

M66 Hardware Design

GSM/GPRS Module Series

Rev. M66_Hardware_Design_V1.2

Date: 2016-07-08

Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:

Quectel Wireless Solutions Co., Ltd.

Office 501, Building 13, No.99, Tianzhou Road, Shanghai, China, 200233

Tel: +86 21 5108 6236

Email: info@quectel.com

Or our local office. For more information, please visit:

<http://www.quectel.com/support/salesupport.aspx>

For technical support, or to report documentation errors, please visit:

<http://www.quectel.com/support/techsupport.aspx>

Or email to: Support@quectel.com

GENERAL NOTES

QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS' REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.

COPYRIGHT

THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN.

Copyright © Quectel Wireless Solutions Co., Ltd. 2016. All rights reserved.

About the Document

History

Revision	Date	Author	Description
1.0	2014-08-07	Felix YIN	<p>Initial</p> <ul style="list-style-type: none"> 1. Modified output power of Bluetooth 2. Modified the timing of the RFTXMON signal 3. Updated Figure 5: Reference circuit for power supply 4. Modified description of RTC and SIM card interface 5. Modified description of UART Application 6. Deleted the over-voltage automatic shutdown function 7. Modified the antenna gain in the Table 24 8. Modified the current consumption information in Section 5.3 & 5.4
1.1	2014-11-24	Felix YIN	<ul style="list-style-type: none"> 1. Modified the configuration and timing of PCM Interface
1.2	2016-07-08	King MA	<p>Added Chapter 3.11 SD Card Interface</p> <p>Updated the description of Temperature Range</p>

Contents

About the Document	2
Contents	3
Table Index	6
Figure Index	7
1 Introduction	9
1.1. Safety Information	10
2 Product Concept	12
2.1. General Description	12
2.2. Key Features.....	12
2.3. Functional Diagram	15
2.4. Evaluation Board.....	16
3 Application Interface	17
3.1. Pin of Module	18
3.1.1. Pin Assignment.....	18
3.1.2. Pin Description.....	19
3.2. Operating Modes	23
3.3. Power Supply	24
3.3.1. Power Features of Module.....	24
3.3.2. Decrease Supply Voltage Drop.....	25
3.3.3. Reference Design For Power Supply.....	26
3.3.4. Monitor Power Supply.....	26
3.4. Power On and Down Scenarios	27
3.4.1. Power On.....	27
3.4.2. Power Down	29
3.4.2.1. Power Down Module Using the PWRKEY Pin.....	29
3.4.2.2. Power Down Module Using AT Command.....	30
3.4.2.3. Under-voltage Automatic Shutdown	30
3.4.3. Restart	31
3.5. Power Saving	31
3.5.1. Minimum Functionality Mode	31
3.5.2. SLEEP Mode	32
3.5.3. Wake Up Module From SLEEP Mode.....	32
3.5.4. Summary of State Transition	33
3.6. RTC Backup.....	33
3.7. Serial Interfaces	35
3.7.1. UART Port	37
3.7.1.1. The Feature of UART Port.....	37
3.7.1.2. The Connection of UART	38
3.7.1.3. Firmware Upgrade.....	40
3.7.2. Debug Port.....	40

3.7.3. Auxiliary UART Port.....	41
3.7.4. UART Application.....	41
3.8. Audio Interfaces	43
3.8.1. Decrease TDD Noise and other Noise.....	44
3.8.2. Microphone Interfaces Design	45
3.8.3. Receiver and Speaker Interface Design	46
3.8.4. Earphone Interface Design	48
3.8.5. Audio Characteristics.....	48
3.9. PCM Interface	49
3.9.1. Configuration	49
3.9.2. Timing	50
3.9.3. Reference Design	51
3.9.4. AT Command.....	52
3.10. SIM Card Interface	53
3.11. SD Card Interface	55
3.12. ADC	57
3.13. Behaviors of The RI	58
3.14. Network Status Indication.....	59
3.15. RF Transmitting Signal Indication	60
4 Antenna Interface.....	63
4.1. GSM Antenna Interface.....	63
4.1.1. Reference Design	63
4.1.2. RF Output Power	64
4.1.3. RF Receiving Sensitivity	65
4.1.4. Operating Frequencies	65
4.1.5. RF Cable Soldering	66
4.2. Bluetooth Antenna Interface.....	66
5 Electrical, Reliability and Radio Characteristics	69
5.1. Absolute Maximum Ratings	69
5.2. Operating Temperature	69
5.3. Power Supply Ratings.....	70
5.4. Current Consumption.....	71
5.5. Electro-static Discharge	73
6 Mechanical Dimensions.....	75
6.1. Mechanical Dimensions of Module	75
6.2. Recommended Footprint.....	77
6.3. Top View of the Module	78
6.4. Bottom View of the Module	78
7 Storage and Manufacturing.....	79
7.1. Storage.....	79
7.2. Soldering.....	80
7.3. Packaging	81

7.3.1. Tape and Reel Packaging	81
8 Appendix A References	83
9 Appendix B GPRS Coding Schemes	88
10 Appendix C GPRS Multi-slot Classes.....	92

Table Index

TABLE 1: MODULE KEY FEATURES	13
TABLE 2: CODING SCHEMES AND MAXIMUM NET DATA RATES OVER AIR INTERFACE	15
TABLE 3: IO PARAMETERS DEFINITION	19
TABLE 4: PIN DESCRIPTION	19
TABLE 5: OVERVIEW OF OPERATING MODES	23
TABLE 6: SUMMARY OF STATE TRANSITION	33
TABLE 7: LOGIC LEVELS OF THE UART INTERFACE	36
TABLE 8: PIN DEFINITION OF THE UART INTERFACES	36
TABLE 9: PIN DEFINITION OF AUDIO INTERFACE	43
TABLE 10: TYPICAL ELECTRET MICROPHONE CHARACTERISTICS	48
TABLE 11: TYPICAL SPEAKER CHARACTERISTICS	48
TABLE 12: PIN DEFINITION OF PCM INTERFACE	49
TABLE 13: CONFIGURATION	50
TABLE 14: QPCMON COMMAND DESCRIPTION	52
TABLE 15: QPCM VOL COMMAND DESCRIPTION	53
TABLE 16: PIN DEFINITION OF THE SIM INTERFACE	53
TABLE 17: PIN DEFINITION OF SD CARD INTERFACE	55
TABLE 18: PIN NAME OF THE SD CARD AND T-FLASH (MICRO SD) CARD	56
TABLE 19: PIN DEFINITION OF THE ADC	57
TABLE 20: CHARACTERISTICS OF THE ADC	57
TABLE 21: BEHAVIORS OF THE RI	58
TABLE 22: WORKING STATE OF THE NETLIGHT	59
TABLE 23: PIN DEFINITION OF THE RFTXMON	60
TABLE 24: PIN DEFINITION OF THE RF_ANT	63
TABLE 25: ANTENNA CABLE REQUIREMENTS	64
TABLE 26: ANTENNA REQUIREMENTS	64
TABLE 27: THE MODULE CONDUCTED RF OUTPUT POWER	64
TABLE 28: THE MODULE CONDUCTED RF RECEIVING SENSITIVITY	65
TABLE 29: THE MODULE OPERATING FREQUENCIES	65
TABLE 30: PIN DEFINITION OF THE BT_ANT	67
TABLE 31: ABSOLUTE MAXIMUM RATINGS	69
TABLE 32: OPERATING TEMPERATURE	70
TABLE 33: THE MODULE POWER SUPPLY RATINGS	70
TABLE 34: THE MODULE CURRENT CONSUMPTION	71
TABLE 35: THE ESD ENDURANCE (TEMPERATURE: 25°C, HUMIDITY: 45%)	74
TABLE 36: RELATED DOCUMENTS	83
TABLE 37: TERMS AND ABBREVIATIONS	84
TABLE 38: DESCRIPTION OF DIFFERENT CODING SCHEMES	88
TABLE 39: GPRS MULTI-SLOT CLASSES	92

Figure Index

FIGURE 1: MODULE FUNCTIONAL DIAGRAM	16
FIGURE 2: PIN ASSIGNMENT	18
FIGURE 3: VOLTAGE RIPPLE DURING TRANSMITTING	25
FIGURE 4: REFERENCE CIRCUIT FOR THE VBAT INPUT	25
FIGURE 5: REFERENCE CIRCUIT FOR POWER SUPPLY	26
FIGURE 6: TURN ON THE MODULE WITH AN OPEN-COLLECTOR DRIVER	27
FIGURE 7: TURN ON THE MODULE WITH A BUTTON	28
FIGURE 8: TURN-ON TIMING	28
FIGURE 9: TURN-OFF TIMING	29
FIGURE 10: TIMING OF RESTARTING SYSTEM	31
FIGURE 11: VRTC IS SUPPLIED BY A NON-CHARGEABLE BATTERY	34
FIGURE 12: VRTC IS SUPPLIED BY A RECHARGEABLE BATTERY	34
FIGURE 13: VRTC IS SUPPLIED BY A CAPACITOR	35
FIGURE 14: REFERENCE DESIGN FOR FULL-FUNCTION UART	39
FIGURE 15: REFERENCE DESIGN FOR UART PORT	39
FIGURE 16: REFERENCE DESIGN FOR UART PORT WITH HARDWARE FLOW CONTROL	40
FIGURE 17: REFERENCE DESIGN FOR FIRMWARE UPGRADE	40
FIGURE 18: REFERENCE DESIGN FOR DEBUG PORT	41
FIGURE 19: REFERENCE DESIGN FOR AUXILIARY UART PORT	41
FIGURE 20: LEVEL MATCH DESIGN FOR 3.3V SYSTEM	42
FIGURE 21: SKETCH MAP FOR RS-232 INTERFACE MATCH	43
FIGURE 22: REFERENCE DESIGN FOR AIN	45
FIGURE 23: HANDSET INTERFACE DESIGN FOR AOUT1	46
FIGURE 24: SPEAKER INTERFACE DESIGN WITH AN AMPLIFIER FOR AOUT1	46
FIGURE 25: HANDSET INTERFACE DESIGN FOR AOUT2	47
FIGURE 26: SPEAKER INTERFACE DESIGN WITH AN AMPLIFIER FOR AOUT2	47
FIGURE 27: EARPHONE INTERFACE DESIGN	48
FIGURE 28: LONG SYNCHRONIZATION DIAGRAM	51
FIGURE 29: SHORT SYNCHRONIZATION DIAGRAM	51
FIGURE 30: REFERENCE DESIGN FOR PCM	52
FIGURE 31: REFERENCE CIRCUIT FOR SIM INTERFACE WITH THE 6-PIN SIM CARD HOLDER	54
FIGURE 32: REFERENCE CIRCUIT FOR MICRO SD CARD	56
FIGURE 33: RI BEHAVIOR OF VOICE CALLING AS A RECEIVER	58
FIGURE 34: RI BEHAVIOR AS A CALLER	59
FIGURE 35: RI BEHAVIOR OF URC OR SMS RECEIVED	59
FIGURE 36: REFERENCE DESIGN FOR NETLIGHT	60
FIGURE 37: RFTXMON SIGNAL DURING BURST TRANSMISSION	61
FIGURE 38: RFTXMON SIGNAL DURING CALL	62
FIGURE 39: REFERENCE DESIGN FOR GSM ANTENNA	64
FIGURE 40: RF SOLDERING SAMPLE	66
FIGURE 41: REFERENCE DESIGN FOR BLUETOOTH ANTENNA	67

FIGURE 42: M66 MODULE TOP AND SIDE DIMENSIONS (UNIT: MM).....	75
FIGURE 43: M66 MODULE BOTTOM DIMENSIONS (UNIT: MM)	76
FIGURE 44: RECOMMENDED FOOTPRINT (UNIT: MM)	77
FIGURE 45: TOP VIEW OF THE MODULE	78
FIGURE 46: BOTTOM VIEW OF THE MODULE	78
FIGURE 47: REFLOW SOLDERING THERMAL PROFILE	80
FIGURE 48: TAPE AND REEL SPECIFICATION	81
FIGURE 49: DIMENSIONS OF REEL.....	82
FIGURE 50: RADIO BLOCK STRUCTURE OF CS-1, CS-2 AND CS-3.....	89
FIGURE 51: RADIO BLOCK STRUCTURE OF CS-4	90

1 Introduction

This document defines the M66 module and describes its hardware interface which are connected with the customer application and the air interface.

This document can help you quickly understand module interface specifications, electrical and mechanical details. Associated with application note and user guide, you can use M66 module to design and set up mobile applications easily.

1.1. Safety Information

The following safety precautions must be observed during all phases of the operation, such as usage, service or repair of any cellular terminal or mobile incorporating M66 module. Manufacturers of the cellular terminal should send the following safety information to users and operating personnel, and incorporate these guidelines into all manuals supplied with the product. If not so, Quectel assumes no liability for the customer's failure to comply with these precautions.

Full attention must be given to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. You must comply with laws and regulations restricting the use of wireless devices while driving.

Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it is switched off. The operation of wireless appliances in an aircraft is forbidden, so as to prevent interference with communication systems. Consult the airline staff about the use of wireless devices on boarding the aircraft, if your device offers a Airplane Mode which must be enabled prior to boarding an aircraft.

Switch off your wireless device when in hospitals, clinics or other health care facilities. These requests are designed to prevent possible interference with sensitive medical equipment.

Cellular terminals or mobiles operating over radio frequency signal and cellular network cannot be guaranteed to connect in all conditions, for example no mobile fee or with an invalid SIM card. While you are in this condition and need emergent help, please remember using emergency call. In order to make or receive a call, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength.

Your cellular terminal or mobile contains a transmitter and receiver. When it is ON, it receives and transmits radio frequency energy. RF interference can occur if it is used close to TV set, radio, computer or other electric equipment.

In locations with potentially explosive atmospheres, obey all posted signs to turn off wireless devices such as your phone or other cellular terminals. Areas with potentially explosive atmospheres include fuelling areas, below decks on boats, fuel or chemical transfer or storage facilities, areas where the air contains chemicals or particles such as grain, dust or metal powders, etc.

2 Product Concept

2.1. General Description

M66 is a Quad-band GSM/GPRS engine that works at frequencies of GSM850MHz, EGSM900MHz, DCS1800MHz and PCS1900MHz. The M66 features GPRS multi-slot class 12 and supports the GPRS coding schemes CS-1, CS-2, CS-3 and CS-4. For more details about GPRS multi-slot classes and coding schemes, please refer to the **Appendix B & C**.

With a tiny profile of 15.8mm × 17.7mm × 2.3mm, the module can meet almost all the requirements for M2M applications, including Vehicles and Personal Tracking, Security System, Wireless POS, Industrial PDA, Smart Metering, and Remote Maintenance& Control, etc.

M66 is an SMD type module with LCC package, which can be easily embedded into applications. It provides abundant hardware interfaces like PCM Interface.

Designed with power saving technique, the current consumption of M66 is as low as 1.3 mA in SLEEP mode when DRX is 5.

M66 is integrated with Internet service protocols, such as TCP/UDP, FTP and PPP. Extended AT commands have been developed for you to use these Internet service protocols easily.

M66 supports Bluetooth interface, it is fully compliant with Bluetooth specification 3.0.

The module fully complies with the RoHS directive of the European Union.

2.2. Key Features

The following table describes the detailed features of M66 module.

Table 1: Module Key Features

Feature	Implementation
Power Supply	Single supply voltage: 3.3V ~ 4.6V Typical supply voltage: 4V
Power Saving	Typical power consumption in SLEEP mode: 1.3 mA @DRX=5 1.2 mA @DRX=9
Frequency Bands	<ul style="list-style-type: none"> Quad-band: GSM850, EGSM900, DCS1800, PCS1900. The module can search these frequency bands automatically The frequency bands can be set by AT command Compliant to GSM Phase 2/2+
GSM Class	Small MS
Transmitting Power	<ul style="list-style-type: none"> Class 4 (2W) at GSM850 and EGSM900 Class 1 (1W) at DCS1800 and PCS1900
GPRS Connectivity	<ul style="list-style-type: none"> GPRS multi-slot class 12 (default) GPRS multi-slot class 1~12 (configurable) GPRS mobile station class B
DATA GPRS	<ul style="list-style-type: none"> GPRS data downlink transfer: max. 85.6kbps GPRS data uplink transfer: max. 85.6kbps Coding scheme: CS-1, CS-2, CS-3 and CS-4 Support the protocols PAP (Password Authentication Protocol) usually used for PPP connections Internet service protocols TCP/UDP, FTP, PPP, HTTP, NTP, PING Support Packet Broadcast Control Channel (PBCCH) Support Unstructured Supplementary Service Data (USSD)
Temperature Range	<ul style="list-style-type: none"> Operation temperature range: -35°C ~ +75°C ¹⁾ Extended temperature range: -40°C ~ +85°C ²⁾
Bluetooth	<ul style="list-style-type: none"> Support Bluetooth specification 3.0 Output Power: Class 1 (Typical 7.5dBm)
SMS	<ul style="list-style-type: none"> Text and PDU mode SMS storage: SIM card
SIM Interface	Support SIM card: 1.8V, 3.0V
Audio Features	<p>Speech codec modes:</p> <ul style="list-style-type: none"> Half Rate (ETS 06.20)

	<ul style="list-style-type: none"> ● Full Rate (ETS 06.10) ● Enhanced Full Rate (ETS 06.50/06.60/06.80) ● Adaptive Multi-Rate (AMR) ● Echo Suppression ● Noise Reduction
UART Interfaces	<p>UART Port:</p> <ul style="list-style-type: none"> ● Seven lines on UART port interface ● Used for AT command, GPRS data ● Multiplexing function ● Support autobauding from 4800bps to 115200bps <p>Debug Port:</p> <ul style="list-style-type: none"> ● Two lines on debug port interface DBG_TXD and DBG_RXD ● Debug Port only used for firmware debugging <p>Auxiliary Port:</p> <ul style="list-style-type: none"> ● Used for AT command
Phonebook Management	Support phonebook types: SM, ME, ON, MC, RC, DC, LD, LA
SIM Application Toolkit	Support SAT class 3, GSM 11.14 Release 99
Real Time Clock	Supported
Physical Characteristics	<p>Size: $15.8\pm0.15 \times 17.7\pm0.15 \times 2.3\pm0.2$mm</p> <p>Weight: Approx. 1.3g</p>
Firmware Upgrade	Firmware upgrade via UART Port
Antenna Interface	Connected to antenna pad with 50 Ohm impedance control

NOTES

- 1) Within operation temperature range, the module is 3GPP compliant.
- 2) **Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction; there are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like Pout might reduce in their value and exceed the specified tolerances. When the temperature returns to the normal operating**

temperature levels, the module will meet 3GPP compliant again.

Table 2: Coding Schemes and Maximum Net Data Rates over Air Interface

Coding Scheme	1 Timeslot	2 Timeslot	4 Timeslot
CS-1	9.05kbps	18.1kbps	36.2kbps
CS-2	13.4kbps	26.8kbps	53.6kbps
CS-3	15.6kbps	31.2kbps	62.4kbps
CS-4	21.4kbps	42.8kbps	85.6kbps

2.3. Functional Diagram

The following figure shows a block diagram of M66 and illustrates the major functional parts.

