

FCC RF Test Report

APPLICANT : Brightstar Corporation
EQUIPMENT : Mobile Phone
BRAND NAME : Avvio
MODEL NAME : Avvio 775S/Avvio 775
FCC ID : WVBA775X
STANDARD : FCC Part 15 Subpart C §15.247
CLASSIFICATION : (DTS) Digital Transmission System

The product was received on Aug. 16, 2013 and testing was completed on Sep. 07, 2013. We, SPORTON INTERNATIONAL (SHENZHEN) INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and shown to be compliant with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (SHENZHEN) INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL (SHENZHEN) INC.
No. 3 Building, the third floor of south, Shahe River west, Fengzeyuan warehouse, Nanshan District, Shenzhen, Guangdong, P.R.C.

TABLE OF CONTENTS

REVISION HISTORY.....	3
SUMMARY OF TEST RESULT	4
1 GENERAL DESCRIPTION.....	5
1.1 Applicant	5
1.2 Manufacturer.....	5
1.3 Feature of Equipment Under Test	5
1.4 Product Specification of Equipment Under Test.....	6
1.5 Modification of EUT	6
1.6 Testing Site.....	7
1.7 Applied Standards	7
2 TEST CONFIGURATION OF EQUIPMENT UNDER TEST.....	8
2.1 Descriptions of Test Mode	8
2.2 Test Mode.....	9
2.3 Connection Diagram of Test System.....	10
2.4 Support Unit used in test configuration and system.....	11
2.5 EUT Operation Test Setup	11
2.6 Measurement Results Explanation Example.....	12
3 TEST RESULT	13
3.1 6dB Bandwidth Measurement	13
3.2 Peak Output Power Measurement	16
3.3 Power Spectral Density Measurement	18
3.4 Conducted Band Edges and Spurious Emission Measurement	24
3.5 Radiated Band Edges and Spurious Emission Measurement	29
3.6 AC Conducted Emission Measurement.....	39
3.7 Antenna Requirements	44
4 LIST OF MEASURING EQUIPMENT.....	45
5 UNCERTAINTY OF EVALUATION.....	46
APPENDIX A. SETUP PHOTOGRAPHS	

REVISION HISTORY

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	$\geq 0.5\text{MHz}$	Pass	-
3.2	15.247(b)(1)	Peak Output Power	$\leq 30\text{dBm}$	Pass	-
3.3	15.247(e)	Power Spectral Density	$\leq 8\text{dBm}$	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	$\leq 20\text{dBc}$	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 12.44 dB at 77.530 MHz
3.6	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 4.64 dB at 0.340 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

1 General Description

1.1 Applicant

Brightstar Corporation

9725 NW 117th Ave., Miami, Florida, FL 33178, United States

1.2 Manufacturer

Konka Telecommunications Technology co., LTD.

Overseas Chinese Town, Nanshan District, Shenzhen, China

1.3 Feature of Equipment Under Test

Product Feature	
Equipment	Mobile Phone
Brand Name	Avvio
Model Name	Avvio 775S/Avvio 775
FCC ID	WVBA775X
EUT supports Radios application	GSM/GPRS/EGPRS/WCDMA/HSPA/HSPA+(Downlink Only)/ WLAN 2.4GHz 802.11bgn/Bluetooth v3.0 + EDR/Bluetooth v4.0
HW Version	1.1
SW Version	KAAI120_SAPBO_Es_En_0.00.809
EUT Stage	Production Unit

Remark:

1. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
2. There are two different types of EUT. They are single SIM card mobile (Model Name: Avvio 775) and dual SIM card mobile (Model Name: Avvio 775S). The others are the same including circuit design, PCB board, structure and all components. It is special to declare. After pre-scan two types of EUT, we found test result of the sample that dual SIM (Model Name: Avvio 775S) was the worst, so we choose dual SIM card mobile to perform all test.
3. For dual SIM card mobile, SIM1 supports GSM and WCDMA functions, and SIM2 only supports GSM function.

1.4 Product Specification of Equipment Under Test

Product Specification subjective to this standard	
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz
Number of Channels	40
Carrier Frequency of Each Channel	40 Channel(37 hopping + 3 advertising channel)
Maximum Output Power to Antenna	0.13 dBm (0.00103 W)
Antenna Type	PIFA Antenna with gain -4.20 dBi
Type of Modulation	Bluetooth 4.0 - LE : GFSK

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Site

Test Site	SPORTON INTERNATIONAL (SHENZHEN) INC.		
Test Site Location	No. 3 Building, the third floor of south, Shahe River west, Fengzeyuan warehouse, Nanshan District, Shenzhen, Guangdong, P.R.C. TEL: +86-755- 3320-2398		
Test Site No.	Sporton Site No.		FCC Registration No.
	TH01-SZ	CO01-SZ	831040

Test Site	SPORTON INTERNATIONAL (KUNSHAN) INC.		
Test Site Location	No. 3-2, PingXiang Road, Kunshan, Jiangsu Province, P.R.C. TEL: +86-0512-5790-0158 FAX: +86-0512-5790-0958		
Test Site No.	Sporton Site No.		FCC Registration No.
	03CH01-KS		149928

The test site complies with ANSI C63.4 2003 requirement.

1.7 Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r01
- ANSI C63.4-2003

Remark:

1. All test items were verified and recorded according to the standards and without any deviation during the test.
2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

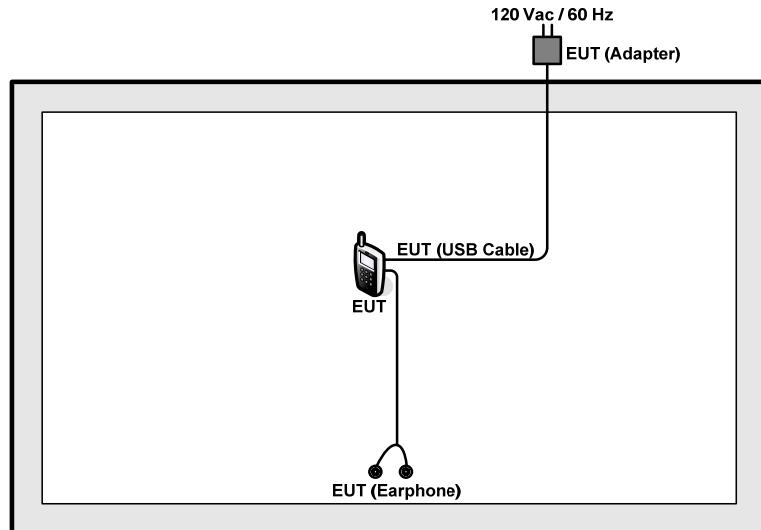
2.1 Descriptions of Test Mode

The RF output power was recorded in the following table:

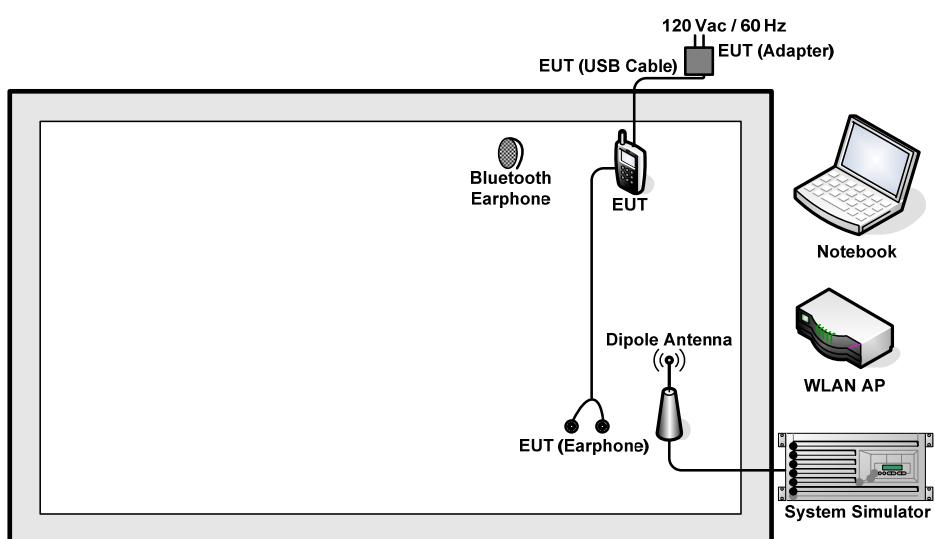
Channel	Frequency	Bluetooth 4.0 – LE RF Output Power
		Data Rate / Modulation
		GFSK
		1Mbps
Ch00	2402MHz	-0.36 dBm
Ch19	2440MHz	-0.29 dBm
Ch39	2480MHz	0.13 dBm

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction (150 kHz to 30 MHz), radiation (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). Pre-scanned tests, X, Y, Z in three orthogonal panels to determine the final configuration (Y plane as worst plane) from all possible combinations.

- b. AC power line Conducted Emission was tested under maximum output power.


2.2 Test Mode

The following summary table is showing all test modes to demonstrate in compliance with the standard.


Summary table of Test Cases	
Test Item	Data Rate / Modulation
	Bluetooth 4.0 – LE / GFSK
Conducted TCs	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps
Radiated TCs	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps
AC Conducted Emission	Mode 1: GSM850 Idle + Bluetooth Link + WLAN Link + Earphone + USB Cable (Charging from Adapter)

2.3 Connection Diagram of Test System

<Bluetooth 4.0 – LE Tx Mode>

<AC Conducted Emission Mode>

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Agilent	E5515C	N/A	N/A	Unshielded, 1.8 m
2.	DC Power Supply	TOPWORD	3303DR	N/A	N/A	Unshielded, 1.8 m
3.	WLAN AP	D-Link	DIR-612	N/A	N/A	Unshielded, 1.8 m
4.	Notebook	DELL	P08S	FCC DoC	N/A	AC I/P: Unshielded, 1.8 m DC O/P: Shielded, 1.8 m
5.	Bluetooth Earphone	Nokia	BH-108	N/A	N/A	N/A

2.5 EUT Operation Test Setup

For Bluetooth 4.0 – LE function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 7.5 dB and 10dB attenuator.

