sensor, temperature sensor, pressure sensor.

Table 29: Pins Description of Sensor Interface

Pin Name	Pin No.	I/O	Description	Comment
SENSOR_I2C_SCL	91	OD	I2C clock for external sensor	Need to be pulled up to 1.8 V externally.

SENSOR_I2C_SDA	92	OD	I2C data for external sensor	Can only be used for sensors of the ADSP architecture.
ALPS_INT	107	DI	Light/proximity sensor interrupt	
GYRO_INT	108	DI	Gyroscopic sensor interrupt	
MAG_INT	109	DI	Magnetic sensor interrupt	
ACCEL_INT	110	DI	Acceleration sensor interrupt	

4.16. GPIO

The module provides 26 GPIOs with the power domain of 1.8 V:

Table 30: Pins Description of GPIO

Pin Name	Pin No.	I/O	Description
GPIO_106	90	DIO	General-purpose input/output
GPIO_31	97	DIO	General-purpose input/output
GPIO_107	98	DIO	General-purpose input/output
GPIO_84	100	DIO	General-purpose input/output
GPIO_104	101	DIO	General-purpose input/output
GPIO_105	102	DIO	General-purpose input/output
GPIO_103	103	DIO	General-purpose input/output
GPIO_102	104	DIO	General-purpose input/output
GPIO_54	106	DIO	General-purpose input/output
GPIO_65	112	DIO	General-purpose input/output
GPIO_60	113	DIO	General-purpose input/output
GPIO_93	115	DIO	General-purpose input/output

GPIO_16	116	DIO	General-purpose input/output
GPIO_17	117	DIO	General-purpose input/output
GPIO_14	118	DIO	General-purpose input/output
GPIO_15	119	DIO	General-purpose input/output
GPIO_67	123	DIO	General-purpose input/output
PMU_GPIO05	124	DIO	General-purpose input/output
GPIO_85	127	DIO	General-purpose input/output
GPIO_112	177	DIO	General-purpose input/output
GPIO_66	182	DIO	General-purpose input/output
GPIO_86	201	DIO	General-purpose input/output
GPIO_101	239	DIO	General-purpose input/output
GPIO_100	264	DIO	General-purpose input/output
GPIO_98	265	DIO	General-purpose input/output
GPIO_111	267	DIO	General-purpose input/output

5 RF Specifications

Appropriate antenna type and design should be used with matched antenna parameters according to specific application. It is required to conduct a comprehensive functional test for the RF design before mass production of terminal products. The entire content of this chapter is provided for illustration only. Analysis, evaluation and determination are still necessary when designing target products.

5.1. Cellular Network

5.1.1. Antenna Interface & Frequency Bands

Table 31: Pins Description of Cellular Antenna Interface

Pin Name	Pin No.	I/O	Description	Comment
ANT_MAIN	87	AO	Main antenna interface	50 Ω characteristic impedance.
ANT_DRX	131	AI	Diversity antenna interface	

NOTE

Only passive antennas are supported.

Table 32: Operating Frequency of SC200V-EM (Unit: MHz)

Operating Frequency	Transmit	Receive
GSM850	824–849	869–894
EGSM900	880–915	925–960
DCS1800	1710–1785	1805–1880
PCS1900	1850–1910	1930–1990

WCDMA B1	1920–1980	2110–2170
WCDMA B2	1850–1910	1930–1990
WCDMA B4	1710–1755	2110–2155
WCDMA B5	824–849	869–894
WCDMA B8	880–915	925–960
LTE-FDD B1	1920–1980	2110–2170
LTE-FDD B2	1850–1910	1930–1990
LTE-FDD B3	1710–1785	1805–1880
LTE-FDD B4	1710–1755	2110–2155
LTE-FDD B5	824–849	869–894
LTE-FDD B7	2500–2570	2620–2690
LTE-FDD B8	880–915	925–960
LTE-FDD B20	832–862	791–821
LTE-FDD B28	703–748	758–803
LTE-TDD B38	2570–2620	2570–2620
LTE-TDD B40	2300–2400	2300–2400
LTE-TDD B41	2496–2690	2496–2690

Table 33: Operating Frequency of SC200V-NA (Unit: MHz)

Operating Frequency	Transmit	Receive
LTE-FDD B2	1850–1910	1930–1990
LTE-FDD B4	1710–1755	2110–2155
LTE-FDD B5	824–849	869–894
LTE-FDD B7	2500–2570	2620–2690
LTE-FDD B12	699–716	729–746

LTE-FDD B13	777–787	746–756
LTE-FDD B14	788–798	758–768
LTE-FDD B17	704–716	734–746
LTE-FDD B25	1850–1915	1930–1995
LTE-FDD B26	814–849	859–894
LTE-FDD B66	1710–1780	2110–2180
LTE-FDD B71	663–698	617–652
LTE-TDD B41	2496–2690	2496–2690

5.1.2. Transmitting Power

Table 34: RF Transmitting Power

Frequency Bands	Max.	Min.
GSM850	33 dBm ± 2 dB	5 dBm ± 5 dB
EGSM900	33 dBm ± 2 dB	5 dBm ± 5 dB
DCS1800	30 dBm ± 2 dB	0 dBm ± 5 dB
PCS1900	30 dBm ± 2 dB	0 dBm ± 5 dB
WCDMA	23 dBm ± 2 dB	< -49 dBm
LTE	23 dBm ± 2 dB	< -39 dBm

NOTE

In GPRS 4 slots transmit mode, the maximum output power is reduced by 4 dB. The design conforms to the GSM specification as described in **Clause 13.16** of 3GPP TS 51.010-1.

5.1.3. Receiver Sensitivity

Table 35: Conducted RF Receiver Sensitivity of SC200V-EM (Unit: dBm)

Frequency	Receiver Sensitivity (Typ.)			3GPP Requirements (SIMO)
	Primary	Diversity	SIMO	
GSM850	-109.6	-	-	-102.4
EGSM900	-109	-	-	-102.4
DCS1800	-108.9	-	-	-102.4
PCS1900	-107.9	-	-	-102.4
WCDMA B1	-110.1	-110.6	-	-106.7
WCDMA B2	-109.8	-110.6	-	-104.7
WCDMA B4	-110.2	-110.6	-	-106.7
WCDMA B5	-111.4	-112.9	-	-104.7
WCDMA B8	-110.2	-112.0	-	-106.7
LTE-FDD B1 (10 MHz)	-97.7	-98.3	-101.1	-96.3
LTE-FDD B2 (10 MHz)	-97.1	-98.3	-100.8	-94.3
LTE-FDD B3 (10 MHz)	-97.5	-97.8	-100.8	-93.3
LTE-FDD B4 (10 MHz)	-97.6	-98.2	-101.0	-96.3
LTE-FDD B5 (10 MHz)	-98.8	-100.2	-102.5	-94.3
LTE-FDD B7 (10 MHz)	-95.9	-97.8	-99.8	-94.3
LTE-FDD B8 (10 MHz)	-98.0	-99.6	-101.8	-93.3
LTE-FDD B20 (10 MHz)	-98.2	-99.8	-102.1	-93.3
LTE-FDD B28 (10 MHz)	-99.0	-99.6	-102.4	-94.8
LTE-TDD B38 (10 MHz)	-97.1	-97.3	-99.8	-96.3
LTE-TDD B40 (10 MHz)	-97.5	-97.7	-100.5	-96.3
LTE-TDD B41 (10 MHz)	-96.2	-96.1	-99.1	-94.3

Table 36: Conducted RF Receiver Sensitivity of SC200V-NA (Unit: dBm)

Frequency	Receiver Sensitivity (Typ.)			3GPP Requirements (SIMO)
	Primary	Diversity	SIMO	
LTE-FDD B2 (10 MHz)	-97.9	-99.6	-101.62	-94.3
LTE-FDD B4 (10 MHz)	-98.0	-99.4	-100.5	-96.3
LTE-FDD B5 (10 MHz)	-99.6	-100.7	-102.6	-94.3
LTE-FDD B7 (10 MHz)	-97.6	-99.8	-100.6	-94.3
LTE-FDD B12 (10 MHz)	-99.3	-100.3	-101.6	-93.3
LTE-FDD B13 (10 MHz)	-98.6	-100.2	-101.6	-93.3
LTE-FDD B14 (10 MHz)	-98.8	-100.3	-101.3	-93.3
LTE-FDD B17 (10 MHz)	-99.3	-100.4	-101.5	-93.3
LTE-FDD B25 (10 MHz)	-98.4	-99.7	-101.5	-92.8
LTE-FDD B26 (10 MHz)	-99.7	-100.9	-102.5	-93.3
LTE-FDD B66 (10 MHz)	-97.6	-99.4	-100.6	-95.8
LTE-FDD B71 (10 MHz)	-100.2	-99.9	-101.7	-93.5
LTE-TDD B41 (10 MHz)	-98.6	-98.5	-100.7	-94.3

5.1.4. Reference Design

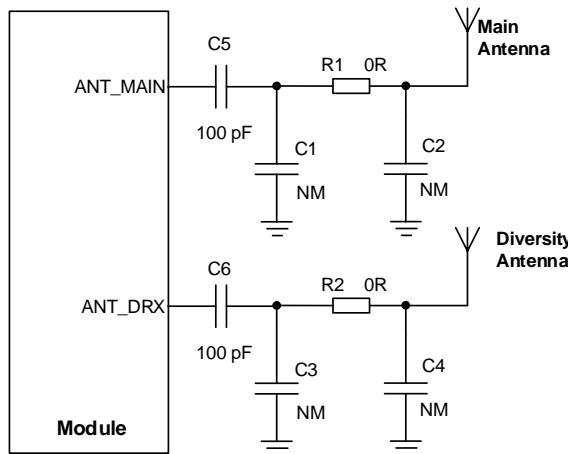


Figure 29: Reference Design of Main Antenna and Diversity Antenna

NOTE

1. To improve receiver sensitivity, ensure that the spacing among antennas is appropriate.
2. Use a dual L-type circuit for all the antenna interfaces for better RF performance and for the ease of debugging.
3. Capacitors(C1/C2/C3/C4) are not mounted by default.
4. Place the dual L-type matching components (C5 & C1 & R1 & C2, C6 & C3 & R2 & C4) to antennas as close as possible.
5. If there is DC power at the antenna ports, C5 and C6 must be used for DC-blocking to prevent short circuit to ground. The capacitance value is recommended to be 100 pF, which can be adjusted according to actual requirements. If there is no DC power in the peripheral design, C5 and C6 should not be reserved.

