

EMC Test Report

Applicant: Quectel Wireless Solutions Co., Ltd.

Address: Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai, China, 200233

Product: LTE Cat 1 bis Module

Model No.: EG916Q-GL

Brand Name: QUECTEL

FCC ID: XMR2023EG916QGL

Standards: FCC CFR47 Part 15B

Report No.: PD20230223EMC01

Issue Date: 2024/01/17

Test Result: PASS *

* The above equipment has been tested and compliance with the requirement of the relative standards by Hefei Panwin Technology Co., Ltd.

Reviewed By: kipper Tao

Approved By: Alec Yang

Hefei Panwin Technology Co., Ltd.

Floor 1, Zone E, Plant 2#, Mingzhu Industrial Park, No.106 Chuangxin Avenue, High-tech Zone, Hefei City, Anhui Province, China
TEL: +86-0551-63811775

Revision History

Report No.	Version	Description	Issue Date	Note
PD20230223EMC01	01	Initial Report	2024/01/17	Valid

CONTENTS

1 General Information	5
1.1 Notes of the Test Report.....	5
1.2 Test Facility	5
1.3 Testing Laboratory	5
2 Description of Equipment under Test.....	6
3 Applied Standards	7
4 System Test Configuration	7
4.1 EUT Test Mode	7
4.2 Support Equipment List	8
4.3 Equipment Classification	8
4.4 Block Diagram of Test Setup	8
5 Emission Test.....	9
5.1 Radiated Emission	9
5.2 Conducted Emission	13
Appendix A – The EUT Photograph	16
Appendix B – Test Setup Photograph	16

Test Summary

NO.	Test Item	Clause in FCC Rules	Results	Remarks
1	Radiated Emission	FCC Part 15.109, ANSI C63.4-2014	Pass	/
2	Conducted Emission	FCC Part 15.107, ANSI C63.4-2014	Pass	Note 1

Date of Testing: 2023/12/26 to 2023/12/27

Date of Sample Received: 2023/12/25

- We, Hefei Panwin Technology Co., Ltd., would like to declare that the tested sample has been evaluated in accordance with the procedures given in applied standard(s) in **Section 3** of this report and shown compliance with the applicable technical standards.
- All indications of PASS/FAIL in this report are based on interpretations and/or observations of test results.

Measurement Uncertainties were not taken into account and are published for informational purposes only.

1 General Information

1.1 Notes of the Test Report

This report is invalid without signature of auditor and approver or with any alterations. The report shall not be partially reproduced without written approval of the testing company. Entrusted test results are only responsible for incoming samples. If there is any objection to the testing report, it shall be raised to the testing company within 15 days from the date of receiving the report. In the test results, "NA" means "not applicable", and the test items marked with "Δ" are subcontracted projects.

1.2 Test Facility

FCC (Designation Number: CN1361, Test Firm Registration Number: 473156)

Hefei Panwin Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform measurements.

A2LA (Certificate Number: 6849.01)

Hefei Panwin Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform measurement.

1.3 Testing Laboratory

Company Name	Hefei Panwin Technology Co., Ltd.
Address	Floor 1, Zone E, Plant 2#, Mingzhu Industrial Park, 106 Chuangxin Avenue, High-tech Zone, Hefei City, Anhui Province, China
Telephone	+86-0551-63811775
Post Code	230031

2 Description of Equipment under Test

Client Information

Applicant	Quectel Wireless Solutions Co., Ltd.
Applicant Address	Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai, China, 200233
Manufacturer	Quectel Wireless Solutions Co., Ltd.
Manufacturer Address	Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai, China, 200233