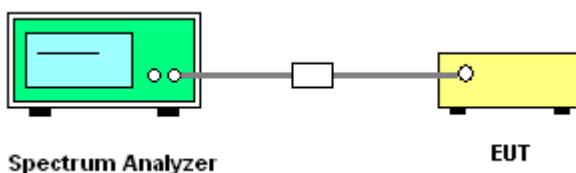
$$\begin{aligned} \text{Offset(dB)} &= \text{RF cable loss(dB)} + \text{attenuator factor(dB)} \\ &= 7.5 + 10 = 17.5 \text{ (dB)} \end{aligned}$$

3 Test Result

3.1 6dB Bandwidth Measurement

3.1.1 Limit of 6dB Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

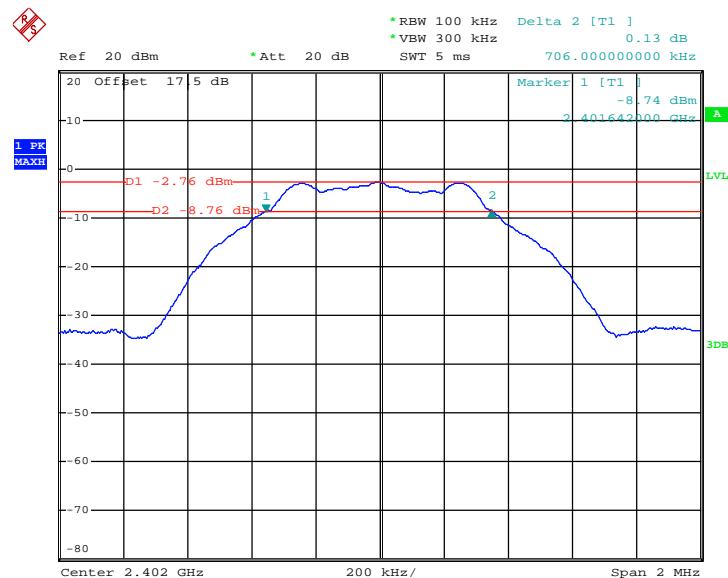

3.1.2 Measuring Instruments

See list of measuring instruments of this test report.

3.1.3 Test Procedures

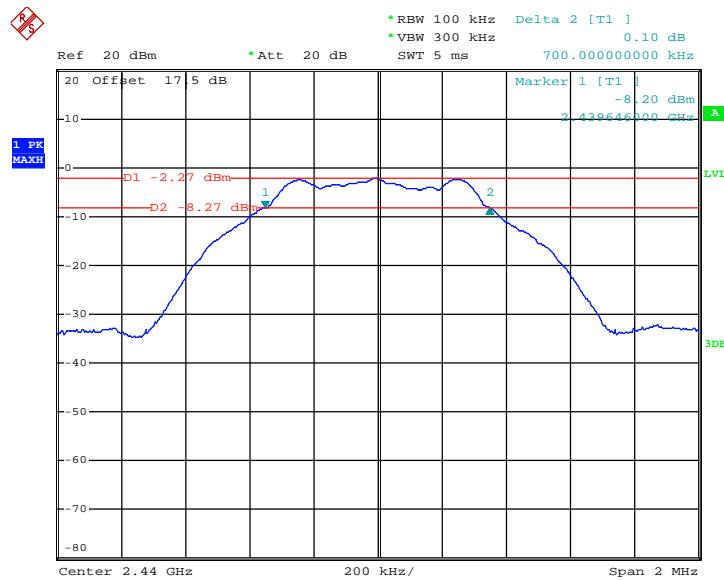
1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r01.
2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
3. Set to the maximum power setting and enable the EUT transmit continuously.
4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
5. Measure and record the results in the test report.

3.1.4 Test Setup

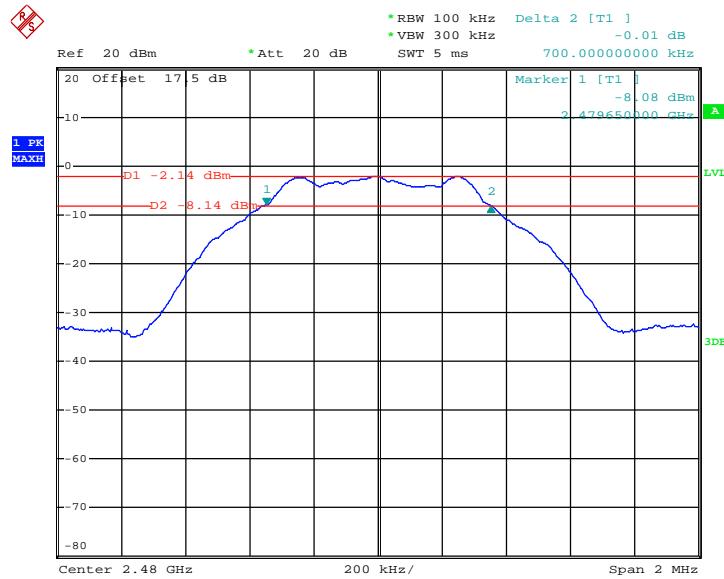


3.1.5 Test Result of 6dB Bandwidth

Test Mode :	Bluetooth 4.0 - LE	Temperature :	24~26°C
Test Engineer :	Fly Chen	Relative Humidity :	50~53%


Channel	Frequency (MHz)	6dB Bandwidth (MHz)	6dB Bandwidth Min. Limit (MHz)	Pass/Fail
00	2402	0.706	0.5	Pass
19	2440	0.700	0.5	Pass
39	2480	0.700	0.5	Pass

6 dB Bandwidth Plot on Channel 00


Date: 2.SEP.2013 07:48:02

6 dB Bandwidth Plot on Channel 19

Date: 2.SEP.2013 07:54:08

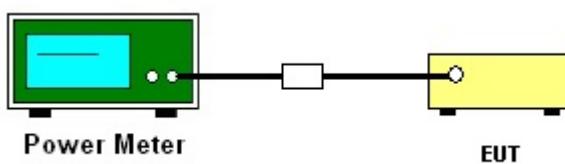
6 dB Bandwidth Plot on Channel 39

Date: 2.SEP.2013 07:59:27

3.2 Peak Output Power Measurement

3.2.1 Limit of Peak Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.


3.2.2 Measuring Instruments

See list of measuring instruments of this test report.

3.2.3 Test Procedures

1. The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v03r01.
2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
3. Set to the maximum power setting and enable the EUT transmit continuously.
4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Peak Output Power

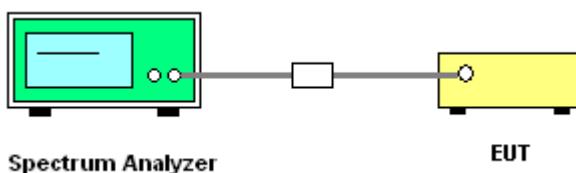
Test Mode :	Bluetooth 4.0 - LE	Temperature :	24~26°C
Test Engineer :	Fly Chen	Relative Humidity :	50~53%

Channel	Frequency (MHz)	RF Power (dBm)		
		GFSK	Max. Limits (dBm)	Pass/Fail
		1 Mbps		
00	2402	-0.36	30.00	Pass
19	2440	-0.29	30.00	Pass
39	2480	0.13	30.00	Pass

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.


3.3.2 Measuring Instruments

See list of measuring instruments of this test report.

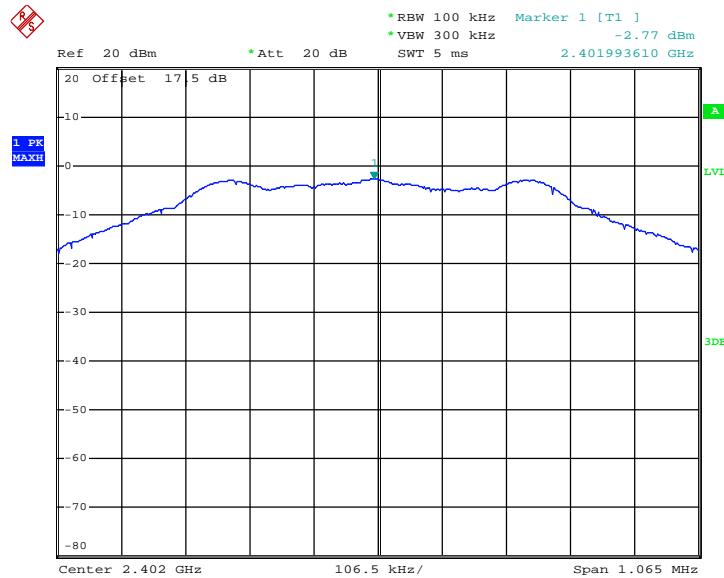
3.3.3 Test Procedures

1. The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r01
2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
3. Set to the maximum power setting and enable the EUT transmit continuously.
4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
6. Measure and record the results in the test report.
7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

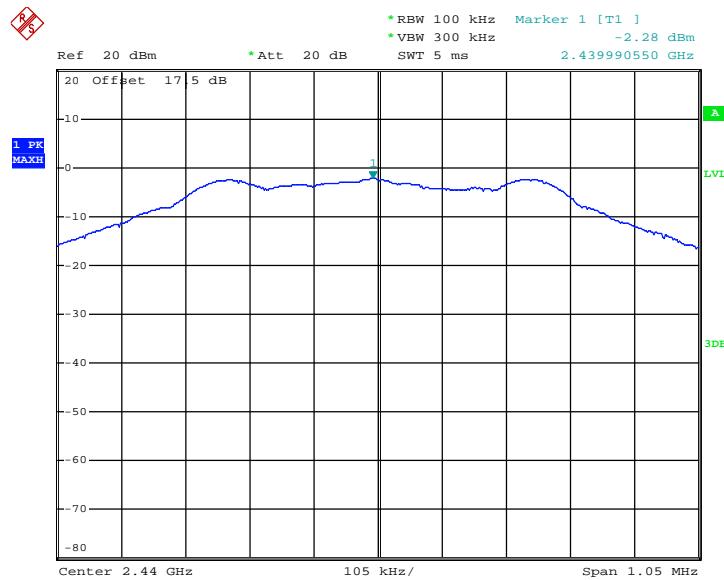
3.3.5 Test Result of Power Spectral Density

