

BG77xA Series

Hardware Design

PMN: LTE NTN Module

LPWA Module Series

Version: 1.3.0

Date: 2024-03-07

Status: Preliminary

At Quectel, our aim is to provide timely and comprehensive services to our customers. If you require any assistance, please contact our headquarters:

Quectel Wireless Solutions Co., Ltd.

Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai 200233, China

Tel: +86 21 5108 6236

Email: info@quectel.com

Or our local offices. For more information, please visit:

<http://www.quectel.com/support/sales.htm>.

For technical support, or to report documentation errors, please visit:

<http://www.quectel.com/support/technical.htm>.

Or email us at: support@quectel.com.

Legal Notices

We offer information as a service to you. The provided information is based on your requirements and we make every effort to ensure its quality. You agree that you are responsible for using independent analysis and evaluation in designing intended products, and we provide reference designs for illustrative purposes only. Before using any hardware, software or service guided by this document, please read this notice carefully. Even though we employ commercially reasonable efforts to provide the best possible experience, you hereby acknowledge and agree that this document and related services hereunder are provided to you on an "as available" basis. We may revise or restate this document from time to time at our sole discretion without any prior notice to you.

Use and Disclosure Restrictions

License Agreements

Documents and information provided by us shall be kept confidential, unless specific permission is granted. They shall not be accessed or used for any purpose except as expressly provided herein.

Copyright

Our and third-party products hereunder may contain copyrighted material. Such copyrighted material shall not be copied, reproduced, distributed, merged, published, translated, or modified without prior written consent. We and the third party have exclusive rights over copyrighted material. No license shall be granted or conveyed under any patents, copyrights, trademarks, or service mark rights. To avoid ambiguities, purchasing in any form cannot be deemed as granting a license other than the normal non-exclusive, royalty-free license to use the material. We reserve the right to take legal action for noncompliance with abovementioned requirements, unauthorized use, or other illegal or malicious use of the material.

Trademarks

Except as otherwise set forth herein, nothing in this document shall be construed as conferring any rights to use any trademark, trade name or name, abbreviation, or counterfeit product thereof owned by Quectel or any third party in advertising, publicity, or other aspects.

Third-Party Rights

This document may refer to hardware, software and/or documentation owned by one or more third parties ("third-party materials"). Use of such third-party materials shall be governed by all restrictions and obligations applicable thereto.

We make no warranty or representation, either express or implied, regarding the third-party materials, including but not limited to any implied or statutory, warranties of merchantability or fitness for a particular purpose, quiet enjoyment, system integration, information accuracy, and non-infringement of any third-party intellectual property rights with regard to the licensed technology or use thereof. Nothing herein constitutes a representation or warranty by us to either develop, enhance, modify, distribute, market, sell, offer for sale, or otherwise maintain production of any our products or any other hardware, software, device, tool, information, or product. We moreover disclaim any and all warranties arising from the course of dealing or usage of trade.

Privacy Policy

To implement module functionality, certain device data are uploaded to Quectel's or third-party's servers, including carriers, chipset suppliers or customer-designated servers. Quectel, strictly abiding by the relevant laws and regulations, shall retain, use, disclose or otherwise process relevant data for the purpose of performing the service only or as permitted by applicable laws. Before data interaction with third parties, please be informed of their privacy and data security policy.

Disclaimer

- a) We acknowledge no liability for any injury or damage arising from the reliance upon the information.
- b) We shall bear no liability resulting from any inaccuracies or omissions, or from the use of the information contained herein.
- c) While we have made every effort to ensure that the functions and features under development are free from errors, it is possible that they could contain errors, inaccuracies, and omissions. Unless otherwise provided by valid agreement, we make no warranties of any kind, either implied or express, and exclude all liability for any loss or damage suffered in connection with the use of features and functions under development, to the maximum extent permitted by law, regardless of whether such loss or damage may have been foreseeable.
- d) We are not responsible for the accessibility, safety, accuracy, availability, legality, or completeness of information, advertising, commercial offers, products, services, and materials on third-party websites and third-party resources.

Copyright © Quectel Wireless Solutions Co., Ltd. 2024. All rights reserved.

Safety Information

The following safety precautions must be observed during all phases of operation, such as usage, service or repair of any terminal or mobile incorporating the module. Manufacturers of the terminal should notify users and operating personnel of the following safety information by incorporating these guidelines into all manuals of the product. Otherwise, Quectel assumes no liability for customers' failure to comply with these precautions.

Full attention must be paid to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. Please comply with laws and regulations restricting the use of wireless devices while driving.

Switch off the terminal or mobile before boarding an aircraft. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. If there is an Airplane Mode, it should be enabled prior to boarding an aircraft. Please consult the airline staff for more restrictions on the use of wireless devices on an aircraft.

Wireless devices may cause interference on sensitive medical equipment, so please be aware of the restrictions on the use of wireless devices when in hospitals, clinics or other healthcare facilities.

Terminals or mobiles operating over radio signal and cellular network cannot be guaranteed to connect in certain conditions, such as when the mobile bill is unpaid or the USIM card is invalid. When emergency help is needed in such conditions, use emergency call if the device supports it. In order to make or receive a call, the terminal or mobile must be switched on in a service area with adequate cellular signal strength. In an emergency, the device with emergency call function cannot be used as the only contact method considering network connection cannot be guaranteed under all circumstances.

The terminal or mobile contains a transceiver. When it is ON, it receives and transmits radio frequency signals. RF interference can occur if it is used close to TV sets, radios, computers or other electric equipment.

In locations with explosive or potentially explosive atmospheres, obey all posted signs and turn off wireless devices such as mobile phone or other terminals. Areas with explosive or potentially explosive atmospheres include fuelling areas, below decks on boats, fuel or chemical transfer or storage facilities, and areas where the air contains chemicals or particles such as grain, dust or metal powders.

About the Document

Revision History

Version	Date	Author	Description
-	2021-01-28	Lex LI/ Ben JIANG	Creation of the document
1.0	2021-11-03	Arvin WU/ Ben JIANG	First official release
1.1	2022-02-16	Arvin WU/ Ben JIANG	<ol style="list-style-type: none">1. Reserved pins 2, 3, 34 & 35 (previously for PCM) and pins 5 & 37 (previously for I2C), therefore deleted all information involving voice/VoLTE functionality throughout the document. Added the description of wake-up the module from PSM by driving PWRKEY low (Chapter 3.4.2).2. Added the figure of power supply limits during burst transmission (Figure 4).3. Added the method of waking up the module from PSM through driving PWRKEY low (Chapter 3.4.2).4. Updated the minimum power supply current to 0.8 A (Chapter 3.5.2).5. Updated the power-up timing and added the restart timing (Chapter 3.6.1).6. Updated the power-down timing (Chapter 3.6.2).7. Updated the truth table of GRFC interfaces (Table 24).8. Updated the data of power consumption (Table 34).9. Updated the recommended maximum slope parameter for reflow zone (Chapter 8.2).
1.2	2023-08-28	Arvin WU/ Kun WANG/ Igor Stancic	<ol style="list-style-type: none">1. Added the applicable module: BG773A-GL.2. Added and updated the description of the module with/without PON_TRIG function (Chapter 1.1, Table 4 & Chapter 2.1, 3.5, 3.6, 3.8, 3.11 and 3.13).3. Added the USB serial driver (Table 4).4. Updated the transmitting power from 23 dBm ± 2.7 dB

to 23 dBm ± 2 dB (Table 3 & Table 4 & Chapter 6.6).

- 5. Updated the functional diagram (Figure 1).
- 6. Updated the “UMTS<E EVB” to “BG77xA-GL TE-B” (Chapter 2.4).
- 7. Added a note for AT+QSCLK command in e-I-DRX sleep mode and updated the steps of entering/existing e-I-DRX sleep mode (Chapter 3.6).
- 8. Updated the comment or note description of the test points of debug UART (Table 6 & Chapter 3.8 & Chapter 3.15).
- 9. Deleted the figure of power supply limits during burst transmission (Chapter 3.10.2).
- 10. Updated the power-up and restart timing for the module without PON_TRIG function (Figure 11).
- 11. Updated the related information about turn-off (Chapter 3.10.2).
- 12. Added a note description about the module reset (Chapter 3.11).
- 13. Added a voltage divider reference circuit and note description about PON_TRIG (Figure 21).
- 14. Added a note description about BG77xA-GL TE-B (Chapter 3.14).
- 15. Added the AGPS enabled data in the state of cold start, warm start and hot start @ open sky; Updated the TTFF XTRA to AGPS in GNSS performance (Table 26).
- 16. Deleted the max. value data of power consumption; Updated the LTE Cat M1/NB1 data transfer data of power consumption (Chapter 6.4).
- 17. Updated the information of manufacturing and soldering (Chapter 8.2).
- 18. Added the information of mounting direction in packaging specification (Chapter 8.3).

1.3.0 2024-03-07

Arvin WU/
Kun WANG

Preliminary

- 1. Added the applicable model BG770A-SN and updated the document name.
- 2. Updated the USB serial drivers (Table 4).

Contents

Safety Information	3
About the Document	4
Contents	6
Table Index	9
Figure Index	11
1 Introduction	13
1.1. Applicable Modules & PON_TRIG Difference	14
1.2. Special Mark	14
2 Product Overview	15
2.1. Frequency Bands and Functions	15
2.2. Key Features.....	16
2.3. Functional Diagram.....	错误!未定义书签。
2.4. TE-B Kit.....	18
3 Application Interfaces	19
3.1. Pin Assignment	20
3.2. Pin Description	21
3.3. Operating Modes.....	26
3.4. Airplane Mode	27
3.5. Power Saving Mode (PSM).....	28
3.5.1. PSM for Modules With PON_TRIG Function.....	28
3.5.2. PSM for Modules Without PON_TRIG Function.....	28
3.6. Extended Idle Mode DRX (e-I-DRX).....	29
3.6.1. e-I-DRX Sleep Mode for Modules With PON_TRIG Function	29
3.6.2. e-I-DRX Sleep Mode for Modules Without PON_TRIG Function	30
3.7. e-I-DRX Idle Mode	30
3.8. Sleep Mode	30
3.8.1. UART Application Scenario	31
3.8.1.1. UART Application Scenario for The Module With PON_TRIG Function.....	31
3.8.1.2. UART Application Scenario for Modules Without PON_TRIG Function	32
3.9. Recovery Mode	33
3.10. Power Supply	33
3.10.1. Power Supply Pins	33
3.10.2. Voltage Stability Requirements.....	34
3.10.3. Power Supply Voltage Monitoring.....	35
3.11. Turn On and off Scenarios.....	35
3.11.1. Turn On with PWRKEY	35
3.11.1.1. Power-up & Restart Timing for The Module With PON_TRIG Function	36
3.11.1.2. Power-up & Restart Timing for Modules Without PON_TRIG Function.....	38
3.11.2. Turn Off	40
3.11.2.1. Turn Off with PWRKEY	40

3.11.2.2. Turn Off with AT Command	41
3.12. Reset	42
3.13. PON_TRIGGER	44
3.14. USIM Interface	46
3.15. USB Interface	48
3.16. UART Interfaces	50
3.17. Indication Signals	53
3.17.1. Network Status Indication	53
3.17.2. STATUS	53
3.17.3. MAIN_RI	54
3.18. ADC Interfaces	55
3.19. GPIO Interfaces	56
3.20. GRFC Interfaces	56
4 GNSS	58
4.1. General Description	58
4.2. GNSS Performance	58
4.3. Layout Guidelines	59
5 Antenna Interfaces	60
5.1. Main Antenna Interface	60
5.1.1. Pin Definition	60
5.1.2. Operating Frequency	60
5.1.3. Reference Design	61
5.2. GNSS Antenna Interface	62
5.2.1. Pin Definition	62
5.2.2. GNSS Operating Frequency	62
5.2.3. Reference Design	62
5.3. RF Routing Guidelines	63
5.4. Antenna Installation	65
5.4.1. Antenna Design Requirements	65
5.4.2. RF Connector Recommendation	65
6 Electrical Characteristics and Reliability	68
6.1. Absolute Maximum Ratings	68
6.2. Power Supply Ratings	68
6.3. Operating and Storage Temperatures	69
6.4. Power Consumption	69
6.5. Digital I/O Characteristic	77
6.6. Tx Power	78
6.7. Rx Sensitivity	78
6.8. ESD Protection	79
7 Mechanical Information	80
7.1. Top and Side Dimensions	80
7.2. Recommended Footprint	82

7.3. Top and Bottom Views	83
8 Storage, Manufacturing and Packaging	84
8.1. Storage Conditions.....	84
8.2. Manufacturing and Soldering.....	85
8.3. Packaging Specifications	86
8.3.1. Carrier Tape	87
8.3.2. Plastic Reel	87
8.3.3. Mounting Direction	88
8.3.4. Packaging Process	89
9 Appendix References	90

Table Index

Table 1: Applicable Modules & PON_TRIG Difference	14
Table 2: Special Mark.....	14
Table 3: Frequency Bands and GNSS Types of the Module	15
Table 4: Key Features of BG77xA series Module.....	16
Table 5: Definition of I/O Parameters.....	21
Table 6: Pin Description	21
Table 7: Overview of Operating Modes	26
Table 8: VBAT and GND Pins.....	33
Table 9: Pin Definition of PWRKEY	35
Table 10: Pin Definition of RESET_N	42
Table 11: Pin Definition of PON_TRIG	44
Table 12: Pin Definition of USIM Interface.....	46
Table 13: Pin Definition of USB Interface	48
Table 14: Pin Definition of Main UART Interface	50
Table 15: Pin Definition of Debug UART Interface	51
Table 16: Pin Definition of Auxiliary UART Interface	51
Table 17: Pin Definition of NET_STATUS	53
Table 18: Working State of NET_STATUS.....	53
Table 19: Pin Definition of STATUS.....	54
Table 20: Default Behaviors of MAIN_RI	54
Table 21: Pin Definition of ADC Interfaces	55
Table 22: Characteristics of ADC Interfaces.....	55
Table 23: Pin Definition of GPIO Interfaces.....	56
Table 24: Pin Definition of GRFC Interfaces.....	56
Table 25: Truth Table of GRFC Interfaces.....	57
Table 26: GNSS Performance	58
Table 27: Pin Definition of Main Antenna Interface	60
Table 28: BG77xA Series Operating Frequency	60
Table 29: Pin Definition of GNSS Antenna Interface	62
Table 30: GNSS Operating Frequency	62
Table 31: Antenna Design Requirements	65
Table 32: Absolute Maximum Ratings	68
Table 33: Power Supply Ratings.....	68
Table 34: Operating and Storage Temperatures	69
Table 35: BG770A-GL Power Consumption (Power Supply: 3.3 V, Room Temperature).....	69
Table 36: BG770A-SN Power Consumption (Power Supply: 3.3 V, Room Temperature).....	72
Table 37: BG773A-GL Power Consumption (Power Supply: 3.3 V, Room Temperature).....	74
Table 38: BG770A-GL GNSS Power Consumption (Power Supply: 3.3 V, Room Temperature)	76
Table 39: BG770A-SN GNSS Power Consumption (Power Supply: 3.3 V, Room Temperature)	76
Table 40: BG773A-GL GNSS Power Consumption (Power Supply: 3.3 V, Room Temperature)	77
Table 41: 1.8 V Digital I/O Requirements – USIM	77

Table 42: 1.8 V Digital I/O Requirements – Others	77
Table 43: Tx Power	78
Table 44: Conducted RF Receiving Sensitivity.....	78
Table 45: Electrostatic Discharge Characteristics (Temperature: 25–30 °C, Humidity: 40 \pm 5 %)	79
Table 44: Recommended Thermal Profile Parameters	86
Table 45: Carrier Tape Dimension Table (Unit: mm).....	87
Table 46: Plastic Reel Dimension Table (Unit: mm).....	88
Table 47: Related Documents.....	90
Table 48: Terms and Abbreviations	90

Figure Index

Figure 1: Functional Diagram of BG770A-GL&BG770A-SN	错误!未定义书签。
Figure 2: Functional Diagram of BG773A-GL	错误!未定义书签。
Figure 3: Pin Assignment (Top View)	20
Figure 4: Sleep Mode Application via UART Interface (With PON_TRIG)	31
Figure 5: Sleep Mode Application via UART Interface (Without PON_TRIG)	32
Figure 6: Star Structure of the Power Supply	34
Figure 7: Turn On the Module with Driving Circuit	35
Figure 8: Turn On the Module with a Button	36
Figure 9: Power-up Timing (After VBAT is Stable for 100–200 ms)	36
Figure 10: Power-up Timing (After VBAT is Stable for more than 250 ms)	37
Figure 11: Restart Timing	38
Figure 12: Power-up Timing (After VBAT is Stable for 100–200 ms)	39
Figure 13: Power-up Timing (After VBAT is Stable for more than 250 ms)	39
Figure 14: Restart Timing	40
Figure 15: Power-down Timing (PWRKEY)	41
Figure 16: Power-down Timing (AT Command)	41
Figure 17: Reference Design of RESET_N with Driving Circuit	42
Figure 18: Reference Design of RESET_N with Button	43
Figure 19: Reset Timing	43
Figure 20: PON_TRIG Reference Circuit 1	44
Figure 21: PON_TRIG Reference Circuit 2	45
Figure 22: Reference Design of USIM Interface with an 8-Pin USIM Card Connector	47
Figure 23: Reference Design of USIM Interface with a 6-Pin USIM Card Connector	47
Figure 24: Reference Design of USB Interface	49
Figure 25: Main UART Reference Design (IC Solution)	51
Figure 26: Main UART Reference Design (Transistor Solution)	52
Figure 27: Reference Design of NET_STATUS	53
Figure 28: Reference Design of STATUS	54
Figure 29: Reference Design of Main Antenna Interface	61
Figure 30: Reference Design of GNSS Antenna Interface	62
Figure 31: Microstrip Design on a 2-layer PCB	63
Figure 32: Coplanar Waveguide Design on a 2-layer PCB	63
Figure 33: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)	64
Figure 34: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)	64
Figure 35: Dimensions of the Receptacle (Unit: mm)	66
Figure 36: Specifications of Mated Plugs	66
Figure 37: Space Factor of Mated Connectors (Unit: mm)	67
Figure 38: Module Top and Side Dimensions	80
Figure 39: Bottom Dimensions (Bottom View)	81
Figure 40: Recommended Footprint (Top View)	82
Figure 41: Top and Bottom Views	83

Figure 42: Recommended Reflow Soldering Thermal Profile	85
Figure 43: Carrier Tape Dimension Drawing	87
Figure 44: Plastic Reel Dimension Drawing	87
Figure 45: Mounting Direction	88
Figure 46: Packaging Process	89

1 Introduction

This document defines BG77xA Series modules and describes its air interface and hardware interfaces which connect with your applications.

This document helps you quickly understand the interface specifications, electrical and mechanical details, as well as other related information of the module. To facilitate application designs, it also includes some reference designs for your reference. The document, coupled with application notes and user guides, makes it easy to design and to set up mobile applications with the module.

Hereby, Quectel Wireless Solutions Co., Ltd. declares that the radio equipment type BG770A-SNS is in compliance with Directive 2014/53/EU.

The full text of the EU declaration of conformity is available at the following internet address:
<http://www.quectel.com/support/technical.htm>

Disposal of old electrical appliances

The European directive 2012/19/EU on Waste Electrical and Electronic Equipment (WEEE), requires that old household electrical appliances must not be disposed of in the normal unsorted municipal waste stream. Old appliances must be collected separately in order to optimize the recovery and recycling of the materials they contain, and reduce the impact on human health and the environment.

The crossed out “wheeled bin” symbol on the product reminds you of your obligation, that when you dispose of the appliance, it must be separately collected.

Consumers should contact their local authority or retailer for information concerning the correct disposal of their old appliance.

	AT	BE	BG	HR	CY	CZ	DK
	EE	FI	FR	DE	EL	HU	IE
	IT	LV	LT	LU	MT	NL	PL
	PT	RO	SK	SI	ES	SE	UK(NI)

This equipment should be installed and operated with minimum distance 20cm between the radiator and your body.

1.1. Applicable Modules & PON_TRIG Difference

Table 1: Applicable Modules & PON_TRIG Difference

Module Series	Model	PON_TRIG	Firmware Version ¹
BG77xA Series	BG770A-GL	With	R01
		Without	R02
	BG773A-GL	Without	R02
	BG770A-SN	Without	R02

1.2. Special Mark

Table 2: Special Mark

Mark	Definition
*	Unless otherwise specified, an asterisk (*) after a function, feature, interface, pin name, command, argument, and so on indicates that it is under development and currently not supported; and the asterisk (*) after a model indicates that the model sample is currently unavailable.

¹ The module firmware version can be obtained by the AT command **ATI** or **AT+GMR**. R01 or R02 firmware refers to the firmware whose version number contains a segment “R01” or “R02”, such as “BG770A-GL...R01A01...”. For more details about the commands, see **document [4]**.

2 Product Overview

2.1. Frequency Bands and Functions

The module is an embedded IoT wireless communication module. It provides data connectivity on LTE HD-FDD network. It also provides GNSS functionality to meet your specific application demands.

The module is based on an architecture in which WWAN (LTE) and GNSS Rx chains share certain hardware blocks. However, the module does not support concurrent operation of WWAN and GNSS. The solution adopted in the module is a form of coarse time-division multiplexing (TDM) between WWAN and GNSS Rx chains. Given the relaxed latency requirements of most LPWA applications, time-division sharing of resources can be made largely transparent to applications. For more details, see [document \[1\]](#).

For BG770A-GL with PON_TRIG function, only Rel-13 LTE Cat M1/Cat NB1 is supported. While for BG770A-GL, BG770A-SN and BG773A-GL without PON_TRIG function, Rel-13 LTE Cat M1/NB1 and Rel-14 LTE Cat M1/NB2 are supported.

The module is an industrial grade module for industrial and commercial applications only.

Table 3: Frequency Bands and GNSS Types of the Module

Module	Supported Bands	Power Class	GNSS
BG77xA series	Cat M1: LTE HD-FDD: B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/ B25/B26/B27/B28/B66	Power Class 3 (23 dBm \pm 2 dB)	GPS, GLONASS
	Cat NB1/NB2²: LTE HD-FDD: B1/B2/B3/B4/B5/B8/B12/B13/B17/B18/B19/ B20/B25/B28/B66		

² LTE Cat NB2 is backward compatible with LTE Cat NB1.

With a compact profile of 14.9 mm × 12.9 mm × 1.9 mm, the module can meet most requirements for M2M applications such as smart metering, tracking system, security, wireless POS, etc. It is especially suitable for size and weight sensitive applications such as smart watch and other wearable devices.

The module is an SMD type module which can be embedded into applications through its 94 LGA pins. It supports internet service protocols like TCP, UDP and PPP. Extended AT commands have been developed for you to use these internet service protocols easily.

2.2. Key Features

Table 4: Key Features of BG77xA series Module

Features	Details
Power Supply ³	<ul style="list-style-type: none"> ● VBAT_BB: 2.2–4.35 V, typ. 3.3 V ● VBAT_RF: 3.1–4.2 V, typ. 3.3 V
Transmitting Power	<p>Class 3 (23 dBm ± 2 dB) for LTE HD-FDD bands</p> <ul style="list-style-type: none"> ● Supports 3GPP Rel-13/Rel-14 ● Supports LTE Cat M1, NB1/NB2 ● Supports minimum 1.4 MHz RF bandwidth for LTE Cat M1 ● Supports 200 kHz RF bandwidth for LTE Cat NB1
LTE Features ⁴	<p>Rel-13:</p> <ul style="list-style-type: none"> ● Cat M1: Max. 300 kbps (DL)/375 kbps (UL) ● Cat NB1: 27.2 kbps (DL)/62.5 kbps (UL) <p>Rel-14:</p> <ul style="list-style-type: none"> ● Cat M1: Max. 588 kbps (DL)/1119 kbps (UL) ● Cat NB2: Max. 127 kbps (DL)/158 kbps (UL)
Internet Protocol Features	<ul style="list-style-type: none"> ● Supports PPP/TCP/UDP/SSL/DTLS/FTP(S)/HTTP(S)/NITZ/PING/NIDD/MQTT/NTP/LwM2M/CoAP protocols ● Supports PAP and CHAP for PPP connections
SMS	<ul style="list-style-type: none"> ● Text and PDU modes ● Point-to-point MO and MT ● SMS cell broadcast ● SMS storage: ME by default
<p>BG770A-GL/BG770A-SN:</p> <ul style="list-style-type: none"> ● Supports 1.8 V external USIM/eSIM card only <p>BG773A-GL:</p> <ul style="list-style-type: none"> ● Supports built-in iSIM 	

³ When the module starts up normally, in order to ensure full functionality mode, the minimum power supply voltage should be higher than 3.1 V.