- Radio frequency part
- Power management
- The peripheral interface
 - Power supply
 - Turn-on/off interface
 - UART interface
 - Audio interface

—PCM interface

- SIM interface
- SD interface
- ADC interface
- RF interface
- BT interface

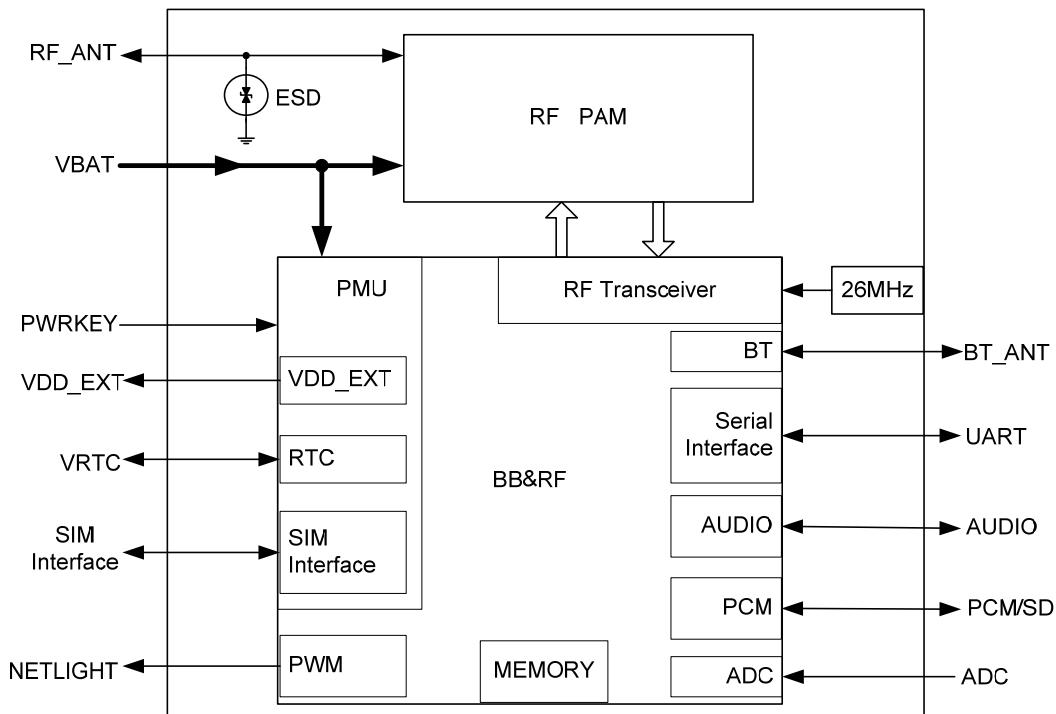


Figure 1: Module Functional Diagram

2.4. Evaluation Board

In order to help you to develop applications with M66, Quectel supplies an evaluation board (EVB), RS-232 to USB cable, power adapter, earphone, antenna and other peripherals to control or test the module. For details, please refer to the [document \[11\]](#).

3 Application Interface

The module adopts LCC package and has 44 pins. The following chapters provide detailed descriptions about these pins.

- Pin of module
- Operating modes
- Power supply
- Power on/down
- Power saving
- RTC
- Serial interfaces
- Audio interfaces
- PCM interface
- SIM card interface
- SD card interface
- ADC
- Behaviors of the RI
- Network status indication
- RF transmitting signal indication

3.1. Pin of Module

3.1.1. Pin Assignment

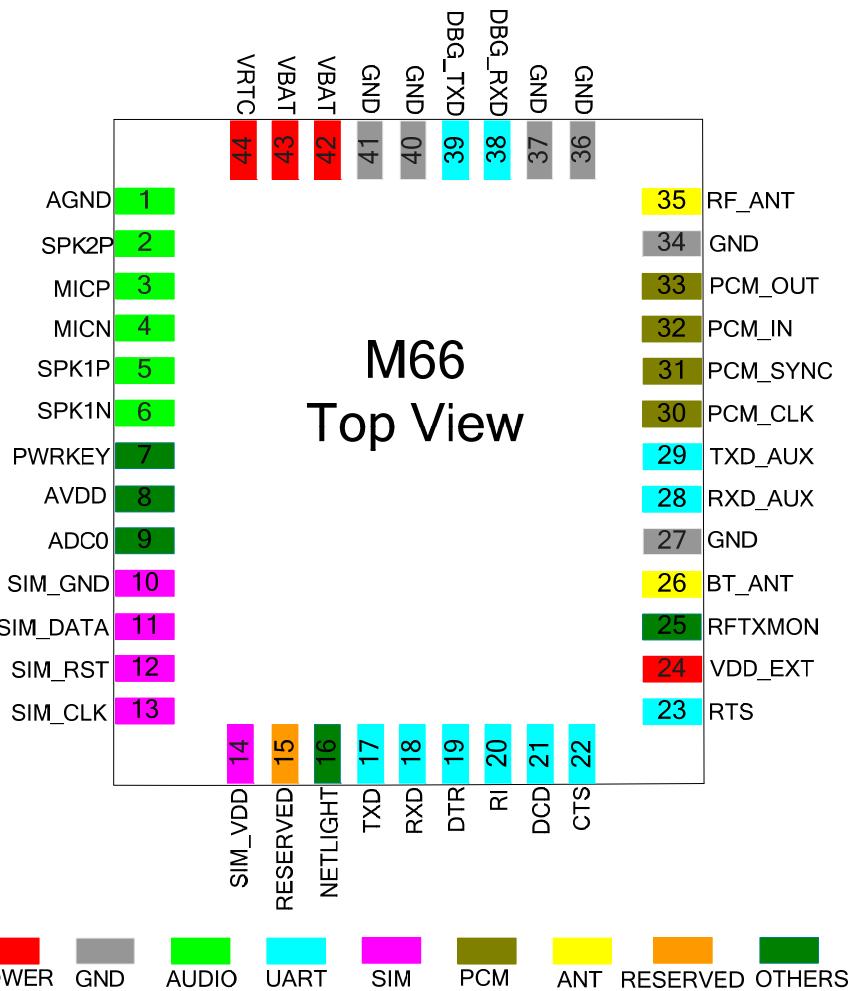


Figure 2: Pin Assignment

NOTE

Keep all reserved pins open.

3.1.2. Pin Description

Table 3: IO Parameters Definition

Type	Description
IO	Bidirectional input/output
DI	Digital input
DO	Digital output
PI	Power input
PO	Power output
AI	Analog input
AO	Analog output

Table 4: Pin Description

Power Supply					
PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
VBAT	42,43	PI	Main power supply of module: VBAT=3.3V~4.6V	$V_{I\max}=4.6V$ $V_{I\min}=3.3V$ $V_{I\text{norm}}=4.0V$	Make sure that supply sufficient current in a transmitting burst typically rises to 1.6A.
VRTC	44	IO	Power supply for RTC when VBAT is not supplied for the system. Charging for backup battery or golden capacitor when the VBAT is applied.	$V_{I\max}=3.3V$ $V_{I\min}=1.5V$ $V_{I\text{norm}}=2.8V$ $V_{O\max}=3V$ $V_{O\min}=2V$ $V_{O\text{norm}}=2.8V$ $I_{O\max}=2mA$ $I_{in}\approx10\mu A$	If unused, keep this pin open.
VDD_	24	PO	Supply 2.8V voltage for	$V_{O\max}=2.9V$	1. If unused,

EXT	external circuit.	$V_{O\min}=2.7V$ $V_{O\text{norm}}=2.8V$ $I_{O\max}=20mA$	keep this pin open. 2. Recommend to add a 2.2~4.7uF bypass capacitor, when using this pin for power supply.
	27,34		
GND	36,37	Ground	
	40,41		

Turn on/off

PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
PWRKEY	7	DI	Power on/off key. PWRKEY should be pulled down for a moment to turn on or turn off the system.	$V_{IL\max}=0.1\times V_{BAT}$ $V_{IH\min}=0.6\times V_{BAT}$ $V_{IH\max}=3.1V$	

Audio Interface

PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
MICP	3,	AI	Positive and negative voice input		If unused, keep these pins open.
MICN	4				
SPK1P	5,	AO	Channel 1 positive and negative voice output		If unused, keep these pins open.
SPK1N	6				
SPK2P	2	AO	Channel 2 voice output	Refer to Section 3.8	Support both voice and ringtone output.
AGND	1		Analog ground. Separate ground connection for external audio circuits.		If unused, keep this pin open.

Network Status Indicator

PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
NETLIGHT	16	DO	Network status indication	$V_{OH\min}=0.85 \times VDD_EXT$ $V_{OL\max}=0.15 \times VDD_EXT$	If unused, keep this pin open.
UART Port					
PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
TXD	17	DO	Transmit data	$V_{IL\min}=0V$ $V_{IL\max}=0.25 \times VDD_EXT$	
RXD	18	DI	Receive data	$V_{IH\min}=0.75 \times VDD_EXT$	If only use TXD, RXD and GND to communicate,
DTR	19	DI	Data terminal ready	$V_{IH\max}=VDD_EXT+0.2$	GND to communicate, recommended to keep other pins open.
RI	20	DO	Ring indication	$V_{OH\min}=0.85 \times VDD_EXT$ $V_{OL\max}=0.15 \times VDD_EXT$	
DCD	21	DO	Data carrier detection		
CTS	22	DO	Clear to send		
RTS	23	DI	Request to send		
Debug Port					
PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
DBG_TXD	39	DO	Transmit data	Same as above	If unused, keep these pins open.
DBG_RXD	38	DI	Receive data		
Auxiliary Port					
PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
TXD_AUX	29	DO	Transmit data	Same as above	If unused, keep these pins open.
RXD_AUX	28	DI	Receive data		
SIM Interface					
PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
SIM_VDD	14	PO	Power supply for SIM card	The voltage can be selected by software automatically. Either 1.8V or 3.0V.	All signals of SIM interface should be protected against ESD with a TVS
SIM_CLK	13	DO	SIM clock	$V_{OL\max}=0.15 \times SIM_VDD$	

SIM_ DATA	11	IO	SIM data	$V_{OH\min} = 0.85 \times \text{SIM_VDD}$ $V_{IL\max} = 0.25 \times \text{SIM_VDD}$ $V_{IH\min} = 0.75 \times \text{SIM_VDD}$ $V_{OL\max} = 0.15 \times \text{SIM_VDD}$ $V_{OH\min} = 0.85 \times \text{SIM_VDD}$	diode array. Maximum trace length is 200mm from the module pad to SIM card holder.
SIM_ RST	12	DO	SIM reset	$V_{OL\max} = 0.15 \times \text{SIM_VDD}$ $V_{OH\min} = 0.85 \times \text{SIM_VDD}$	
SIM_ GND	10		SIM ground		

ADC

PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
AVDD	8	PO	Reference voltage of ADC circuit	$V_{O\max} = 2.9V$ $V_{O\min} = 2.7V$ $V_{O\text{norm}} = 2.8V$	If unused, keep this pin open.
ADC0	9	AI	General purpose analog to digital converter.	Voltage range: 0V to 2.8V	If unused, keep this pin open.

PCM

PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
PCM_ CLK	30	DO	PCM clock	$V_{IL\min} = 0V$	
PCM_ SYNC	31	DO	PCM frame synchronization	$V_{IL\max} = 0.25 \times \text{VDD_EXT}$ $V_{IH\min} =$	
PCM_ IN	32	DI	PCM data input	$0.75 \times \text{VDD_EXT}$ $V_{IH\max} = \text{VDD_EXT} + 0.2$	If unused, keep this pin open.
PCM_ OUT	33	DO	PCM data output	$V_{OH\min} = 0.85 \times \text{VDD_EXT}$ $V_{OL\max} = 0.15 \times \text{VDD_EXT}$	

Antenna Interface

PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
RF_ ANT	35	IO	GSM antenna pad	Impedance of 50Ω	

BT_ANT	26	IO	BT antenna pad	Impedance of 50Ω	If unused, keep this pin open.
--------	----	----	----------------	------------------	--------------------------------

Transmitting Signal Indication

PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
RFTXMON	25	DO	Transmission signal indication	$V_{OHmin} = 0.85 \times VDD_EXT$ $V_{OLmax} = 0.15 \times VDD_EXT$	If unused, keep this pin open.

Other Interface

PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
RESERVED	15				Keep these pins open.

3.2. Operating Modes

The table below briefly summarizes the various operating modes in the following chapters.

Table 5: Overview of Operating Modes

Mode	Function
Normal Operation	GSM/GPRS Sleep After enabling sleep mode by AT+QSCLK=1 , the module will automatically enter into Sleep Mode if DTR is set to high level and there is no interrupt (such as GPIO interrupt or data on UART port). In this case, the current consumption of module will reduce to the minimal level. During Sleep Mode, the module can still receive paging message and SMS from the system normally.
	GSM IDLE Software is active. The module has registered to the GSM network, and the module is ready to send and receive GSM data.
	GSM TALK GSM connection is ongoing. In this mode, the power consumption is decided by the configuration of Power Control Level (PCL), dynamic DTX control and the working RF band.

GPRS IDLE	The module is not registered to GPRS network. The module is not reachable through GPRS channel.
GPRS STANDBY	The module is registered to GPRS network, but no GPRS PDP context is active. The SGSN knows the Routing Area where the module is located at.
GPRS READY	The PDP context is active, but no data transfer is ongoing. The module is ready to receive or send GPRS data. The SGSN knows the cell where the module is located at.
GPRS DATA	There is GPRS data in transfer. In this mode, power consumption is decided by the PCL, working RF band and GPRS multi-slot configuration.
POWER DOWN	Normal shutdown by sending the AT+QPOWD=1 command or using the PWRKEY pin. The power management ASIC disconnects the power supply from the base band part of the module, and only the power supply for the RTC is remained. Software is not active. The UART interfaces are not accessible. Operating voltage (connected to VBAT) remains applied.
Minimum Functionality Mode (without removing power supply)	AT+CFUN command can set the module to a minimum functionality mode without removing the power supply. In this case, the RF part of the module will not work or the SIM card will not be accessible, or both RF part and SIM card will be disabled, but the UART port is still accessible. The power consumption in this case is very low.

3.3. Power Supply

3.3.1. Power Features of Module

The power supply is one of the key issues in designing GSM terminals. Because of the 577us radio burst in GSM every 4.615ms, power supply must be able to deliver high current peaks in a burst period. During these peaks, drops on the supply voltage must not exceed minimum working voltage of module.

For the M66 module, the max current consumption could reach to 1.6A during a burst transmission. It will cause a large voltage drop on the VBAT. In order to ensure stable operation of the module, it is recommended that the max voltage drop during the burst transmission does not exceed 400mV.

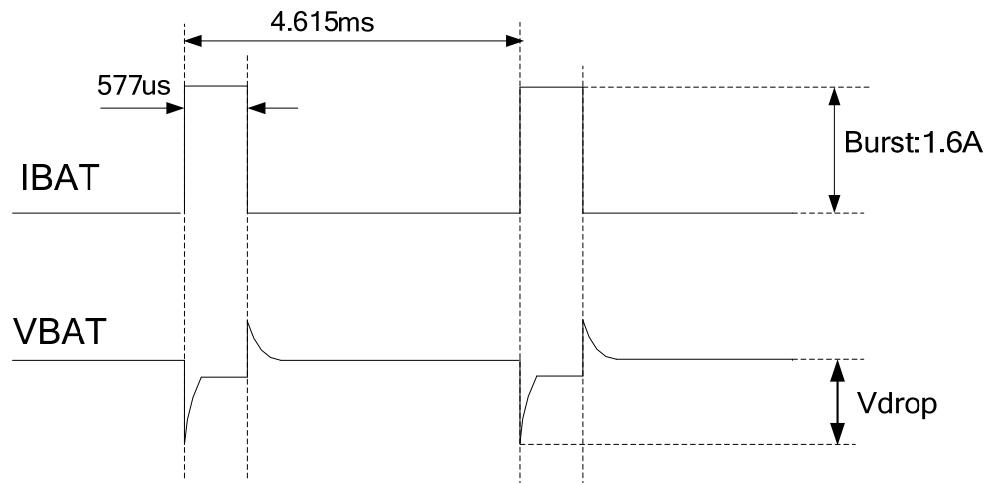


Figure 3: Voltage Ripple during Transmitting

3.3.2. Decrease Supply Voltage Drop

The power supply range of the module is 3.3V to 4.6V. Make sure that the input voltage will never drop below 3.3V even in a burst transmission. If the power voltage drops below 3.3V, the module could turn off automatically. For better power performance, it is recommended to place a 100uF tantalum capacitor with low ESR (ESR=0.7Ω) and ceramic capacitor 100nF, 33pF and 10pF near the VBAT pin. The reference circuit is illustrated in Figure 4.

The VBAT route should be wide enough to ensure that there is not too much voltage drop during burst transmission. The width of trace should be no less than 2mm and the principle of the VBAT route is the longer route, the wider trace.

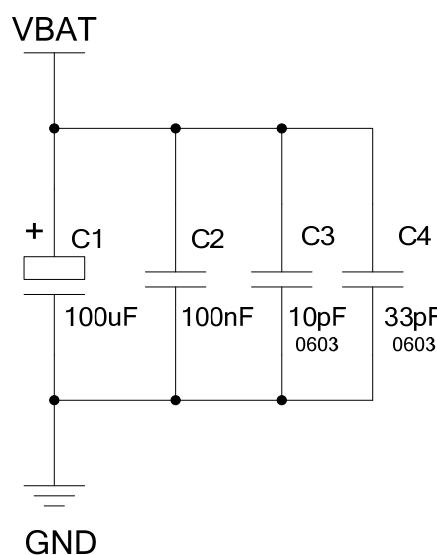


Figure 4: Reference Circuit for the VBAT Input

3.3.3. Reference Design For Power Supply

The power design for the module is very important, since the performance of power supply for the module largely depends on the power source. The power supply is capable of providing the sufficient current up to 2A at least. If the voltage drop between the input and output is not too high, it is suggested to use a LDO as module's power supply. If there is a big voltage difference between the input source and the desired output (VBAT), a switcher power converter is recommended to use as a power supply.

The following figure shows a reference design for +5V input power source. The designed output for the power supply is 4.0V and the maximum load current is 3A. In addition, in order to get a stable output voltage, a zener diode is placed close to the pins of VBAT. As to the zener diode, it is suggested to use a zener diode whose reverse zener voltage is 5.1V and dissipation power is more than 1 Watt.

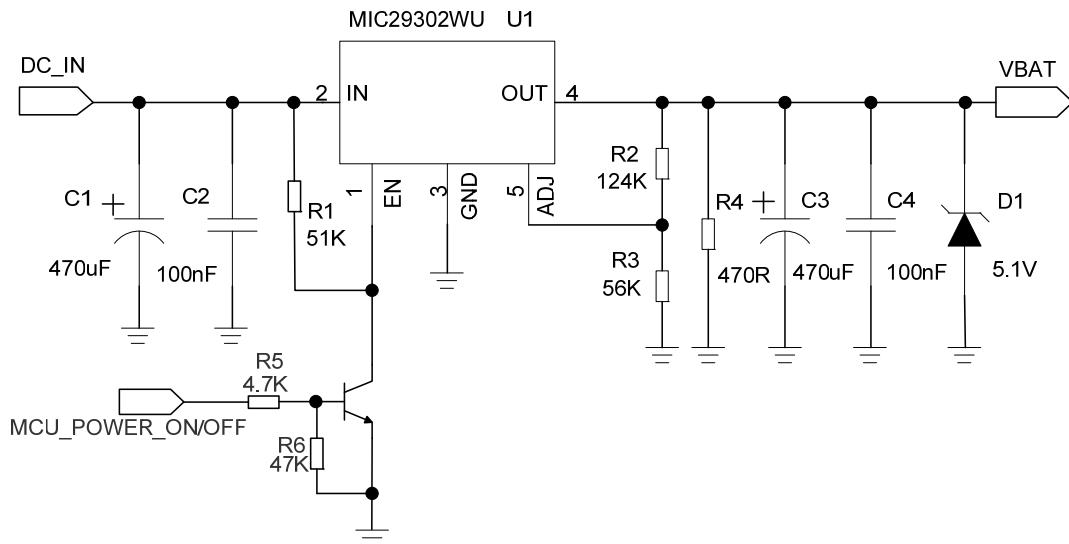


Figure 5: Reference Circuit for Power Supply

NOTE

It is suggested to control the module's main power supply (VBAT) via LDO enable pin to restart the module when the module has become abnormal. Power switch circuit like P-channel MOSFET switch circuit can also be used to control VBAT.

3.3.4. Monitor Power Supply

The command “**AT+CBC**” can be used to monitor the supply voltage of the module. The unit of the displayed voltage is mV.

For details, please refer to the **document [1]**.