Test Mode :	Bluetooth 4.0 - LE	Temperature :	24~26°C
Test Engineer :	Fly Chen	Relative Humidity :	50~53%

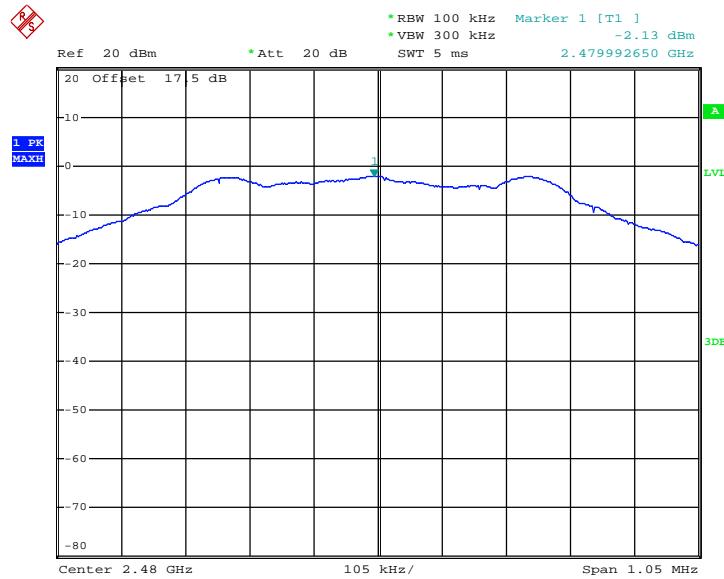

Channel	Frequency (MHz)	Power Density		Max. Limits (dBm/3kHz)	Pass/Fail
		PSD/100kHz (dBm)	PSD/3kHz (dBm)		
00	2402	-2.77	-17.26	8	Pass
19	2440	-2.28	-16.80	8	Pass
39	2480	-2.13	-16.70	8	Pass

Note:

1. Measured power density (dBm) has offset with cable loss.
2. The Measured power density (dBm)/ 100kHz is reference level and used as 20dBc down for Conducted Band Edges and Conducted Spurious Emission limit line.

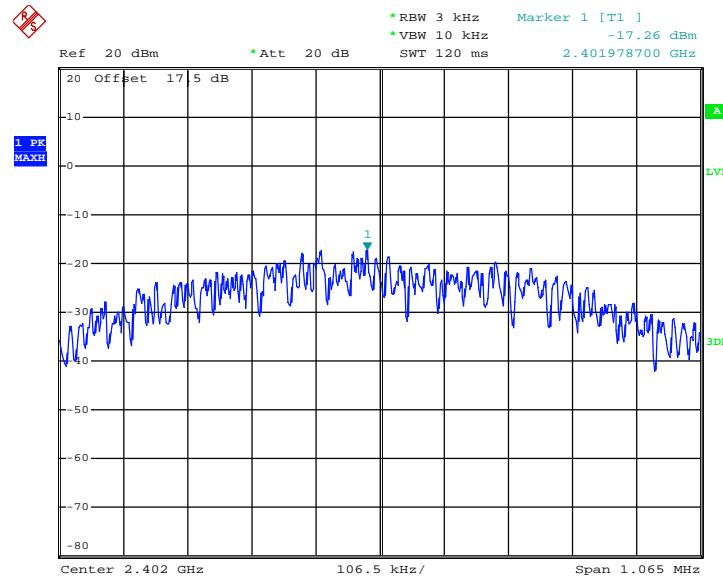

3.3.6 Test Result of Power Spectral Density Plots (100kHz)

PSD 100kHz Plot on Channel 00

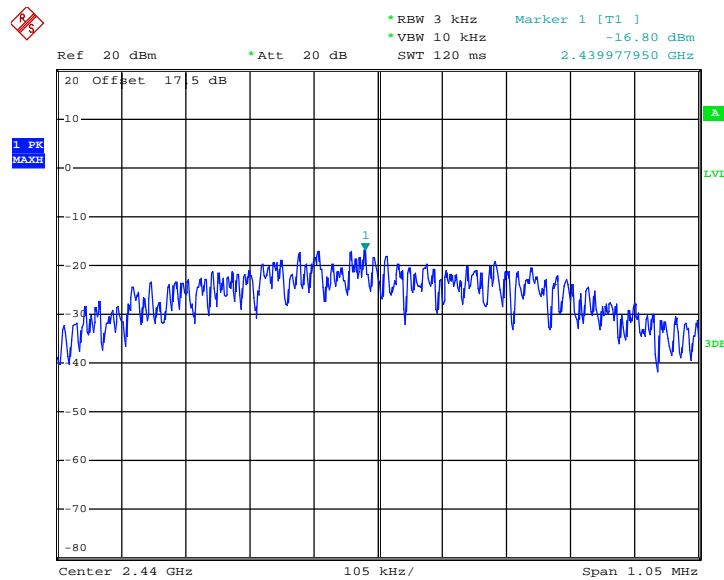

Date: 2.SEP.2013 07:48:30

PSD 100kHz Plot on Channel 19

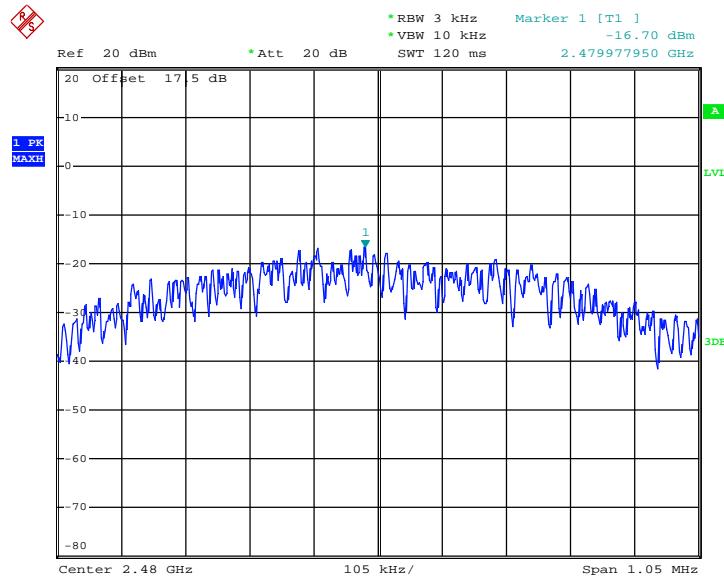
Date: 2.SEP.2013 07:54:37


PSD 100kHz Plot on Channel 39

Date: 2.SEP.2013 07:59:56


3.3.7 Test Result of Power Spectral Density Plots (3kHz)

PSD 3kHz Plot on Channel 00


Date: 2.SEP.2013 07:48:21

PSD 3kHz Plot on Channel 19

Date: 2.SEP.2013 07:54:28

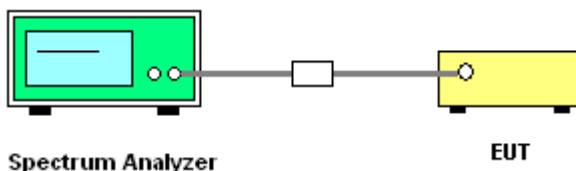
PSD 3kHz Plot on Channel 39

Date: 2.SEP.2013 07:59:47

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

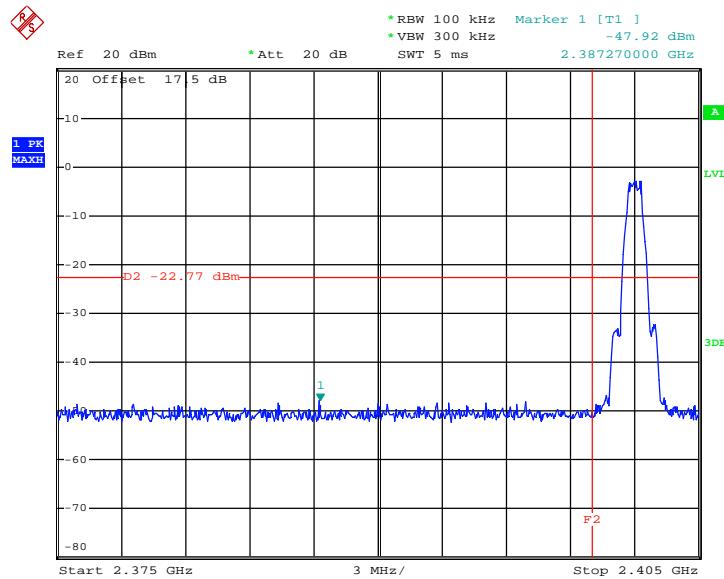
All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.