⁴ For BG770A-GL with PON_TRIG function, only Rel-13 LTE Cat M1/NB1 is supported.

	<ul style="list-style-type: none"> ● Supports 1.8 V external USIM/eSIM card. ● iSIM and USIM/eSIM cannot be used simultaneously. If iSIM is not used, an external USIM/eSIM card is required.
USB Interface	<ul style="list-style-type: none"> ● Complies with USB 2.0 specification ● Supports full-speed mode only ● Used for AT command communication, data transmission, software debugging and firmware upgrade*. ● USB serial drivers: <ul style="list-style-type: none"> - Windows 8/8.1/10/11, - Linux 2.6–6.7
	<p>Main UART:</p> <ul style="list-style-type: none"> ● Used for data transmission and AT command communication ● 115200 bps baud rate by default ● The default frame format is 8N1 (8 data bits, no parity, 1 stop bit) ● Supports RTS and CTS hardware flow control
UART Interfaces	<p>Debug UART:</p> <ul style="list-style-type: none"> ● Used for firmware upgrade, software debugging, SFP log output and NMEA sentences output. ● 115200 bps baud rate by default ● The default frame format is 8N1 (8 data bits, no parity, 1 stop bit) ● Supports RTS and CTS hardware flow control <p>Auxiliary UART:</p> <ul style="list-style-type: none"> ● Used for RF calibration and Modem log output ● 921600 bps baud rate by default ● The default frame format is 8N1 (8 data bits, no parity, 1 stop bit) ● Supports RTS and CTS hardware flow control
AT Commands	<ul style="list-style-type: none"> ● 3GPP TS 27.007 and 3GPP TS 27.005 AT commands ● Quectel enhanced AT commands
Network Status Indication	One NET_STATUS pin for network connectivity status indication
Status Indication	One STATUS pin for the operation status indication
GNSS Features	<ul style="list-style-type: none"> ● Supports GPS, GLONASS ● Protocol: NMEA 0183 ● Data update rate: 1 Hz
Antenna Interfaces	<ul style="list-style-type: none"> ● Main antenna interface (ANT_MAIN) ● GNSS antenna interface (ANT_GNSS)
Physical Characteristics	<ul style="list-style-type: none"> ● Dimensions: $(14.9 \pm 0.2) \text{ mm} \times (12.9 \pm 0.2) \text{ mm} \times (1.9 \pm 0.2) \text{ mm}$ ● Package: LGA ● Weight: approx. 0.8 g

Temperature Range	<ul style="list-style-type: none">Operating temperature range: -35 °C to +75 °C ⁵Extended temperature range: -40 °C to +85 °C ⁶Storage temperature range: -40 °C to +90 °C
Firmware Upgrade	<ul style="list-style-type: none">Debug UART interfaceDFOTAUSB 2.0 interface*
RoHS	All hardware components are fully compliant with EU RoHS directive

2.3. TE-B Kit

To facilitate application development with the module conveniently, Quectel supplies the evaluation board (BG77xA-GL TE-B) with accessories to control or test the module. For more details, see [document \[2\]](#).

⁵ Within the operating temperature range, the module meets 3GPP specifications.

⁶ Within the extended temperature range, the module remains the ability to establish and maintain functions such as SMS and data transmission, without any unrecoverable malfunction. Radio spectrum and radio network are not influenced, while one or more specifications, such as P_{out} , may exceed the specified tolerances of 3GPP. When the temperature returns to the operating temperature range, the module meets 3GPP specifications again.

3 Application Interfaces

The module is equipped with 94 LGA pins for connection to cellular application platforms. The subsequent chapters provide detailed description of interfaces listed below:

- Power supply
- PON_TRIGGER
- USIM interface
- USB interface
- UART
- Indication signals
- ADC interfaces
- GPIO interfaces
- GRFC interfaces

3.1. Pin Assignment

The following figure shows the pin assignment of the module.

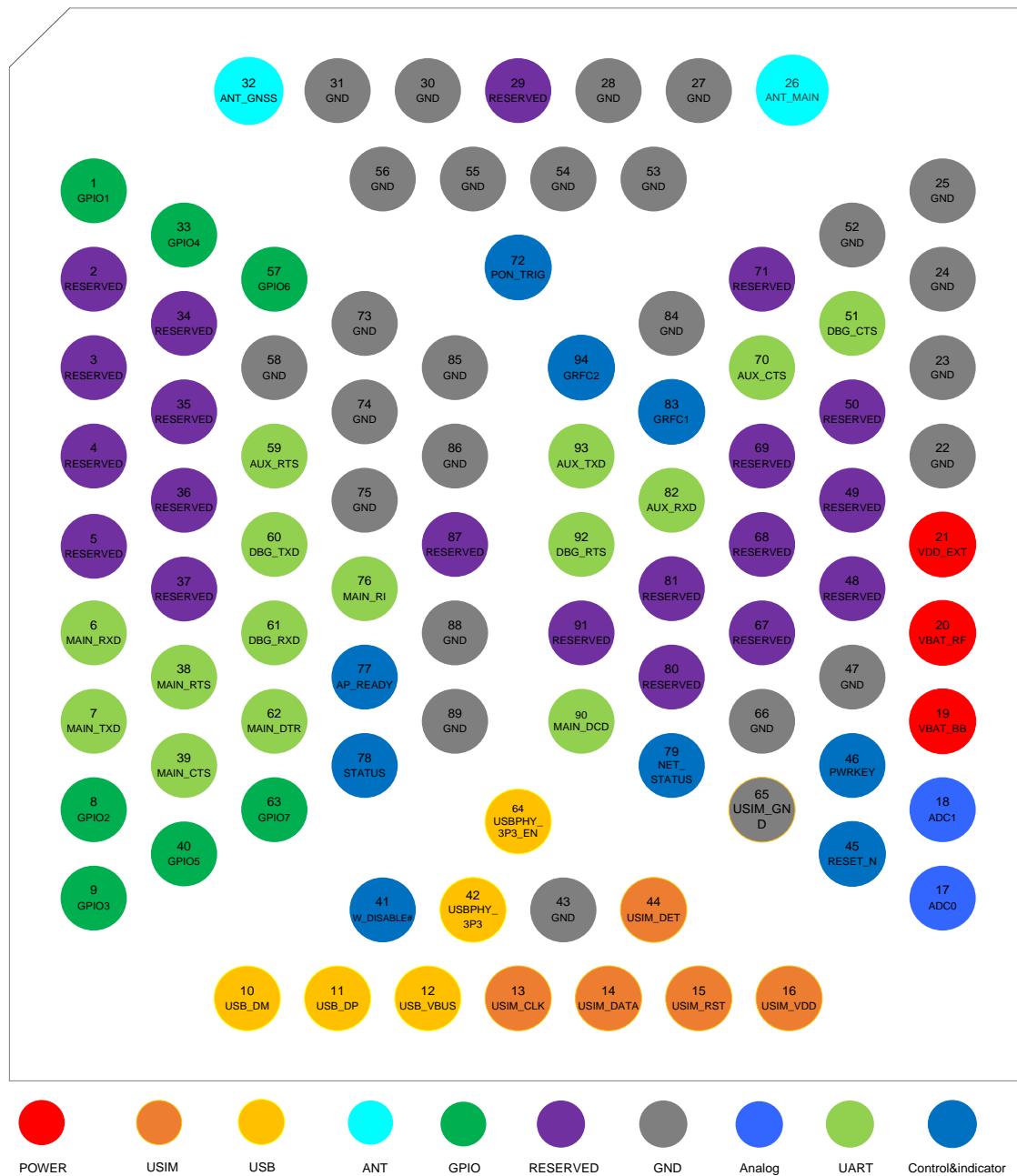


Figure 1: Pin Assignment (Top View)

NOTE

1. ADC input voltage must not exceed 1.8 V.

2. The input voltage range of USB_VBUS is 1.19–2.0 V.
3. Keep all RESERVED pins and unused pins unconnected.
4. Connect GND pins to ground in the design.

3.2. Pin Description

The following tables show the pin definition of the module.

Table 5: Definition of I/O Parameters

Type	Description
AI	Analog Input
AIO	Analog Input/Output
DI	Digital Input
DO	Digital Output
DIO	Digital Input/Output
PI	Power Input
PO	Power Output

DC characteristics include power domain and rated current.

Table 6: Pin Description

Power Supply					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
VBAT_BB	19	PI	Power supply for the module's baseband part	Vmax = 4.35 V Vmin = 2.2 V Vnom = 3.3 V	See NOTE 1.
VBAT_RF	20	PI	Power supply for the module's RF part	Vmax = 4.2 V Vmin = 3.1 V Vnom = 3.3 V	See NOTE 1.

VDD_EXT	21	PO	Provide 1.8 V for external circuit	V _{nom} = 1.8 V I _{omax} = 50 mA	If this pin is unused, keep it open.
GND	22–25, 27, 28, 30, 31, 43, 47, 52–56, 58, 66, 73–75, 84–86, 88, 89				

Turn On/Off

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
PWRKEY	46	DI	Turn on/off the module	V _{ILmax} = 0.3 V V _{IHmin} = 1.0 V	Internally pulled up with a 470 kΩ resistor.

Reset

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
RESET_N	45	DI	Reset the module	V _{ILmax} = 0.3 V V _{IHmin} = 1.3 V	Internally pulled up with a 470 kΩ resistor.

Status Indication

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
STATUS	78	DO	Indicate the module's operation status	V _{OLmax} = 0.36 V	1.8 V power domain. If these pins are unused, keep them open.
NET_STATUS	79	DO	Indicate the module's network activity status	V _{OHmin} = 1.44 V	

USB Interface

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
USB_VBUS	12	DI	USB connection detect	V _{IHmax} = 2.0 V V _{IHmin} = 1.19 V	1.8 V power domain.
USB_DP	11	AIO	USB differential data (+)	Vmax = 4.1 V	Compliant with USB 2.0 standard specification.
USB_DM	10	AIO	USB differential data (-)	Vmin = -0.2 V	Require differential impedance of 90 Ω.
USBPHY_3P3	42	PI	Power supply for USB PHY circuit	Vmax = 3.6 V V _{nom} = 3.3 V Vmin = -0.2 V	
USBPHY_3P3_EN	64	DO	External LDO enable control for USB	V _{OLmax} = 0.36 V V _{OHmin} = 1.44 V	1.8 V power domain.

USIM Interface

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
USIM_DET	44	DI	USIM card hot-plug detect	$V_{ILmin} = -0.2\text{ V}$ $V_{ILmax} = 0.54\text{ V}$ $V_{IHmin} = 1.26\text{ V}$ $V_{IHmax} = 2.0\text{ V}$	1.8 V power domain. If this pin is unused, keep it open.
USIM_VDD	16	PO	USIM card power supply	$V_{max} = 1.9\text{ V}$ $V_{min} = 1.7\text{ V}$	Supports 1.8 V USIM card only.
USIM_RST	15	DO	USIM card reset	$V_{OLmax} = 0.36\text{ V}$ $V_{OHmin} = 1.44\text{ V}$	1.8 V power domain.
USIM_DATA	14	DIO	USIM card data	$V_{ILmin} = -0.2\text{ V}$ $V_{ILmax} = 0.54\text{ V}$ $V_{IHmin} = 1.26\text{ V}$ $V_{IHmax} = 2.0\text{ V}$ $V_{OLmax} = 0.36\text{ V}$ $V_{OHmin} = 1.44\text{ V}$	1.8 V power domain.
USIM_CLK	13	DO	USIM card clock	$V_{OLmax} = 0.36\text{ V}$ $V_{OHmin} = 1.44\text{ V}$	1.8 V power domain.
USIM_GND	65		Specified ground for USIM card		

Main UART Interface

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
MAIN_DTR	62	DI	Main UART data terminal ready	$V_{ILmin} = -0.2\text{ V}$ $V_{ILmax} = 0.54\text{ V}$ $V_{IHmin} = 1.26\text{ V}$ $V_{IHmax} = 2.0\text{ V}$	
MAIN_RXD	6	DI	Main UART receive	$V_{OLmax} = 0.36\text{ V}$ $V_{OHmin} = 1.44\text{ V}$	
MAIN_TXD	7	DO	Main UART transmit		
MAIN_CTS	39	DO	Clear to send signal from the module (Connect to MCU's CTS)	$V_{OLmax} = 0.36\text{ V}$ $V_{OHmin} = 1.44\text{ V}$	1.8 V power domain. If these pins are unused, keep them open.
MAIN_RTS	38	DI	Request to send signal to the module (Connect to MCU's RTS)	$V_{ILmin} = -0.2\text{ V}$ $V_{ILmax} = 0.54\text{ V}$ $V_{IHmin} = 1.26\text{ V}$ $V_{IHmax} = 2.0\text{ V}$	
MAIN_DCD	90	DO	Main UART data carrier detect	$V_{OLmax} = 0.36\text{ V}$ $V_{OHmin} = 1.44\text{ V}$	
MAIN_RI	76	DO	Main UART ring indication		

Debug UART Interface

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
DBG_RXD	61	DI	Debug UART receive	$V_{ILmin} = -0.2 \text{ V}$ $V_{ILmax} = 0.54 \text{ V}$ $V_{IHmin} = 1.26 \text{ V}$ $V_{IHmax} = 2.0 \text{ V}$	
DBG_TXD	60	DO	Debug UART transmit		1.8 V power domain.
DBG_CTS	51	DO	Clear to send signal from the module (Connect to MCU's CTS)	$V_{OLmax} = 0.36 \text{ V}$ $V_{OHmin} = 1.44 \text{ V}$	It is recommended to reserve test points for these pins.
DBG_RTS	92	DI	Request to send signal to the module (Connect to MCU's RTS)	$V_{ILmin} = -0.2 \text{ V}$ $V_{ILmax} = 0.54 \text{ V}$ $V_{IHmin} = 1.26 \text{ V}$ $V_{IHmax} = 2.0 \text{ V}$	

Auxiliary UART Interface

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
AUX_TXD	93	DO	Auxiliary UART transmit	$V_{OLmax} = 0.36 \text{ V}$ $V_{OHmin} = 1.44 \text{ V}$	
AUX_RXD	82	DI	Auxiliary UART receive	$V_{ILmin} = -0.2 \text{ V}$ $V_{ILmax} = 0.54 \text{ V}$ $V_{IHmin} = 1.26 \text{ V}$ $V_{IHmax} = 2.0 \text{ V}$	1.8 V power domain. If unused, keep these pins open and test points are recommended for modem log capture.
AUX_CTS	70	DO	Clear to send signal from the module (Connect to MCU's CTS)	$V_{OLmax} = 0.36 \text{ V}$ $V_{OHmin} = 1.44 \text{ V}$	
AUX_RTS	59	DI	Request to send signal to the module (Connect to MCU's RTS)	$V_{ILmin} = -0.2 \text{ V}$ $V_{ILmax} = 0.54 \text{ V}$ $V_{IHmin} = 1.26 \text{ V}$ $V_{IHmax} = 2.0 \text{ V}$	

Antenna Interfaces

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
ANT_MAIN	26	AIO	Main antenna interface		50 Ω impedance.
ANT_GNSS	32	AI	GNSS antenna interface		50 Ω impedance. If this pin is unused,

keep it open.

GPIO Interfaces

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
GPIO1	1	DIO			
GPIO2	8	DIO			
GPIO3	9	DIO		$V_{OLmax} = 0.36\text{ V}$	
GPIO4	33	DIO	General-purpose input/output	$V_{OHmin} = 1.44\text{ V}$	1.8 V power domain.
GPIO5	40	DIO		$V_{ILmin} = -0.2\text{ V}$	If these pins are unused, keep them open.
GPIO6	57	DIO		$V_{ILmax} = 0.54\text{ V}$	
GPIO7	63	DIO		$V_{IHmin} = 1.26\text{ V}$	
				$V_{IHmax} = 2.0\text{ V}$	

ADC Interfaces

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
ADC0	17	AI	General-purpose ADC interface	Voltage range: 0–1.8 V	
ADC1	18	AI	General-purpose ADC interface	Voltage range: 0–1.8 V	If these pins are unused, keep them open.

Other Interface Pins

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
W_DISABLE#	41	DI	Airplane mode control	$V_{ILmin} = -0.2\text{ V}$ $V_{ILmax} = 0.54\text{ V}$ $V_{IHmin} = 1.26\text{ V}$ $V_{IHmax} = 2.0\text{ V}$	1.8 V power domain. Pulled up by default. When this pin is at low level, the module enters airplane mode. If this pin is unused, keep it open.
AP_READY	77	DI	Application processor ready	$V_{ILmin} = -0.2\text{ V}$ $V_{ILmax} = 0.54\text{ V}$ $V_{IHmin} = 1.26\text{ V}$ $V_{IHmax} = 2.0\text{ V}$	1.8 V power domain. If this pin is unused, keep it open.
PON_TRIG ⁷	72	DI	Used for main UART function	$V_{ILmin} = -0.2\text{ V}$ $V_{ILmax} = 0.54\text{ V}$	1.8 V power domain. No internal pull

⁷ On the module without PON_TRIG function, this pin has no function and there is no need to design it.

	control and for entering/exiting e-I-DRX, PSM and sleep modes	$V_{IH\min} = 1.26 \text{ V}$ $V_{IH\max} = 2.0 \text{ V}$	up/down resistors by default.
--	---	---	-------------------------------

GRFC Interfaces

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
GRFC1	83	DO	Generic RF controller	$V_{OL\max} = 0.36 \text{ V}$	1.8 V power domain. If these pins are unused, keep them open.
GRFC2	94	DO	Generic RF controller	$V_{OH\min} = 1.44 \text{ V}$	

RESERVED Pins

Pin Name	Pin No.	Comment
RESERVED	2–5, 29, 34–37, 48–50, 67–69, 71, 80, 81, 87, 91	Keep these pins open.

NOTE

1. When the module starts up normally, in order to ensure full functionality mode, the minimum power supply voltage should be higher than 3.1 V. For every VBAT transition/re-insertion from 0 V, VBAT slew rate is less than 25 mV/μs. In order to ensure that the module can start normally, pull down PWRKEY to turn on the module after VBAT remains stable for at least 100 ms.
2. The input voltage range of USB_VBUS is 1.19–2.0 V.
3. USBPHY_3P3 and USBPHY_3P3_EN pins are used for USB PHY circuits.
4. ADC input voltage must not exceed 1.8 V.
5. Keep all RESERVED pins and unused pins unconnected.
6. After entering PSM or turn-off mode, it is prohibited to provide any external voltage to the module's I/O ports that are not defined as a wake-up source.

3.3. Operating Modes

The table below briefly summarizes the various operating modes of the module.

Table 7: Overview of Operating Modes

Mode	Details	
Full Functionality	Connected	The module is connected to network. Its power consumption

Mode	varies with the network setting and data transfer rate.
Idle	The module remains registered on network, and is ready to send and receive data. In this mode, the software is active.
Extended Idle Mode DRX (e-I-DRX)	The module and the network may negotiate over non-access stratum signaling the use of e-I-DRX for reducing power consumption, while being available for mobile terminating data and/or network originated procedures within a certain delay dependent on the DRX cycle value.
Airplane Mode	AT+CFUN=4 or W_DISABLE# pin can set the module into airplane mode where the RF function is invalid.
Minimum Functionality Mode	AT+CFUN=0 can set the module into a minimum functionality mode without removing the power supply. In this mode, both RF function and USIM card are invalid.
Sleep Mode	The module retains the ability to receive paging message, SMS and TCP/UDP data from the network normally. In this mode, the power consumption is reduced to a low level.
Power OFF Mode	The module's power supply is shut down by its power management unit. In this mode, the software is inactive, the serial interfaces are inaccessible, while the operating voltage (connected to VBAT_BB and VBAT_RF) remains applied.
Power Saving Mode (PSM)	PSM is similar to power-off, but the module remains registered on the network and there is no need to re-attach or re-establish PDN connections. The current consumption is reduced to a minimized level.
Recovery Mode	The module can burn firmware with an empty serial flash, or recover from firmware malfunction. For more details, see Chapter 3.9 .

NOTE

During e-I-DRX, it is recommended to use the main UART interface for data communication, as the use of USB interface will increase power consumption.

3.4. Airplane Mode

When the module enters airplane mode, the RF function will be disabled, and all AT commands correlative with RF function will be inaccessible. This mode can be set as follows:

Hardware:

W_DISABLE# is pulled up by default. Driving it low will let the module enter airplane mode.

Software:

AT+CFUN=<fun> provides choice of the functionality level, through setting <fun> into 0, 1 or 4.

- **AT+CFUN=0**: Minimum functionality mode. Both USIM and RF functions are disabled.
- **AT+CFUN=1**: Full functionality mode (by default).
- **AT+CFUN=4**: Airplane mode. RF function is disabled.

NOTE

1. Airplane mode control via W_DISABLE# is disabled in firmware by default. It can be enabled with **AT+QCFG="airplanecontrol"**. For details of the command, see [document \[3\]](#).
2. The execution of **AT+CFUN=<fun>** may affect GNSS function. Since the module does not support concurrent operation of WWAN and GNSS, the GNSS function can be used when **<fun>=0** or 4, but cannot be used when **<fun>=1**.

3.5. Power Saving Mode (PSM)

The module minimizes its power consumption by entering PSM. The mode is similar to power-off, but the module remains registered on the network and there is no need to re-attach or re-establish PDN connections. Therefore, in PSM the module cannot immediately respond to user requests.

When the module wants to use PSM, it shall request an Active Time value during every Attach and TAU procedures. If the network supports PSM use, it will allocate an Active Time value to the module to confirm PSM use. If the module wants to change the Active Time value, the module consequently requests the value it wants in the TAU procedure.

3.5.1. PSM for Modules With PON_TRIG Function

For BG770A-GL with PON_TRIG function, if PSM is supported by the network, then it can be enabled via **AT+QPSMS**. In this case, driving PON_TRIG low will set the module to PSM.

Any of the following methods can wake up the module from PSM:

- Drive PON_TRIG high and keeping it high, will wake up the module from PSM.
- When the TAU timer expires, the module wakes up from PSM automatically. In this case, the data communication pins of the main UART interface are inaccessible until PON_TRIG is pulled up.
- Driving PWRKEY low for 500–1000 ms to wake up the module from PSM. In this case, the data communication pins of the main UART interface are inaccessible until PON_TRIG is pulled up.

3.5.2. PSM for Modules Without PON_TRIG Function

For BG77xA series without PON_TRIG function, if PSM is supported by the network, then it can be enabled via **AT+QPSMS**, any of the following methods can wake up the module from PSM:

- When the TAU timer expires, the module wakes up from PSM automatically.
- Driving PWRKEY low 500–1000 ms to wake up the module from PSM.

NOTE

See **document [4]** for details about **AT+QPSMS**.

3.6. Extended Idle Mode DRX (e-I-DRX)

The module (UE) and the network may negotiate over non-access stratum signalling the use of e-I-DRX for reducing its power consumption, while being available for mobile terminating data and/or network originated procedures within a certain delay dependent on the DRX cycle value.

