

BG95-S5

Hardware Design

Satellite Communication Module Series

Version: 1.0.0

Date: 2024-07-09

Status: Preliminary

At Quectel, our aim is to provide timely and comprehensive services to our customers. If you require any assistance, please contact our headquarters:

Quectel Wireless Solutions Co., Ltd.

Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai 200233, China

Tel: +86 21 5108 6236

Email: info@quectel.com

Or our local offices. For more information, please visit:

<http://www.quectel.com/support/sales.htm>.

For technical support, or to report documentation errors, please visit:

<http://www.quectel.com/support/technical.htm>.

Or email us at: support@quectel.com.

Legal Notices

We offer information as a service to you. The provided information is based on your requirements and we make every effort to ensure its quality. You agree that you are responsible for using independent analysis and evaluation in designing intended products, and we provide reference designs for illustrative purposes only. Before using any hardware, software or service guided by this document, please read this notice carefully. Even though we employ commercially reasonable efforts to provide the best possible experience, you hereby acknowledge and agree that this document and related services hereunder are provided to you on an "as available" basis. We may revise or restate this document from time to time at our sole discretion without any prior notice to you.

Use and Disclosure Restrictions

License Agreements

Documents and information provided by us shall be kept confidential, unless specific permission is granted. They shall not be accessed or used for any purpose except as expressly provided herein.

Copyright

Our and third-party products hereunder may contain copyrighted material. Such copyrighted material shall not be copied, reproduced, distributed, merged, published, translated, or modified without prior written consent. We and the third party have exclusive rights over copyrighted material. No license shall be granted or conveyed under any patents, copyrights, trademarks, or service mark rights. To avoid ambiguities, purchasing in any form cannot be deemed as granting a license other than the normal non-exclusive, royalty-free license to use the material. We reserve the right to take legal action for noncompliance with abovementioned requirements, unauthorized use, or other illegal or malicious use of the material.

Trademarks

Except as otherwise set forth herein, nothing in this document shall be construed as conferring any rights to use any trademark, trade name or name, abbreviation, or counterfeit product thereof owned by Quectel or any third party in advertising, publicity, or other aspects.

Third-Party Rights

This document may refer to hardware, software and/or documentation owned by one or more third parties ("third-party materials"). Use of such third-party materials shall be governed by all restrictions and obligations applicable thereto.

We make no warranty or representation, either express or implied, regarding the third-party materials, including but not limited to any implied or statutory, warranties of merchantability or fitness for a particular purpose, quiet enjoyment, system integration, information accuracy, and non-infringement of any third-party intellectual property rights with regard to the licensed technology or use thereof. Nothing herein constitutes a representation or warranty by us to either develop, enhance, modify, distribute, market, sell, offer for sale, or otherwise maintain production of any our products or any other hardware, software, device, tool, information, or product. We moreover disclaim any and all warranties arising from the course of dealing or usage of trade.

Privacy Policy

To implement module functionality, certain device data are uploaded to Quectel's or third-party's servers, including carriers, chipset suppliers or customer-designated servers. Quectel, strictly abiding by the relevant laws and regulations, shall retain, use, disclose or otherwise process relevant data for the purpose of performing the service only or as permitted by applicable laws. Before data interaction with third parties, please be informed of their privacy and data security policy.

Disclaimer

- a) We acknowledge no liability for any injury or damage arising from the reliance upon the information.
- b) We shall bear no liability resulting from any inaccuracies or omissions, or from the use of the information contained herein.
- c) While we have made every effort to ensure that the functions and features under development are free from errors, it is possible that they could contain errors, inaccuracies, and omissions. Unless otherwise provided by valid agreement, we make no warranties of any kind, either implied or express, and exclude all liability for any loss or damage suffered in connection with the use of features and functions under development, to the maximum extent permitted by law, regardless of whether such loss or damage may have been foreseeable.
- d) We are not responsible for the accessibility, safety, accuracy, availability, legality, or completeness of information, advertising, commercial offers, products, services, and materials on third-party websites and third-party resources.

Copyright © Quectel Wireless Solutions Co., Ltd. 2024. All rights reserved.

Safety Information

The following safety precautions must be observed during all phases of operation, such as usage, service or repair of any terminal or mobile incorporating the module. Manufacturers of the terminal should notify users and operating personnel of the following safety information by incorporating these guidelines into all manuals of the product. Otherwise, Quectel assumes no liability for customers' failure to comply with these precautions.

Full attention must be paid to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. Please comply with laws and regulations restricting the use of wireless devices while driving.

Switch off the terminal or mobile before boarding an aircraft. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. If there is an Airplane Mode, it should be enabled prior to boarding an aircraft. Please consult the airline staff for more restrictions on the use of wireless devices on an aircraft.

Wireless devices may cause interference on sensitive medical equipment, so please be aware of the restrictions on the use of wireless devices when in hospitals, clinics or other healthcare facilities.

Terminals or mobiles operating over radio signal and cellular network cannot be guaranteed to connect in certain conditions, such as when the mobile bill is unpaid or the (U)SIM card is invalid. When emergent help is needed in such conditions, use emergency call if the device supports it. In order to make or receive a call, the terminal or mobile must be switched on in a service area with adequate cellular signal strength. In an emergency, the device with emergency call function cannot be used as the only contact method considering network connection cannot be guaranteed under all circumstances.

The terminal or mobile contains a transceiver. When it is ON, it receives and transmits radio frequency signals. RF interference can occur if it is used close to TV sets, radios, computers or other electric equipment.

In locations with explosive or potentially explosive atmospheres, obey all posted signs and turn off wireless devices such as mobile phone or other terminals. Areas with explosive or potentially explosive atmospheres include fueling areas, below decks on boats, fuel or chemical transfer or storage facilities, and areas where the air contains chemicals or particles such as grain, dust or metal powders.

About the Document

Revision History

Version	Date	Author	Description
-	2024-07-09	Soley ZHANG/ Pearl GUO/ Glenn SHAO	Creation of the document
1.0.0	2024-07-09	Soley ZHANG/ Pearl GUO/ Glenn SHAO	Preliminary

Contents

Safety Information	3
About the Document	4
Contents	5
Table Index	7
Figure Index	9
1 Introduction	11
1.1. Special Mark	11
2 Product Overview	13
2.1. Frequency Bands and Functions	14
2.2. Key Features.....	14
2.3. Functional Diagram.....	16
2.4. Pin Assignment	18
2.5. Pin Definitions	19
2.6. EVB Kit.....	25
3 Operating Characteristics	26
3.1. Operating Modes.....	26
3.2. Power Saving	27
3.2.1. Airplane Mode	27
3.2.2. Power Saving Mode (PSM).....	27
3.2.3. Extended Idle Mode DRX (e-I-DRX).....	28
3.2.4. Sleep Mode	28
3.2.4.1. UART Interface Application.....	28
3.3. Power Supply	29
3.3.1. Power Supply Interface.....	29
3.3.2. Voltage Stability Requirements.....	30
3.3.3. Power Supply Voltage Monitoring.....	31
3.4. Turn-on.....	31
3.4.1. Turn-on with PWRKEY.....	31
3.5. Turn-off.....	34
3.5.1. Turn-off with PWRKEY.....	34
3.5.2. Turn-off with AT Command.....	34
3.6. Fast Shutdown	35
3.7. Reset	35
3.8. PON_TRIGGER Interface.....	37
4 Application Interfaces	39
4.1. USB Interface.....	39
4.2. USB_BOOT.....	40
4.3. (U)SIM Interface.....	42
4.4. UART Interfaces.....	44

4.5. PCM and I2C Interfaces*	47
4.6. ADC Interfaces	48
4.7. Indication Signals	49
4.7.1. Network Status Indication	49
4.7.2. STATUS	50
4.7.3. MAIN_RI	51
4.8. GPIO Interfaces	51
4.9. GRFC Interfaces	52
5 RF Specifications	54
5.1. Cellular Network	54
5.1.1. Antenna Interface and Frequency Bands	54
5.1.2. Transmitting Power	56
5.1.3. Receiver Sensitivity	56
5.1.4. Reference Design	58
5.2. GNSS	58
5.2.1. Antenna Interface and Frequency Bands	59
5.2.2. GNSS Performance	59
5.2.3. Reference Design	60
5.2.4. Layout Guidelines	60
5.3. RF Routing Guidelines	62
5.4. Requirements for Antenna Design	63
5.5. RF Connector Recommendation	64
6 Electrical Characteristics and Reliability	66
6.1. Absolute Maximum Ratings	66
6.2. Power Supply Ratings	66
6.3. Power Consumption	67
6.4. ESD Protection	70
6.5. Operating and Storage Temperatures	71
7 Mechanical Information	72
7.1. Mechanical Dimensions	72
7.2. Recommended Footprint	74
7.3. Top and Bottom Views	75
8 Storage, Manufacturing and Packaging	76
8.1. Storage Conditions	76
8.2. Manufacturing and Soldering	77
8.3. Packaging Specifications	79
8.3.1. Carrier Tape	79
8.3.2. Plastic Reel	79
8.3.3. Mounting Direction	80
8.3.4. Packaging Process	81
9 Appendix A References	83

Table Index

Table 1: Special Mark.....	11
Table 2: Basic Information	13
Table 3: Frequency Bands and Functions	14
Table 4: Key Features.....	14
Table 5: Definition of I/O Parameters.....	19
Table 6: Pin Description	20
Table 7: Operating Modes of BG95-S5 Module.....	26
Table 8: VBAT and GND Pins.....	29
Table 9: Pin Definition of PWRKEY	31
Table 10: Pin Definition of Fast Shutdown Interface	35
Table 11: Pin Definition of RESET_N	36
Table 12: Pin Definition of PON_TRIG Interface	37
Table 13: Pin Definition of USB Interface	39
Table 14: Pin Definition of USB_BOOT Interface	41
Table 15: Pin Definition of (U)SIM Interface	42
Table 16: Pin Definition of Main UART Interface	44
Table 17: Pin Definition of Debug UART Interface	45
Table 18: Pin Definition of GNSS UART Interface.....	45
Table 19: Pin Definition of PCM and I2C Interfaces	47
Table 20: Pin Definition of ADC Interfaces	48
Table 21: Characteristics of ADC Interfaces.....	49
Table 22: Pin Description of Indication Signal	49
Table 23: Operating State of NET_STATUS	50
Table 24: Default Behaviours of MAIN_RI.....	51
Table 25: Pin Definition of GPIO Interfaces.....	51
Table 26: Pin Definition of GRFC Interfaces.....	52
Table 27: Truth Table of GRFC Interfaces.....	52
Table 28: Pin Definition of Main Antenna Interface	54
Table 29: Operating Frequency	54
Table 30: Conducted Transmitting Power	56
Table 31: Conducted Receiver Sensitivity	56
Table 32: Pin Definition of GNSS Antenna Interface	59
Table 33: GNSS Operating Frequency	59
Table 34: GNSS Performance	59
Table 35: Requirements for Antenna Design.....	63
Table 36: Absolute Maximum Ratings	66
Table 37: Power Supply Ratings.....	66
Table 38: Power Consumption (3.8 V Power Supply, Room Temperature).....	67
Table 39: GNSS Power Consumption (3.8 V Power Supply, Room Temperature)	70
Table 40: Electrostatic Discharge Characteristics (Temperature: 25–30 °C, Humidity: 40 ±5 %)	70
Table 41: Operating and Storage Temperatures	71
Table 42: Recommended Thermal Profile Parameters	78

Table 43: Carrier Tape Dimension Table (Unit: mm).....	79
Table 44: Plastic Reel Dimension Table (Unit: mm).....	80
Table 45: Packaging Specifications of BG95-S5 Module	82
Table 46: Related Documents.....	83
Table 47: Terms and Abbreviations	83

Figure Index

Figure 1: Functional Diagram of BG95-S5.....	17
Figure 2: Pin Assignment (Top View)	18
Figure 3: Sleep Mode Application via UART Interface	29
Figure 4: Power Supply Limits During Burst Transmission	30
Figure 5: Star Structure of the Power Supply	31
Figure 6: Turn On the Module with a Driver Circuit	32
Figure 7: Turn On the Module with a Push Button.....	32
Figure 8: Power-up Timing.....	33
Figure 9: Power-down Timing	34
Figure 10: Fast Shutdown Timing	35
Figure 11: Reference Design of RESET_N with a Driver Circuit.....	36
Figure 12: Reference Design of RESET_N with a Push Button.....	36
Figure 13: Reset Timing.....	37
Figure 14: Reference Design of PON_TRIG	38
Figure 15: Reference Design of USB Interface	40
Figure 16: Reference Design of USB_BOOT Interface	41
Figure 17: Timing for Turning on the Module with USB_BOOT	41
Figure 18: Reference Design of (U)SIM Interface with an 8-Pin (U)SIM Card Connector	43
Figure 19: Reference Design of (U)SIM Interface with a 6-Pin (U)SIM Card Connector	43
Figure 20: Main UART Interface Reference Design (IC Solution)	46
Figure 21: Main UART Interface Reference Design (Transistor Solution)	46
Figure 22: GNSS UART Interface Reference Design (IC Solution Without Internal Pull-up).....	47
Figure 23: Reference Design of PCM and I2C Application with Audio Codec	48
Figure 24: Reference Design of the Network Status Indicator	50
Figure 25: Reference Design of STATUS.....	50
Figure 26: Reference Design of Main Antenna Interface	58
Figure 27: Reference Design of GNSS Antenna Interface	60
Figure 28: Microstrip Design on a 2-layer PCB	62
Figure 29: Coplanar Waveguide Design on a 2-layer PCB	62
Figure 30: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground).....	62
Figure 31: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground).....	63
Figure 32: Dimensions of the Receptacle (Unit: mm)	64
Figure 33: Specifications of Mated Plugs	65
Figure 34: Space Factor of Mated Connectors (Unit: mm).....	65
Figure 35: Module Top and Side Dimensions.....	72
Figure 36: Module Bottom Dimensions (Bottom View)	73
Figure 37: Recommended Footprint	74
Figure 38: Top and Bottom Views.....	75
Figure 39: Recommended Reflow Soldering Thermal Profile	77
Figure 40: Carrier Tape Dimension Drawing (Unit: mm)	79
Figure 41: Plastic Reel Dimension Drawing	80

Figure 42: Mounting Direction	80
Figure 43: Packaging Process	81

1 Introduction

This document defines BG95-S5 module and describes its air and hardware interfaces which connect to your applications.

This document helps you quickly understand the interface specifications, electrical and mechanical details, as well as other related information of BG95-S5. To facilitate application designs, it also includes some reference designs. The document, coupled with application notes and user guides, makes it easy to design and set up mobile applications with the module.

1.1. Special Mark

Table 1: Special Mark

Mark	Definition
*	Unless otherwise specified, an asterisk (*) after a function, feature, interface, pin name, command, argument, and so on indicates that it is under development and currently not supported; and the asterisk (*) after a model indicates that the model sample is currently unavailable.

Hereby, Quectel Wireless Solutions Co., Ltd. declares that the radio equipment type BG95-S5 is in compliance with Directive 2014/53/EU.

The full text of the EU declaration of conformity is available at the following internet address:
<http://www.quectel.com/support/technical.htm>

Disposal of old electrical appliances

The European directive 2012/19/EU on Waste Electrical and Electronic Equipment (WEEE), requires that old household electrical appliances must not be disposed of in the normal unsorted municipal waste stream. Old appliances must be collected separately in order to optimize the recovery and recycling of the materials they contain, and reduce the impact on human health and the environment.

The crossed out "wheeled bin" symbol on the product reminds you of your obligation, that when you dispose of the appliance, it must be separately collected.

Consumers should contact their local authority or retailer for information concerning the correct disposal of their old appliance.

The device could be used with a separation distance of 20cm to the human body.

2 Product Overview

BG95-S5 is an embedded IoT (LTE Cat M1, LTE Cat NB2, EGPRS and IoT-NTN) wireless communication module. It provides data connectivity on LTE HD-FDD, GPRS/EGPRS and IoT-NTN networks. It also provides GNSS function to meet your specific application demands.

The module is based on an architecture in which WWAN and GNSS Rx chains share certain hardware blocks. However, the module does not support concurrent operation of WWAN and GNSS. The solution adopted in the module is a form of coarse time-division multiplexing (TDM) between WWAN and GNSS Rx chains. Given the relaxed latency requirements of most LPWA applications, time-division sharing of resources can be made largely transparent to applications. For more details, see [document \[1\]](#).

BG95-S5 is an industrial-grade module for industrial and commercial applications only.

Table 2: Basic Information

BG95-S5	
Packaging type	LGA
Pin counts	102
Dimensions	(23.6 ±0.2) mm × (19.9 ±0.2) mm × (2.2 ±0.2) mm
Weight	Approx. 2.15 g

2.1. Frequency Bands and Functions

Table 3: Frequency Bands and Functions

Model	Supported Bands	LTE Bands Power Class	GNSS
	Cat M1 ¹ :		
	LTE HD-FDD: B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/ B25/B26/B27/B28/B66/B85		GPS, GLONASS,
	Cat NB2 ² :		
BG95-S5	LTE HD-FDD: B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/ B25/B28/B66/B71/B85	Power Class 3 (23 dBm)	BDS, Galileo, QZSS
	EGPRS: GSM850/EGSM900/DCS1800/PCS1900		
	IoT-NTN: S-Band (B23/B256) / L-Band (B255)		

2.2. Key Features

Table 4: Key Features

Features	Details
Power Supply	<ul style="list-style-type: none"> ● Supply voltage: 3.3–4.3 V ● Typical supply voltage: 3.8 V
Transmitting Power	<p>IoT-NTN bands:</p> <ul style="list-style-type: none"> ● Class 3 (23 dBm -2/+2.7 dB) <p>LTE HD-FDD bands:</p> <ul style="list-style-type: none"> ● Class 3 (23 dBm ±2 dB) <p>GSM bands:</p> <ul style="list-style-type: none"> ● Class 4 (33 dBm ±2 dB) for GSM850 ● Class 4 (33 dBm ±2 dB) for EGSM900 ● Class 1 (30 dBm ±2 dB) for DCS1800 ● Class 1 (30 dBm ±2 dB) for PCS1900 ● Class E2 (27 dBm ±3 dB) for GSM850 8-PSK

¹ BG95-S5 module does not support VoLTE (Voice over LTE) under LTE Cat M1, and also not support CS voice under GSM.

² LTE Cat NB2 is backward compatible with LTE Cat NB1.

	<ul style="list-style-type: none"> ● Class E2 (27 dBm ± 3 dB) for EGSM900 8-PSK ● Class E2 (26 dBm ± 3 dB) for DCS1800 8-PSK ● Class E2 (26 dBm ± 3 dB) for PCS1900 8-PSK
LTE Features	<ul style="list-style-type: none"> ● Supports 3GPP Rel-14 ● Supports LTE Cat M1 and LTE Cat NB2 ● Supports 1.4 MHz RF bandwidth for LTE Cat M1 ● Supports 200 kHz RF bandwidth for LTE Cat NB2 ● Max. transmission data rates: Cat M1: 588 kbps (DL)/ 1119 kbps (UL) Cat NB2: 127 kbps (DL)/ 158.5 kbps (UL)
	GPRS: <ul style="list-style-type: none"> ● Supports GPRS multi-slot class 33 (33 by default) ● Coding scheme: CS 1–4 ● Max. 107 kbps (DL)/ Max. 85.6 kbps (UL)
	EDGE: <ul style="list-style-type: none"> ● Supports EDGE multi-slot class 33 (33 by default) ● Supports GMSK and 8-PSK for different MCS (Modulation and Coding Scheme) ● Downlink coding schemes: MCS 1–9 ● Uplink coding schemes: MCS 1–9 ● Max. 296 kbps (DL)/ Max. 236.8 kbps (UL)
IoT-NTN Features	<ul style="list-style-type: none"> ● Supports 3GPP Rel-17 ● Supports IoT-NTN ● Supports 200 kHz RF bandwidth for IoT-NTN
Internet Protocol Features	<ul style="list-style-type: none"> ● Supports PPP/TCP/UDP/SSL/TLS/FTP(S)/HTTP(S)/NITZ/PING/MQTT/LwM2M/CoAP/IPv6 protocols ● Supports PAP and CHAP for PPP connections
SMS	<ul style="list-style-type: none"> ● Text and PDU mode ● Point-to-point MO and MT ● SMS cell broadcast ● SMS storage: ME by default
(U)SIM Interface	Supports 1.8 V USIM/SIM card only
PCM Interface	Supports one digital audio interface: PCM interface ³
USB Interface	<ul style="list-style-type: none"> ● Compliant with USB 2.0 specification (slave only) ● Supports operations at high-speed, full-speed and low-speed modes ● Used for AT command communication, data transmission, GNSS NMEA sentences output, software debugging and firmware upgrade ● Supports USB serial drivers for Windows 8.1/10/11, Linux 2.6–6.7, Android 4.x–13.x

³ PCM interface is reserved for VoLTE or GSM CS voice. The VoLTE and GSM CS voice functions are not supported currently.