3.4.2 Measuring Instruments

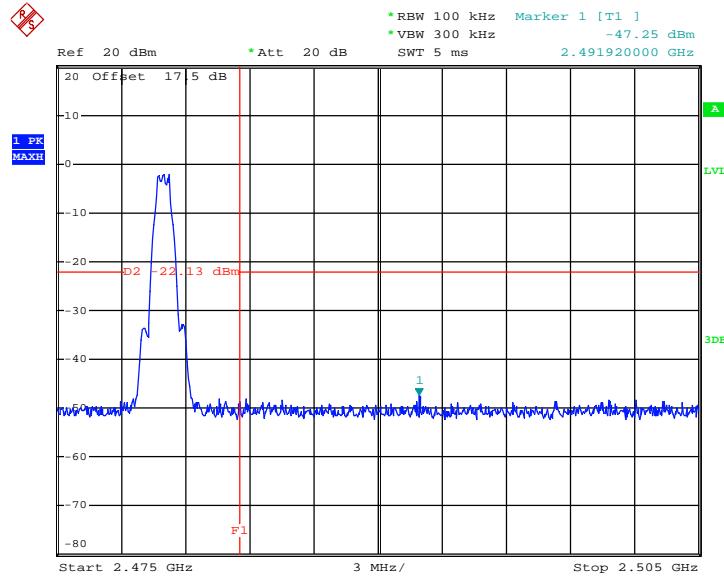
See list of measuring instruments of this test report.

3.4.3 Test Procedure

1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r01.
2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
3. Set to the maximum power setting and enable the EUT transmit continuously.
4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
5. Measure and record the results in the test report.
6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.


3.4.4 Test Setup

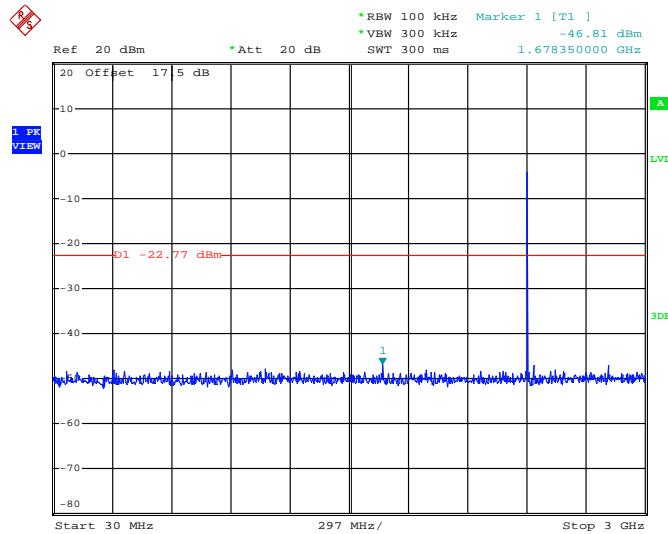
3.4.5 Test Result of Conducted Band Edges


Test Mode :	Bluetooth 4.0 - LE	Temperature :	24~26°C
Test Channel :	00 and 39	Relative Humidity :	50~53%
		Test Engineer :	Fly Chen

Low Band Edge Plot on Channel 00

Date: 2.SEP.2013 07:48:44

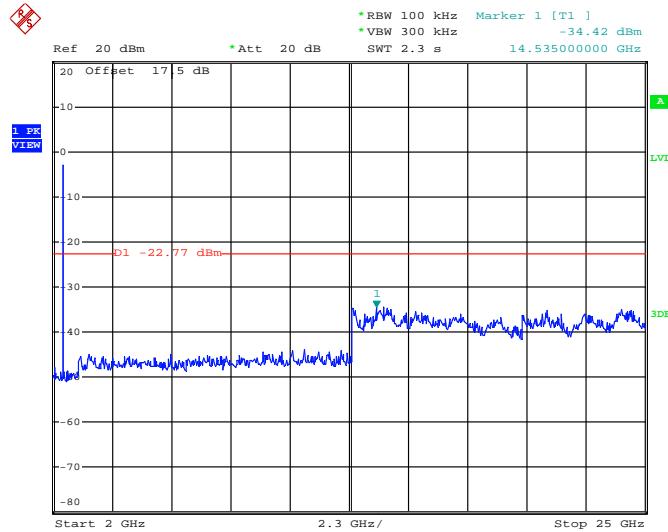
High Band Edge Plot on Channel 39


Date: 2.SEP.2013 08:00:10

3.4.6 Test Result of Conducted Spurious Emission

Test Mode :	Bluetooth 4.0 - LE	Temperature :	24~26°C
Test Channel :	00	Relative Humidity :	50~53%
		Test Engineer :	Fly Chen

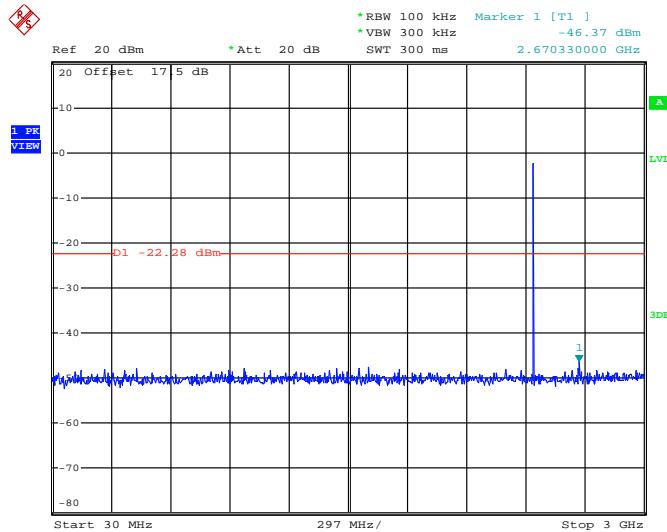
Conducted Spurious Emission Plot on Bluetooth LE 1Mbps


GFSK Channel 00

Date: 2.SEP.2013 07:49:03

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

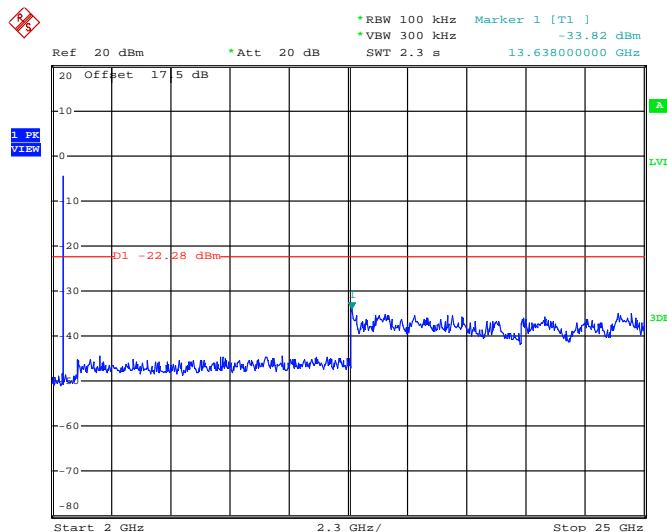
GFSK Channel 00



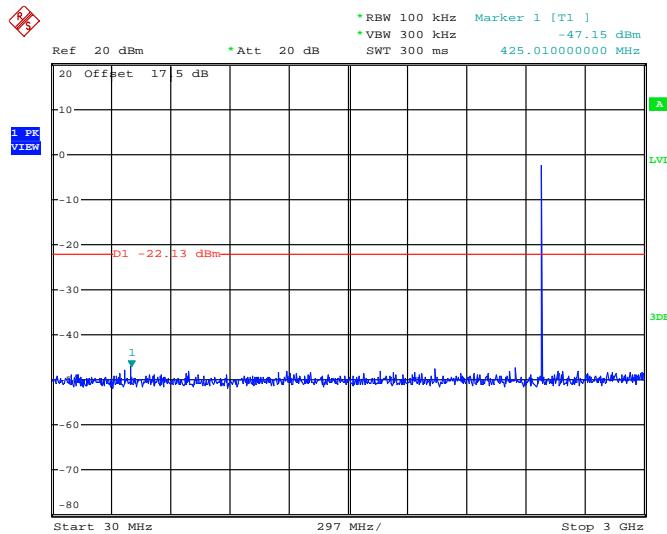
Date: 2.SEP.2013 07:49:22

Test Mode :	Bluetooth 4.0 - LE	Temperature :	24~26°C
Test Channel :	19	Relative Humidity :	50~53%
		Test Engineer :	Fly Chen

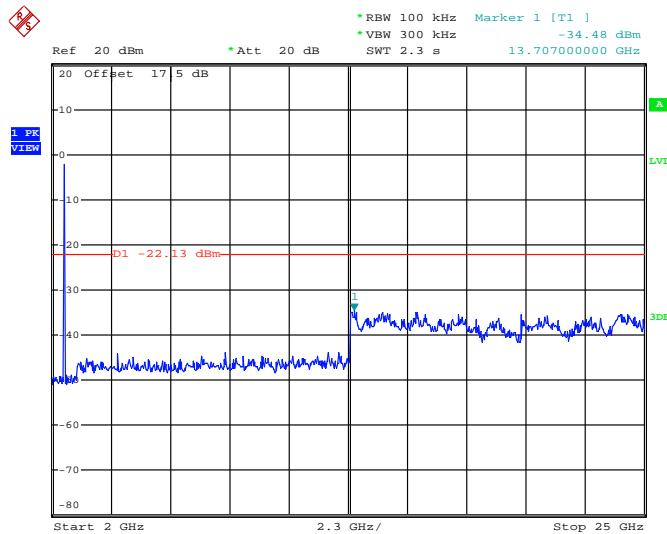
Conducted Spurious Emission Plot on Bluetooth LE 1Mbps


GFSK Channel 19

Date: 2.SEP.2013 07:54:57


Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

GFSK Channel 19



Date: 2.SEP.2013 07:55:15

Test Mode :	Bluetooth 4.0 - LE	Temperature :	24~26°C
Test Channel :	39	Relative Humidity :	50~53%
		Test Engineer :	Fly Chen

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps
GFSK Channel 39

Date: 2.SEP.2013 08:00:29

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps
GFSK Channel 39

Date: 2.SEP.2013 08:00:47

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated Band Edges and Spurious Emission

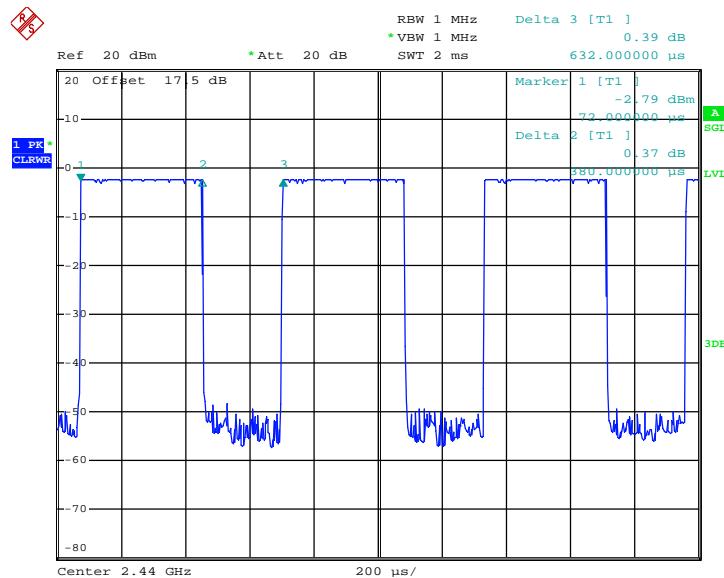
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

See list of measuring instruments of this test report.