General Technologies

Product	LTE Cat 1 bis Module		
Model	EG916Q-GL		
SN	P1Y23KSP000198		
Hardware Version	R1.0		
Software Version	EG916QGLGR01A03M04		
Power Supply	External power supply, Typ. 3.8 V dc		
Antenna Type	External Antenna		
Frequency	Band	TX(MHz)	RX(MHz)
	LTE - FDD Band 2	1850 to 1910	1930 to 1990
	LTE - FDD Band 4	1710 to 1755	2110 to 2155
	LTE - FDD Band 5	824 to 849	869 to 894
	LTE - FDD Band 7	2500 to 2570	2620 to 2690
	LTE - FDD Band 12	699 to 716	729 to 746
	LTE - FDD Band 13	777 to 787	746 to 756
	LTE - FDD Band 25	1850- 1915	1930 to 1995
	LTE - FDD Band 26	814 to 849	859 to 894
	LTE - TDD Band 38	2570 to 2620	2570 to 2620
	LTE - TDD Band 41	2496 to 2690	2496 to 2690
	LTE - FDD Band 66	1710 to 1780	2110 to 2200

Note: The EUT is sent from the applicant to Hefei Panwin Technology Co., Ltd., and the information of the EUT is declared by the applicant.

3 Applied Standards

Test Standards

No.	Identity	Document Title
1	FCC CFR47 Part 15B	Unintentional Radiators
2	ANSI C63.4-2014	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

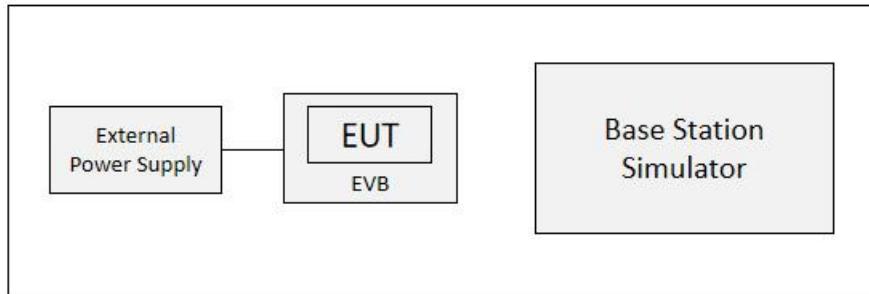
4 System Test Configuration

4.1 EUT Test Mode

The system was configured for testing in a typical Mode (as normally used by a typical user).

NO.	Test Mode
1	External power supply + EVB +LTE Band 5 Idle

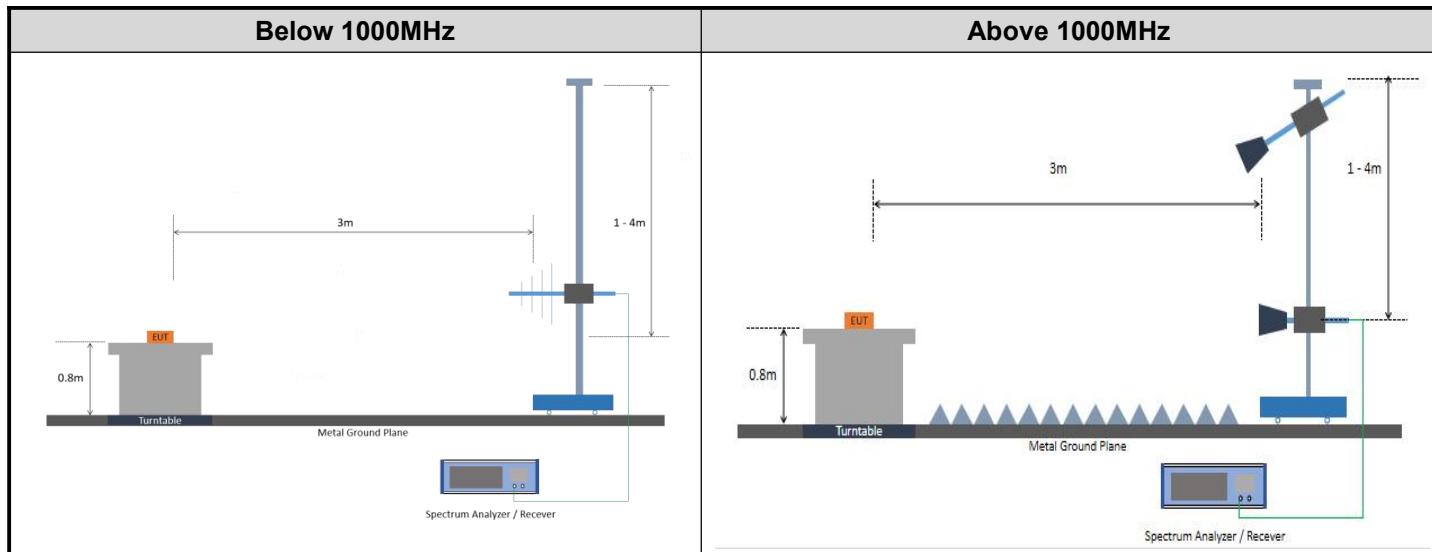
Note: During the test, the preliminary test was performed in all modes with all frequency bands, mode 1 was selected as the worst condition.


