

FCC TEST REPORT

On Behalf of

FCC ID: XMF-MID6901

Lightcomm Technology Co., Ltd.

MID

Model No.: MID6901-GA, X431 PRO MINI

Prepared for : Lightcomm Technology Co., Ltd.

RM 1808 18/F, FO TAN INDUSTRIAL CENTRE, NOS.

Address : 26-28 AU PUI WAN STREET, FO TAN SHATIN NEW

TERRITORIES, HONGKONG

Prepared By : Shenzhen Alpha Product Testing Co., Ltd.

2B/F., Building B, No.99, East Area of Nanchang Second

Address : Industrial Zone, Gushu 2nd Road, Bao' an District, Shenzhen,

Guangdong, China

Report Number : T1870240 10

Date of Receipt : March 08, 2017

Date of Test : March 08-10, 2017

Date of Report : March 10, 2017

Version Number : REV0

TABLE OF CONTENTS

De	escript	tion	Page
1.	Sumi	mary of standards and results	4
	1.1.	•	
2.		NERAL INFORMATION	
	2.1.		
	2.2.	Tested Supporting System Details	
	2.3.	Test mode Description	
	2.4.	•	
	2.5.	<u>C</u>	
	2.6.	Measurement Uncertainty	
3.	POW	VER LINE CONDUCTED Emission test	
	3.1.	Test Equipment	9
	3.2.	Block Diagram of Test Setup	
	3.3.	•	
	3.4.	Configuration of EUT on Test	10
	3.5.		
	3.6.	Test Procedure	10
	3.7.	Conducted Disturbance at Mains Terminals Test Results	11
4.	Radi	iated emission Test	16
	4.1.		
	4.2.	Block Diagram of Test Setup	16
	4.3.	Radiated Emission Limit	17
	4.4.	Configuration of EUT on Test	18
	4.5.	Operating Condition of EUT	18
	4.6.	Test Procedure	18
	4.7.	Radiated Disturbance Test Results	19
5.	Photo	tograph	24
	5.1.	Photos of Radiated Emission Test (In Semi Anechoic Chamber)	24
	5.2.		
6.	Photo	tos of the EUT	26

TEST REPORT DECLARATION

Applicant : Lightcomm Technology Co., Ltd.

Manufacturer : Huizhou Hengdu Electronics Co., Ltd.

EUT Description : MID

(A) Model No. : MID6901-GA, X431 PRO MINI

(B) Trademark : N/A

(C) Ratings Supply : DC 5V or DC 3.7V

(D) Test Voltage : DC 5V from USB Port and DC 3.7V from

Report No.: T1870240 10

internal battery

Measurement Standard Used:

FCC Rules and Regulations Part 15 Subpart B Class B 2016, ANSI C63.4:2014

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed full responsibility for the accuracy and completeness of test. Also, this report shows that the EUT is technically compliant with the FCC Part15 requirements.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature).....

Test Engineer

Approved by (name + signature).....:

Project Manager

Syr G

Date of issue.....: March 10, 2017

1. SUMMARY OF STANDARDS AND RESULTS

1.1.Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below:

EMISSION								
Description of Test Item	Standard	Limits	Results					
Power Line Conducted	FCC Part 15:2016	Class P	D					
Emission Test	ANSI C63.4:2014	Class B	I					
D 1' (IE ' ' T (FCC Part 15:2016	Cl. D	D					
Radiated Emission Test	ANSI C63.4:2014	Class B	r					

Note: 1. P is an abbreviation for Pass.

2. F is an abbreviation for Fail.

3. N/A is an abbreviation for Not Applicable.

Report No.: T1870240 10

2. GENERAL INFORMATION

2.1.Description of Device (EUT)

Description : MID

Model Number : MID6901-GA, X431 PRO MINI

There's no difference between the models except the appearance color

Diff : and model name, so all the test were performed on the model

MID6901-GA

Trademark : N/A

Model:TEKA012-0502000UK

Adapter : Input: AC 100-240V, 50/60Hz, 0.35A MAX

Output: DC 5V/2A

Applicant : Lightcomm Technology Co., Ltd.

