

Shenzhen Certification Technologh Service Co., Ltd 3F, Bldg27, Area A, Tanglang Industrial Zone, Xili Town, Nanshan District, ShenZhen, Guang dong, P.R. China.

TEST REPORT

FCC ID: X3U-TK110

Applicant: Topten electronics Technology Limited

Address: Room2007, Tower B, Gaoke Building, 908 Tianhe North Road,

Guangzhou, China

Equipment Under Test(EUT):

Name : GPS Vehicle Tracker

Model : TK110

In Accordance with: FCC PART 2; FCC PART 22H; FCC PART 24E

: STE100104007 Report No

Date of Test : Jan 05---06, 2010

Date of Issue : Jan 07, 2010

Test Result: PASS

In the configuration tested, the EUT complied with the standards specified above

Authorized Signature

(Mark Zhu)

General Manager

The manufacture should ensure that all the products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of Shenzhen Certification Technology Service Co., Ltd. Or test done by Shenzhen Certification Technology Service Co., Ltd. Approvals in connection with, distribution or use of the product described in this report must be approved by Shenzhen Certification Technology Service Co., Ltd. Approvals in writing.

FCC ID: X3U-TK110 Page 1 of 39

Contents

1.	Gen	eral Information	4
	1.1.	Description of Device (EUT)	4
	1.2.	Test Lab information	4
2.	Sum	mary of test	5
	2.1.	Summary of test result	5
	2.2.	Assistant equipment used for test	5
	2.3.	Test mode	6
	2.4.	Test Environment Conditions	6
	2.5.	Measurement Uncertainty (95% confidence levels, k=2)	6
	2.6.	Test Equipment	7
3.	Con	ducted Output power	8
	3.1.	Block Diagram of Test Setup	8
	3.2.	Limit	8
	3.3.	Test Procedure	8
	3.4.	Test Result.	8
4.	Radi	ated Output power	9
	4.1.	Block Diagram of Test Setup	9
	4.2.	Limit	9
	4.3.	Test Procedure	9
	4.4.	Test Result	10
5.	Occi	ıpied Bandwidth	11
	5.1.	B lock Diagram of Test Setup	11
	5.2.	Limit	11
	5.3.	Test Procedure	11
	5.4.	Test Result	12
	5.5.	Orginal test data	12
6.	Freq	uency stability	16
	6.1.	Block Diagram of Test Setup	16
	6.2.	Limit	16
	6.3.	Test Procedure	16
	6.4.	Test Result.	17
7.	Con	ducted spurious emissions	19
	7.1.	Block Diagram of Test Setup	19
	7.2.	Limit	19
	7.3.	Test Procedure	19
	7.4.	Test Result.	19
8.	Radi	ated Spurious emissions	26
	8.1.	Block Diagram of Test Setup	26
	8.2.	Limit	26
	8.3.	Test Procedure	26
	8.4.	Test Result.	27
9.	Bloc	k Edge Compliance	29
	9.1.	Block Diagram of Test Setup	29

Report No.:STE100104007

11.	Photos of EUT			
10.	Tests	setup photo	32	
		Test Result		
		Test Procedure		
		Limit		

1. General Information

1.1. Description of Device (EUT)

EUT : GPS Vehicle Tracker

Model No. : TK110

Power supply : DC12V

Radio Technology : GSM/GPRS 850/900/1800/1900

GPRS Multislot Class : Class 10

Power class : GSM/GPRS 850/900: Class 4

GSM/GPRS 1800/1900: Class 1

Operation frequency : 824.2MHz—848.8MHz and 1850.2MHz—1909.8MHz

FCC Operation frequency : 824.2MHz—848.8MHz and 1850.2MHz—1909.8MHz

Modulation : GMSK

Antenna Type : External antenna, Gain:3.5dBi

Applicant : Topten electronics Technology Limited

Address : Room2007, Tower B, Gaoke Building, 908 Tianhe North Road,

Guangzhou, China

1.2. Test Lab information

Shenzhen Certification Technology Service Co., Ltd.