5.2. GNSS (Optional)

The module integrates the IZat™ GNSS engine (Gen 9) which supports multiple positioning and navigation systems, including GPS, GLONASS, BDS, Galileo, SBAS. With an embedded LNA, the positioning accuracy of the module can be greatly improved.

5.2.1. Antenna Interface & Frequency Bands

The following table lists the GNSS performance of the module in conduction mode:

Table 36: Pins Description of GNSS Antenna Interface

Pin Name	Pin No.	I/O	Description	Comment
ANT_GNSS	121	AI	GNSS antenna interface	50 Ω impedance.

Table 37: GNSS Frequency (Unit: MHz)

GNSS Constellation Types	Frequency
GPS	1575.42 ±1.023 (L1)
GLONASS	1601.7 ±4.2 (L1)
BDS	1561.098 ±2.046 (B1I)
Galileo	1575.42 ±2.046 (E1)
SBAS	1575.42 ±1.023 (L1)

5.2.2. GNSS Performance

Table 38: GNSS Performance

Parameters	Modes	Conditions	Typ.	Units
Sensitivity	Acquisition		-146	
	Reacquisition	Autonomous	-159	dBm
	Tracking		-160	
TTFF	Cold start @ open sky	Autonomous	27.75	
		AGNSS start	9.765	
	Warm start @ open sky	Autonomous	13.09	s
Accuracy	Hot start @ open sky	AGNSS start	1.753	
		Autonomous	1.23	
	CEP-50	AGNSS start	1.379	
Accuracy	Autonomous @ open sky		2.5	m

NOTE

1. Tracking sensitivity: the minimum GNSS signal power at which the module can maintain lock of navigation signals (keep positioning for at least 3 minutes continuously).
2. Reacquisition sensitivity: the minimum GNSS signal power required for the module to maintain lock within 3 minutes after loss of lock.
3. Acquisition sensitivity: the minimum GNSS signal power at which the module can fix position successfully within 3 minutes after executing cold start command.

5.2.3. Reference Design

5.2.3.1. Active Antenna

In any case, it is recommended to use a passive antenna. However, if an active antenna is needed in your application, it is recommended to reserve a π -type attenuation circuit and use a high-performance LDO in the power system design. The active antenna is powered by a 56-nH inductor through the antenna's signal path. The common power supply voltage ranges from 3.3 V to 5.0 V. Although featuring low power consumption, the active antenna still requires stable and clean power supplies, it is recommended to use a high-performance LDO:

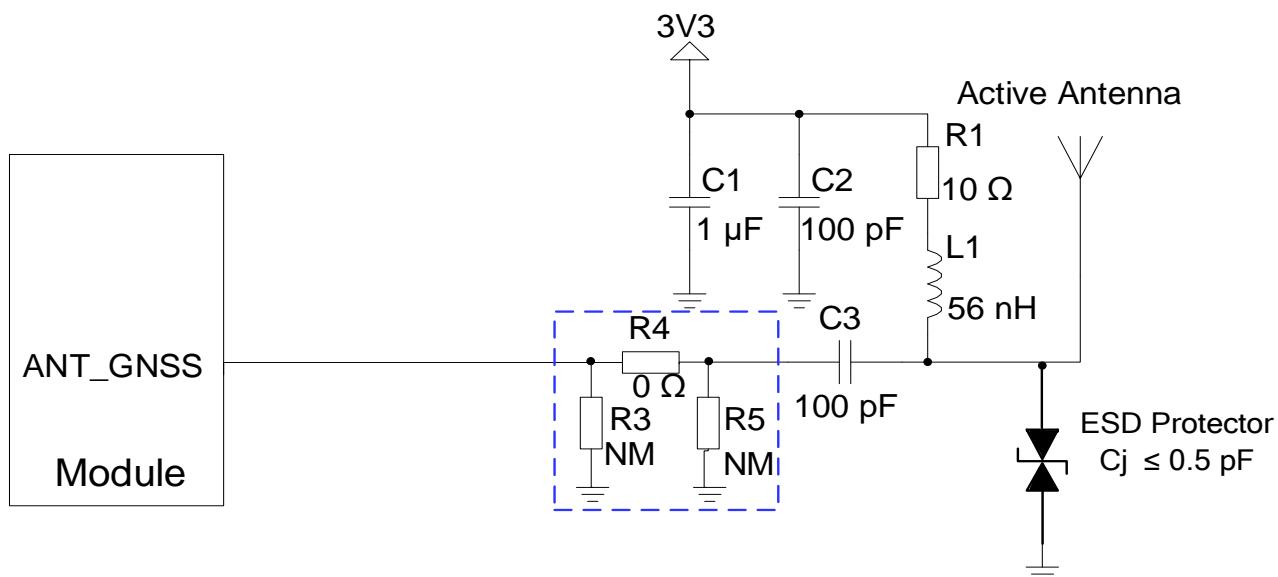


Figure 30: Reference Design of Active Antenna

NOTE

It is recommended to use a passive GNSS antenna when LTE B13 or B14 is supported, as the use of

active antenna may generate harmonics which will affect the GNSS performance.

5.2.3.2. Passive Antenna

You can also use passive ceramic antennas or other types of passive antennas:

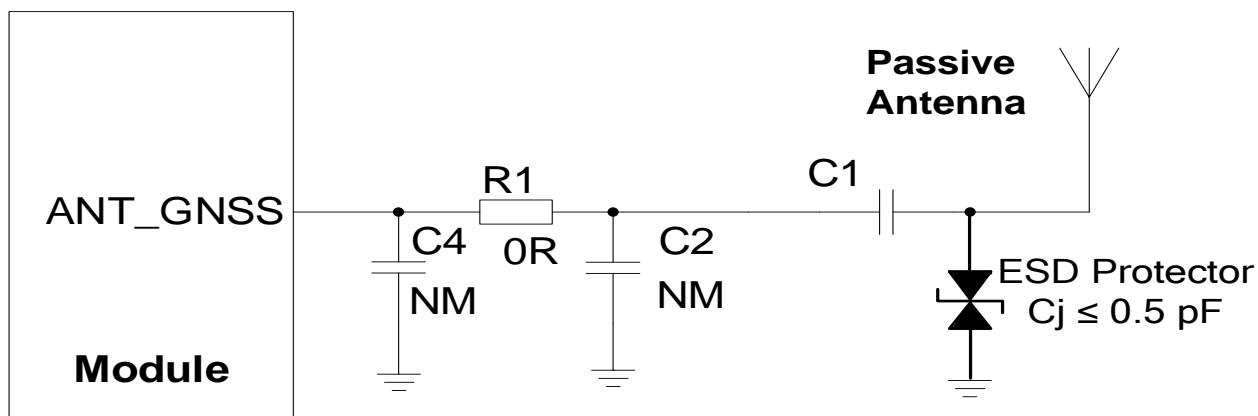


Figure 31: Reference Design of Passive Antenna

NOTE

1. It is not recommended to add an external LNA when using a passive GNSS antenna.
2. If there is DC power at the antenna ports, C1 must be used for DC-blocking to prevent short circuit to ground. The capacitance value is recommended to be 100 pF, which can be adjusted according to actual requirements. If there is no DC power in the peripheral design, C1 should not be reserved.

5.2.3.3. GNSS RF Design Guidelines

Improper design of antenna and layout may cause reduced GNSS receiver sensitivity, longer GNSS positioning period, or reduced positioning accuracy. Thus, follow the design rules as below:

- Maximize the clearance between GNSS RF part and other RF part (including trace routing and antenna layout) to avoid mutual interference.
- In user systems, place GNSS RF signal traces and RF components far away from high-speed circuits, switch-mode power supplies, power inductors and the clock circuit of single-chip microcomputers.
- For applications with a harsh electromagnetic environment or with high requirement on ESD protection, it is recommended to add ESD protection components for the antenna interface. Only diodes with ultra-low junction capacitance such as 0.5 pF can be selected. Otherwise, there will be effects on the impedance characteristic of the RF circuit loop or attenuation of the bypass RF signal may be caused.

- Keep the impedance of either feeder line or PCB trace as 50Ω , and keep the trace length as short as possible.

5.3. Wi-Fi & Bluetooth

The module provides a shared antenna interface: ANT_WIFI/BT for Wi-Fi and Bluetooth functions. The impedance shall be kept as 50Ω . You can connect external antennas such as PCB antenna, sucker antenna or ceramic antenna to the module via these interfaces to achieve Wi-Fi and Bluetooth functions.

Table 39: Pins Description of Wi-Fi & Bluetooth Antenna Interface

Pin Name	Pin No.	I/O	Description	Comment
ANT_WIFI/BT	77	AIO	Wi-Fi/Bluetooth antenna interface	50Ω characteristic impedance.