UART Interfaces	<p>Main UART Interface:</p> <ul style="list-style-type: none"> Used for data transmission and AT command communication 115200 bps by default The default frame format is 8N1 (8 data bits, no parity, 1 stop bit) Supports RTS and CTS hardware flow control <p>Debug UART Interface:</p> <ul style="list-style-type: none"> Used for software debugging and log output Supports 115200 bps <p>GNSS UART Interface:</p> <ul style="list-style-type: none"> Used for GNSS data and NMEA sentences output 115200 bps baud rate by default
GNSS Features	<ul style="list-style-type: none"> GPS, GLONASS, BDS, Galileo and QZSS 1 Hz data update rate by default
AT Commands	<ul style="list-style-type: none"> 3GPP TS 27.007 and 3GPP TS 27.005 AT commands Quectel enhanced AT commands
Network Indication	One NET_STATUS pin for network connectivity status indication
Antenna Interfaces	<ul style="list-style-type: none"> Main antenna interface (ANT_MAIN) GNSS antenna interface (ANT_GNSS)
Temperature Range	<ul style="list-style-type: none"> Operating temperature range: -35 to +75 °C ⁴ Extended temperature range: -40 to +85 °C ⁵ Storage temperature range: -40 to +90 °C
Firmware Upgrade	USB interface, DFOTA
RoHS	All hardware components are fully compliant with EU RoHS directive

2.3. Functional Diagram

The following figure shows the block diagram of BG95-S5 and the major functional parts.

- Power management
- Baseband
- Radio frequency
- Peripheral interfaces

⁴ Within the operating temperature range, the module meets 3GPP specifications.

⁵ Within the extended temperature range, the module remains the ability to establish and maintain functions such as SMS and data transmission, without any unrecoverable malfunction. Radio spectrum and radio network are not influenced, while one or more specifications, such as P_{out} , may exceed the specified tolerances of 3GPP. When the temperature returns to the operating temperature range, the module meets 3GPP specifications again.

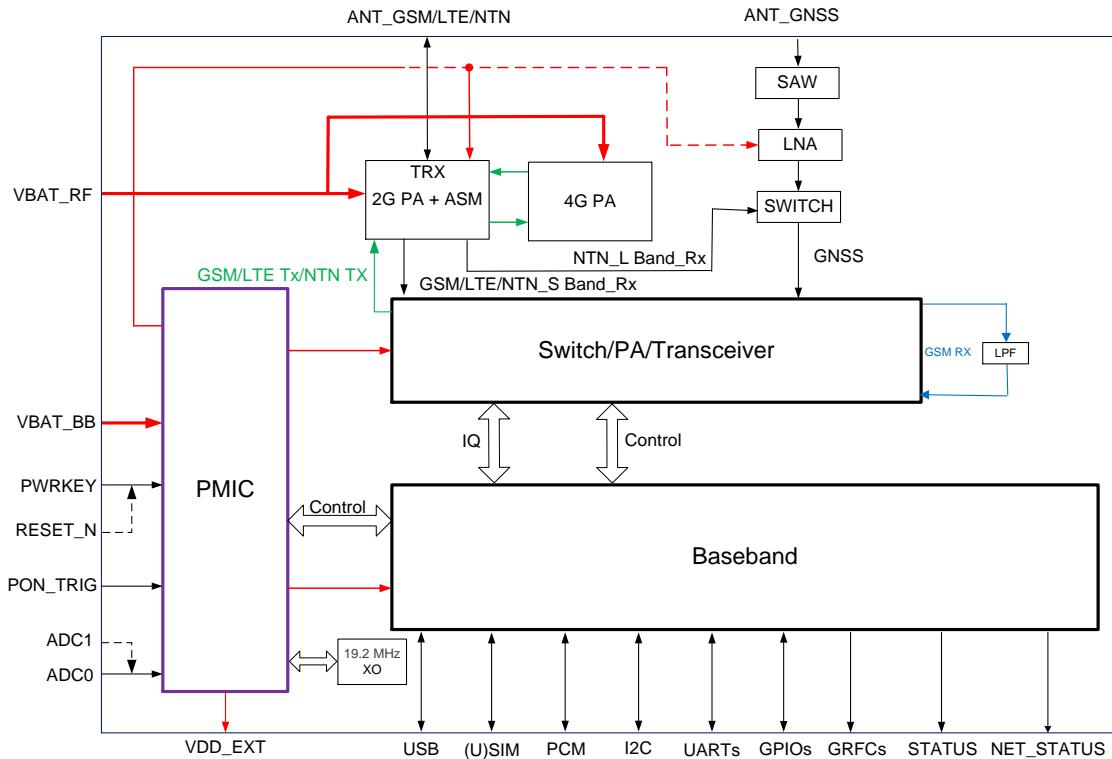


Figure 1: Functional Diagram of BG95-S5

NOTE

1. The output voltage of **PWRKEY** is 1.5 V because of the voltage drop inside the chipset. Due to platform limitations, the chipset has integrated the reset function into **PWRKEY**. Therefore, never pull down **PWRKEY** to GND permanently.
2. **RESET_N** connects directly to **PWRKEY** inside the module.
3. Do not use **ADC0** and **ADC1** simultaneously, as **ADC1** connects directly to **ADC0** inside the module. BG95-S5 supports the use of only one ADC interface at a time: either **ADC0** or **ADC1**.
4. GSM, LTE and IoT-NTN share the same antenna.

2.4. Pin Assignment

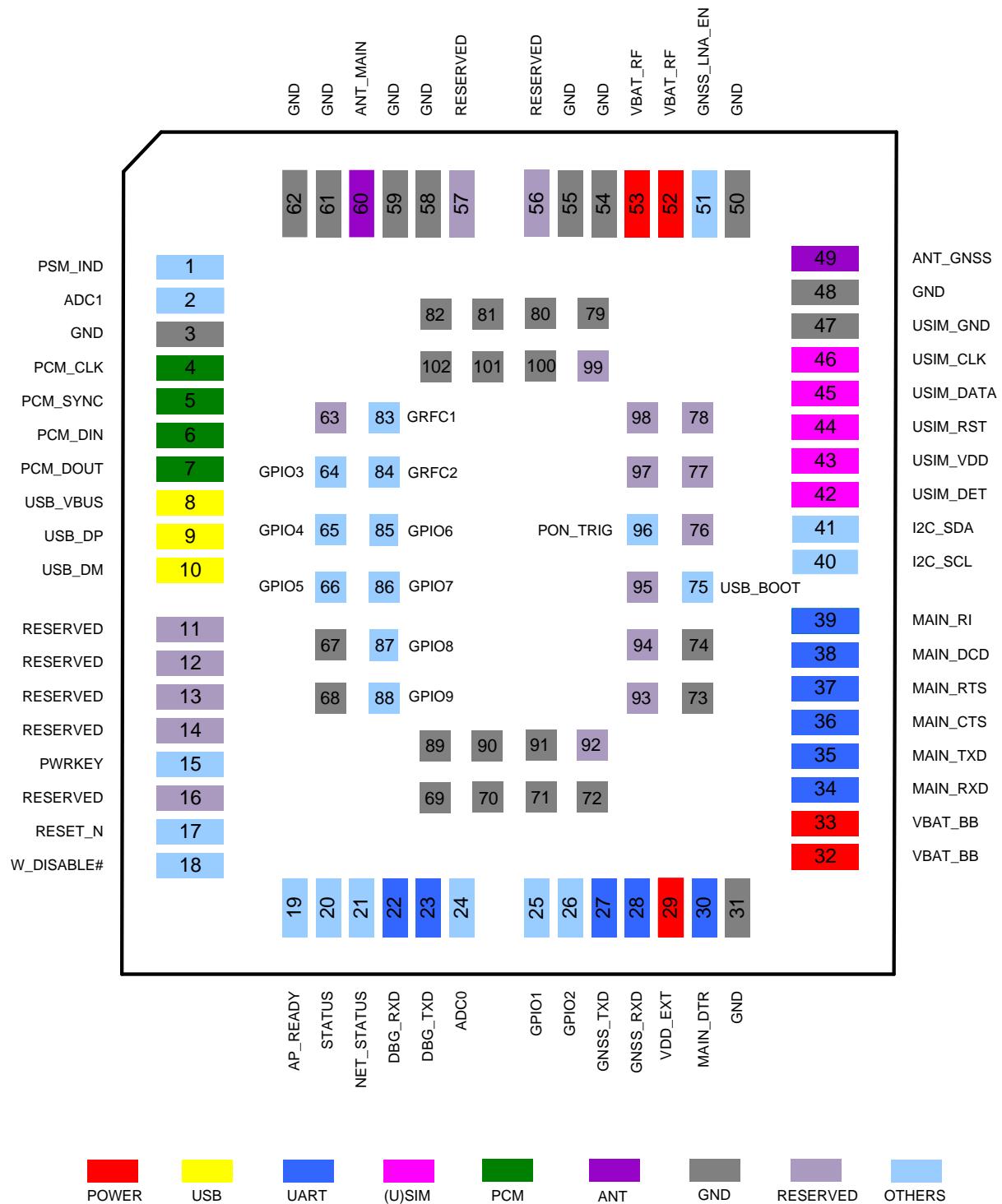


Figure 2: Pin Assignment (Top View)

NOTE

1. Do not use ADC0 and ADC1 simultaneously, as ADC1 connects directly to ADC0 inside the module. The module supports the use of only one ADC interface at a time: either ADC0 or ADC1.
2. The output voltage of PWRKEY is 1.5 V because of the voltage drop inside the chipset. Due to platform limitations, the chipset has integrated the reset function into PWRKEY. Therefore, never pull down PWRKEY to GND permanently.
3. RESET_N connects directly to PWRKEY inside the module.
4. GNSS_TXD (pin 27), GRFC2 (pin 84), GNSS_LNA_EN (pin 51) and GRFC1 (pin 83) are BOOT_CONFIG pins. Never pull them up before startup, otherwise the module cannot power on normally.
5. GPIO1 (pin 25) supports fast shutdown function. This function is disabled by default. See **Chapter 3.6** for more details.
6. PCM and I2C interfaces are reserved for VoLTE or GSM CS voice. The VoLTE and GSM CS voice functions are not supported currently.
7. Keep all RESERVED and unused pins unconnected.
8. Connect GND pins to the ground in the design.

2.5. Pin Definitions

Table 5: Definition of I/O Parameters

Type	Description
AI	Analog Input
AO	Analog Output
AIO	Analog Input/Output
DI	Digital Input
DIO	Digital Input/Output
DO	Digital Output
OD	Open Drain
PI	Power Input
PO	Power Output

DC characteristics include power domain and rated current.

Table 6: Pin Description

Power Supply					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
VBAT_BB	32, 33	PI	Power supply for the module's baseband part	Vmax = 4.3 V Vmin = 3.3 V Vnom = 3.8 V	
VBAT_RF	52, 53	PI	Power supply for the module's RF part		
VDD_EXT	29	PO	Provides 1.8 V for external circuits	Vnom = 1.8 V I _{omax} = 50 mA	If unused, keep this pin open.
GND	3, 31, 48, 50, 54, 55, 58, 59, 61, 62, 67–74, 79–82, 89–91, 100–102				
Turn-on/Turn-off the Module					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
PWRKEY	15	DI	Turn on/off the module	Vnom = 1.5 V V _{ILmax} = 0.45 V	Never pull down PWRKEY to GND permanently. The output voltage is 1.5 V because of the voltage drop inside the chipset.
Reset the Module					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
RESET_N	17	DI	Reset the module	Vnom = 1.5 V V _{ILmax} = 0.45 V	Multiplexed from PWRKEY (connects directly to PWRKEY inside the module). If unused, keep it open.
Status Indication Interfaces					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
PSM_IND ⁶	1	DO	Indicate the module's power	V _{OHmin} = 1.35 V V _{OLmax} = 0.45 V	1.8 V power domain. If unused, keep these

⁶ When PSM is enabled, the function of PSM_IND pin will be activated after the module is rebooted. When PSM_IND is in high voltage level, the module is in full functionality mode. When it is in low voltage level, the module is in PSM.

			saving mode		pins open.
STATUS	20	DO	Indicate the module's operation status		
NET_STATUS	21	DO	Indicate the module's network activity status		

PON_TRIG Interface

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
PON_TRIG	96	DI	Wake up the module from PSM		1.8 V power domain. Rising-edge triggered. Pulled-down by default. If unused, keep this pin open.

USB Interface

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
USB_VBUS	8	AI	USB connection detect	Vmax = 5.25 V Vmin = 4.0 V Vnom = 5.0 V	Typical 5.0 V
USB_DP	9	AIO	USB differential data (+)		Compliant with USB 2.0 standard
USB_DM	10	AIO	USB differential data (-)		specification. Require differential impedance of 90 Ω.

(U)SIM Interface

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
USIM_DET	42	DI	(U)SIM card hot-plug detect	V _{ILmin} = -0.3 V V _{ILmax} = 0.6 V V _{IHmin} = 1.2 V V _{IHmax} = 2.0 V	1.8 V power domain. If unused, keep this pin open.
USIM_VDD	43	PO	(U)SIM card power supply	Vmax = 1.9 V Vmin = 1.7 V	Only 1.8 V (U)SIM card is supported.
USIM_RST	44	DO	(U)SIM card reset	V _{OLmax} = 0.45 V V _{OHmin} = 1.35 V	1.8 V power domain.
USIM_DATA	45	DIO	(U)SIM card data	V _{ILmin} = -0.3 V V _{ILmax} = 0.6 V V _{IHmin} = 1.2 V	1.8 V power domain.

				$V_{IH\max} = 2.0 \text{ V}$ $V_{OL\max} = 0.45 \text{ V}$ $V_{OH\min} = 1.35 \text{ V}$	
USIM_CLK	46	DO	(U)SIM card clock	$V_{OL\max} = 0.45 \text{ V}$ $V_{OH\min} = 1.35 \text{ V}$	1.8 V power domain.
USIM_GND	47		Specified ground for (U)SIM card		

Main UART

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
MAIN_DTR	30	DI	Main UART data terminal ready	$V_{IL\min} = -0.3 \text{ V}$ $V_{IL\max} = 0.6 \text{ V}$	
MAIN_RXD	34	DI	Main UART receive	$V_{IH\min} = 1.2 \text{ V}$ $V_{IH\max} = 2.0 \text{ V}$	1.8 V power domain. If unused, keep these pins open.
MAIN_TXD	35	DO	Main UART transmit		
MAIN_CTS	36	DO	Clear to send signal from the module	$V_{OL\max} = 0.45 \text{ V}$ $V_{OH\min} = 1.35 \text{ V}$	Connect to the MCU's CTS. 1.8 V power domain. If unused, keep the pin open.
MAIN_RTS	37	DI	Request to send signal to the module	$V_{IL\min} = -0.3 \text{ V}$ $V_{IL\max} = 0.6 \text{ V}$ $V_{IH\min} = 1.2 \text{ V}$ $V_{IH\max} = 2.0 \text{ V}$	Connect to the MCU's RTS. 1.8 V power domain. If unused, keep the pin open.
MAIN_DCD	38	DO	Main UART data carrier detect	$V_{OL\max} = 0.45 \text{ V}$ $V_{OH\min} = 1.35 \text{ V}$	1.8 V power domain. If unused, keep these pins open.
MAIN_RI	39	DO	Main UART ring indication		

Debug UART

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
DBG_RXD	22	DI	Debug UART receive	$V_{IL\min} = -0.3 \text{ V}$ $V_{IL\max} = 0.6 \text{ V}$ $V_{IH\min} = 1.2 \text{ V}$ $V_{IH\max} = 2.0 \text{ V}$	1.8 V power domain. If unused, keep these pins open.
DBG_TXD	23	DO	Debug UART transmit	$V_{OL\max} = 0.45 \text{ V}$ $V_{OH\min} = 1.35 \text{ V}$	

GNSS UART

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment

GNSS_TXD	27	DO	GNSS UART transmit	$V_{OLmax} = 0.45\text{ V}$ $V_{OHmin} = 1.35\text{ V}$	BOOT_CONFIG. Do not pull it up before startup. 1.8 V power domain. If unused, keep this pin open.
GNSS_RXD	28	DI	GNSS UART receive	$V_{ILmin} = -0.3\text{ V}$ $V_{ILmax} = 0.6\text{ V}$ $V_{IHmin} = 1.2\text{ V}$ $V_{IHmax} = 2.0\text{ V}$	1.8 V power domain. If unused, keep this pin open.

PCM Interface⁷

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
PCM_CLK	4	DO	PCM clock	$V_{OLmax} = 0.45\text{ V}$	
PCM_SYNC	5	DO	PCM data frame sync	$V_{OHmin} = 1.35\text{ V}$	
PCM_DIN	6	DI	PCM data input	$V_{ILmin} = -0.3\text{ V}$ $V_{ILmax} = 0.6\text{ V}$ $V_{IHmin} = 1.2\text{ V}$ $V_{IHmax} = 2.0\text{ V}$	1.8 V power domain. If unused, keep these pins open.
PCM_DOUT	7	DO	PCM data output	$V_{OLmax} = 0.45\text{ V}$ $V_{OHmin} = 1.35\text{ V}$	

I2C Interface⁷

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
I2C_SCL	40	OD	I2C serial clock (for external codec)		External pull-up resistor is required. 1.8 V only.
I2C_SDA	41	OD	I2C serial data (for external codec)		If unused, keep these pins open.

Antenna Interfaces

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
ANT_MAIN	60	AIO	Main antenna interface		50 Ω impedance
ANT_GNSS	49	AI	GNSS antenna interface		50 Ω impedance. If unused, keep this pin open.

⁷ PCM and I2C interfaces are reserved for VoLTE or GSM CS voice. The VoLTE and GSM CS voice functions of PCM and I2C interfaces are not supported currently.

GPIO Interfaces

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
GPIO1 ⁸	25				
GPIO2	26				
GPIO3	64				
GPIO4	65			$V_{OLmax} = 0.45\text{ V}$ $V_{OHmin} = 1.35\text{ V}$	
GPIO5	66	DIO	General-purpose input/output	$V_{ILmin} = -0.3\text{ V}$ $V_{ILmax} = 0.6\text{ V}$ $V_{IHmin} = 1.2\text{ V}$ $V_{IHmax} = 2.0\text{ V}$	1.8 V power domain. If unused, keep this pin open.
GPIO6	85				
GPIO7	86				
GPIO8	87				
GPIO9	88				

ADC Interfaces

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
ADC0	24	AI			Do not use ADC0 and ADC1 simultaneously, as ADC1 connects directly to ADC0 inside the module.
ADC1	2	AI	General-purpose ADC interface	Voltage range: 0.1–1.8 V	If unused, keep these pins open.

Other Interfaces

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
W_DISABLE#	18	DI	Airplane mode control	$V_{ILmin} = -0.3\text{ V}$ $V_{ILmax} = 0.6\text{ V}$ $V_{IHmin} = 1.2\text{ V}$ $V_{IHmax} = 2.0\text{ V}$	1.8 V power domain. Pulled up by default. When it is in low voltage level, the module can enter airplane mode. If unused, keep this pin open.
AP_READY	19	DI	Application processor ready	$V_{ILmin} = -0.3\text{ V}$ $V_{ILmax} = 0.6\text{ V}$	1.8 V power domain. If unused, keep this pin

⁸ This pin is GPIO by default, which can be multiplexed into fast shutdown interface (see **Chapter 3.6** for details).

				$V_{IHmin} = 1.2 \text{ V}$	open.
				$V_{IHmax} = 2.0 \text{ V}$	
USB_BOOT	75	DI	Force the module into emergency download mode		1.8 V power domain.
GNSS_LNA_EN	51	DO	External LNA enable control	$V_{OLmax} = 0.45 \text{ V}$ $V_{OHmin} = 1.35 \text{ V}$	BOOT_CONFIG. Do not pull it up before startup. 1.8 V power domain. If unused, keep this pin open.

GRFC Interfaces

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
GRFC1	83	DO	Generic RF controller	$V_{OLmax} = 0.45 \text{ V}$ $V_{OHmin} = 1.35 \text{ V}$	BOOT_CONFIG. Do not pull it up before startup.
GRFC2	84	DO	Generic RF controller	$V_{OLmax} = 0.45 \text{ V}$ $V_{OHmin} = 1.35 \text{ V}$	1.8 V power domain. If unused, keep these pins open.

RESERVED Pins

Pin Name	Pin No.	Comment
RESERVED	11–14, 16, 56, 57, 63, 76–78, 92–95, 97–99	Keep these pins open.

2.6. EVB Kit

Quectel supplies an evaluation board (UMTS<E EVB) with accessories to develop and test the module. For more details, see **document [2]**.