Applications that want to use e-I-DRX need to consider specific handling of mobile terminating services or data transfers, and in particular, they need to consider the delay tolerance of mobile terminated data.

In order to negotiate the use of e-I-DRX, the UE requests e-I-DRX parameters during attach procedure and RAU/TAU procedure. The EPC may reject or accept the UE request for enabling e-I-DRX. In case the EPC accepts e-I-DRX, the EPC based on operator policies and, if available, the e-I-DRX cycle length value in the subscription data from the HSS, may also provide different values of the e-I-DRX parameters than what were requested by the UE. If the EPC accepts the use of e-I-DRX, the UE applies e-I-DRX based on the received e-I-DRX parameters. If the UE does not receive e-I-DRX parameters in the relevant accept message because the EPC rejected its request or because the request was received by EPC not supporting e-I-DRX, the UE shall apply its regular discontinuous reception.

3.6.1. e-I-DRX Sleep Mode for Modules With PON_TRIG Function

For BG770A-GL with PON_TRIG function, if e-I-DRX is supported by the network, perform the steps below in sequence to let the module enter e-I-DRX sleep mode, in which case the data communication pins of the main UART interface are inaccessible.

1. Send **AT+CEDRXS=1** to enable e-I-DRX mode.
2. Send **AT+QSCLK=2**⁸ to enable sleep mode.
3. Drive MAIN_DTR high.
4. Drive PON_TRIG low.

To make the module exit e-I-DRX sleep mode, perform the steps below in sequence.

⁸ Send either **AT+QSCLK=1** or **AT+QSCLK=2** to enable sleep mode, and the latter is recommended for better power consumption performance. For more information of **AT+QSCLK**, see **document [4]** for details.

1. Drive PON_TRIG high.
2. Drive MAIN_DTR low.
3. Send **AT+QSCLK=0** to disable sleep mode.
4. Send **AT+CEDRXS=0** to disable the use of e-I-DRX mode.

3.6.2. e-I-DRX Sleep Mode for Modules Without PON_TRIG Function

For BG77xA series without PON_TRIG function, if e-I-DRX is supported by the network, perform the steps below in sequence to let the module enter e-I-DRX sleep mode, in which case the data communication pins of the main UART interface are inaccessible.

1. Send **AT+CEDRXS=1** to enable the use of e-I-DRX mode.
2. Send **AT+QSCLK=2**⁸ to enable sleep mode.
3. Drive MAIN_DTR high to enter e-I-DRX mode

To make the module exit e-I-DRX sleep mode, perform the steps below in sequence.

1. Drive MAIN_DTR low to wake up the module.
2. Send **AT+QSCLK=0** to disable sleep mode.
3. Send **AT+CEDRXS=0** to disable the use of e-I-DRX mode.

3.7. e-I-DRX Idle Mode

If e-I-DRX is supported by the network, just send **AT+CEDRXS=1** to make the module enter e-I-DRX idle mode, or send **AT+CEDRXS=0** to make the module exit e-I-DRX idle mode.

NOTE

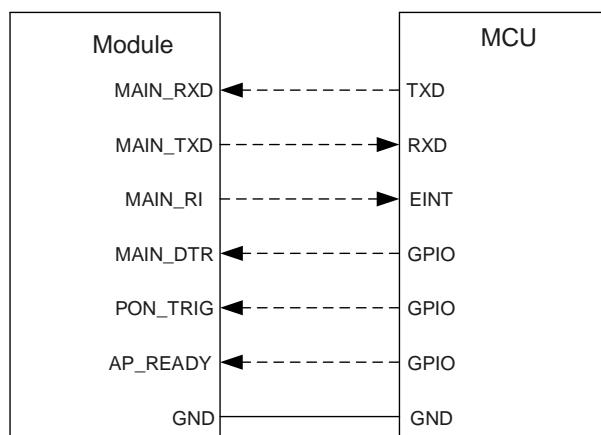
See **document [4]** for details about the above AT commands.

3.8. Sleep Mode

BG77xA series can reduce its power consumption to a lower value during the sleep mode. The following sub-chapters describe the power saving procedure.

3.8.1. UART Application Scenario

3.8.1.1. UART Application Scenario for The Module With PON_TRIG Function


For BG770A-GL with PON_TRIG function, if the MCU communicates with the module via the main UART interface, perform the steps below in sequence to make the module enter sleep mode, in which case the data communication pins of the main UART interface are inaccessible.

1. Send **AT+CFUN=0** to set the module to minimum functionality mode.⁹
2. Drive MAIN_DTR low.
3. Execute **AT+QSCLK=2**¹⁰ to enable sleep mode.
4. Drive MAIN_DTR high to enter sleep mode.
5. Drive PON_TRIG low.

When the module is in sleep mode, perform the steps below in sequence to make the module exit sleep mode.

1. Drive PON_TRIG high.
2. Drive MAIN_DTR low to wake up the module.
3. Execute **AT+QSCLK=0** to disable sleep mode.
4. Send **AT+CFUN=1** to set the module into full functionality mode.
5. Drive MAIN_DTR high.

The following figure shows the connection between the module and the MCU.

Figure 2: Sleep Mode Application via UART Interface (With PON_TRIG)

⁹ After setting the module to minimum functionality with **AT+CFUN=0**, you can test the lowest power consumption of the module after the module enters sleep mode. If you need to keep the RF function on after the module enters sleep mode, there is no need to send any **AT+CFUN**.

¹⁰ Send either **AT+QSCLK=1** or **AT+QSCLK=2** to enable sleep mode, and the latter is recommended for better power consumption performance. For more information of **AT+QSCLK**, see [document \[4\]](#) for details.

3.8.1.2. UART Application Scenario for Modules Without PON_TRIG Function

For BG77xA series without PON_TRIG function, if the MCU communicates with the module via the main UART interface, perform the steps below in sequence to make the module enter sleep mode, in which case the data communication pins of the main UART interface are inaccessible.

1. Send **AT+CFUN=0** to set the module to minimum functionality mode⁹.
2. Execute **AT+QSCLK=2**¹⁰ to enable sleep mode.
3. Drive MAIN_DTR high to enter sleep mode.

When the module is in sleep mode, perform the steps below in sequence to make the module exit sleep mode.

1. Drive MAIN_DTR low to wake up the module.
2. Execute **AT+QSCLK=0** to disable sleep mode.
3. Send **AT+CFUN=1** to set the module into full functionality mode⁹.

The following figure shows the connection between the module and the MCU.

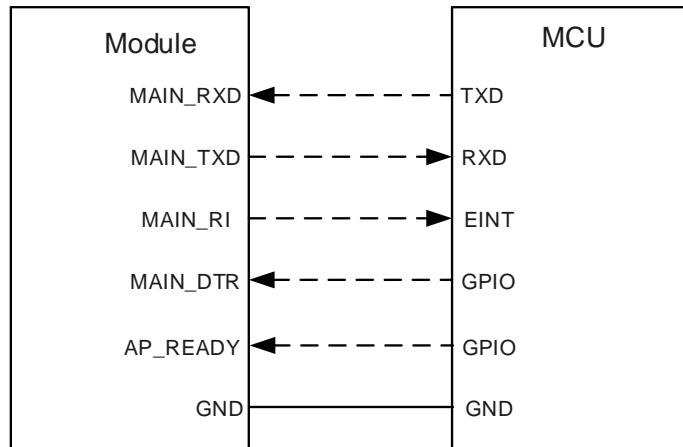


Figure 3: Sleep Mode Application via UART Interface (Without PON_TRIG)

- When the module has a URC to report, MAIN_RI will wake up the host. See **Chapter 3.17.3** for details about MAIN_RI behavior.
- After the module is turned on, MAIN_DTR is internally pulled up by default.
- AP_READY will detect the sleep state of the host (it can be configured to detect high or low voltage level). See **AT+QCFG="already"** in **document [3]** for details.

3.9. Recovery Mode

The module features the recovery mode for firmware upgrade in emergency cases. Recovery mode can force the baseband chip of the module to upgrade firmware via debug UART interface.

The following steps in sequence can set the module to recovery mode for firmware upgrade.

1. Short-circuit DBG_TXD and DBG_RXD pins.
2. Drive PWRKEY low after VBAT has remained stable for at least 100 ms to turn on the module. In this case the module will enter recovery mode.
3. After the module enters recovery mode, disconnect the connection between DBG_TXD and DBG_RXD.
4. Upgrade firmware via debug UART interface.

NOTE

Since the baud rate of the debug UART interface required to download firmware to the baseband chip is 3 Mbps, the flow control pins of the debug UART interface need to be reserved. Otherwise, you can only download with a 921600 baud rate, which is very slow. It is recommended to reserve the test points for DBG_TXD and DBG_RXD, and keep DBG_TXD close to DBG_RXD.

3.10. Power Supply

3.10.1. Power Supply Pins

The module has two VBAT pins for connection with an external power supply.

The following table shows the details of VBAT_BB and VBAT_RF pins and ground pins.

Table 8: VBAT and GND Pins

Pin Name	Pin No.	Description	Min.	Typ.	Max.	Unit
VBAT_BB	19	Power supply for the module's baseband part	2.2	3.3	4.35	V
VBAT_RF	20	Power supply for the module's RF part	3.1	3.3	4.2	V
GND	22–25, 27, 28, 30, 31, 47, 52–56, 58, 66, 73–75, 84–86, 88, 89		-	-	-	-

NOTE

When the module starts up normally, in order to ensure full functionality mode, the minimum power supply voltage should be higher than 3.1 V. For every VBAT transition/re-insertion from 0 V, VBAT slew rate is less than 25 mV/μs. In order to ensure that the module can start normally, pull down PWRKEY to turn on the module after VBAT remains stable for at least 100 ms.

3.10.2. Voltage Stability Requirements

The power supply range of VBAT_BB is 2.2–4.35 V, and that of VBAT_RF is 3.1–4.2 V. When the module starts up normally, to ensure full functionality mode, the minimum power supply voltage should be higher than 3.1 V.

To decrease voltage drop, one bypass capacitor of about 100 μ F with low ESR should be used, and a multi-layer ceramic chip capacitor (MLCC) array should also be reserved due to its low ESR. It is recommended to use three ceramic capacitors (100 nF, 33 pF, 10 pF) for composing the MLCC array, and place these capacitors close to VBAT pins. The main power supply from an external application has to be a single voltage source and can be expanded to two sub paths with star structure. The width of VBAT trace should be not less than 1 mm. In principle, the longer the VBAT trace is, the wider it should be.

In addition, to ensure power supply stability, it is suggested to use two TVS components with low leakage current and suitable reverse stand-off voltage, and also it is recommended to place them as close to the VBAT pins as possible. The following figure shows the star structure of the power supply.

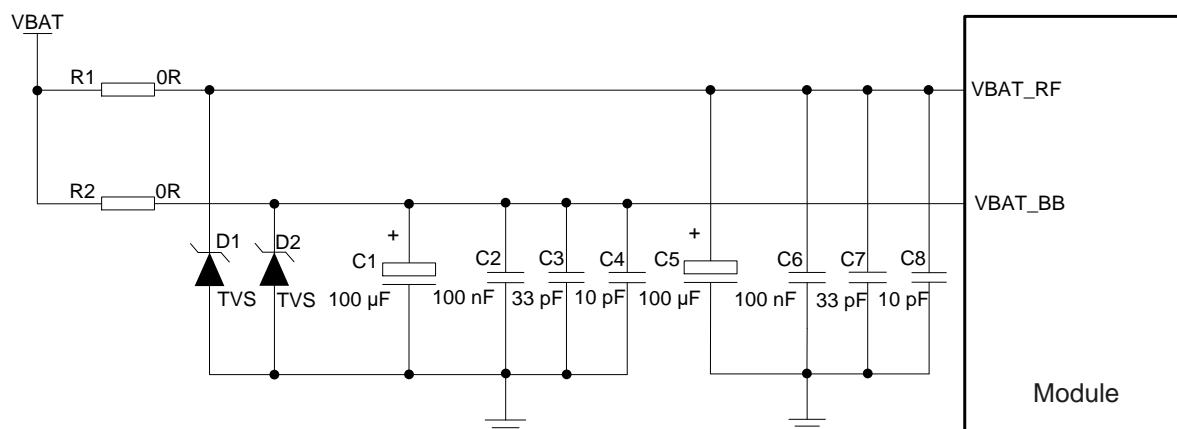


Figure 4: Star Structure of the Power Supply

Power design for a module is critical to its performance. The power supply of the module should be able to provide sufficient current of at least 0.8 A, so it is recommended to select a DC-DC converter chip or an LDO chip with ultra-low leakage current and current output not less than 1.0 A for the power supply design.

3.10.3. Power Supply Voltage Monitoring

AT+CBC can be used to monitor the VBAT voltage value. For more details, see [document \[4\]](#).

3.11. Turn On and off Scenarios

3.11.1. Turn On with PWRKEY

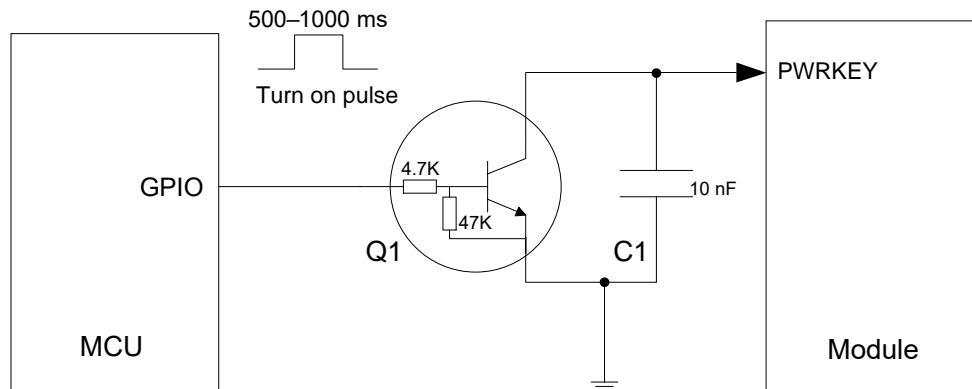

The following table shows the pin definition of PWRKEY.

Table 9: Pin Definition of PWRKEY

Pin Name	Pin No.	I/O	Description	Comment
PWRKEY	46	DI	Turn on/off the module	Internally pulled up with a 470 kΩ resistor.

When the module is in turn-off mode, driving PWRKEY low for 500–1000 ms and then releasing it will turn on the module. It is recommended to use an open drain/collector driver to control the PWRKEY.

A simple reference design is illustrated in the following figure.

Figure 5: Turn On the Module with Driving Circuit

Another way to control the PWRKEY is by using a button directly. When pressing the button, an electrostatic strike may generate from fingers. Therefore, a TVS component is indispensable to be placed nearby the button for ESD protection. A reference design is shown in the following figure.

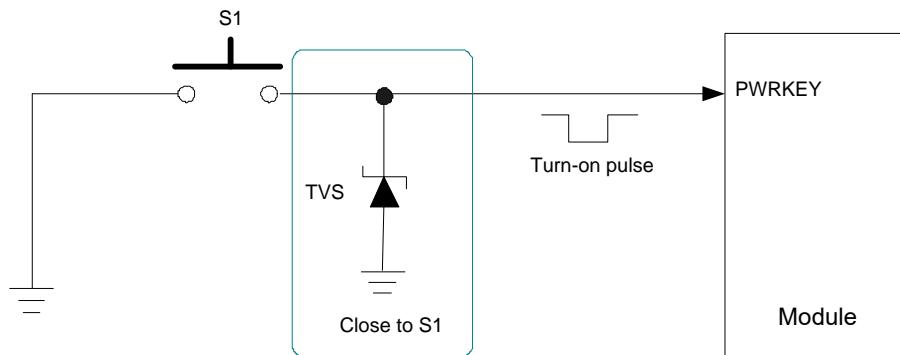


Figure 6: Turn On the Module with a Button

3.11.1.1. Power-up & Restart Timing for The Module With PON_TRIG Function

The power-up timing of the module varies with the VBAT stable duration before you drive PWRKEY low.

Drive PWRKEY low after VBAT is stable for 100–200 ms, the module will be turned on immediately. and in this case, the power-up timing is shown below.

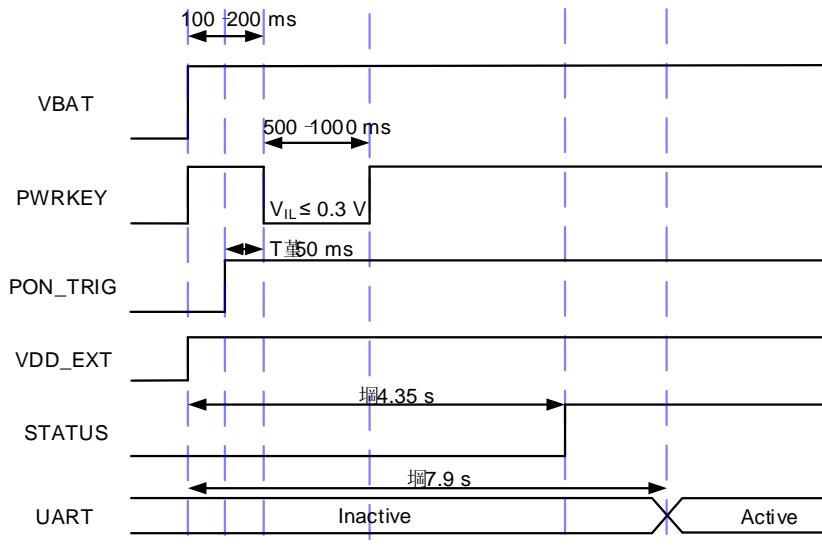


Figure 7: Power-up Timing (After VBAT is Stable for 100–200 ms)

NOTE

Ensure that VBAT is stable for 100–200 ms before pulling down PWRKEY.

Drive PWRKEY low after VBAT is stable for more than 250 ms, the module will also be turned on immediately, and in this case, the power-up timing is shown below.

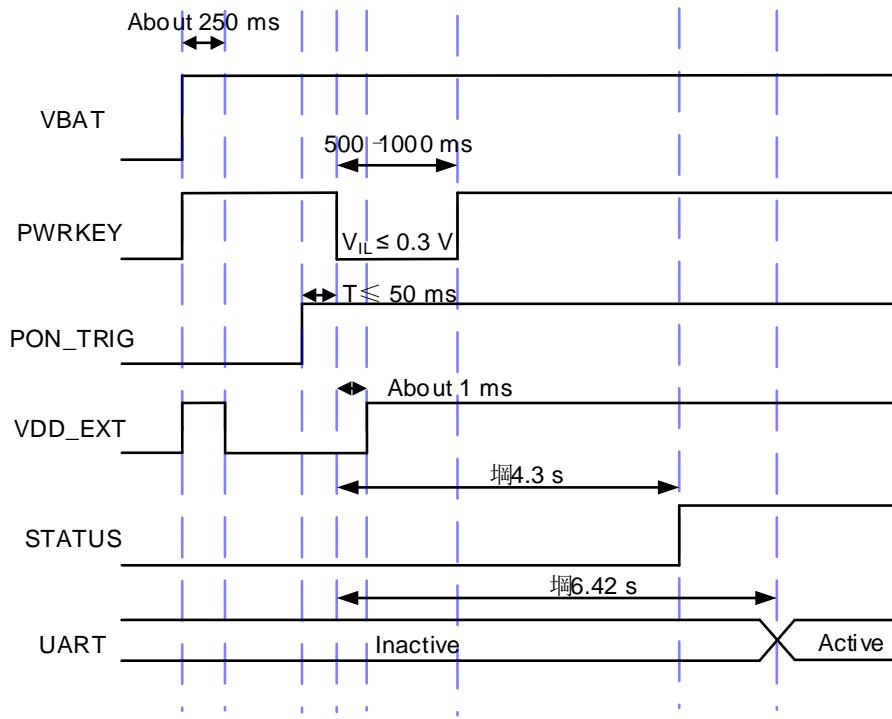


Figure 8: Power-up Timing (After VBAT is Stable for more than 250 ms)

NOTE

After VBAT is powered up, it will take about 250 ms for the module to load the internal program.

After the module is turned off with the PWRKEY solution (see [Chapter 3.11.2.1](#)) or the AT command solution (see [Chapter 3.11.2.2](#)), VBAT will keep powered on all the time until the main power supply is disconnected. In this case, driving PWRKEY low will restart the module, and the restart timing is shown below.

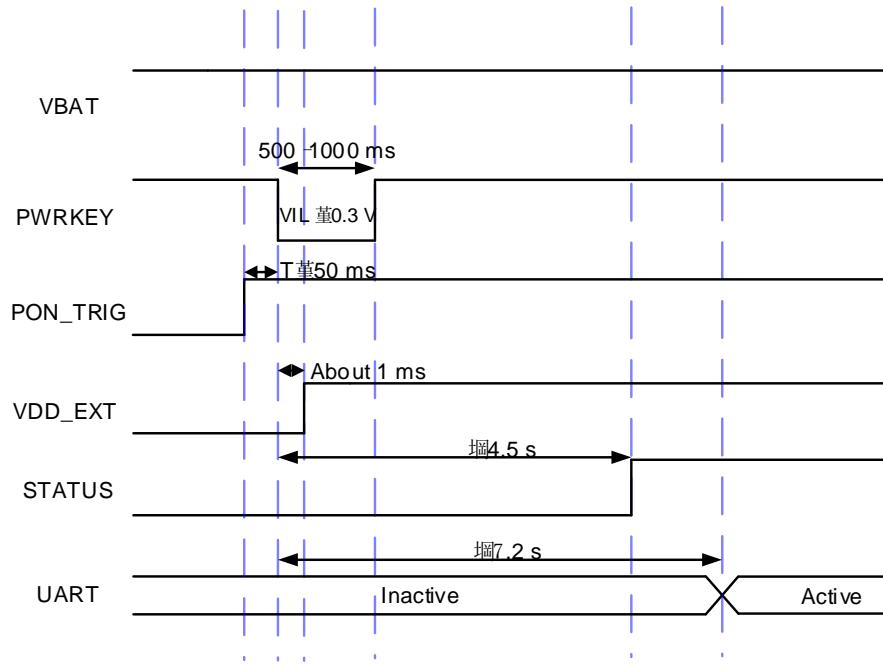


Figure 9: Restart Timing

NOTE

Before the module is turned on by driving PWRKEY low for 0–50 ms, drive PON_TRIG high, otherwise, after the module is powered on successfully, the data communication pins of the main UART interface are inaccessible.

3.11.1.2. Power-up & Restart Timing for Modules Without PON_TRIG Function

The power-up timing of the module varies with the VBAT stable duration before you drive PWRKEY low.

Drive PWRKEY low after VBAT is stable for 100–200 ms, the module will be turned on immediately, and in this case, the power-up timing is shown below.

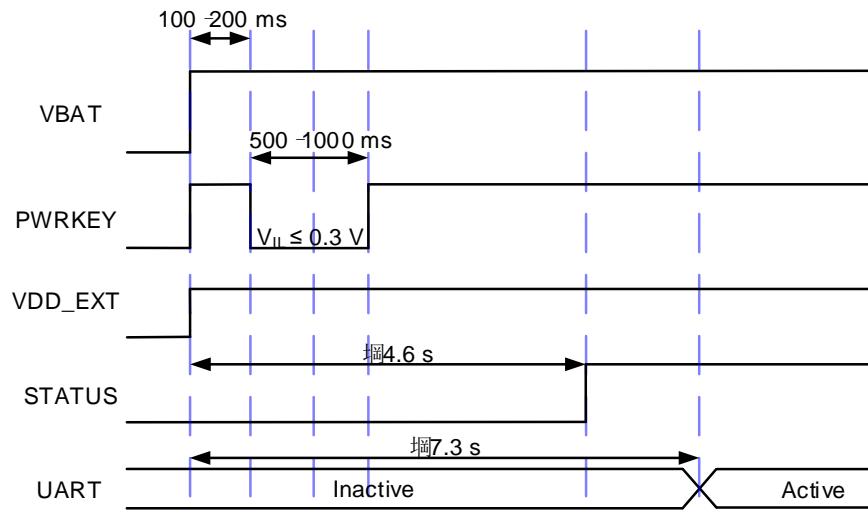


Figure 10: Power-up Timing (After VBAT is Stable for 100–200 ms)

NOTE

Ensure that VBAT is stable for 100–200 ms before pulling down PWRKEY.

