

Appendix E. Power reduction mechanism verification

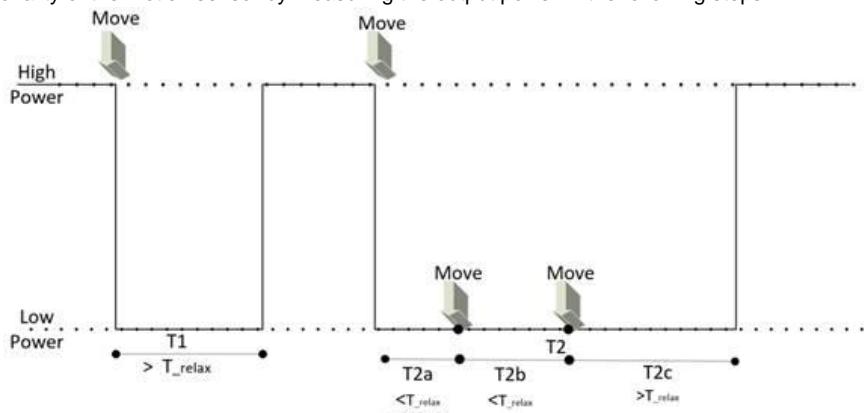
According to the May 2017 TCBC Workshop, Demonstration of proper functioning of the detection and triggering mechanisms to support the corresponding RF exposure conditions. The verification is through a base station simulator is used to establish a conducted RF connection and monitor output power under different operating conditions related to the power reduction mechanisms. Detail of power reduction mechanisms referring to Operational Description

1. Power verification procedure

- Establish data connection monitor hotspot power state.
 - LTE is set at 'highest BW, 1RB, RB Offset = 0, QPSK' WCDMA is set RMC 12.2Kbps, 5G FR1 is set at highest BW MHz, 1RF, RB offset = 1
- Establish data connection monitor body worn power state.
 - LTE is set at 'highest BW, 1RB, RB Offset = 0, QPSK' WCDMA is set RMC 12.2Kbps, 5G FR1 is set at highest BW MHz, 1RF, RB offset = 1
 - Body Detect mechanism was performed for the in-hand and on a stationary object (placed on a table)
- This device incorporates the Qualcomm Smart Transmit algorithm feature and through under varying Tx power transmission scenarios in real-time to maintain the time-averaged Tx power compliant with FCC RF exposure requirement.
- In this power validation purpose is to demonstrate of proper functioning of the detection and triggering mechanisms to support the corresponding RF exposure conditions. In order to avoid real-time TX power varying may affect monitor output power related to the power reduction mechanisms, therefore power reduction verification would be disabled WWAN smart transmit feature.
- Verification performed for each technology to demonstrate that the power reduction applies for both technology and call origination.

2. Test setup for measuring power

Figure 1


3. Verification output Power Results

Body exposure condition

Body Worn exposure condition	Output Power (data connection)				
	Body Worn (In hand)				
WIFI/BT Status		OFF		ON	
Power state		WWAN DSI 1 WIFI status 0		WWAN DSI 1 WIFI status 1	
Wireless Technology	Antenna	Measured (dBm)	Max. Tune-up (dBm)	Measured (dBm)	Max. Tune-up (dBm)
LTE Band 30	Ant 1	21.68	23	13.32	14
LTE Band 38	Ant 1	23.94	25	16.34	17.5

1. Conducted Power verification Plan:

- According to the May 2017 TCBC Workshop, Demonstration of proper functioning of the detection and triggering mechanisms to support the corresponding RF exposure conditions. The verification is through a base station simulator is used to establish a conducted RF connection and monitor output power under different operating conditions related to the power reduction mechanisms.
- Body Detect mechanism will be performed for the in-hand and on a stationary object (placed on a table).
- Verify the functionality of the motion sensor by measuring the output power in the following steps.

Figure 1 Illustration of the procedure for the validation of the power reduction

The device is embedded with motion sensors only, no proximity sensors are installed.

- Placed on a table:** Make the DUT transmit with the maximum output power by using a base station simulator.
 - Confirm that motion sensor is not triggered by letting the DUT remain stationary with no movements for the period T_{relax} for the motion sensor to reach stationary state.
 - Record P_{step1} (high power)
- In-hand:** Move the DUT to trigger the motion sensor. Apply the motion of the DUT with respect to movements in intended and reasonably foreseeable use conditions of the DUT.
 - Record P_{step2} (low power)
- For the validation of T_{relax} , wait a time period $T1 > T_{relax}$ and confirm DUT restores to high power (P_{step1}).
- Move the DUT to trigger the motion sensor.
- Move DUT within T_{relax} to ensure T_{relax} resets when DUT is in motion.

DUT can be moved once or twice within T_{relax} , (after time periods $T2a$ and $T2b$ in Figure 1.) followed by waiting for a time period greater than T_{relax} (time period $T2c$ in Figure 1.) for DUT to restore high power. The total time duration of this step is $T2$, and the power during the whole period $T2$ shall be reduced (low power – P_{step2}).

Exposure Condition		Output Power (data connection) (dBm)											
		Stationary Placed on a table		In hand		Stationary Placed on a table		In hand				Stationary Placed on a table	
Power state		Full Power P_{step1}		Low Power P_{step2}		Full Power P_{step1} & $T_1 > T_{relax}$		Low Power P_{step2} & $T_{2a} < T_{relax}$		Low Power P_{step2} & $T_{2b} < T_{relax}$		Full Power P_{step1} & $T_{2c} > T_{relax}$	
Wireless technology	Antenna	Measured	Max. Tune-up	Measured	Max. Tune-up	Measured	Max. Tune-up	Measured	Max. Tune-up	Measured	Max. Tune-up	Measured	Max. Tune-up
LTE Band 30	Ant 1	21.72	23.0	13.38	14	21.68	23.0	13.46	14.0	13.47	14.0	21.76	23.0