Table 40: Wi-Fi & Bluetooth Frequency (Unit: MHz)

Types	Frequency
Wi-Fi 802.11	2402–2482
	5180–5825
Bluetooth	2402–2480

5.3.1. Wi-Fi Overview

The module supports 2.4 GHz & 5 GHz dual-band Wi-Fi wireless communication based on Wi-Fi 802.11a/b/g/n/ac standard protocols. The 2.4 GHz maximum data rate is up to 150 Mbps. 5 GHz maximum data rate is up to 433 Mbps. The supported features are as below:

- Wake-on-WLAN (WoWLAN)
- ad hoc mode
- WAPI SMS4 hardware encryption
- AP mode and STA mode
- Wi-Fi Direct
- MCS 0–MCS 7: HT20 and HT40
- MCS 0–MCS 8: VHT20
- MCS 0–MCS 9: VHT40 and VHT80

Table 41: Wi-Fi Transmitting Performance

Bands	Standards	Speed Rates	Output Power
2.4 GHz	802.11b	1 Mbps	16 dBm ± 2.5 dB
	802.11b	11 Mbps	16 dBm ± 2.5 dB
	802.11g	6 Mbps	16 dBm ± 2.5 dB
	802.11g	54 Mbps	14 dBm ± 2.5 dB
	802.11n @ HT20	MCS 0	15 dBm ± 2.5 dB
	802.11n @ HT20	MCS 7	13 dBm ± 2.5 dB
	802.11n @ HT40	MCS 0	15 dBm ± 2.5 dB
	802.11n @ HT40	MCS 7	13 dBm ± 2.5 dB
	802.11a	6 Mbps	15 dBm ± 2.5 dB
	802.11a	54 Mbps	13 dBm ± 2.5 dB
5 GHz	802.11n @ HT20	MCS 0	15 dBm ± 2.5 dB
	802.11n @ HT20	MCS 7	13 dBm ± 2.5 dB
	802.11n @ HT40	MCS 0	15 dBm ± 2.5 dB
	802.11n @ HT40	MCS 7	13 dBm ± 2.5 dB
	802.11ac @ VHT20	MCS 0	14 dBm ± 2.5 dB
	802.11ac @ VHT20	MCS 8	13 dBm ± 2.5 dB
	802.11ac @ VHT40	MCS 0	14 dBm ± 2.5 dB
	802.11ac @ VHT40	MCS 9	12 dBm ± 2.5 dB
	802.11ac @ VHT80	MCS 0	13 dBm ± 2.5 dB
	802.11ac @ VHT80	MCS 9	11 dBm ± 2.5 dB

Table 42: Wi-Fi Receiving Performance

Bands	Standards	Speed Rates	Sensitivity (dBm)
2.4 GHz	802.11b	1 Mbps	-96
	802.11b	11 Mbps	-87
	802.11g	6 Mbps	-89
	802.11g	54 Mbps	-73
	802.11n @ HT20	MCS 0	-89
	802.11n @ HT20	MCS 7	-70
	802.11n @ HT40	MCS 0	-86
	802.11n @ HT40	MCS 7	-69
	802.11a	6 Mbps	-89
	802.11a	54 Mbps	-73
5 GHz	802.11n @ HT20	MCS 0	-89
	802.11n @ HT20	MCS 7	-70
	802.11n @ HT40	MCS 0	-86
	802.11n @ HT40	MCS 7	-68
	802.11ac @ VHT20	MCS 0	-89
	802.11ac @ VHT20	MCS 8	-66
	802.11ac @ VHT40	MCS 0	-86
	802.11ac @ VHT40	MCS 9	-62
	802.11ac @ VHT80	MCS 0	-83
	802.11ac @ VHT80	MCS 9	-58

NOTE

The product complies with the IEEE specifications.

5.3.2. Bluetooth Overview

Models with built-in Bluetooth function provide Bluetooth antenna interfaces. The module supports Bluetooth 5.0 (BR/EDR + BLE) specification, as well as GFSK, 8-DPSK, $\pi/4$ -DQPSK modulations. Supported characteristics include:

- Up to 7-lane wireless connections.
- Up to 3.5 Piconets simultaneously.
- One SCO or eSCO connection.

The BR/EDR channel bandwidth is 1 MHz, and can accommodate 79 channels. The BLE channel bandwidth is 2 MHz, and can accommodate 40 channels.

Table 43: Bluetooth Data Rates and Versions

Versions	Data Rates (Mbit/s)	Maximum Application Throughput
1.2	1	> 80 kbit/s
2.0 + EDR	3	> 80 kbit/s
3.0 + HS	24	Refer to 3.0 + HS
4.0	24	Refer to 4.0 LE
5.0	48	Refer to 5.0 LE

Referenced specifications are listed below:

- *Bluetooth Radio Frequency TSS and TP Specification 1.2/2.0/2.0 + EDR/2.1/2.1 + EDR/3.0/3.0 + HS*, August 6, 2009
- *Bluetooth Low Energy RF PHY Test Specification, RF-PHY.TS/4.0.0*, December 15, 2009
- *Bluetooth 5.0 RF-PHY Cover Standard: RF-PHY.TS.5.0.0*, December 06, 2016

Table 44: Bluetooth Transmitting and Receiving Performance (Unit: dBm)

Condition (VBAT = 3.8 V; Temp.: 25 °C)	Transmit Power	Receiver Sensitivity
BR	8 \pm 2.5	-91
EDR ($\pi/4$ -DQPSK)	6 \pm 2.5	-90
EDR (8-DQPSK)	6 \pm 2.5	-84

BLE (1 Mbps)	0 ±2.5	-94
--------------	--------	-----

5.3.3. Reference Design

A reference design of Wi-Fi & Bluetooth antenna interface is shown as below. C1 & C2 are not mounted by default. Only a 0 Ω resistor is mounted on R1.

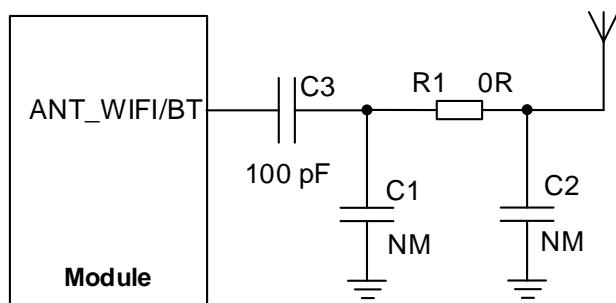


Figure 32: Reference Design of Wi-Fi & Bluetooth Antenna

NOTE

If there is DC power at the antenna ports, C3 must be used for DC-blocking to prevent short circuit to ground. The capacitance value is recommended to be 100 pF, which can be adjusted according to actual requirements. If there is no DC power in the peripheral design, C3 should not be reserved.

5.4. RF Routing Guidelines

For user's PCB, the characteristic impedance of all RF traces should be controlled to 50Ω . The impedance of the RF traces is usually determined by the trace width (W), the materials' dielectric constant, the height from the reference ground to the signal layer (H), and the spacing between RF traces and grounds (S). Microstrip or coplanar waveguide is typically used in RF layout to control characteristic impedance. The following are reference designs of microstrip or coplanar waveguide with different PCB structures.

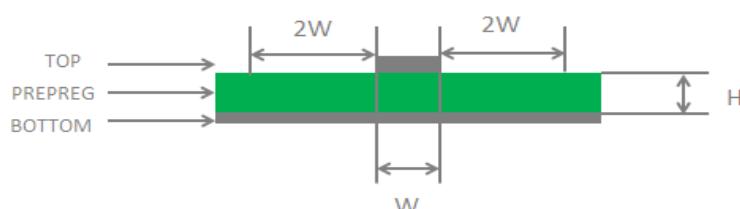


Figure 33: Microstrip Design on a 2-layer PCB

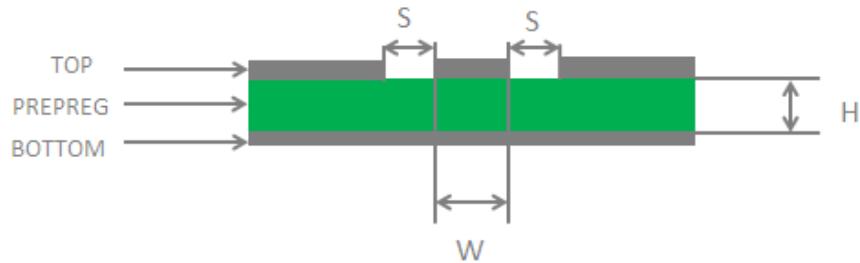


Figure 34: Coplanar Waveguide Design on a 2-layer PCB

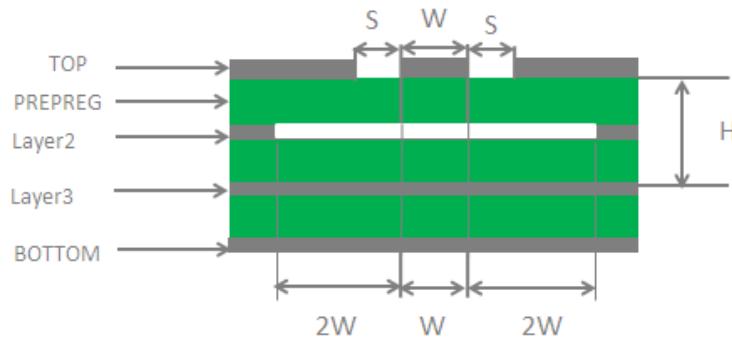


Figure 35: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)

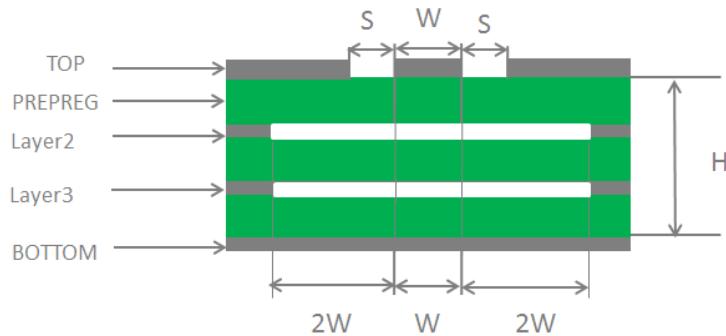


Figure 36: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)

To ensure RF performance and reliability, follow the principles below in RF layout design:

- Use an impedance simulation tool to accurately control the characteristic impedance of RF traces to 50Ω .

- The GND pins adjacent to RF pins should not be designed as thermal relief pads, and should be fully connected to ground.
- The distance between the RF pins and the RF connector should be as short as possible and all the right-angle traces should be changed to curved ones. The recommended trace angle is 135°.
- There should be clearance under the signal pin of the antenna connector or solder joint.
- The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around RF traces and the reference ground could help to improve RF performance. The distance between the ground vias and RF traces should be at least twice the width of RF signal traces ($2 \times W$).
- Keep RF traces away from interference sources (such as DC-DC, (U)SIM/USB/SDIO high frequency digital signals, display signals, and clock signals), and avoid intersection and paralleling between traces on adjacent layers.

For more details about RF layout, see [document \[5\]](#).