4.2 Support Equipment List

Equipment	Manufacturer	Description	Model	Serial Number
Base Station Simulator	R&S	/	CMW500	PWC0052
EVB	QUECTEL	/	/	/
External Antenna	SDN	/	4G-LTE	SAA30968A
USB cable	UGREE	/	/	/

4.3 Equipment Classification

<input type="checkbox"/>	Class A
<input checked="" type="checkbox"/>	Class B


4.4 Block Diagram of Test Setup

5 Emission Test

5.1 Radiated Emission

5.1.1 Test System Diagram

Remark: Antenna Tower meets ANSI C63.4 requirements for measurements above 1 GHz by keeping the antenna aimed at the EUT during the antenna's ascent/ descent along the antenna mast.

5.1.2 Test Equipment

Instrument	Manufacturer	Model	Asset No.	Cal. Interval	Cal. Due Date
EMI Test Receiver	R&S	ESR7	PWB0023	1 Year	2024/10/11
TRILOG Broadband Antenna	Schwarzbeck	VULB9162	PWB0029	1 Year	2024/10/14
Double-Ridged Guide Antenna	ETS-Lindgren	3117	PWB0031	1 Year	2024/10/12
3m Semi Anechoic Chamber	ETS.LINDGREN	Fact 3-2m	PWB0003	3 Years	2024/08/28
Pre-Amplifier	R&S	SCU18F1	PWB0032	1 Year	2024/10/11
Pre-Amplifier	DLNA8	COM-MW	PWB0094	1 Year	2024/11/08
Pre-Amplifier	R&S	OSP220 (OSP-B155G)	PWB0042	1 Year	2024/10/13
Test Software	R&S	ELEKTRA V4.20.2	/	/	/

5.1.3 Limits

Class B limit

Frequency range (MHz)	Quasi-peak limits (dB μ V/m)	Measurement distance (m)
30 to 88	40	3
88 to 216	43.5	3
216 to 960	46	3
960 to 1000	54	3

Note 1: The lower limit shall apply at the transition frequency.

Note 2: Additional provisions may be required for cases where interference occurs.

Frequency range (GHz)	Average limit (dB μ V/m)	Peak limit (dB μ V/m)	Measurement distance(m)
1 to 5 th harmonic of the highest frequency or 40GHz, which is lower	54	74	3

Remark: E field strength (dB μ V/m) = 20 log E field strength (μ V/m)

5.1.4 Test Procedure

The EUT is placed on a non-metallic table 0.8m above the horizontal metal reference ground plane. The distance between EUT and receive antenna should be 3 meters. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Sweep the whole frequency Band through the range from 30MHz to 5th harmonic of the carrier. During the test, the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turn table shall be rotated from 0 to 360 degrees for detecting the maximum of radiated signal level.