RM 1808 18/F, FO TAN INDUSTRIAL CENTRE, NOS. 26-28 AU PUI

Address : WAN STREET, FO TAN SHATIN NEW TERRITORIES,

HONGKONG

Manufacturer : Huizhou Hengdu Electronics Co., Ltd.

Address : DIP South Area, Huiao Highway, Huizhou, Guangdong, China

Sample Type : Prototype production

2.2.Tested Supporting System Details

No.	Description Manufacturer		Model	Serial Number	Certification or DOC
1	Notebook	ACER	ZQT	N/A	DOC
2	USB Mouse	ACER	MS.11200.014	M-UAY-ACR2	DOC
3	USB Keyboard	ACER	SK-9625	KBUSB158050 0037E0100	DOC

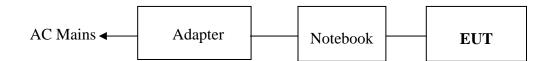
2.3.Test mode Description

No	Test Mode
1	Charging
2	Playing
3	Camera
4	Charging and Playing
5	Charging and Camera
6	Data Transmitting

Test Item	Test Mode	worst mode				
Conducted Emissions From	Mode1, Mode2, Mode3,	Mode 4, 6				
The AC Mains Power Ports	Mode4, Mode5, Mode6	Mode 4, 0				
Radiated Emissions	Mode1, Mode2, Mode3,	Mode6				
Radiated Emissions	Mode4, Mode5, Mode6	Modeo				
This report only reflected the worst mode						

Report No.: T1870240 10

2.4.Block Diagram of connection between EUT and simulators


Mode: 2, 3

Mode: 1, 4, 5

Mode: 6

	Signal Cable Description of the above Support Units									
No.	Port Name	ort Name Cable		Shielded (Yes or No)	Detachable (Yes or No)					
(a)	(a) N/A N/A		N/A	N/A	N/A					

EUT: MID

2.5.Test Facility

Shenzhen Alpha Product Testing Co., Ltd.

2B/F., Building B, No.99, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao' an District, Shenzhen, Guangdong, China

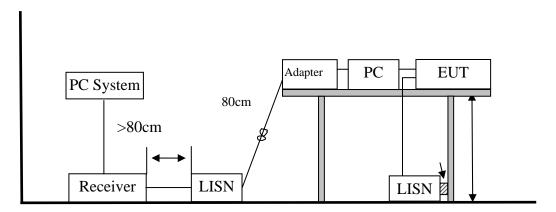
March 25, 2015 File on Federal Communication Commission

Registration Number: 203110

July 18, 2014 Certificated by IC Registration Number: 12135A

2.6. Measurement Uncertainty

(95% confidence levels, k=2)


Test Item	Uncertainty
Uncertainty for Conduction emission test	2.42dB
	3.54 dB (Distance:
Uncertainty for Radiation Emission test	3m Polarize: V)
in 3m chamber	4.1dB (Distance:
(30MHz to 1GHz)	3m Polarize: H)
	2.56dB (Distance:
Uncertainty for Radiation Emission	3m Polarize: V)
test in 3m chamber	2.08 dB (Distance:
(1GHz to 25GHz)	3m Polarize: H)

3. POWER LINE CONDUCTED EMISSION TEST

3.1.Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal. DUE	Cal. Interval
1.	Test Receiver	Rohde &	ESCI	101165	2017.09.29	1 Year
		Schwarz				
2.	L.I.S.N.#1	Schwarzbeck	NSLK8126	8126466	2017.09.29	1 Year
3.	L.I.S.N.#2	ROHDE&SCH	ENV216	101043	2017.09.29	1 Year
		WARZ				
4.	Pulse Limiter	Schwarzbeck	9516F	9618	2017.09.29	1 Year
5	Cable	Resenberger	SUCOFLEX	MY6562/4	2017.09.29	1 Year
			104			

3.2.Block Diagram of Test Setup

3.3. Power Line Conducted Emission Test Limits

	Maximum RF Line Voltage				
Frequency	Quasi-Peak Level	Average Level			
	$dB(\mu V)$	$dB(\mu V)$			
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*			
500kHz ~ 5MHz	56	46			
5MHz ~ 30MHz	60	50			

Notes:

- 1. Emission level=Read level + LISN factor-Preamp factor + Cable loss
- 2. * Decreasing linearly with logarithm of frequency.
- 3. The lower limit shall apply at the transition frequencies.