3.5.3 Test Procedures

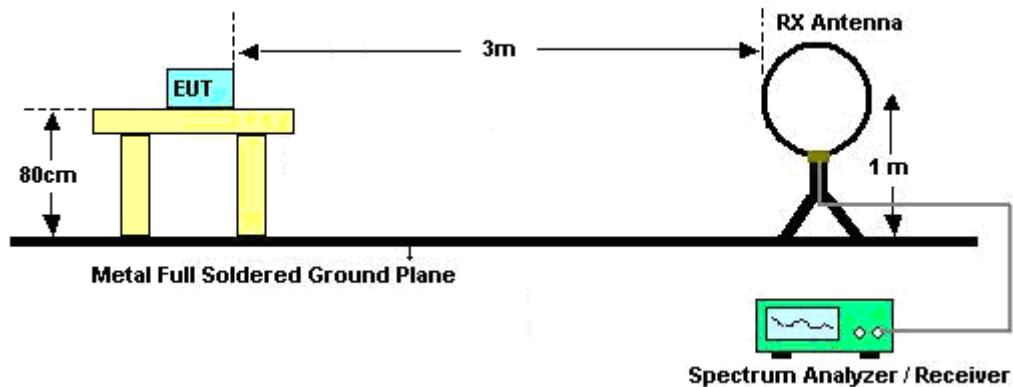

1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r01.
2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
3. The EUT was placed on a turntable with 0.8 meter above ground.
4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
5. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level
6. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
7. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for $f < 1$ GHz; VBW \geq RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \geq 1$ GHz for peak measurement.

For average measurement:

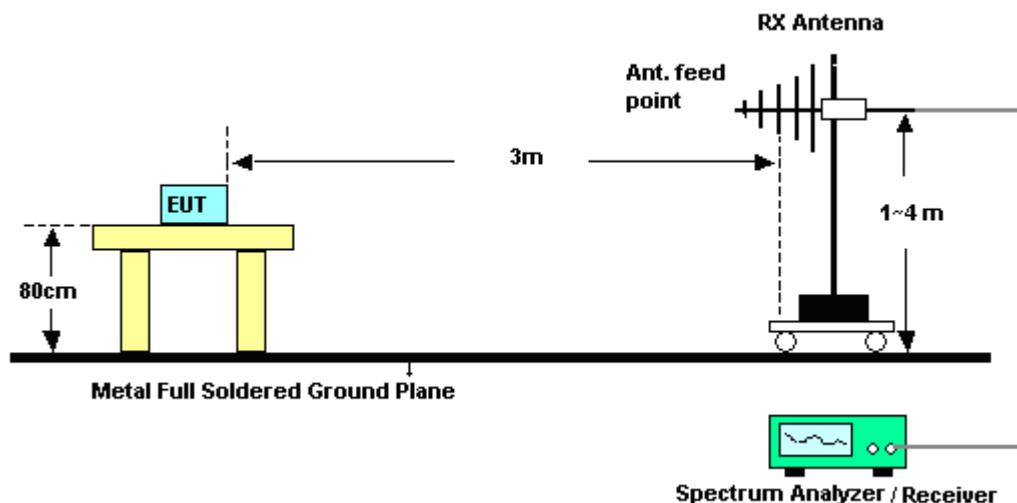
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW $\geq 1/T$, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
Bluetooth 4.0 - LE	60.127	0.380	2.632	3kHz

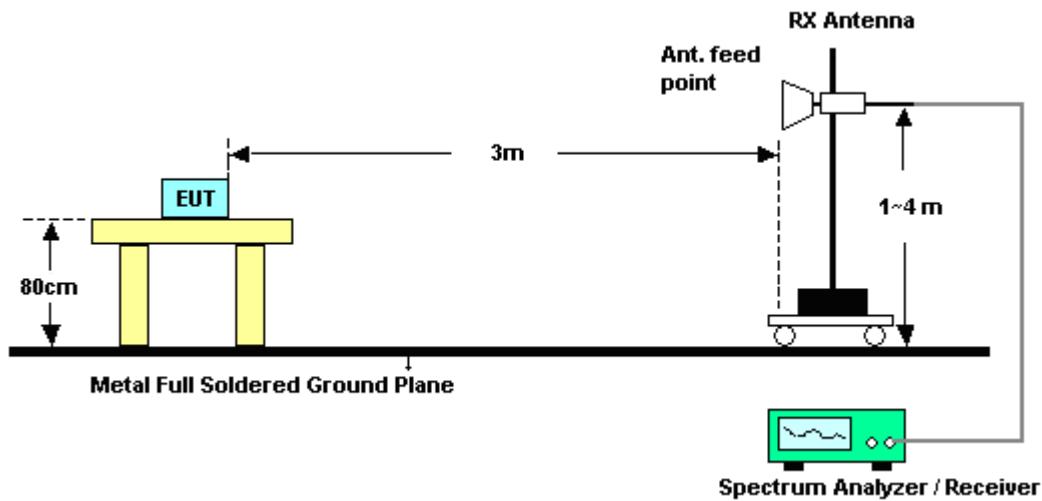
Bluetooth 4.0_ LE Duty Cycle


Date: 25.AUG.2013 11:48:21

Note:


The total loss is 17.5dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

3.5.4 Test Setup


For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

3.5.6 Test Result of Radiated Spurious at Band Edges

Test Mode :	Mode 1			Temperature :		23~24°C		
Test Channel :	00			Relative Humidity :		43~44%		
				Test Engineer :		Stone Gu		

ANTENNA POLARITY : HORIZONTAL

Frequency (MHz)	Level (dB μ V / m)	Over Limit (dB)	Limit Line (dB μ V / m)	Read Level (dB μ V)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Remark
2365.08	51.36	-22.64	74	46.12	32.81	3.15	30.72	193	340	Peak
2387.22	38.55	-15.45	54	33.2	32.86	3.17	30.68	192	340	Average

ANTENNA POLARITY : VERTICAL

Frequency (MHz)	Level (dB μ V / m)	Over Limit (dB)	Limit Line (dB μ V / m)	Read Level (dB μ V)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Remark
2366.79	51.01	-22.99	74	45.77	32.81	3.15	30.72	120	97	Peak
2389.2	38.57	-15.43	54	33.22	32.86	3.17	30.68	120	98	Average

Test Mode :	Mode 3			Temperature :		23~24°C		
Test Channel :	39			Relative Humidity :		43~44%		
				Test Engineer :		Stone Gu		

ANTENNA POLARITY : HORIZONTAL

Frequency (MHz)	Level (dB μ V / m)	Over Limit (dB)	Limit Line (dB μ V / m)	Read Level (dB μ V)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Remark
2483.5	60.08	-13.92	74	54.45	33.01	3.22	30.6	158	344	Peak
2483.5	41.46	-12.54	54	35.83	33.01	3.22	30.6	158	344	Average

ANTENNA POLARITY : VERTICAL

Frequency (MHz)	Level (dB μ V / m)	Over Limit (dB)	Limit Line (dB μ V / m)	Read Level (dB μ V)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Remark
2483.5	58.7	-15.3	74	53.07	33.01	3.22	30.6	108	79	Peak
2483.5	39.87	-14.13	54	34.24	33.01	3.22	30.6	109	79	Average

3.5.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Note: Pre-scanned all test modes and only choose the worst case mode recorded in the test report for radiated spurious emission below 1GHz.

Test Mode :	Mode 1	Temperature :	23~24°C
Test Channel :	00	Relative Humidity :	43~44%
Test Engineer :	Stone Gu	Polarization :	Horizontal
Remark :	1. 2402 MHz is fundamental signal which can be ignored. 2. 7206 MHz is not within a restricted band, and its limit line is 20dB below the highest emission level. For example, 98.85dB μ V/m - 20dB = 78.85dB μ V/m. 3. Average measurement was not performed if peak level went lower than the average limit.		

Frequency (MHz)	Level (dB μ V/m)	Over Limit (dB)	Limit Line (dB μ V/m)	Read Level (dB μ V)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Remark
2402	98.85	-	-	93.5	32.86	3.17	30.68	193	339	Peak
2402	97.88	-	-	92.53	32.86	3.17	30.68	193	339	Average
4802	47.83	-26.17	74	37.4	35.17	4.58	29.32	200	300	Peak
7206	48.91	-29.94	78.85	37.27	36.16	5.61	30.13	200	105	Peak

Note: Other harmonics are lower than background noise.

Test Mode :	Mode 1	Temperature :	23~24°C
Test Channel :	00	Relative Humidity :	43~44%
Test Engineer :	Stone Gu	Polarization :	Vertical
Remark :	1. 2402 MHz is fundamental signal which can be ignored. 2. 7206 MHz is not within a restricted band, and its limit line is 20dB below the highest emission level. 3. Average measurement was not performed if peak level went lower than the average limit.		