5.5. Requirements for Antenna Design

Table 45: Requirements for Antenna Design

Antenna Types	Requirements
GNSS	<p>Frequency range:</p> <ul style="list-style-type: none"> ● L1: 1559–1609 MHz <p>RHCP or linear polarization</p> <p>VSWR: ≤ 2 (Typ.)</p>
Cellular	<p>For passive antenna application:</p> <p>Passive antenna gain: > 0 dBi</p> <p>For active antenna application:</p> <p>Active antenna noise coefficient: < 1.5 dB</p> <p>Active antenna embedded LNA gain: < 17 dB</p> <p>VSWR: ≤ 2</p> <p>Gain: 1 dBi</p> <p>Max input power: 50 W</p> <p>Input impedance: 50Ω</p> <p>Vertical polarization</p> <p>Cable insertion loss:</p> <ul style="list-style-type: none"> ● < 1 dB: LB (< 1 GHz) ● < 1.5 dB: MB (1–2.3 GHz) ● < 2 dB: HB (> 2.3 GHz)
Wi-Fi & Bluetooth	<p>VSWR: ≤ 2</p> <p>Gain: 1 dBi</p> <p>Max input power: 50 W</p>

Input impedance: 50 Ω

Vertical polarization

Cable insertion loss: < 1 dB

5.6. RF Connector Recommendation

If the RF connector is used for antenna connection, it is recommended to use U.FL-R-SMT receptacle provided by Hirose.

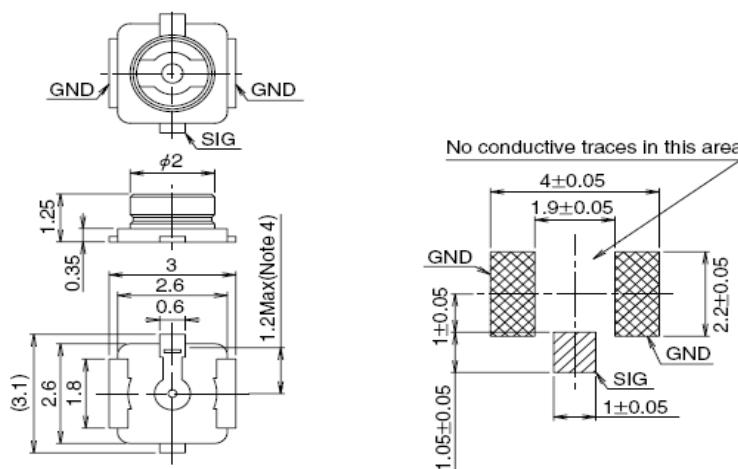


Figure 37: Dimensions of the Receptacle (Unit: mm)

U.FL-LP series mated plugs listed in the following figure can be used to match the U.FL-R-SMT.

Part No.	U.FL-LP-040	U.FL-LP-066	U.FL-LP(V)-040	U.FL-LP-062	U.FL-LP-088
Mated Height	2.5mm Max. (2.4mm Norm.)	2.5mm Max. (2.4mm Norm.)	2.0mm Max. (1.9mm Norm.)	2.4mm Max. (2.3mm Norm.)	2.4mm Max. (2.3mm Norm.)
Applicable cable	Dia. 0.81mm Coaxial cable	Dia. 1.13mm and Dia. 1.32mm Coaxial cable	Dia. 0.81mm Coaxial cable	Dia. 1mm Coaxial cable	Dia. 1.37mm Coaxial cable
Weight (mg)	53.7	59.1	34.8	45.5	71.7
RoHS			YES		

Figure 38: Specifications of Mated Plugs (Unit: mm)

The following figure describes the space factor of the mated connector.

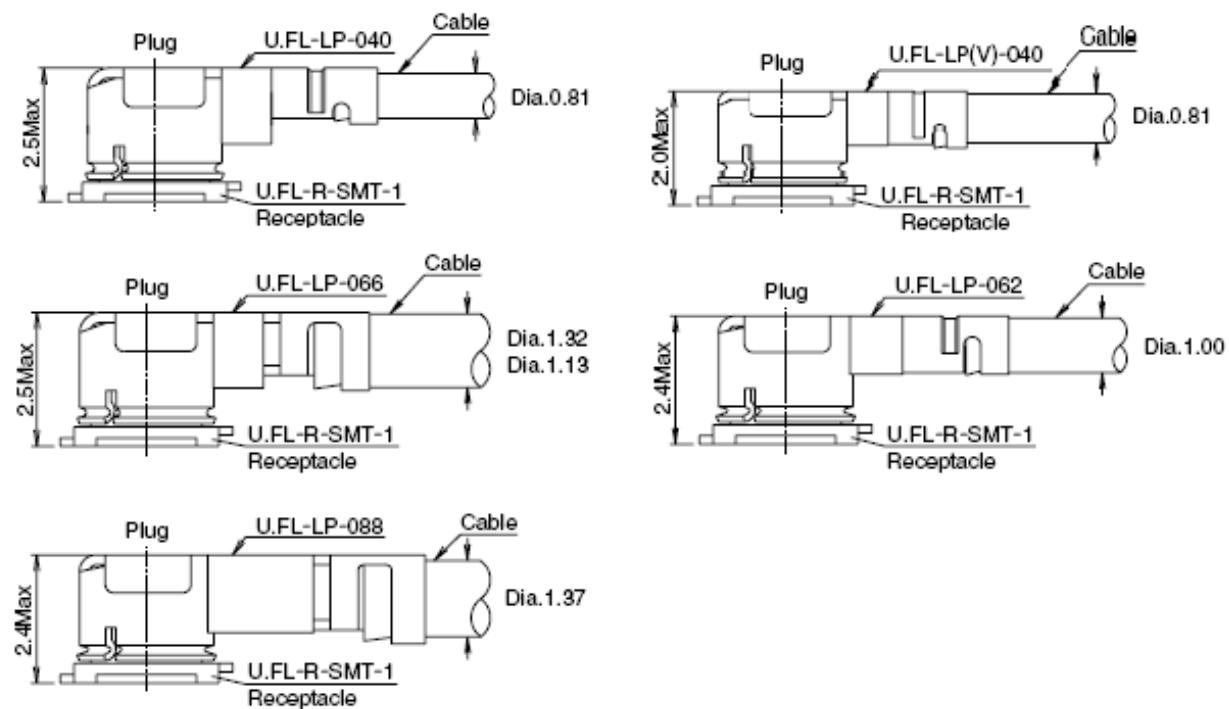


Figure 39: Space Factor of Mated Connectors (Unit: mm)

For more details, visit <http://www.hirose.com>.

6 Electrical Characteristics and Reliability

6.1. Absolute Maximum Ratings

Table 46: Absolute Maximum Ratings

Parameters	Min.	Max.	Units
Voltage at VBAT	-0.3	4.75	V
Voltage at USB_VBUS	-0.3	16	V
Voltage at digital pins	-0.3	2.2	V
Current at VBAT	-	3	A

6.2. Power Supply Ratings

Table 47: Module's Power Supply Ratings

Parameters	Descriptions	Conditions	Min.	Typ.	Max.	Units
VBAT	VBAT_BB & VBAT_RF	The actual input voltage must be within this range	3.55	3.8	4.4	V
I _{VBAT}	Peak supply current	Maximum power control level	-	1.8	3.0	A
USB_VBUS	USB connection detection	-	4.0	5.0	6.0	V
VR _{TC}	Supply voltage of the backup battery		2.5	3.0	3.2	V

6.3. Power Consumption

Table 48: SC200V Power Consumption

Modes	Conditions	Typ.	Units
OFF state	Power off	TBD	µA
Sleep state (USB disconnected)	Screen off	TBD	mA
	B1 @ max. power	514	mA
	B2 @ max. power	552	mA
WCDMA voice call	B4 @ max. power	534	mA
	B5 @ max. power	556	mA
	B8 @ max. power	620	mA
	GSM850 @ 1DL 4UL	559	mA
GPRS data transmission	GSM900 @ 1DL 4UL	609	mA
	DCS1800 @ 1DL 4UL	326	mA
	PCS1900 @ 1DL 4UL	329	mA
	GSM850 @ 1DL 4UL	364	mA
EDGE data transmission	GSM900 @ 1DL 4UL	387	mA
	DCS1800 @ 1DL 4UL	288	mA
	PCS1900 @ 1DL 4UL	287	mA
	LTE-FDD B1 @ max power	567	mA
	LTE-FDD B2 @ max power	562	mA
	LTE-FDD B3 @ max power	564	mA
LTE data transmission	LTE-FDD B4 @ max power	608	mA
	LTE-FDD B5 @ max power	572	mA
	LTE-FDD B7 @ max power	816	mA
	LTE-FDD B8 @ max power	656	mA

	LTE-FDD B20 @ max power	585	mA
	LTE-FDD B28 @ max power	665	mA
	LTE-TDD B38 @ max power	428	mA
	LTE-TDD B40 @ max power	368	mA
	LTE-TDD B41 @ max power	508	mA
WCDMA data transmission	B1 (HSDPA) @ max. power	470	mA
	B2 (HSDPA) @ max. power	493	mA
	B4 (HSDPA) @ max. power	495	mA
	B5 (HSDPA) @ max. power	508	mA
	B8 (HSDPA) @ max. power	551	mA
	B1 (HSUPA) @ max. power	473	mA
	B2 (HSUPA) @ max. power	499	mA
	B4 (HSUPA) @ max. power	492	mA
	B5 (HSUPA) @ max. power	511	mA
	B8 (HSUPA) @ max. power	557	mA
GSM voice call	GSM850 @ PCL 5	246	mA
	GSM900 @ PCL 5	274	mA
	DCS1800 @ PCL 0	195	mA
	PCS1900 @ PCL 0	182	mA

NOTE

The power consumption data above is for reference only, which may vary among different modules. For detailed information, contact Quectel Technical Support for the power consumption test report of the specific module.