3.4. Configuration of EUT on Test

The following equipment are installed on Power Line Conducted Emission Test to meet the commission requirement and operating regulations in a manner which tends to maximize its emission characteristics in a normal application.

3.5. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 3.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

3.6. Test Procedure

- (1) The EUT was placed on a non-metallic table, 80cm above the ground plane. The EUT Power connected to the power mains through a line impedance stabilization network (L.I.S.N. 1#). This provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N.#2). Both sides of power line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.4:2014 on conducted Emission test.
- (2) The frequency range from 150kHz to 30MHz is checked, the bandwidth of test receiver (R&S TEST RECEIVER ESCI) is set at 9kHz.
- (3) The frequency range from 30MHz to 1000MHz was pre-scanned with a Peak detector and all final readings of measurement from Test Receiver are Quasi-Peak and Average values.
- (4) The test results are reported on Section 3.7.

3.7. Conducted Disturbance at Mains Terminals Test Results

EUT	:	MID	Test Date	:	2017.03.08
M/N	:	MID6901-GA	Temperature	:	24.1℃
Test Engineer	:	Eirc Huang	Humidity	:	54%
Test Mode		Data Transmitting Charging and Playing			

Test Results : **PASS**

1. The test results are listed in next pages.

- 2. This mode is worst case mode, so this report only reflected the worst mode.
- 3. If the limits for the measurement with the average detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet both limits and the measurement with the average detector and quasi-peak detector need not be carried out.
- 4. If the limits for the measurement with the average detector are met when using a receiver with a quasi-peak detector, the test unit shall be deemed to meet both limits and the measurement with the average detector need not be carried out.

24.1 Phase: L1 Temperature: Humidity: 54 % Limit: FCC Part 15 B QP Power:

EUT:

M/N: MID6901-GA Mode: Data Transmitting

Note:

Conducted Emission Measurement Data:#1 Date: 2017-3-08 Time: 10:20:04 File: 100.0 90 80 70 FCC Part 15 B QP 60 FCC Part 15 B AV 50 40 30 20 10 0.0 (MHz) 0.150 30.000

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	n		
		MHz	dBu∨	dB	dBu∨	dBu√	dB	Detector	Comment	
1		0.2100	16.81	9.67	26.48	63.21	-36.73	peak		
2		0.4700	10.73	9.71	20.44	56.51	-36.07	peak		
3		4.8859	20.12	10.15	30.27	56.00	-25.73	peak		
4	*	12.2660	29.34	10.38	39.72	60.00	-20.28	peak		
5		16.0180	26.09	10.45	36.54	60.00	-23.46	peak		
6		20.3180	24.42	10.48	34.90	60.00	-25.10	peak		
								171		

Engineer Signature:

24.1 Phase: N Temperature: Humidity: 54 % Limit: FCC Part 15 B QP Power:

EUT:

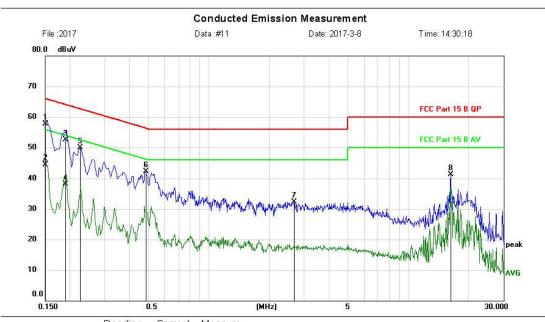
M/N: MID6901-GA Mode: Data Transmitting

Note:

Conducted Emission Measurement Data:#2 Time: 10:20:50 File: Date: 2017-3-08 100.0 90 80 70 FCC Part 15 B QP 60 FCC Part 15 B AV 50 40 30 20 10 0.0 30.000 (MHz) 0.150

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	٦		
		MHz	dBu∨	dB	dBu∨	dBu√	dB	Detector	Comment	
1		0.2100	13.71	9.67	23.38	63.21	-39.83	peak		
2		0.5060	12.16	9.71	21.87	56.00	-34.13	peak		
3		4.8620	21.76	10.15	31.91	56.00	-24.09	peak		
4		11.6059	28.65	10.37	39.02	60.00	-20.98	peak		
5	*	16.0180	28.84	10.45	39.29	60.00	-20.71	peak		
6		20.3779	24.18	10.49	34.67	60.00	-25.33	peak		
								7.71		