Frequency (MHz)	Level (dB μ V/m)	Over Limit (dB)	Limit Line (dB μ V/m)	Read Level (dB μ V)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Remark
2402	95.66	-	-	90.31	32.86	3.17	30.68	121	95	Peak
2402	94.68	-	-	89.33	32.86	3.17	30.68	121	95	Average
4802	49.72	-24.28	74	39.29	35.17	4.58	29.32	200	0	Peak
7206	47.97	-27.69	75.66	36.33	36.16	5.61	30.13	200	100	Peak

Note: Other harmonics are lower than background noise.

Test Mode :	Mode 2	Temperature :	23~24°C
Test Channel :	19	Relative Humidity :	43~44%
Test Engineer :	Stone Gu	Polarization :	Horizontal
Remark :	1. 2440 MHz is fundamental signal which can be ignored. 2. Average measurement was not performed if peak level went lower than the average limit.		

Frequency (MHz)	Level (dB μ V/m)	Over Limit (dB)	Limit Line (dB μ V/m)	Read Level (dB μ V)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Remark
2440	97.88	-	-	92.36	32.95	3.2	30.63	180	345	Peak
2440	96.78	-	-	91.26	32.95	3.2	30.63	180	345	Average
4880	50.17	-23.83	74	39.71	35.18	4.6	29.32	200	310	Peak
7320	48.56	-25.44	74	36.9	36.21	5.64	30.19	100	0	Peak

Note: Other harmonics are lower than background noise.

Test Mode :	Mode 2	Temperature :	23~24°C
Test Channel :	19	Relative Humidity :	43~44%
Test Engineer :	Stone Gu	Polarization :	Vertical
Remark :	1. 2440 MHz is fundamental signal which can be ignored. 2. Average measurement was not performed if peak level went lower than the average limit.		

Frequency (MHz)	Level (dB μ V/m)	Over Limit (dB)	Limit Line (dB μ V/m)	Read Level (dB μ V)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Remark
2440	95.8	-	-	90.28	32.95	3.2	30.63	108	225	Peak
2440	94.98	-	-	89.46	32.95	3.2	30.63	108	225	Average
4880	49.15	-24.85	74	38.69	35.18	4.6	29.32	100	0	Peak
7320	49.04	-24.96	74	37.38	36.21	5.64	30.19	200	56	Peak

Note: Other harmonics are lower than background noise.

Test Mode :	Mode 3			Temperature :		23~24°C					
Test Channel :	39			Relative Humidity :		43~44%					
Test Engineer :	Stone Gu			Polarization :		Horizontal					
Remark :	1. 2480 MHz is fundamental signal which can be ignored. 2. Average measurement was not performed if peak level went lower than the average limit.										
Frequency (MHz)	Level (dBμV/m)	Over Limit (dB)	Limit Line (dBμV/m)	Read Level (dBμV)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Remark	
77.53	27.56	-12.44	40	54.15	6.2	0.81	33.6	100	20	Peak	
128.94	29.45	-14.05	43.5	50.29	11.71	1.04	33.59	-	-	Peak	
259.89	31.57	-14.43	46	51.36	12.15	1.49	33.43	-	-	Peak	
337.49	33.44	-12.56	46	50.91	14.2	1.69	33.36	-	-	Peak	
838.01	28.24	-17.76	46	37.94	20.38	2.63	32.71	-	-	Peak	
939.86	33.32	-12.68	46	42.26	20.69	2.81	32.44	-	-	Peak	
2480	98.25	-	-	92.62	33.01	3.22	30.6	158	344	Peak	
2480	97.52	-	-	91.89	33.01	3.22	30.6	158	344	Average	
4960	48.57	-25.43	74	38.06	35.2	4.62	29.31	200	310	Peak	
7440	48.61	-25.39	74	36.91	36.27	5.67	30.24	200	140	Peak	

Note: Other harmonics are lower than background noise.

Test Mode :	Mode 3	Temperature :	23~24°C
Test Channel :	39	Relative Humidity :	43~44%
Test Engineer :	Stone Gu	Polarization :	Vertical
Remark :	1. 2480 MHz is fundamental signal which can be ignored. 2. Average measurement was not performed if peak level went lower than the average limit.		

Frequency (MHz)	Level (dB μ V/m)	Over Limit (dB)	Limit Line (dB μ V/m)	Read Level (dB μ V)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Remark
52.31	27.27	-12.73	40	53.17	7.01	0.67	33.58	-	-	Peak
128.94	28.39	-15.11	43.5	49.23	11.71	1.04	33.59	-	-	Peak
259.89	23.87	-22.13	46	43.66	12.15	1.49	33.43	-	-	Peak
337.49	23.93	-22.07	46	41.4	14.2	1.69	33.36	-	-	Peak
879.72	24.1	-21.9	46	33.49	20.47	2.68	32.54	-	-	Peak
954.41	33.35	-12.65	46	42.21	20.76	2.82	32.44	100	0	Peak
2480	96.29	-	-	90.66	33.01	3.22	30.6	108	79	Peak
2480	95.27	-	-	89.64	33.01	3.22	30.6	108	79	Average
4960	48.91	-25.09	74	38.4	35.2	4.62	29.31	200	106	Peak
7440	48.18	-25.82	74	36.48	36.27	5.67	30.24	100	20	Peak

Note: Other harmonics are lower than background noise.

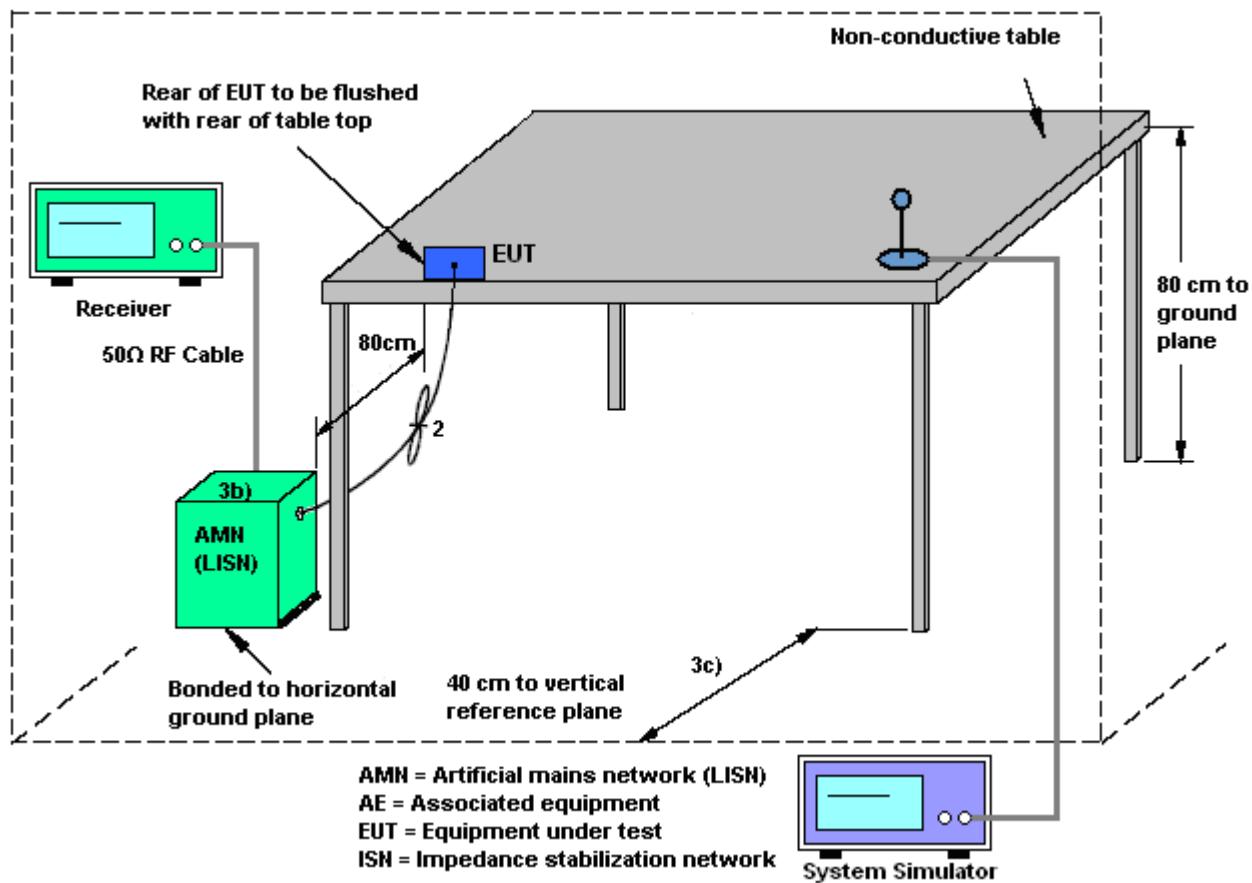
3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

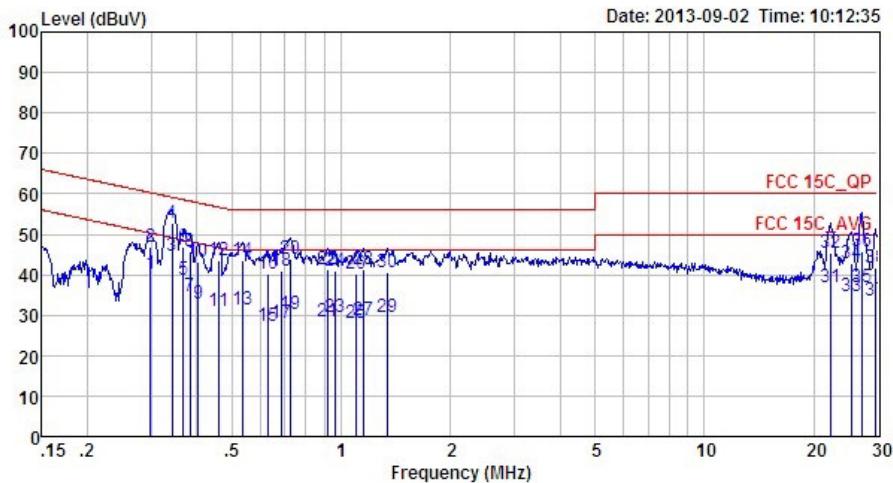
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