3F, Bldg.27, Area A, Tanglang Industrial Zone, Xili Town, Nanshan District,

Shenzhen 518055, Guangdong, P.R. China

FCC Registered No.:305283

FCC ID: X3U-TK110 Page 4 of 39

2. Summary of test

2.1. Summary of test result

Description of Test Item	Standard	Results
	FCC PART 2: 2.1046	
Conducted Output power	FCC PART 22H: 22.913 (a)	PASS
	FCC PART 24E: 24.232 (c)	
	FCC PART 22H:22.913 (a)	DAGG
Radiated Output power(erp/eirp)	FCC PART 24E:24.232(c)	PASS
	FCC PART 2: 2.1049	
Occupied bandwidth	FCC PART 22H: 22.917 (b)	PASS
	FCC PART 24E: 24.238 (b)	
	FCC PART 2: 2.1055	
adiated Output power(erp/eirp) ccupied bandwidth requency stability onducted spurious emission Antenna terminal) adiated spurious emissions	FCC PART 22H: 22.355	PASS
	FCC PART 24E: 24.235	
Conducted enurious emission	FCC PART 2: 2.1051	
-	FCC PART 22H: 22.917	PASS
(Antenna terminai)	FCC PART 24E: 24.238	
	FCC PART 2: 2.1053	
Radiated spurious emissions	FCC PART 22H: 22.917	PASS
	FCC PART 24E: 24.238	
DI I I I	FCC PART 22H: 22.917 (b)	DACC
Conducted spurious emission Antenna terminal) Radiated spurious emissions	FCC PART 24E: 24.238 (b)	PASS
	FCC Part 15: 15.207	NT/A
Power Line Conducted Emission Test	ANSI C63.4: 2003	N/A

2.2. Assistant equipment used for test

N/A

FCC ID: X3U-TK110 Page 5 of 39

2.3. Test mode

During all testing, EUT is in link mode with base station emulator at maximum power level in each test mode and channel as below:

Mode	Channel	Frequency(MHz)
	128	824.2
GSM 850	190	836.6
	251	848.8
	512	1850.2
PCS 1900	661	1880.0
	810	1909.8

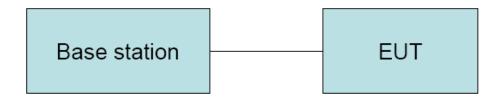
2.4. Test Environment Conditions

Temperature range	21-25℃
Humidity range	40-75%
Pressure range	86-106kPa

2.5. Measurement Uncertainty (95% confidence levels, k=2)

Item	MU	Remark
Uncertainty for Power point Conducted Emissions Test	2.42dB	
Uncertainty for Radiation Emission test in 3m chamber	3.54dB	Polarize: V
(30MHz to 1GHz)	4.1dB	Polarize: H
Uncertainty for Radiation Emission test in 3m chamber	2.08dB	Polarize: H
(1GHz to 25GHz)	2.56dB	Polarize: V
Uncertainty for radio frequency	1×10-9	
Uncertainty for conducted RF Power	0.65dB	
Uncertainty for temperature	0.2℃	
Uncertainty for humidity	1%	
Uncertainty for DC and low frequency voltages	0.06%	

FCC ID: X3U-TK110 Page 6 of 39


2.6. Test Equipment

Equipment	Manufacture	Model No.	Serial No.	Last cal.	Cal Interval
3m Semi-Anechoic	ETS-LINDGREN	N/A	SEL0017	16/06/2009	1Year
Spectrum analyzer	Agilent	E4443A	MY46185649	06/06/2009	1Year
Receiver	R&S	ESCI	100492	04/06/2009	1Year
Receiver	R&S	ESCI	101202	07/01/2009	1Year
Bilog Antenna	Sunol	JB3	A121206	04/06/2009	1Year
Horn Antenna	EMCO	3115	640201028-06	04/06/2009	1Year
Power Meter	Anritsu	ML2487A	6K00001491	02/23/2009	1Year
ETS Horn Antenna	ETS	3160	SEL0076	12/08/2009	1Year
Active Loop Antenna	Beijing Daze	ZN30900A	SEL0097	15/06/2009	1Year
Cable	Resenberger	N/A	No.1	04/06/2009	1Year
Cable	SCHWARZBEC K	N/A	No.2	04/06/2009	1Year
Cable	SCHWARZBEC K	N/A	No.3	04/06/2009	1Year
Pre-amplifier	R&S	AFS42-00101 800-25-S-42	SEL0081	18/06/2009	1Year
Pre-amplifier	R&S	AFS33-18002 650-30-8P-44	SEL0080	18/06/2009	1Year
Base station	Agilent	E5515C	GB44300243	May.08, 09	1 Year
Temperature controller	Terchy	MHQ	120	May.08, 09	1 Year
Power divider	Anritsu	K240C	020346	May.08, 09	1 Year
Signal Generator	НР	83732B	VS3449051	May.08, 09	1 Year
Attenuator	Agilent	8491B	MY39262165	May.08, 09	1 Year
GPS Signal	Welnavigate	GS50	6423517	N/A	N/A

FCC ID: X3U-TK110 Page 7 of 39

3. Conducted Output power

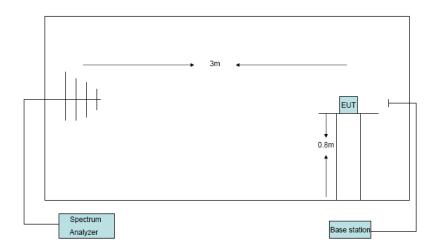
3.1. Block Diagram of Test Setup

3.2. Limit

Cellular Telephone 850MHz	PCS 1900MHz
38.5dBm(ERP)	33dBm(EIRP)

3.3. Test Procedure

- (1) The EUT's RF output port was connected to base station.
- (2) Set EUT at maximum power level through base station by power level command
- (3) Measure the maximum output power of EUT at each frequency band and mode by base station.