3 Operating Characteristics

3.1. Operating Modes

Table 7: Operating Modes of BG95-S5 Module

Mode	Details
Full Functionality Mode	Connected The module connects to network. Its power consumption varies with the network setting and data transfer rate.
	Idle The module remains registered on network, and is ready to send and receive data. In this mode, the software is active.
Extended Idle Mode DRX (e-I-DRX)	The module and the network may negotiate over non-access stratum signaling the use of e-I-DRX for reducing power consumption, while being available for mobile terminating data and/or network originated procedures within a certain delay dependent on the DRX cycle value.
Airplane Mode	AT+CFUN=4 or W_DISABLE# pin can set the module into airplane mode where the RF function is invalid.
Minimum Functionality Mode	AT+CFUN=0 can set the module into a minimum functionality mode without removing the power supply. In this mode, both RF function and (U)SIM card are invalid.
Sleep Mode	The module remains the ability to receive paging message, SMS and TCP/UDP data from the network normally. In this mode, the power consumption reduces to a low level.
Power OFF Mode	The module's power supply is shut down by its power management unit. In this mode, the software is inactive, the serial interfaces are inaccessible, while the operating voltage (connected to VBAT_RF and VBAT_BB) remains applied.
Power Saving Mode (PSM)	PSM is similar to power-off, but the module remains registered on the network and there is no need to re-attach or re-establish PDN connections. The power consumption reduces to a minimized level.

NOTE

During e-I-DRX, it is recommended to use UART for data communication, as the use of USB interface increases power consumption.

3.2. Power Saving

3.2.1. Airplane Mode

When the module enters airplane mode, the RF function does not work, and all AT commands correlative with RF function are inaccessible. This mode can be set via the following methods.

Hardware:

W_DISABLE# is pulled up by default. Driving it low makes the module enter airplane mode.

Software:

AT+CFUN=<fun> provides choice of the functionality level via setting **<fun>** to 0, 1 or 4.

- **AT+CFUN=0**: Minimum functionality mode. Both (U)SIM and RF functions are disabled.
- **AT+CFUN=1**: Full functionality mode (by default).
- **AT+CFUN=4**: Airplane mode. RF function is disabled.

NOTE

1. Airplane mode control via W_DISABLE# is disabled in firmware by default. It can be enabled by **AT+QCFG="airplanecontrol"**. For details of the command, see **document [4]**.
2. The execution of **AT+CFUN** (see **document [3]**) will not affect GNSS function.

3.2.2. Power Saving Mode (PSM)

The module minimizes its power consumption through entering PSM. PSM mode is similar to power-off, but the module remains registered on the network and there is no need to re-attach or re-establish PDN connections. Therefore, the module in PSM cannot immediately respond to your requests.

When the module wants to use the PSM, it shall request an Active Time value during every Attach and TAU procedures. If the network supports PSM and accepts that the module uses PSM, the network confirms usage of PSM by allocating an Active Time value to the module. If the module wants to change the Active Time value, e.g., the module requests the value it wants in the TAU procedure.

If PSM is supported by the network, then it can be enabled via **AT+CPSMS**. See *document [3]* for details about the AT command.

Any of the following methods can wake up the module from PSM:

- Wake up the module from PSM through a rising edge on PON_TRIG. (Recommended)
- Wake up the module by driving PWRKEY low.
- When the TAU timer expires, the module wakes up from PSM automatically.

3.2.3. Extended Idle Mode DRX (e-I-DRX)

The module (UE) and the network may negotiate over non-access stratum signalling the use of e-I-DRX for reducing its power consumption, while being available for mobile terminating data and/or network originated procedures within a certain delay dependent on the DRX cycle value.

Applications that want to use e-I-DRX need to consider specific handling of mobile terminating services or data transfers, and in particular they need to consider the delay tolerance of mobile terminated data.

In order to negotiate the use of e-I-DRX, the UE requests e-I-DRX parameters during attach procedure and RAU/TAU procedure. The EPC may reject or accept the UE request for enabling e-I-DRX. In case the EPC accepts e-I-DRX, the EPC based on operator policies and, if available, the e-I-DRX cycle length value in the subscription data from the HSS, may also provide different values of the e-I-DRX parameters than what were requested by the UE. If the EPC accepts the use of e-I-DRX, the UE applies e-I-DRX based on the received e-I-DRX parameters. If the UE does not receive e-I-DRX parameters in the relevant accept message because the EPC rejected its request or because the request was received by EPC not supporting e-I-DRX, the UE shall apply its regular discontinuous reception.

If e-I-DRX is supported by the network, then it can be enabled by **AT+CEDRXS=1**. See *document [3]* for details about the AT command.

3.2.4. Sleep Mode

The module reduces its current consumption to a low level during sleep mode. The following sub-chapters describe the power saving procedure of the module.

3.2.4.1. UART Interface Application

If the MCU communicates with the module via UART interface, the following preconditions enable the module to enter sleep mode.

- Execute **AT+QSCLK=1** (see *document [3]*) to enable sleep mode.
- Drive MAIN_DTR high.

The following figure shows the connection between the module and the MCU.

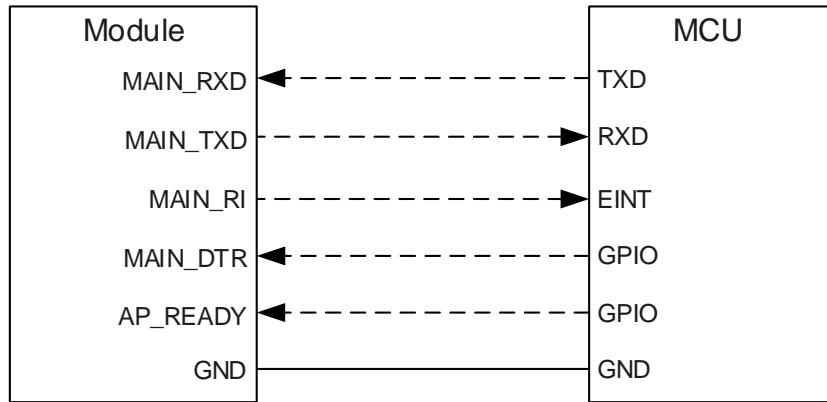


Figure 3: Sleep Mode Application via UART Interface

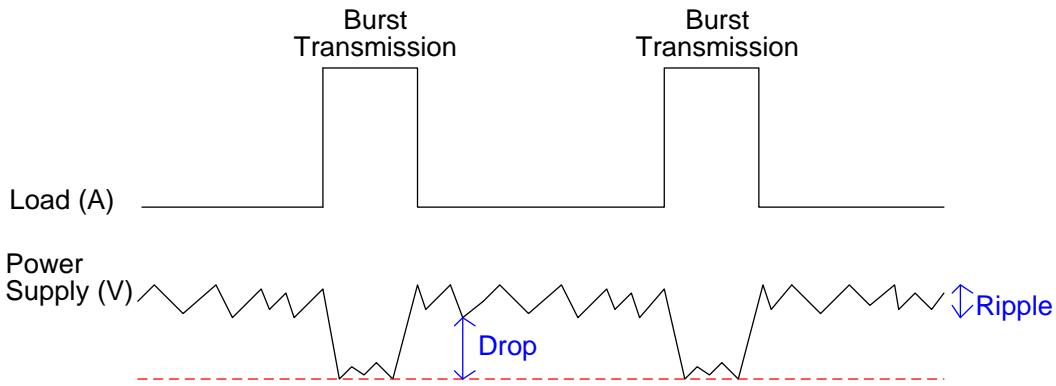
- When the module has a URC to report, MAIN_RI will wake up the MCU. See [Chapter 4.7.3](#) for details about MAIN_RI behavior.
- Driving MAIN_DTR low will wake up the module.
- AP_READY detects the sleep state of the MCU (can be configured into high-level or low-level detection). See **AT+QCFG="already"** in [document \[4\]](#) for details.

3.3. Power Supply

3.3.1. Power Supply Interface

BG95-S5 provides the following four VBAT pins for connection with an external power supply. There are two separate voltage domains for VBAT.

- Two VBAT_RF pins for the module's RF part.
- Two VBAT_BB pins for the module's baseband part.


Table 8: VBAT and GND Pins

Pin Name	Pin No.	IO	Description	Min.	Typ.	Max.	Unit
VBAT_RF	52, 53	PI	Power supply for the module's RF part	3.3	3.8	4.3	V
VBAT_BB	32, 33	PI	Power supply for the module's baseband part	3.3	3.8	4.3	V
GND	3, 31, 48, 50, 54, 55, 58, 59, 61, 62, 67–74, 79–82, 89–91, 100–102						

3.3.2. Voltage Stability Requirements

The power supply range of the module is 3.3–4.3 V. Ensure the input voltage never drops below 3.3 V.

The following figure shows the voltage drop during burst transmission in 2G network of BG95-S5. The voltage drop is less in LTE Cat M1 and/or LTE Cat NB2 networks.

Figure 4: Power Supply Limits During Burst Transmission

To decrease voltage-drop, bypass capacitors of about 100 μ F with low ESR should be used, and multi-layer ceramic chip capacitor (MLCC) arrays should also be reserved due to their low ESR. Use seven ceramic capacitors (220 nF, 47 nF, 150 pF, 100 pF, 68 pF, 33 pF, 10 pF) to compose the MLCC array for VBAT_BB, three ceramic capacitors (100 nF, 33 pF, 10 pF) to compose the MLCC array for VBAT_RF, and place these capacitors close to VBAT pins. The main power supply from an external application has to be a single voltage source and can be expanded to two sub paths with star structure. The width of VBAT_BB trace should be not less than 0.6 mm, and the width of VBAT_RF trace should be not less than 2.7 mm. The longer the VBAT trace is, the wider it should be.

To get a stable power source, it is suggested to use two TVS components with low leakage current and suitable reverse stand-off voltage, and it is recommended to place them as close as possible to the VBAT pins.

In addition, route VBAT_BB and VBAT_RF traces in inner-layer of the PCB, and place a ferrite bead as close to VBAT_BB as possible. Follow the criteria below for ferrite bead selection:

- Current rating \geq 600 mA and low DC resistance to avoid voltage drop during instantaneous high power consumption.
- $\geq 800 \Omega$ impedance @ 700–960 MHz.

The following magnetic bead models are for reference: BLM18HE601SN1 and BLM18DN381SN1 are produced by Murata; MPZ1005A331E is produced by TDK.

The following figure shows the star structure of the power supply.

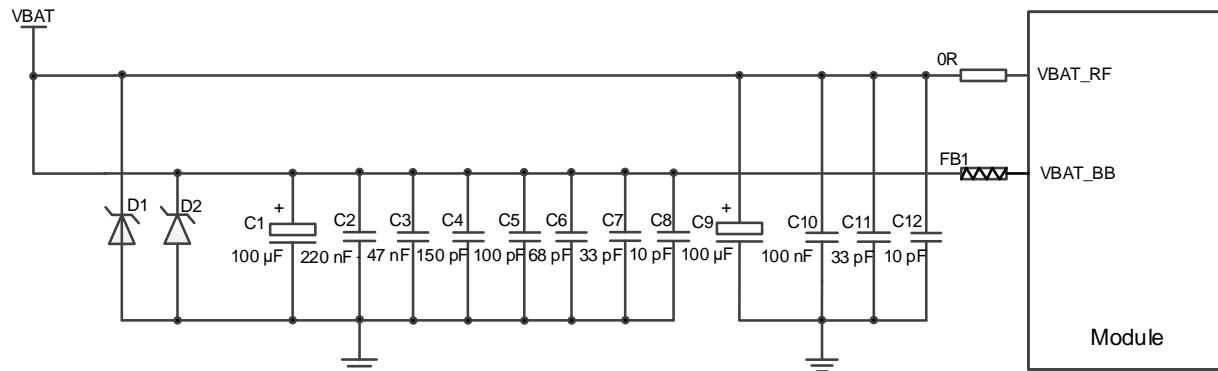


Figure 5: Star Structure of the Power Supply

If only LTE Cat M1 and/or Cat NB2 networks are used, it is recommended to select a DC-DC converter chip or LDO chip with ultra-low leakage current and current output not less than 1.0 A for the power supply design.

If LTE Cat M1, Cat NB2, EGPRS and IoT-NTN networks are all used, the current output of DC-DC converter chip or LDO chip should exceed 2.7 A and power supply chips with low leakage current should be adopted because the module needs higher current in GSM network data transmission. For more details about supported bands of each module model, see **Table 3**.

3.3.3. Power Supply Voltage Monitoring

AT+CBC monitors the VBAT_BB voltage value. For more details, see **document [3]**.

3.4. Turn-on

3.4.1. Turn-on with PWRKEY

Table 9: Pin Definition of PWRKEY

Pin Name	Pin No.	I/O	Description	Comment
PWRKEY	15	DI	Turn on/off the module	Never pull down PWRKEY to GND permanently. The output voltage is 1.5 V because of the voltage drop inside the chipset.

The module can be turned on by driving PWRKEY low for 500–1000 ms. It is recommended to use an open drain/collector driver to control the PWRKEY.

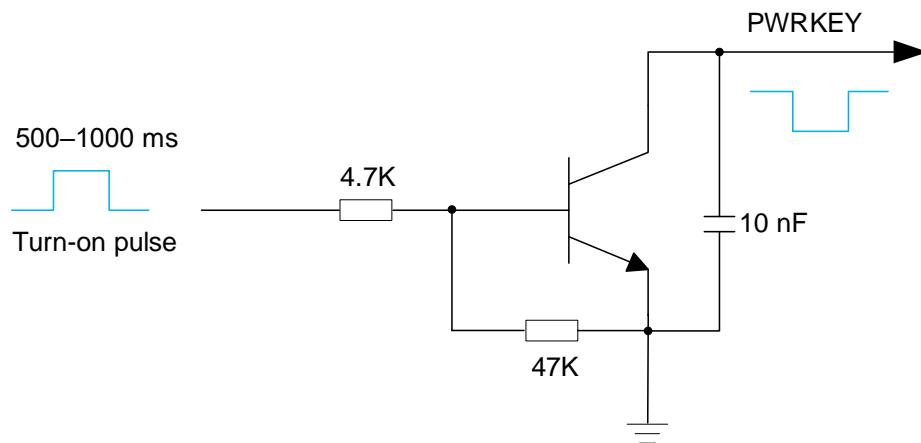


Figure 6: Turn On the Module with a Driver Circuit

Another way to control the PWRKEY is using a push button. As electrostatic strike may be generated from the finger touching when the button is pressed, a TVS component is indispensable to be placed near the button for ESD protection. A reference circuit is illustrated in the following figure.

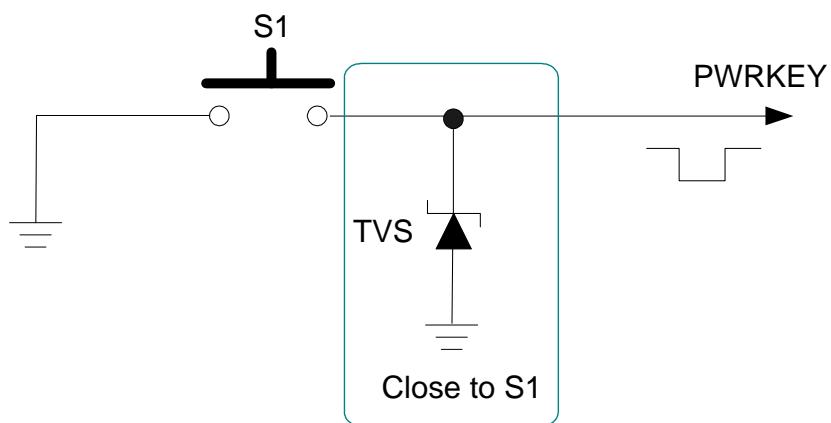


Figure 7: Turn On the Module with a Push Button

The power-up timing is illustrated in the following figure.

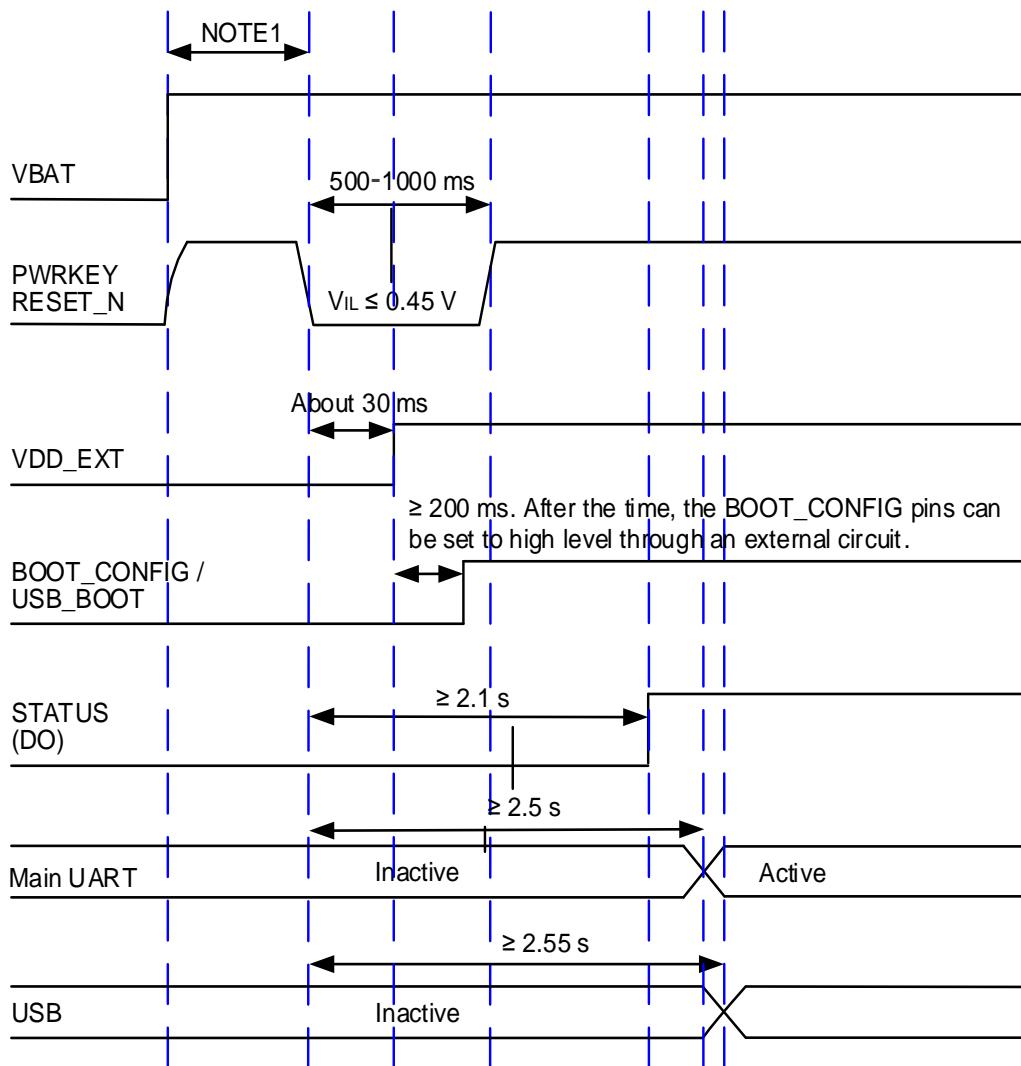


Figure 8: Power-up Timing

NOTE

1. Ensure that VBAT is stable before pulling down PWRKEY and keep the interval not less than 30 ms.
2. The output voltage of PWRKEY is 1.5 V because of the voltage drop inside the chipset. Due to platform limitations, the chipset has integrated the reset function into PWRKEY. Therefore, never pull down PWRKEY to GND permanently.

3.5. Turn-off

Either of the following methods can be used to turn off the module:

- with PWRKEY
- with AT+QPOWD

3.5.1. Turn-off with PWRKEY

Driving PWRKEY low for 650–1500 ms and then releasing it, the module will execute power-down procedure.