3.4. Power On and Down Scenarios

3.4.1. Power On

The module can be turned on by driving the pin PWRKEY to a low level voltage. An open collector driver circuit is suggested to control the PWRKEY. A simple reference circuit is illustrated as below.

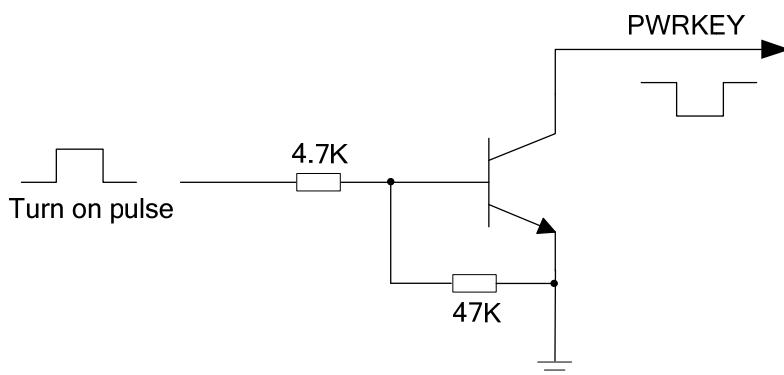


Figure 6: Turn on the Module with an Open-collector Driver

NOTES

1. M66 module is set to autobauding mode (AT+IPR=0) by default. In the autobauding mode, URC "RDY" is not reported to the host controller after module is powered on. When the module is powered on after a delay of 4 or 5 seconds, it can receive AT command. Host controller should first send an **AT** string in order that the module can detect baud rate of host controller, and it should continue to send the next **AT** string until receiving **OK** string from the module. Then enter **AT+IPR=x;&W** to set a fixed baud rate for the module and save the configuration to flash memory of the module. After these configurations, the URC **RDY** would be received from the UART Port of the module every time when the module is powered on. For more details, refer to the section **AT+IPR** in **document [1]**.
2. When AT command is responded, indicates module is turned on successfully, or else the module fails to be turned on.

The other way to control the PWRKEY is through a button directly. A TVS component is indispensable to be placed nearby the button for ESD protection. For the best performance, the TVS component must be

placed nearby the button. When pressing the key, electrostatic strike may generate from finger. A reference circuit is shown in the following figure.

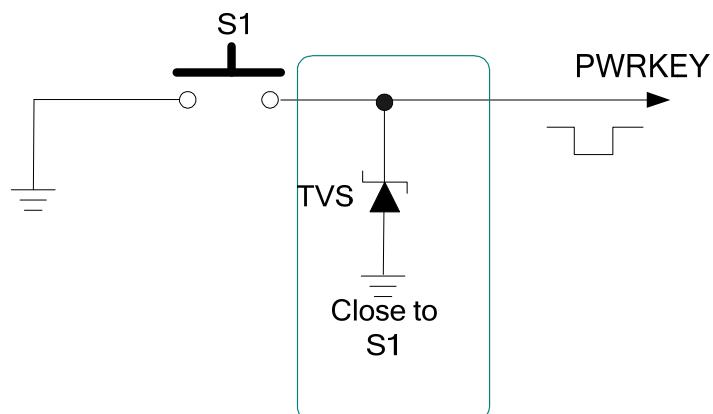


Figure 7: Turn on the Module with a Button

The turn-on timing is illustrated as the following figure.

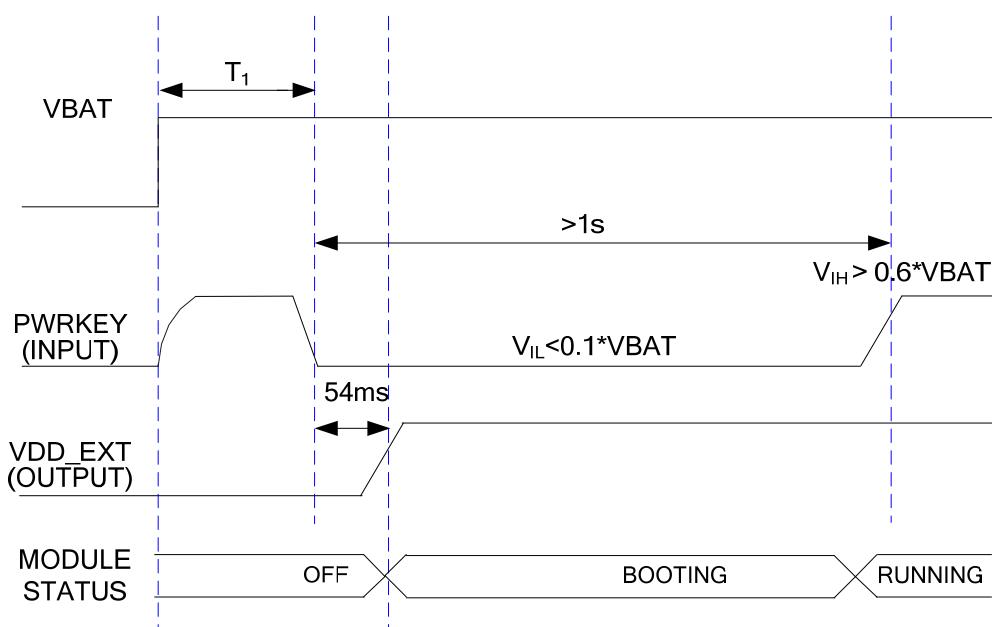


Figure 8: Turn-on Timing

NOTE

Make sure that VBAT is stable before pulling down PWRKEY pin. The time of T_1 is recommended to be 100ms.

3.4.2. Power Down

The following procedures can be used to turn off the module:

- Normal power down procedure: Turn off module using the PWRKEY pin
- Normal power down procedure: Turn off module using command **AT+QPOWD**
- Under-voltage automatic shutdown: Take effect when under-voltage is detected.

3.4.2.1. Power Down Module Using the PWRKEY Pin

It is a safe way to turn off the module by driving the PWRKEY to a low level voltage for a certain time. The power down scenario is illustrated below.

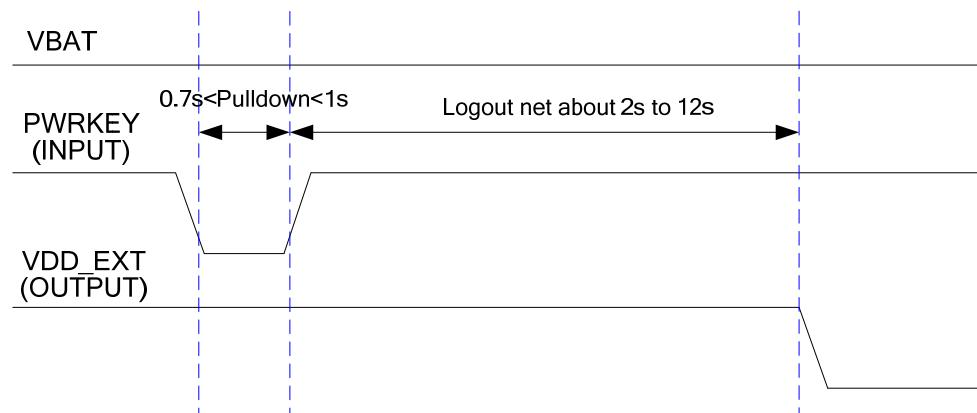


Figure 9: Turn-off Timing

The power down procedure causes the module to log off from the network and allows the firmware to save important data before completely disconnecting the power supply.

Before the completion of the power down procedure, the module sends out the result code shown below:

NORMAL POWER DOWN

After that moment, no further AT commands can be executed. Then the module enters the power down mode, the RTC is still active.

NOTES

1. This unsolicited result codes do not appear when autobauding is active and DTE and DCE are not correctly synchronized after start-up. The module is recommended to set to a fixed baud rate.
2. As logout network time is related to the local mobile network, it is recommended to delay about 12 seconds before disconnecting the power supply or restarting the module.

3.4.2.2. Power Down Module Using AT Command

It is also a safe way to turn off the module via AT command **AT+QPOWD=1**. This command will let the module log off from the network and allow the firmware to save important data before completely disconnecting the power supply.

Before the completion of the power down procedure the module sends out the result code shown below:

NORMAL POWER DOWN

After that moment, no further AT commands can be executed. And then the module enters the power down mode, only the RTC is still active.

Please refer to the **document [1]** for details about the AT command **AT+QPOWD**.

3.4.2.3. Under-voltage Automatic Shutdown

The module will constantly monitor the voltage applied on the VBAT, if the voltage is $\leq 3.5V$, the following URC will be presented:

UNDER_VOLTAGE WARNING

The normal input voltage range is from 3.3V to 4.6V. If the voltage is $<3.3V$, the module would automatically shut down itself.

If the voltage is $<3.3V$, the following URC will be presented:

UNDER_VOLTAGE POWER DOWN

After that moment, no further AT commands can be executed. The module logs off from network and enters power down mode, and only RTC is still active.

NOTE

These unsolicited result codes do not appear when autobauding is active and DTE and DCE are not correctly synchronized after start-up. The module is recommended to set to a fixed baud rate.

3.4.3. Restart

You can restart the module by driving the PWRKEY to a low level voltage for a certain time, which is similar to the way of turning on module. In order to make the internal LDOs discharge completely after turning off the module, it is recommended to delay about 500ms before restarting the module. The restart timing is illustrated as the following figure.

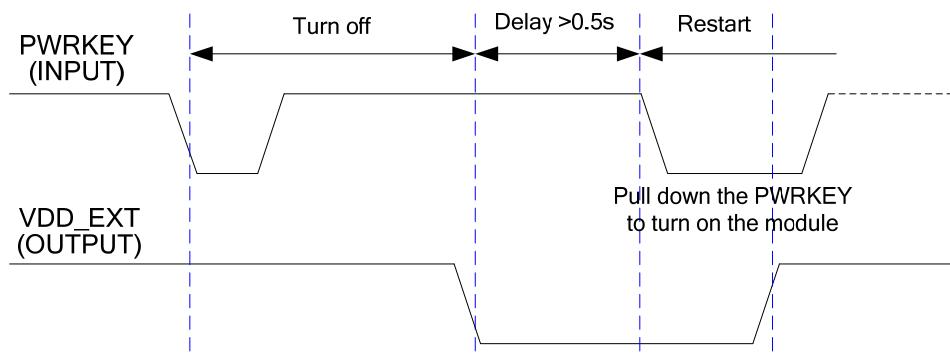


Figure 10: Timing of Restarting System

3.5. Power Saving

Based on system requirements, there are several actions to drive the module to enter low current consumption status. For example, **AT+CFUN** can be used to set module into minimum functionality mode and DTR hardware interface signal can be used to lead system to SLEEP mode.

3.5.1. Minimum Functionality Mode

Minimum functionality mode reduces the functionality of the module to a minimum level. The consumption of the current can be minimized when the slow clocking mode is activated at the same time. The mode is set with the **AT+CFUN** command which provides the choice of the functionality levels `<fun>=0, 1, 4`.

- 0: minimum functionality

- 1: full functionality (default)
- 4: disable both transmitting and receiving of RF part

If the module is set to minimum functionality by **AT+CFUN=0**, the RF function and SIM card function would be disabled. In this case, the UART port is still accessible, but all AT commands related with RF function or SIM card function will be not available.

If the module has been set by the command with **AT+CFUN=4**, the RF function will be disabled, but the UART port is still active. In this case, all AT commands related with RF function will be not available.

After the module is set by **AT+CFUN=0** or **AT+CFUN=4**, it can return to full functionality by **AT+CFUN=1**.

For detailed information about **AT+CFUN**, please refer to the *document [1]*.

3.5.2. SLEEP Mode

The SLEEP mode is disabled by default. You can enable it by **AT+QSCLK=1**. On the other hand, the default setting is **AT+QSCLK=0** and in this mode, the module cannot enter SLEEP mode.

When the module is set by the command with **AT+QSCLK=1**, you can control the module to enter or exit from the SLEEP mode through pin DTR. When DTR is set to high level, and there is no on-air or hardware interrupt such as GPIO interrupt or data on UART port, the module will enter SLEEP mode automatically. In this mode, the module can still receive voice, SMS or GPRS paging from network, but the UART port does not work.

3.5.3. Wake Up Module From SLEEP Mode

When the module is in the SLEEP mode, the following methods can wake up the module.

- If the DTR Pin is set low, it would wake up the module from the SLEEP mode. The UART port will be active within 20ms after DTR is changed to low level.
- Receive a voice or data call from network wakes up module.
- Receive an SMS from network wakes up module.

NOTE

DTR pin should be held at low level during communication between the module and DTE.

3.5.4. Summary of State Transition

Table 6: Summary of State Transition

Current Mode	Next Mode		
	Power Down	Normal Mode	Sleep Mode
Power Down	Use PWRKEY		
Normal Mode	AT+QPOWD , use PWRKEY pin		Use AT command AT+QSCLK=1 and pull up DTR
SLEEP Mode	Use PWRKEY pin	Pull DTR down or incoming call or SMS or GPRS	

3.6. RTC Backup

The RTC (Real Time Clock) function is supported. The RTC is designed to work with an internal power supply.

There are three kinds of designs for RTC backup power:

- Use VBAT as the RTC power source.

When the module is turned off and the main power supply (VBAT) is remained, the real time clock is still active as the RTC core is supplied by VBAT. In this case, the VRTC pin can be kept floating.

- Use VRTC as the RTC power source.

If the main power supply (VBAT) is removed after the module is turned off, a backup supply such as a coin-cell battery (rechargeable or non-chargeable) or a super-cap can be used to supply the VRTC pin to keep the real time clock active.

- Use VBAT and VRTC as the RTC power source.

As only powering the VRTC pin to keep the RTC will lead an error about 5 minutes a day, it is recommended to power VBAT and VRTC pin at the same time when RTC function is needed. The recommended supply for RTC core circuits are shown as below.

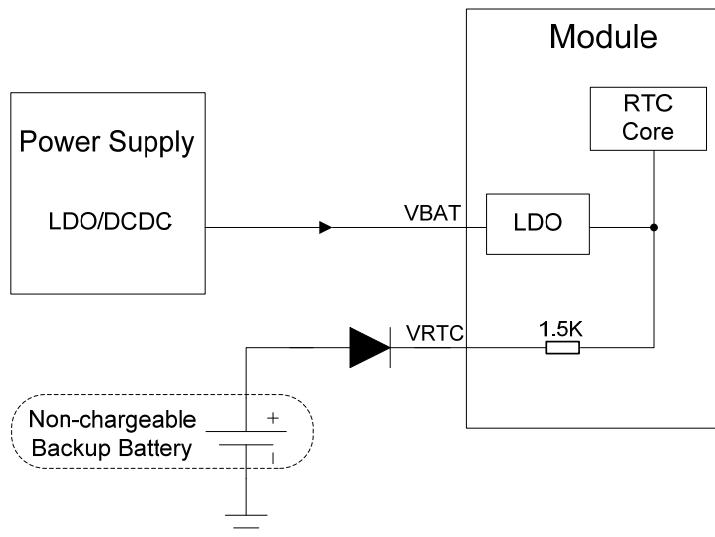


Figure 11: VRTC is Supplied by a Non-chargeable Battery

Figure 12: VRTC is Supplied by a Rechargeable Battery

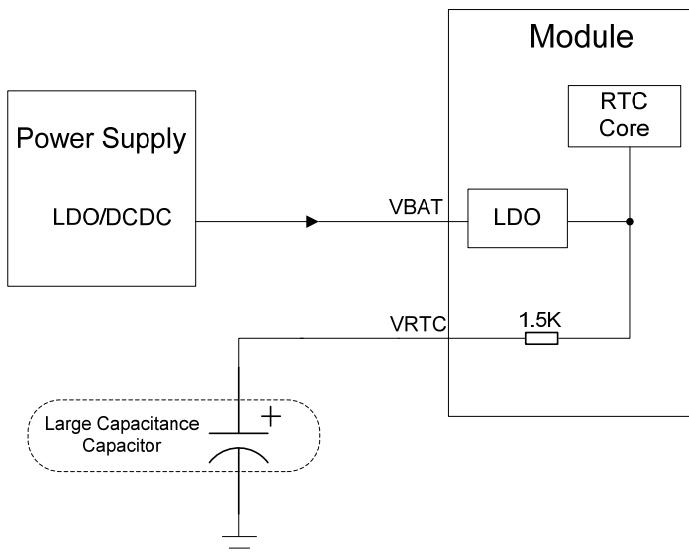


Figure 13: VRTC is Supplied by a Capacitor

A rechargeable or non-chargeable coin-cell battery can also be used here, for more information, please visit <http://www.sii.co.jp/en/>.

NOTE

If you want to keep an accurate real time, please keep the main power supply VBAT alive.

3.7. Serial Interfaces

The module provides three serial ports: UART Port, Debug Port and Auxiliary UART Port. The module is designed as a DCE (Data Communication Equipment), following the traditional DCE-DTE (Data Terminal Equipment) connection. Autobauding function supports baud rate from 4800bps to 115200bps.

The UART Port:

- TXD: Send data to RXD of DTE.
- RXD: Receive data from TXD of DTE.
- RTS: Request to send.
- CTS: Clear to send.
- DTR: DTE is ready and inform DCE (this pin can wake the module up).

- RI: Ring indicator (when there is a call, SMS or URC output, the module will inform DTE with the RI pin).
- DCD: Data carrier detection (the validity of this pin demonstrates the communication link is set up).

NOTE

Hardware flow control is disabled by default. When hardware flow control is required, RTS and CTS should be connected to the host. AT command **AT+IFC=2,2** is used to enable hardware flow control. AT command **AT+IFC=0,0** is used to disable the hardware flow control. For more details, please refer to the [document \[1\]](#).

The Debug Port:

- DBG_TXD: Send data to the COM port of computer.
- DBG_RXD: Receive data from the COM port of computer.

The Auxiliary UART Port:

- TXD_AUX: Send data to the RXD of DTE.
- RXD_AUX: Receive data from the TXD of DTE.

The logic levels are described in the following table.

Table 7: Logic Levels of the UART Interface

Parameter	Min.	Max.	Unit
V_{IL}	0	$0.25 \times VDD_EXT$	V
V_{IH}	$0.75 \times VDD_EXT$	$VDD_EXT + 0.2$	V
V_{OL}	0	$0.15 \times VDD_EXT$	V
V_{OH}	$0.85 \times VDD_EXT$	VDD_EXT	V

Table 8: Pin Definition of the UART Interfaces

Interface	Pin Name	Pin No.	Description
UART Port	TXD	17	Transmit data

	RXD	18	Receive data
	DTR	19	Data terminal ready
	RI	20	Ring indication
	DCD	21	Data carrier detection
	CTS	22	Clear to send
	RTS	23	Request to send
Debug Port	DBG_RXD	38	Receive data
	DBG_TXD	39	Transmit data
Auxiliary UART Port	RXD_AUX	28	Receive data
	TXD_AUX	29	Transmit data

3.7.1. UART Port

3.7.1.1. The Feature of UART Port

- Seven lines on UART interface
- Contain data lines TXD and RXD, hardware flow control lines RTS and CTS, other control lines DTR, DCD and RI.
- Used for AT command, GPRS data, etc. Multiplexing function is supported on the UART Port. So far only the basic mode of multiplexing is available.
- Support the communication baud rates as the following:
300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 115200.
- The default setting is autobauding mode. Support the following baud rates for Autobauding function:
4800, 9600, 19200, 38400, 57600, 115200.
- The module disables hardware flow control by default. AT command **AT+IFC=2,2** is used to enable hardware flow control.

After setting a fixed baud rate or autobauding, please send “**AT**” string at that rate. The UART port is ready when it responds “**OK**”.

Autobauding allows the module to detect the baud rate by receiving the string “**AT**” or “**at**” from the host or PC automatically, which gives module flexibility without considering which baud rate is used by the host controller. Autobauding is enabled by default. To take advantage of the autobauding mode, special attention should be paid according to the following requirements:

Synchronization between DTE and DCE:

When DCE (the module) powers on with the autobauding enabled, it is recommended to wait 2 to 3 seconds before sending the first AT character. After receiving the “OK” response, DTE and DCE are correctly synchronized.