6.4. Digital I/O Characteristics

Table 49: LDO9A_1V8 I/O Characteristics (Unit: V)

Parameters	Descriptions	Min.	Max.
V_{IH}	High-level input voltage	1.17	2.1
V_{IL}	Low-level input voltage	-0.3	0.63
V_{OH}	High-level output voltage	1.35	1.8
V_{OL}	Low-level output voltage	0	0.45

Table 50: SD Card Low-voltage I/O Characteristics (Unit: V)

Parameters	Descriptions	Min.	Max.
V_{IH}	High-level input voltage	1.27	2
V_{IL}	Low-level input voltage	-0.3	0.58
V_{OH}	High-level output voltage	1.4	1.8
V_{OL}	Low-level output voltage	0	0.45

Table 51: SD Card High-voltage I/O Characteristics (Unit: V)

Parameters	Descriptions	Min.	Max.
V_{IH}	High-level input voltage	1.84	3.25
V_{IL}	Low-level input voltage	-0.3	0.74
V_{OH}	High-level output voltage	2.21	2.95
V_{OL}	Low-level output voltage	0	0.37

Table 52: (U)SIM Low-voltage I/O Characteristics (Unit: V)

Parameters	Descriptions	Min.	Max.
V_{IH}	High-level input voltage	1.26	2.1
V_{IL}	Low-level input voltage	-0.3	0.36
V_{OH}	High-level output voltage	1.44	1.8
V_{OL}	Low-level output voltage	0	0.4

Table 53: (U)SIM High-voltage I/O Characteristics (Unit: V)

Parameters	Descriptions	Min.	Max.
V_{IH}	High-level input voltage	2.07	3.25
V_{IL}	Low-level input voltage	-0.3	0.59
V_{OH}	High-level output voltage	2.36	2.95
V_{OL}	Low-level output voltage	0	0.4

6.5. ESD Protection

Static electricity occurs naturally and it may damage the module. Therefore, applying proper ESD countermeasures and handling methods is imperative. For example, wear anti-static gloves during the development, production, assembly and testing of the module; add ESD protection components to the ESD sensitive interfaces and points in the product design.

Table 54: ESD Characteristics (Temperature: 25–30°C, Humidity: 40 ±5 %; Unit: kV)

Test Points	Contact Discharge	Air Discharge
VBAT & GND	±5	±10
All antenna interfaces	±5	±10
Other interfaces	±0.5	±1

6.6. Operating and Storage Temperatures

Table 55: Operating and Storage Temperatures (Unit: °C)

Parameters	Min.	Typ.	Max.
Normal Operating Temperature ⁴	-35	+25	+75
Storage Temperature	-40	-	+90

⁴ Within this range, the module's related indicators can meet 3GPP specifications.

7 Mechanical Information

This chapter describes the mechanical dimensions of the module. All dimensions are measured in millimeter (mm), and the dimensional tolerances are ± 0.2 mm unless otherwise specified.

7.1. Mechanical Dimensions

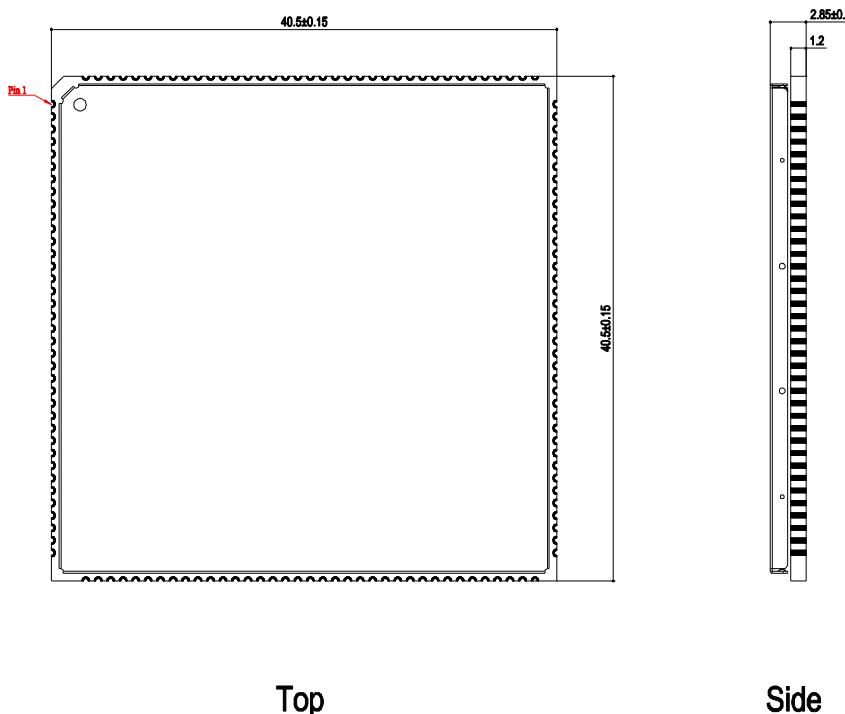
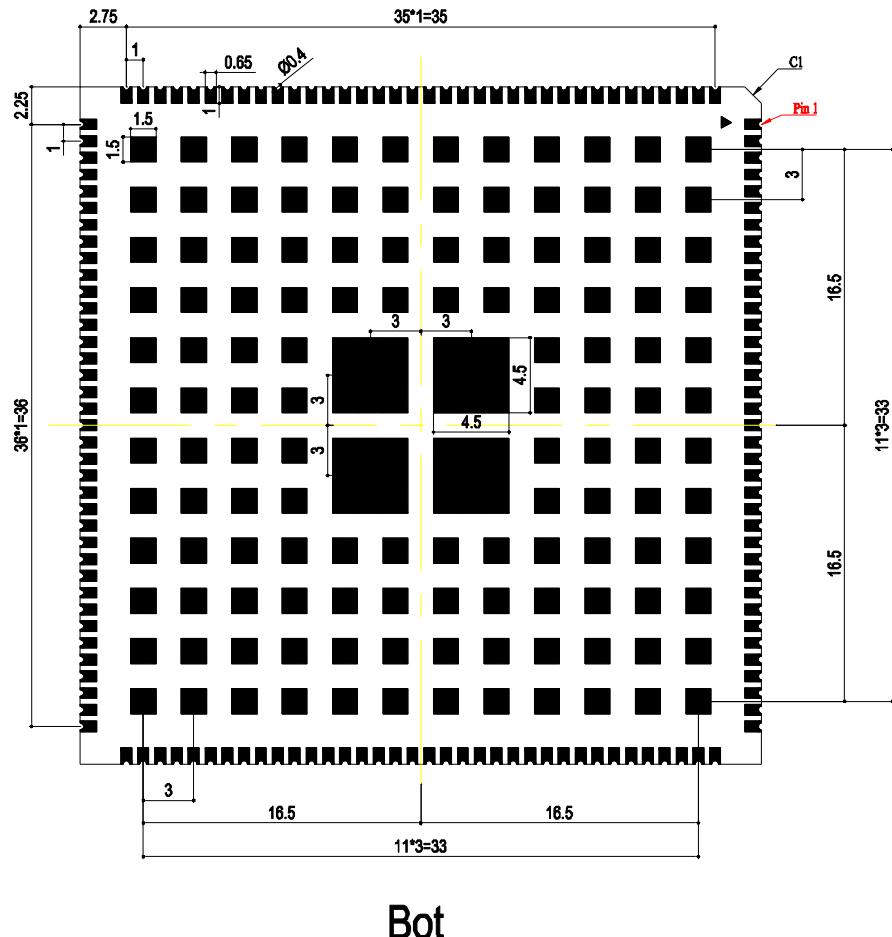



Figure 40: Module Top and Side Dimensions

Figure 41: Module Bottom Dimensions (Bottom View)

NOTE

The module's coplanarity standard: ≤ 0.13 mm.

7.2. Recommended Footprint

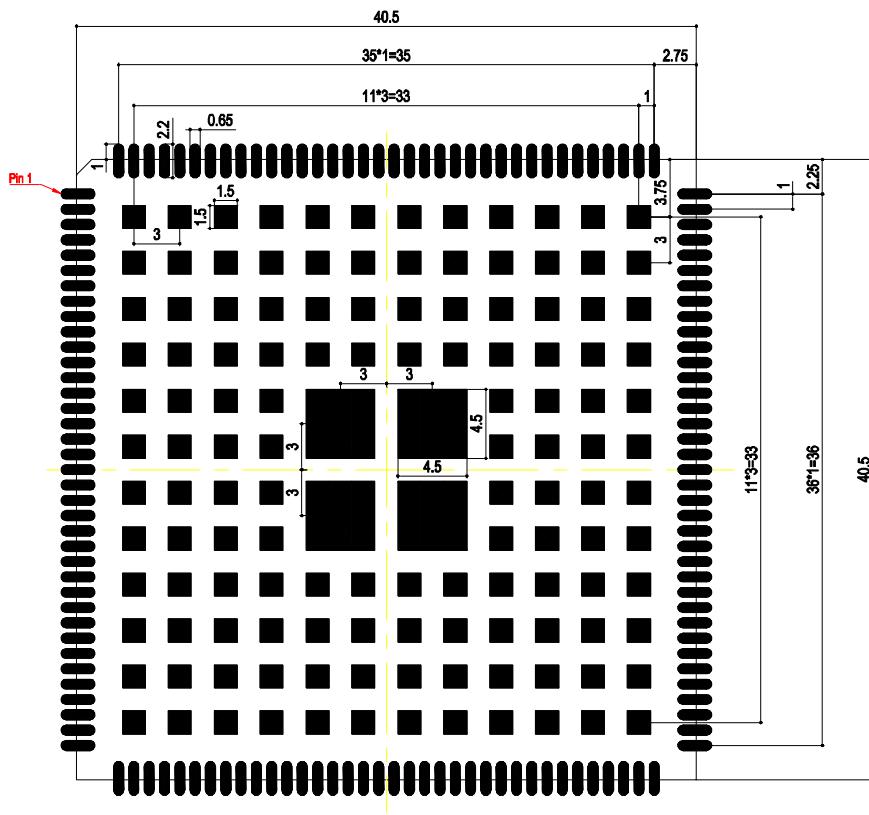


Figure 42: Recommended Footprint

NOTE

Keep at least 3 mm between the module and other components on the motherboard to improve soldering quality and maintenance convenience.