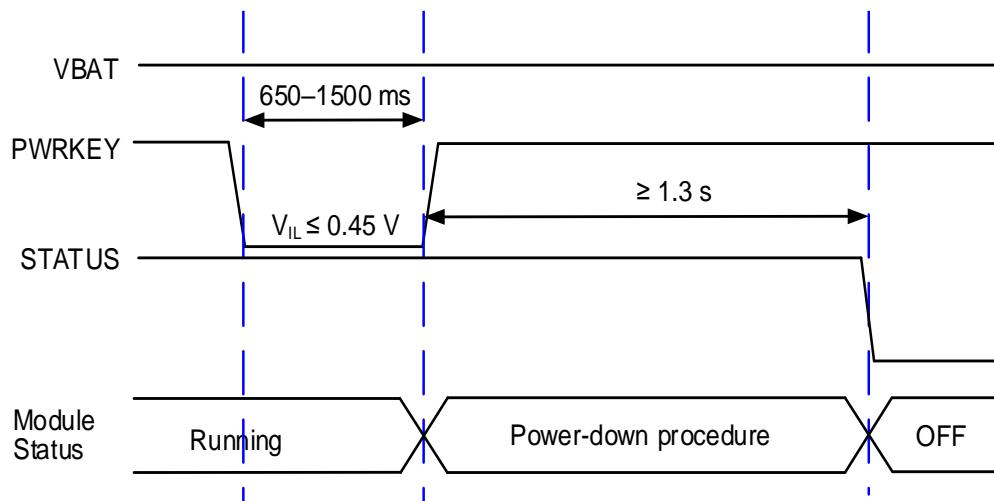


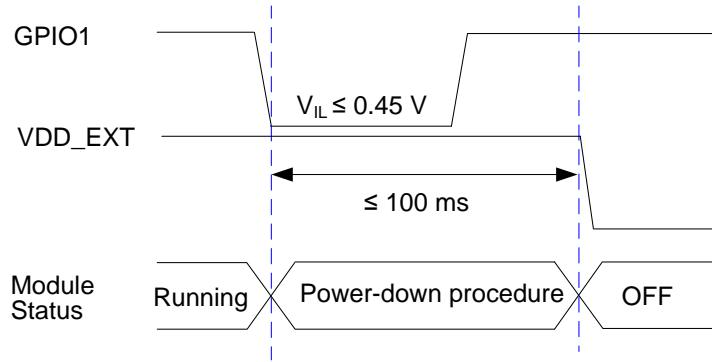
Figure 9: Power-down Timing

3.5.2. Turn-off with AT Command

It is also a safe way to execute **AT+QPOWD** to turn off the module, which is similar to turning off the module with PWRKEY. See [document \[3\]](#) for details about **AT+QPOWD**.

NOTE

1. To avoid corrupting the data in the internal flash, do not switch off the power supply when the module is working. Only after the module is shut down with PWRKEY, fast shutdown function or AT command can the power supply be cut off.
2. While turning off the module with AT command, keep PWRKEY at high level after the execution of turn-off command, otherwise the module will be turned on again after it turns off.
3. It is recommended to judge whether the module has been shut down based on the state of STATUS.


3.6. Fast Shutdown

The module supports fast shutdown function through GPIO1 (pin 25). When the pin detects a falling edge, the module powers off within 100 ms without damaging the file system, but the writing data may be lost. Fast shutdown is disabled by default.

For more details, see **AT+QCFG="fast/poweroff"** in *document [4]*.

Table 10: Pin Definition of Fast Shutdown Interface

Pin Name	Pin No.	I/O	Description	Comment
GPIO1 ⁹	25	DI	When the pin detects a falling edge, the module powers off	Falling-edge triggered. Pulled-up by default. 1.8 V power domain.

Figure 10: Fast Shutdown Timing

3.7. Reset

RESET_N works to reset the module. Due to platform limitations, the chipset has integrated the reset function into PWRKEY, and RESET_N connects directly to PWRKEY inside the module.

⁹ Pin 25 is a general-purpose IO by default. It can be multiplexed into fast shutdown interface with **AT+QCFG="fast/poweroff"**.

Table 11: Pin Definition of RESET_N

Pin Name	Pin No.	I/O	Description	Comment
RESET_N	17	DI	Reset the module	Multiplexed from PWRKEY.

The module can be reset by driving RESET_N low for 2–3.8 s.

The recommended circuit is similar to the PWRKEY control circuit. An open drain/collector driver or a button can be used to control RESET_N.

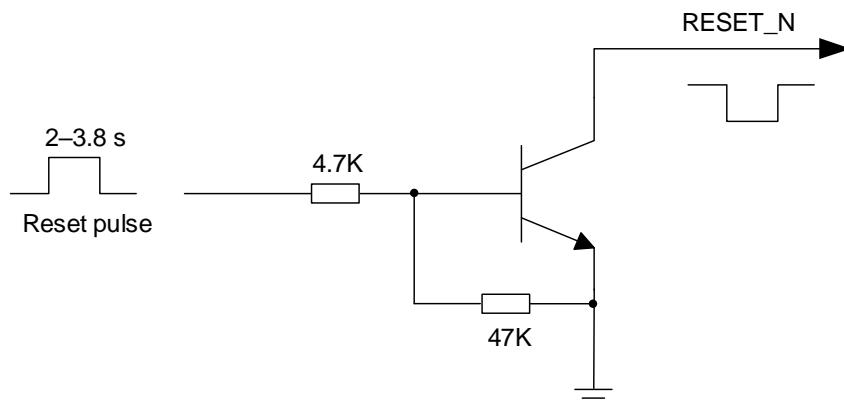


Figure 11: Reference Design of RESET_N with a Driver Circuit

Another way to control the RESET_N is to use a push button.

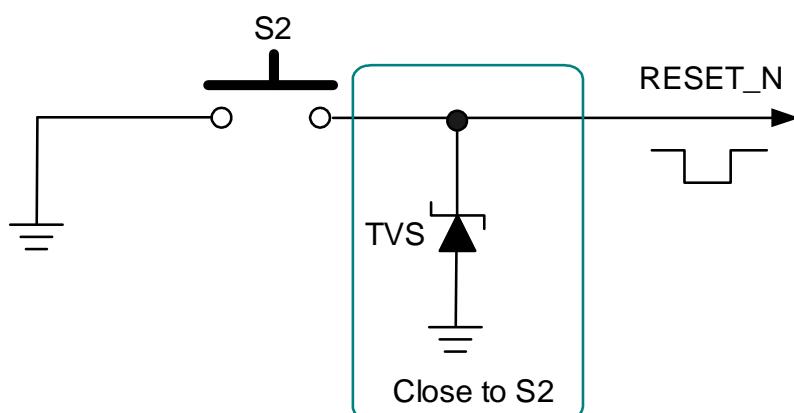


Figure 12: Reference Design of RESET_N with a Push Button

The reset timing is illustrated in the following figure.

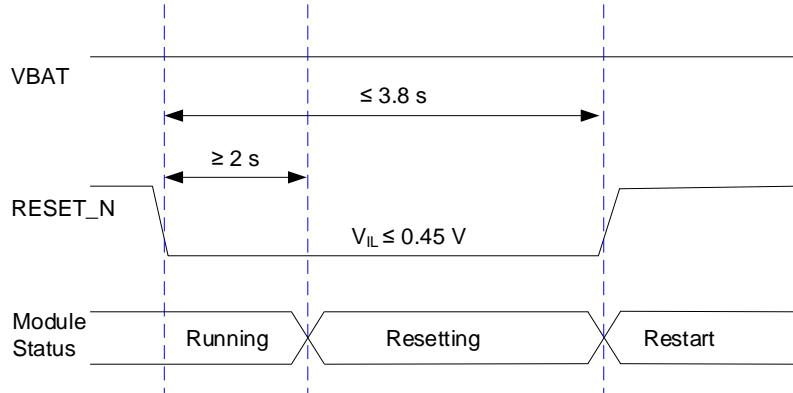


Figure 13: Reset Timing

NOTE

Ensure that there is no large capacitance on **RESET_N**.

3.8. PON_TRIG Interface

The module provides one **PON_TRIG** pin which is used to wake up the module from PSM. When the pin detects a rising edge and keeps at high level for at least 30 ms, the module wakes up from PSM.

Table 12: Pin Definition of **PON_TRIG** Interface

Pin Name	Pin No.	I/O	Description	Comment
PON_TRIG	96	DI	Wake up the module from PSM	Rising-edge triggered. Pulled-down by default. 1.8 V power domain. If unused, keep this pin open.

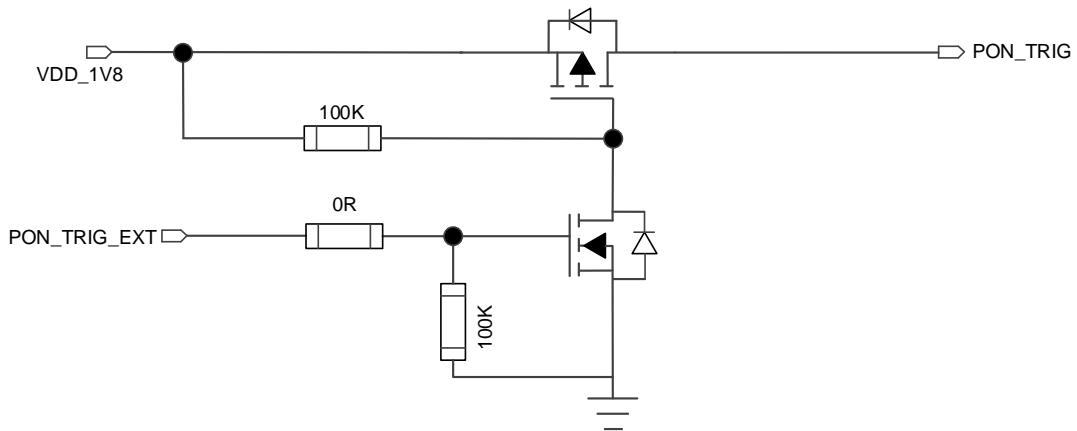


Figure 14: Reference Design of PON_TRIG

NOTE

VDD_1V8 is provided by an external LDO.

4 Application Interfaces

4.1. USB Interface

The module provides one integrated Universal Serial Bus (USB) interface which complies with the USB 2.0 specification and supports operation at low-speed (1.5 Mbps), full-speed (12 Mbps) and high-speed (480 Mbps) modes.

The USB interface is used for AT command communication, data transmission¹⁰, GNSS NMEA sentences output, software debugging and firmware upgrade. The following table shows the pin definition of USB interface.

Table 13: Pin Definition of USB Interface

Pin Name	Pin No.	I/O	Description	Comment
USB_VBUS	8	AI	USB connection detect	Typical 5.0 V
USB_DP	9	AIO	USB differential data (+)	Require differential impedance of 90 Ω.
USB_DM	10	AIO	USB differential data (-)	
GND	3	-	Ground	

For more details about USB 2.0 specification, visit <https://www.usb.org/home>.

The USB interface is recommended to be reserved for firmware upgrade and software debugging in application designs. The following figure shows a reference design of USB interface.

¹⁰ It is not recommended to use USB for data communication, as this will increase the power consumption.

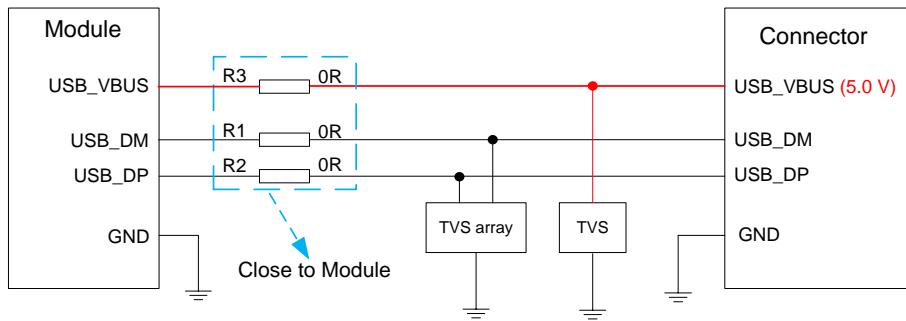


Figure 15: Reference Design of USB Interface

To ensure the integrity of USB data trace signal, resistors should be placed close to the module, and also these resistors should be placed close to each other. The extra stubs of trace must be as short as possible.

To meet USB 2.0 specification, comply with the following principles while designing the USB interface.

- It is important to route the USB signal traces as differential pairs with ground surrounded. The impedance of USB differential trace is $90\ \Omega$.
- Do not route signal traces under crystals, oscillators, magnetic devices and RF signal traces. It is important to route the USB differential traces in inner-layer of the PCB, and surround the traces with ground on that layer and with ground planes above and below.
- Junction capacitance of the ESD protection components might cause influences on USB data traces, so pay attention to the selection of the components. Typically, the stray capacitance should be less than $2\ pF$.
- Keep TVS components as close to the USB connector as possible.

NOTE

The USB interface supports slave mode only.

4.2. USB_BOOT

The module provides a USB_BOOT pin. During development or factory production, USB_BOOT can force the module to boot from USB interface for firmware upgrade.

Table 14: Pin Definition of USB_BOOT Interface

Pin Name	Pin No.	I/O	Description	Comment
USB_BOOT	75	DI	Force the module into download mode.	1.8 V power domain. Active high. If unused, keep it open.

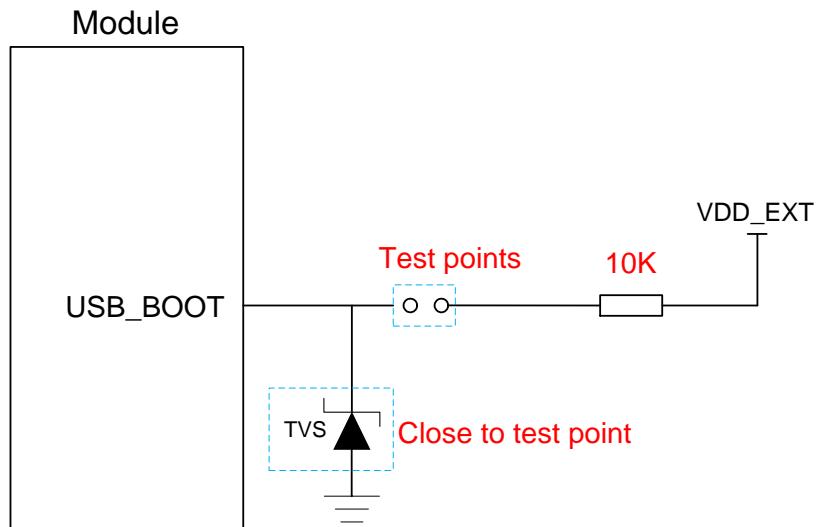


Figure 16: Reference Design of USB_BOOT Interface

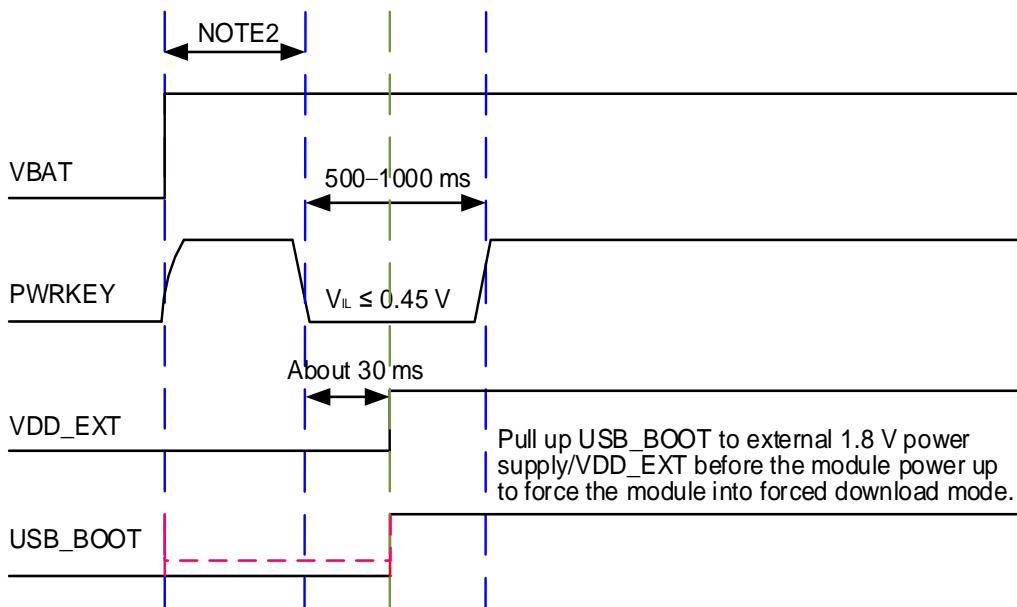


Figure 17: Timing for Turning on the Module with USB_BOOT

NOTE

1. It is recommended to reserve the above circuit design during application design.
2. Ensure that VBAT is stable before pulling down PWRKEY. It is recommended that the time difference between powering up VBAT and pulling down PWRKEY is not less than 30 ms.
3. When using MCU to control the module entering forced download mode, follow the above timing. Connecting the test points as shown in **Figure 16** can manually force the module to enter download mode.

4.3. (U)SIM Interface

The module supports 1.8 V (U)SIM card only. The (U)SIM interface circuit meets ETSI and IMT-2000 requirements.

Table 15: Pin Definition of (U)SIM Interface

Pin Name	Pin No.	I/O	Description	Comment
USIM_DET	42	DI	(U)SIM card hot-plug detect	1.8 V power domain. If unused, keep this pin open.
USIM_VDD	43	PO	(U)SIM card power supply	Only 1.8 V (U)SIM card is supported.
USIM_RST	44	DO	(U)SIM card reset	
USIM_DATA	45	DIO	(U)SIM card data	1.8 V power domain.
USIM_CLK	46	DO	(U)SIM card clock	
USIM_GND	47		Specified ground for (U)SIM card	

The module supports (U)SIM card hot-plug via the USIM_DET pin, and both high-level and low-level detections are supported. The function is disabled by default, and see **AT+QSIMDET** in **document [3]** for more details.

The following figure shows a reference design of (U)SIM interface with an 8-pin (U)SIM card connector.

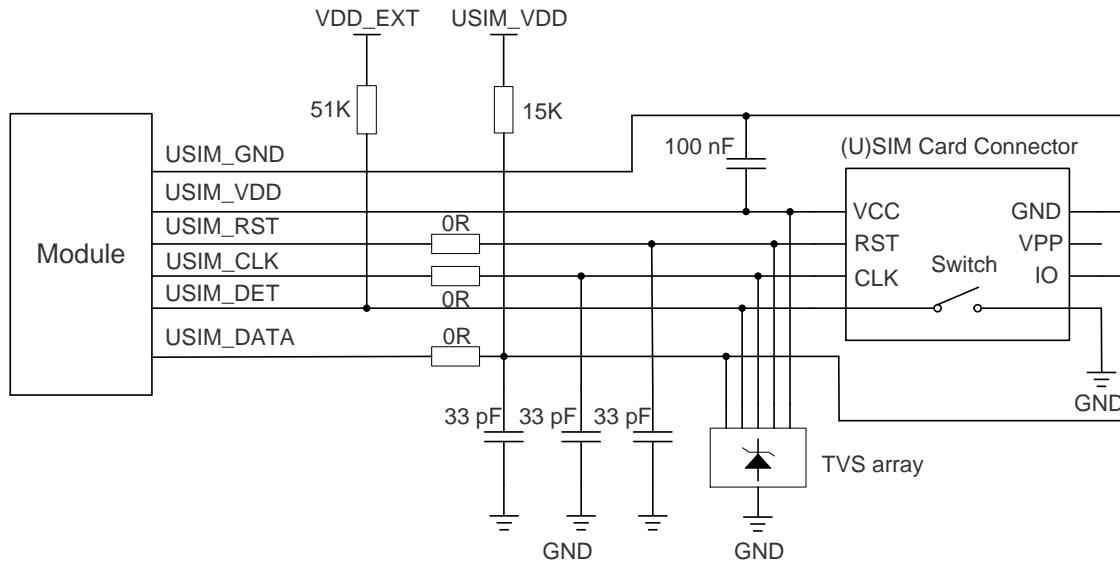


Figure 18: Reference Design of (U)SIM Interface with an 8-Pin (U)SIM Card Connector

If (U)SIM card detection function is not needed, keep USIM_DET unconnected. A reference circuit for (U)SIM interface with a 6-pin (U)SIM card connector is illustrated in the following figure.