If the host controller needs URC in the mode of autobauding, it must be synchronized firstly. Otherwise the URC will be discarded.

Restrictions on autobauding operation:

- The UART port has to be operated at 8 data bits, no parity and 1 stop bit (factory setting).
- The “At” and “aT” commands cannot be used.
- Only the strings “AT” or “at” can be detected (neither “At” nor “aT”).
- The Unsolicited Result Codes like **RDY**, **+CFUN: 1** and **+CPIN: READY** will not be indicated when the module is turned on with autobauding enabled and not be synchronized.
- Any other Unsolicited Result Codes will be sent at the previous baud rate before the module detects the new baud rate by receiving the first “AT” or “at” string. The DTE may receive unknown characters after switching to new baud rate.
- It is not recommended to switch to autobauding from a fixed baud rate.
- If autobauding is active it is not recommended to switch to multiplex mode.

NOTE

To assure reliable communication and avoid any problems caused by undetermined baud rate between DCE and DTE, it is strongly recommended to configure a fixed baud rate and save it instead of using autobauding after start-up. For more details, please refer to the Section **AT+IPR** in **document [1]**.

3.7.1.2. The Connection of UART

The connection between module and host using UART Port is very flexible. Three connection styles are illustrated as below.

Reference design for Full-Function UART connection is shown as below when it is applied in modulation-demodulation.

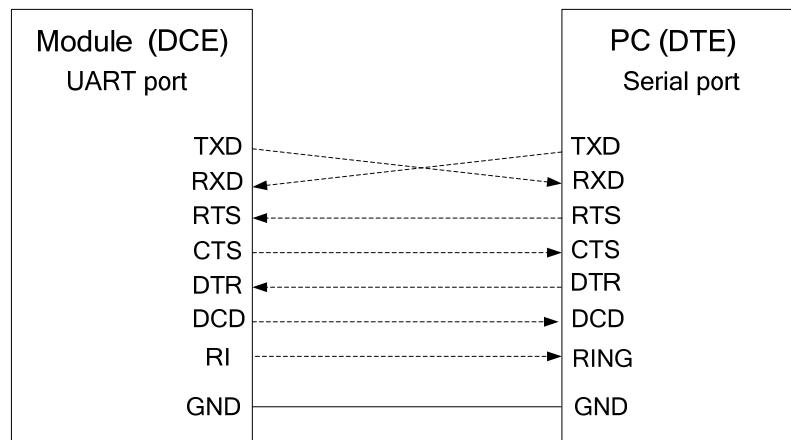


Figure 14: Reference Design for Full-Function UART

Three-line connection is shown as below.

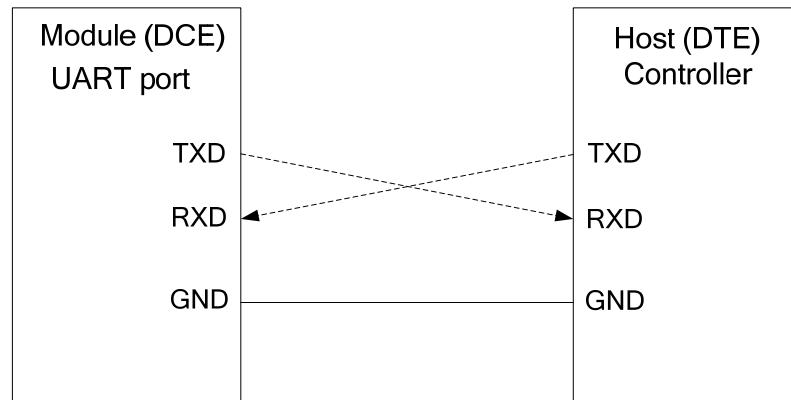


Figure 15: Reference Design for UART Port

UART Port with hardware flow control is shown as below. This connection will enhance the reliability of the mass data communication.

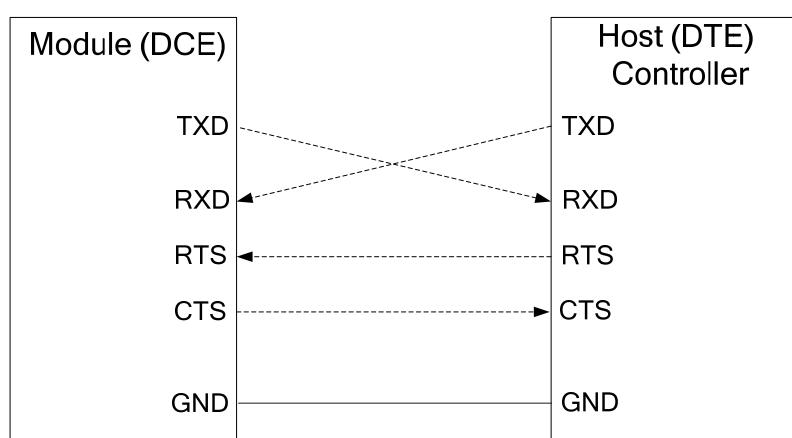


Figure 16: Reference Design for UART Port with Hardware Flow Control

3.7.1.3. Firmware Upgrade

The TXD, RXD can be used to upgrade firmware. The PWRKEY pin must be pulled down before firmware upgrade. The reference circuit is shown as below:

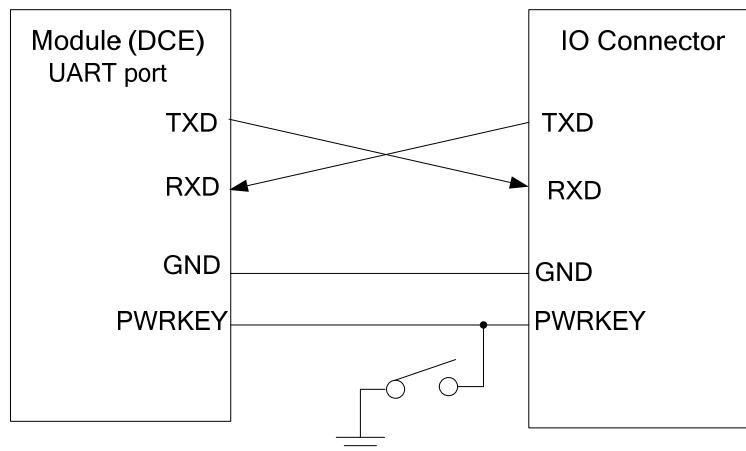


Figure 17: Reference Design for Firmware Upgrade

NOTE

The firmware of module might need to be upgraded due to certain reasons. It is recommended to reserve these pins in the host board for firmware upgrade.

3.7.2. Debug Port

- Two lines: DBG_TXD and DBG_RXD.
- It outputs log information automatically.
- Debug Port is only used for firmware debugging and its baud rate must be configured as 460800bps.

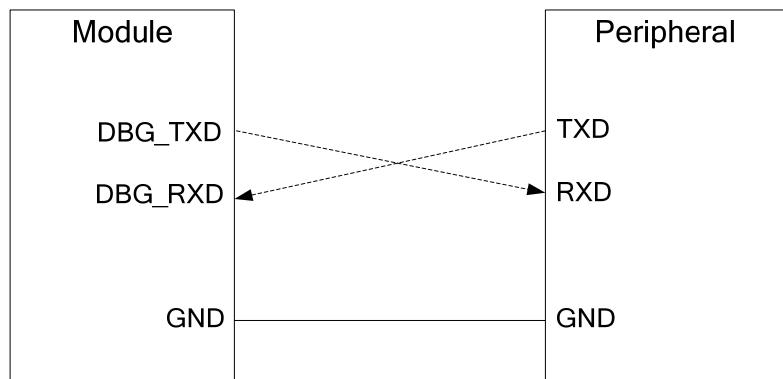


Figure 18: Reference Design for Debug Port

3.7.3. Auxiliary UART Port

- Two data lines: TXD_AUX and RXD_AUX.
- Auxiliary UART port is used for AT command only and does not support GPRS data, Multiplexing function etc.
- Auxiliary UART port supports the communication baud rates as the following: 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 115200.
- Auxiliary UART port could be used when you send **AT+QEAUART=1** string on the UART port.
- The default baud rate setting is 115200bps, and does not support autobauding. The baud rate can be modified by **AT+QSEDCB** command. For more details, please refer to the **document [1]**.

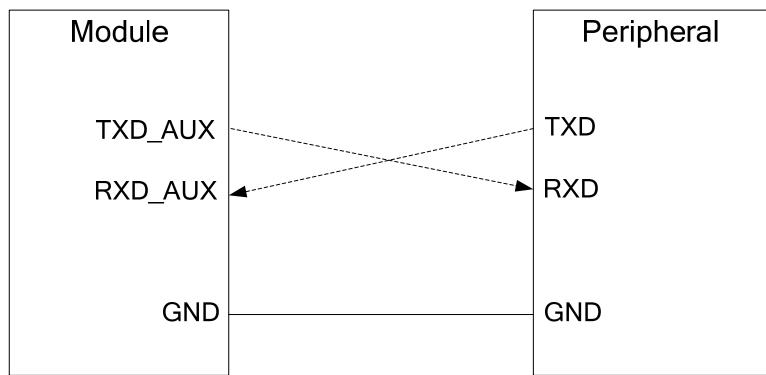


Figure 19: Reference Design for Auxiliary UART Port

3.7.4. UART Application

The reference design of 3.3V level match is shown as below. If the host is a 3V system, please change the 5.6K resistor to 10K.

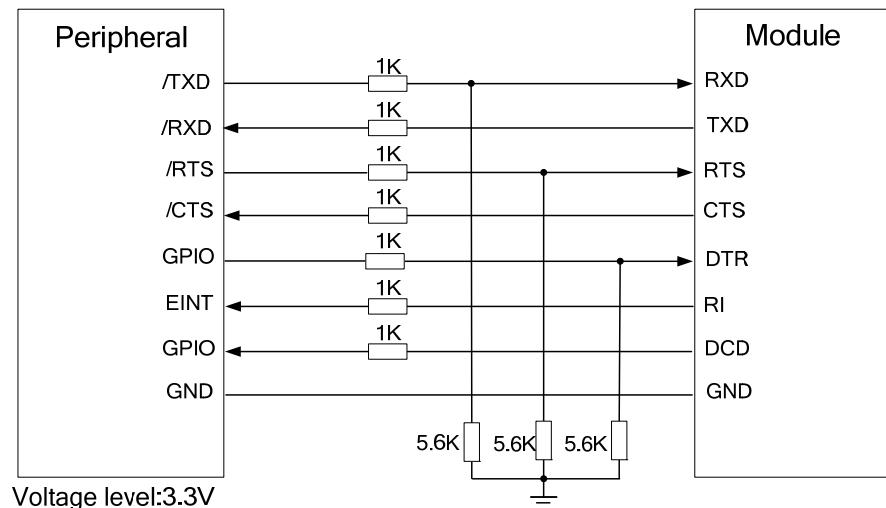


Figure 20: Level Match Design for 3.3V System

NOTE

It is highly recommended to add the resistor divider circuit on the UART signal lines when the host's level is 3V or 3.3V. For the higher voltage level system, a level shifter IC could be used between the host and the module. For more details about UART circuit design, please refer to [document \[13\]](#).

The following figure shows a sketch map between module and standard RS-232 interface. Since the electrical level of module is 2.8V, so a RS-232 level shifter must be used. Note that you should assure the IO voltage of level shifter which connects to module is 2.8V.

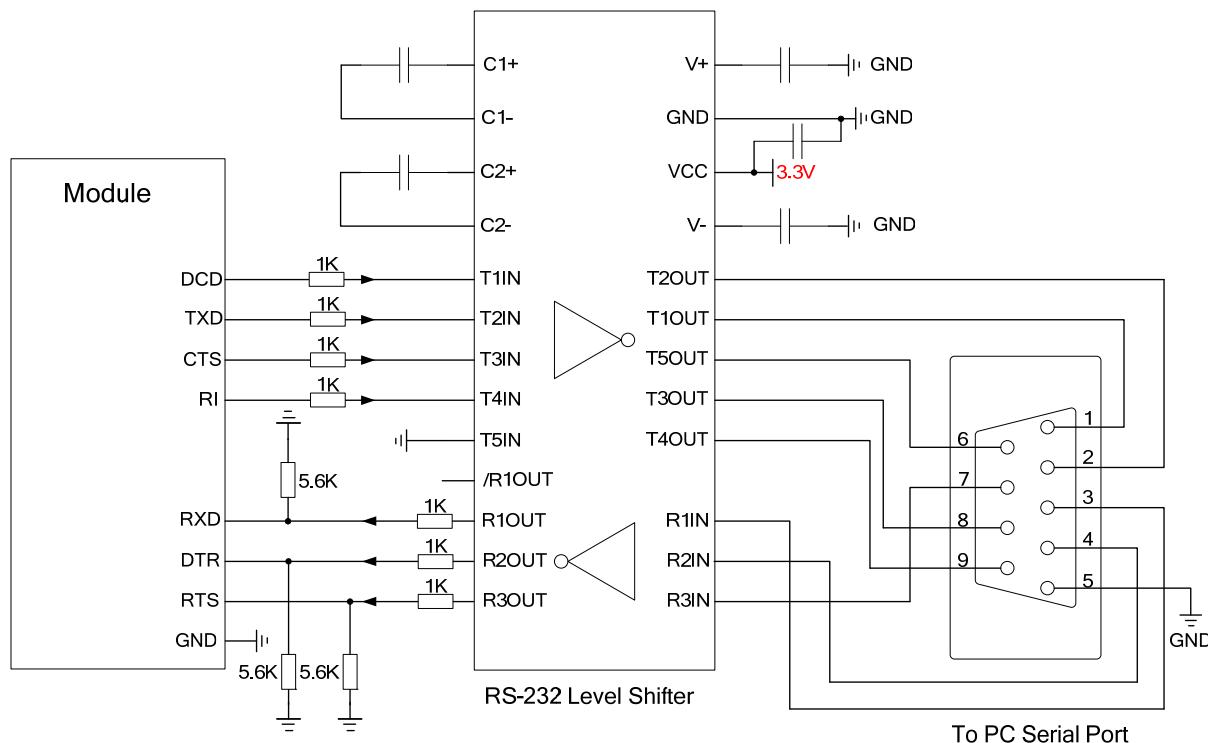


Figure 21: Sketch Map for RS-232 Interface Match

Please visit vendor web site to select suitable IC, such as: <http://www.maximintegrated.com> and <http://www.exar.com/>.

3.8. Audio Interfaces

The module provides one analog input channels and two analog output channels.

Table 9: Pin Definition of Audio Interface

Interface	Pin Name	Pin No.	Description
AIN/AOUT1	MICP	3	Microphone positive input
	MICN	4	Microphone negative input
	SPK1P	5	Channel 1 Audio positive output
	SPK1N	6	Channel 1 Audio negative output

AIN/AOUT2	MICP	3	Microphone positive input
	MICN	4	Microphone negative input
	SPK2P	2	Channel 2 Audio positive output
	AGND	1	Form a pseudo-differential pair with SPK2P

AIN can be used for input of microphone and line. An electret microphone is usually used. AIN are differential input channels.

AOUT1 is used for output of the receiver. This channel is typically used for a receiver built into a handset. AOUT1 channel is a differential channel.

AOUT2 is typically used with earphone. It is a single-ended and mono channel. SPK2P and AGND can establish a pseudo differential mode.

All of these two audio channels support voice and ringtone output, and so on, and can be switched by **AT+QAUDCH** command. For more details, please refer to the [document \[1\]](#).

Use AT command **AT+QAUDCH** to select audio channel:

- 0--AIN/AOUT1, the default value is 0.
- 1--AIN/AOUT2, this channel is always used for earphone.

For each channel, you can use **AT+QMIC** to adjust the input gain level of microphone. You can also use **AT+CLVL** to adjust the output gain level of receiver and speaker. **AT+QSIDET** is used to set the side-tone gain level. For more details, please refer to the [document \[1\]](#).

3.8.1. Decrease TDD Noise and other Noise

The 33pF capacitor is applied for filtering out 900MHz RF interference when the module is transmitting at EGSM900MHz. Without placing this capacitor, TDD noise could be heard. Moreover, the 10pF capacitor here is for filtering out 1800MHz RF interference. However, the resonant frequency point of a capacitor largely depends on the material and production technique. Therefore, customer would have to discuss with its capacitor vendor to choose the most suitable capacitor for filtering out GSM850MHz, EGSM900MHz, DCS1800MHz and PCS1900MHz separately.

The severity degree of the RF interference in the voice channel during GSM transmitting period largely depends on the application design. In some cases, EGSM900 TDD noise is more severe; while in other cases, DCS1800 TDD noise is more obvious. Therefore, you can have a choice based on test results.

Sometimes, even no RF filtering capacitor is required.

The capacitor which is used for filtering out RF noise should be close to audio interface or other audio interfaces. Audio alignment should be as short as possible.

In order to decrease radio or other signal interference, the position of RF antenna should be kept away from audio interface and audio alignment. Power alignment and audio alignment should not be parallel, and power alignment should be far away from audio alignment.

The differential audio traces have to be placed according to the differential signal layout rule.

3.8.2. Microphone Interfaces Design

AIN channel come with internal bias supply for external electret microphone. A reference circuit is shown in the following figure.