Drive PWRKEY low after VBAT is stable for more than 250 ms, the module will be turned on immediately, and in this case, the power-up timing is shown below.

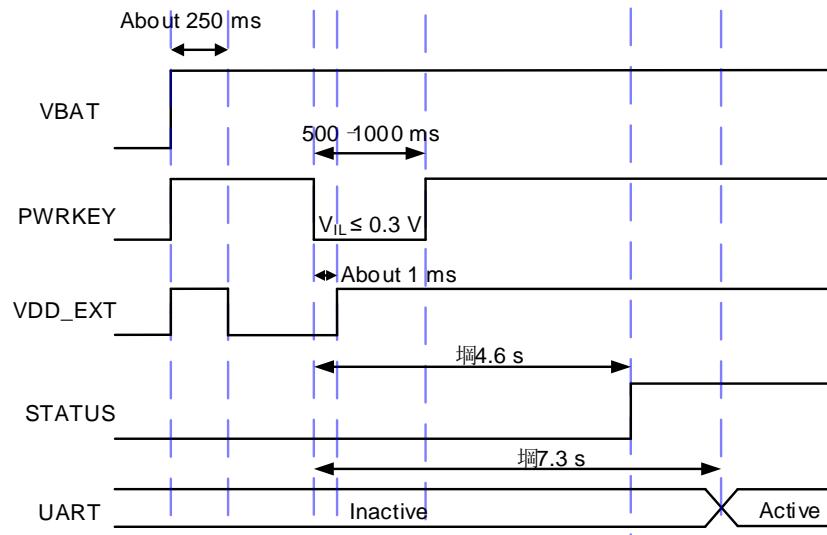


Figure 11: Power-up Timing (After VBAT is Stable for more than 250 ms)

NOTE

After VBAT is powered up, it will take about 250 ms for the module to load the internal program.

After the module is turned off with the PWRKEY or AT command solution, VBAT will keep powering up all the time until the VBAT is disconnected. In this case, drive PWRKEY low will restart the module, and the restart timing is shown below.

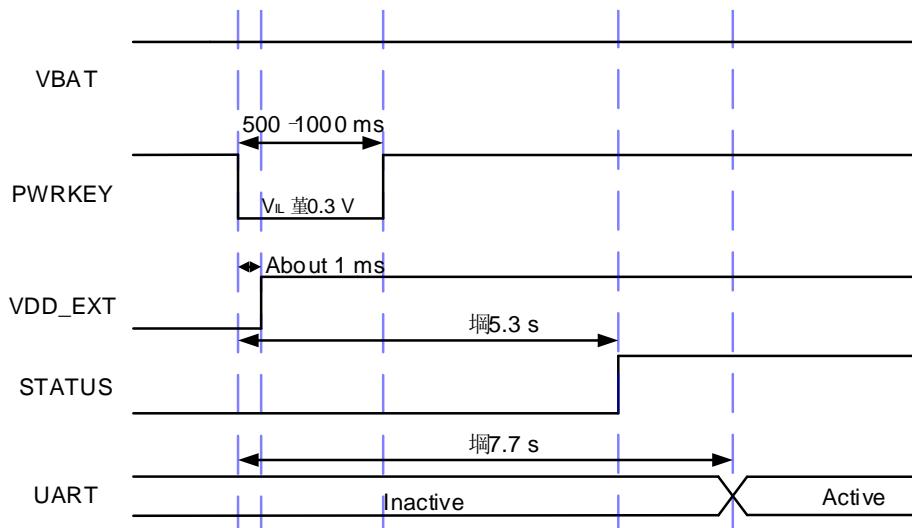


Figure 12: Restart Timing

3.11.2. Turn Off

After the module is turned off or enters PSM, do not pull up any I/O pin lest it cause additional power consumption and possibly damage pins on the module.

Either of the following methods can be used to turn off the module normally:

- Turn off the module with PWRKEY.
- Turn off the module with **AT+QPOWD**.

3.11.2.1. Turn Off with PWRKEY

When the module is powered on, drive PWRKEY low for 650–1500 ms before you release it, after which the module will execute a power-down procedure.

The power-down timing is illustrated in the following figure.

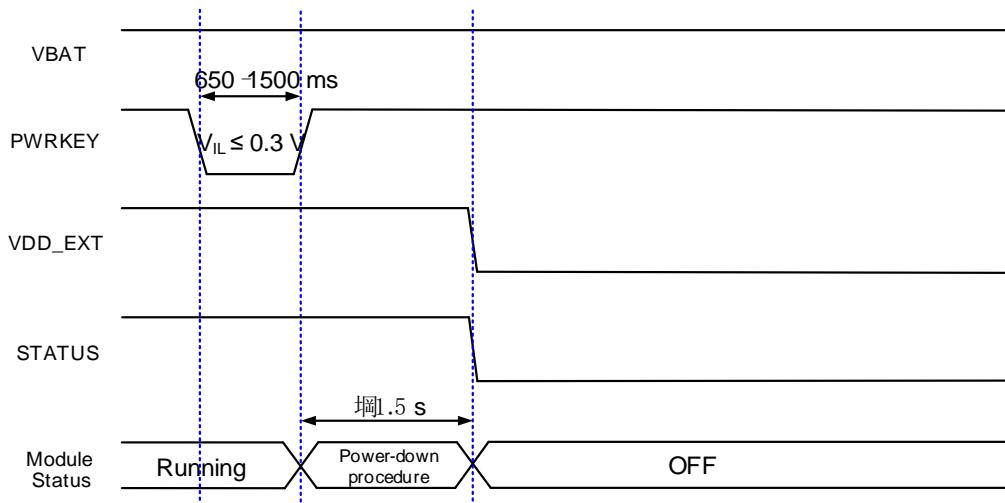


Figure 13: Power-down Timing (PWRKEY)

3.11.2.2. Turn Off with AT Command

Similar to PWRKEY, the module can be turned off safely with **AT+QPOWD**. After the **AT+QPOWD** is sent, then the module will execute the power-down procedure.

See [document \[4\]](#) for details about **AT+QPOWD**.

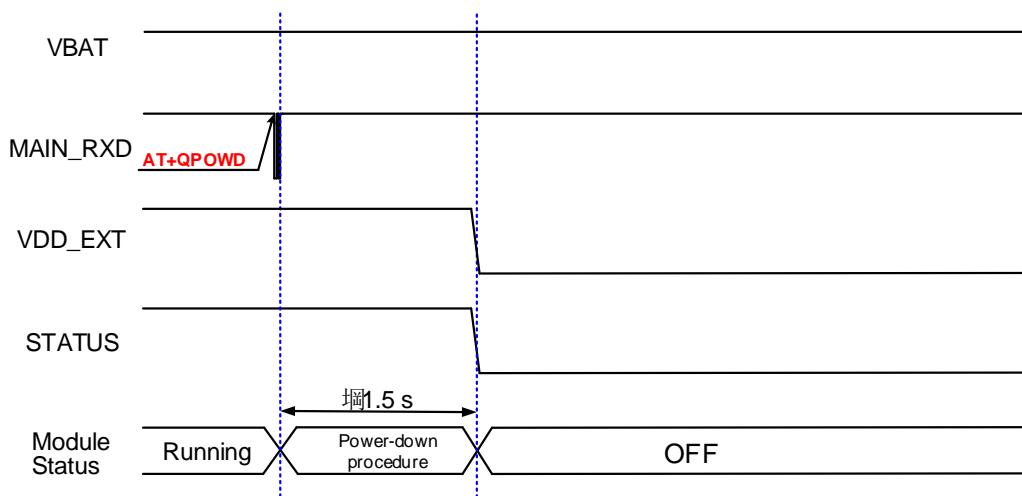
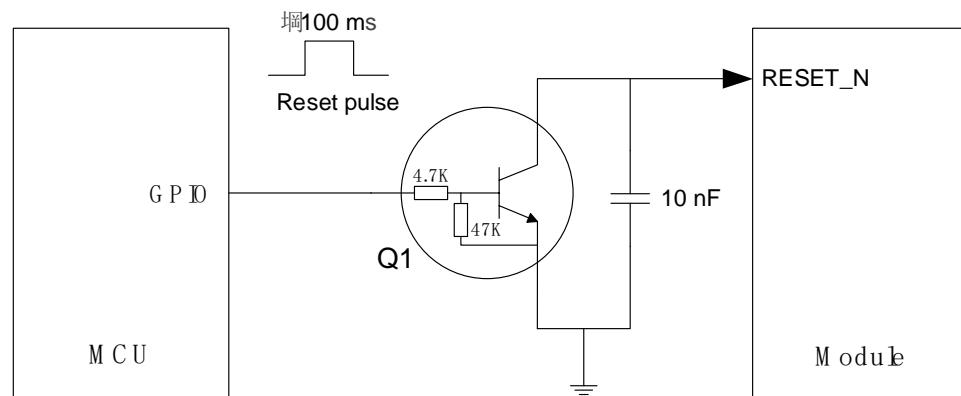


Figure 14: Power-down Timing (AT Command)

NOTE

1. To avoid corrupting the data in the internal flash, do not switch off the power supply while the module is working normally. The power supply can be cut off only after the module is shut down with PWRKEY or AT command.
2. When turning off the module with AT command, keep PWRKEY at a high level after executing turn-off command. Otherwise, the module will be turned on again after turned off.


3.12. Reset

The module can be reset by driving RESET_N low for at least 100 ms and then releasing it.

Table 10: Pin Definition of RESET_N

Pin Name	Pin No.	I/O	Description
RESET_N	45	DI	Reset the module. Internally pulled up with a 470 kΩ resistor.

The recommended circuit is similar to the PWRKEY control circuit. An open drain/collector driver or button can be used to control RESET_N.

Figure 15: Reference Design of RESET_N with Driving Circuit

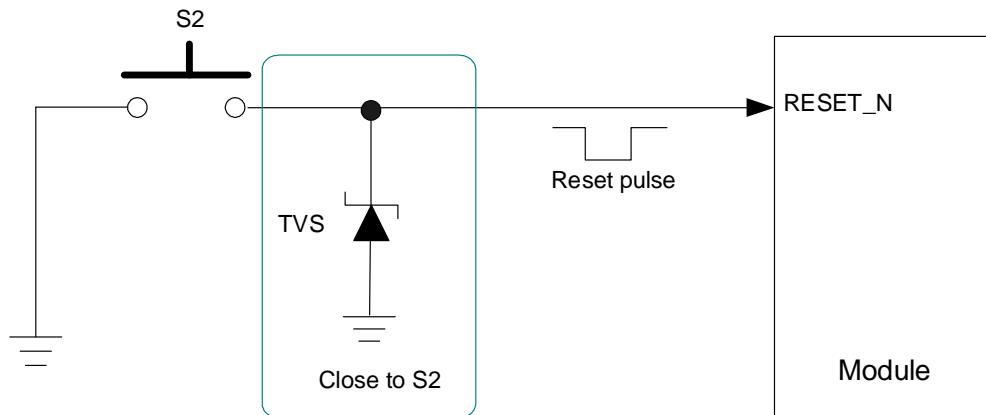


Figure 16: Reference Design of RESET_N with Button

The reset timing is illustrated in the following figure.

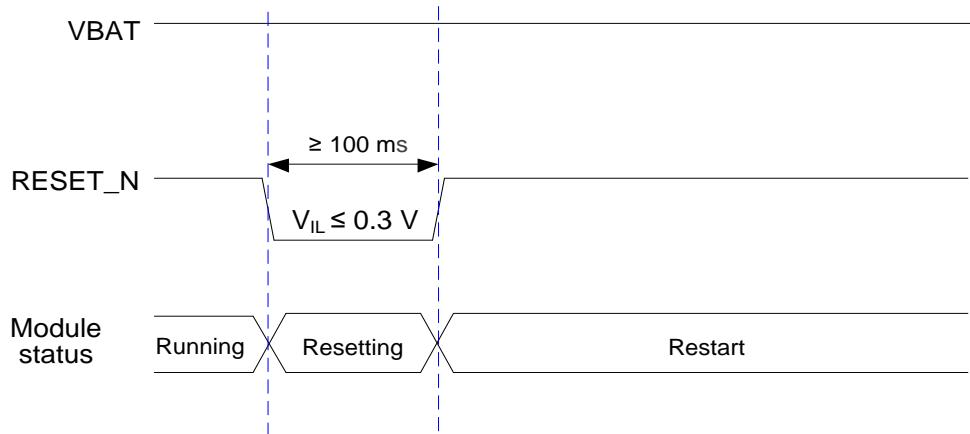


Figure 17: Reset Timing

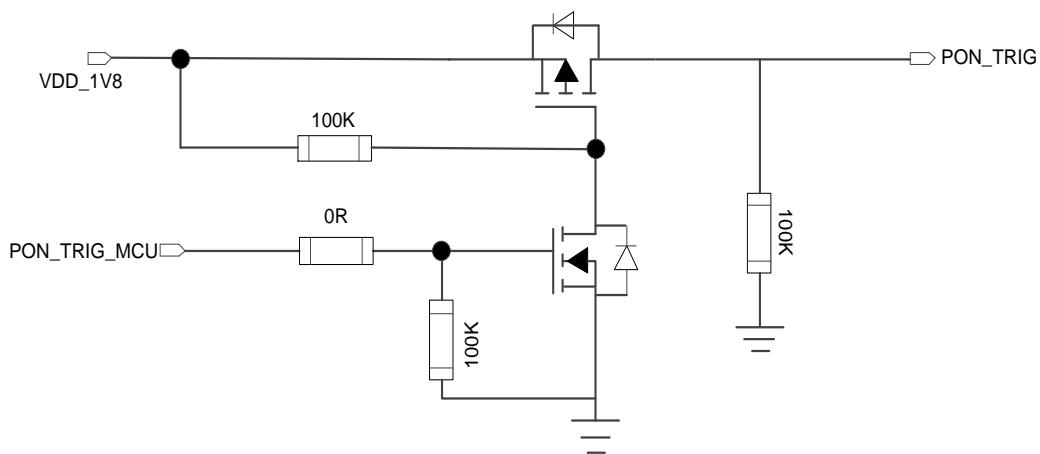
NOTE

1. Ensure that there is no large capacitance on RESET_N pin.
2. Because PWRKEY and RESET_N traces are sensitive signal traces, it's necessary to surround the traces with ground on that layer and with ground planes above and below, and keep their traces away from each other, so as to reduce interference.

3.13. PON_TRIG

This section is applicable to BG770A-GL with PON_TRIG. For without PON_TRIG version, this pin has no function and there is no need to design it, but PON_TRIG needs to be grounded through a 100 kΩ resistor to ensure a stable level.

Drive PON_TRIG high and remain it high, the module will wake up from PSM. PON_TRIG is not pulled up/down internally by default.


Table 11: Pin Definition of PON_TRIG

Pin Name	Pin No.	I/O	Description	Comment
PON_TRIG	72	DI	Used for main UART function control and for entering/exiting e-I-DRX, PSM and sleep modes	1.8 V power domain. No internal pull up/down resistors by default.

PON_TRIG can realize the following functions:

- Make the module enter or exit e-I-DRX, PSM mode and sleep mode.
- Enable/disables the main UART interface communication function.

PON_TRIG must be designed to allow for external control. A reference design is shown in the following figure.

Figure 18: PON_TRIG Reference Circuit 1

In addition, a voltage divider circuit can be used to control PON_TRIG. The voltage domain of the external MCU and the voltage divider resistor should be selected with care. A voltage divider circuit in the 3.3 V **MCU** voltage domain is shown in the following figure.

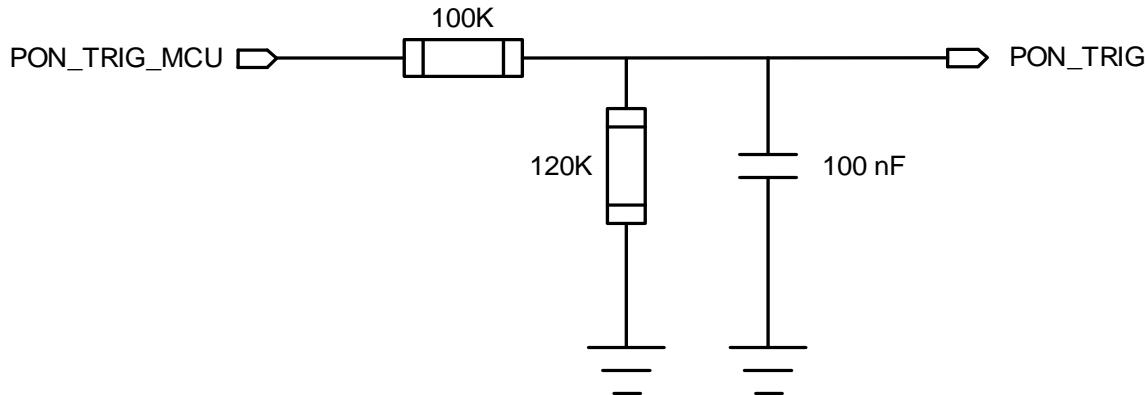


Figure 19: PON_TRIG Reference Circuit 2

NOTE

1. VDD_1V8 is powered by an external LDO.
2. If the MCU's voltage domain is not 3.3 V, the value of the voltage divider resistors should be tested according to your actual application.

The use of PON_TRIG is illustrated below.

- PON_TRIG is not pulled up/down internally by default. Before the module is turned on, PON_TRIG must be pulled up. Otherwise, the data communication pins of the main UART interface are inaccessible.
- After sending **AT+QPSMS** to enable PSM, driving PON_TRIG low will set the module to PSM. Drive PON_TRIG high and remain it high, the module will wake up from PSM. In this case, PON_TRIG must remain high, otherwise the module will re-enter PSM.
- Pull down PON_TRIG and keep it low in e-I-DRX, PSM and sleep mode. In other cases, pull high PON_TRIG and keep it high to make sure the main UART is accessible. For details about PON_TRIG use in e-I-DRX and sleep modes, see **Chapter 3.6** and **Chapter 3.8**, respectively.

3.14. USIM Interface

The module supports 1.8 V USIM card only. The USIM interface circuitry meets ETSI and IMT-2000 requirements.

BG773A-GL also supports iSIM. To know whether iSIM is supported by the network service providers, please contact local providers for more details. iSIM and USIM/eSIM cannot be used simultaneously. If iSIM is not used, an external USIM/eSIM card is required. After enabling iSIM, you do not need to design the USIM interface, which helps to improve the security of the device and reduce the PCB area.

Table 12: Pin Definition of USIM Interface

Pin Name	Pin No.	I/O	Description	Comment
USIM_DET	44	DI	USIM card hot-plug detect	1.8 V power domain. If unused, keep it open.
USIM_VDD	16	PO	USIM card power supply	Only 1.8 V USIM card is supported.
USIM_RST	15	DO	USIM card reset	1.8 V power domain.
USIM_DATA	14	DIO	USIM card data	1.8 V power domain.
USIM_CLK	13	DO	USIM card clock	1.8 V power domain.
USIM_GND	65	-	Specified ground for USIM card	

The module supports USIM card hot-plug via USIM_DET, and both high-and low-level detections are supported. The function is disabled by default, and see **AT+QSIMDET** in **document [4]** for more details.

The following figure shows a reference design of USIM interface with an 8-pin USIM card connector.

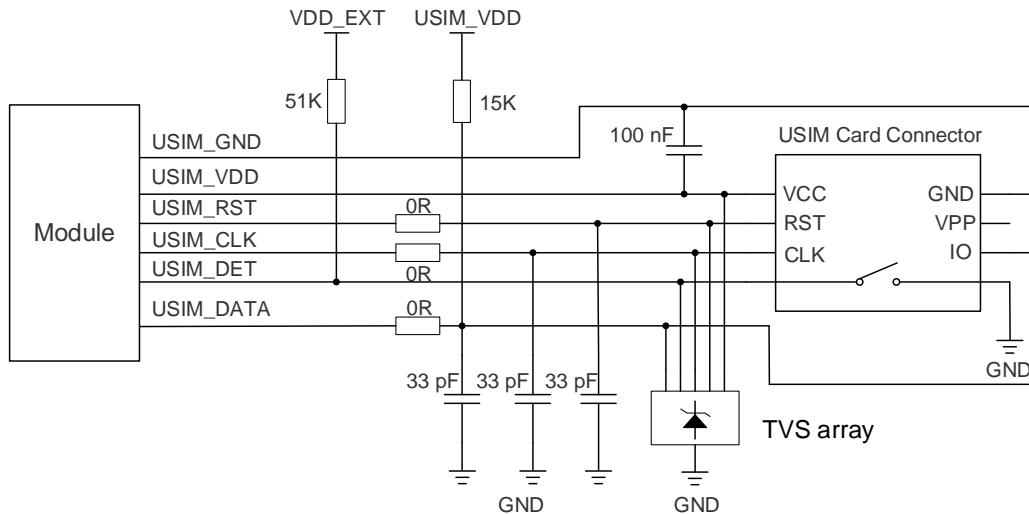


Figure 20: Reference Design of USIM Interface with an 8-Pin USIM Card Connector

If USIM card detection function is not needed, keep USIM_DET unconnected. A reference design for USIM interface with a 6-pin USIM card connector is illustrated in the following figure.

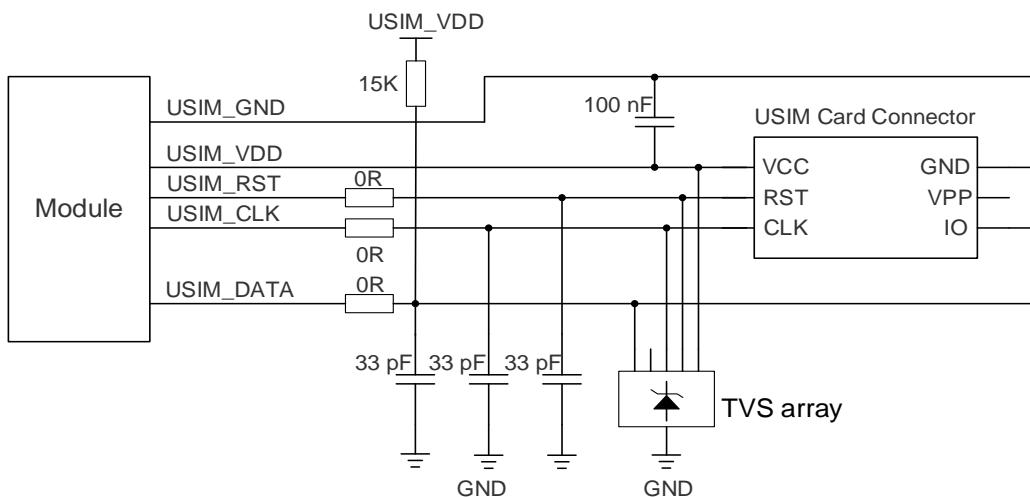


Figure 21: Reference Design of USIM Interface with a 6-Pin USIM Card Connector

To enhance the reliability and availability of the USIM card in applications, follow the criteria below in USIM circuit design:

- Place the USIM card connector as close as possible to the module with a trace shorter than 200 mm.
- Keep USIM card signals away from RF and power supply traces.
- Ensure a short and wide ground trace between the module and the USIM card connector. Keep the ground and **USIM_VDD** traces at least 0.5 mm wide to maintain the same electric potential. Make sure the bypass capacitor between **USIM_VDD** and **USIM_GND** is less than 1 μ F, and place it as close to USIM card connector as possible. If the system ground plane is complete, **USIM_GND** can be directly connected to the system ground.