Shenzhen Alpha Product Testing Co., Ltd. Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China


Limit: FCC Part 15 B QP

EUT: MID M/N: MID6901-GA

Mode: Charging and Playing

Note:

Phase: L1 Temperature: 24.1 AC 120V/60Hz Humidity: 54 % Power:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margii	1		
		MHz	dBu∨	dB	dBu∨	dBu√	dB	Detector	Comment	
1	*	0.1500	47.99	9.66	57.65	66.00	-8.35	QP		
2		0.1500	34.86	9.66	44.52	56.00	-11.48	AVG		
3		0.1905	42.88	9.67	52.55	64.01	-11.46	QP		
4		0.1905	28.43	9.67	38.10	54.01	-15.91	AVG		
5		0.2265	40.30	9.68	49.98	62.58	-12.60	peak		
6		0.4830	32.61	9.71	42.32	56.29	-13.97	peak		
7		2.6655	22.41	9.96	32.37	56.00	-23.63	peak		
8		16.2285	30.77	10.45	41.22	60.00	-18.78	peak		

24.1

Temperature:

Humidity: 54 %

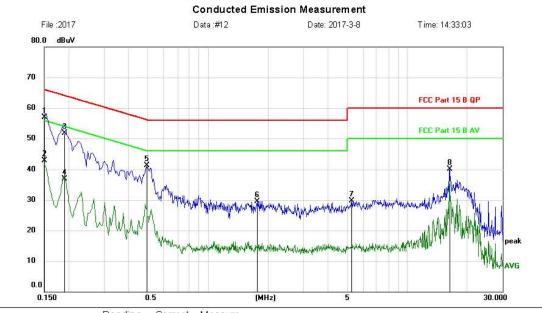
Shenzhen Alpha Product Testing Co., Ltd. Building i, No.2, Lixin Road, Fuyong Street,

Page 15 of 34

Phase:

Power:

Bao'an District, 518103, Shenzhen, Guangdong, China N


AC 120V/60Hz

Limit: FCC Part 15 B QP

EUT: MID M/N: MID6901-GA

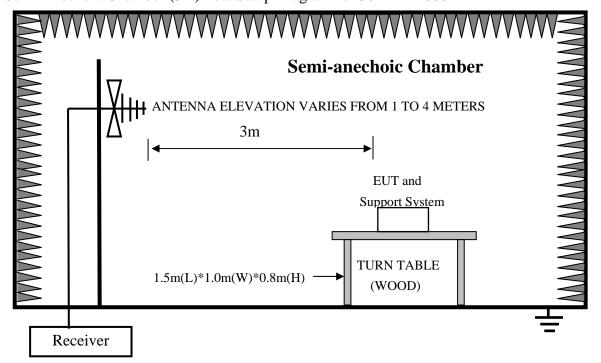
Mode: Charging and Playing

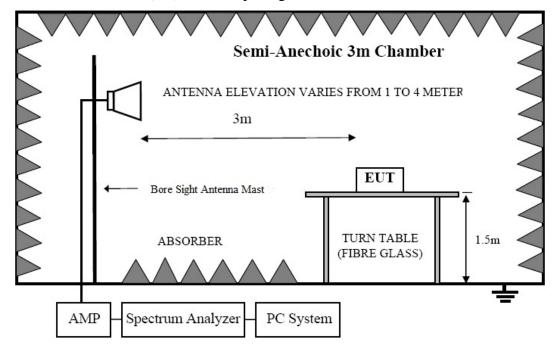
Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	n		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment	
1	*	0.1500	47.17	9.66	56.83	66.00	-9.17	QP		
2		0.1500	33.19	9.66	42.85	56.00	-13.15	AVG		
3		0.1905	42.05	9.67	51.72	64.01	-12.29	QP		
4		0.1905	27.21	9.67	36.88	54.01	-17.13	AVG		
5		0.4920	31.59	9.71	41.30	56.13	-14.83	peak		
6		1.7565	19.67	9.86	29.53	56.00	-26.47	peak		
7		5.2665	19.58	10.17	29.75	60.00	-30.25	peak		
8		16.2330	29.70	10.45	40.15	60.00	-19.85	peak		