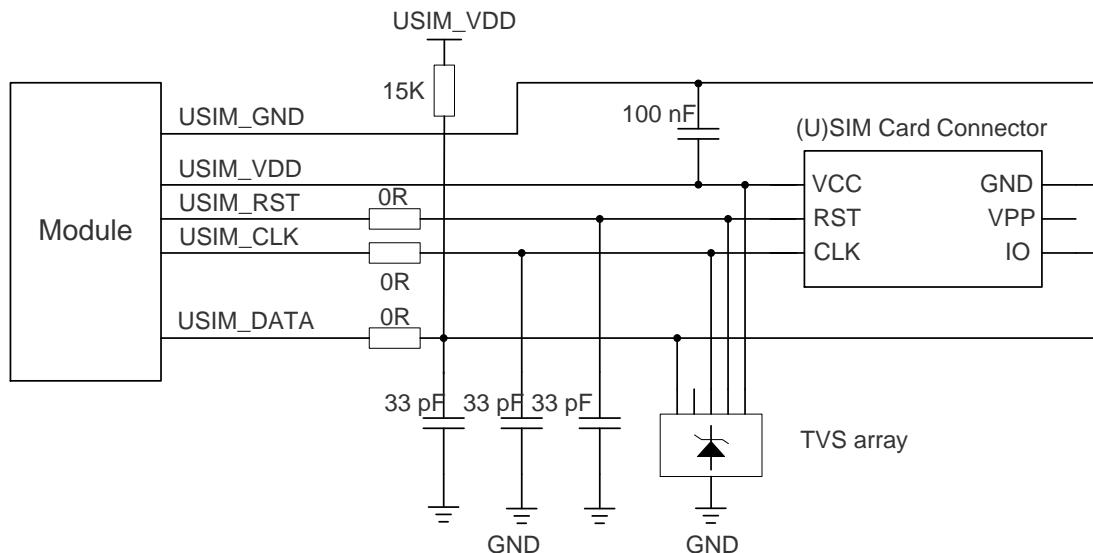


Figure 19: Reference Design of (U)SIM Interface with a 6-Pin (U)SIM Card Connector

To enhance the reliability and availability of the (U)SIM card in applications, follow the criteria below in (U)SIM circuit design:

- Keep the placement of (U)SIM card connector as close to the module as possible. Keep the trace length as short as possible, at most 200 mm.
- Keep (U)SIM card signals away from RF and power supply traces.
- Assure the ground trace between the module and the (U)SIM card connector short and wide. Keep the trace width of ground and USIM_VDD not less than 0.5 mm to maintain the same electric

potential. Make sure the bypass capacitor between USIM_VDD and USIM_GND is less than 1 μ F, and place it as close to (U)SIM card connector as possible. If the system ground plane is complete, USIM_GND can be connected to the system ground directly.

- To avoid crosstalk between USIM_DATA and USIM_CLK, keep them away from each other and shield them with surrounded ground. USIM_RST should also be surrounded with ground.
- To offer good ESD protection, it is recommended to add a TVS array with parasitic capacitance not exceeding 15 pF. To facilitate debugging, it is recommended to reserve series resistors for the (U)SIM signals of the module. The 33 pF capacitors are used for RF filtering interference. Note that the (U)SIM peripheral circuit should be close to the (U)SIM card connector.
- The pull-up resistor on USIM_DATA trace can improve anti-jamming capability when long layout trace and sensitive occasion are applied, and should be placed close to the (U)SIM card connector.

4.4. UART Interfaces

The module provides three UART interfaces: the main UART interface, debug UART interface and the GNSS UART interface. Their features are outlined below:

- The main UART interface supports 9600, 19200, 38400, 57600, 115200, 230400, 460800 and 921600, 2000000, 2900000, 3000000, 3200000, 3686400, 4000000 bps baud rates, and the default baud rate is 115200 bps. It is used for data transmission and AT command communication, and supports RTS and CTS hardware flow control. The default frame format is 8N1 (8 data bits, no parity, 1 stop bit).
- The debug UART interface supports a fixed baud rate of 115200 bps, and is used for software debugging and log output.
- The GNSS UART interface supports 115200 bps baud rate by default, and is used for GNSS data and NMEA sentences output.

Table 16: Pin Definition of Main UART Interface

Pin Name	Pin No.	I/O	Description	Comment
MAIN_DTR	30	DI	Main UART data terminal ready	1.8 V power domain.
MAIN_RXD	34	DI	Main UART receive	If unused, keep these pins open.
MAIN_TXD	35	DO	Main UART transmit	
MAIN_CTS	36	DO	Clear to send signal from the module	Connect to the MCU's CTS. 1.8 V power domain. If unused, keep the pin open.

MAIN_RTS	37	DI	Request to send signal to the module	Connect to the MCU's RTS. 1.8 V power domain. If unused, keep the pin open.
MAIN_DCD	38	DO	Main UART data carrier detect	1.8 V power domain.
MAIN_RI	39	DO	Main UART ring indication	If unused, keep these pins open.

NOTE

AT+IPR can be used to set the baud rate of the main UART interface, and **AT+IFC** can be used to enable/disable the hardware flow control (the function is disabled by default). See **document [3]** for more details about these AT commands.

Table 17: Pin Definition of Debug UART Interface

Pin Name	Pin No.	I/O	Description	Comment
DBG_RXD	22	DI	Debug UART receive	1.8 V power domain.
DBG_TXD	23	DO	Debug UART transmit	If unused, keep these pins open.

Table 18: Pin Definition of GNSS UART Interface

Pin Name	Pin No.	I/O	Description	Comment
GNSS_TXD	27	DO	GNSS UART transmit	BOOT_CONFIG. Do not pull it up before startup. 1.8 V power domain. If unused, keep this pin open.
GNSS_RXD	28	DI	GNSS UART receive	1.8 V power domain. If unused, keep this pin open.

NOTE

GNSS_TXD is a BOOT_CONFIG pin. Never pull it up before startup, otherwise the module cannot power up normally.

The module provides 1.8 V UART interface. A voltage-level translator should be used if your application is equipped with a 3.3 V UART. The voltage-level translator TXS0108EPWR provided by Texas Instruments is recommended.

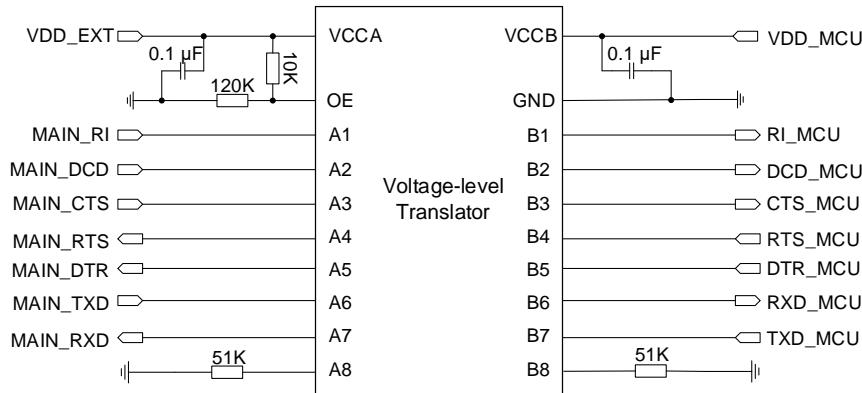


Figure 20: Main UART Interface Reference Design (IC Solution)

Visit <http://www.ti.com/> for more information.

Another example with transistor translation circuit is shown as below. For the design of circuits shown in dotted lines, refer to the solid lines, but pay attention to the direction of connection.

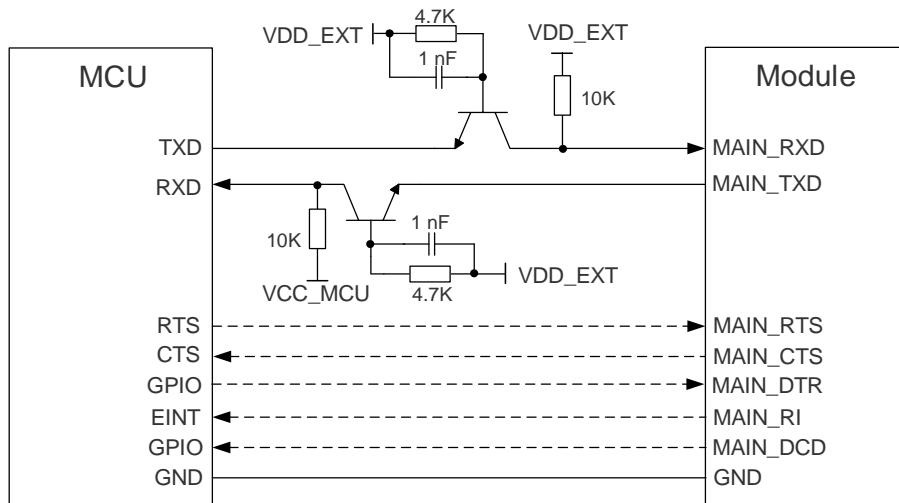


Figure 21: Main UART Interface Reference Design (Transistor Solution)

NOTE

1. Transistor circuit solution is not suitable for applications with high baud rates exceeding 460 kbps.
2. Please note that the module's CTS is connected to the MCU's CTS, and the module's RTS is connected to the MCU's RTS.
3. The level shifting circuit of debug UART interface and GNSS UART interface is similar to main UART interface.

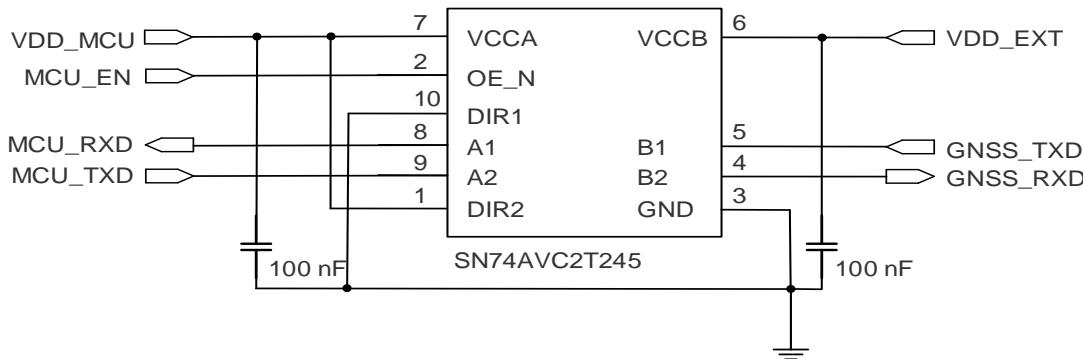


Figure 22: GNSS UART Interface Reference Design (IC Solution Without Internal Pull-up)

NOTE

GNSS_TXD is a BOOT_CONFIG pin (pin 27), therefore the IC solution with pull-up circuit or transistor/MOSFET circuit is not applicable. It is recommended to adopt an IC solution without internal pull-up.

4.5. PCM and I2C Interfaces*

The module provides one Pulse Code Modulation (PCM) digital interface and one inter-integrated circuit (I2C) interface which are used for VoLTE or GSM CS voice. The VoLTE and GSM CS voice functions of PCM and I2C interfaces are not supported currently.

The following table shows the pin definition of the two interfaces which can be applied to audio codec design.

Table 19: Pin Definition of PCM and I2C Interfaces

Pin Name	Pin No.	I/O	Description	Comment
PCM_CLK	4	DO	PCM clock	
PCM_SYNC	5	DO	PCM data frame sync	1.8 V power domain.
PCM_DIN	6	DI	PCM data input	If unused, keep these pins open.
PCM_DOUT	7	DO	PCM data output	

I2C_SCL	40	OD	I2C serial clock (for external codec)	External pull-up resistors are required. 1.8 V only. If unused, keep these pins open.
I2C_SDA	41	OD	I2C serial data (for external codec)	

The following figure shows a reference design of PCM and I2C interfaces with an external codec IC.

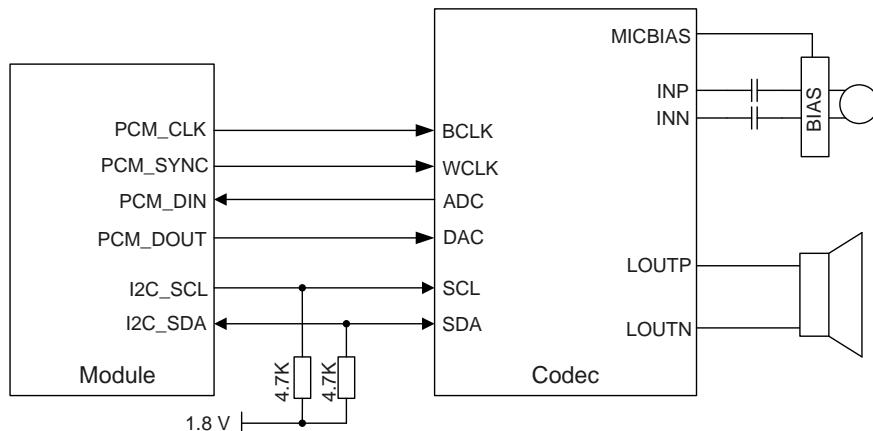


Figure 23: Reference Design of PCM and I2C Application with Audio Codec

4.6. ADC Interfaces

The module provides two analog-to-digital converter (ADC) interfaces but only one ADC interface can be used at a time since ADC1 connects directly to ADC0 inside the module.

AT+QADC=0 can be used to read the voltage value on the ADC being used. For more details about the AT command, see [document \[3\]](#).

To improve the accuracy of ADC voltage values, the traces of ADC should be surrounded with ground.

Table 20: Pin Definition of ADC Interfaces

Pin Name	Pin No.	I/O	Description	Comment
ADC0	24	AI	General-purpose ADC interface	Do not use ADC0 and ADC1 simultaneously.
ADC1	2	AI		

Table 21: Characteristics of ADC Interfaces

Parameter	Min.	Typ.	Max.	Unit
Voltage Range	0.1	-	1.8	V
Resolution (LSB)	-	64.879	-	µV
Analog Bandwidth	-	500	-	kHz
Sample Clock	-	4.8	-	MHz
Input Resistance	10	-	-	MΩ

NOTE

1. It is prohibited to supply any voltage to ADC pin when VBAT is removed.
2. It is recommended to use resistor divider circuit for ADC application, and the divider resistor accuracy should be not less than 1 %.
3. Do not use ADC0 and ADC1 simultaneously, as ADC1 connects directly to ADC0 inside the module.

4.7. Indication Signals

Table 22: Pin Description of Indication Signal

Pin Name	Pin No.	I/O	Description	Comment
NET_STATUS	21	DO	Indicates the module's network activity status	1.8 V power domain.
STATUS	20	DO	Indicates the module's operation status	If unused, keep this pin open.

4.7.1. Network Status Indication

The module provides one network status indication pin (NET_STATUS). The pin is used to drive a network status indication LED. The following tables describe the pin definition and logic level changes of NET_STATUS in different network activity status.

Table 23: Operating State of NET_STATUS

Pin Name	Logic Level Changes	Network Status
NET_STATUS	Blink slowly (200 ms High/1800 ms Low)	Network searching
	Blink slowly (1800 ms High/200 ms Low)	Idle
	Blink quickly (125 ms High/125 ms Low)	Data transfer is ongoing

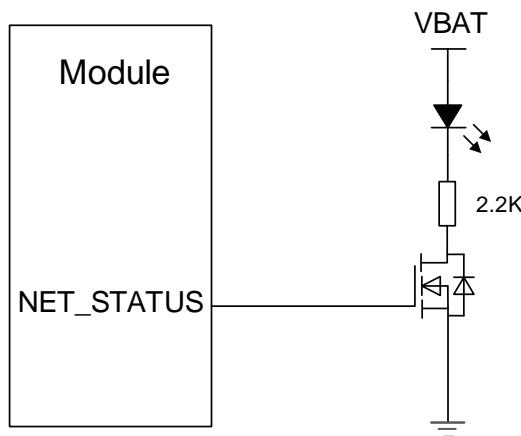


Figure 24: Reference Design of the Network Status Indicator

4.7.2. STATUS

The STATUS pin indicates the operation status of the module. It outputs high level when the module powers up.

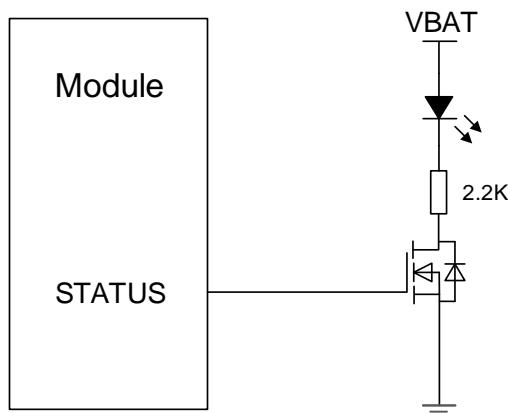


Figure 25: Reference Design of STATUS

4.7.3. MAIN_RI

AT+QCFG="risignaltypes","physical" can configure MAIN_RI behavior. No matter on which port the URC is presented, the URC will trigger the behavior of MAIN_RI.

Table 24: Default Behaviours of MAIN_RI

State	Response
Idle	MAIN_RI keeps in high level.
URC	MAIN_RI outputs 120 ms low pulse when a new URC returns.

The default MAIN_RI pin behaviors can be configured flexibly by **AT+QCFG="urc/ri/ring"**. For more details about **AT+QCFG**, see **document [4]**.

NOTE

A URC can be output from the UART interface through configuration via **AT+QURCCFG**. For details about the AT command, see **document [3]**.

4.8. GPIO Interfaces

The module provides nine general-purpose input and output (GPIO) interfaces. **AT+QCFG="gpio"** can configure the status of GPIO pins. For more details about the AT command, see **document [4]**.

Table 25: Pin Definition of GPIO Interfaces

Pin Name	Pin No.	I/O	Description	Comment
GPIO1 ¹¹	25			
GPIO2	26	DIO	General-purpose	1.8 V power domain.
GPIO3	64		input/output	If unused, keep these pins open.
GPIO4	65			

¹¹ Pin 25 is a general-purpose IO by default. It can be multiplexed into fast shutdown interface with **AT+QCFG="fast/poweroff"**.

GPIO5	66
GPIO6	85
GPIO7	86
GPIO8	87
GPIO9	88

4.9. GRFC Interfaces

The module provides two generic RF control interfaces for the control of external antenna tuners.

Table 26: Pin Definition of GRFC Interfaces

Pin Name	Pin No.	I/O	Description	Comments
GRFC1	83	DO	Generic RF controller	BOOT_CONFIG. Do not pull it up before startup. 1.8 V power domain. If unused, keep this pin open.
GRFC2	84			BOOT_CONFIG. Do not pull it up before startup. 1.8 V power

Table 27: Truth Table of GRFC Interfaces

GRFC1 Level	GRFC2 Level	Frequency Range (MHz)	Band
Low	Low	880–2180	B1, B2, B3, B4, B8, B25, B66, B23, B255, B256
Low	High	791–894	B5, B18, B19, B20, B26, B27
High	Low	698–803	B12, B13, B28, B85
High	High	617–698	B71

NOTE

GRFC1 (pin 83) or GRFC2 (pin 84) is a BOOT_CONFIG pin. Never pull it up before startup, otherwise the module cannot power on normally.

5 RF Specifications

Appropriate antenna type and design should be used with matched antenna parameters according to specific application. It is required to perform a comprehensive functional test for the RF design before mass production of terminal products. The entire content of this chapter is provided for illustration only. Analysis, evaluation and determination are still necessary when designing target products.

The module includes a main antenna interface and a GNSS antenna interface. Additionally. The impedance of antenna ports is 50 Ω.

5.1. Cellular Network

5.1.1. Antenna Interface and Frequency Bands

Table 28: Pin Definition of Main Antenna Interface

Pin Name	Pin No.	I/O	Description	Comment
ANT_MAIN	60	AIO	Main antenna interface	50 Ω impedance

Table 29: Operating Frequency

3GPP Band	Transmit	Receive	Unit
GSM850	824–849	869–894	MHz
EGSM900	880–915	925–960	MHz
DCS1800	1710–1785	1805–1880	MHz
PCS1900	1850–1910	1930–1990	MHz
LTE HD-FDD B1	1920–1980	2110–2170	MHz
LTE HD-FDD B2	1850–1910	1930–1990	MHz
LTE HD-FDD B3	1710–1785	1805–1880	MHz

LTE HD-FDD B4	1710–1755	2110–2155	MHz
LTE HD-FDD B5	824–849	869–894	MHz
LTE HD-FDD B8	880–915	925–960	MHz
LTE HD-FDD B12	699–716	729–746	MHz
LTE HD-FDD B13	777–787	746–756	MHz
LTE HD-FDD B18	815–830	860–875	MHz
LTE HD-FDD B19	830–845	875–890	MHz
LTE HD-FDD B20	832–862	791–821	MHz
LTE HD-FDD B25	1850–1915	1930–1995	MHz
LTE HD-FDD B26	814–849	859–894	MHz
LTE HD-FDD B27	807–824	852–869	MHz
LTE HD-FDD B28	703–748	758–803	MHz
LTE HD-FDD B66	1710–1780	2110–2180	MHz
LTE HD-FDD B71	663–698	617–652	MHz
LTE HD-FDD B85	698–716	728–746	MHz
IoT-NTN B23	2000–2020	2180–2200	MHz
IoT-NTN B255	1626.5–1660.5	1525–1559	MHz
IoT-NTN B256	1980–2010	2170–2200	MHz

NOTE

1. LTE HD-FDD B26 and B27 are supported by Cat M1 only.
2. LTE HD-FDD B71 is supported by Cat NB2 only.

5.1.2. Transmitting Power

Table 30: Conducted Transmitting Power

Frequency Bands	Max. Tx Power	Min. Tx Power
IoT-NTN B23/B255/B256	23 dBm -2/+2.7 dB	< -39 dBm
LTE HD-FDD B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/ B25/B26/B27/B28/B66/B71/B85	23 dBm ±2 dB	< -39 dBm
GSM850/EGSM900	33 dBm ±2 dB	5 dBm ±5 dB
DCS1800/PCS1900	30 dBm ±2 dB	0 dBm ±5 dB
GSM850/EGSM900 (8-PSK)	27 dBm ±3 dB	5 dBm ±5 dB
DCS1800/PCS1900 (8-PSK)	26 dBm ±3 dB	0 dBm ±5 dB

NOTE

1. LTE HD-FDD B26 and B27 are supported by Cat M1 only.
2. LTE HD-FDD B71 is supported by Cat NB2 only.
3. For GPRS transmission on 4 uplink timeslots, the maximum output power reduction is 4.0 dB. The design conforms to 3GPP TS 51.010-1 subclause 13.16.