- To avoid cross-talk between USIM_DATA and USIM_CLK, keep their traces away from each other and shield them with ground. USIM_RST should also be shielded with ground.
- To offer good ESD protection, it is recommended to add a TVS diode array with parasitic capacitance not exceeding 15 pF. It is recommended to reserve 0 Ω series resistors for the USIM signals of the module to facilitate debugging. The 33 pF capacitors are used for filtering RF interference. Note that the USIM peripheral circuit should be close to the USIM card connector.
- The pull-up resistor on USIM_DATA trace can improve anti-jamming capability, and should be placed close to the USIM card connector.

3.15. USB Interface

The module features one integrated Universal Serial Bus (USB) interface which complies with the USB 2.0 specification and supports full-speed mode only. This USB interface is used for AT command communication, data transmission, software debugging and firmware upgrade*.

The following table shows the pin definition of USB interface.

Table 13: Pin Definition of USB Interface

Pin Name	Pin No.	I/O	Description	Comment
USB_VBUS	12	AI	USB connection detect	Input range: 1.19–2.0 V
USB_DP	11	AO	USB differential data (+)	Require differential impedance of 90 Ω.
USB_DM	10	AO	USB differential data (-)	
USBPHY_3P3	42	PI	Power supply for USB PHY circuit	Typ. 3.3 V
USBPHY_3P3_EN	64	DO	External LDO enable control for USB	1.8 V power domain
GND	43	-	Ground	

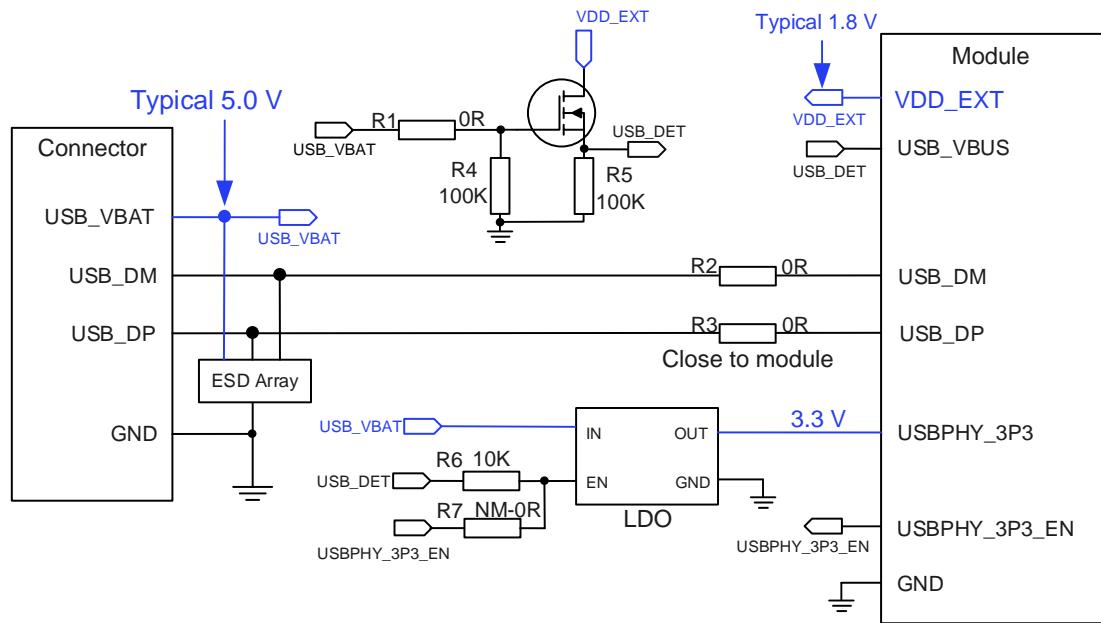


Figure 22: Reference Design of USB Interface

To meet USB 2.0 specification, comply with the following principles while designing the USB interface.

- It is important to route the USB signal traces as a differential pair with ground. The impedance of USB differential trace is 90Ω .
- Do not route signal traces under crystals, oscillators, magnetic devices and RF signal traces. It is important to route the USB differential traces in inner-layer of the PCB, and surround the traces with ground on that layer and with ground planes above and below.
- Junction capacitance of the ESD protection components might cause influences on USB data traces, so pay attention to the device selection. Typically, the stray capacitance should be less than 2 pF.
- Keep the ESD protection components as close to the USB connector as possible.
- If possible, reserve a 0Ω resistor on USB_DP and USB_DM traces respectively, to ensure USB data signal integrity. Resistors should be placed close to the module and each other. The extra trace stubs must be as short as possible.

For more details about USB 2.0 specification, visit <http://www.usb.org/home>.

NOTE

- After the module is turned off or enters PSM, do not pull up any USB interface pin lest it causes additional power consumption and potential damage to pins on the module.
- It is recommended to test the USB function of the module with BG77xA-GL TE-B, see **document [2]** for more details of the TE-B.

3.16. UART Interfaces

The module provides three UART interfaces: main UART interface, debug UART interface and auxiliary UART interface. Features of them are illustrated below:

- The main UART interface supports 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600 and 3000000 bps baud rates, and the default is 115200 bps. It is used for data transmission and AT command communication, and supports RTS and CTS hardware flow control. The default frame format is 8N1 (8 data bits, no parity, 1 stop bit).
- The debug UART interface supports 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600 and 3000000 bps baud rates, and the default is 115200 bps. It is used for firmware upgrade, software debugging, SFP log and NMEA sentences output, and supports RTS and CTS hardware flow control. The default frame format is 8N1 (8 data bits, no parity, 1 stop bit).
- The auxiliary UART interface supports 921600 bps baud rate by default. It is used for RF calibration and Modem log output, and supports RTS and CTS hardware flow control. The default frame format is 8N1 (8 data bits, no parity, 1 stop bit).

The following tables show the pin definition of three UART interfaces.

Table 14: Pin Definition of Main UART Interface

Pin Name	Pin No.	I/O	Description	Comment
MAIN_DTR	62	DI	Main UART data terminal ready	
MAIN_RXD	6	DI	Main UART receive	
MAIN_TXD	7	DO	Main UART transmit	
MAIN_CTS	39	DO	Clear to send signal from the module (Connect to MCU's CTS)	1.8 V power domain. If unused, keep these pins open.
MAIN_RTS	38	DI	Request to send signal to the module (Connect to MCU's RTS)	
MAIN_DCD	90	DO	Main UART data carrier detect	
MAIN_RI	76	DO	Main UART ring indication	

NOTE

AT+IPR can be used to set the baud rate of the main UART interface, and **AT+IFC** can be used to enable/disable the hardware flow control (the function is disabled by default). See **document [4]** for more details about these AT commands.

Table 15: Pin Definition of Debug UART Interface

Pin Name	Pin No.	I/O	Description	Comment
DBG_TXD	60	DO	Debug UART transmit	
DBG_RXD	61	DI	Debug UART receive	1.8 V power domain. It is recommended to reserve test points for these pins.
DBG_CTS	51	DO	Clear to send signal from the module (Connect to MCU's CTS)	
DBG_RTS	92	DI	Request to send signal to the module (Connect to MCU's RTS)	

Table 16: Pin Definition of Auxiliary UART Interface

Pin Name	Pin No.	I/O	Description	Comment
AUX_TXD	93	DO	Auxiliary UART transmit	
AUX_RXD	82	DI	Auxiliary UART receive	1.8 V power domain. If unused, keep these pins open and test points are recommended for modem log capture.
AUX_CTS	70	DO	Clear to send signal from the module (Connect to MCU's CTS)	
AUX_RTS	59	DI	Request to send signal to the module (Connect to MCU's RTS)	

The module features 1.8 V UART interfaces. A voltage-level translator should be used if your application is equipped with a 3.3 V UART interface. It is recommended to use a level-shifting chip without internal pull-up. The voltage-level translator TXB0108PWR provided by Texas Instruments is recommended. The following figure shows a reference design of the main UART interface:

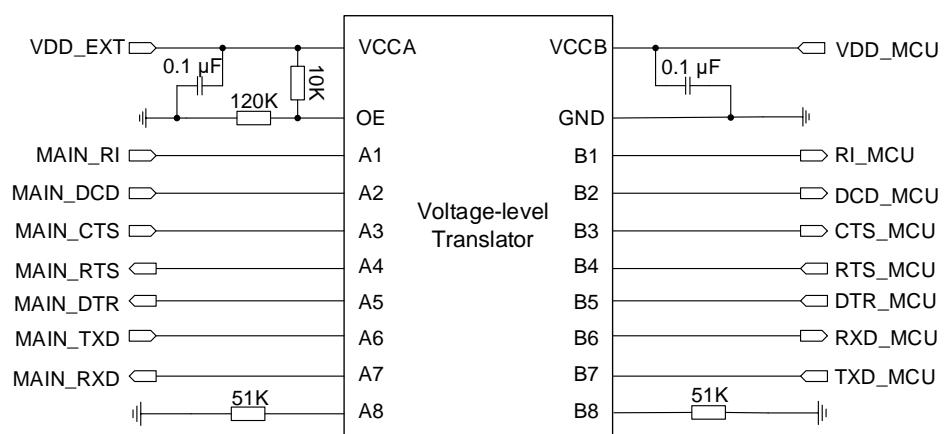


Figure 23: Main UART Reference Design (IC Solution)

Visit <http://www.ti.com> for more information.

Another example with transistor translation circuit is shown as below. For the design of circuits in dotted lines, see that of circuits in solid lines, but pay attention to the direction of connection.

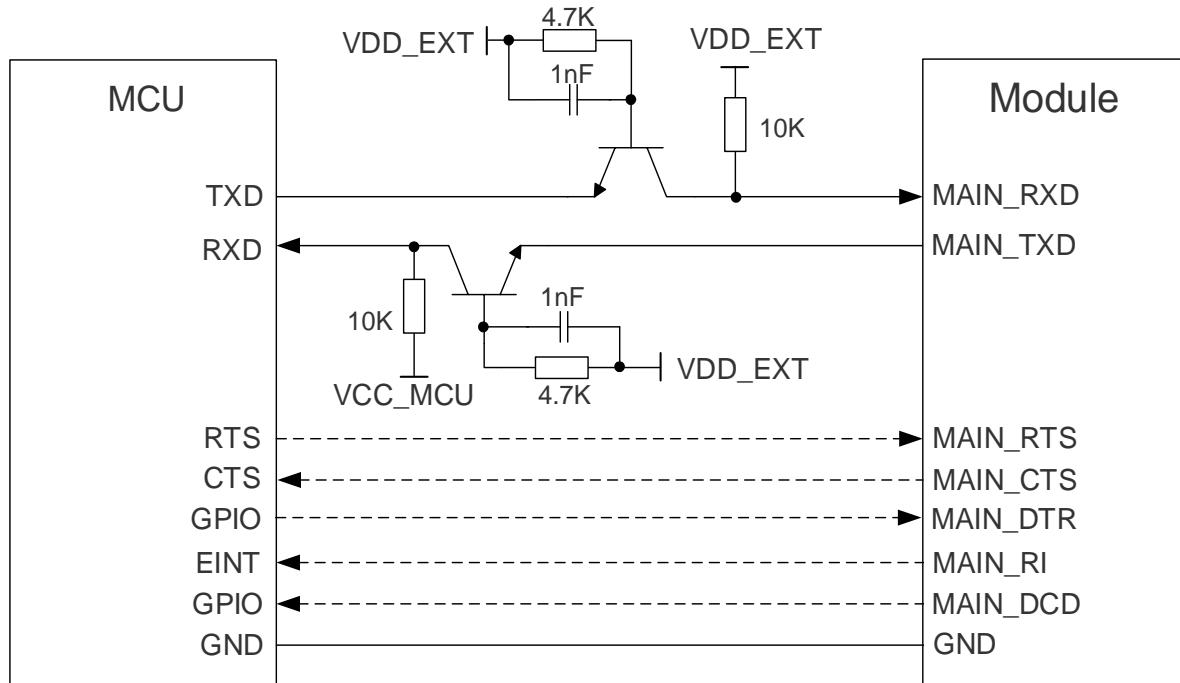


Figure 24: Main UART Reference Design (Transistor Solution)

NOTE

1. Transistor circuit solution is not suitable for applications with high baud rates exceeding 460 kbps.
2. The main UART interface should be disconnected in PSM and power off modes lest it cause additional power consumption and potentially damage pins on the module.
3. Please note that the module's CTS is connected to the MCU's CTS, and the module's RTS is connected to the MCU's RTS.
4. The level-shifting circuits (**Figure 23** and **Figure 24**) take the main UART as an example. The circuits of the debug UART and the auxiliary UART are connected in the same way as the main UART.
5. To increase the stability of UART communication, it is recommended to add UART hardware flow control design.

3.17. Indication Signals

3.17.1. Network Status Indication

The module features one network status indication pin: NET_STATUS. The pin is used to drive a network status indication LED. The following tables describe the pin definition and logic level changes of NET_STATUS in different network activity status.

Table 17: Pin Definition of NET_STATUS

Pin Name	Pin No.	I/O	Description	Comment
NET_STATUS	79	DO	Indicate the module's network activity status	1.8 V power domain. If the pin is unused, keep it open.

Table 18: Working State of NET_STATUS

Pin Name	Logic Level Changes	Working Status
	Blink slowly (200 ms High/1800 ms Low)	Network searching
NET_STATUS	Blink slowly (1800 ms High/200 ms Low)	Idle
	Blink quickly (125 ms High/125 ms Low)	Data transfer is ongoing

A reference design is shown in the following figure.

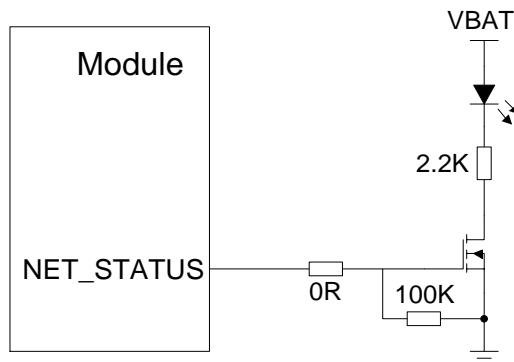
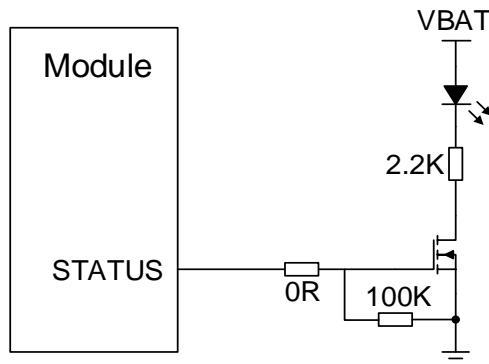


Figure 25: Reference Design of NET_STATUS


3.17.2. STATUS

The STATUS pin indicates the operation status of the module. It outputs high level when the module turn on.

Table 19: Pin Definition of STATUS

Pin Name	Pin No.	I/O	Description	Comment
STATUS	78	DO	Indicate the module's operation status	1.8 V power domain

The following figure shows a reference design of STATUS.

Figure 26: Reference Design of STATUS

3.17.3. MAIN_RI

AT+QCFG="risignaltpe","physical" can be used to configure MAIN_RI behavior. No matter on which port a URC is presented, the URC will trigger the behavior of MAIN_RI.

The default behaviors of MAIN_RI are shown as below.

Table 20: Default Behaviors of MAIN_RI

State	Response
Idle	MAIN_RI remains at a high level.
URC	MAIN_RI outputs a 120 ms low pulse when a new URC is returned.

The default MAIN_RI behaviors can be configured flexibly by **AT+QCFG="urc/ri/ring"**. For more details about **AT+QCFG**, see **document [3]**.

NOTE

1. A URC can be outputted from the main UART (default), auxiliary UART or EMUX ports through configuring URC indication option with **AT+QURCCFG**. See **document [4]** for details about the AT

command.

- MAIN_RI is under development on BG773A-GL/BG770A-SN, while it can be used on BG770A-GL.

3.18. ADC Interfaces

The module has two analog-to-digital converter (ADC) interfaces. **AT+QADC=0** can be used to read the voltage value on ADC0 pin. **AT+QADC=1** be used to read the voltage value on ADC1 pin. For more details about the AT command, see [document \[4\]](#).

To improve the accuracy of ADC voltage values, the traces of ADC should be surrounded with ground.

Table 21: Pin Definition of ADC Interfaces

Pin Name	Pin No.	I/O	Description
ADC0	17	AI	General-purpose ADC interface
ADC1	18	AI	General-purpose ADC interface

The following table describes the characteristics of ADC interfaces.

Table 22: Characteristics of ADC Interfaces

Parameter	Min.	Typ.	Max.	Unit
Voltage Range	0	-	1.8	V
Resolution	6	-	12	bit

NOTE

- It is prohibited to supply any voltage to ADC pin when VBAT is removed.
- It is recommended to use resistor divider circuit for ADC application, and the divider's resistor accuracy should be at least 1 %.
- After the module is turned off or enters PSM, do not pull up any pin of ADC interfaces lest it cause additional power consumption and potentially damage pins on the module.

3.19. GPIO Interfaces

The module has seven general-purpose input and output (GPIO) interfaces. **AT+QCFG="gpio"** command can be used to configure the status of GPIO pins. For more details about the AT command, see [document \[3\]](#).

Table 23: Pin Definition of GPIO Interfaces

Pin Name	Pin No.	I/O	Description
GPIO1	1	DIO	General-purpose input/output
GPIO2	8	DIO	General-purpose input/output
GPIO3	9	DIO	General-purpose input/output
GPIO4	33	DIO	General-purpose input/output
GPIO5	40	DIO	General-purpose input/output
GPIO6	57	DIO	General-purpose input/output
GPIO7	63	DIO	General-purpose input/output

3.20. GRFC Interfaces

The module provides two generic RF control interfaces for the control of external antenna tuners.

Table 24: Pin Definition of GRFC Interfaces

Pin Name	Pin No.	I/O	Description	Comments
GRFC1	83	DO	Generic RF controller	1.8 V power domain.
GRFC2	94	DO	Generic RF controller	If these pins are unused, keep them open.

Table 25: Truth Table of GRFC Interfaces

GRFC1 Level	GRFC2 Level	Frequency Range (MHz)
Low	Low	880–2200
Low	High	791–879.9
High	Low	698–790.9

4 GNSS

4.1. General Description

The module supports GPS and GLONASS satellite systems using dedicated hardware accelerators in a power and cost-efficient manner.

The module supports standard NMEA 0183 protocol, and outputs NMEA sentences at 1 Hz data update rate via debug UART interface by default.

By default, the modules' GNSS engine is switched off. It has to be switched on via AT command. The module does not support concurrent operation of WWAN and GNSS. For more details about GNSS engine technology and configurations, see [document \[1\]](#).

4.2. GNSS Performance

The following table shows the GNSS performance of the module.

Table 26: GNSS Performance

Parameter	Description	Conditions	Typ.	Unit
Sensitivity	Acquisition	Autonomous	-145	dBm
	Reacquisition	Autonomous	-153	dBm
	Tracking	Autonomous	-158	dBm
TTFF	Cold start @ open sky	Autonomous	29.42	s
		AGPS enabled	16.14	s
TTFF	Warm start @ open sky	Autonomous	28.38	s
		AGPS enabled	3.57	s

Hot start @ open sky	Autonomous	1.07	s	
	AGPS enabled	2.10	s	
Accuracy	CEP-50	Autonomous @ open sky	1.41	m

NOTE

1. Tracking sensitivity: the minimum GNSS signal power at which the module can maintain lock (keep positioning for at least 3 minutes continuously).
2. Reacquisition sensitivity: the minimum GNSS signal power required for the module to maintain lock within 3 minutes after loss of lock.
3. Acquisition sensitivity: the minimum GNSS signal power at which the module can fix position successfully within 3 minutes after executing cold start command.

4.3. Layout Guidelines

The following layout guidelines should be taken into account in application designs.

- Maximize the distance between the GNSS antenna and the main antenna.
- Digital circuits such as USIM card, USB interface, camera module, display connector and SD card should be kept away from antennas.
- Use ground vias around the GNSS trace and sensitive analog signal traces to provide coplanar isolation and protection.
- Keep 50 Ω characteristic impedance for ANT_GNSS trace.

Refer to **Chapter 5** for GNSS antenna reference design and **Chapter 5.4** antenna installation information.

5 Antenna Interfaces

Appropriate antenna type and design should be used with matched antenna parameters according to specific application. It is required to perform a comprehensive functional test for the RF design before mass production of terminal products. The entire content of this chapter is provided for illustration only. Analysis, evaluation and determination are still necessary when designing target products.

The module includes a main antenna interface and a GNSS antenna interface. The impedance of antenna interfaces is $50\ \Omega$.

5.1. Main Antenna Interface

5.1.1. Pin Definition

The pin definition of the main antenna interface is shown below.

Table 27: Pin Definition of Main Antenna Interface

Pin Name	Pin No.	I/O	Description	Comment
ANT_MAIN	26	AIO	Main antenna interface	$50\ \Omega$ impedance

5.1.2. Operating Frequency

Table 28: BG77xA Series Operating Frequency

3GPP Band	Transmit	Receive	Unit
LTE HD-FDD B1	1920–1980	2110–2170	MHz
LTE HD-FDD B2	1850–1910	1930–1990	MHz
LTE HD-FDD B3	1710–1785	1805–1880	MHz
LTE HD-FDD B4	1710–1755	2110–2155	MHz

LTE HD-FDD B5	824–849	869–894	MHz
LTE HD-FDD B8	880–915	925–960	MHz
LTE HD-FDD B12	699–716	729–746	MHz
LTE HD-FDD B13	777–787	746–756	MHz
LTE HD-FDD B17 ¹¹	704–716	734–746	MHz
LTE HD-FDD B18	815–830	860–875	MHz
LTE HD-FDD B19	830–845	875–890	MHz
LTE HD-FDD B20	832–862	791–821	MHz
LTE HD-FDD B25	1850–1915	1930–1995	MHz
LTE HD-FDD B26 ¹²	814–849	859–894	MHz
LTE HD-FDD B27 ¹²	807–824	852–869	MHz
LTE HD-FDD B28	703–748	758–803	MHz
LTE HD-FDD B66	1710–1780	2110–2180	MHz

5.1.3. Reference Design

A reference design of main antenna interface is shown as below. It is recommended to reserve a π -type matching circuit for better RF performance, and the π -type matching components (R1/C1/C2) should be placed as close to the antenna as possible. The capacitors are not mounted by default.

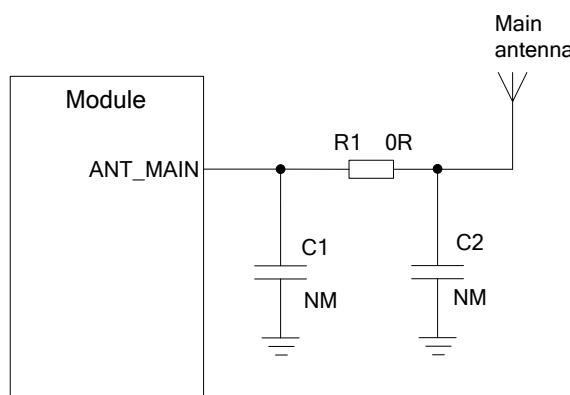


Figure 27: Reference Design of Main Antenna Interface

¹¹ LTE HD-FDD B17 is supported in Cat NB1 only.

¹² LTE HD-FDD B26 and B27 are supported in Cat M1 only.

5.2. GNSS Antenna Interface

The following tables show the pin definition and frequency specification of GNSS antenna interface.

5.2.1. Pin Definition

Table 29: Pin Definition of GNSS Antenna Interface

Pin Name	Pin No.	I/O	Description	Comment
ANT_GNSS	32	AI	GNSS antenna interface	50 Ω impedance If this pin is unused, keep it open.