(Reference Only

4. RADIATED EMISSION TEST


4.1.Test Equipment


For fi	For frequency range 30MHz~1GHz (At Semi Anechoic Chamber)											
Item	Equipment Manufacturer Model No. Serial No. Cal. DUE Cal. Int											
1	Test Receiver	Rohde&Schwarz	ESR	1316.3003K0	2017.09.29	1 Year						
				3-102082-Wa								
2	Amplifier	HP	HP8347A	2834A00455	2017.09.30	1 Year						
3	Bilog Antenna	Schwarzbeck	VULB 9168	9168-438	2017.09.30	2 Year						
4	Cable	Resenberger	SUCOFLE	309972/4	2017.09.29	1 Year						
			X 104									

For fi	For frequency range above 1GHz (At Semi Anechoic Chamber (3m))											
Item	Equipment	Manufacturer	Model No.	Serial No.	Cal. DUE	Cal. Interval						
1	Spectrum Analyzer	Agilent	E4407B	MY49510055	2017.09.29	1 Year						
2	Horn Antenna	Schwarzbeck	BBHA 9120 D	BBHA 9120 D(1201)	2017.01.20	1 Year						
3	Amplifier	Agilent	8449B	3008A02664	2017.09.30	1 Year						
4	Cable	Resenberger	SUCOFLE X 104	329112/4	2017.09.29	1 Year						

4.2.Block Diagram of Test Setup

In Semi Anechoic Chamber (3m) Test Setup Diagram for 30MHz~1000MHz

4.3. Radiated Emission Limit

Frequency	Distance	Field Strengths Limits				
MHz	(Meters)	dB(μV)/m				
30 ~ 88	3	40.0				
88 ~ 216	3	43.5				
216 ~ 960	3	46.0				
960 ~ 1000	3	54.0				
Above 1GHz	3	74(Peak) 54(Average)				

Notes:

- 1. Emission level = Read level + Antenna Factor Preamp Factor + Cable Loss
- 2. The smaller limit shall apply at the cross point between two frequency bands.
- 3. Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.
- 4. Frequency range of radiated measurements:

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.705	30
1.705-108	1000
108-500	2000
500-1000	5000
Above 1000	5th harmonic of the highest frequency or 40 GHz, whichever is lower.

4.4. Configuration of EUT on Test

The following equipment are installed on Radiated Emission Test to meet the commission requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

4.5. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 4.2.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode and 15 minutes before taking the test.

4.6.Test Procedure

- (1) The EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber. An antenna was located 3m from the EUT on an adjustable mast. A pre-scan was first performed in order to find prominent radiated emissions. For final emissions measurements at each frequency of interest, the EUT were rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.4:2014 on Radiated Emission test.
- (2) For the radiated emission test above 1GHz:
 - Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- (3) The frequency range from 30MHz to 1000MHz is checked, the bandwidth of test receiver (R&S TEST RECEIVER ESCI) is set at 120kHz.
- (4) The frequency range from above 1GHz is checked, the bandwidth of spectrum analyzer (Analyzer Spectrum Analyzer E4407B) is set at 1MHz.
- (5) The frequency range from 30MHz to 1000MHz was pre-scanned with a peak detector and all final readings of measurement from Test Receiver are Quasi-Peak values, the frequency range from 1GHz to 6GHz was pre-scanned with a peak detector and all final readings of measurement from Spectrum Analyzer are peak and average values checked, all measurement distance is 3m in 3m semi anechoic chamber.
- (6) The test results are reported on Section 4.7.

4.7. Radiated Disturbance Test Results

Frequency Range	:	30MHz~1000MHz			
EUT	:	MID	Test Date	:	2017.03.08
M/N	:	MID6901-GA	Temperature	:	24.1℃
Test Engineer	:	Eirc Huang	Humidity	:	54%
Test Mode	:	Data Transmitting			
Test Results	:	PASS			

Note: 1. The test results are listed in next pages.

2. If the limits for the measurement with the average detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet both limits and the measurement with the quasi-peak detector need not be carried out.