7.3. Top and Bottom Views

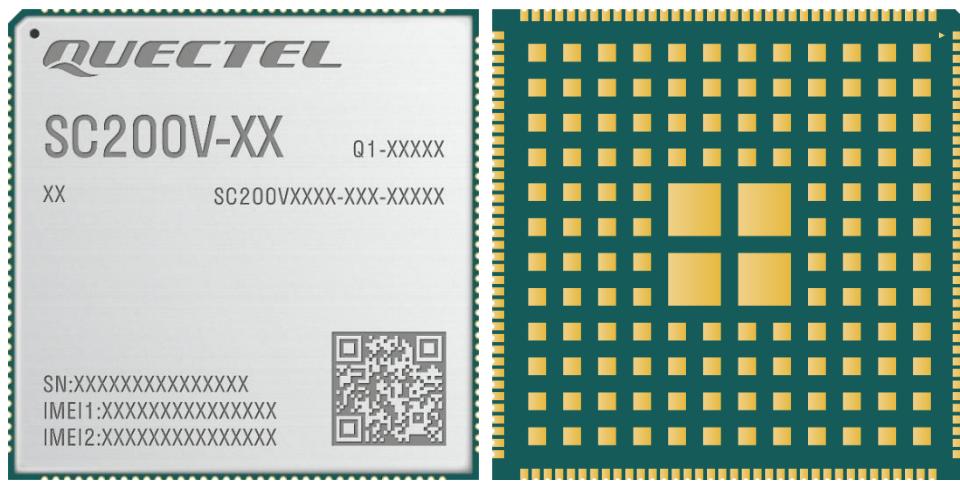


Figure 43: Top & Bottom Views of the Module

NOTE

1. Images above are for illustration purpose only and may differ from the actual module. For authentic appearance and label, please refer to the module received from Quectel.
2. Cellular modules supporting (U)SIM have an IMEI code, which is printed on their shielding cover. Non-cellular modules have no IMEI code, therefore, there is no IMEI code on their shielding cover.

8 Storage, Manufacturing & Packaging

8.1. Storage Conditions

The module is provided with vacuum-sealed packaging. MSL of the module is rated as 3. The storage requirements are shown below.

1. Recommended Storage Condition: the temperature should be 23 ± 5 °C and the relative humidity should be 35–60 %.
2. Shelf life (in a vacuum-sealed packaging): 12 months in Recommended Storage Condition.
3. Floor life: 168 hours ⁵ in a factory where the temperature is 23 ± 5 °C and relative humidity is below 60 %. After the vacuum-sealed packaging is removed, the module must be processed in reflow soldering or other high-temperature operations within 168 hours. Otherwise, the module should be stored in an environment where the relative humidity is less than 10 % (e.g., a dry cabinet).
4. The module should be pre-baked to avoid blistering, cracks and inner-layer separation in PCB under the following circumstances:
 - The module is not stored in Recommended Storage Condition;
 - Violation of the third requirement mentioned above;
 - Vacuum-sealed packaging is broken, or the packaging has been removed for over 24 hours;
 - Before module repairing.
5. If needed, the pre-baking should follow the requirements below:
 - The module should be baked for 24 hours at 120 ± 5 °C;
 - The module must be soldered to PCB within 24 hours after the baking, otherwise it should be put in a dry environment such as in a dry cabinet.

⁵ This floor life is only applicable when the environment conforms to *IPC/JEDEC J-STD-033*. It is recommended to start the solder reflow process within 24 hours after the package is removed if the temperature and moisture do not conform to, or are not sure to conform to *IPC/JEDEC J-STD-033*. Do not unpack the modules in large quantities until they are ready for soldering.

NOTE

1. To avoid blistering, layer separation and other soldering issues, extended exposure of the module to the air is forbidden.
2. Take out the module from the package and put it on high-temperature-resistant fixtures before baking. If shorter baking time is desired, see *IPC/JEDEC J-STD-033* for the baking procedure.
3. Pay attention to ESD protection, such as wearing anti-static gloves, when touching the modules.

8.2. Manufacturing and Soldering

Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. Apply proper force on the squeegee to produce a clean stencil surface on a single pass. To guarantee module soldering quality, the thickness of stencil for the module is recommended to be 0.18–0.20 mm. For more details, see **document [3]**.

The recommended peak reflow temperature should be 235–246 °C, with 246 °C as the absolute maximum reflow temperature. To avoid damage to the module caused by repeated heating, it is recommended that the module should be mounted only after reflow soldering for the other side of PCB has been completed. The recommended reflow soldering thermal profile (lead-free reflow soldering) and related parameters are shown below.

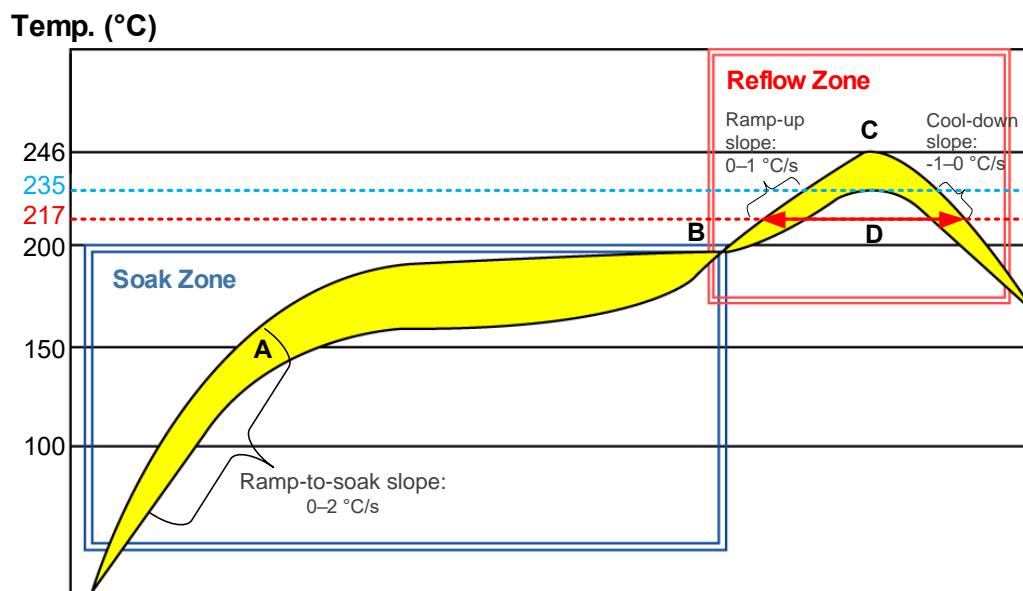


Figure 44: Recommended Reflow Soldering Thermal Profile

Table 56: Recommended Thermal Profile Parameters

Factor	Recommended Value
Soak Zone	
Ramp-to-soak Slope	0–2 °C/s
Soak Time (between A and B: 150 °C and 200 °C)	70–120 s
Reflow Zone	
217–235 °C Ramp-up Slope	0–1 °C/s
Reflow Time (D: over 217°C)	40–65 s
Max Temperature	235–246 °C
235–217 °C Cool-down Slope	-1–0 °C/s
Reflow Cycle	
Max Reflow Cycle	1

NOTE

1. The above profile parameter requirements are for the measured temperature of the solder joints. Both the hottest and coldest spots of solder joints on the PCB should meet the above requirements.
2. Due to the large-size form factor, an excessive temperature change may cause excessive thermal deformation of the metal shielding frame and cover. Thus, it is recommended to reduce the ramp-up and cool-down slopes in the liquid phase of the solder paste to avoid excessive temperature change. If possible, choose a reflow oven with more than 10 temperature zones during production so that there are more temperature zones to set up to meet the optimal temperature curve.
3. If a conformal coating is necessary for the module, do NOT use any coating material that may chemically react with the PCB or shielding cover, and prevent the coating material from flowing into the module.
4. Avoid using ultrasonic technology for module cleaning since it can damage crystals inside the module.
5. Avoid using materials that contain mercury (Hg), such as adhesives, for module processing, even if the materials are RoHS compliant and their mercury content is below 1000 ppm (0.1 %).
6. Corrosive gases may corrode the electronic components inside the module, affecting their reliability and performance, and potentially leading to a shortened service life that fails to meet the designed lifespan. Therefore, do not store or use unprotected modules in environments containing corrosive gases such as hydrogen sulfide, sulfur dioxide, chlorine, and ammonia.
7. Due to the complexity of the SMT process, please contact Quectel Technical Support in advance for any situation that you are not sure about, or any process (e.g. selective soldering, ultrasonic

soldering) that is not mentioned in **document [4]**.

8.3. Packaging Specification

This chapter outlines the key packaging parameters and processes. All figures below are for reference purposes only, as the actual appearance and structure of packaging materials may vary in delivery.

The modules are packed in a tape and reel packaging as specified in the sub-chapters below.

8.3.1. Carrier Tape

Carrier tape dimensions are illustrated in the following figure and table:

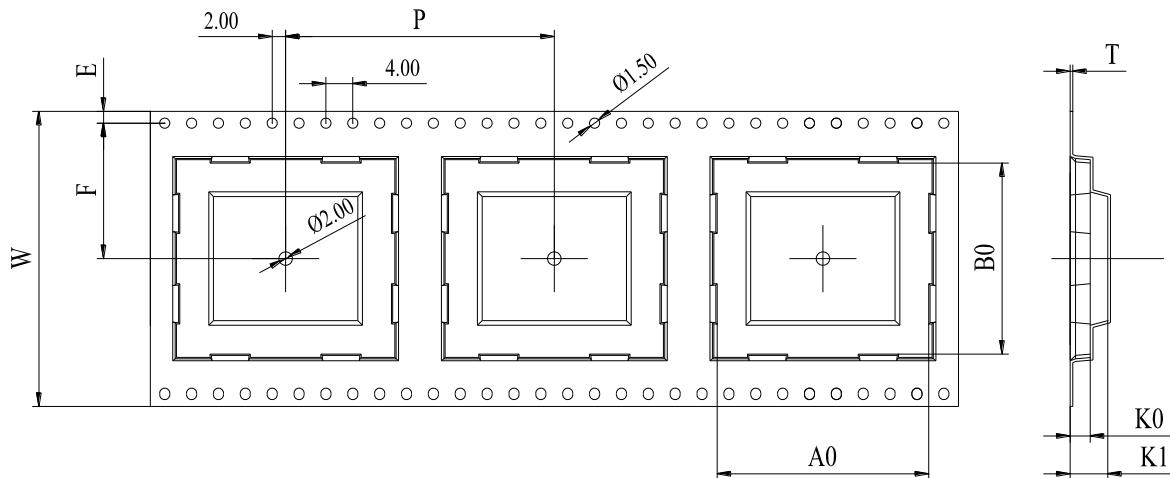


Figure 45: Carrier Tape Dimension Drawing (Unit: mm)