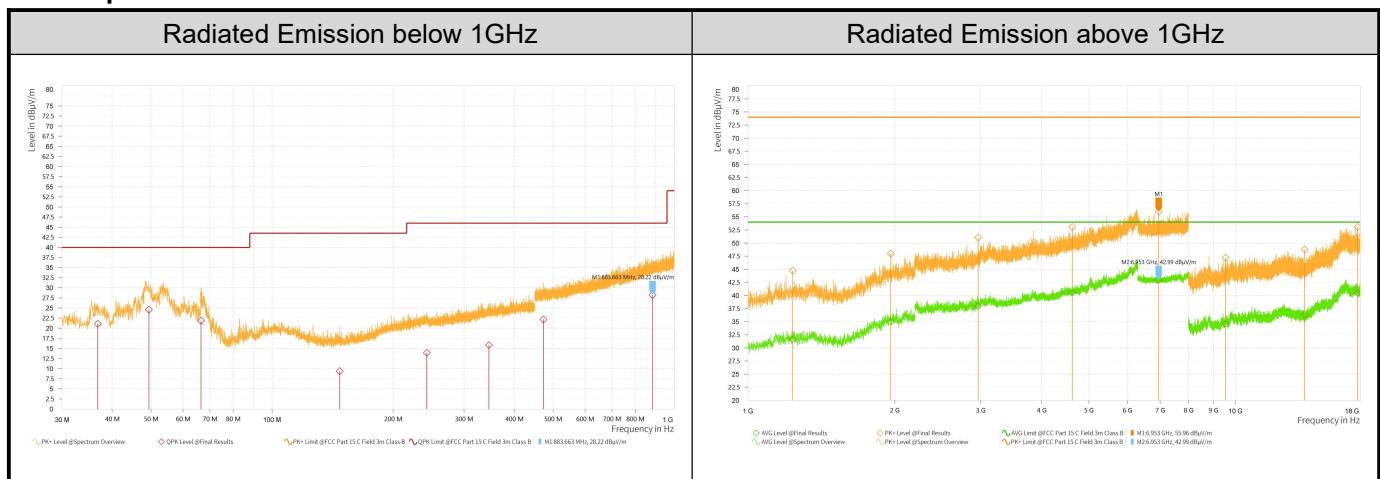
The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing. During the test, the EUT is worked at maximum output power.

Below 1GHz, RBW is set to 100 kHz and VBW is set to 300kHz. Above 1GHz, RBW is set to 1MHz and VBW is set to 3MHz.

Required highest frequency for radiated measurement

Highest internal frequency (F _x)	Highest measured frequency
F _x ≤ 1.705 MHz	30 MHz
1.705 MHz < F _x ≤ 108 MHz	1000 MHz
108 MHz < F _x ≤ 500 MHz	2000 MHz
500 MHz < F _x ≤ 1 GHz	5000 MHz
1 GHz < F _x	5 th harmonic of the highest frequency or 40GHz, which is lower

NOTE 1: F_x is highest fundamental frequency generated or used within the EUT or highest frequency at which it operates.


5.1.5 Test Result

Test Site	3m Semi Anechoic Chamber	Test Time	2023/12/26
Engineer	Kane Sun	Test Mode	Mode 1

Ambient condition

Temperature	Relative humidity	Pressure
21.3°C to 21.7°C	34%RH to 38%RH	102.99kPa to 103.89kPa

Test Graph

Signals caused by radio equipment are not required.

Test Data

Radiated Emission Below 1GHz

Frequency [MHz]	QPK Level [dBµV/m]	QPK Limit [dBµV/m]	QPK Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]
36.840	21.07	40.00	18.93	-17.25	V	83.1
49.380	24.57	40.00	15.43	-15.51	V	359.1
66.540	21.85	40.00	18.15	-18.71	V	83.1
147.300	9.38	43.50	34.12	-20.91	H	135.7
242.520	13.88	46.00	32.12	-15.69	V	18.5
346.080	15.80	46.00	30.20	-13.16	H	3.8
472.837	22.17	46.00	23.83	-2.40	H	264.7
883.663	28.22	46.00	17.78	3.97	H	360

Remark:

1. Correction Factor =Antenna factor + Insertion loss (cable loss + amplifier gain)
2. Margin = Limit - QPK

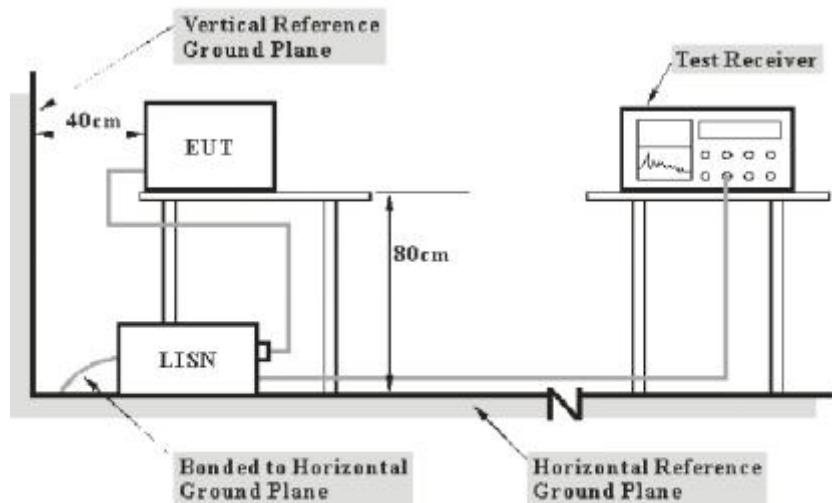
Radiated Emission Above 1GHz

Frequency [MHz]	PK+ Level [dB μ V/m]	PK+ Limit [dB μ V/m]	PK+ Margin [dB]	CAV Level [dB μ V/m]	CAV: AVG Limit [dB μ V/m]	CAV Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]
1,235.500	44.75	74.00	29.25	31.60	54.00	22.40	3.95	H	63
1,963.000	47.99	74.00	26.01	34.98	54.00	19.02	8.82	V	308.1
2,964.000	51.04	74.00	22.96	37.99	54.00	16.01	13.49	H	105.8
4,624.000	53.05	74.00	20.95	40.52	54.00	13.48	16.76	H	0
6,953.000	55.96	74.00	18.04	42.99	54.00	11.01	10.96	H	360
9,534.500	47.19	74.00	26.81	34.60	54.00	19.40	12.24	V	351.1
13,852.500	48.78	74.00	25.22	36.31	54.00	17.69	14.50	H	360
17,781.500	53.06	74.00	20.94	40.52	54.00	13.48	22.60	H	96.5

Remark:

1. Correction Factor =Antenna factor + Insertion loss (cable loss + amplifier gain)
2. Margin = Limit - (PK+) or (AVG)

5.1.6 Uncertainty Measurement


Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT.

The listed uncertainties are the worst case uncertainty for the entire range of measurement. Please note that the uncertainty values are provided for informational purposes only and are not used in determining the PASS/FAIL results. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

CASE	Uncertainty
Radiated Emission	Below 1GHz: 4.88 dB Above 1GHz: 5.06 dB

5.2 Conducted Emission

5.2.1 Test System Diagram

Note: 1. Support units were connected to second LISN.
 2. Both of LISNs (AMN) 80 cm from EUT and at the least 30 cm from other units and other metal planes support units.

5.2.2 Test Equipment

Instrument	Manufacturer	Model	Asset No.	Cal. Interval	Cal. Due Date
EMI Test Receiver	R&S	ESR 3	PWB0061	1 Year	2024/10/11
LISN	R&S	ENV216	PWB0062	1 Year	2024/10/11
Shielded Chamber	MIX-BEP	SR 433	PWB0002	3 Years	2024/08/08
Test Software	R&S	ELEKTRA V4.20.2	/	/	/

5.2.3 Limits

Class B limit (AC port)