Frequency Range	: Above 1GHz	
EUT	: MID	Test Date : 2017.03.08
M/N	: MID6901-GA	Temperature : 24.2℃
Test Engineer	: Eirc Huang	Humidity : 54%
Test Mode	: Data Transmitting	
Test Results : P	ASS	
Note: 1. Test from	1GHz to 25GHz, only worse case is reported, for	or above 18GHz , no emission found

Limit: FCC Class B Radiation

EUT: MID

M/N: MID6901-GA Mode:Data Transmitting

Note:

Polarization: Horizontal

Temperature:

24.1

Humidity: 54 %

Radiated Emission Measurement

Power:

Distance: 3m

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		34.1561	18.57	13.46	32.03	40.00	-7.97	peak			
2		52.9453	13.51	13.45	26.96	40.00	-13.04	peak			
3	- 1	162.0414	19.57	14.41	33.98	43.50	-9.52	peak			
4	*	282.9852	29.08	13.01	42.09	46.00	-3.91	peak			
5	3	480.5276	23.60	17.08	40.68	46.00	-5.32	peak			
6	-	965.5421	18.21	23.88	42.09	54.00	-11.91	peak			

Note:1. *:Maximum data; x:Over limit; 1:over margin.

Site LAB

Limit: FCC Class B Radiation

EUT: MID

M/N: MID6901-GA Mode:Data Transmitting


Note:

Polarization: Vertical

Temperature: 24.1 Humidity: 54 %

Power: Distance: 3m

Radiated Emission Measurement

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		34.2760	19.53	13.47	33.00	40.00	-7.00	QP			
2	*	45.3755	20.26	13.69	33.95	40.00	-6.05	peak			-
3		52.9453	16.22	13.45	29.67	40.00	-10.33	peak			
4	3	153.2004	18.98	14.56	33.54	43.50	-9.96	peak			·
5	1	254.7284	24.78	12.18	36.96	46.00	-9.04	peak			
6		726.8052	9.68	21.33	31.01	46.00	-14.99	peak			

Note:1. *:Maximum data; x:Over limit; !:over margin.

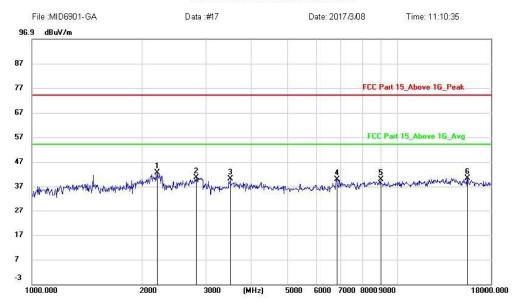
.

Limit: FCC Part 15_Above 1G_Peak

EUT: MID M/N: MID6901-GA Mode:Data Transmitting

Note:

Polarization: Horizontal


Temperature: 24.2

Humidity: 54 %

Distance: 3m

Power:

Radiated Emission Measurement

Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
*	2201.352	45.91	-3.34	42.57	74.00	-31.43	peak			
	2814.411	43.27	-2.79	40.48	74.00	-33.52	peak			
	3485.601	46.44	-6.50	39.94	74.00	-34.06	peak			
	6815.551	38.53	1.32	39.85	74.00	-34.15	peak			
	8995.123	36.36	3.40	39.76	74.00	-34.24	peak			
	15577.89	35.27	4.99	40.26	74.00	-33.74	peak			
	*	* 2201.352 2814.411 3485.601 6815.551 8995.123 15577.89	* 2201.352 45.91 2814.411 43.27 3485.601 46.44 6815.551 38.53 8995.123 36.36 15577.89 35.27	MHz Level dBuV Factor * 2201.352 45.91 -3.34 2814.411 43.27 -2.79 3485.601 46.44 -6.50 6815.551 38.53 1.32 8995.123 36.36 3.40 15577.89 35.27 4.99	MHz Level dBuV Factor dBuV/m ment dBuV/m * 2201.352 45.91 -3.34 42.57 2814.411 43.27 -2.79 40.48 3485.601 46.44 -6.50 39.94 6815.551 38.53 1.32 39.85 8995.123 36.36 3.40 39.76 15577.89 35.27 4.99 40.26	Level Factor ment MHz dBuV dB dBuV/m dBuV/m * 2201.352 45.91 -3.34 42.57 74.00 2814.411 43.27 -2.79 40.48 74.00 3485.601 46.44 -6.50 39.94 74.00 6815.551 38.53 1.32 39.85 74.00 8995.123 36.36 3.40 39.76 74.00 15577.89 35.27 4.99 40.26 74.00	MHz Level Factor ment * 2201.352 45.91 -3.34 42.57 74.00 -31.43 2814.411 43.27 -2.79 40.48 74.00 -33.52 3485.601 46.44 -6.50 39.94 74.00 -34.06 6815.551 38.53 1.32 39.85 74.00 -34.15 8995.123 36.36 3.40 39.76 74.00 -34.24 15577.89 35.27 4.99 40.26 74.00 -33.74	Level Factor ment MHz dBuV dB dBuV/m dBuV/m dB uV/m dB uV/m <th< td=""><td>MHz Level Factor ment Height * 2201.352 45.91 -3.34 42.57 74.00 -31.43 peak 2814.411 43.27 -2.79 40.48 74.00 -33.52 peak 3485.601 46.44 -6.50 39.94 74.00 -34.06 peak 6815.551 38.53 1.32 39.85 74.00 -34.15 peak 8995.123 36.36 3.40 39.76 74.00 -34.24 peak 15577.89 35.27 4.99 40.26 74.00 -33.74 peak</td><td>Level Factor ment Height Degree MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree * 2201.352 45.91 -3.34 42.57 74.00 -31.43 peak 2814.411 43.27 -2.79 40.48 74.00 -33.52 peak 3485.601 46.44 -6.50 39.94 74.00 -34.06 peak 6815.551 38.53 1.32 39.85 74.00 -34.15 peak 8995.123 36.36 3.40 39.76 74.00 -34.24 peak 15577.89 35.27 4.99 40.26 74.00 -33.74 peak</td></th<>	MHz Level Factor ment Height * 2201.352 45.91 -3.34 42.57 74.00 -31.43 peak 2814.411 43.27 -2.79 40.48 74.00 -33.52 peak 3485.601 46.44 -6.50 39.94 74.00 -34.06 peak 6815.551 38.53 1.32 39.85 74.00 -34.15 peak 8995.123 36.36 3.40 39.76 74.00 -34.24 peak 15577.89 35.27 4.99 40.26 74.00 -33.74 peak	Level Factor ment Height Degree MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree * 2201.352 45.91 -3.34 42.57 74.00 -31.43 peak 2814.411 43.27 -2.79 40.48 74.00 -33.52 peak 3485.601 46.44 -6.50 39.94 74.00 -34.06 peak 6815.551 38.53 1.32 39.85 74.00 -34.15 peak 8995.123 36.36 3.40 39.76 74.00 -34.24 peak 15577.89 35.27 4.99 40.26 74.00 -33.74 peak

Note:1. *:Maximum data; x:Over limit; 1:over margin.

Mode: Data Transmitting

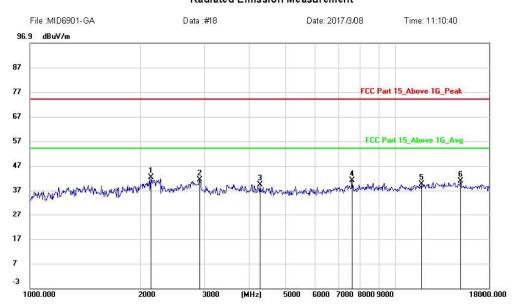
Limit: FCC Part 15_Above 1G_Peak

EUT: MID M/N: MID6901-GA

Note:

Polarization: Vertical

Temperature:


24.2

Humidity: 54 %

Radiated Emission Measurement

Power:

Distance: 3m

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	2144.825	45.93	-3.77	42.16	74.00	-31.84	peak			
2		2922.174	43.92	-2.54	41.38	74.00	-32.62	peak			
3		4279.589	43.67	-4.43	39.24	74.00	-34.76	peak			
4		7606.788	37.77	3.15	40.92	74.00	-33.08	peak			
5		11837.44	33.98	5.65	39.63	74.00	-34.37	peak			
6		15090.40	33.19	7.55	40.74	74.00	-33.26	peak			

Note:1. *:Maximum data; x:Over limit; 1:over margin.