3.4. Test Result

EUT: GPS Vehicle Tracker		M/N:TK110 Power: DC 12V					
Ambient Temperature:24°C		Relative Humic	Relative Humidity: 62%				
Test date: 2010-01-05		Test site: RF sit	Test site: RF site Tested by: TaTa_Chen				
Conclusion: P.	ASS						
Mode	Channel	PK Output	ERP	EIRP	Li	mit	
		Power(dBm)	(dBm)	(dBm)	ERP(dBm)	EIRP(dBm)	
	128	31.70	33.05	/	38.5	/	
GSM 850	190	31.69	33.04	/	38.5	/	
	251	31.65	33.00	/	38.5	/	
	512	29.10	/	32.60	/	33	
PCS 1900	661	29.03	/	32.53	/	33	
	810	29.13	/	32.63	/	33	
Note: EIRP=Pk output power +Antenna Gain(3.5dBi);							
ERP=PK output power + Antenna Gain(3.5dBi) -2.15							

FCC ID: X3U-TK110 Page 8 of 39

4. Radiated Output power

4.1. Block Diagram of Test Setup

4.2. Limit

Cellular Telephone 850MHz	PCS 1900MHz
38.5dBm(ERP)	33dBm(EIRP)

4.3. Test Procedure

- The EUT was placed on an non-conductive rotating platform with 0.8 meter height in an anechoic chamber. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and a spectrum analyzer with RBW= 3MHz,VBW= 3MHz and peak detector settings.
- 2. During the measurement, the EUT was enforced in maximum power and linked with a base station. The highest emission was recorded from analyzer power level (LVL) from the 360 degrees rotation of the turntable and the test antenna raised and lowered over a range from 1 to 4 meters in both horizontally and vertically polarized orientations.
- 3. Effective Isotropic Radiated Power (EIRP) was measured by substitution method according to TIA/EIA-603-C. The EUT was replaced by dipole antenna (for frequency lelow 1GHz) or Horn antenna(for frequency above 1GHz) at same location with same polarize of reveiver antenna and then a known power of each measure frequency from S.G. was applied into the dipole antenna or Horn antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. The correction factor (in dB) = S.G. Tx Cable loss + Substitution antenna gain -Substitution antenna Loss(only for Dipole antenna) Analyzer reading. Then the EUT's

FCC ID: X3U-TK110 Page 9 of 39

EIRP was calculated with the correction factor, EIRP= LVL + Correction factor and ERP = EIRP – 2.15

4.4. Test Result

EUT: GPS Vehicle	Tracker M/N:	TK110			
Power:DC 12V					
Ambient Temperature:23°C			Relative Humidity: 60%		
Test date: 2010-01-	05		Test site: RF site	Tested by: Ta	Ta_Chen
Conclusion: PASS					
Mode	Channel	LVL	Correction	ERP	EIRP
		(dBm)	factor(dB)	(dBm)	(dBm)
	128	0.91	30.42	29.18	/
GSM 850	190	1.72	30.21	29.78	/
	251	1.13	30.05	29.03	/
	512	-20.26	46.80	/	26.54
PCS 1900	661	-20.34	46.45	/	26.11
	810	-20.35	46.58	/	26.23
ERP=LVL+Correction factor -2.15					
EIRP=LVL+Correction factor					

FCC ID: X3U-TK110 Page 10 of 39

5. Occupied Bandwidth

5.1. B lock Diagram of Test Setup

5.2. Limit

N/A

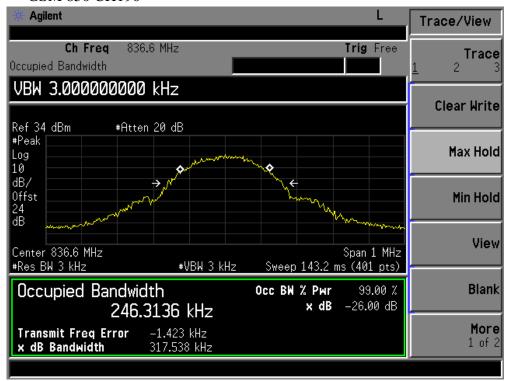
5.3. Test Procedure

- 1. The EUT' RF output port was connected to Spectrum Analyzer and Base Station via power divider.
- 2. Spectrum analyzer's occupied bandwidth measure function was used to measure 99% bandwidth and -26dBc bandwidth