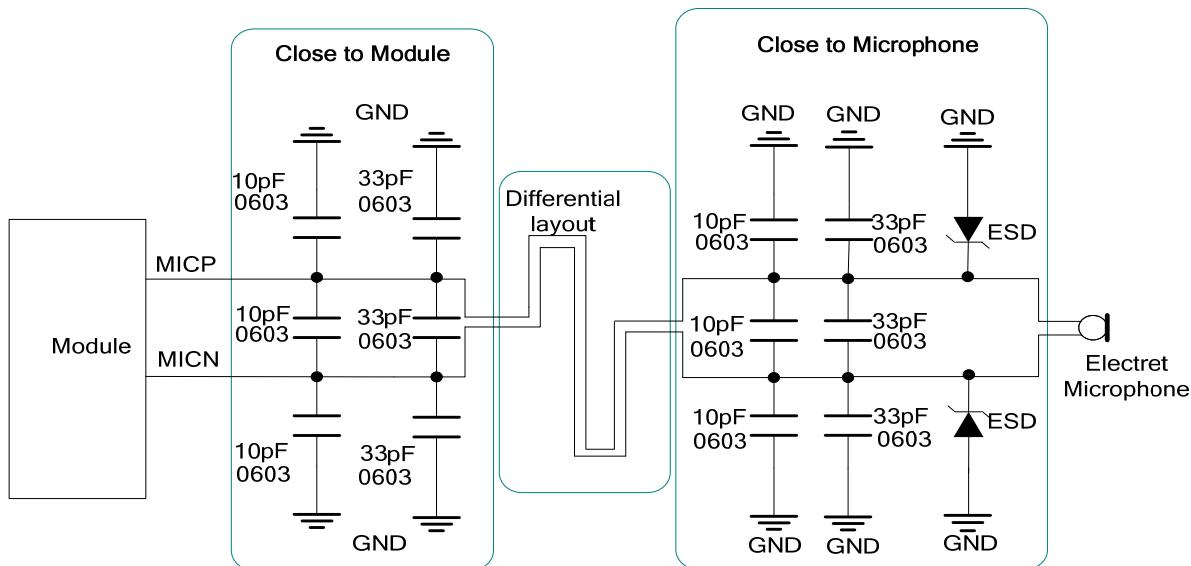


Figure 22: Reference Design for AIN

3.8.3. Receiver and Speaker Interface Design

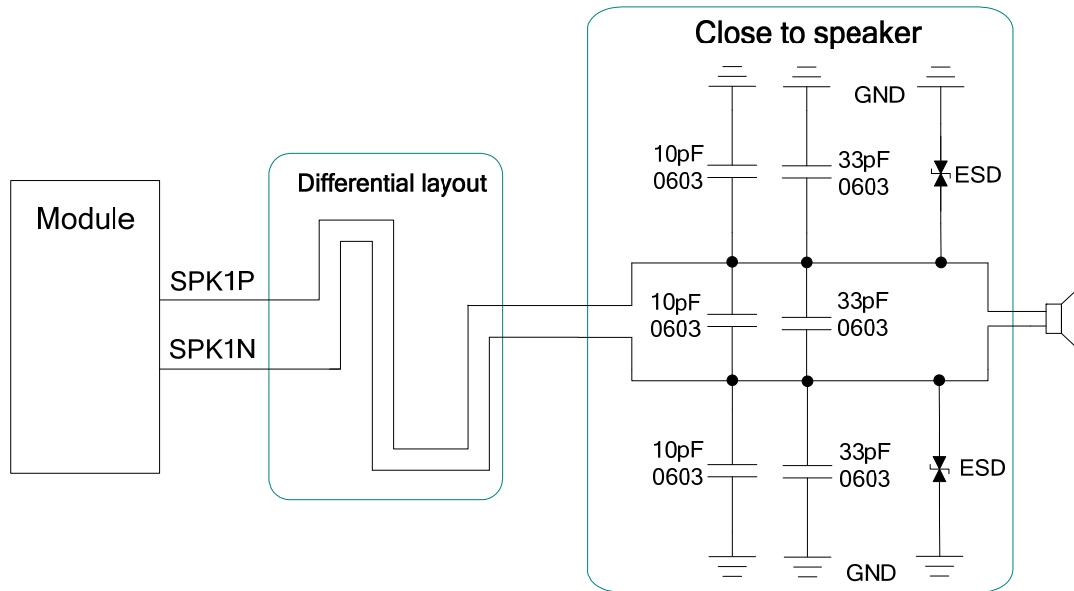


Figure 23: Handset Interface Design for AOUT1

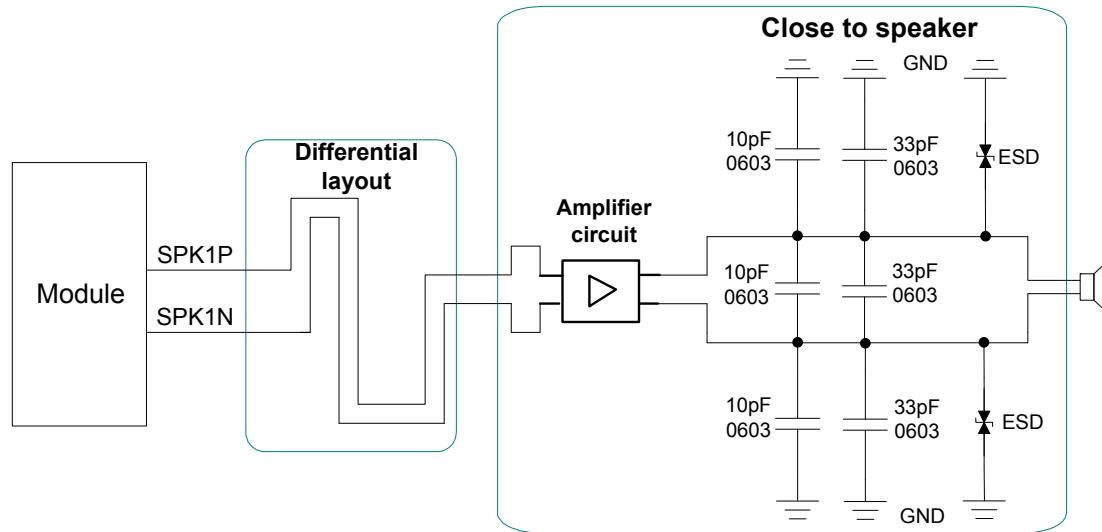


Figure 24: Speaker Interface Design with an Amplifier for AOUT1

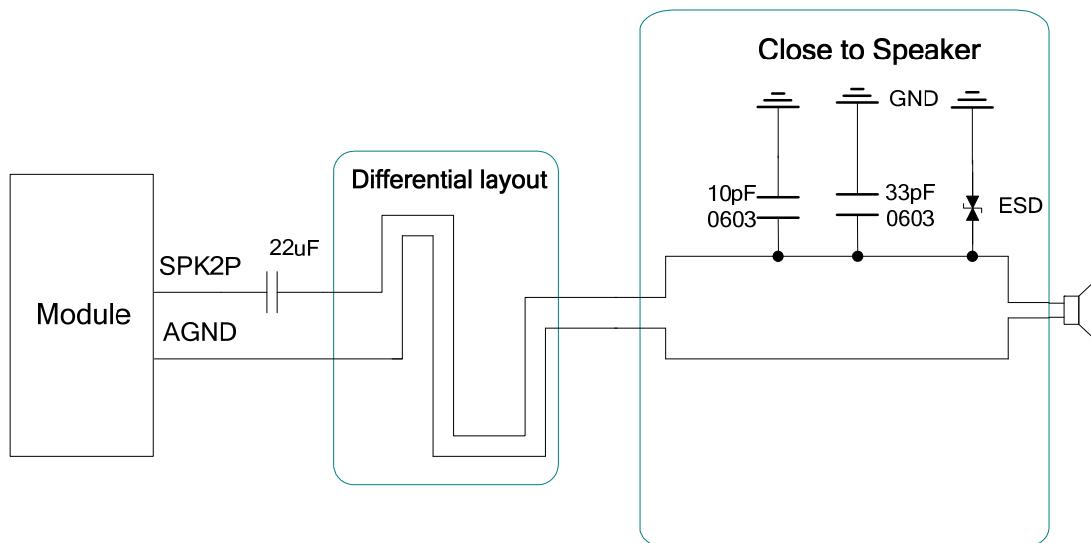


Figure 25: Handset Interface Design for AOUT2

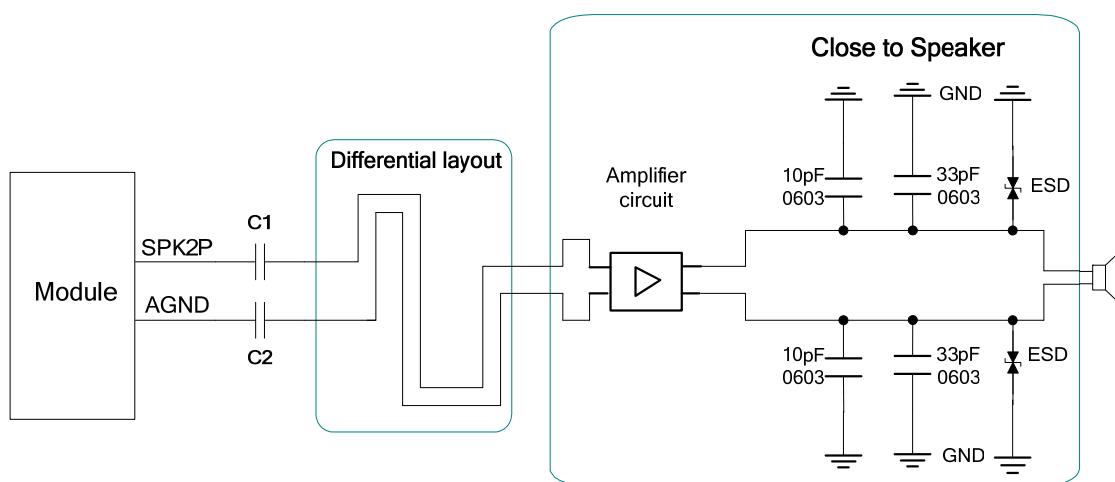


Figure 26: Speaker Interface Design with an Amplifier for AOUT2

The suitable differential audio amplifier can be chosen from the Texas Instrument's website (<http://www.ti.com/>). There are also other excellent audio amplifier vendors in the market.

NOTE

The value of C1 and C2 here depends on the input impedance of audio amplifier.

3.8.4. Earphone Interface Design

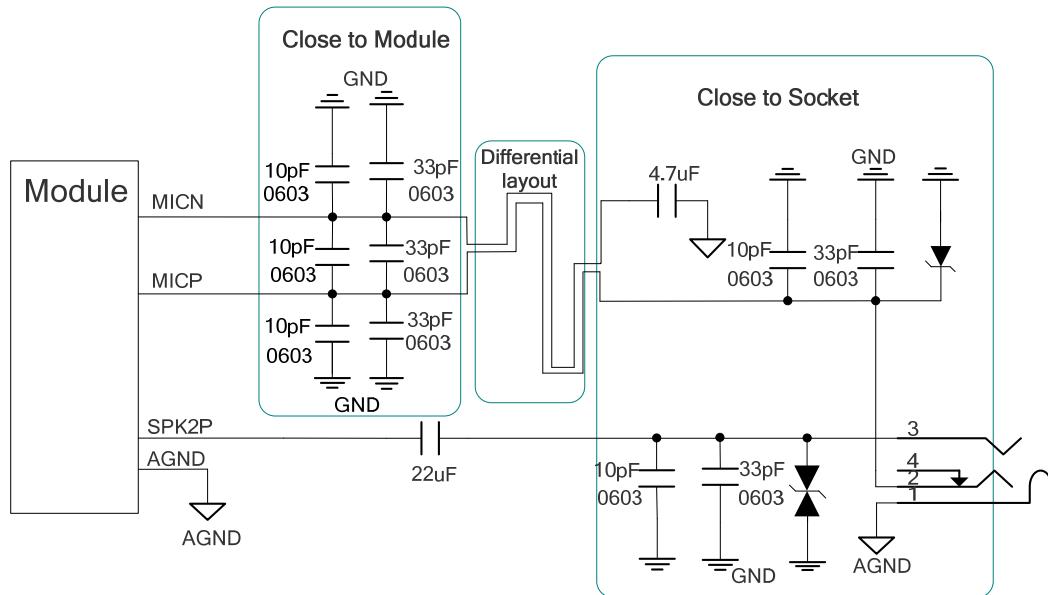


Figure 27: Earphone Interface Design

3.8.5. Audio Characteristics

Table 10: Typical Electret Microphone Characteristics

Parameter	Min.	Typ.	Max.	Unit
Working Voltage	1.2	1.5	2.0	V
Working Current	200		500	uA
External Microphone Load Resistance		2.2		K Ohm

Table 11: Typical Speaker Characteristics

Parameter	Min.	Typ.	Max.	Unit
AOUT1 Output	Load resistance	32		Ohm
	Ref level	0	2.4	Vpp
Differential	Load resistance	32		Ohm

AOUT2 Output	Single-ended	Ref level	0	4.8	Vpp
		Load resistance	32		Load Resistance
		Reference level	0	2.4	Vpp

3.9. PCM Interface

M66 supports PCM interface. It is used for digital audio transmission between the module and the device. This interface is composed of PCM_CLK, PCM_SYNC, PCM_IN and PCM_OUT signal lines.

Pulse-code modulation (PCM) is a converter that changes the consecutive analog audio signal to discrete digital signal. The whole procedure of Pulse-code modulation contains sampling, quantizing and encoding.

Table 12: Pin Definition of PCM Interface

Pin Name	Pin No.	Description
PCM_CLK	30	PCM clock output
PCM_SYNC	31	PCM frame synchronization output
PCM_IN	32	PCM data input
PCM_OUT	33	PCM data output

3.9.1. Configuration

M66 module supports 16-bit line code PCM format. The sample rate is 8 KHz; the clock source is 256 KHz; and the module can only act as master mode. The PCM interface supports both long and short synchronization simultaneously. Furthermore, it only supports MSB first. For detailed information, please refer to the table below.

Table 13: Configuration

PCM	
Line Interface Format	Linear
Data Length	Linear: 16 bits
Sample Rate	8KHz
PCM Clock/Synchronization Source	PCM master mode: clock and synchronization is generated by module
PCM Synchronization Rate	8KHz
PCM Clock Rate	PCM master mode: 256 KHz (line)
PCM Synchronization Format	Long/short synchronization
PCM Data Ordering	MSB first
Zero Padding	NO
Sign Extension	NO

3.9.2. Timing

The sample rate of the PCM interface is 8 KHz and the clock source is 256 KHz, so every frame contains 32 bits data. M66 supports 16 bits line code PCM format. The left 16 bits are valid, and the data of the left 16 bits and the right 16 bits are the same. The following diagram shows the timing of different combinations. The synchronization length in long synchronization format can be programmed by firmware from one bit to eight bits.

You can configure the PCM input and output volume by executing **AT+QPCM VOL** command. For more

details, please refer to **Chapter 3.9.4**.

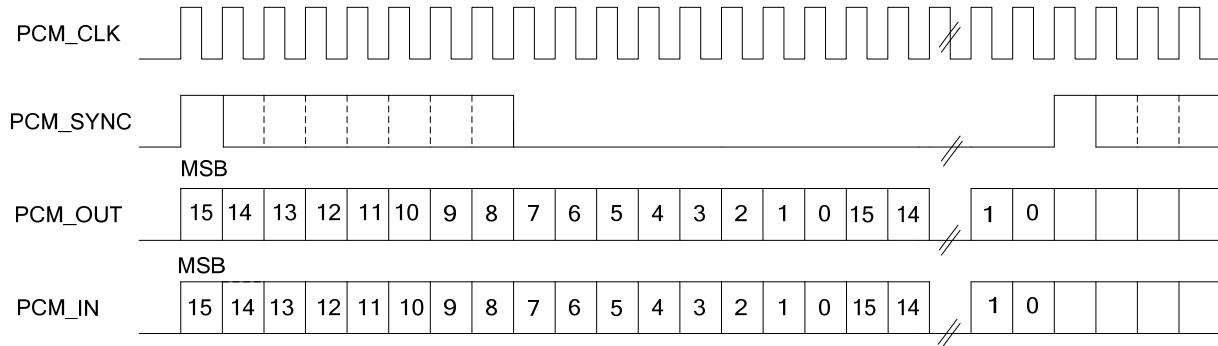


Figure 28: Long Synchronization Diagram

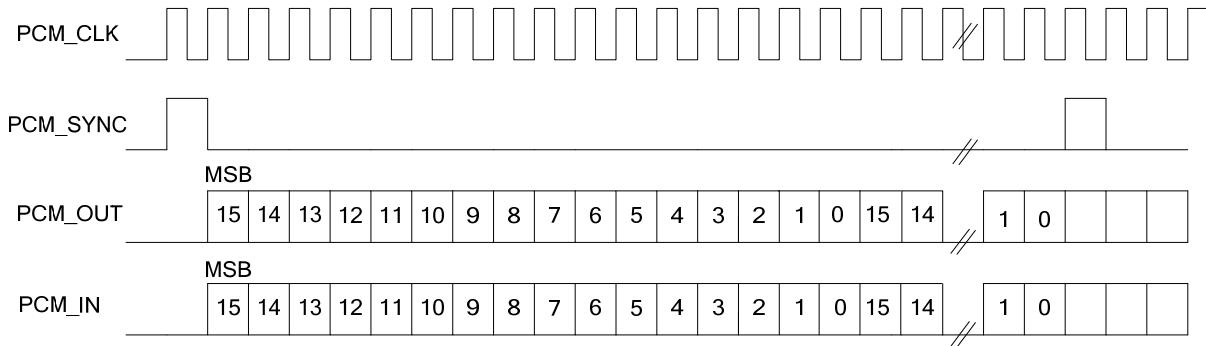


Figure 29: Short Synchronization Diagram

3.9.3. Reference Design

M66 can only work as a master, providing synchronization and clock source. The reference design is shown as below.

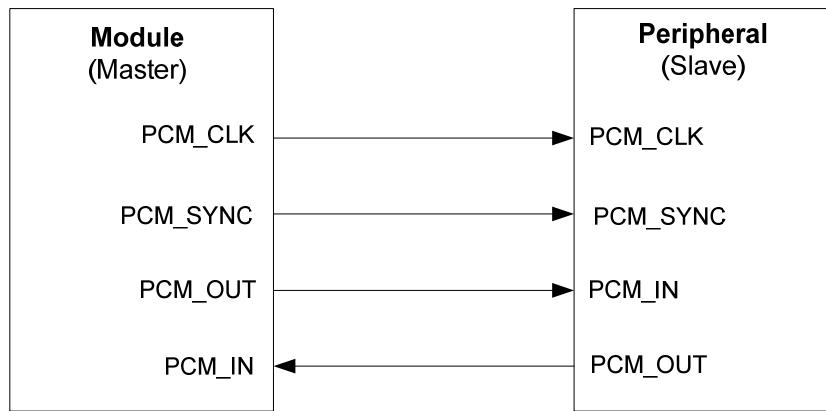


Figure 30: Reference Design for PCM

3.9.4. AT Command

There are two AT commands about the configuration of PCM, listed as below.

AT+QPCMON can configure operating mode of PCM.

AT+QPCMON=mode, Sync_Type, Sync_Length, SignExtension, MSBFirst

Table 14: QPCMON Command Description

Parameter	Scope	Description
Mode	0,2	0: Close PCM 2: Open PCM when audio talk is set up
Sync_Type	0~1	0: Short synchronization 1: Long synchronization
Sync_Length	1~8	Programmed from one bit to eight bits
SignExtension	0~1	Not supported
MSBFirst	0~1	0: MSB first 1: Not supported

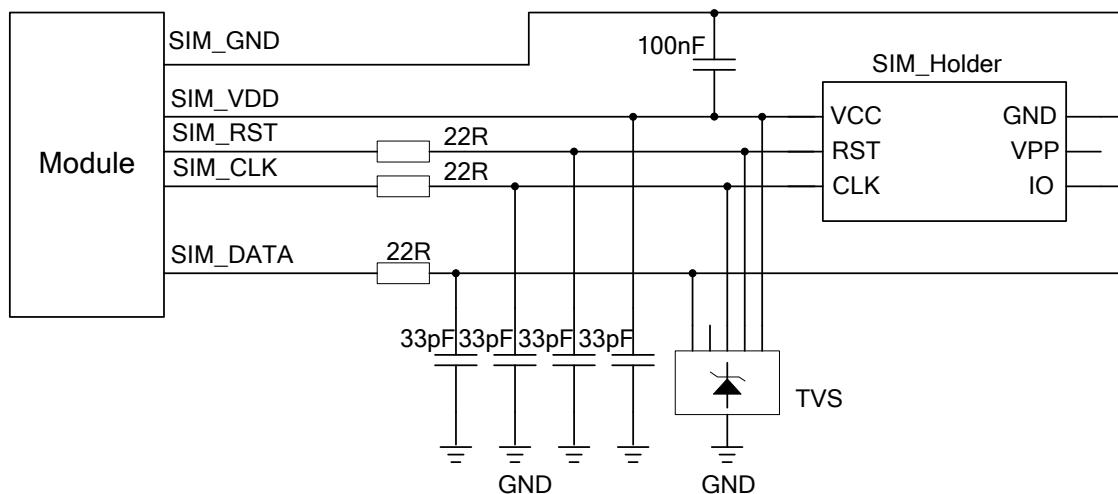
AT+QPCMVOL can configure the volume of input and output.

AT+QPCMVOL=vol_pcm_in, vol_pcm_out

Table 15: QPCM VOL Command Description

Parameter	Scope	Description
vol_pcm_in	0~32767	Set the input volume
vol_pcm_out	0~32767	Set the output volume The voice may be distorted when this value exceeds 16384.

3.10. SIM Card Interface


The SIM interface supports the functionality of the GSM Phase 1 specification and also supports the functionality of the new GSM Phase 2+ specification for FAST 64 kbps SIM card (intended for use with a SIM application Tool-kit).

The SIM interface is powered by an internal regulator in the module. Both 1.8V and 3.0V SIM Cards are supported.

Table 16: Pin Definition of the SIM Interface

Pin Name	Pin No.	Description
SIM_VDD	14	Supply power for SIM card. Automatic detection of SIM card voltage. 3.0V \pm 5% and 1.8V \pm 5%. Maximum supply current is around 10mA.
SIM_CLK	13	SIM card clock.
SIM_DATA	11	SIM card data I/O.
SIM_RST	12	SIM card reset.
SIM_GND	10	SIM card ground.

The reference circuit for a 6-pin SIM card socket is illustrated as the following figure.