Table 57: Carrier Tape Dimension Table (Unit: mm)

W	P	T	A0	B0	K0	K1	F	E
72	56	0.4	41.2	41.2	4	4.6	34.2	1.75

8.3.2. Plastic Reel

Plastic reel dimensions are illustrated in the following figure and table:

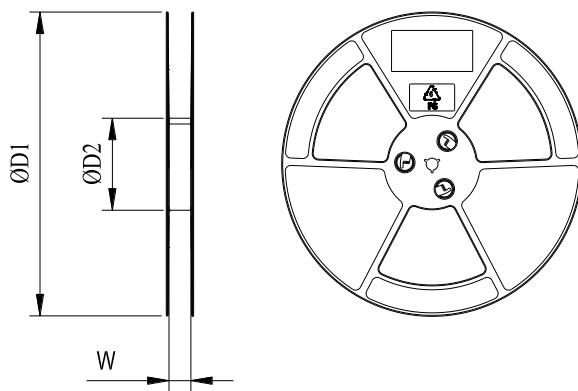
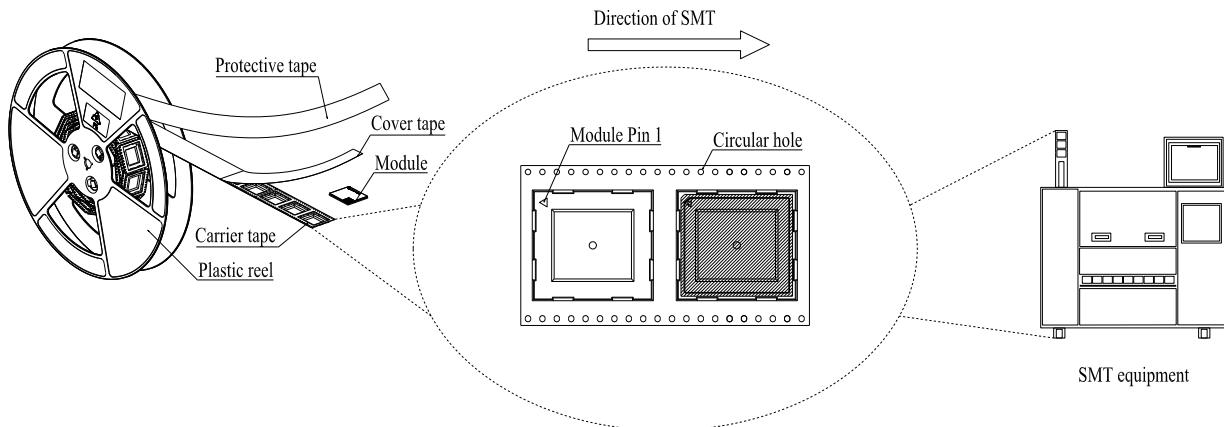
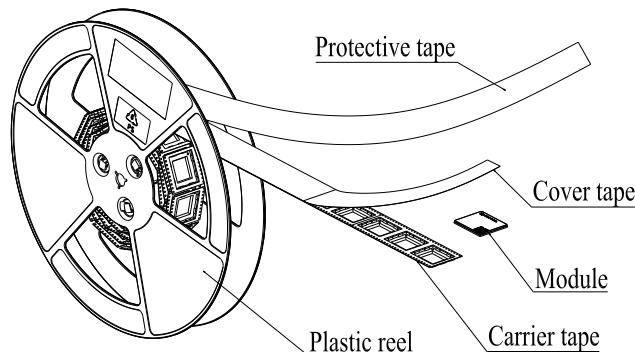


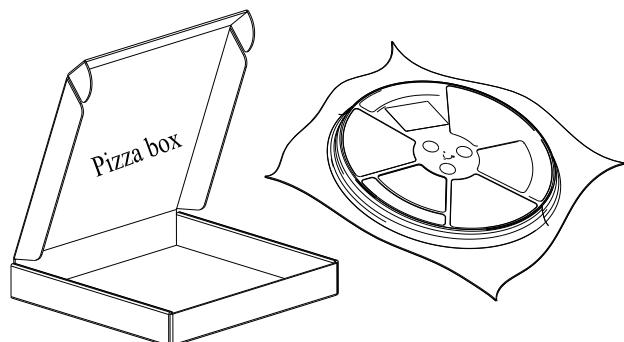
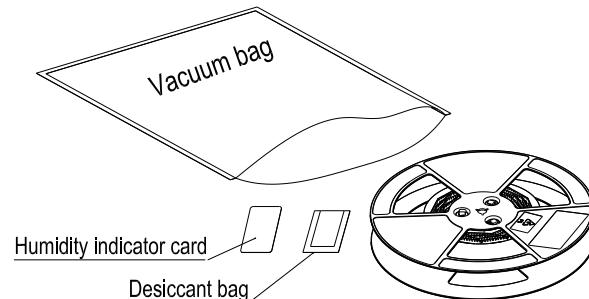
Figure 46: Plastic Reel Dimension Drawing

Table 58: Plastic Reel Dimension Table (Unit: mm)

ØD1	ØD2	W
380	180	72.5

8.3.3. Mounting Direction



Figure 47: Mounting Direction

8.3.4. Packaging Process

Place the modules onto the carrier tape cavity and cover them securely with cover tape. Wind the heat-sealed carrier tape onto a plastic reel and apply a protective tape for additional protection. 1 plastic reel can pack 200 modules.

Place the packaged plastic reel, humidity indicator card and desiccant bag into a vacuum bag, and vacuumize it.

Place the vacuum-packed plastic reel into a pizza box.

Place the 4 packaged pizza boxes into 1 carton and seal it. 1 carton can pack 800 modules.

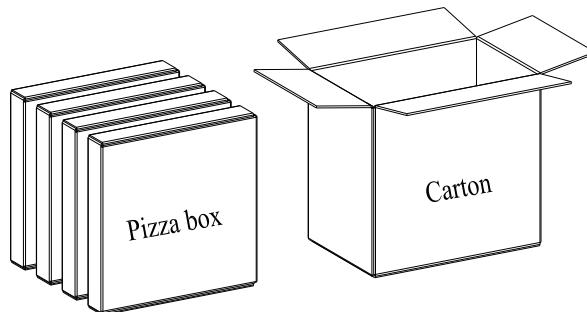


Figure 48: Packaging Process

9 Appendix References

Table 59: Related Documents

Document Name
[1] Quectel_Smart_EVB_G5_User_Guide
[2] Quectel_SC200V_Series_GPIO_Configuration
[3] Quectel_Module_Stencil_Design_Requirements
[4] Quectel_Module_SMT_Application_Note
[5] Quectel_RF_Layout_Application_Note

Table 60: Terms and Abbreviations

Abbreviation	Description
3GPP	3rd Generation Partnership Project
ADC	Analog-to-Digital Converter
ADSP	Audio Digital Signal Processor
ALS	Ambient Light Sensor
AMR-NB	Adaptive Multi Rate-Narrow Band Speech Codec
AMR-WB	Adaptive Multi-Rate Wideband
AP	Access Point/Application Processor
ARM	Advanced RISC Machine
BDS	BeiDou Navigation Satellite System
BLE	Bluetooth Low Energy
bps	Bits per Second

BR	Basic Rate
CA	Carrier Aggregation
CDMA	Code Division Multiple Access
CEP	Circular Error Probable
C _j	Junction Capacitance
CPE	Customer-Premise Equipment
CS	Coding Scheme
CSD	Circuit Switched Data
CSI	Camera Serial Interface
CTS	Clear to Send
DC	Dual Carrier
DC-HSPA+	Dual Carrier High Speed Packet Access Plus
DCS	Digital Cellular System
DL	Downlink
DPSK	Differential Phase Shift Keying
DQPSK	Differential Quadrature Reference Phase Shift Keying
DRX	Discontinuous Reception
DSI	Display Serial Interface
DSP	Digital Signal Processor
ECM	Electret Condenser Microphone
EDGE	Enhanced Data Rate for GSM Evolution
EDR	Enhanced Data Rate
EFR	Enhanced Full Rate
EGSM	Extended GSM
eMMC	Embedded Multimedia Card

eSCO	Extended Synchronous Connection Oriented
ESD	Electrostatic Discharge
ESR	Equivalent Series Resistance
ETSI	European Telecommunications Standards Institute
EVB	Evaluation Board
EVDO	Evolution-Data Optimized
EVRC	Enhanced Variable Rate Codec
EVS	Enhanced Voice Services
FDD	Frequency Division Duplex
FHD	Full High Definition
FPC	Flexible Printed Circuit
fps	Frame per Second
FR	Full Rate
Galileo	Galileo Satellite Navigation System (EU)
GFSK	Gaussian Frequency Shift Keying
GLONASS	Global Navigation Satellite System (Russia)
GMSK	Gaussian Minimum Shift Keying
GND	Ground
GNSS	Global Navigation Satellite System
GPIO	General-Purpose Input/Output
GPRS	General Packet Radio Service
GPS	Global Positioning System
GPU	Graphics Processing Unit
GRFC	Generic RF control
GSM	Global System for Mobile Communications

HR	Half Rate
HS	High Speed
HSDPA	High Speed Downlink Packet Access
HSPA+	High-Speed Packet Access
HSUPA	High Speed Uplink Packet Access
HT	High Throughput
I2C	Inter-Integrated Circuit
IC	Integrated Circuit
IEEE	Institute of Electrical and Electronics Engineers
IMT-2000	International Mobile Telecommunications for the year 2000
I/O	Input/Output
I_{max}	Maximum Input Load Current
$I_{o\max}$	Maximum Output Load Current
ISP	Image Signal Processor/Internet Service Provider
LCC	Leadless Chip Carrier
LCD	Liquid Crystal Display
LCM	LCD Module
LDO	Low Dropout Regulator
LE	Low Energy
LED	Light Emitting Diode
LGA	Land Grid Array
LNA	Low Noise Amplifier
LPDDR	Low-Power Double Data Rate
LTE	Long-Term Evolution
M2M	Machine to Machine