5.1.3. Receiver Sensitivity

Table 31: Conducted Receiver Sensitivity

Mode	Band	Primary	Diversity	Receiver Sensitivity (dBm)	
				Cat M1/3GPP	Cat NB2 ¹² /3GPP
LTE	LTE HD-FDD B1	Supported	-	-106.1/-102.3	-114.7/-107.5
	LTE HD-FDD B2			-106.7/-100.3	-115.4/-107.5
	LTE HD-FDD B3			-106.7/-99.3	-115.4/-107.5
	LTE HD-FDD B4			-106.3/-102.3	-114.7/-107.5

¹² 3GPP has made no requirements for LTE Cat NB Rx Sensitivity repetition.

LTE HD-FDD B5	-107.4/-100.8	-116.2/-107.5
LTE HD-FDD B8	-107.2/-99.8	-116.0/-107.5
LTE HD-FDD B12	-107.7/-99.3	-116.2/-107.5
LTE HD-FDD B13	-107.5/-99.3	-116.0/-107.5
LTE HD-FDD B18	-107.5/-102.3	-116.0/-107.5
LTE HD-FDD B19	-107.5/-102.3	-116.0/-107.5
LTE HD-FDD B20	-107.3/-99.8	-116.0/-107.5
LTE HD-FDD B25	-106.7/-100.3	-115.3/-107.5
LTE HD-FDD B26	-107.5/-100.3	-
LTE HD-FDD B27	-107.7/-100.8	-
LTE HD-FDD B28	-107.9/-100.8	-116.4/-107.5
LTE HD-FDD B66	-106.3/-101.8	-114.0/-107.5
LTE HD-FDD B71	-	-115.8/-107.5
LTE HD-FDD B85	-107.7/-99.3	-116.2/-107.5

Mode	Band	Primary	Diversity	Receiver Sensitivity (dBm)
				GSM/3GPP
GPRS (CS2)	GSM850/EGSM900	Supported	-	-108.1/-102
	DCS1800/PCS1900			-107.4/-102
Mode	Band	Primary	Diversity	Receiver Sensitivity (dBm)
				IoT-NTN/3GPP
IoT-NTN	B23	Supported	-	-115/-108.2
	B255			-115/-108.2
	B256			-115/-108.2

NOTE

-: not supported.

5.1.4. Reference Design

A reference design of main antenna interface is shown as below. It is recommended to reserve a dual L-type matching circuit for better RF performance, and the dual L-type matching components (R1/C1/C2/C3) should be placed as close to the antenna as possible. The capacitors are not mounted by default.

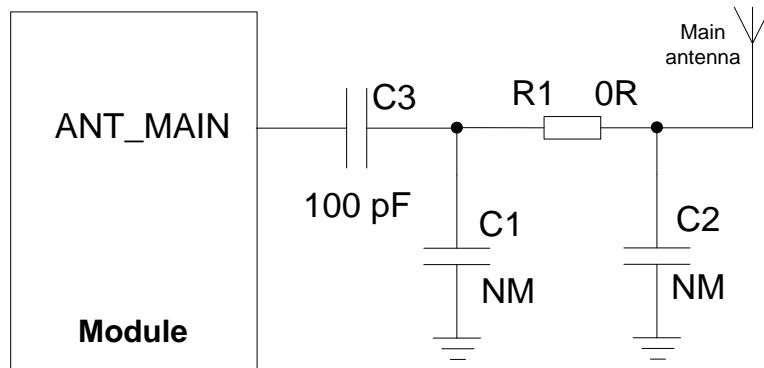


Figure 26: Reference Design of Main Antenna Interface

NOTE

If there is DC power at the antenna ports, C3 must be used for DC-blocking to prevent short circuit to ground. The capacitance value is recommended to be 100 pF, which can be adjusted according to actual requirements. If there is no DC power in the peripheral design, C3 should not be reserved.

5.2. GNSS

The module includes a fully integrated global navigation satellite system solution that supports GPS, GLONASS, BDS, Galileo and QZSS.

The module supports standard NMEA 0183 protocol, and outputs NMEA sentences at 1 Hz data update rate via USB interface by default.

The GNSS engine is switched off by default. It has to be switched on via AT command. The module does not support concurrent operation of WWAN and GNSS. For more details about GNSS engine technology and configurations, see **document [1]**.

5.2.1. Antenna Interface and Frequency Bands

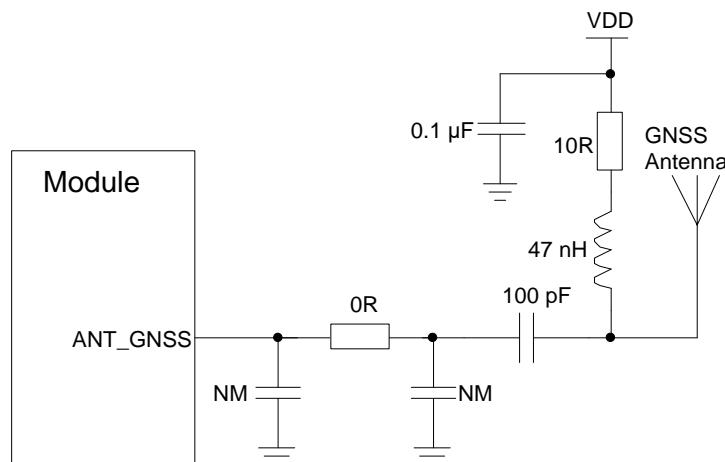
Table 32: Pin Definition of GNSS Antenna Interface

Pin Name	Pin No.	I/O	Description	Comment
ANT_GNSS	49	AI	GNSS antenna interface	50 Ω impedance. If unused, keep this pin open.

Table 33: GNSS Operating Frequency

Type	Frequency	Unit
GPS	1575.42 ±1.023	MHz
GLONASS	1597.5–1605.8	MHz
Galileo	1575.42 ±2.046	MHz
BDS	1561.098 ±2.046	MHz
QZSS	1575.42 ±1.023	MHz

5.2.2. GNSS Performance


Table 34: GNSS Performance

Parameter	Description	Conditions	Typ.	Unit
Sensitivity	Acquisition	Autonomous	-146	dBm
	Reacquisition	Autonomous	-157	dBm
	Tracking	Autonomous	-157	dBm
TTFF	Cold start @ open sky	Autonomous	31.01	s
		XTRA start	10.4	s
TTFF	Warm start @ open sky	Autonomous	30.58	s
		XTRA start	1.53	s
	Hot start @ open sky	Autonomous	1.6	s

	XTRA start	1.5	s
Accuracy	CEP-50	Autonomous @ open sky	2.5 m

NOTE

1. Tracking sensitivity: the minimum GNSS signal power at which the module can maintain lock (keep positioning for at least 3 minutes continuously).
2. Reacquisition sensitivity: the minimum GNSS signal power required for the module to maintain lock within 3 minutes after loss of lock.
3. Acquisition sensitivity: the minimum GNSS signal power at which the module can fix position successfully within 3 minutes after executing cold start command.

5.2.3. Reference Design**Figure 27: Reference Design of GNSS Antenna Interface****NOTE**

1. An external LDO can be selected to supply power according to the active antenna requirement.
2. If the module is designed with a passive antenna, then the VDD circuit is not needed.

5.2.4. Layout Guidelines

The following layout guidelines should be taken into account in application designs.

- Maximize the distance between GNSS antenna and main antenna.

- Digital circuits such as (U)SIM card, USB interface, camera module, display connector and SD card should be away from the antennas.
- Use ground vias around the GNSS trace and sensitive analog signal traces to provide coplanar isolation and protection.
- Keep 50Ω characteristic impedance for ANT_GNSS trace.

5.3. RF Routing Guidelines

For user's PCB, the characteristic impedance of all RF traces should be controlled to 50Ω . The impedance of the RF traces is usually determined by the trace width (W), the materials' dielectric constant, the height from the reference ground to the signal layer (H), and the spacing between RF traces and grounds (S). Microstrip or coplanar waveguide is typically used in RF layout to control characteristic impedance. The following are reference designs of microstrip or coplanar waveguide with different PCB structures.

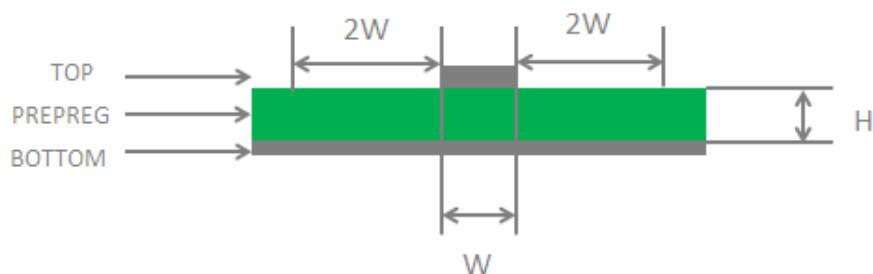


Figure 28: Microstrip Design on a 2-layer PCB

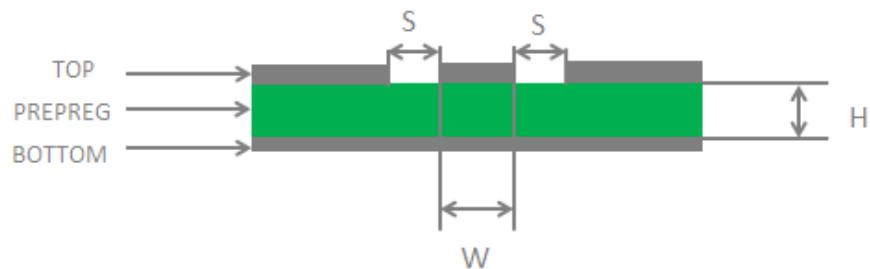


Figure 29: Coplanar Waveguide Design on a 2-layer PCB

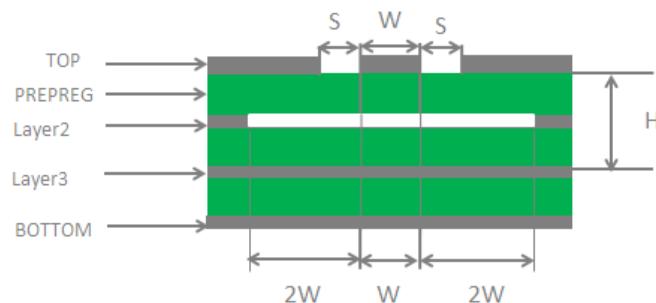


Figure 30: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)

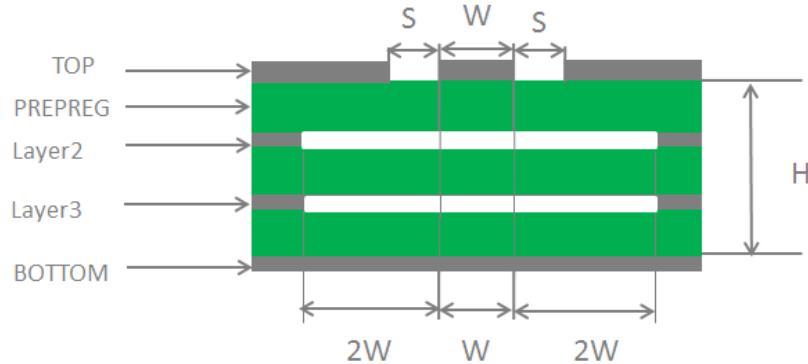


Figure 31: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)

To ensure RF performance and reliability, follow the principles below in RF layout design:

- Use an impedance simulation tool to accurately control the characteristic impedance of RF traces to 50Ω .
- The GND pins adjacent to RF pins should not be designed as thermal relief pads, and should be fully connected to ground.
- The distance between the RF pins and the RF connector should be as short as possible, and all the right-angle traces should be changed to curved ones. The recommended trace angle is 135° .
- There should be clearance under the signal pin of the antenna connector or solder joint.
- The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around RF traces and the reference ground could help to improve RF performance. The distance between the ground vias and RF traces should be at least twice the width of RF signal traces ($2 \times W$).
- Keep RF traces away from interference sources (such as DC-DC, (U)SIM/USB/SDIO high frequency digital signals, display signals, and clock signals), and avoid intersection and paralleling between traces on adjacent layers.

For more details about RF layout, see [document \[5\]](#).

5.4. Requirements for Antenna Design

Table 35: Requirements for Antenna Design

Antenna Type	Requirements
GNSS ¹³	Frequency range: 1559–1609 MHz Polarization: RHCP or linear VSWR: ≤ 2 (Typ.)

¹³ It is recommended to use a passive GNSS antenna when LTE HD-FDD B13 is supported, as the use of active antenna may generate harmonics which will affect the GNSS performance.

	Passive antenna gain: > 0 dBi
	Active antenna noise figure: < 1.5 dB
	Active antenna gain: > 0 dBi
	Active antenna embedded LNA gain: < 17 dB
	VSWR: ≤ 2
	Efficiency: > 30 %
	Max. Input Power: 50 W
Cellular	Input Impedance: 50Ω
	Cable Insertion Loss:
	<ul style="list-style-type: none"> ● < 1 dB: LB (<1 GHz) ● < 1.5 dB: MB (1–2.3 GHz)

5.5. RF Connector Recommendation

If RF connector is used for antenna connection, it is recommended to use the U.FL-R-SMT connectors provided by Hirose.

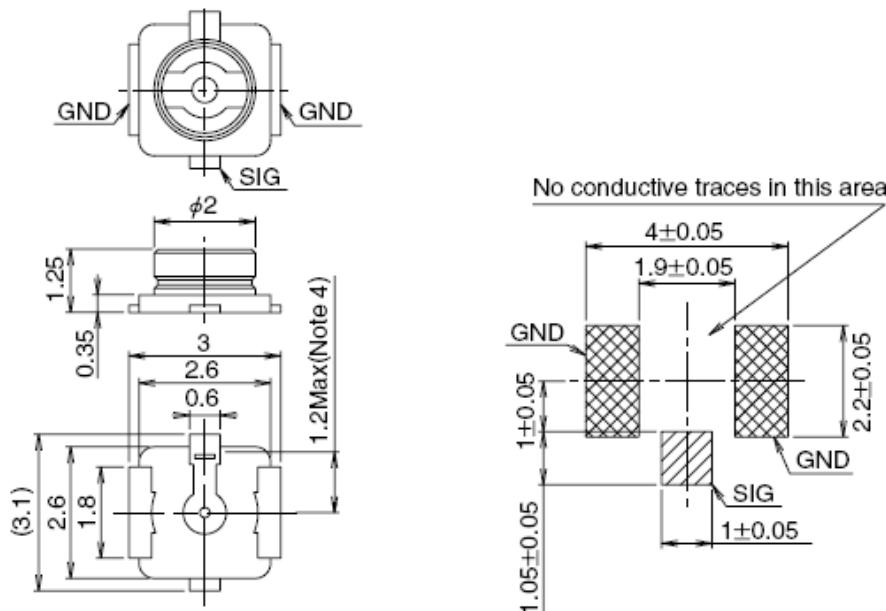


Figure 32: Dimensions of the Receptacle (Unit: mm)

U.FL-LP series mated plugs listed in the following figure can be used to match the U.FL-R-SMT.

Part No.	U.FL-LP-040	U.FL-LP-066	U.FL-LP(V)-040	U.FL-LP-062	U.FL-LP-088
Mated Height	2.5mm Max. (2.4mm Nom.)	2.5mm Max. (2.4mm Nom.)	2.0mm Max. (1.9mm Nom.)	2.4mm Max. (2.3mm Nom.)	2.4mm Max. (2.3mm Nom.)
Applicable cable	Dia. 0.81mm Coaxial cable	Dia. 1.13mm and Dia. 1.32mm Coaxial cable	Dia. 0.81mm Coaxial cable	Dia. 1mm Coaxial cable	Dia. 1.37mm Coaxial cable
Weight (mg)	53.7	59.1	34.8	45.5	71.7
RoHS			YES		

Figure 33: Specifications of Mated Plugs

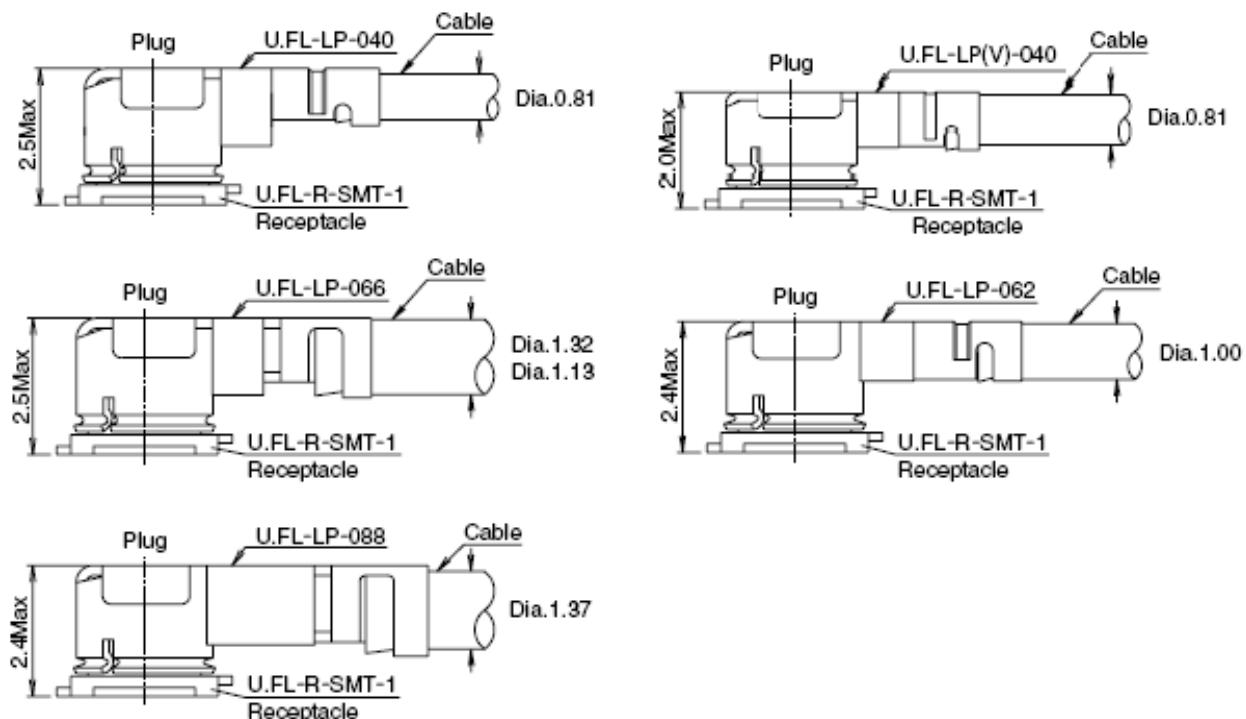


Figure 34: Space Factor of Mated Connectors (Unit: mm)

For more details, visit <http://www.hirose.com>.

6 Electrical Characteristics and Reliability

6.1. Absolute Maximum Ratings

Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are listed in the following table.

Table 36: Absolute Maximum Ratings

Parameter	Min.	Max.	Unit
VBAT_BB	-0.5	6.0	V
VBAT_RF	-0.3	6.0	V
USB_VBUS	-0.3	5.5	V
Voltage at Digital Pins	-0.3	2.09	V

6.2. Power Supply Ratings

Table 37: Power Supply Ratings

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
VBAT	VBAT_BB/VBAT_RF	The actual input voltages must be kept between the minimum and the maximum values.	3.3	3.8	4.3	V

I _{VBAT}	Peak power consumption (during transmission slot)	At maximum power control level	-	1.8	2.7	A
USB_VBUS	USB connection detection		4.0	5.0	5.25	V

6.3. Power Consumption

Table 38: Power Consumption (3.8 V Power Supply, Room Temperature)

Description	Conditions	Average	Unit
Leakage	Power-off @ USB and UART disconnected	15	µA
PSM ¹⁴	Power Saving Mode	4.55	µA
Rock Bottom	AT+CFUN=0 @ Sleep mode	0.63	mA
	LTE Cat M1 DRX = 1.28 s	1.58	mA
	LTE Cat NB1 DRX = 1.28 s	1.56	mA
	IoT-NTN DRX=1.28s	2.19	mA
	EGSM900 DRX = 5	1.18	mA
	DCS1800 DRX = 5	1.18	mA
Sleep Mode (USB disconnected)	LTE Cat M1 e-I-DRX = 81.92 s @ PTW = 2.56 s, DRX = 1.28 s	0.82	mA
	LTE Cat NB1 e-I-DRX = 81.92 s @ PTW = 2.56 s, DRX = 1.28 s	0.83	mA
	IoT-NTN e-I-DRX = 81.92 s @ PTW = 2.56 s, DRX = 1.28 s	0.90	mA
Idle Mode (USB disconnected)	LTE Cat M1 DRX = 1.28 s	13.78	mA
	LTE Cat NB1 DRX = 1.28 s	13.73	mA

¹⁴ The module's power consumption in PSM is much lower than that in power-off mode due to the following two designs:

- More internal power supplies are powers off in PSM.
- The internal clock frequency is reduced in PSM.