Figure 31: Reference Circuit for SIM Interface with the 6-pin SIM Card Holder

For more information of SIM card holder, you can visit <http://www.amphenol.com> and <http://www.molex.com>.

In order to enhance the reliability and availability of the SIM card in application. Please follow the below criteria in the SIM circuit design:

- Keep layout of SIM card as close as possible to the module. Assure the possibility of the length of the trace is less than 200mm.
- Keep SIM card signal away from RF and VBAT alignment.
- Assure the ground between module and SIM cassette short and wide. Keep the width of ground no less than 0.5mm to maintain the same electric potential. The decouple capacitor of SIM_VDD is less than 1uF and must be near to SIM cassette.
- To avoid cross talk between SIM_DATA and SIM_CLK. Keep them away with each other and shield them with surrounded ground.
- In order to offer good ESD protection, it is recommended to add a TVS diode array. For more information of TVS diode, please visit <http://www.onsemi.com/>. The most important rule is to place the ESD protection device close to the SIM card socket and make sure the nets being protected will go through the ESD device first and then lead to module. The 22Ω resistors should be connected in series between the module and the SIM card so as to suppress the EMI spurious transmission and enhance the ESD protection. Please to be noted that the SIM peripheral circuit should be close to the SIM card socket.
- Place the RF bypass capacitors (33pF) close to the SIM card on all signals line for improving EMI.

3.11. SD Card Interface

The module provides an SD card interface that supports many types of memory, such as Memory Stick, SD/MCC card and T-Flash or Micro SD card. The following are the main features of SD card interface.

- Only support 1bit serial mode
- Not support the SPI mode for SD memory card
- Not support multiple SD memory cards
- Not support hot plug
- The data rate up to 48MHz in serial mode
- Up to 32GB maximum memory card capacity

With the SD card interface features and reference circuit shown as below, you can easily design the SD card application circuit to enhance the memory capacity of the module. The users can store some high-capacity files to external memory card. Such as in the automotive application system, the module can record and store the audio file to the SD card, and also can play the audio files in SD card.

Table 17: Pin Definition of SD Card Interface

Pin Name	Pin No.	Description	Alternate Function ¹⁾
SD_CMD	32	Command signal of SD card output	PCM_IN
SD_CLK	33	Clock signal of SD card output	PCM_OUT
SD_DATA	31	Data output and input signal of SD card	PCM_SYNC

NOTE

¹⁾ If several interfaces share the same I/O pin, to avoid conflict between these alternate functions, only one peripheral should be enabled at a time.

A reference design for Micro SD card is shown below.



Figure 32: Reference Circuit for Micro SD Card

Table 18: Pin Name of the SD Card and T-Flash (Micro SD) Card

Pin No.	Pin Name of SD Card	Pin Name of T-Flash (Micro SD) Card
1	CD/DATA3	DATA2
2	CMD	CD/DATA3
3	VSS1	CMD
4	VDD	VDD
5	CLK	CLK
6	VSS2	VSS
7	DATA0	DATA0
8	DATA1	DATA1
9	DATA2	

In SD card interface designing, in order to ensure good communication performance with SD card, the following design principles should be complied with:

- Keep all the SD card signals far away from VBAT power and RF trace.
- Route all SD card signals as short as possible. Ensure the length of every trace does not exceed 10cm.
- The SD_CLK, SD_DATA and SD_CMD trace should be routed together. Keep trace difference of

SD_DATA, SD_CMD and SD_CLK to be less than 10mm.

- In order to offer good ESD protection, it is recommended to add TVS on signals with capacitance less than 15pF.
- Reserve external pull-up resistors for other data lines except the DATA0 signal.
- The SD_CLK and SD_DATA line must be shielded by ground in order to improve EMI suppression capability.

3.12. ADC

The module provides an ADC channel to measure the value of voltage. Please give priority to the use of ADC0 channel. The command **AT+QADC** can read the voltage value applied on ADC0 pin. For details of this AT command, please refer to the **document [1]**. In order to improve the accuracy of ADC, the layout of ADC should be surrounded by ground.

Table 19: Pin Definition of the ADC

Pin Name	Pin No.	Description
AVDD	8	Reference voltage of ADC circuit
ADC0	9	Analog to digital converter.

Table 20: Characteristics of the ADC

Item	Min.	Typ.	Max.	Units
Voltage Range	0		2.8	V
ADC Resolution		10		bits
ADC Accuracy		2.7		mV

3.13. Behaviors of The RI

Table 21: Behaviors of the RI

State	RI Response
Standby	HIGH
Voicecall	<p>Change to LOW, then:</p> <ol style="list-style-type: none"> 1. Change to HIGH when call is established. 2. Use ATH to hang up the call, RI changes to HIGH. 3. Calling part hangs up, RI changes to HIGH first, and changes to LOW for 120ms indicating “NO CARRIER” as an URC, then changes to HIGH again. 4. Change to HIGH when SMS is received.
SMS	When a new SMS comes, the RI changes to LOW and holds low level for about 120ms, then changes to HIGH.
URC	Certain URCs can trigger 120ms low level on RI. For more details, please refer to the <i>document [1]</i>

If the module is used as a caller, the RI would maintain high except the URC or SMS is received. On the other hand, when it is used as a receiver, the timing of the RI is shown below.

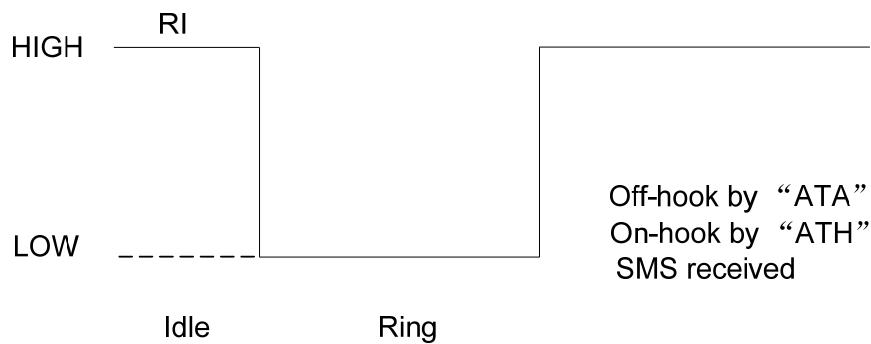


Figure 33: RI Behavior of Voice Calling as a Receiver

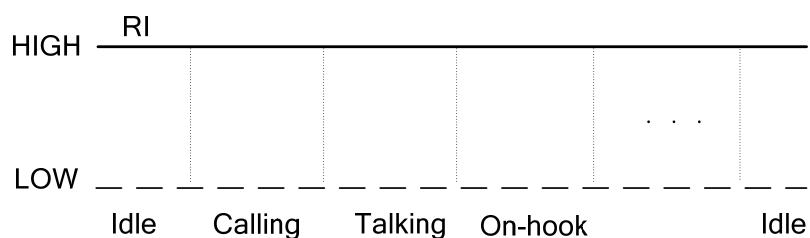


Figure 34: RI Behavior as a Caller

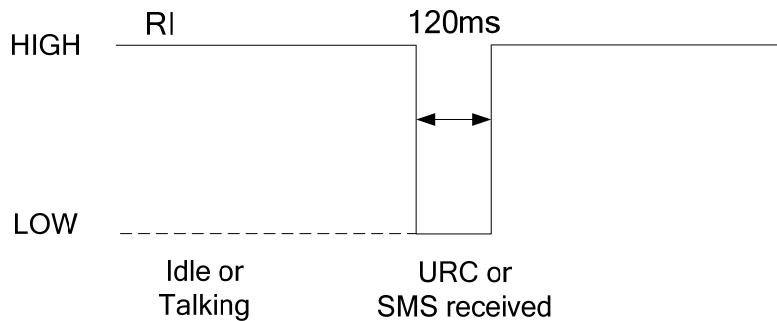


Figure 35: RI Behavior of URC or SMS Received

3.14. Network Status Indication

The NETLIGHT signal can be used to drive a network status indicator LED. The working state of this pin is listed in the following table.

Table 22: Working State of the NETLIGHT

State	Module Function
Off	The module is not running.
64ms On/800ms Off	The module is not synchronized with network.
64ms On/2000ms Off	The module is synchronized with network.
64ms On/600ms Off	The GPRS data transmission after dialing the PPP connection.

A reference circuit is shown as below.

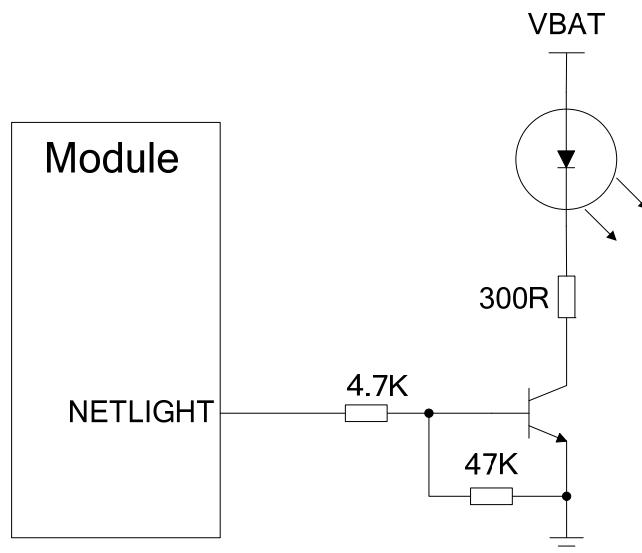


Figure 36: Reference Design for NETLIGHT

3.15. RF Transmitting Signal Indication

The M66 provides a RFTXMON pins which will rise when the transmitter is active and fall after the transmitter activity is completed.

Table 23: Pin Definition of the RFTXMON

Pin Name	Pin No.	Description
RFTXMON	25	Transmission signal indication

There are two different modes for this function:

1) Active during the TX activity

RFTXMON pin is used to indicate the TX burst, when it outputs a high level, 220us later there will be a TX burst.

You can execute AT+QCFG="RFTXburst", 1 to enable the function.

The timing of the RFTXMON signal is shown below.

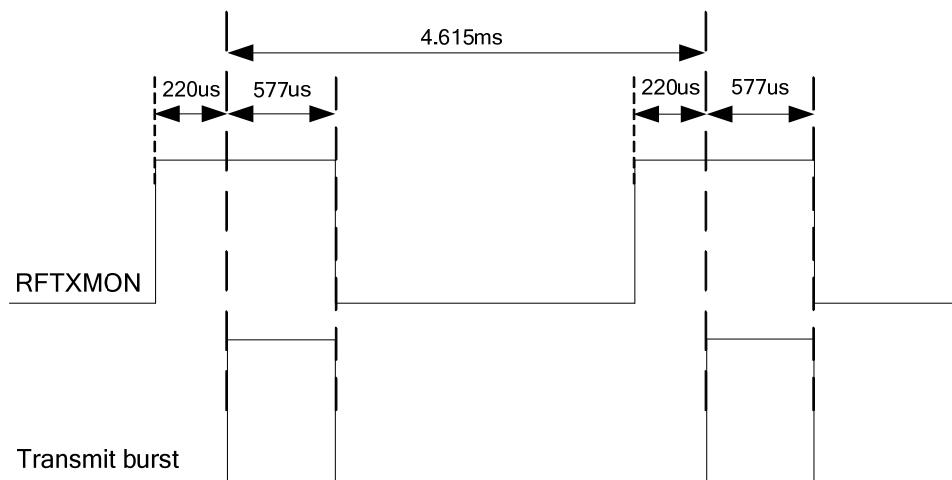


Figure 37: RFTXMON Signal during Burst Transmission

2) Active during the Call

RFTXMON will be HIGH during a call and the pin will become LOW after being hanged up.

You can execute AT+QCFG="RFTXburst", 2 to enable the function.

The timing of the RFTXMON signal is shown below.

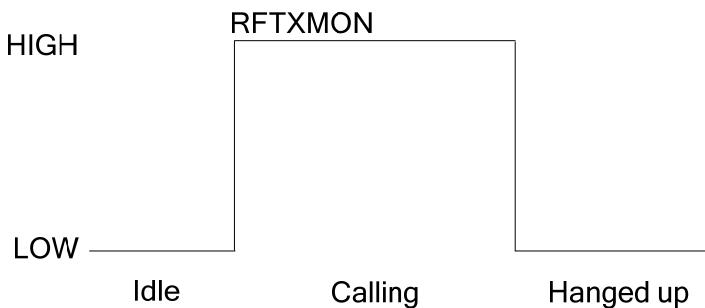


Figure 38: RFTXMON Signal during Call

4 Antenna Interface

M66 has two antenna interfaces, GSM antenna and BT antenna. The Pin 26 is the Bluetooth antenna pad. The Pin 35 is the GSM antenna pad. The RF interface of the two antenna pad has an impedance of 50Ω .

4.1. GSM Antenna Interface

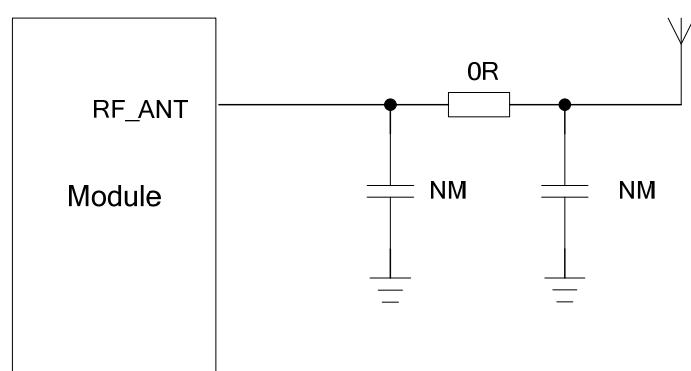

There is a GSM antenna pad named RF_ANT for M66.

Table 24: Pin Definition of the RF_ANT

Pin Name	Pin No.	Description
GND	34	Ground
RF_ANT	35	GSM antenna pad
GND	36	Ground
GND	37	Ground

4.1.1. Reference Design

The external antenna must be matched properly to achieve best performance, so the matching circuit is necessary, the reference design for RF is shown as below.

Figure 39: Reference Design for GSM Antenna

M66 provides an RF antenna pad for antenna connection. The RF trace in host PCB connected to the module RF antenna pad should be coplanar waveguide line or microstrip line, whose characteristic impedance should be close to 50Ω . M66 comes with grounding pads which are next to the antenna pad in order to give a better grounding. Besides, a π type match circuit is suggested to be used to adjust the RF performance.

To minimize the loss on the RF trace and RF cable, take design into account carefully. The following table shows the requirement on GSM antenna.

Table 25: Antenna Cable Requirements

Type	Requirements
GSM850/EGSM900	Cable insertion loss <1dB
DCS1800/PCS1900	Cable insertion loss <1.5dB

Table 26: Antenna Requirements

Type	Requirements
Frequency Range	Depending by frequency band (s) provided by the network operator
VSWR	≤ 2
Gain (dBi)	1
Max Input Power (W)	50
Input Impedance (Ω)	50
Polarization Type	Vertical

4.1.2. RF Output Power

Table 27: The Module Conducted RF Output Power

Frequency	Max.	Min.
GSM850	$33\text{dBm}\pm2\text{dB}$	$5\text{dBm}\pm5\text{dB}$

EGSM900	33dBm±2dB	5dBm±5dB
DCS1800	30dBm±2dB	0dBm±5dB
PCS1900	30dBm±2dB	0dBm±5dB

NOTE

In GPRS 4 slots TX mode, the max output power is reduced by 2.5dB. This design conforms to the GSM specification as described in section **13.16** of **3GPP TS 51.010-1**.

4.1.3. RF Receiving Sensitivity

Table 28: The Module Conducted RF Receiving Sensitivity

Frequency	Receive Sensitivity
GSM850	< -109dBm
EGSM900	< -109dBm
DCS1800	< -109dBm
PCS1900	< -109dBm

4.1.4. Operating Frequencies

Table 29: The Module Operating Frequencies

Frequency	Receive	Transmit	ARFCH
GSM850	869~894MHz	824~849MHz	128~251
EGSM900	925~960MHz	880~915MHz	0~124, 975~1023
DCS1800	1805~1880MHz	1710~1785MHz	512~885
PCS1900	1930~1990MHz	1850~1910MHz	512~810

4.1.5. RF Cable Soldering

Soldering the RF cable to RF pad of module correctly will reduce the loss on the path of RF, please refer to the following example of RF soldering.

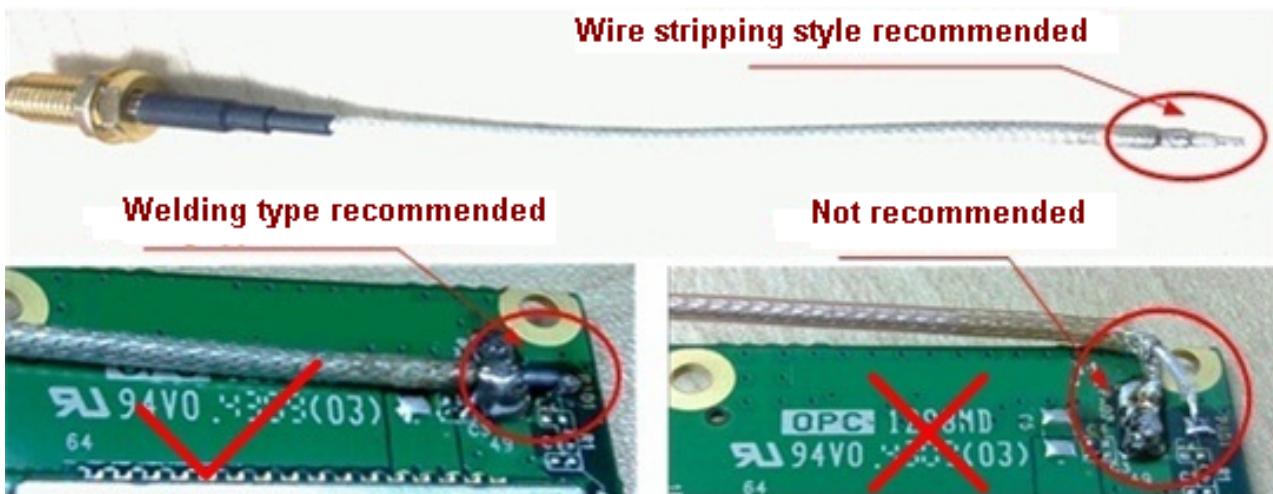


Figure 40: RF Soldering Sample

4.2. Bluetooth Antenna Interface

M66 supports Bluetooth interface. Bluetooth is a wireless technology that allows devices to communicate, or transmit data or voice, wirelessly over a short distance. It is described as a short-range communication technology intended to replace the cables connecting portable and/or fixed devices while maintaining high level of security. Bluetooth is standardized as IEEE802.15 and operates in the 2.4 GHz range using RF technology. Its data rates of up to 3Mbps.

M66 is fully compliant with Bluetooth specification 3.0. M66 supports profile including SPP and OPP.

The module provides a Bluetooth antenna pad named **BT_ANT**.