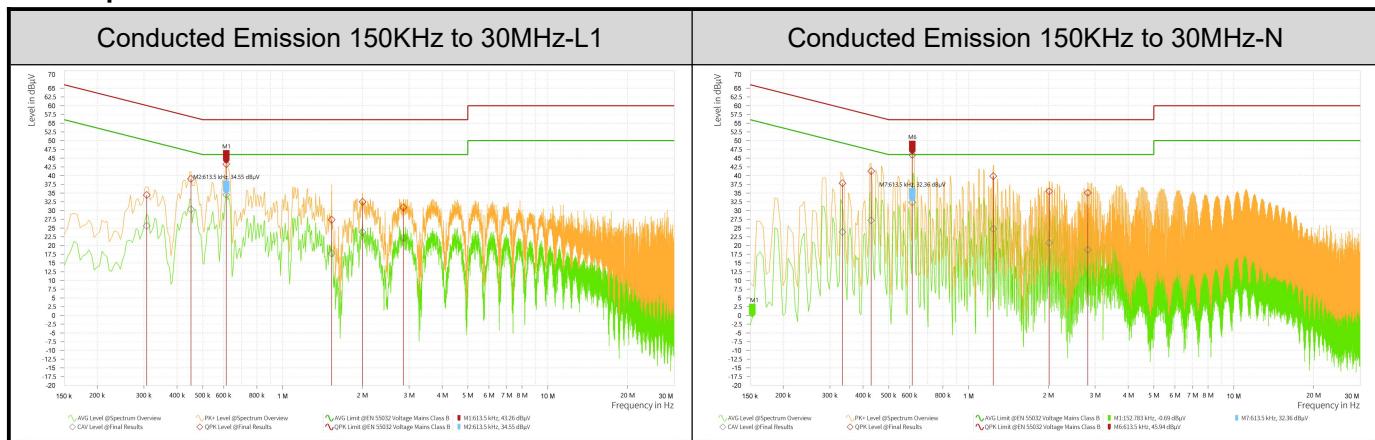
Frequency range (GHz)	Quasi Peak limit dB(µV)	Average limit dB(µV)
0.15MHz – 0.50MHz	66 to 56	56 to 46
0.50MHz – 5MHz	56	46
5MHz – 30MHz	60	50

Note : The lower limit shall apply at the transition frequency.

5.2.4 Test Procedure

The EUT is placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Connect the AC power line of the EUT to the L.I.S.N. Use EMI receiver to detect the average and Quasi-peak value. The measurement result should include both L line and N line.

The frequency Band range is from 150 kHz to 30MHz. RBW is set to 9 kHz and VBW is set to 30 kHz on test receiver.


5.2.5 Test Result

Test Site	EMC 02 Shielding Room	Test Time	2023/12/27
Engineer	Kane sun	Test Mode	mode 1

Ambient condition

Temperature	Relative humidity	Pressure
21.3°C to 21.5°C	42%RH to 42%RH	101.39kPa to 101.39kPa

Test Graph

Test Data

Conducted Emission 150KHz to 30MHz

Frequency [MHz]	QPK Level [dBμV]	QPK Limit [dBμV]	QPK Margin [dB]	CAV Level [dBμV]	CAV: AVG Limit [dBμV]	CAV Margin [dB]	Correction [dB]	Line
0.308	34.44	60.04	25.59	25.64	50.04	24.40	9.52	L1
0.452	39.08	56.85	17.77	30.34	46.85	16.51	9.52	L1
0.614	43.26	56.00	12.74	34.55	46.00	11.45	9.52	L1
1.532	27.38	56.00	28.62	17.67	46.00	28.33	9.53	L1
2.004	32.49	56.00	23.51	23.81	46.00	22.19	9.54	L1
2.855	30.88	56.00	25.12	22.01	46.00	23.99	9.54	L1
0.335	37.81	59.34	21.52	23.86	49.34	25.48	9.53	N

0.429	41.27	57.27	16.00	27.19	47.27	20.08	9.53	N
0.614	45.94	56.00	10.06	32.36	46.00	13.64	9.54	N
1.239	39.85	56.00	16.15	24.75	46.00	21.25	9.54	N
2.013	35.50	56.00	20.50	20.80	46.00	25.20	9.55	N
2.819	35.07	56.00	20.93	18.82	46.00	27.18	9.55	N

5.2.6 Uncertainty Measurement

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT. The listed uncertainties are the worst case uncertainty for the entire range of measurement. Please note that the uncertainty values are provided for informational purposes only and are not used in determining the PASS/FAIL results. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

CASE	Uncertainty
Continuous Emission (AC port)	2.92 dB

Appendix A – The EUT Photograph

Refer to “Attachment 1: External Photograph” and “Attachment 2: Internal Photograph” file.

Appendix B – Test Setup Photograph

Refer to “Attachment 3: EMC Test Setup Photograph” file.

***** End of the Report *****