FCC ID: X3U-TK110 Page 11 of 39

5.4. Test Result

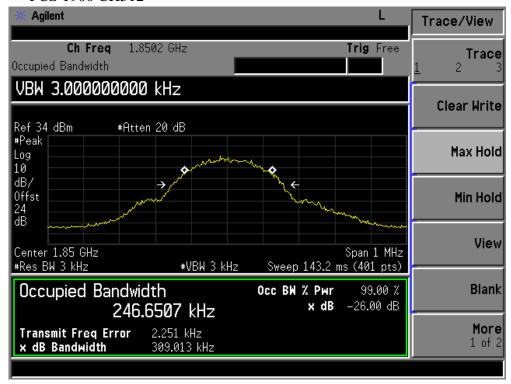
EUT: GPS Vehicle Tracker M/N:TK110						
Power:DC 12V						
Ambient Temperature:23	3℃	Relative Humidity:	60%			
Test date: 2010-01-05		Test site: RF site	Tested by: TaTa_Chen			
Mode	Mode Channel		-26dBc bandwidth			
		(KHz)	(KHz)			
	128	244.84	305.639			
GSM 850	190	246.31	317.54			
	251	245.03	311.36			
	512	246.65	309.01			
PCS 1900	661	246.00	315.44			
	810	247.68	311.02			


5.5. Orginal test data

GSM 850 CH128

FCC ID: X3U-TK110 Page 12 of 39

GSM 850 CH190



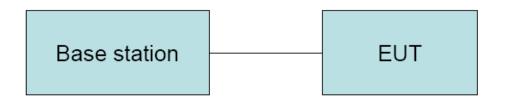
GSM 850 CH251

FCC ID: X3U-TK110 Page 13 of 39

PCS 1900 CH512

PCS 1900 CH661

FCC ID: X3U-TK110 Page 14 of 39


PCS 1900 CH810

FCC ID: X3U-TK110 Page 15 of 39

6. Frequency stability

6.1. Block Diagram of Test Setup

6.2. Limit

Cellular Telephone 850MHz	PCS 1900MHz	
± 2.5 ppm	Must stay within the authorized	
	frequency block	

6.3. Test Procedure

Test Procedures for Temperature Variation:

- 1. The EUT was set up in the thermal chamber and connected with the base station.
- 2. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized for three hours. Power was applied and the maximum change in frequency was recorded within one minute.
- 3. With power OFF, the temperature was raised in 10°C step up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.
- 4. If the EUT can not be turned on at -30°C, the testing lowest temperature will be raised in 10°C step until the EUT can be turned on.

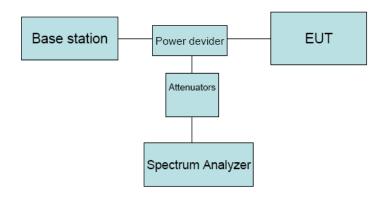
Test Procedures for Voltage Variation

- 1. The EUT was placed in a temperature chamber at $25\pm5^{\circ}$ C and connected with the base station.
- 2. The power supply voltage to the EUT was varied from 15V to 9V(Note)
- 3. The variation in frequency was measured for the worst case.

FCC ID: X3U-TK110 Page 16 of 39

6.4. Test Result

EUT: GPS Vehicle Trac	ker M/N:TK1	10			
Power:DC 12V					
Ambient Temperature:23℃		Relative Humidity: 60%			
Test date: 2010-01-05		Test site: RF site	Tested by: TaTa_Chen		
Conclusion:PASS			•		
Mode	Voltage	Frequency error	frequency error		
	(V)	(Hz)	(ppm)		
GSM 850 CH 190	15V	-27	-0.032		
	14V	-27	-0.032		
	13V	29	0.035		
	12V	-25	-0.030		
	11V	31	0.037		
	10V	-33	-0.039		
	9V	31	0.037		
PCS 1900 CH661	15V	-33	-0.018		
	14V	-31	-0.016		
	13V	37	0.020		
	12V	-36	-0.019		
	11V	39	0.021		
	10V	-39	-0.021		
	9V	-32	-0.017		


FCC ID: X3U-TK110 Page 17 of 39

Mode	Temperature	Frequency error	frequency error
	(℃)	(Hz)	(ppm)
	-30	27	0.032
	-20	-25	-0.030
	-10	-22	-0.026
GSM 850	0	30	0.036
CH190	10	-29	-0.035
CH190	20	-19	-0.023
	30	22	0.026
	40	-27	-0.032
	50	24	0.029
	-30	-24	-0.013
PCS 1900 CH661	-20	-27	-0.014
	-10	38	0.020
	0	-19	-0.010
	10	-29	-0.015
	20	25	0.013
	30	-24	-0.013
	40	-23	-0.012
	50	23	0.012