5.2.2. GNSS Operating Frequency

Table 30: GNSS Operating Frequency

Type	Frequency	Unit
GPS	1575.42 ±1.023	MHz
GLONASS	1597.5–1605.8	MHz

5.2.3. Reference Design

A reference design of GNSS antenna interface is shown as below.

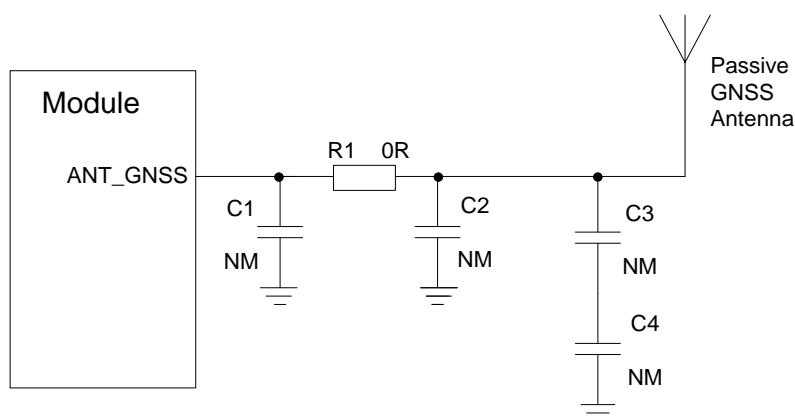


Figure 28: Reference Design of GNSS Antenna Interface

NOTE

The module is designed with a built-in LNA, and supports passive GNSS antenna only. Active antenna and external LNA are not supported.

5.3. RF Routing Guidelines

For users' PCB, the characteristic impedance of all RF traces should be controlled to 50Ω . The impedance of the RF traces is usually determined by the trace width (W), the materials' dielectric constant, the height from the reference ground to the signal layer (H), and the spacing between RF traces and grounds (S). Microstrip or coplanar waveguide is typically used in RF layout to control characteristic impedance. The following are reference designs of microstrip or coplanar waveguide with different PCB structures.

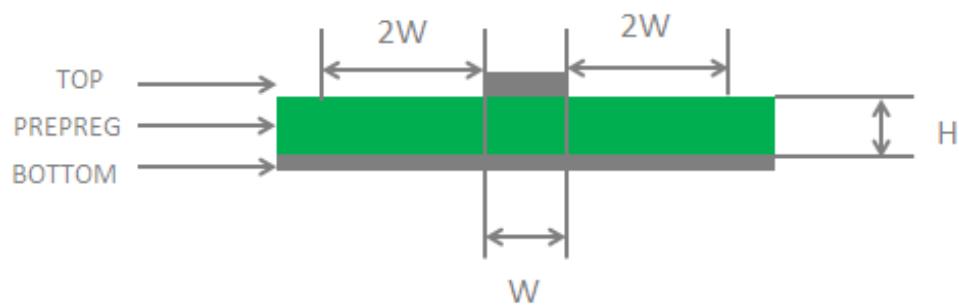


Figure 29: Microstrip Design on a 2-layer PCB

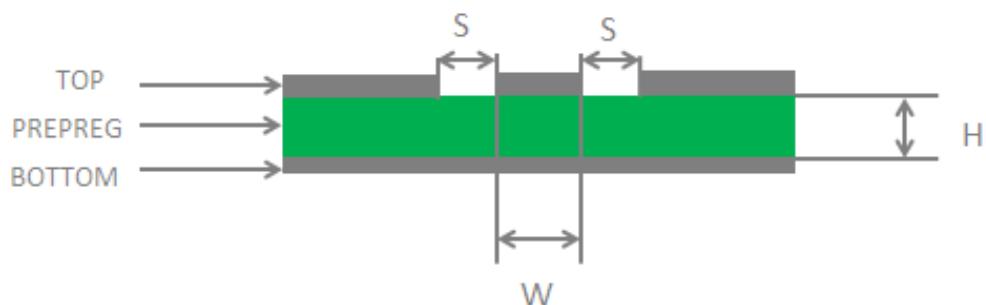


Figure 30: Coplanar Waveguide Design on a 2-layer PCB

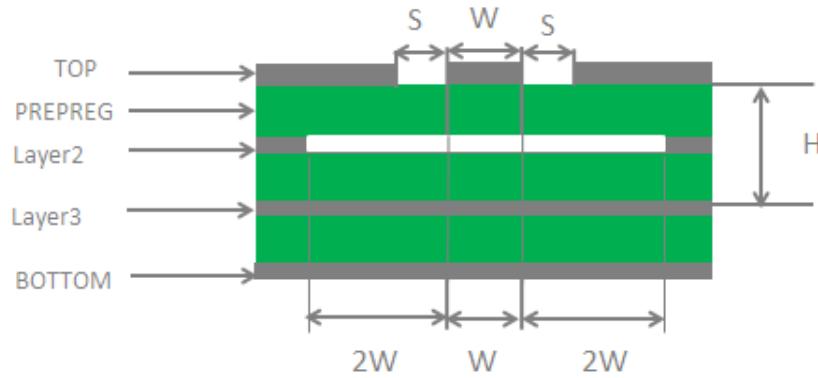


Figure 31: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)

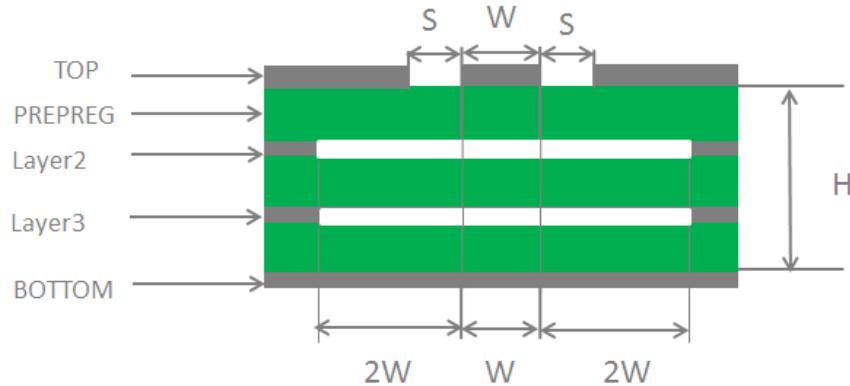


Figure 32: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)

To ensure RF performance and reliability, the following principles should be complied with in RF layout design:

- Use an impedance simulation tool to accurately control the characteristic impedance of RF traces to 50Ω .
- The GND pins adjacent to RF pins should not be designed as thermal relief pads, and should be fully connected to ground.
- The distance between the RF pins and the RF connector should be as short as possible, and all the right-angle traces should be changed to curved ones. The recommended trace angle is 135° .
- There should be clearance under the signal pin of the antenna connector or solder joint.
- The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around RF traces and the reference ground could help to improve RF performance. The distance between the ground vias and RF traces should be at least twice the width of RF signal traces ($2 \times W$).
- Keep RF traces away from interference sources, and avoid intersection and paralleling between traces on adjacent layers.

For more details about RF layout, see [document \[5\]](#).

5.4. Antenna Installation

5.4.1. Antenna Design Requirements

The following table shows the requirements on the main antenna and the GNSS antenna.

Table 31: Antenna Design Requirements

Antenna Type	Requirements
GNSS	<p>Must be a passive antenna</p> <p>Frequency range: 1559–1609 MHz</p> <p>Polarization: RHCP or linear</p> <p>VSWR: ≤ 2 (Typ.)</p> <p>Passive antenna gain: > 0 dBi</p>
LTE	<p>VSWR: ≤ 2</p> <p>Efficiency: > 30 %</p> <p>Max. Input Power: 50 W</p> <p>Input Impedance: 50Ω</p> <p>Cable Insertion Loss:</p> <p>< 1 dB: LB (< 1 GHz)</p> <p>< 1.5 dB: MB (1–2.3 GHz)</p>

5.4.2. RF Connector Recommendation

If RF connector is used for antenna connection, it is recommended to use U.FL-R-SMT connectors provided by Hirose.

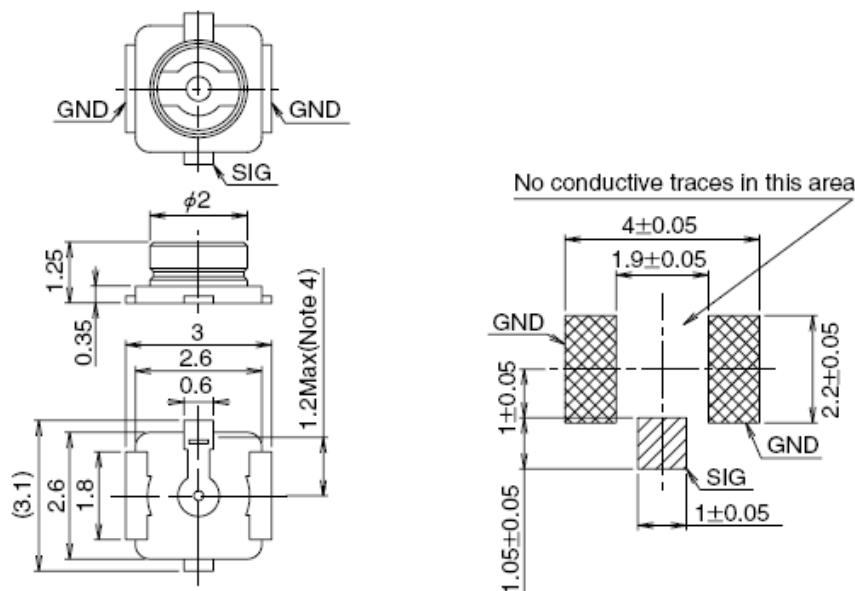


Figure 33: Dimensions of the Receptacle (Unit: mm)

The mated plugs listed in the following figure can be used to match the U.FL-R-SMT connector.

Part No.	U.FL-LP-040	U.FL-LP-066	U.FL-LP(V)-040	U.FL-LP-062	U.FL-LP-088
Mated Height	2.5mm Max. (2.4mm Nom.)	2.5mm Max. (2.4mm Nom.)	2.0mm Max. (1.9mm Nom.)	2.4mm Max. (2.3mm Nom.)	2.4mm Max. (2.3mm Nom.)
Applicable cable	Dia. 0.81mm Coaxial cable	Dia. 1.13mm and Dia. 1.32mm Coaxial cable	Dia. 0.81mm Coaxial cable	Dia. 1mm Coaxial cable	Dia. 1.37mm Coaxial cable
Weight (mg)	53.7	59.1	34.8	45.5	71.7
RoHS			YES		

Figure 34: Specifications of Mated Plugs

The following figure describes the space factor of mated connectors.

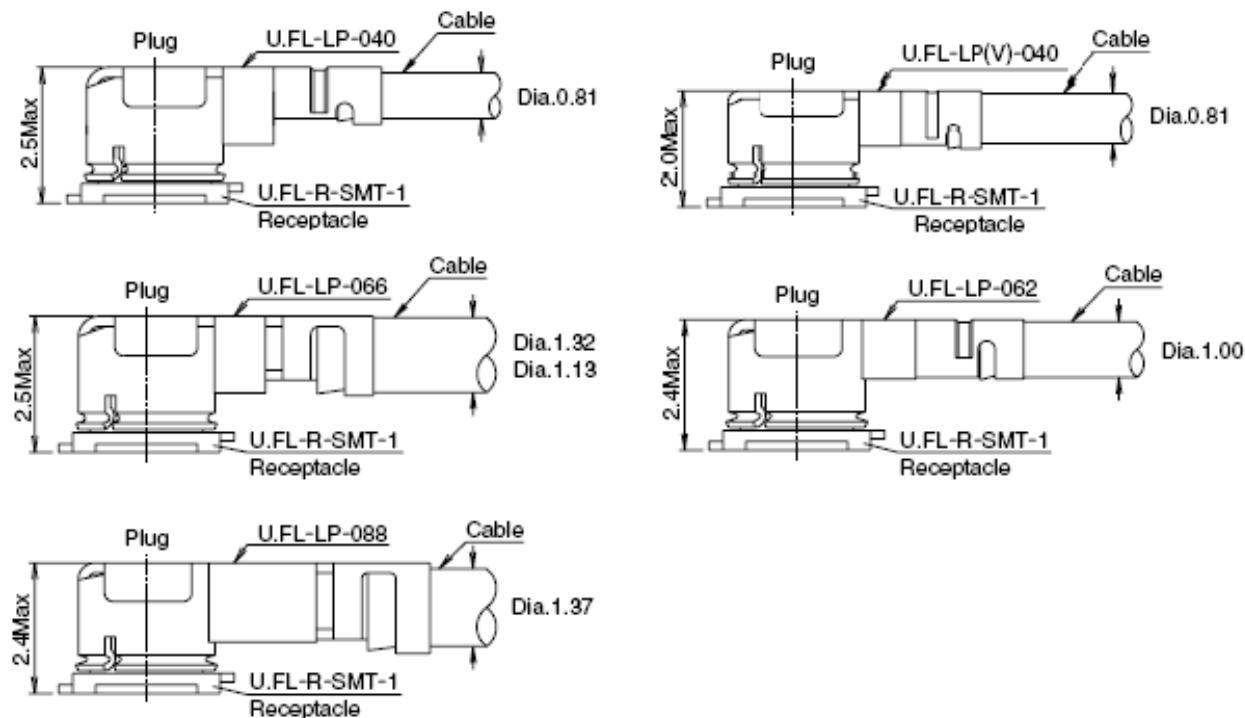


Figure 35: Space Factor of Mated Connectors (Unit: mm)

For more details, visit <http://www.hirose.com>.

6 Electrical Characteristics and Reliability

6.1. Absolute Maximum Ratings

Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are listed in the following table.

Table 32: Absolute Maximum Ratings

Parameter	Min.	Max.	Unit
VBAT_BB	-0.2	4.5	V
VBAT_RF	-0.2	4.5	V
USB_VBUS	1.19	2.0	V
Voltage at Digital Pins	-0.3	2.0	V

6.2. Power Supply Ratings

Table 33: Power Supply Ratings

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
VBAT_BB ¹³	Power supply for the module's baseband part	The actual input voltages must be kept between the minimum and maximum values.	2.2	3.3	4.35	V

¹³ When the module starts up normally, to ensure full functionality mode, the minimum power supply voltage should be higher than 3.1 V.

VBAT_RF ¹³	Power supply for the module's RF part	The actual input voltages must be kept between the minimum and maximum values.	3.1	3.3	4.2	V
USBPHY_3P3	Power supply for USB PHY circuit	-	-	3.3	-	V
USB_VBUS	USB connection detect	-	1.19	-	2.0	V

6.3. Operating and Storage Temperatures

Table 34: Operating and Storage Temperatures

Parameter	Min.	Typ.	Max.	Unit
Operating Temperature Range ¹⁴	-35	+25	+75	°C
Extended Temperature Range ¹⁵	-40	-	+85	°C
Storage Temperature Range	-40	-	+90	°C

6.4. Power Consumption

The following table shows the power consumption of the module.

Table 35: BG770A-GL Power Consumption (Power Supply: 3.3 V, Room Temperature)

Description	Conditions	Avg.	Unit
Leakage	Power-off @ USB/UART disconnected	1.4	µA
PSM	PSM @ USB/UART disconnected	1.4	µA
Rock Bottom	AT+CFUN=0 @ Sleep mode	45	µA

¹⁴ Within the operating temperature range, the module meets 3GPP specifications.

¹⁵ Within the extended temperature range, the module remains the ability to establish and maintain functions such as SMS and data transmission, without any unrecoverable malfunction. Radio spectrum and radio network are not influenced, while one or more specifications, such as P_{out} , may exceed the specified tolerances of 3GPP. When the temperature returns to the operating temperature range, the module meets 3GPP specifications again.

Sleep Mode (USB/UART disconnected)	LTE Cat M1 DRX = 1.28 s	1.1	mA
	LTE Cat NB1 DRX = 1.28 s	2.2	mA
	LTE Cat M1 e-I-DRX = 40.96 s	0.06	mA
	@ PTW = 1.28 s, DRX = 1.28 s		
	LTE Cat M1 e-I-DRX = 81.92 s	0.05	mA
	@ PTW = 1.28 s, DRX = 1.28 s		
	LTE Cat M1 e-I-DRX = 81.92 s	0.07	mA
	@ PTW = 2.56 s, DRX = 1.28 s		
	LTE Cat NB1 e-I-DRX = 40.96 s	0.16	mA
	@ PTW = 2.56 s, DRX = 1.28 s		
Idle State (USB/UART disconnected)	LTE Cat NB1 e-I-DRX = 81.92 s	0.12	mA
	@ PTW = 2.56 s, DRX = 1.28 s		
	LTE Cat M1 DRX = 1.28 s	16.5	mA
	LTE Cat NB1 DRX = 1.28 s	17.0	mA
	LTE Cat M1 e-I-DRX = 81.92 s	16.0	mA
	@ PTW = 2.56 s, DRX = 1.28 s		
	LTE Cat NB1 e-I-DRX = 81.92 s	16.0	mA
	@ PTW = 2.56 s, DRX = 1.28 s		
	LTE HD-FDD B1 @ 23.53 dBm	178	mA
	LTE HD-FDD B2 @ 23.70 dBm	179	mA
LTE Cat M1 data transfer (GNSS OFF)	LTE HD-FDD B3 @ 23.65 dBm	187	mA
	LTE HD-FDD B4 @ 23.61 dBm	187	mA
	LTE HD-FDD B5 @ 23.24 dBm	201	mA
	LTE HD-FDD B8 @ 23.60 dBm	192	mA
	LTE HD-FDD B12 @ 23.42 dBm	205	mA
	LTE HD-FDD B13 @ 23.62 dBm	203	mA
	LTE HD-FDD B18 @ 23.28 dBm	201	mA

LTE Cat NB1 data transfer (GNSS OFF)	LTE HD-FDD B19 @ 23.37 dBm	203	mA
	LTE HD-FDD B20 @ 23.30 dBm	204	mA
	LTE HD-FDD B25 @ 23.51 dBm	186	mA
	LTE HD-FDD B26 @ 23.44 dBm	201	mA
	LTE HD-FDD B27 @ 23.33 dBm	200	mA
	LTE HD-FDD B28A @ 23.56 dBm	201	mA
	LTE HD-FDD B28B @ 23.69 dBm	201	mA
	LTE HD-FDD B66 @ 23.64 dBm	188	mA
	LTE HD-FDD B1 @ 23.49 dBm	173	mA
	LTE HD-FDD B2 @ 23.48 dBm	174	mA
	LTE HD-FDD B3 @ 23.75 dBm	174	mA
	LTE HD-FDD B4 @ 23.48 dBm	178	mA
	LTE HD-FDD B5 @ 23.34 dBm	192	mA
	LTE HD-FDD B8 @ 23.87 dBm	185	mA
	LTE HD-FDD B12 @ 23.42 dBm	198	mA
	LTE HD-FDD B13 @ 23.75 dBm	192	mA
	LTE HD-FDD B17 @ 23.55 dBm	198	mA
	LTE HD-FDD B18 @ 23.47 dBm	194	mA
	LTE HD-FDD B19 @ 23.41 dBm	194	mA
	LTE HD-FDD B20 @ 23.56 dBm	191	mA
	LTE HD-FDD B25 @ 23.50 dBm	174	mA
	LTE HD-FDD B28 @ 23.93 dBm	192	mA
	LTE HD-FDD B66 @ 23.97 dBm	175	mA

Table 36: BG770A-SN Power Consumption (Power Supply: 3.3 V, Room Temperature)

Description	Conditions	Avg.	Unit
Leakage	Power-off @ USB/UART disconnected	TBD	µA
PSM	PSM @ USB/UART disconnected	TBD	µA
Rock Bottom	AT+CFUN=0 @ Sleep mode	TBD	µA
	LTE Cat M1 DRX = 1.28 s	TBD	mA
	LTE Cat NB1 DRX = 1.28 s	TBD	mA
	LTE Cat M1 e-I-DRX = 40.96 s @ PTW = 1.28 s, DRX = 1.28 s	TBD	mA
	LTE Cat M1 e-I-DRX = 81.92 s @ PTW = 1.28 s, DRX = 1.28 s	TBD	mA
Sleep Mode (USB/UART disconnected)	LTE Cat M1 e-I-DRX = 81.92 s @ PTW = 2.56 s, DRX = 1.28 s	TBD	mA
	LTE Cat NB1 e-I-DRX = 40.96 s @ PTW = 2.56 s, DRX = 1.28 s	TBD	mA
	LTE Cat NB1 e-I-DRX = 81.92 s @ PTW = 2.56 s, DRX = 1.28 s	TBD	mA
	LTE Cat M1 DRX = 1.28 s	TBD	mA
	LTE Cat NB1 DRX = 1.28 s	TBD	mA
Idle State (USB/UART disconnected)	LTE Cat M1 e-I-DRX = 81.92 s @ PTW = 2.56 s, DRX = 1.28 s	TBD	mA
	LTE Cat NB1 e-I-DRX = 81.92 s @ PTW = 2.56 s, DRX = 1.28 s	TBD	mA
	LTE HD-FDD B1 @ 23.53 dBm	TBD	mA
LTE Cat M1 data transfer (GNSS OFF)	LTE HD-FDD B2 @ 23.70 dBm	TBD	mA
	LTE HD-FDD B3 @ 23.65 dBm	TBD	mA
	LTE HD-FDD B4 @ 23.61 dBm	TBD	mA

	LTE HD-FDD B5 @ 23.24 dBm	TBD	mA
	LTE HD-FDD B8 @ 23.60 dBm	TBD	mA
	LTE HD-FDD B12 @ 23.42 dBm	TBD	mA
	LTE HD-FDD B13 @ 23.62 dBm	TBD	mA
	LTE HD-FDD B18 @ 23.28 dBm	TBD	mA
	LTE HD-FDD B19 @ 23.37 dBm	TBD	mA
	LTE HD-FDD B20 @ 23.30 dBm	TBD	mA
	LTE HD-FDD B25 @ 23.51 dBm	TBD	mA
	LTE HD-FDD B26 @ 23.44 dBm	TBD	mA
	LTE HD-FDD B27 @ 23.33 dBm	TBD	mA
	LTE HD-FDD B28A @ 23.56 dBm	TBD	mA
	LTE HD-FDD B28B @ 23.69 dBm	TBD	mA
	LTE HD-FDD B66 @ 23.64 dBm	TBD	mA
LTE Cat NB1 data transfer (GNSS OFF)	LTE HD-FDD B1 @ 23.49 dBm	TBD	mA
	LTE HD-FDD B2 @ 23.48 dBm	TBD	mA
	LTE HD-FDD B3 @ 23.75 dBm	TBD	mA
	LTE HD-FDD B4 @ 23.48 dBm	TBD	mA
	LTE HD-FDD B5 @ 23.34 dBm	TBD	mA
	LTE HD-FDD B8 @ 23.87 dBm	TBD	mA
	LTE HD-FDD B12 @ 23.42 dBm	TBD	mA
	LTE HD-FDD B13 @ 23.75 dBm	TBD	mA
	LTE HD-FDD B17 @ 23.55 dBm	TBD	mA
	LTE HD-FDD B18 @ 23.47 dBm	TBD	mA
	LTE HD-FDD B19 @ 23.41 dBm	TBD	mA
	LTE HD-FDD B20 @ 23.56 dBm	TBD	mA

LTE HD-FDD B25 @ 23.50 dBm	TBD	mA
LTE HD-FDD B28 @ 23.93 dBm	TBD	mA
LTE HD-FDD B66 @ 23.97 dBm	TBD	mA

Table 37: BG773A-GL Power Consumption (Power Supply: 3.3 V, Room Temperature)