Table 30: Pin Definition of the BT_ANT

Pin Name	Pin No.	Description
BT_ANT	26	BT antenna pad
GND	27	Ground

The external antenna must be matched properly to achieve best performance, so the matching circuit is necessary, the connection is recommended as in the following figure:

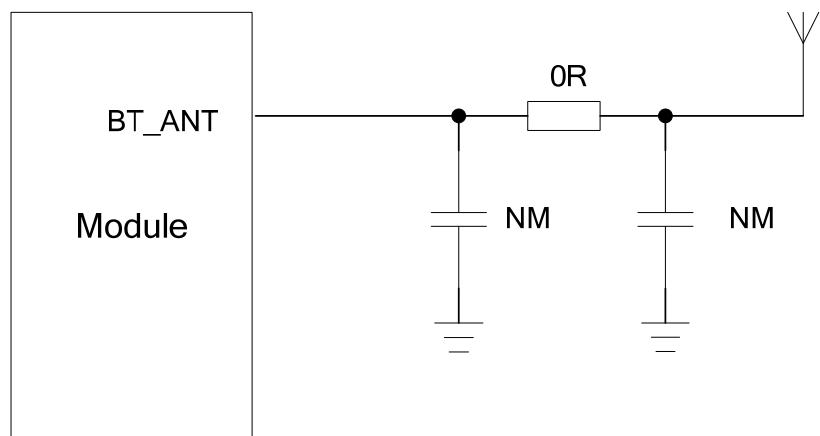


Figure 41: Reference Design for Bluetooth Antenna

There are some suggestions for placing components and RF trace lying for Bluetooth RF traces:

Antenna matching circuit should be closed to the antenna;

Keep the RF traces as 50Ω ;

**The RF traces should be kept far away from the high frequency signals
and strong disturbing source.**

5 Electrical, Reliability and Radio Characteristics

5.1. Absolute Maximum Ratings

Absolute maximum ratings for power supply and voltage on digital and analog pins of module are listed in the following table:

Table 31: Absolute Maximum Ratings

Parameter	Min.	Max.	Unit
VBAT	-0.3	+4.73	V
Peak Current of Power Supply	0	2	A
RMS Current of Power Supply (during one TDMA-frame)	0	0.7	A
Voltage at Digital Pins	-0.3	3.08	V
Voltage at Analog Pins	-0.3	3.08	V
Voltage at Digital/analog Pins in Power Down Mode	-0.25	0.25	V

5.2. Operating Temperature

The operating temperature is listed in the following table:

Table 32: Operating Temperature

Parameter	Min.	Typ.	Max.	Unit
Operation temperature range	-35	+25	+75	°C
Extended temperature range	-40		+85	°C

NOTES

- ¹⁾ Within operation temperature range, the module is 3GPP compliant.
- ²⁾ Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction; there are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like P_{out} might reduce in their value and exceed the specified tolerances. When the temperature returns to the normal operating temperature levels, the module will meet 3GPP compliant again.

5.3. Power Supply Ratings

Table 33: The Module Power Supply Ratings

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
	Supply voltage	Voltage must stay within the min/max values, including voltage drop, ripple, and spikes.	3.3	4.0	4.6	V
VBAT	Voltage drop during transmitting burst	Maximum power control level on GSM850 and EGSM900.			400	mV
		Power down mode		150		uA
		SLEEP mode @DRX=5		1.3		mA
		Minimum functionality mode AT+CFUN=0				
		IDLE mode		13		mA
		SLEEP mode		0.98		mA
I _{VBAT}	Average supply current	AT+CFUN=4				
		IDLE mode		13		mA
		SLEEP mode		1.0		mA
		TALK mode				
		GSM850/EGSM900 ¹⁾		223/219		mA
		DCS1800/PCS1900 ²⁾		153/151		mA

DATA mode, GPRS (3Rx, 2Tx)			
GSM850/EGSM900 ¹⁾	363/393	mA	
DCS1800/PCS1900 ²⁾	268/257	mA	
DATA mode, GPRS (2 Rx, 3Tx)			
GSM850/EGSM900 ¹⁾	506/546	mA	
DCS1800/PCS1900 ²⁾	366/349	mA	
DATA mode, GPRS (4 Rx, 1Tx)			
GSM850/EGSM900 ¹⁾	217/234	mA	
DCS1800/PCS1900 ²⁾	172/170	mA	
DATA mode, GPRS (1Rx, 4Tx)			
GSM850/EGSM900 ¹⁾	458/485 ³⁾	mA	
DCS1800/PCS1900 ²⁾	462/439	mA	
Peak supply current (during transmission slot)	Maximum power control level on GSM850 and EGSM900.	1.6	2 A

NOTES

1. ¹⁾ Power control level PCL 5.
2. ²⁾ Power control level PCL 0.

³⁾ Under the GSM850 and EGSM900 spectrum, the power of 1Rx and 4Tx has been reduced.

5.4. Current Consumption

The values of current consumption are shown as below.

Table 34: The Module Current Consumption

Condition	Current Consumption
Voice Call	
GSM850	<p>@power level #5 <300mA, Typical 223mA</p> <p>@power level #12, Typical 83mA</p> <p>@power level #19, Typical 62mA</p>

EGSM900	@power level #5 <300mA, Typical 219mA @power level #12, Typical 83mA @power level #19, Typical 63mA
DCS1800	@power level #0 <250mA, Typical 153mA @power level #7, Typical 73mA @power level #15, Typical 60mA
PCS1900	@power level #0 <250mA, Typical 151mA @power level #7, Typical 76mA @power level #15, Typical 61mA

GPRS Data

DATA Mode, GPRS (3 Rx, 2Tx) CLASS 12

GSM850	@power level #5 <550mA, Typical 363mA @power level #12, Typical 131mA @power level #19, Typical 91mA
EGSM900	@power level #5 <550mA, Typical 393mA @power level #12, Typical 132mA @power level #19, Typical 92mA
DCS1800	@power level #0 <450mA, Typical 268mA @power level #7, Typical 112mA @power level #15, Typical 88mA
PCS1900	@power level #0 <450mA, Typical 257mA @power level #7, Typical 119mA @power level #15, Typical 89mA

DATA Mode, GPRS (2 Rx, 3Tx) CLASS 12

GSM850	@power level #5 <640mA, Typical 506mA @power level #12, Typical 159mA @power level #19, Typical 99mA
EGSM900	@power level #5 <600mA, Typical 546mA @power level #12, Typical 160mA @power level #19, Typical 101mA
DCS1800	@power level #0 <490mA, Typical 366mA @power level #7, Typical 131mA @power level #15, Typical 93mA
PCS1900	@power level #0 <480mA, Typical 348mA @power level #7, Typical 138mA @power level #15, Typical 94mA

DATA Mode, GPRS (4 Rx,1Tx) CLASS 12

GSM850	@power level #5 <350mA, Typical 216mA @power level #12, Typical 103mA @power level #19, Typical 83mA
--------	--

EGSM900	@power level #5 <350mA, Typical 233mA @power level #12, Typical 104mA @power level #19, Typical 84mA
DCS1800	@power level #0 <300mA, Typical 171mA @power level #7, Typical 96mA @power level #15, Typical 82mA
PCS1900	@power level #0 <300mA, Typical 169mA @power level #7, Typical 98mA @power level #15, Typical 83mA
DATA Mode, GPRS (1 Rx, 4Tx) CLASS 12	
GSM850	@power level #5 <660mA, Typical 457mA @power level #12, Typical 182mA @power level #19, Typical 106mA
EGSM900	@power level #5 <660mA, Typical 484mA @power level #12, Typical 187mA @power level #19, Typical 109mA
DCS1800	@power level #0 <530mA, Typical 461mA @power level #7, Typical 149mA @power level #15, Typical 97mA
PCS1900	@power level #0 <530mA, Typical 439mA @power level #7, Typical 159mA @power level #15, Typical 99mA

NOTE

GPRS Class 12 is the default setting. The module can be configured from GPRS Class 1 to Class 12. Setting to lower GPRS class would make it easier to design the power supply for the module.

5.5. Electro-static Discharge

Although the GSM engine is generally protected against Electro-static Discharge (ESD), ESD protection precautions should still be emphasized. Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any applications using the module.

The measured ESD values of module are shown as the following table:

Table 35: The ESD Endurance (Temperature: 25°C, Humidity: 45%)

Tested Point	Contact Discharge	Air Discharge
VBAT, GND	±5KV	±10KV
RF_ANT	±5KV	±10KV
TXD, RXD	±2KV	±4KV
Others	±0.5KV	±1KV

6 Mechanical Dimensions

This chapter describes the mechanical dimensions of the module.

6.1. Mechanical Dimensions of Module

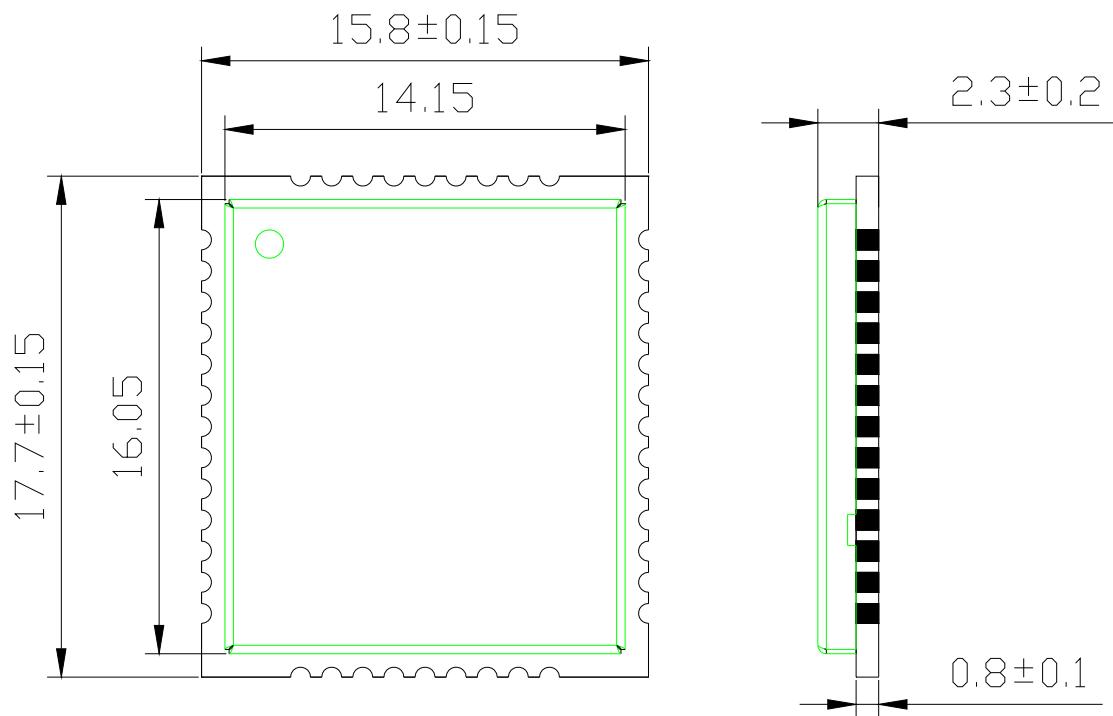


Figure 42: M66 Module Top and Side Dimensions (Unit: mm)

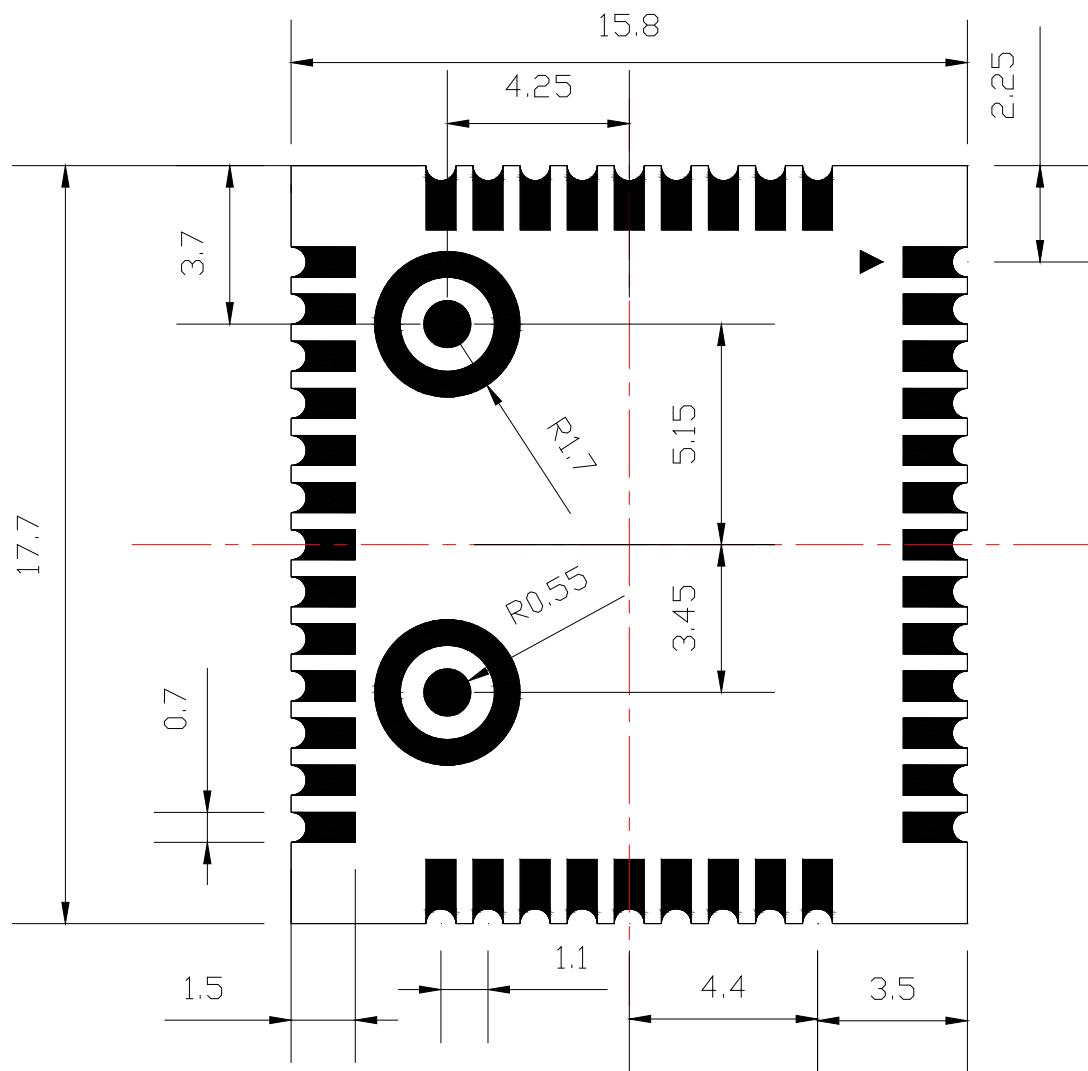
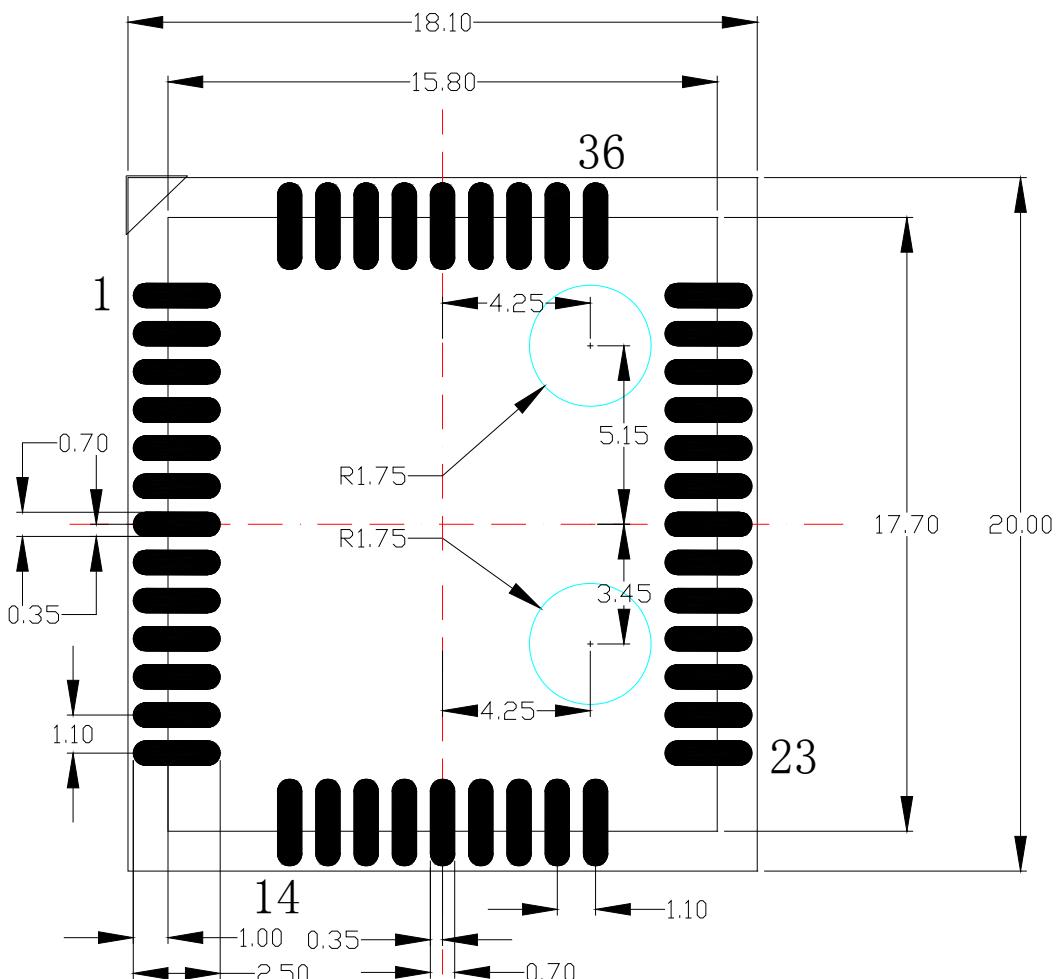



Figure 43: M66 Module Bottom Dimensions (Unit: mm)

6.2. Recommended Footprint

Figure 44: Recommended Footprint (Unit: mm)

NOTES

1. The module should be kept about 3mm away from other components in the host PCB.
2. The circular test points with a radius of 1.75mm in the above recommended footprint should be treated as keepout areas. (“keepout” means do not pour copper on the mother board).

6.3. Top View of the Module

Figure 45: Top View of the Module

6.4. Bottom View of the Module

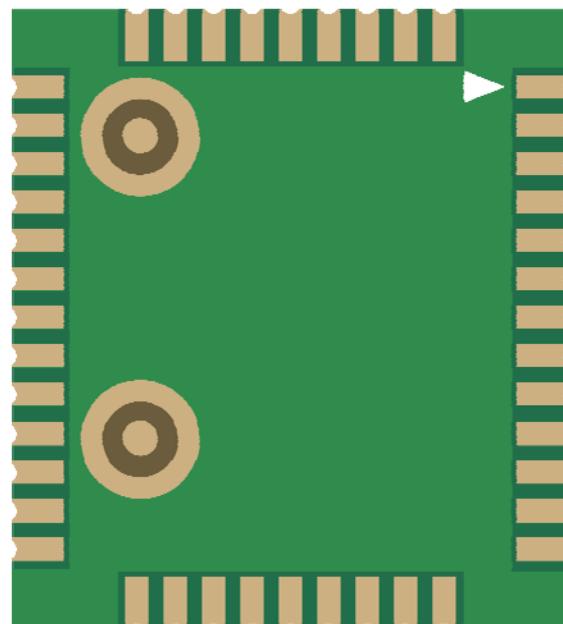


Figure 46: Bottom View of the Module

7 Storage and Manufacturing

7.1. Storage

MC66 module is stored in a vacuum-sealed bag. The storage restrictions are shown as below.

1. Shelf life in the vacuum-sealed bag: 12 months at <40°C and <90%RH.
2. After the vacuum-sealed bag is opened, devices that need to be mounted directly must be:
 - Mounted within 72 hours at the factory environment of ≤30°C and <60% RH.
 - Stored at <10% RH.
3. Devices require baking before mounting, if any circumstance below occurs.
 - When the ambient temperature is $23^{\circ}\text{C} \pm 5^{\circ}\text{C}$ and the humidity indication card shows the humidity is >10% before opening the vacuum-sealed bag.
 - Device mounting cannot be finished within 72 hours when the ambient temperature is <30°C and the humidity is <60%.
 - Stored at >10% RH.
4. If baking is required, devices should be baked for 48 hours at $125^{\circ}\text{C} \pm 5^{\circ}\text{C}$.

NOTE

As the plastic package cannot be subjected to high temperature, it should be removed from devices before high temperature (125°C) baking. If shorter baking time is desired, please refer to IPC/JEDECJ-STD-033 for baking procedure.

7.2. Soldering

Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. The force on the squeegee should be adjusted properly so as to produce a clean stencil surface on a single pass. To ensure the module soldering quality, the thickness of stencil at the hole of the module pads should be 0.2 mm for M66. For more details, please refer to **document [12]**.