FCC ID: X3U-TK110 Page 18 of 39

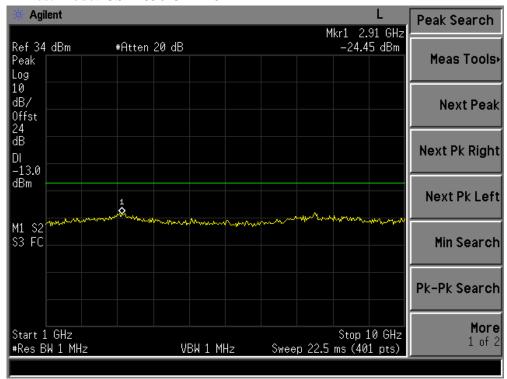
7. Conducted spurious emissions

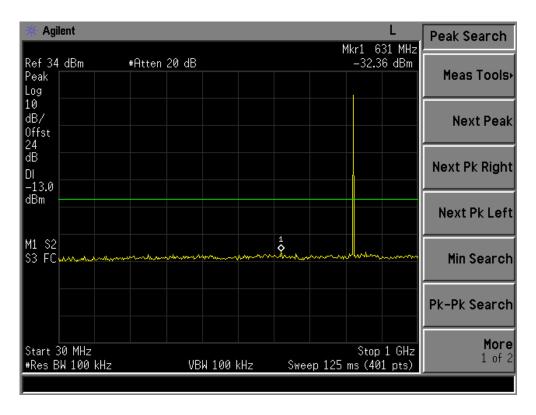
7.1. Block Diagram of Test Setup

7.2. Limit

The mean power of emissions must be attenuated below the mean power of the unmodulated carrier (P) on any frequency outside the frequency band by at least $(43 + 10 \log P) dB$, in this case, -13dBm.

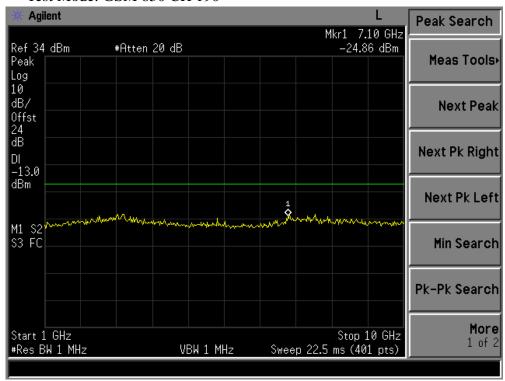
7.3. Test Procedure

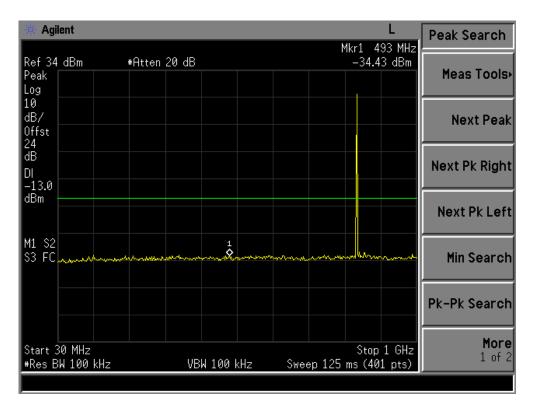

- 1. The EUT was connected to spectrum analyzer and base station via power divider.
- 2. The low,middle and high channels of each band and mode's spurious emissions for 30MHz to 10th Harmonic were measured by Spectrum analyzer.