Description	Conditions	Avg.	Unit
Leakage	Turn-off @ USB/UART disconnected	1.4	µA
PSM	PSM @ USB/UART disconnected	1.4	µA
Rock Bottom	AT+CFUN=0 @ Sleep mode	30	µA
Sleep Mode (USB/UART disconnected)	LTE Cat M1 DRX = 1.28 s	1.2	mA
	LTE Cat NB1 DRX = 1.28 s	2.2	mA
	LTE Cat M1 e-I-DRX = 40.96 s @ PTW = 1.28 s, DRX = 1.28 s	0.07	mA
	LTE Cat M1 e-I-DRX = 81.92 s @ PTW = 1.28 s, DRX = 1.28 s	0.05	mA
	LTE Cat M1 e-I-DRX = 81.92 s @ PTW = 2.56 s, DRX = 1.28 s	0.06	mA
	LTE Cat NB1 e-I-DRX = 40.96 s @ PTW = 2.56 s, DRX = 1.28 s	0.22	mA
	LTE Cat NB1 e-I-DRX = 81.92 s @ PTW = 2.56 s, DRX = 1.28 s	0.16	mA
	LTE Cat M1 DRX = 1.28 s	16.0	mA
	LTE Cat NB1 DRX = 1.28 s	17.3	mA
Idle State (USB/UART disconnected)	LTE Cat M1 e-I-DRX = 81.92 s @ PTW = 2.56 s, DRX = 1.28 s	15.7	mA
	LTE Cat NB1 e-I-DRX = 81.92 s @ PTW = 2.56 s, DRX = 1.28 s	15.8	mA

LTE Cat M1 data transfer (GNSS OFF)	LTE HD-FDD B1 @ 23.40 dBm	421	mA
	LTE HD-FDD B2 @ 23.14 dBm	422	mA
	LTE HD-FDD B3 @ 23.27 dBm	399	mA
	LTE HD-FDD B4 @ 23.29 dBm	402	mA
	LTE HD-FDD B5 @ 23.23 dBm	494	mA
	LTE HD-FDD B8 @ 23.48 dBm	441	mA
	LTE HD-FDD B12 @ 23.56 dBm	514	mA
	LTE HD-FDD B13 @ 23.19 dBm	505	mA
	LTE HD-FDD B18 @ 23.36 dBm	506	mA
	LTE HD-FDD B19 @ 23.45 dBm	504	mA
	LTE HD-FDD B20 @ 23.25 dBm	487	mA
	LTE HD-FDD B25 @ 23.58 dBm	422	mA
	LTE HD-FDD B26 @ 23.10 dBm	505	mA
	LTE HD-FDD B27 @ 23.06 dBm	505	mA
LTE Cat NB1 data transfer (GNSS OFF)	LTE HD-FDD B28A @ 23.40 dBm	495	mA
	LTE HD-FDD B28B @ 23.39 dBm	492	mA
	LTE HD-FDD B66 @ 22.87. dBm	405	mA
	LTE HD-FDD B1 @ 23.19 dBm	442	mA
	LTE HD-FDD B2 @ 23.42 dBm	449	mA
	LTE HD-FDD B3 @ 23.38 dBm	429	mA
	LTE HD-FDD B4 @ 23.32 dBm	428	mA
	LTE HD-FDD B5 @ 23.24 dBm	514	mA
	LTE HD-FDD B8 @ 23.40 dBm	477	mA
	LTE HD-FDD B12 @ 23.17 dBm	565	mA
	LTE HD-FDD B13 @ 23.25 dBm	511	mA

LTE HD-FDD B17 @ 23.26 dBm	531	mA
LTE HD-FDD B18 @ 23.43 dBm	529	mA
LTE HD-FDD B19 @ 23.32 dBm	545	mA
LTE HD-FDD B20 @ 23.41 dBm	522	mA
LTE HD-FDD B25 @ 23.48 dBm	456	mA
LTE HD-FDD B28 @ 23.28 dBm	541	mA
LTE HD-FDD B66 @ 23.01 dBm	439	mA

Table 38: BG770A-GL GNSS Power Consumption (Power Supply: 3.3 V, Room Temperature)

Description	Conditions	Typ.	Unit
Acquisition (AT+CFUN=0)	Cold start @ Instrument	49.04	mA
	Hot start @ Instrument	50.17	mA
	Lost state @ Instrument	49.31	mA
Tracking (AT+CFUN=0)	Instrument environment @ Passive antenna	49.58	mA
	Half sky @ Real network, Passive antenna	48.37	mA

Table 39: BG770A-SN GNSS Power Consumption (Power Supply: 3.3 V, Room Temperature)

Description	Conditions	Typ.	Unit
Acquisition (AT+CFUN=0)	Cold start @ Instrument	TBD	mA
	Hot start @ Instrument	TBD	mA
	Lost state @ Instrument	TBD	mA
Tracking (AT+CFUN=0)	Instrument environment @ Passive antenna	TBD	mA
	Half sky @ Real network, Passive antenna	TBD	mA

Table 40: BG773A-GL GNSS Power Consumption (Power Supply: 3.3 V, Room Temperature)

Description	Conditions	Typ.	Unit
Acquisition (AT+CFUN=0)	Cold start @ Instrument	54.39	mA
	Hot start @ Instrument	51.64	mA
	Lost state @ Instrument	52.83	mA
Tracking (AT+CFUN=0)	Instrument environment @ Passive antenna	54.54	mA
	Half sky @ Real network, Passive antenna	TBD	mA

6.5. Digital I/O Characteristic

Table 41: 1.8 V Digital I/O Requirements – USIM

Parameter	Description	Min.	Max.	Unit
USIM_VDD	Power supply	1.7	1.9	V
V _{IH}	Input high voltage	1.26	2.0	V
V _{IL}	Input low voltage	-0.2	0.54	V
V _{OH}	Output high voltage	1.44	2.0	V
V _{OL}	Output low voltage	-0.2	0.36	V

Table 42: 1.8 V Digital I/O Requirements – Others

Parameter	Description	Min.	Max.	Unit
V _{IH}	Input high voltage	1.26	2.0	V
V _{IL}	Input low voltage	-0.2	0.54	V
V _{OH}	Output high voltage	1.44	2.0	V
V _{OL}	Output low voltage	-0.2	0.36	V

6.6. Tx Power

Table 43: Tx Power

Frequency Bands	Max. Tx Power	Min. Tx Power
LTE HD-FDD: B1/B2/B3/B4/B5/B8/B12/B13/B17 ¹⁶ /B18/	23 dBm ±2 dB	< -39 dBm
B19/B20/B25/B26 ¹⁷ /B27 ¹⁷ /B28/B66		

6.7. Rx Sensitivity

Table 44: Conducted RF Receiving Sensitivity

Frequency Band	Primary	Diversity	Receiving Sensitivity (dBm)	
			Cat M1/3GPP	Cat NB1 ¹⁸ /3GPP
LTE HD-FDD B1			-106.6/-102.3	-115.3/-107.5
LTE HD-FDD B2			-106.2/-100.3	-114.3/-107.5
LTE HD-FDD B3			-106.2/-99.3	-114/-107.5
LTE HD-FDD B4			-106.6/-102.3	-114/-107.5
LTE HD-FDD B5			-106.8/-100.8	-115/-107.5
LTE HD-FDD B8	Supported	-	-107/-99.8	-115/-107.5
LTE HD-FDD B12			-106.4/-99.3	-114.3/-107.5
LTE HD-FDD B13			-106.4/-99.3	-114.6/-107.5
LTE HD-FDD B17 ¹⁶			-	-114.6/-107.5
LTE HD-FDD B18			-107.2/-102.3	-115.3/-107.5
LTE HD-FDD B19			-107/-102.3	-115.3/-107.5

¹⁶ LTE HD-FDD B17 is supported in Cat NB1 only.

¹⁷ LTE HD-FDD B26 and B27 are supported in Cat M1 only.

¹⁸ LTE Cat NB1 receiving sensitivity without repetitions.

LTE HD-FDD B20	-106.6/-99.8	-114.6/-107.5
LTE HD-FDD B25	-106.4/-100.3	-114.3/-107.5
LTE HD-FDD B26 ¹⁹	-107/-100.3	-
LTE HD-FDD B27 ¹⁹	-107.2/-100.8	-
LTE HD-FDD B28	-106.6/-100.8	-114.6/-107.5
LTE HD-FDD B66	-106.8/-101.8	-114.9/-107.5

6.8. ESD Protection

Static electricity occurs naturally and it may damage the module. Therefore, applying proper ESD countermeasures and handling methods is imperative. For example, wear anti-static gloves during the development, production, assembly, and testing of the module; add ESD protection components to the ESD sensitive interfaces and points in the product design.

The following table shows the electrostatic discharge characteristics of the module.

Table 45: Electrostatic Discharge Characteristics (Temperature: 25–30 °C, Humidity: 40 ±5 %)

Tested Interfaces	Contact Discharge	Air Discharge	Unit
VBAT, GND	±5	±6	kV
Main/GNSS Antenna Interface	±5	±8	kV

¹⁹ LTE HD-FDD B26 and B27 are supported in Cat M1 only.

7 Mechanical Information

This chapter describes the mechanical dimensions of the module. All dimensions are measured in millimeter (mm), and the dimensional tolerances are ± 0.2 mm unless otherwise specified.

7.1. Top and Side Dimensions

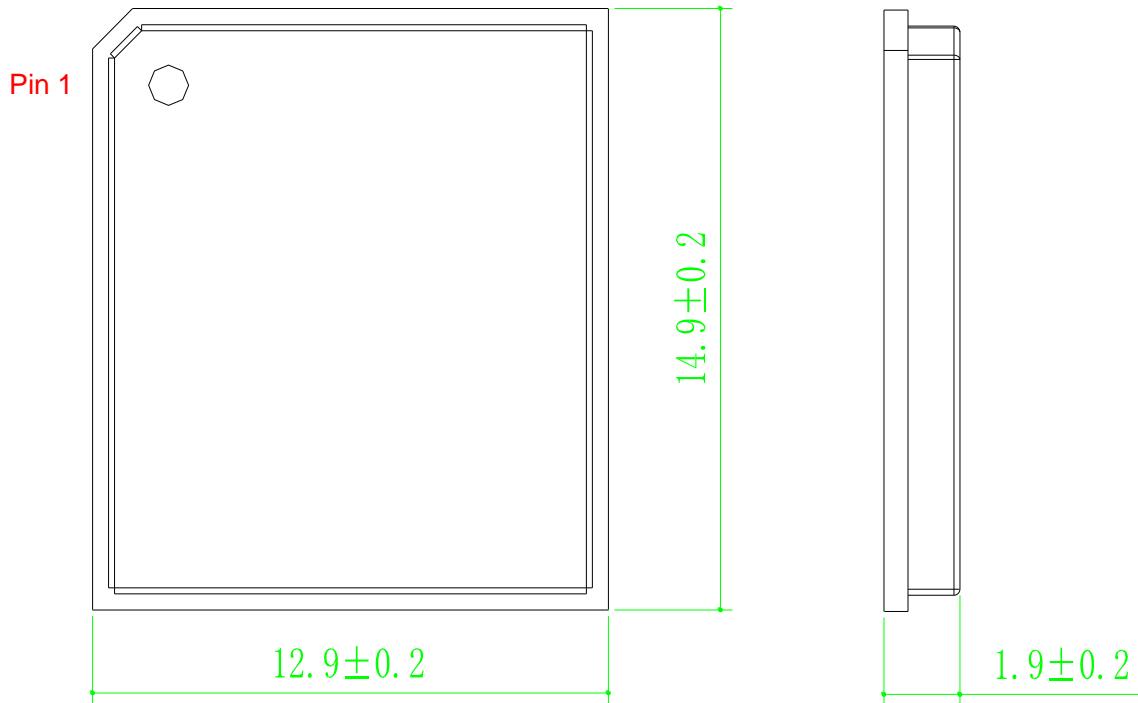


Figure 36: Module Top and Side Dimensions

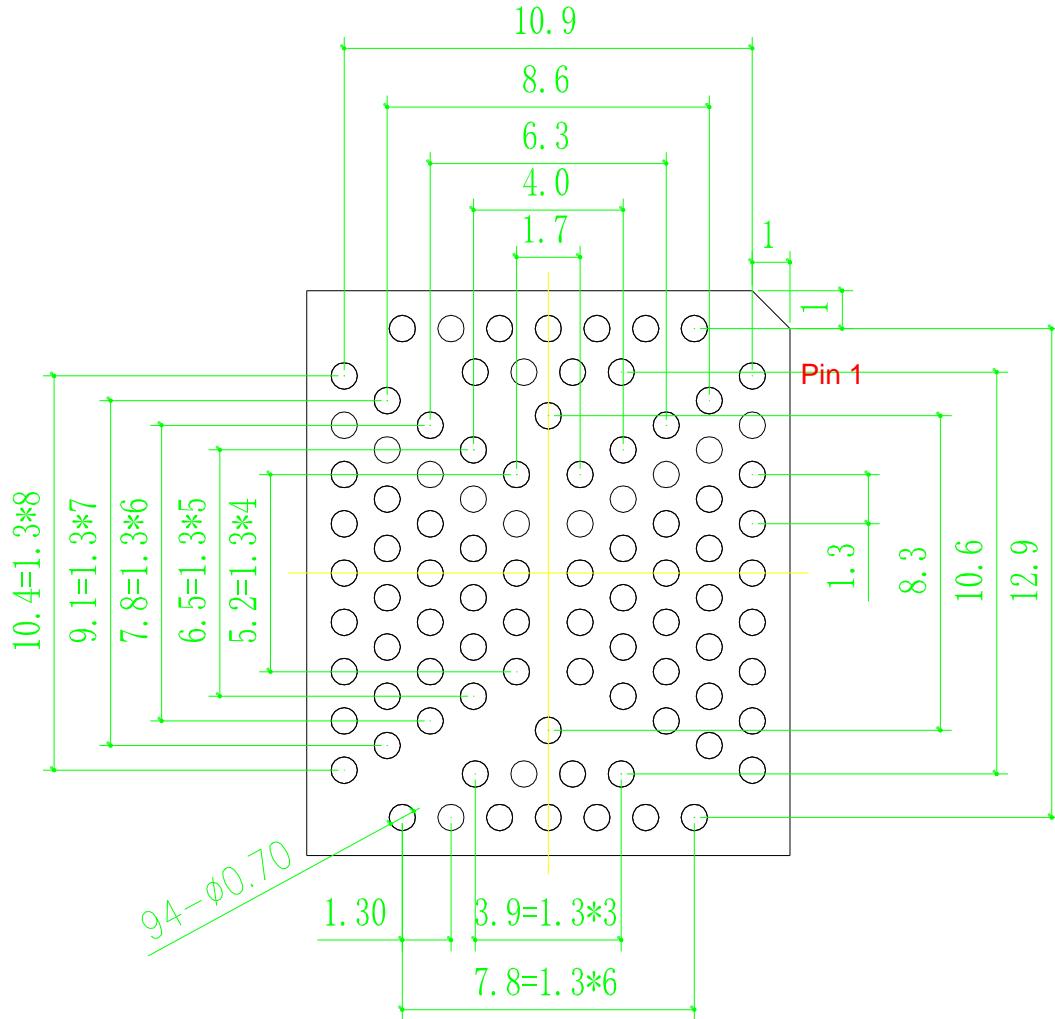


Figure 37: Bottom Dimensions (Bottom View)

NOTE

The package warpage level of the module refers to the *JEITA ED-7306* standard.

7.2. Recommended Footprint

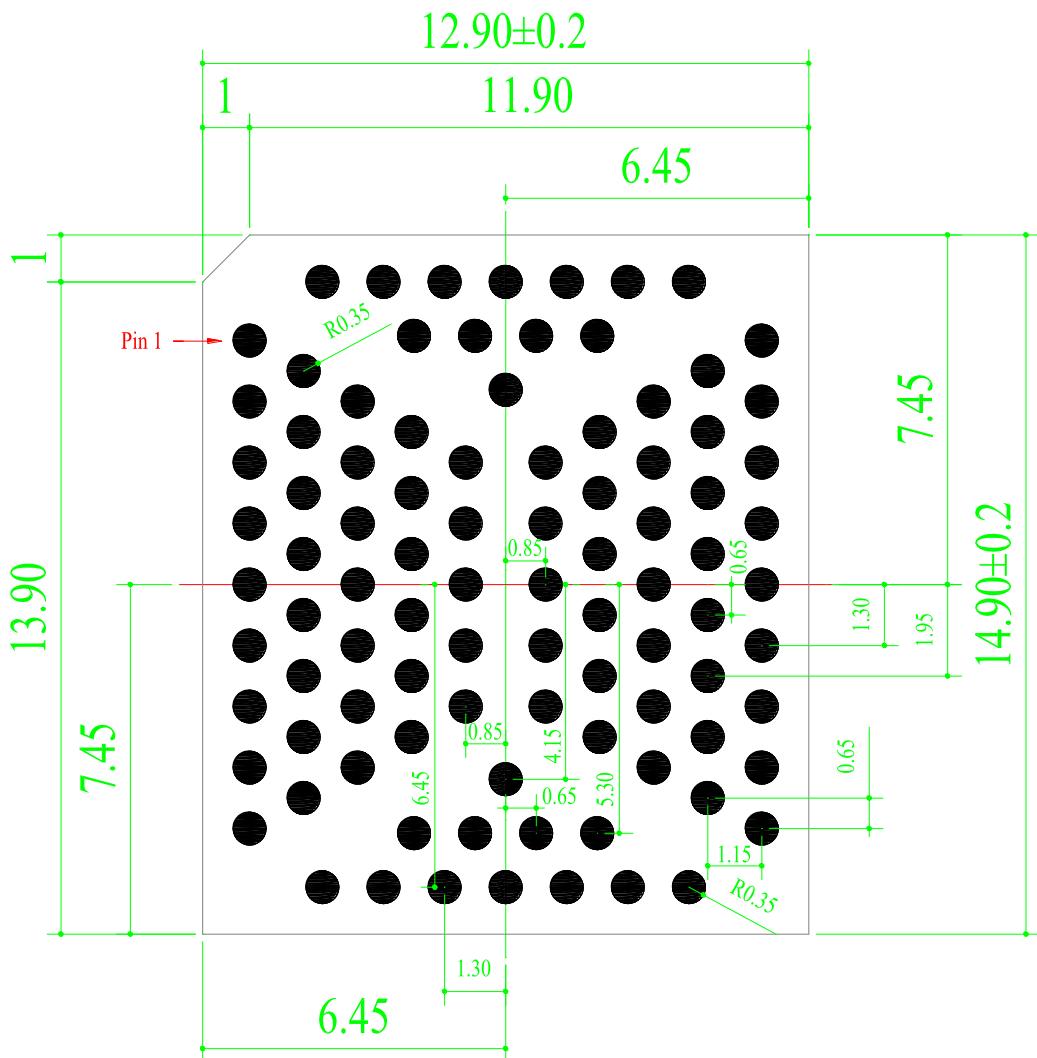


Figure 38: Recommended Footprint (Top View)

NOTE

1. Keep at least 3 mm between the module and other components on the motherboard to improve soldering quality and maintenance convenience.
2. All RESERVED pins must be kept open.
3. For stencil design requirements of the module, see [document \[7\]](#).

7.3. Top and Bottom Views

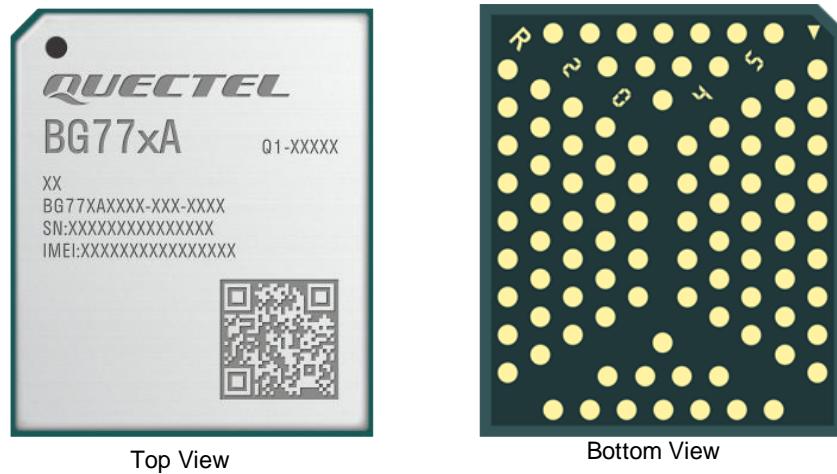


Figure 39: Top and Bottom Views

NOTE

Images above are for illustration purpose only and may differ from the actual module. For authentic appearance and label, refer to the module received from Quectel.

8 Storage, Manufacturing and Packaging

8.1. Storage Conditions

The module is provided with vacuum-sealed packaging. MSL of the module is rated as 3. The storage requirements are shown below.

1. Recommended Storage Condition: the temperature should be 23 ± 5 °C and the relative humidity should be 35–60 %.
2. Shelf life (in a vacuum-sealed packaging): 12 months in Recommended Storage Condition.
3. Floor life: 168 hours ²⁰ in a factory where the temperature is 23 ± 5 °C and relative humidity is below 60 %. After the vacuum-sealed packaging is removed, the module must be processed in reflow soldering or other high-temperature operations within 168 hours. Otherwise, the module should be stored in an environment where the relative humidity is less than 10 % (e.g., a dry cabinet).
4. The module should be pre-baked to avoid blistering, cracks and inner-layer separation in PCB under the following circumstances:
 - The module is not stored in Recommended Storage Condition;
 - Violation of the third requirement mentioned above;
 - Vacuum-sealed packaging is broken, or the packaging has been removed for over 24 hours;
 - Before module repairing.
5. If needed, the pre-baking should follow the requirements below:
 - The module should be baked for 8 hours at 120 ± 5 °C;
 - The module must be soldered to PCB within 24 hours after the baking, otherwise it should be put in a dry environment such as in a dry cabinet.

²⁰ This floor life is only applicable when the environment conforms to *IPC/JEDEC J-STD-033*. It is recommended to start the solder reflow process within 24 hours after the package is removed if the temperature and moisture do not conform to, or are not sure to conform to *IPC/JEDEC J-STD-033*. Do not unpack the modules in large quantities until they are ready for soldering.

NOTE

1. To avoid blistering, layer separation and other soldering issues, extended exposure of the module to the air is forbidden.
2. Take out the module from the package and put it on high-temperature-resistant fixtures before baking. All modules must be soldered to PCB within 24 hours after the baking, otherwise put them in the drying oven. If shorter baking time is desired, see *IPC/JEDEC J-STD-033* for the baking procedure.
3. Pay attention to ESD protection, such as wearing anti-static gloves, when touching the modules.

8.2. Manufacturing and Soldering

Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. Apply proper force on the squeegee to produce a clean stencil surface on a single pass. To guarantee module soldering quality, the thickness of stencil for the module is recommended to be 0.10–0.13 mm. For more details, see **document [6]**.

The peak reflow temperature should be 235–246 °C, with 246 °C as the absolute maximum reflow temperature. To avoid damage to the module caused by repeated heating, it is strongly recommended that the module should be mounted only after reflow soldering for the other side of PCB has been completed. The recommended reflow soldering thermal profile (lead-free reflow soldering) and related parameters are shown below.