The module's USB and UART are disconnected and GSM network (if available) does not support PSM.

IoT-NTN DRX=1.28s	14.46	mA	
LTE Cat M1 e-I-DRX = 81.92 s @ PTW = 2.56 s, DRX = 1.28 s	13.28	mA	
LTE Cat NB1 e-I-DRX = 81.92 s @ PTW = 2.56 s, DRX = 1.28 s	13.35	mA	
IoT-NTN e-I-DRX = 81.92 s @ PTW = 2.56 s, DRX = 1.28 s	13.34	mA	
B1 @ 22.87 dBm	223.35	mA	
B2 @ 23.17 dBm	218.65	mA	
B3 @ 22.88 dBm	211.40	mA	
B4 @ 23.09 dBm	214.49	mA	
B5 @ 22.75 dBm	221.71	mA	
B8 @ 22.89 dBm	225.25	mA	
B12 @ 22.94 dBm	213.48	mA	
B13 @ 23.08 dBm	215.80	mA	
LTE Cat M1 data transfer (GNSS OFF)	B18 @ 23.13 dBm	223.40	mA
	B19 @ 22.95 dBm	234.10	mA
	B20 @ 23.05 dBm	236.85	mA
	B25 @ 23.27 dBm	219.17	mA
	B26 @ 22.45 dBm	228.79	mA
	B27 @ 22.97 dBm	230.81	mA
	B28A @ 22.96 dBm	203.76	mA
	B28B @ 23.13 dBm	207.88	mA
	B66 @ 22.94 dBm	215.45	mA
	B85 @ 22.98 dBm	209.62	mA
LTE Cat NB1 data	B1 @ 23.08 dBm	187.54	mA

transfer (GNSS OFF)	B2 @ 23.51 dBm	198.38	mA
	B3 @ 23.14 dBm	183.62	mA
	B4 @ 23.04 dBm	192.06	mA
	B5 @ 23.50 dBm	201.38	mA
	B8 @ 23.61 dBm	201.36	mA
	B12 @ 23.62 dBm	179.90	mA
	B13 @ 23.55 dBm	204.15	mA
	B18 @ 23.75 dBm	214.47	mA
	B19 @ 23.52 dBm	210.50	mA
	B20 @ 23.55 dBm	210.63	mA
	B25 @ 23.43 dBm	198.15	mA
	B28 @ 23.63 dBm	184.79	mA
	B66 @ 22.98 dBm	187.75	mA
	B71 @ 23.71 dBm	178.56	mA
	B85 @ 23.69 dBm	181.89	mA
	GSM850 4UL/1DL @ 28.71 dBm	611	mA
GRPS data transfer (GNSS OFF)	EGSM900 4UL/1DL @ 28.69 dBm	609	mA
	DCS1800 4UL/1DL @ 25.81 dBm	445	mA
	PCS1900 4UL/1DL @ 26.83dBm	460	mA
	GSM850 4UL/1DL @ 24.08 dBm	573	mA
EDGE data transfer (GNSS OFF)	EGSM900 4UL/1DL @ 23.68 dBm	582	mA
	DCS1800 4UL/1DL @ 21.64 dBm	489	mA
	PCS1900 4UL/1DL @ 22.73 dBm	500	mA
IoT-NTN data transfer (GNSS OFF)	B23 @ 23.61 dBm	56	mA
	B255 @ 24.18 dBm	54	mA

B256 @ 23.74 dBm	56	mA
------------------	----	----

Table 39: GNSS Power Consumption (3.8 V Power Supply, Room Temperature)

Description	Conditions	Typ.	Unit
Acquisition (AT+CFUN=0)	Cold start @ Instrument	71	mA
	Hot start @ Instrument	69	mA
	Warm start @ Instrument	68	mA
Tracking (AT+CFUN=0)	Lost state @ Instrument	69	mA
	Instrument Environment @ Passive Antenna	22	mA
	Open Sky @ Real network, Passive Antenna	30.516	mA
	Open Sky @ Real network, Active Antenna	32.218	mA

6.4. ESD Protection

Static electricity occurs naturally and it may damage the module. Therefore, it is imperative to adopt proper ESD countermeasures and handling methods. For example, wear anti-static gloves during the development, production, assembly and testing of the module; add ESD protection components to the ESD sensitive interfaces and points in the product design.

Table 40: Electrostatic Discharge Characteristics (Temperature: 25–30 °C, Humidity: 40 ±5 %)

Tested Interfaces	Contact Discharge	Air Discharge	Unit
VBAT, GND	±6	±8	kV
Main/GNSS Antenna Interfaces	±5	±6	kV

6.5. Operating and Storage Temperatures

Table 41: Operating and Storage Temperatures

Parameter	Min.	Typ.	Max.	Unit
Operating Temperature Range ¹⁵	-35	+25	+75	°C
Extended Temperature Range ¹⁶	-40	-	+85	°C
Storage Temperature Range	-40	-	+90	°C

¹⁵ Within the operating temperature range, the module meets 3GPP specifications.

¹⁶ Within the extended temperature range, the module remains the ability to establish and maintain functions such as SMS and data transmission, without any unrecoverable malfunction. Radio spectrum and radio network are not influenced, while one or more specifications, such as Pout, may exceed the specified tolerances of 3GPP. When the temperature returns to the operating temperature range, the module meets 3GPP specifications again.

7 Mechanical Information

This chapter describes the mechanical dimensions of the module. All dimensions are measured in millimeter (mm), and the dimensional tolerances are ± 0.2 mm unless otherwise specified.

7.1. Mechanical Dimensions

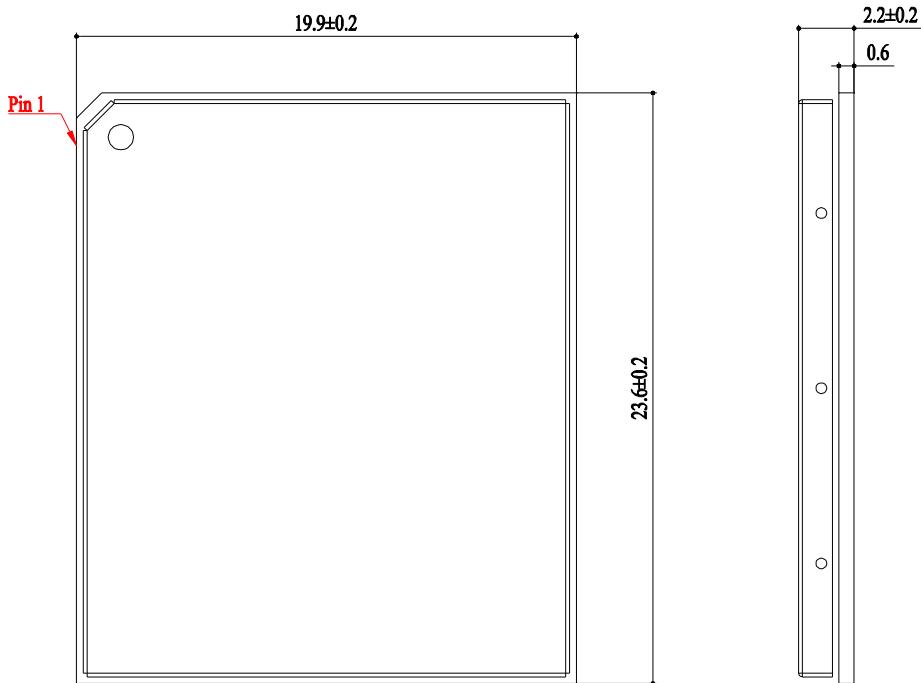


Figure 35: Module Top and Side Dimensions

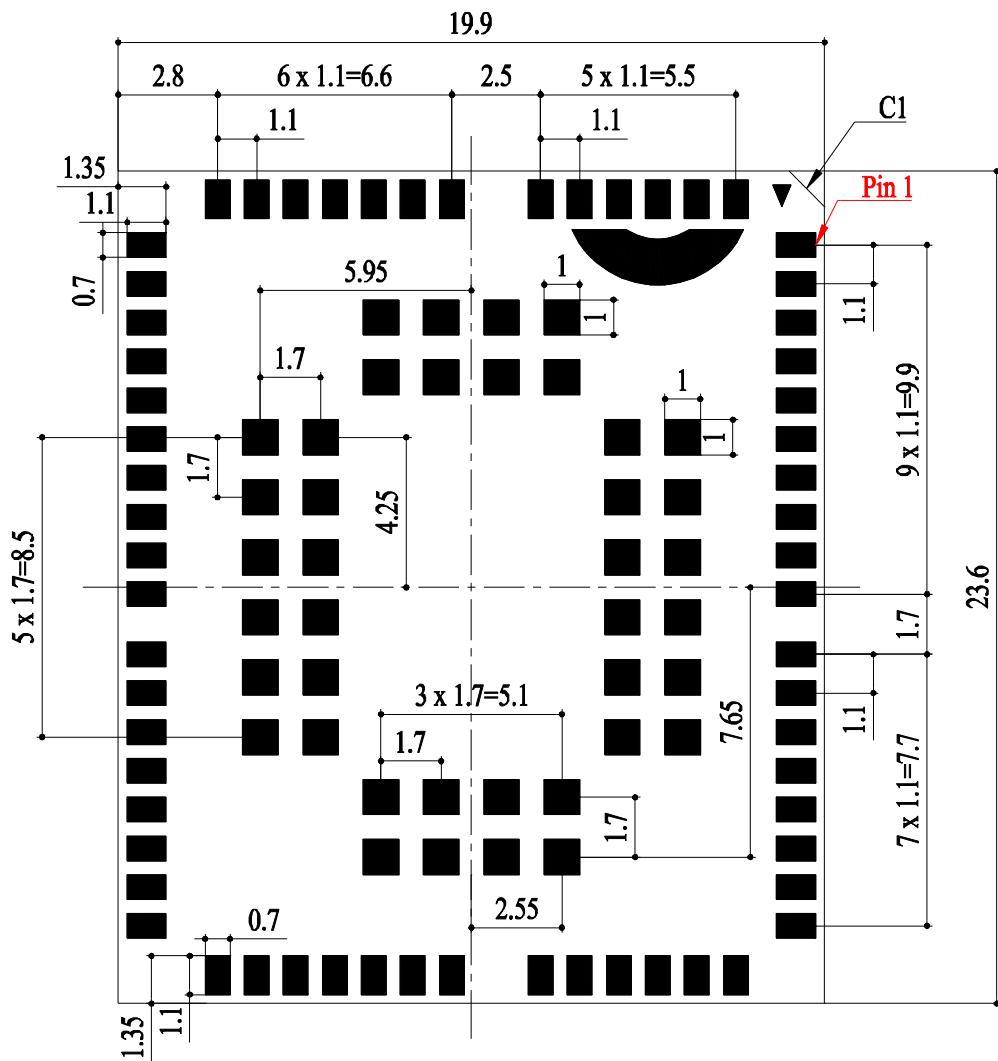
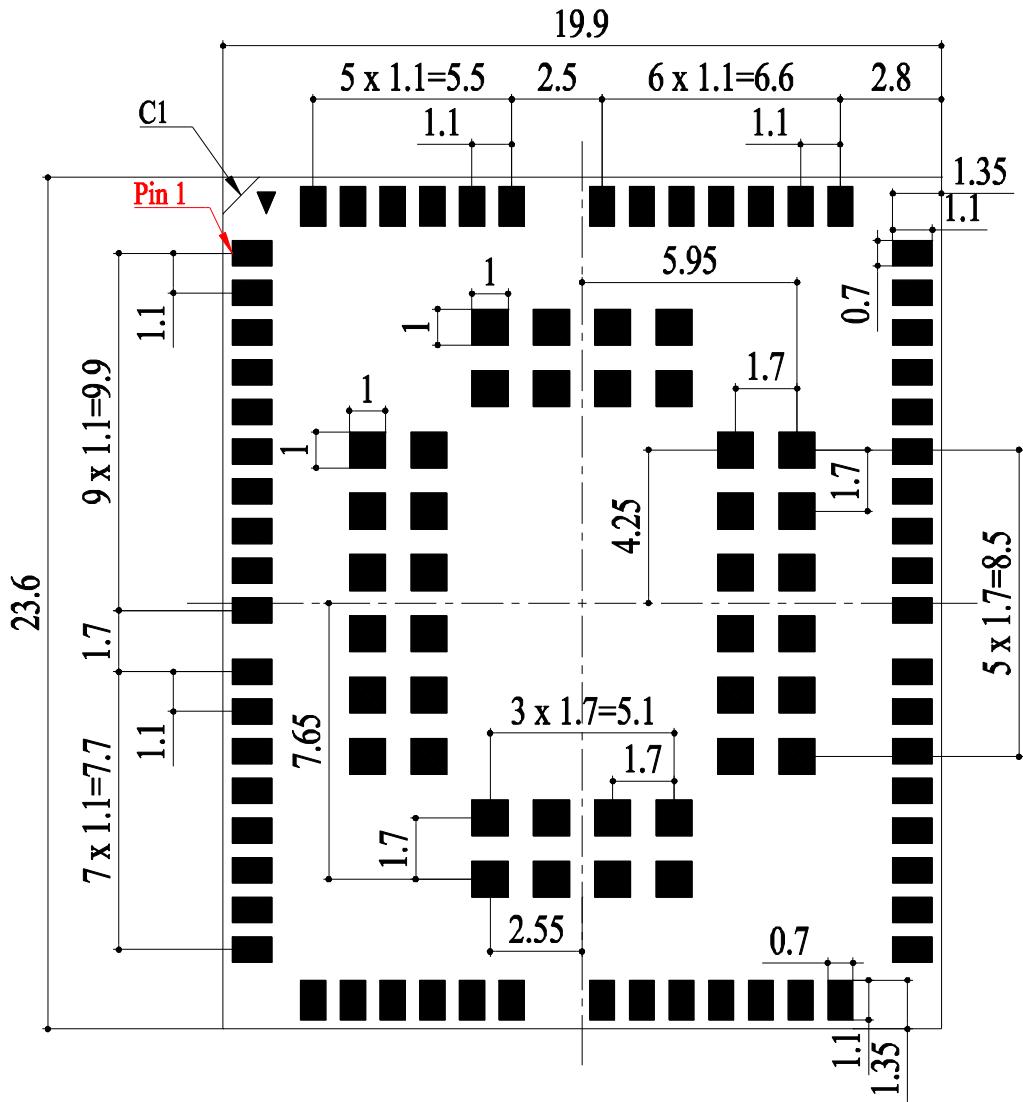



Figure 36: Module Bottom Dimensions (Bottom View)

NOTE

The package warpage level of the module refers to JEITA ED-7306 standard.

7.2. Recommended Footprint

Figure 37: Recommended Footprint

NOTE

Keep at least 3 mm between the module and other components on the motherboard to improve soldering quality and maintenance convenience.

7.3. Top and Bottom Views

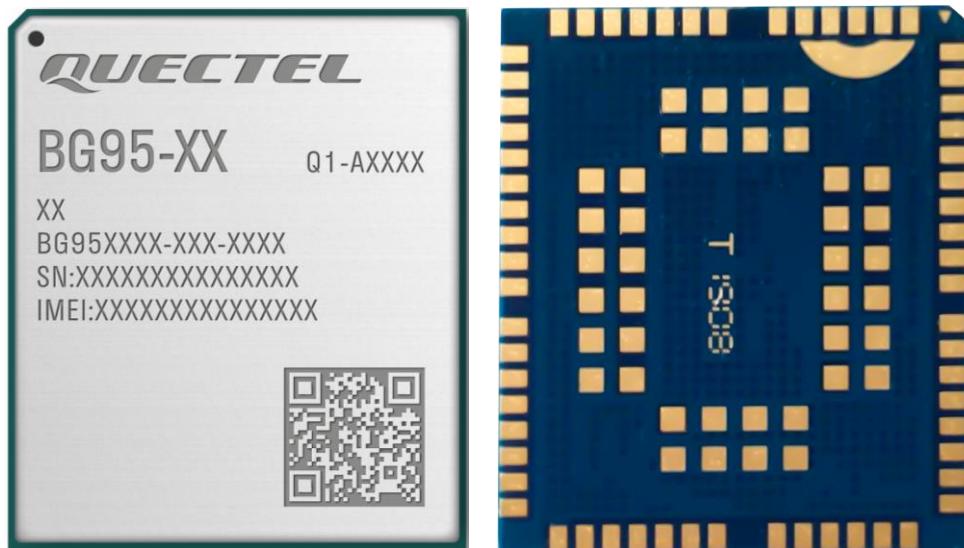


Figure 38: Top and Bottom Views

NOTE

Images above are for illustration purpose only and may differ from the actual module. For authentic appearance and label, please refer to the module received from Quectel.

8 Storage, Manufacturing and Packaging

8.1. Storage Conditions

The module is provided with vacuum-sealed packaging. MSL of the module is rated as 3. The storage requirements are shown below.

1. Recommended Storage Condition: the temperature should be 23 ± 5 °C and the relative humidity should be 35–60 %.
2. Shelf life (in a vacuum-sealed packaging): 12 months in Recommended Storage Condition.
3. Floor life: 168 hours ¹⁷ in a factory where the temperature is 23 ± 5 °C and relative humidity is below 60 %. After the vacuum-sealed packaging is removed, the module must be processed in reflow soldering or other high-temperature operations within 168 hours. Otherwise, the module should be stored in an environment where the relative humidity is less than 10 % (e.g., a dry cabinet).
4. The module should be pre-baked to avoid blistering, cracks and inner-layer separation in PCB under the following circumstances:
 - The module is not stored in Recommended Storage Condition;
 - Violation of the third requirement mentioned above;
 - Vacuum-sealed packaging is broken, or the packaging has been removed for over 24 hours;
 - Before module repairing.
5. If needed, the pre-baking should follow the requirements below:
 - The module should be baked for 8 hours at 120 ± 5 °C;
 - The module must be soldered to PCB within 24 hours after the baking, otherwise it should be put in a dry environment such as in a dry cabinet.

¹⁷ This floor life is only applicable when the environment conforms to *IPC/JEDEC J-STD-033*. It is recommended to start the solder reflow process within 24 hours after the package is removed if the temperature and moisture do not conform to, or are not sure to conform to *IPC/JEDEC J-STD-033*. Do not unpack the modules in large quantities until they are ready for soldering.

NOTE

1. To avoid blistering, layer separation and other soldering issues, extended exposure of the module to the air is forbidden.
2. Take out the module from the package and put it on high-temperature-resistant fixtures before baking. If shorter baking time is desired, see *IPC/JEDEC J-STD-033* for the baking procedure.
3. Pay attention to ESD protection, such as wearing anti-static gloves, when touching the modules.

8.2. Manufacturing and Soldering

Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. Apply proper force on the squeegee to produce a clean stencil surface on a single pass. To guarantee module soldering quality, the thickness of stencil for the module is recommended to be 0.13–0.15 mm. For more details, see **document [7]**.

The recommended peak reflow temperature should be 235–246 °C, with 246 °C as the absolute maximum reflow temperature. To avoid damage to the module caused by repeated heating, it is recommended that the module should be mounted only after reflow soldering for the other side of PCB has been completed. The recommended reflow soldering thermal profile (lead-free reflow soldering) and related parameters are shown below.