7.4. Test Result

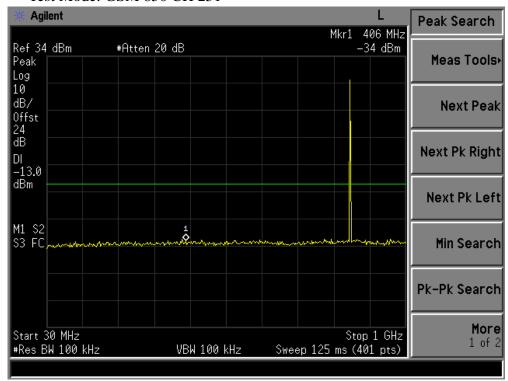
PASS

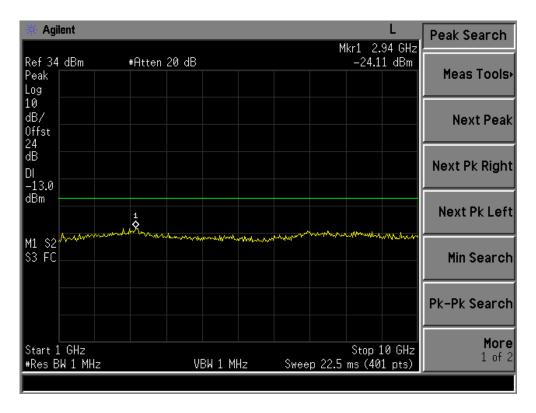
FCC ID: X3U-TK110 Page 19 of 39


Test Mode: GSM 850 CH 128

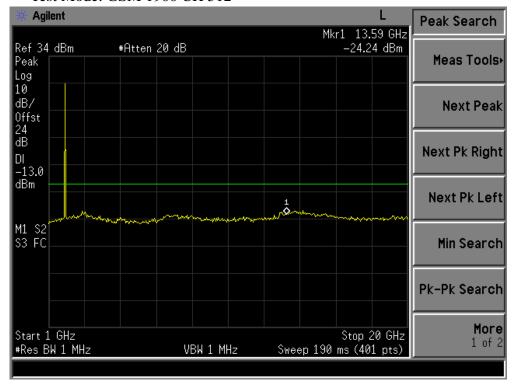


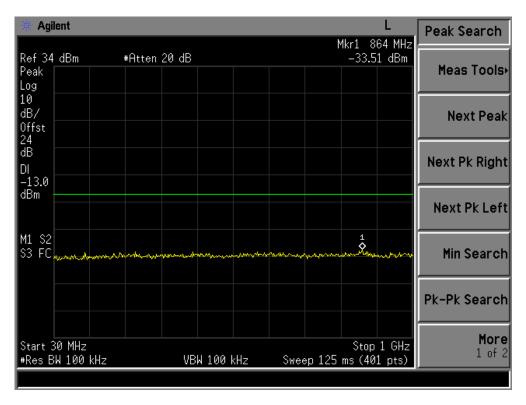
FCC ID: X3U-TK110 Page 20 of 39


Test Mode: GSM 850 CH 190

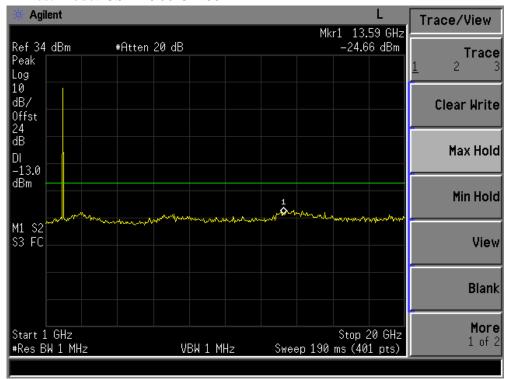


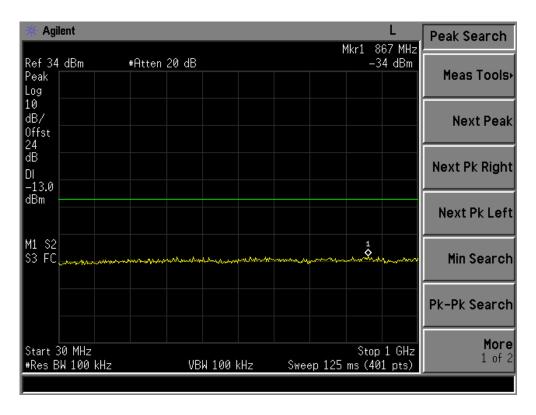
FCC ID: X3U-TK110 Page 21 of 39


Test Mode: GSM 850 CH 251



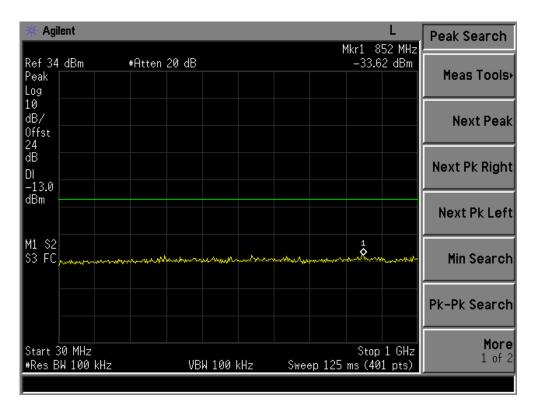
FCC ID: X3U-TK110 Page 22 of 39


Test Mode: GSM 1900 CH 512



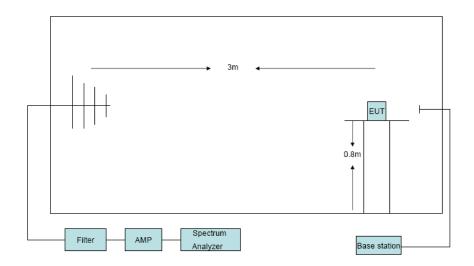
FCC ID: X3U-TK110 Page 23 of 39

Test Mode: GSM 1900 CH 661



FCC ID: X3U-TK110 Page 24 of 39

Test Mode: GSM 1900 CH 810



FCC ID: X3U-TK110 Page 25 of 39

8. Radiated Spurious emissions

8.1. Block Diagram of Test Setup

8.2. Limit

The mean power of emissions must be attenuated below the mean power of the unmodulated carrier (P) on any frequency outside the frequency band by at least (43 + 10 log P) dB, in this case, -13dBm.