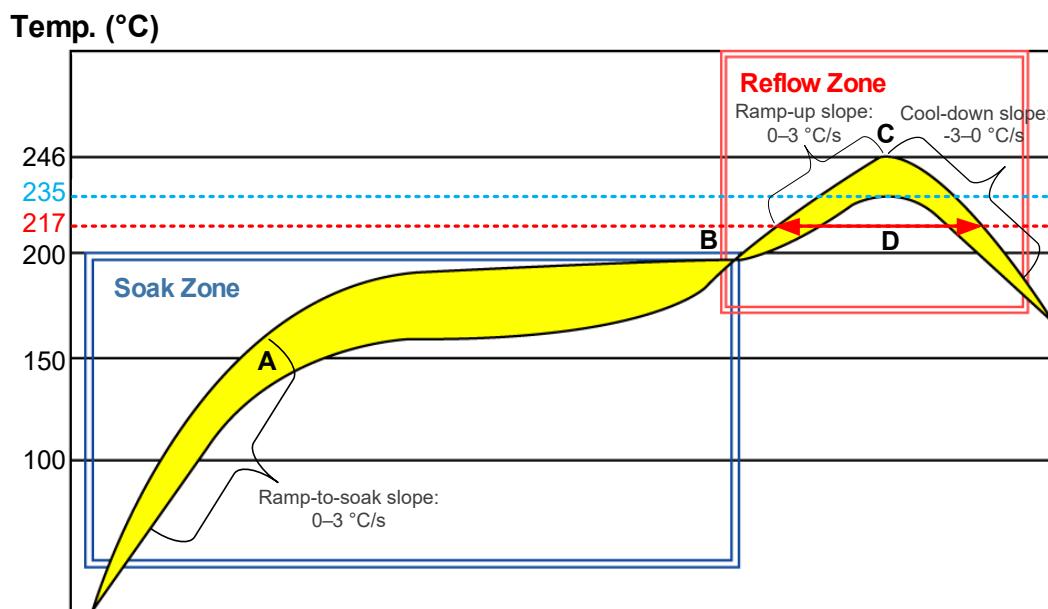


Figure 40: Recommended Reflow Soldering Thermal Profile

Table 46: Recommended Thermal Profile Parameters

Factor	Recommended Value
Soak Zone	
Ramp-to-soak slope	0–3 °C/s
Soak time (between A and B: 150 °C and 200 °C)	70–120 s
Reflow Zone	
Ramp-up slope	0–3 °C/s
Reflow time (D: over 217°C)	40–70 s
Max temperature	235–246 °C
Cool-down slope	-3–0 °C/s
Reflow Cycle	
Max reflow cycle	1

NOTE

1. The above profile parameter requirements are for the measured temperature of the solder joints. Both the hottest and coldest spots of solder joints on the PCB should meet the above requirements.
2. If the module requires conformal coating, do NOT use any coating material that may chemically react with the PCB or shielding cover, and prevent the coating material from flowing into the module.
3. Avoid using ultrasonic technology for module cleaning since it can damage crystals inside the module.
4. Due to the complexity of the SMT process, please contact Quectel Technical Supports in advance for any situation that you are not sure about, or any process (e.g. selective soldering, ultrasonic soldering) that is not mentioned in **document [7]**.

8.3. Packaging Specifications

This chapter outlines the key packaging parameters and processes. All figures below are for reference purposes only, as the actual appearance and structure of packaging materials may vary in delivery.

The modules are packed in a tape and reel packaging as specified in the sub-chapters below.

8.3.1. Carrier Tape

Carrier tape dimensions are illustrated in the following figure and table:

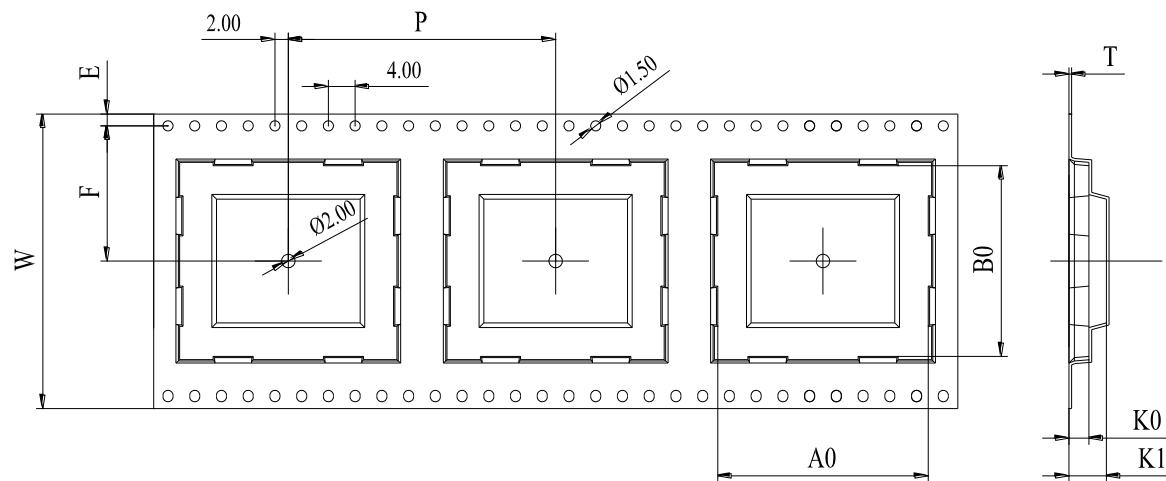


Figure 41: Carrier Tape Dimension Drawing

Table 47: Carrier Tape Dimension Table (Unit: mm)

W	P	T	A0	B0	K0	K1	F	E
32	20	0.35	13.3	15.3	2.35	5.35	14.2	1.75

8.3.2. Plastic Reel

Plastic reel dimensions are illustrated in the following figure and table:

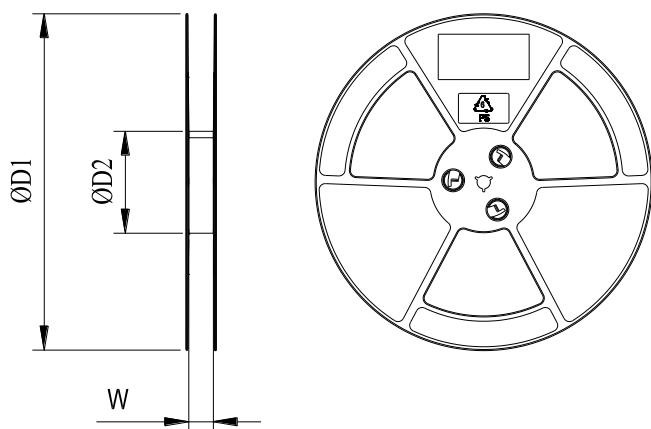
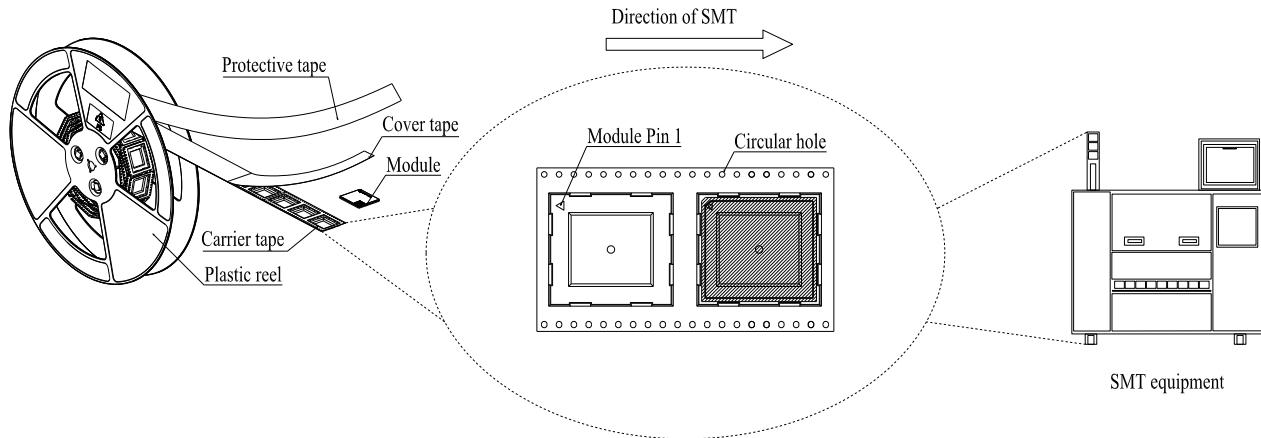
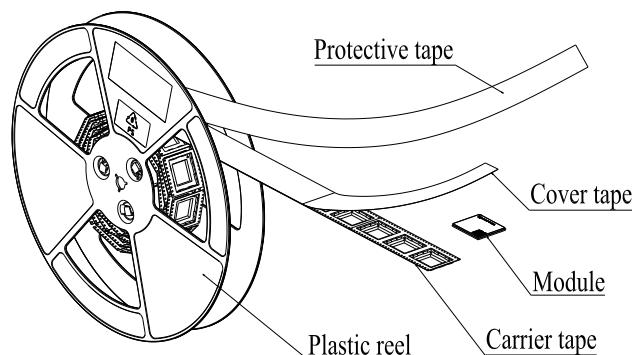
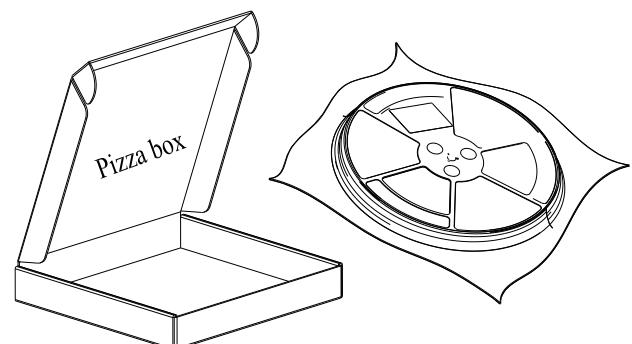
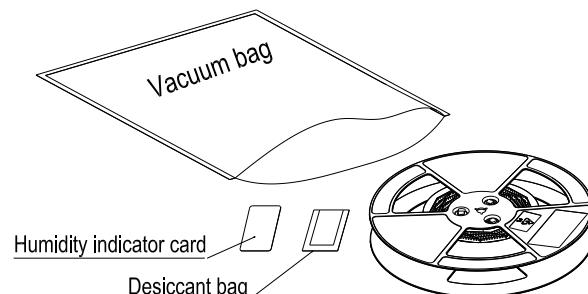



Figure 42: Plastic Reel Dimension Drawing


Table 48: Plastic Reel Dimension Table (Unit: mm)

$\phi D1$	$\phi D2$	W
330	100	32.5

8.3.3. Mounting Direction



Figure 43: Mounting Direction

8.3.4. Packaging Process

Place the modules onto the carrier tape cavity and cover them securely with cover tape. Wind the heat-sealed carrier tape onto a plastic reel and apply a protective tape for additional protection. 1 plastic reel can pack 500 modules.

Place the packaged plastic reel, humidity indicator card and desiccant bag into a vacuum bag, and vacuumize it.

Place the vacuum-packed plastic reel into a pizza box.

Place the 4 packaged pizza boxes into 1 carton and seal it. 1 carton can pack 2000 modules.

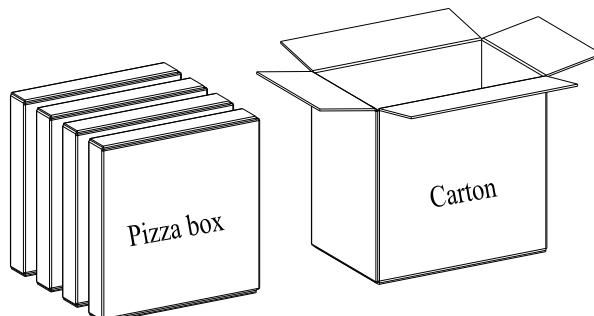


Figure 44: Packaging Process

9 Appendix References

Table 49: Related Documents

Document Name
[1] Quectel_BG77xA-GL&BG95xA-GL_GNSS_Application_Note
[2] Quectel_BG77xA-GL_TE-B_User_Guide
[3] Quectel_BG77xA-GL&BG95xA-GL_QCFG_AT_Commands_Manual
[4] Quectel_BG77xA-GL&BG95xA-GL_AT_Commands_Manual
[5] Quectel_RF_Layout_Application_Note
[6] Quectel_Module_Stencil_Design_Requirements
[7] Quectel_Module_SMT_Application_Note

Table 50: Terms and Abbreviations

Abbreviation	Description
3GPP	3rd Generation Partnership Project
ADC	Analog to Digital Converter
AGPS	Assisted Global Positioning System
Balun	Balanced to Unbalanced
bps	Bits Per Second
CHAP	Challenge Handshake Authentication Protocol
CoAP	Constrained Application Protocol
CTS	Clear to Send
DFOTA	Delta Firmware Upgrade Over the Air

DL	Downlink
DM	Debug Mode
DRX	Discontinuous Reception
EGSM	Extended GSM (Global System for Mobile Communications)
e-I-DRX	Extended Idle Mode Discontinuous Reception
EPC	Evolved Packet Core
ESD	Electrostatic Discharge
EVB	Evaluation Board
FDD	Frequency Division Duplex
FTP(S)	FTP over SSL
GNSS	Global Navigation Satellite System
GLONASS	Global Navigation Satellite System (Russia)
GPIO	General-purpose Input/Output
GPS	Global Positioning System
GRFC	Generic RF Controller
HD	Half Duplex
HSS	Home Subscriber Server
I2C	Inter-Integrated Circuit
LDO	Low-dropout Regulator
LED	Light Emitting Diode
LGA	Land Grid Array
LNA	Low Noise Amplifier
LPF	Low Pass Filter
LPWA	Low-Power Wide-Area (Network)
LTE	Long Term Evolution

LwM2M	Lightweight M2M
ME	Mobile Equipment
MLCC	Multi-layer Ceramic Chip
MO	Mobile Originated
MOQ	Minimum Order Quantity
MQTT	Message Queuing Telemetry Transport
MSL	Moisture Sensitivity Levels
MT	Mobile Terminated
NITZ	Network Identity and Time Zone
NMEA	NMEA (National Marine Electronics Association) 0183 Interface Standard
PA	Power Amplifier
PAP	Password Authentication Protocol
PCB	Printed Circuit Board
PCM	Pulse Code Modulation
PDU	Protocol Data Unit
PHY	Physical
PING	Packet Internet Groper
PMU	Power Management Unit
POS	Point of Sale
PPP	Point-to-Point Protocol
PSM	Power Saving Mode
RF	Radio Frequency
RFIC	Radio Frequency Integrated Circuit
RHCP	Right Hand Circularly Polarized
RoHS	Restriction of Hazardous Substances

RTS	Request to Send
SAW	Surface Acoustic Wave
SFP	Small Footprint
SMD	Surface Mount Device
SMS	Short Message Service
SSL	Secure Sockets Layer
TCP	Transmission Control Protocol
TDM	Time-division Multiplexing
TLS	Transport Layer Security
UART	Universal Asynchronous Receiver/Transmitter
UDP	User Datagram Protocol
UL	Uplink
UE	User Equipment
URC	Unsolicited Result Code
USB	Universal Serial Bus
USIM	Universal Subscriber Identity Module
Vmax	Maximum Voltage
Vnom	Nominal Voltage
Vmin	Minimum Voltage
V _{IH} max	Maximum High-level Input Voltage
V _{IH} min	Minimum High-level Input Voltage
V _{IL} max	Maximum Low-level Input Voltage
VSWR	Voltage Standing Wave Ratio
WWAN	Wireless Wide Area Network

Important Notice to OEM integrators

1. This module is limited to OEM installation ONLY.
2. This module is limited to installation in mobile or fixed applications, according to Part 2.1091(b).
3. The separate approval is required for all other operating configurations, including portable configurations with respect to Part 2.1093 and different antenna configurations
4. For FCC Part 15.31 (h) and (k): The host manufacturer is responsible for additional testing to verify compliance as a composite system. When testing the host device for compliance with Part 15 Subpart B, the host manufacturer is required to show compliance with Part 15 Subpart B while the transmitter module(s) are installed and operating. The modules should be transmitting and the evaluation should confirm that the module's intentional emissions are compliant (i.e. fundamental and out of band emissions). The host manufacturer must verify that there are no additional unintentional emissions other than what is permitted in Part 15 Subpart B or emissions are compliant with the transmitter(s) rule(s). The Grantee will provide guidance to the host manufacturer for Part 15 B requirements if needed.

Important Note

notice that any deviation(s) from the defined parameters of the antenna trace, as described by the instructions, require that the host product manufacturer must notify to Quectel that they wish to change the antenna trace design. In this case, a Class II permissive change application is required to be filed by the USI, or the host manufacturer can take responsibility through the change in FCC ID XMR024BG770ASN procedure followed by a Class II permissive change application.

End Product Labeling

When the module is installed in the host device, the FCC/IC ID label must be visible through a window on the final device or it must be visible when an access panel, door or cover is easily re-moved. If not, a second label must be placed on the outside of the final device that contains the following text: "Contains FCC ID: XMR024BG770ASN"

"Contains IC: 10224A-024BG770ASN"

The FCC ID/IC ID can be used only when all FCC/IC compliance requirements are met.

Antenna Installation

- (1) The antenna must be installed such that 20 cm is maintained between the antenna and users,
- (2) The transmitter module may not be co-located with any other transmitter or antenna.
- (3) Only antennas of the same type and with equal or less gains as shown below may be used with this module. Other types of antennas and/or higher gain antennas may require additional authorization for operation.

In the event that these conditions cannot be met (for example certain laptop configurations or co-location with another transmitter), then the FCC/IC authorization is no longer considered valid and the FCC ID/IC

ID cannot be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC/IC authorization.

Manual Information to the End User

The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module. The end user manual shall include all required regulatory information/warning as show in this manual.

List of applicable FCC rules

This module has been tested and found to comply with part 22, part 24, part 27, part 90, requirements for Modular Approval.

The modular transmitter is only FCC authorized for the specific rule parts (i.e., FCC transmitter rules) listed on the grant, and that the host product manufacturer is responsible for compliance to any other FCC rules that apply to the host not covered by the modular transmitter grant of certification. If the grantee markets their product as being Part 15 Subpart B compliant (when it also contains unintentional-radiator digital circuitry), then the grantee shall provide a notice stating that the final host product still requires Part 15 Subpart B compliance testing with the modular transmitter installed.

Integration instructions for host product manufacturers according to KDB 996369 D03 OEM Manual v01

2.2 List of applicable FCC rules

FCC Part 15 Subpart C 15.247 & 15.209 &15.407.

2.3 Specific operational use conditions

The module can be used for mobile applications with a maximum 4.84dBi antenna. The host manufacturer installing this module into their product must ensure that the final compos it product complies with the FCC requirements by a technical assessment or evaluation to the FCC rules, including the transmitter operation. The host manufacturer has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module The end user manual shall include all required regulatory information/warning as show in this manual.

2.4 Limited module procedures

Not applicable The module is a Single module and complies with the requirement of FCC Part 15 212.

2.5 Trace antenna designs

Not applicable The module has its own antenna, and doesn't need a hosts printed board micro strip trace antenna etc.

2.6 RF exposure considerations

The module must be installed in the host equipment such that at least 20cm is maintained between the antenna and users" body; and if RF exposure statement or module layout is changed, then the host product manufacturer required to take responsibility of the module through a change in FCC ID or new application The FCC ID of the module cannot be used on the final product In these circumstances, the host manufacturer will be responsible for reevaluating the end product (including the transmitter) and obtaining a separate FCC authorization.

2.7 Antennas

Antenna Specification are as follows:

Type: External Antenna

Gain: 3.7 dBi Max

This device is intended only for host manufacturers under the following conditions: The transmitter module may not be co-located with any other transmitter or antenna; The module shall be only used with the internal antenna(s) that has been originally tested and certified with this module. The antenna must be either permanently attached or employ a "unique" antenna coupler.

As long as the conditions above are met, further transmitter test will not be required However, the host manufacturer is still responsible for testing their end-product for any additional compliance requirements required with this module installed (for example, digital device emissions, PC peripheral requirements, etc).

2.8 Label and compliance information

Host product manufacturers need to provide a physical or e-label stating "Contains FCC ID: XMR024BG770ASN" with their finished product.

2.9 Information on test modes and additional testing requirements

Host manufacturer must perform test of radiated & conducted emission and spurious emission, e.t.c according to the actual test modes for a stand-alone modular transmitter in a host, as well as for multiple simultaneously transmitting modules or other transmitters in a host product. Only when all the test results of test modes comply with FCC requirements, then the end product can be sold legally.

2.10 Additional testing, Part 15 Subpart B disclaimer

The modular transmitter is only FCC authorized for FCC Part 15 Subpart C 15.247 & 15 209 &15.407 and that the host product manufacturer is responsible for compliance to any other FCC rules that apply to the host not covered by the modular transmitter grant of certification. If the grantee markets their product as being Part 15 Subpart B compliant (when it also contains unintentional-radiator digital circuitry), then the grantee shall provide a notice stating that the final host product still requires Part 15 Subpart B compliance testing with the modular transmitter installed.

This device is intended only for OEM integrators under the following

conditions: (For module device use)

- 1) The antenna must be installed such that 20 cm is maintained between the antenna and users, and
- 2) The transmitter module may not be co-located with any other transmitter or antenna.

As long as 2 conditions above are met, further transmitter test will not be required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed.

Radiation Exposure Statement

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20 cm between the radiator & your body.

IC

Industry Canada Statement

This device complies with Industry Canada's licence-exempt RSSs. Operation is subject to the following two conditions:

- (1) This device may not cause interference; and
- (2) This device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes:

- (1) l'appareil ne doit pas produire de brouillage, et
- (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement."

Radiation Exposure Statement

This equipment complies with IC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20 cm between the radiator & your body.

Déclaration d'exposition aux radiations:

Cet équipement est conforme aux limites d'exposition aux rayonnements ISED établies pour un environnement non contrôlé. Cet équipement doit être installé et utilisé avec un minimum de 20 cm de distance entre la source de rayonnement et votre corps.

This device is intended only for OEM integrators under the following conditions: (For module device use)

- 1) The antenna must be installed such that 20 cm is maintained between the antenna and users, and
- 2) The transmitter module may not be co-located with any other transmitter or antenna.

As long as 2 conditions above are met, further transmitter test will not be required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed.

Cet appareil est conçu uniquement pour les intégrateurs OEM dans les conditions suivantes: (Pour utilisation de dispositif module)

- 1) L'antenne doit être installée de telle sorte qu'une distance de 20 cm est respectée entre l'antenne et

les utilisateurs, et

2) Le module émetteur peut ne pas être coïmplanté avec un autre émetteur ou antenne.

Tant que les 2 conditions ci-dessus sont remplies, des essais supplémentaires sur l'émetteur ne seront pas nécessaires. Toutefois, l'intégrateur OEM est toujours responsable des essais sur son produit final pour toutes exigences de conformité supplémentaires requis pour ce module installé.

IMPORTANT NOTE:

In the event that these conditions can not be met (for example certain laptop configurations or colocation with another transmitter), then the Canada authorization is no longer considered valid and the IC ID can not be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate Canada authorization.

NOTE IMPORTANTE:

Dans le cas où ces conditions ne peuvent être satisfaites (par exemple pour certaines configurations d'ordinateur portable ou de certaines co-localisation avec un autre émetteur), l'autorisation du Canada n'est plus considéré comme valide et l'ID IC ne peut pas être utilisé sur le produit final. Dans ces circonstances, l'intégrateur OEM sera chargé de réévaluer le produit final (y compris l'émetteur) et l'obtention d'une autorisation distincte au Canada.

End Product Labeling

This transmitter module is authorized only for use in device where the antenna may be installed such that 20 cm may be maintained between the antenna and users. The final end product must be labeled in a visible area with the following: "Contains IC:10224A-024BG770ASN".

Plaque signalétique du produit final

Ce module émetteur est autorisé uniquement pour une utilisation dans un dispositif où l'antenne peut être installée de telle sorte qu'une distance de 20cm peut être maintenue entre l'antenne et les utilisateurs. Le produit final doit être étiqueté dans un endroit visible avec l'inscription suivante: "Contient des IC: 10224A-024BG770ASN ".

Manual Information To the End User

The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module.

The end user manual shall include all required regulatory information/warning as show in this manual.

Manuel d'information à l'utilisateur final

L'intégrateur OEM doit être conscient de ne pas fournir des informations à l'utilisateur final quant à la façon d'installer ou de supprimer ce module RF dans le manuel de l'utilisateur du produit final qui intègre ce module.

Le manuel de l'utilisateur final doit inclure toutes les informations réglementaires requises et avertissements comme indiqué dans ce manuel.