Temp. (°C)

Figure 39: Recommended Reflow Soldering Thermal Profile

Table 42: Recommended Thermal Profile Parameters

Factor	Recommended Value
Soak Zone	
Ramp-to-soak Slope	0–3 °C/s
Soak Time (between A and B: 150 °C and 200 °C)	70–120 s
Reflow Zone	
Ramp-up Slope	0–3 °C/s
Reflow Time (D: over 217°C)	40–70 s
Max Temperature	235–246 °C
Cool-down Slope	-3–0 °C/s
Reflow Cycle	
Max Reflow Cycle	1

NOTE

1. The above profile parameter requirements are for the measured temperature of the solder joints. Both the hottest and coldest spots of solder joints on the PCB should meet the above requirements.
2. If a conformal coating is necessary for the module, do NOT use any coating material that may chemically react with the PCB or shielding cover, and prevent the coating material from flowing into the module.
3. Avoid using ultrasonic technology for module cleaning since it can damage crystals inside the module.
4. Avoid using materials that contain mercury (Hg), such as adhesives, for module processing, even if the materials are RoHS compliant and their mercury content is below 1000 ppm (0.1 %).
5. Corrosive gases may corrode the electronic components inside the module, affecting their reliability and performance, and potentially leading to a shortened service life that fails to meet the designed lifespan. Therefore, do not store or use unprotected modules in environments containing corrosive gases such as hydrogen sulfide, sulfur dioxide, chlorine, and ammonia.
6. Due to the complexity of the SMT process, please contact Quectel Technical Supports in advance for any situation that you are not sure about, or any process (e.g., selective soldering, ultrasonic soldering) that is not mentioned in **document [6]**.

8.3. Packaging Specifications

This chapter outlines the key packaging parameters and processes. All figures below are for reference purposes only, as the actual appearance and structure of packaging materials may vary in delivery.

The modules are packed in a tape and reel packaging as specified in the sub-chapters below.

8.3.1. Carrier Tape

Carrier tape dimensions are illustrated in the following figure and table:

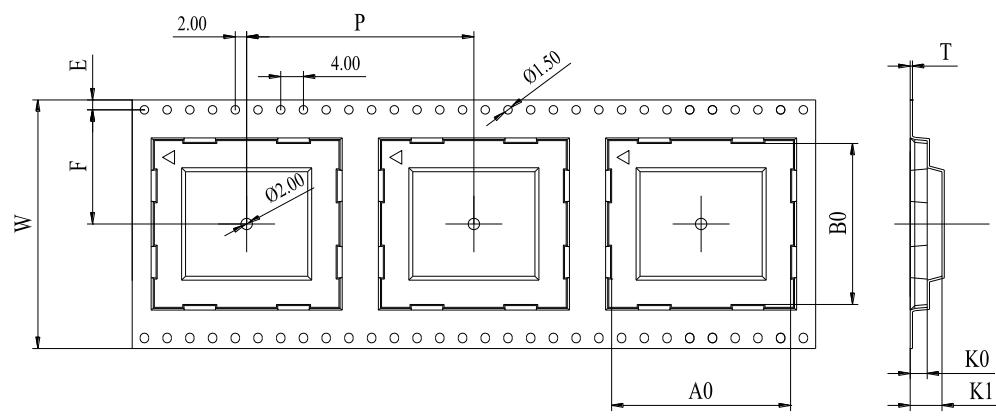


Figure 40: Carrier Tape Dimension Drawing (Unit: mm)

Table 43: Carrier Tape Dimension Table (Unit: mm)

W	P	T	A0	B0	K0	K1	F	E
44	32	0.35	20.2	24	3.15	6.65	20.2	1.75

8.3.2. Plastic Reel

Plastic reel dimensions are illustrated in the following figure and table:

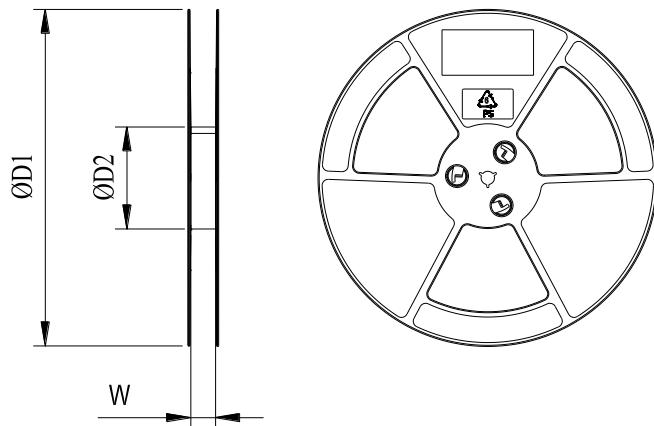
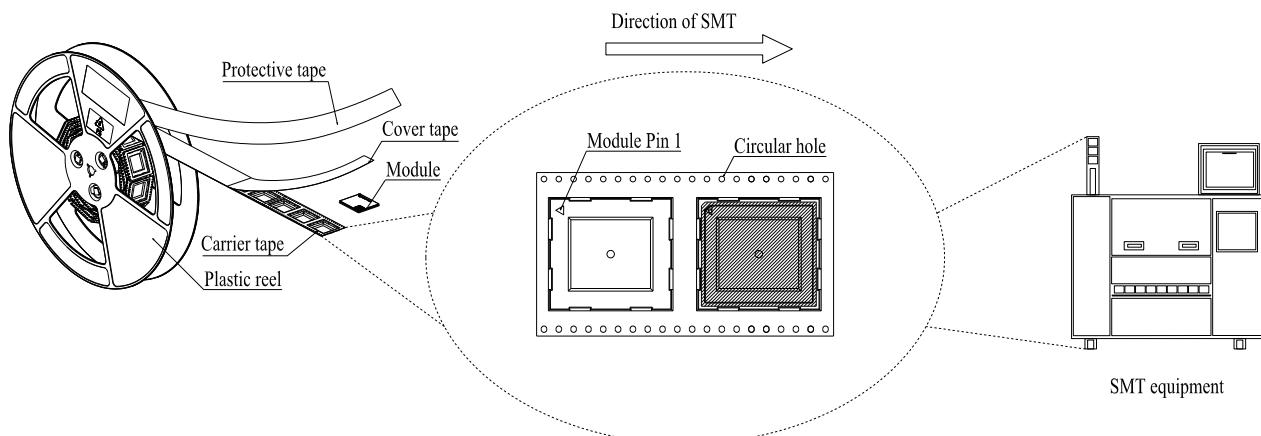
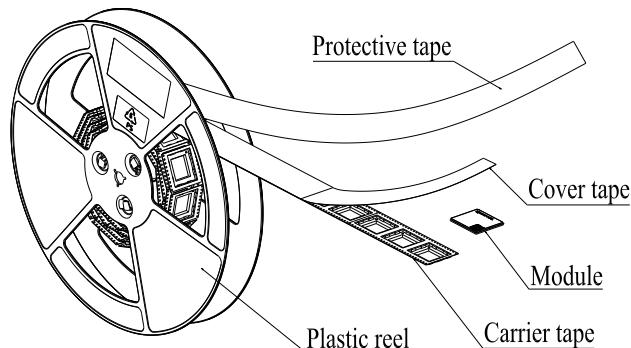


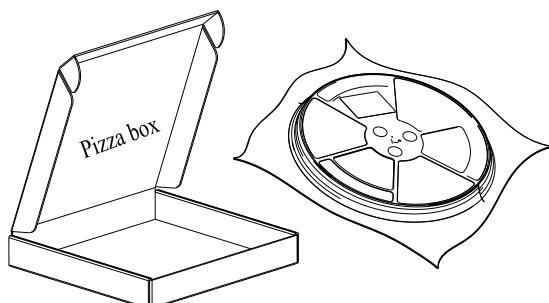
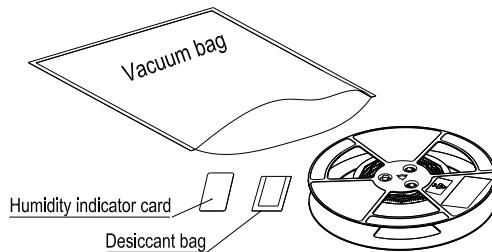
Figure 41: Plastic Reel Dimension Drawing

Table 44: Plastic Reel Dimension Table (Unit: mm)

ØD1	ØD2	W
330	100	44.5

8.3.3. Mounting Direction



Figure 42: Mounting Direction

8.3.4. Packaging Process

Place the modules onto the carrier tape cavity and cover them securely with cover tape. Wind the heat-sealed carrier tape onto a plastic reel and apply a protective tape for additional protection. 1 plastic reel can pack 250 modules.

Place the packaged plastic reel, humidity indicator card and desiccant bag into a vacuum bag, and vacuumize it.

Place the vacuum-packed plastic reel into a pizza box.

Place the 4 packaged pizza boxes into 1 carton and seal it. 1 carton can pack 1000 modules.

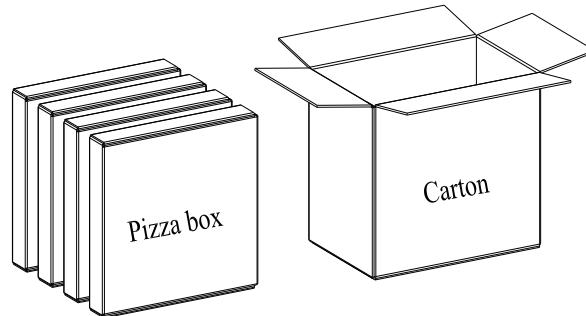


Figure 43: Packaging Process

Table 45: Packaging Specifications of BG95-S5 Module

MOQ for MP	Minimum Package: 250	Minimum Package x 4 = 1000
250	Size: 370 mm x 350 mm x 56 mm Net Weight: 0.61 kg Gross Weight: 1.35 kg	Size: 380 mm x 250 mm x 365 mm Net Weight: 2.45 kg Gross Weight: 6.28 kg

9 Appendix A References

Table 46: Related Documents

Document Name
[1] Quectel_BG95&BG77&BG600L_Series_GNSS_Application_Note
[2] Quectel_UMTS<E_EVB_User_Guide
[3] Quectel_BG95&BG77&BG600L_Series_AT_Commands_Manual
[4] Quectel_BG95&BG77&BG600L_Series_QCFG_AT_Commands_Manual
[5] Quectel_RF_Layout_Application_Note
[6] Quectel_Module_SMT_Application_Note
[7] Quectel_Module_Stencil_Design_Requirements

Table 47: Terms and Abbreviations

Abbreviation	Description
ASM	Antenna Switch Modules
bps	Bits per second
CHAP	Challenge Handshake Authentication Protocol
CS	Coding Scheme
CTS	Clear To Send
DFOTA	Delta Firmware Upgrade Over-The-Air
DL	Downlink
DTR	Data Terminal Ready
e-I-DRX	Extended Idle Mode Discontinuous Reception

EPC	Evolved Packet Core
ESD	Electrostatic Discharge
FDD	Frequency Division Duplex
GMSK	Gaussian Minimum Shift Keying
GSM	Global System for Mobile Communications
HSS	Home Subscriber Server
I2C	Inter-Integrated Circuit
I/O	Input/Output
LED	Light Emitting Diode
LDO	Low-dropout Regulator
LNA	Low Noise Amplifier
LPF	Low-Pass Filter
LTE	Long Term Evolution
MO	Mobile Originated
MOQ	Minimum Order Quantity
MT	Mobile Terminated
PA	Power Amplifier
PAP	Password Authentication Protocol
PCB	Printed Circuit Board
PDU	Protocol Data Unit
PMIC	Power Management IC
PPP	Point-to-Point Protocol
PSM	Power Saving Mode
RF	Radio Frequency
RHCP	Right Hand Circularly Polarized

Rx	Receive
SAW	Surface Acoustic Wave
SMS	Short Message Service
TDD	Time Division Duplex
TX	Transmit
UL	Uplink
UE	User Equipment
URC	Unsolicited Result Code
(U)SIM	(Universal) Subscriber Identity Module
V _{max}	Maximum Voltage
V _{nom}	Nominal Voltage
V _{min}	Minimum Voltage
V _{IHmax}	Maximum High-Level Input Voltage
V _{IHmin}	Minimum High-level Input Voltage
V _{ILmax}	Maximum Low-level Input Voltage
V _{ILmin}	Minimum Low-level Input Voltage
V _{max}	Absolute Maximum Input Voltage
V _{min}	Absolute Minimum Input Voltage
V _{OHmax}	Maximum High-level Output Voltage
V _{OHmin}	Minimum High-level Output Voltage
V _{OLmax}	Maximum Low-level Output Voltage
V _{OLmin}	Minimum Low-level Output Voltage
VSWR	Voltage Standing Wave Ratio
WWAN	Wireless Wide Area Network

FCC ID: XMR202406BG95S5

Important Notice to OEM integrators

1. This module is limited to OEM installation ONLY.
2. This module is limited to installation in mobile or fixed applications, according to Part 2.1091(b).
3. The separate approval is required for all other operating configurations, including portable configurations with respect to Part 2.1093 and different antenna configurations
4. For FCC Part 15.31 (h) and (k): The host manufacturer is responsible for additional testing to verify compliance as a composite system. When testing the host device for compliance with Part 15 Subpart B, the host manufacturer is required to show compliance with Part 15 Subpart B while the transmitter module(s) are installed and operating. The modules should be transmitting and the evaluation should confirm that the module's intentional emissions are compliant (i.e. fundamental and out of band emissions). The host manufacturer must verify that there are no additional unintentional emissions other than what is permitted in Part 15 Subpart B or emissions are compliant with the transmitter(s) rule(s). The Grantee will provide guidance to the host manufacturer for Part 15 B requirements if needed.

Important Note

notice that any deviation(s) from the defined parameters of the antenna trace, as described by the instructions, require that the host product manufacturer must notify to Quectel that they wish to change the antenna trace design. In this case, a Class II permissive change application is required to be filed by the USI, or the host manufacturer can take responsibility through the change in FCC ID (new application) procedure followed by a Class II permissive change application.

End Product Labeling

When the module is installed in the host device, the FCC/IC ID label must be visible through a window on the final device or it must be visible when an access panel, door or cover is easily re-moved. If not, a second label must be placed on the outside of the final device that contains the following text: "Contains FCC ID: XMR202406BG95S5"

"Contains IC: 10224A-02406BG95S5 "

The FCC ID/IC ID can be used only when all FCC/IC compliance requirements are met.

Antenna Installation

- (1) The antenna must be installed such that 20 cm is maintained between the antenna and users,
- (2) The transmitter module may not be co-located with any other transmitter or antenna.

In the event that these conditions cannot be met (for example certain laptop configurations or co-location with another transmitter), then the FCC/IC authorization is no longer considered valid and the FCC ID/IC ID cannot be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC/IC authorization.

Antenna Type	Band	Max. Gain
External	GSM850:	1.9dBi
	GSM1900:	1.3dBi
	LTE Cat M1 Band 2:	1.3dBi
	LTE Cat M1 Band 4:	1.3dBi
	LTE Cat M1 Band 5:	1.9dBi
	LTE Cat M1 Band 12:	1.7dBi
	LTE Cat M1 Band 13:	1.7dBi
	LTE Cat M1 Band 25:	1.3dBi
	LTE Cat M1 Band 26:	1.9dBi
	LTE Cat M1 Band 66:	1.3dBi
	LTE Cat M1 Band 85:	1.7dBi
	LTE Cat NB2 Band 2:	1.3dBi
	LTE Cat NB2 Band 4:	1.3dBi
	LTE Cat NB2 Band 5:	1.9dBi
	LTE Cat NB2 Band 12:	1.7dBi
	LTE Cat NB2 Band 13:	1.7dBi
	LTE Cat NB2 Band 25:	1.3dBi
	LTE Cat NB2 Band 66:	1.3dBi
	LTE Cat NB2 Band 71:	1.3dBi
	LTE Cat NB2 Band 85:	1.7dBi
	NTN Band 23:	3.3dBi
	NTN Band 255:	2.8dBi

Manual Information to the End User

The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module. The end user manual shall include all required regulatory information/warning as show in this manual.

Federal Communication Commission Interference Statement

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one of the following measures:

- Reorient or relocate the receiving antenna.

- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.

List of applicable FCC rules

This module has been tested and found to comply with part 2, part 22, part 24, part 25, part 27, part 90 requirements for Modular Approval.

The modular transmitter is only FCC authorized for the specific rule parts (i.e., FCC transmitter rules) listed on the grant, and that the host product manufacturer is responsible for compliance to any other FCC rules that apply to the host not covered by the modular transmitter grant of certification. If the grantee markets their product as being Part 15 Subpart B compliant (when it also contains unintentional-radiator digital circuitry), then the grantee shall provide a notice stating that the final host product still requires Part 15 Subpart B compliance testing with the modular transmitter installed.

Summarize the specific operational use conditions

This module can be used in IOT devices, the input voltage to the module is nominally 3.8V.

Limited module procedures

This module is a single module.

Trace antenna designs

The antenna is not a trace antenna.

Radiation Exposure Statement

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20 cm between the radiator & your body.

IC: 10224A-02406BG95S5

Industry Canada Statement

This device complies with Industry Canada's licence-exempt RSSs. Operation is subject to the following two conditions:

- (1) This device may not cause interference; and
- (2) This device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes:

- (1) l'appareil ne doit pas produire de brouillage, et
- (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Radiation Exposure Statement

This equipment complies with IC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20 cm between the radiator & your body.

Déclaration d'exposition aux radiations:

Cet équipement est conforme aux limites d'exposition aux rayonnements ISED établies pour un environnement non contrôlé. Cet équipement doit être installé et utilisé avec un minimum de 20 cm de distance entre la source de rayonnement et votre corps.

This device is intended only for OEM integrators under the following conditions: (For module device use)

- 1) The antenna must be installed such that 20 cm is maintained between the antenna and users, and
- 2) The transmitter module may not be co-located with any other transmitter or antenna.

As long as 2 conditions above are met, further transmitter test will not be required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed.

Antenna Type	Band	Max. Gain
External	GSM850:	1.9dBi
	GSM1900:	1.3dBi
	LTE Cat M1 Band 2:	1.3dBi
	LTE Cat M1 Band 4:	1.3dBi
	LTE Cat M1 Band 5:	1.9dBi

	LTE Cat M1 Band 12:	1.7dBi
	LTE Cat M1 Band 13:	1.7dBi
	LTE Cat M1 Band 25:	1.3dBi
	LTE Cat M1 Band 26:	1.9dBi
	LTE Cat M1 Band 66:	1.3dBi
	LTE Cat M1 Band 85:	1.7dBi
	LTE Cat NB2 Band 2:	1.3dBi
	LTE Cat NB2 Band 4:	1.3dBi
	LTE Cat NB2 Band 5:	1.9dBi
	LTE Cat NB2 Band 12:	1.7dBi
	LTE Cat NB2 Band 13:	1.7dBi
	LTE Cat NB2 Band 25:	1.3dBi
	LTE Cat NB2 Band 66:	1.3dBi
	LTE Cat NB2 Band 71:	1.3dBi
	LTE Cat NB2 Band 85:	1.7dBi
	NTN Band 23:	3.3dBi
	NTN Band 255:	2.8dBi

Cet appareil est conçu uniquement pour les intégrateurs OEM dans les conditions suivantes: (Pour utilisation de dispositif module)

1) L'antenne doit être installée de telle sorte qu'une distance de 20 cm est respectée entre l'antenne et les utilisateurs, et

2) Le module émetteur peut ne pas être coïmplanté avec un autre émetteur ou antenne.

Tant que les 2 conditions ci-dessus sont remplies, des essais supplémentaires sur l'émetteur ne seront pas nécessaires. Toutefois, l'intégrateur OEM est toujours responsable des essais sur son produit final pour toutes exigences de conformité supplémentaires requis pour ce module installé.

IMPORTANT NOTE:

In the event that these conditions cannot be met (for example certain laptop configurations or colocation with another transmitter), then the Canada authorization is no longer considered valid and the IC ID cannot be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate Canada authorization.

NOTE IMPORTANTE:

Dans le cas où ces conditions ne peuvent être satisfaites (par exemple pour certaines configurations d'ordinateur portable ou de certaines co-localisation avec un autre émetteur), l'autorisation du Canada n'est plus considéré comme valide et l'ID IC ne peut pas être utilisé sur le produit final. Dans ces circonstances, l'intégrateur OEM sera chargé de réévaluer le produit final (y compris l'émetteur) et l'obtention d'une autorisation distincte au Canada.

End Product Labeling

This transmitter module is authorized only for use in device where the antenna may be installed such that 20 cm may be maintained between the antenna and users. The final end product must be labeled in a visible area with the following: "Contains IC: 10224A-02406BG95S5".

Plaque signalétique du produit final

Ce module émetteur est autorisé uniquement pour une utilisation dans un dispositif où l'antenne peut être installée de telle sorte qu'une distance de 20cm peut être maintenue entre l'antenne et les utilisateurs. Le produit final doit être étiqueté dans un endroit visible avec l'inscription suivante: "Contient des IC: 10224A-02406BG95S5".

Manual Information To the End User

The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module.

The end user manual shall include all required regulatory information/warning as show in this manual.

Manuel d'information à l'utilisateur final

L'intégrateur OEM doit être conscient de ne pas fournir des informations à l'utilisateur final quant à la façon d'installer ou de supprimer ce module RF dans le manuel de l'utilisateur du produit final qui intègre ce module.

Le manuel de l'utilisateur final doit inclure toutes les informations réglementaires requises et avertissements comme indiqué dans ce manuel.