8.3. Test Procedure

- 1. The EUT was placed on an non-conductive rotating platform with 0.8 meter height in an anechoic chamber. The radiated spurious emissions from 30MHz to 10th harmonious of fundamental frequency were measured at 3m with a test antenna and a spectrum analyzer with RBW= 1MHz,VBW= 1MHz ,peak detector settings.
- 2. During the measurement, the EUT was enforced in maximum power and linked with a base station. All the spurious emissions (record as LVL) at 3m were measured by rotation of the turntable and the test antenna raised and lowered over a range from 1 to 4 meters in both horizontally and vertically polarized orientations.
- 3. Final spurious emissions levels were measured by substitution method according to TIA/EIA-603-C. The EUT was replaced by dipole antenna (for frequency lelow 1GHz) or Horn antenna(for frequency above 1GHz) at same location with same polarize of reveiver antenna and then a known power of each measure frequency from S.G. was applied into the dipole antenna or Horn antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. The correction factor (in dB) = S.G. Tx Cable loss + Substitution antenna gain

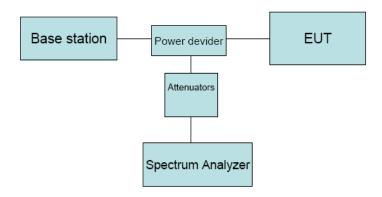
FCC ID: X3U-TK110 Page 26 of 39

-Substitution antenna Loss(only for Dipole antenna) - Analyzer reading. Then final

spurious emissions were calculated with the correction factor, EIRP= LVL + Correction factor and ERP = EIRP – 2.15

8.4. Test Result

EUT:GPS Veh	icle Tracker M	/N:TK110				
Power:DC 12V	I					
Test Date: 201	0-01-05	Test site: RF Chamber		Tested by: TaTa_Chen		
Ambient Temp	erature: 24°C	Relative Hur	nidity: 60%			
Conclusion:PA	SS					
			Test result			
Test Mode: G	SM 850 CH1		ı			
Frequency (MHz)	Antenna polarization	LVL (dBm)	Correction factor(dB)	Result (ERP)(dBm)	Limit (dBm)	Margin (dB)
1648.4	Н	-59.34	11.50	-49.99	-13	36.99
1648.4	V	-57.23	10.56	-48.82	-13	35.82
Test Mode:	GSM 850 CF	I190				
1673.2	Н	-65.12	10.94	-56.33	-13	43.33
2509.8	Н	/	/	/	-13	/
1673.2	V	-61.43	10.90	-52.68	-13	39.68
2509.8	V	/	/	/	-13	/
Test mode: GS	M 850 CH25	51				
1697.6	Н	-64.32	11.67	-54.8	-13	41.8
2546.4	Н	/	/	/	-13	/
1697.6	V	-59.23	11.13	-50.25	-13	37.25
2546.4	V	/	/	/	-13	/


FCC ID: X3U-TK110 Page 27 of 39

Frequency	Antenna	LVL	Correction	Result	Limit	Margin
(MHz)	polarization	(dBm)	factor(dB)	(EIRP)(dBm)	(dBm)	(dB)
3700.4	Н	-55.43	8.57	-46.86	-13	33.86
5550.6	Н	/	/	/	-13	/
3700.4	V	-53.12	8.37	-44.75	-13	31.75
5550.6	V	/	/	/	-13	/
Test Mode:	GSM 1900 C	H661				
3760	Н	-55.19	8.75	-46.44	-13	33.44
5640	Н	/	/	/	-13	/
3760	V	-54.34	8.55	-45.79	-13	32.79
5640	V	/	/	/	-13	/
Fest mode: GS	SM 1900 CH8	10				
3819.6	Н	-57.23	8.94	-48.29	-13	35.29
5729.4	Н	/	/	/	-13	/
3819.6	V	-55.12	8.72	-46.4	-13	33.4
5729.4	V	/	/	/	-13	/

FCC ID: X3U-TK110 Page 28 of 39

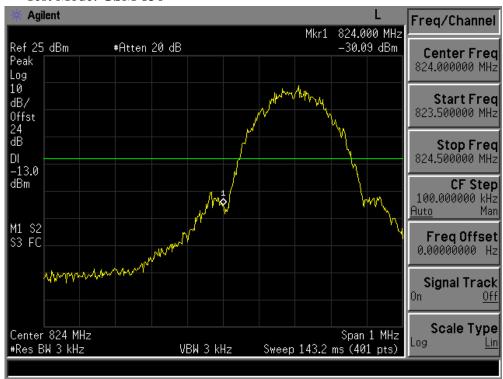
9. Block Edge Compliance

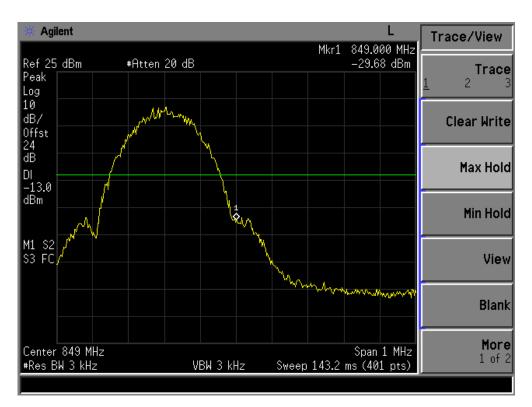
9.1. Block Diagram of Test Setup

9.2. Limit

The mean power of emissions must be attenuated below the mean power of the unmodulated carrier (P) on any frequency outside the frequency band by at least $(43 + 10 \log P) dB$, in this case, -13dBm.