It is suggested that peak reflow temperature is from 235°C to 245°C (for SnAg3.0Cu0.5 alloy). The absolute max reflow temperature is 260°C. To avoid damage to the module caused by repeated heating, it is suggested that the module should be mounted after reflow soldering for the other side of PCB has been completed. Recommended reflow soldering thermal profile is shown below:

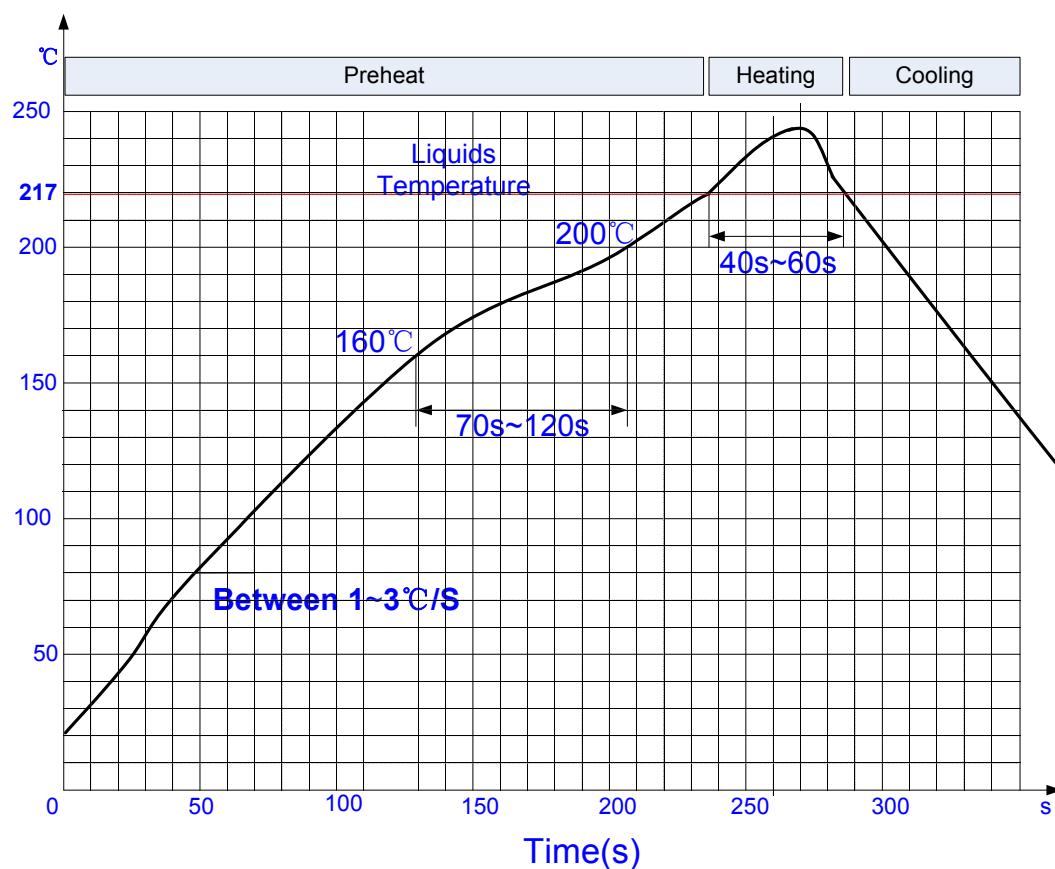


Figure 47: Reflow Soldering Thermal Profile

7.3. Packaging

The modules are stored in a vacuum-sealed bag which is ESD protected. It should not be opened until the devices are ready to be soldered onto the application.

7.3.1. Tape and Reel Packaging

The reel is 330mm in diameter and each reel contains 250 modules.

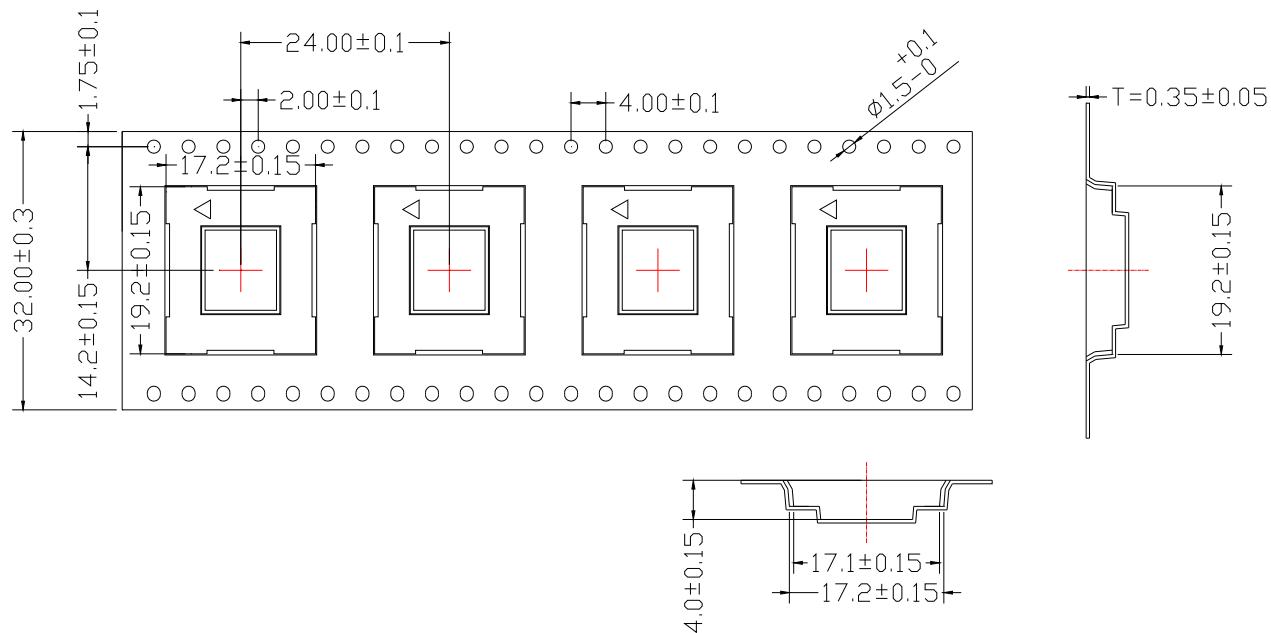
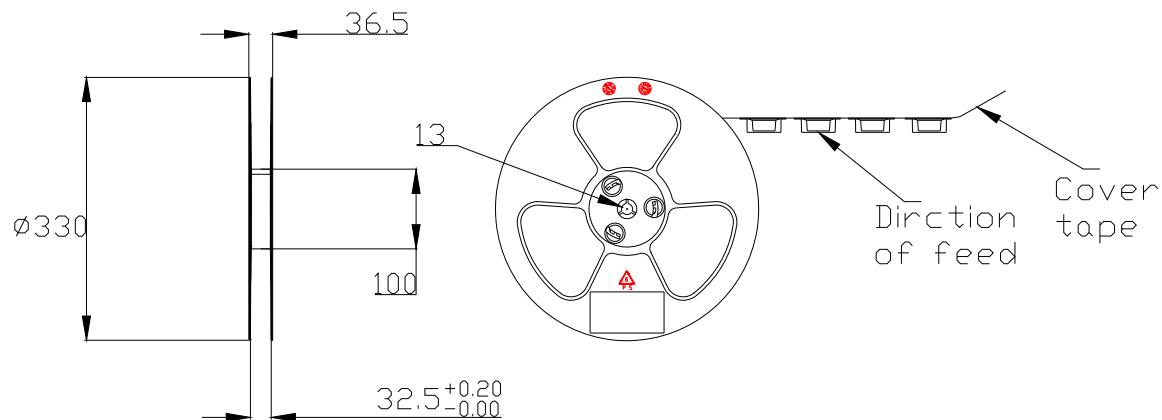



Figure 48: Tape and Reel Specification

Figure 49: Dimensions of Reel

8 Appendix A References

Table 36: Related Documents

SN	Document Name	Remark
[1]	Quectel_M66_AT_Commands_Manual	AT commands manual
[2]	ITU-T Draft new recommendation V.25ter	Serial asynchronous automatic dialing and control
[3]	GSM 07.07	Digital cellular telecommunications (Phase 2+); AT command set for GSM Mobile Equipment (ME)
[4]	GSM 07.10	Support GSM 07.10 multiplexing protocol
[5]	GSM 07.05	Digital cellular telecommunications (Phase 2+); Use of Data Terminal Equipment – Data Circuit terminating Equipment (DTE – DCE) interface for Short Message Service (SMS) and Cell Broadcast Service (CBS)
[6]	GSM 11.14	Digital cellular telecommunications (Phase 2+); Specification of the SIM Application Toolkit for the Subscriber Identity module – Mobile Equipment (SIM – ME) interface
[7]	GSM 11.11	Digital cellular telecommunications (Phase 2+); Specification of the Subscriber Identity module – Mobile Equipment (SIM – ME) interface
[8]	GSM 03.38	Digital cellular telecommunications (Phase 2+); Alphabets and language-specific information
[9]	GSM 11.10	Digital cellular telecommunications (Phase 2); Mobile Station (MS) conformance specification; Part 1: Conformance specification

[10] GSM_UART_Application_Note	UART port application note
[11] GSM_EVB_User_Guide	GSM EVB user guide
[12] Module_Secondary_SMT_User_Guide	Module secondary SMT user guide
[13] Quectel_GSM_Module_Digital_IO_Application_Note	GSM Module Digital IO Application Note

Table 37: Terms and Abbreviations

Abbreviation	Description
ADC	Analog-to-Digital Converter
AMR	Adaptive Multi-Rate
ARP	Antenna Reference Point
ASIC	Application Specific Integrated Circuit
BER	Bit Error Rate
BOM	Bill of Material
BT	Bluetooth
BTS	Base Transceiver Station
CHAP	Challenge Handshake Authentication Protocol
CS	Coding Scheme
CSD	Circuit Switched Data
CTS	Clear to Send
DAC	Digital-to-Analog Converter
DRX	Discontinuous Reception
DSP	Digital Signal Processor
DCE	Data Communications Equipment (typically module)
DTE	Data Terminal Equipment (typically computer, external controller)
DTR	Data Terminal Ready

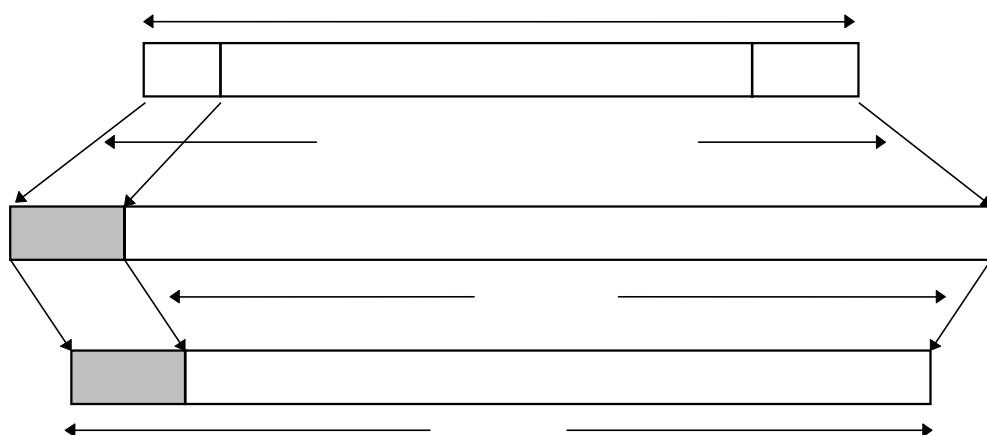
DTX	Discontinuous Transmission
EFR	Enhanced Full Rate
EGSM	Enhanced GSM
EMC	Electromagnetic Compatibility
ESD	Electrostatic Discharge
ETS	European Telecommunication Standard
FCC	Federal Communications Commission (U.S.)
FDMA	Frequency Division Multiple Access
FR	Full Rate
GMSK	Gaussian Minimum Shift Keying
GPRS	General Packet Radio Service
GSM	Global System for Mobile Communications
G.W	Gross Weight
HR	Half Rate
I/O	Input/Output
IC	Integrated Circuit
IMEI	International Mobile Equipment Identity
$I_{O\max}$	Maximum Output Load Current
kbps	Kilo Bits Per Second
LED	Light Emitting Diode
Li-Ion	Lithium-Ion
MO	Mobile Originated
MOQ	Minimum Order Quantity
MP	Manufacture Product
MS	Mobile Station (GSM engine)

MT	Mobile Terminated
N.W	Net Weight
PAP	Password Authentication Protocol
PBCCH	Packet Switched Broadcast Control Channel
PCB	Printed Circuit Board
PDU	Protocol Data Unit
PPP	Point-to-Point Protocol
RF	Radio Frequency
RMS	Root Mean Square (value)
RTC	Real Time Clock
RX	Receive Direction
SIM	Subscriber Identification Module
SMS	Short Message Service
TDMA	Time Division Multiple Access
TE	Terminal Equipment
TX	Transmitting Direction
UART	Universal Asynchronous Receiver & Transmitter
URC	Unsolicited Result Code
USSD	Unstructured Supplementary Service Data
VSWR	Voltage Standing Wave Ratio
$V_{O\max}$	Maximum Output Voltage Value
$V_{O\text{norm}}$	Normal Output Voltage Value
$V_{O\min}$	Minimum Output Voltage Value
$V_{IH\max}$	Maximum Input High Level Voltage Value
$V_{IH\min}$	Minimum Input High Level Voltage Value

V_{ILmax}	Maximum Input Low Level Voltage Value
V_{ILmin}	Minimum Input Low Level Voltage Value
V_{Imax}	Absolute Maximum Input Voltage Value
V_{Inorm}	Absolute Normal Input Voltage Value
V_{Imin}	Absolute Minimum Input Voltage Value
V_{OHmax}	Maximum Output High Level Voltage Value
V_{OHmin}	Minimum Output High Level Voltage Value
V_{OLmax}	Maximum Output Low Level Voltage Value
V_{OLmin}	Minimum Output Low Level Voltage Value

Phonebook Abbreviations

LD	SIM Last Dialing phonebook (list of numbers most recently dialed)
MC	Mobile Equipment list of unanswered MT Calls (missed calls)
ON	SIM (or ME) Own Numbers (MSISDNs) list
RC	Mobile Equipment list of Received Calls
SM	SIM phonebook


9 Appendix B GPRS Coding Schemes

Four coding schemes are used in GPRS protocol. The differences between them are shown in the following table.

Table 38: Description of Different Coding Schemes

Scheme	Code Rate	USF	Pre-coded USF	Radio Block excl.USF and BCS	BCS	Tail	Coded Bits	Punctured Bits	Data Rate Kb/s
CS-1	1/2	3	3	181	40	4	456	0	9.05
CS-2	2/3	3	6	268	16	4	588	132	13.4
CS-3	3/4	3	6	312	16	4	676	220	15.6
CS-4	1	3	12	428	16	-	456	-	21.4

Radio block structure of CS-1, CS-2 and CS-3 is shown as the figure below.

Figure 50: Radio Block Structure of CS-1, CS-2 and CS-3

Radio block structure of CS-4 is shown as the following figure.

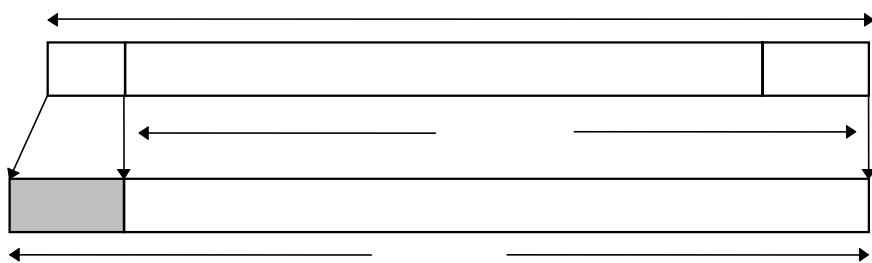


Figure 51: Radio Block Structure of CS-4

10 Appendix C GPRS Multi-slot Classes

Twenty-nine classes of GPRS multi-slot modes are defined for MS in GPRS specification. Multi-slot classes are product dependent, and determine the maximum achievable data rates in both the uplink and downlink directions. Written as 3+1 or 2+2, the first number indicates the amount of downlink timeslots, while the second number indicates the amount of uplink timeslots. The active slots determine the total number of slots the GPRS device can use simultaneously for both uplink and downlink communications. The description of different multi-slot classes is shown in the following table.

Table 39: GPRS Multi-slot Classes

Multislot Class	Downlink Slots	Uplink Slots	Active Slots
1	1	1	2
2	2	1	3
3	2	2	3
4	3	1	4
5	2	2	4
6	3	2	4
7	3	3	4
8	4	1	5
9	3	2	5
10	4	2	5
11	4	3	5
12	4	4	5

FCC Certification Requirements.

According to the definition of mobile and fixed device is described in Part 2.1091(b), this device is a mobile device.

And the following conditions must be met:

1. This Modular Approval is limited to OEM installation for mobile and fixed applications only. The antenna installation and operating configurations of this transmitter, including any applicable source-based time-averaging duty factor, antenna gain and cable loss must satisfy MPE categorical Exclusion Requirements of 2.1091.

2. The EUT is a mobile device; maintain at least a 20 cm separation between the EUT and the user's body and must not transmit simultaneously with any other antenna or transmitter.

3. A label with the following statements must be attached to the host end product: This device contains FCC ID: XMR201902M66.

4. To comply with FCC regulations limiting both maximum RF output power and human exposure to RF radiation, maximum antenna gain (including cable loss) must not exceed:

- GSM850: ≤ 6.411dBi
- PCS1900: ≤ 6.010dBi

5. This module must not transmit simultaneously with any other antenna or transmitter

6. The host end product must include a user manual that clearly defines operating requirements and conditions that must be observed to ensure compliance with current FCC RF exposure guidelines.

For portable devices, in addition to the conditions 3 through 6 described above, a separate approval is required to satisfy the SAR requirements of FCC Part 2.1093

If the device is used for other equipment that separate approval is required for all other operating configurations, including portable configurations with respect to 2.1093 and different antenna configurations.

For this device, OEM integrators must be provided with labeling instructions of finished products.

Please refer to KDB784748 D01 v07, section 8. Page 6/7 last two paragraphs:

A certified modular has the option to use a permanently affixed label, or an electronic label. For a permanently affixed label, the module must be labeled with an FCC ID - Section 2.926 (see 2.2 Certification (labeling requirements) above). The OEM manual must provide clear instructions explaining to the OEM the labeling requirements, options and OEM user manual instructions that are required (see next paragraph).

For a host using a certified modular with a standard fixed label, if (1) the module's FCC ID is not visible when installed in the host, or (2) if the host is marketed so that end users do not have straightforward commonly used methods for access to remove the module so that the FCC ID of the module is visible; then an additional permanent label referring to the enclosed module: "Contains Transmitter Module FCC ID: XMR201902M66" or "Contains FCC ID: XMR201902M66" must be used. The host OEM user manual must also contain clear instructions on how end users can find and/or access the module and the FCC ID.

The final host / module combination may also need to be evaluated against the FCC Part 15B criteria for unintentional radiators in order to be properly authorized for operation as a Part 15 digital device.

The user's manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. In cases where the manual is provided only in a form other than paper, such as on a computer disk or over the Internet, the information required by this section may be included in the manual in that alternative form, provided the user can reasonably be expected to have the capability to access information in that form.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

(1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the manufacturer could void the user's authority to operate the equipment.

To ensure compliance with all non-transmitter functions the host manufacturer is responsible for ensuring compliance with the module(s) installed and fully operational. For example, if a host was previously authorized as an unintentional radiator under the Declaration of Conformity procedure without a transmitter certified module and a module is added, the host manufacturer is responsible for ensuring that the after the module is installed and operational the host continues to be compliant with the Part 15B unintentional radiator requirements.