MAC	Media Access Control
MCS	Modulation and Coding Scheme
MEMS	Micro-Electro-Mechanical System
MIC	Microphone
MIMO	Multi-Input Multi-Output/Multiple Input Multiple Output
MIPI	Mobile Industry Processor Interface
MO	Mobile Origination
MT	Mobile Terminating
MP	Megapixel
MSL	Moisture Sensitivity Levels
MT	Mobile Terminating/Terminated
NFC	Near Field Communication
NMEA	NMEA (National Marine Electronics Association) 0183 Interface Standard
NTC	Negative Temperature Coefficient
OTA	Over-the-Air Upgrade
OTG	On-The-Go
OTP	One Time Programmable
PAM	Power Amplifier Module
PC	Personal Computer
PCB	Printed Circuit Board
PCL	Power Control Level
PCS	Personal Communication Service
PD	Power delivery
PDA	Personal Digital Assistant
PDU	Protocol Data Unit

PHY	Physical Layer
PMU	Power Management Unit
POS	Point of Sale
PWM	Pulse Width Modulation
PSK	Phase Shift Keying
QAM	Quadrature Amplitude Modulation
QPSK	Quadrature Phase Shift Keying
RF	Radio Frequency
RHCP	Right Hand Circular Polarization
RoHS	Restriction of Hazardous Substances
RTC	Real Time Clock
RTS	Request to Send
SAW	Surface Acoustic Wave
SBAS	Satellite-Based Augmentation System
SCO	Synchronous Connection Oriented
SD	Secure Digital
SDR	Software-Defined Radio
SIMO	Single Input Multiple Output
SMD	Surface Mounting Device
SMS	Short Message Service
SMT	Surface Mount Technology
STA	Station
TDD	Time-Division Duplex
TP	Touch Panel
TTFF	Time to First Fix

TVS	Transient Voltage Suppressor
UART	Universal Asynchronous Receiver & Transmitter
UL	Uplink
UMTS	Universal Mobile Telecommunications System
USB	Universal Serial Bus
(U)SIM	(Universal) Subscriber Identity Module
VBAT	Voltage at Battery (Pin)
VHT	Very High Throughput
Vmax	Maximum Voltage
Vmin	Minimum Voltage
Vnom	Nominal Voltage
V _{max}	Absolute Maximum Input Voltage
V _{min}	Absolute Minimum Input Voltage
V _{IHmin}	Minimum High-level Input Voltage
V _{ILmax}	Maximum Low-level Input Voltage
V _{omax}	Maximum Output Voltage
V _{OHmin}	Minimum High-level Output Voltage
V _{OLmax}	Maximum Low-level Output Voltage
Vrms	Root Mean Square Voltage
VSWR	Voltage Standing Wave Ratio
WAPI	WLAN Authentication and Privacy Infrastructure
WCDMA	Wideband Code Division Multiple Access
Wi-Fi	Wireless Fidelity
WLAN	Wireless Local Area Network
ZSL	Zero Shutter Lag

FCC ID: XMR2025SC200VNA

OEM/Integrators Installation Manual

Important Notice to OEM integrators

1. This module is limited to OEM installation ONLY.
2. This module is limited to installation in mobile or fixed applications, according to Part 2.1091(b).
3. The separate approval is required for all other operating configurations, including portable configurations with respect to Part 2.1093 and different antenna configurations
4. For FCC Part 15.31 (h) and (k): The host manufacturer is responsible for additional testing to verify compliance as a composite system. When testing the host device for compliance with Part 15 Subpart B, the host manufacturer is required to show compliance with Part 15 Subpart B while the transmitter module(s) are installed and operating. The modules should be transmitting and the evaluation should confirm that the module's intentional emissions are compliant (i.e. fundamental and out of band emissions). The host manufacturer must verify that there are no additional unintentional emissions other than what is permitted in Part 15 Subpart B or emissions are compliant with the transmitter(s) rule(s).

The Grantee will provide guidance to the host manufacturer for Part 15 B requirements if needed.

Important Note

notice that any deviation(s) from the defined parameters of the antenna trace, as described by the instructions, require that the host product manufacturer must notify to Quectel that they wish to change the antenna trace design. In this case, a Class II permissive change application is required to be filed by the USI, or the host manufacturer can take responsibility through the change in FCC ID (new application) procedure followed by a Class II permissive change application.

End Product Labeling

When the module is installed in the host device, the FCC/IC ID label must be visible through a window on the final device or it must be visible when an access panel, door or cover is easily re-moved. If not, a second label must be placed on the outside of the final device that contains the following text:

“Contains FCC ID: XMR2025SC200VNA”

“Contains IC: 10224A-025SC200VNA”

The FCC ID/IC ID can be used only when all FCC/IC compliance requirements are met.

Antenna Installation

- (1) The antenna must be installed such that 20cm is maintained between the antenna and users,
- (2) The transmitter module may not be co-located with any other transmitter or antenna.

In the event that these conditions cannot be met (for example certain laptop configurations or co-location with another transmitter), then the FCC/IC authorization is no longer considered valid and the FCC ID/IC ID cannot be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC/IC authorization.

Antenna Type	Max Gain Allowed
External	LTE B2: 8dBi, B4: 5dBi, B5: 11.26dBi, B7: 8dBi, B12: 11.35dBi, B13: 11.92dBi, B14: 11.88dBi, B17: 11.39dBi, B25: 8dBi, B26: 11.21dBi, B41: 8dBi, B66: 5dBi, B71: 11.53dBi
External	Bluetooth&2.4G Wi-Fi: 0.47dBi Wi-Fi: 5150-5250MHz: -0.67dBi; 5250-5350MHz: -0.19dBi; 5470-5725MHz: 1.28dBi; 5725-5850MHz: 1.1dBi

Manual Information to the End User

The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module. The end user manual shall include all required regulatory information/warning as show in this manual.

Federal Communication Commission Interference Statement

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

List of applicable FCC rules

This module has been tested and found to comply with part 15, part 22, part 24, part 27 and part 90 requirements for Modular Approval.

The modular transmitter is only FCC authorized for the specific rule parts (i.e., FCC transmitter rules) listed on the grant, and that the host product manufacturer is responsible for compliance to any other FCC rules that apply to the host not covered by the modular transmitter grant of certification. If the grantee markets their product as being Part 15 Subpart B compliant (when it also contains unintentional-radiator digital circuitry), then the grantee shall provide a notice stating that the final host product still requires Part 15 Subpart B compliance testing with the modular transmitter installed.

This device is intended only for OEM integrators under the following conditions: (For module device use)

- 1) The antenna must be installed such that 20cm is maintained between the antenna and users, and
- 2) The transmitter module may not be co-located with any other transmitter or antenna.

As long as 2 conditions above are met, further transmitter test will not be required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed.

Radiation Exposure Statement

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator & your body.

IC: 10224A-025SC200VNA

Industry Canada Statement

This device complies with Industry Canada's licence-exempt RSSs. Operation is subject to the following two conditions:

- (1) This device may not cause interference; and
- (2) This device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes:

- (1) l'appareil ne doit pas produire de brouillage, et
- (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement."

Radiation Exposure Statement

This equipment complies with IC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator & your body.

Déclaration d'exposition aux radiations:

Cet équipement est conforme aux limites d'exposition aux rayonnements ISED établies pour un environnement non contrôlé. Cet équipement doit être installé et utilisé avec un minimum de 20cm de distance entre la source de rayonnement et votre corps.

This device is intended only for OEM integrators under the following conditions: (For module device use)

- 1) The antenna must be installed such that 20cm is maintained between the antenna and users, and
- 2) The transmitter module may not be co-located with any other transmitter or antenna.

As long as 2 conditions above are met, further transmitter test will not be required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed.

Cet appareil est conçu uniquement pour les intégrateurs OEM dans les conditions suivantes: (Pour utilisation de dispositif module)

- 1) L'antenne doit être installée de telle sorte qu'une distance de 20cm est respectée entre l'antenne et les utilisateurs, et
- 2) Le module émetteur peut ne pas être coïmplanté avec un autre émetteur ou antenne.

Tant que les 2 conditions ci-dessus sont remplies, des essais supplémentaires sur l'émetteur ne seront

pas nécessaires. Toutefois, l'intégrateur OEM est toujours responsable des essais sur son produit final pour toutes exigences de conformité supplémentaires requis pour ce module installé.

IMPORTANT NOTE:

In the event that these conditions cannot be met (for example certain laptop configurations or colocation with another transmitter), then the Canada authorization is no longer considered valid and the IC ID cannot be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate Canada authorization.

NOTE IMPORTANTE:

Dans le cas où ces conditions ne peuvent être satisfaites (par exemple pour certaines configurations d'ordinateur portable ou de certaines co-localisation avec un autre émetteur), l'autorisation du Canada n'est plus considéré comme valide et l'ID IC ne peut pas être utilisé sur le produit final. Dans ces circonstances, l'intégrateur OEM sera chargé de réévaluer le produit final (y compris l'émetteur) et l'obtention d'une autorisation distincte au Canada.

End Product Labeling

This transmitter module is authorized only for use in device where the antenna may be installed such that 20cm may be maintained between the antenna and users. The final end product must be labeled in a visible area with the following: "Contains IC: 10224A-025SC200VNA".

Plaque signalétique du produit final

Ce module émetteur est autorisé uniquement pour une utilisation dans un dispositif où l'antenne peut être installée de telle sorte qu'une distance de 20cm peut être maintenue entre l'antenne et les utilisateurs. Le produit final doit être étiqueté dans un endroit visible avec l'inscription suivante: "Contient des IC: 10224A-025SC200VNA".

Manual Information To the End User

The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module.

The end user manual shall include all required regulatory information/warning as show in this manual.

Manuel d'information à l'utilisateur final

L'intégrateur OEM doit être conscient de ne pas fournir des informations à l'utilisateur final quant à la façon d'installer ou de supprimer ce module RF dans le manuel de l'utilisateur du produit final qui intègre ce module.

Le manuel de l'utilisateur final doit inclure toutes les informations réglementaires requises et avertissements comme indiqué dans ce manuel.