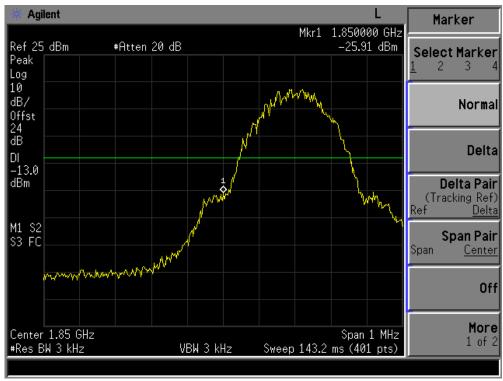
9.3. Test Procedure

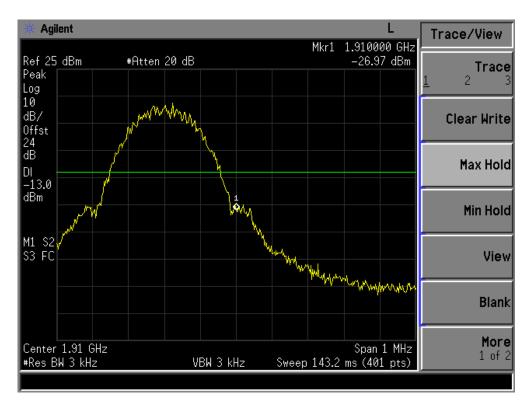

- 1. The EUT was connected to Spectrum Analyzer and Base Station via power divider.
- 2. The band edges of low and high channels for the highest RF powers were measured.


FCC ID: X3U-TK110 Page 29 of 39

9.4. Test Result

PASS


Test Mode: GSM 850



FCC ID: X3U-TK110 Page 30 of 39

Test Mode: GSM 1900

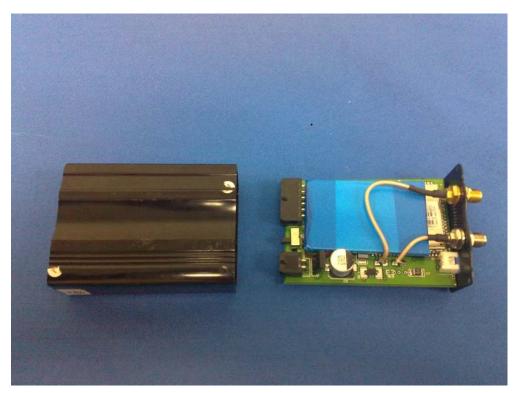
FCC ID: X3U-TK110 Page 31 of 39

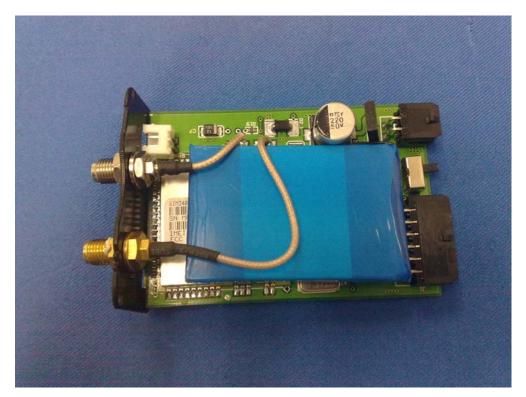
10. Testsetup photo

FCC ID: X3U-TK110 Page 32 of 39

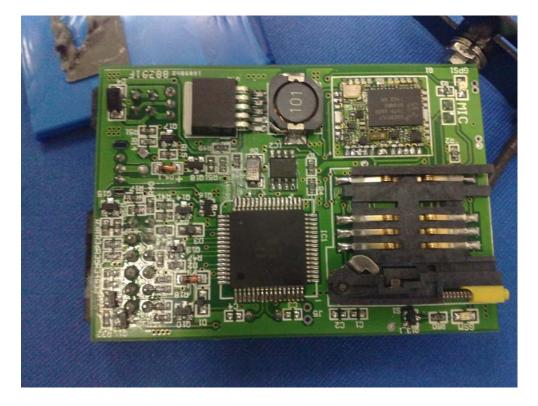
FCC ID: X3U-TK110 Page 33 of 39

11.Photos of EUT


FCC ID: X3U-TK110 Page 34 of 39


FCC ID: X3U-TK110 Page 35 of 39

FCC ID: X3U-TK110 Page 36 of 39


FCC ID: X3U-TK110 Page 37 of 39

FCC ID: X3U-TK110 Page 38 of 39

END OF REPOR

FCC ID: X3U-TK110 Page 39 of 39