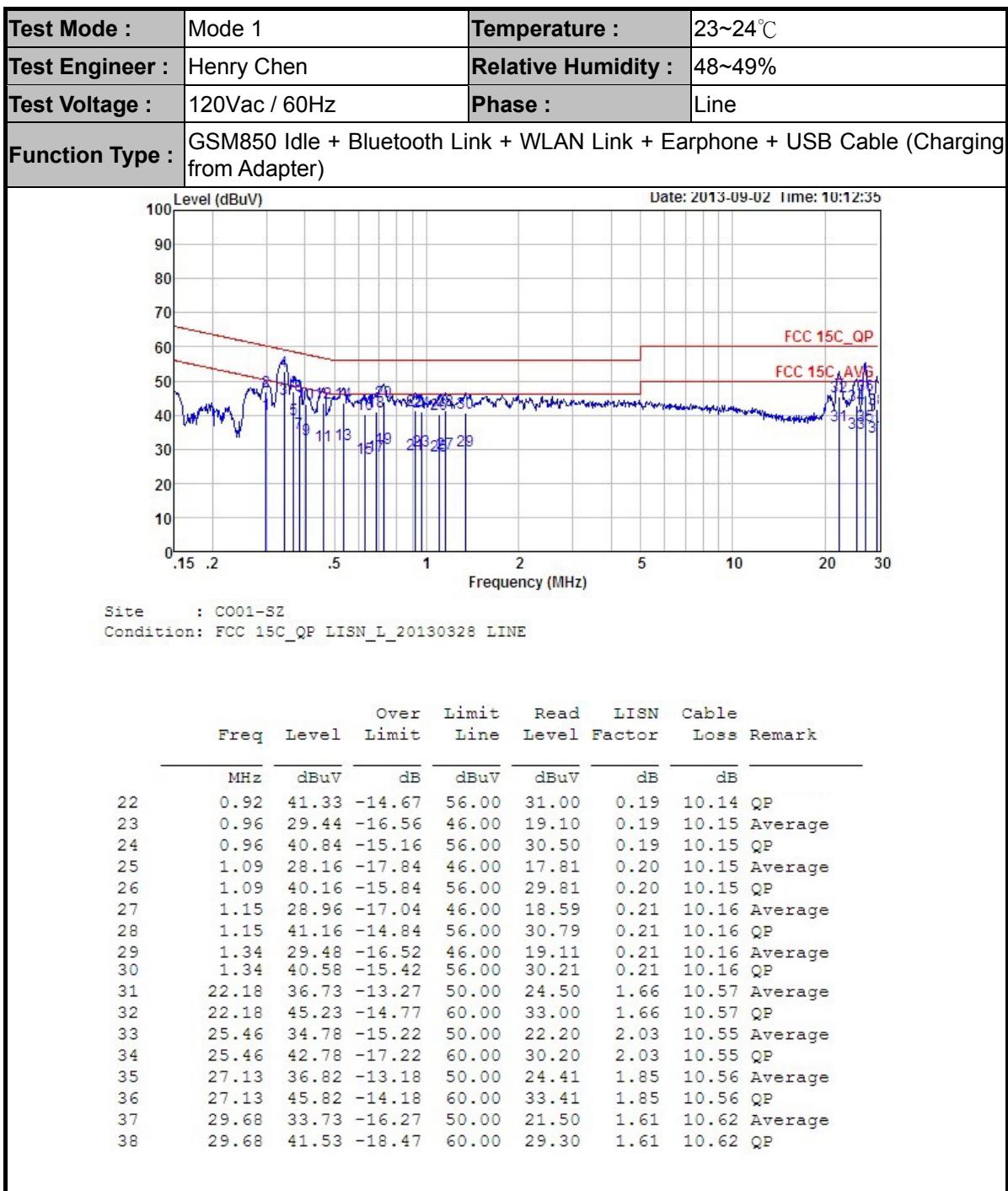
Frequency of emission (MHz)	Conducted limit (dB μ V)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

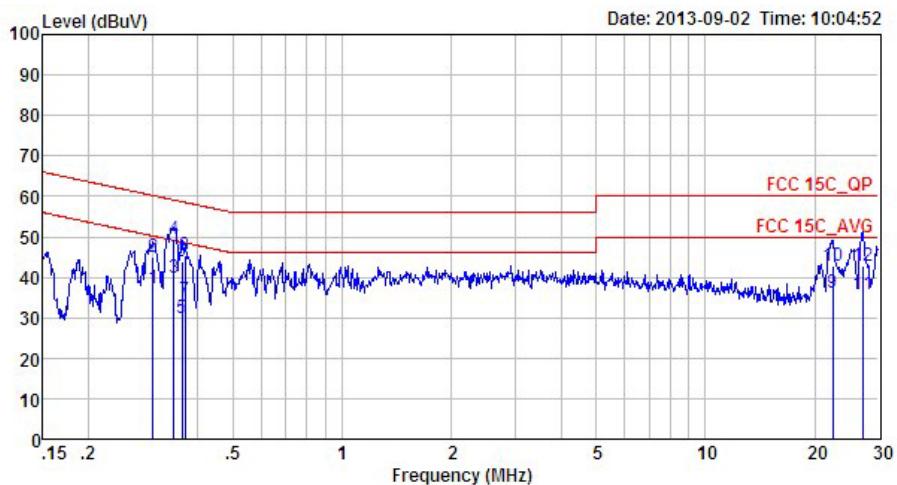

3.6.2 Measuring Instruments

See list of measuring instruments of this test report.


3.6.3 Test Procedures


1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
3. All the support units are connecting to the other LISN.
4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
6. Both sides of AC line were checked for maximum conducted interference.
7. The frequency range from 150 kHz to 30 MHz was searched.
8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

3.6.4 Test Setup


3.6.5 Test Result of AC Conducted Emission

Test Mode :	Mode 1	Temperature :	23~24°C																																																																																																																																																																																									
Test Engineer :	Henry Chen	Relative Humidity :	48~49%																																																																																																																																																																																									
Test Voltage :	120Vac / 60Hz	Phase :	Line																																																																																																																																																																																									
Function Type :	GSM850 Idle + Bluetooth Link + WLAN Link + Earphone + USB Cable (Charging from Adapter)																																																																																																																																																																																											
 Site : CO01-S2 Condition: FCC 15C_QP LISN_L_20130328 LINE																																																																																																																																																																																												
<table border="1"> <thead> <tr> <th rowspan="2">Freq</th> <th rowspan="2">Level</th> <th>Over</th> <th>Limit</th> <th>Read</th> <th>LISN</th> <th>Cable</th> </tr> <tr> <th>Line</th> <th>dBuV</th> <th>Factor</th> <th>dB</th> <th>Loss</th> <th>Remark</th> </tr> </thead> <tbody> <tr> <td>MHz</td> <td>dBuV</td> <td>dB</td> <td>dBuV</td> <td>dBuV</td> <td>dB</td> <td>dB</td> </tr> <tr> <td>1</td> <td>0.30</td> <td>40.10</td> <td>-10.18</td> <td>50.28</td> <td>29.80</td> <td>0.10</td> <td>10.20 Average</td> </tr> <tr> <td>2</td> <td>0.30</td> <td>46.70</td> <td>-13.58</td> <td>60.28</td> <td>36.40</td> <td>0.10</td> <td>10.20 QP</td> </tr> <tr> <td>3 *</td> <td>0.34</td> <td>44.49</td> <td>-4.64</td> <td>49.13</td> <td>34.20</td> <td>0.11</td> <td>10.18 Average</td> </tr> <tr> <td>4</td> <td>0.34</td> <td>52.79</td> <td>-6.34</td> <td>59.13</td> <td>42.50</td> <td>0.11</td> <td>10.18 QP</td> </tr> <tr> <td>5</td> <td>0.37</td> <td>38.59</td> <td>-9.97</td> <td>48.56</td> <td>28.29</td> <td>0.12</td> <td>10.18 Average</td> </tr> <tr> <td>6</td> <td>0.37</td> <td>46.69</td> <td>-11.87</td> <td>58.56</td> <td>36.39</td> <td>0.12</td> <td>10.18 QP</td> </tr> <tr> <td>7</td> <td>0.38</td> <td>34.79</td> <td>-13.42</td> <td>48.21</td> <td>24.50</td> <td>0.12</td> <td>10.17 Average</td> </tr> <tr> <td>8</td> <td>0.38</td> <td>45.89</td> <td>-12.32</td> <td>58.21</td> <td>35.60</td> <td>0.12</td> <td>10.17 QP</td> </tr> <tr> <td>9</td> <td>0.40</td> <td>32.79</td> <td>-14.98</td> <td>47.77</td> <td>22.50</td> <td>0.12</td> <td>10.17 Average</td> </tr> <tr> <td>10</td> <td>0.40</td> <td>43.29</td> <td>-14.48</td> <td>57.77</td> <td>33.00</td> <td>0.12</td> <td>10.17 QP</td> </tr> <tr> <td>11</td> <td>0.46</td> <td>30.89</td> <td>-15.82</td> <td>46.71</td> <td>20.60</td> <td>0.13</td> <td>10.16 Average</td> </tr> <tr> <td>12</td> <td>0.46</td> <td>43.59</td> <td>-13.12</td> <td>56.71</td> <td>33.30</td> <td>0.13</td> <td>10.16 QP</td> </tr> <tr> <td>13</td> <td>0.54</td> <td>31.50</td> <td>-14.50</td> <td>46.00</td> <td>21.21</td> <td>0.14</td> <td>10.15 Average</td> </tr> <tr> <td>14</td> <td>0.54</td> <td>43.40</td> <td>-12.60</td> <td>56.00</td> <td>33.11</td> <td>0.14</td> <td>10.15 QP</td> </tr> <tr> <td>15</td> <td>0.63</td> <td>27.30</td> <td>-18.70</td> <td>46.00</td> <td>17.00</td> <td>0.15</td> <td>10.15 Average</td> </tr> <tr> <td>16</td> <td>0.63</td> <td>40.30</td> <td>-15.70</td> <td>56.00</td> <td>30.00</td> <td>0.15</td> <td>10.15 QP</td> </tr> <tr> <td>17</td> <td>0.68</td> <td>28.01</td> <td>-17.99</td> <td>46.00</td> <td>17.70</td> <td>0.16</td> <td>10.15 Average</td> </tr> <tr> <td>18</td> <td>0.68</td> <td>41.11</td> <td>-14.89</td> <td>56.00</td> <td>30.80</td> <td>0.16</td> <td>10.15 QP</td> </tr> <tr> <td>19</td> <td>0.73</td> <td>30.31</td> <td>-15.69</td> <td>46.00</td> <td>20.01</td> <td>0.16</td> <td>10.14 Average</td> </tr> <tr> <td>20</td> <td>0.73</td> <td>44.01</td> <td>-11.99</td> <td>56.00</td> <td>33.71</td> <td>0.16</td> <td>10.14 QP</td> </tr> <tr> <td>21</td> <td>0.92</td> <td>28.53</td> <td>-17.47</td> <td>46.00</td> <td>18.20</td> <td>0.19</td> <td>10.14 Average</td> </tr> </tbody> </table>				Freq	Level	Over	Limit	Read	LISN	Cable	Line	dBuV	Factor	dB	Loss	Remark	MHz	dBuV	dB	dBuV	dBuV	dB	dB	1	0.30	40.10	-10.18	50.28	29.80	0.10	10.20 Average	2	0.30	46.70	-13.58	60.28	36.40	0.10	10.20 QP	3 *	0.34	44.49	-4.64	49.13	34.20	0.11	10.18 Average	4	0.34	52.79	-6.34	59.13	42.50	0.11	10.18 QP	5	0.37	38.59	-9.97	48.56	28.29	0.12	10.18 Average	6	0.37	46.69	-11.87	58.56	36.39	0.12	10.18 QP	7	0.38	34.79	-13.42	48.21	24.50	0.12	10.17 Average	8	0.38	45.89	-12.32	58.21	35.60	0.12	10.17 QP	9	0.40	32.79	-14.98	47.77	22.50	0.12	10.17 Average	10	0.40	43.29	-14.48	57.77	33.00	0.12	10.17 QP	11	0.46	30.89	-15.82	46.71	20.60	0.13	10.16 Average	12	0.46	43.59	-13.12	56.71	33.30	0.13	10.16 QP	13	0.54	31.50	-14.50	46.00	21.21	0.14	10.15 Average	14	0.54	43.40	-12.60	56.00	33.11	0.14	10.15 QP	15	0.63	27.30	-18.70	46.00	17.00	0.15	10.15 Average	16	0.63	40.30	-15.70	56.00	30.00	0.15	10.15 QP	17	0.68	28.01	-17.99	46.00	17.70	0.16	10.15 Average	18	0.68	41.11	-14.89	56.00	30.80	0.16	10.15 QP	19	0.73	30.31	-15.69	46.00	20.01	0.16	10.14 Average	20	0.73	44.01	-11.99	56.00	33.71	0.16	10.14 QP	21	0.92	28.53	-17.47	46.00
Freq	Level	Over	Limit			Read	LISN	Cable																																																																																																																																																																																				
		Line	dBuV	Factor	dB	Loss	Remark																																																																																																																																																																																					
MHz	dBuV	dB	dBuV	dBuV	dB	dB																																																																																																																																																																																						
1	0.30	40.10	-10.18	50.28	29.80	0.10	10.20 Average																																																																																																																																																																																					
2	0.30	46.70	-13.58	60.28	36.40	0.10	10.20 QP																																																																																																																																																																																					
3 *	0.34	44.49	-4.64	49.13	34.20	0.11	10.18 Average																																																																																																																																																																																					
4	0.34	52.79	-6.34	59.13	42.50	0.11	10.18 QP																																																																																																																																																																																					
5	0.37	38.59	-9.97	48.56	28.29	0.12	10.18 Average																																																																																																																																																																																					
6	0.37	46.69	-11.87	58.56	36.39	0.12	10.18 QP																																																																																																																																																																																					
7	0.38	34.79	-13.42	48.21	24.50	0.12	10.17 Average																																																																																																																																																																																					
8	0.38	45.89	-12.32	58.21	35.60	0.12	10.17 QP																																																																																																																																																																																					
9	0.40	32.79	-14.98	47.77	22.50	0.12	10.17 Average																																																																																																																																																																																					
10	0.40	43.29	-14.48	57.77	33.00	0.12	10.17 QP																																																																																																																																																																																					
11	0.46	30.89	-15.82	46.71	20.60	0.13	10.16 Average																																																																																																																																																																																					
12	0.46	43.59	-13.12	56.71	33.30	0.13	10.16 QP																																																																																																																																																																																					
13	0.54	31.50	-14.50	46.00	21.21	0.14	10.15 Average																																																																																																																																																																																					
14	0.54	43.40	-12.60	56.00	33.11	0.14	10.15 QP																																																																																																																																																																																					
15	0.63	27.30	-18.70	46.00	17.00	0.15	10.15 Average																																																																																																																																																																																					
16	0.63	40.30	-15.70	56.00	30.00	0.15	10.15 QP																																																																																																																																																																																					
17	0.68	28.01	-17.99	46.00	17.70	0.16	10.15 Average																																																																																																																																																																																					
18	0.68	41.11	-14.89	56.00	30.80	0.16	10.15 QP																																																																																																																																																																																					
19	0.73	30.31	-15.69	46.00	20.01	0.16	10.14 Average																																																																																																																																																																																					
20	0.73	44.01	-11.99	56.00	33.71	0.16	10.14 QP																																																																																																																																																																																					
21	0.92	28.53	-17.47	46.00	18.20	0.19	10.14 Average																																																																																																																																																																																					

Test Mode :	Mode 1	Temperature :	23~24°C
Test Engineer :	Henry Chen	Relative Humidity :	48~49%
Test Voltage :	120Vac / 60Hz	Phase :	Neutral
Function Type :	GSM850 Idle + Bluetooth Link + WLAN Link + Earphone + USB Cable (Charging from Adapter)		

Site : C001-SZ
Condition: FCC 15C_QP LISN_N_20130328 NEUTRAL

Freq	Level	Over	Limit	Read	LISN	Cable	Remark
		Line	dB	Level	Factor	dB	
MHz	dBuV	dB	dBuV	dBuV	dB	dB	
1	0.30	37.34	-12.85	50.19	27.10	0.04	10.20 Average
2	0.30	45.04	-15.15	60.19	34.80	0.04	10.20 QP
3 *	0.34	39.72	-9.37	49.09	29.50	0.04	10.18 Average
4	0.34	49.52	-9.57	59.09	39.30	0.04	10.18 QP
5	0.36	29.72	-18.97	48.69	19.50	0.04	10.18 Average
6	0.36	43.92	-14.77	58.69	33.70	0.04	10.18 QP
7	0.37	34.42	-14.10	48.52	24.20	0.04	10.18 Average
8	0.37	45.22	-13.30	58.52	35.00	0.04	10.18 QP
9	22.42	36.22	-13.78	50.00	24.70	0.95	10.57 Average
10	22.42	42.82	-17.18	60.00	31.30	0.95	10.57 QP
11	27.13	35.96	-14.04	50.00	24.20	1.20	10.56 Average
12	27.13	42.86	-17.14	60.00	31.10	1.20	10.56 QP

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSP30	101400	9kHz~30GHz	Mar. 28, 2013	Sep. 02, 2013	Mar. 27, 2014	Conducted (TH01-SZ)
Power Meter	Anritsu	ML2495A	1218010	N/A	Mar. 28, 2013	Sep. 02, 2013	Mar. 27, 2014	Conducted (TH01-SZ)
Power Sensor	Anritsu	MA2411B	1207253	N/A	Mar. 28, 2013	Sep. 02, 2013	Mar. 27, 2014	Conducted (TH01-SZ)
EMI Test Receiver	R&S	ESCI	100534	9kHz~3GHz	Nov. 08, 2012	Aug. 25, 2013~Sep. 07, 2013	Nov. 07, 2013	Radiation (03CH01-KS)
Spectrum Analyzer	R&S	FSP30	101399	9kHz~30GHz	May 23, 2013	Aug. 25, 2013~Sep. 07, 2013	May 22, 2014	Radiation (03CH01-KS)
Bilog Antenna	SCHAFFNER	CBL6112D	23182	25MHz~2GHz	Dec. 07, 2012	Aug. 25, 2013~Sep. 07, 2013	Dec. 06, 2013	Radiation (03CH01-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Oct. 22, 2012	Aug. 25, 2013~Sep. 07, 2013	Oct. 21, 2013	Radiation (03CH01-KS)
Double Ridge Horn Antenna	EMCO	3117	00075959	1GHz~18GHz	Jan. 06, 2013	Aug. 25, 2013~Sep. 07, 2013	Jan. 05, 2014	Radiation (03CH01-KS)
Turn Table	MF	MF7802	N/A	0~360 degree	N/A	Aug. 25, 2013~Sep. 07, 2013	N/A	Radiation (03CH01-KS)
Antenna Mast	MF	MF7802	N/A	1 m~4 m	N/A	Aug. 25, 2013~Sep. 07, 2013	N/A	Radiation (03CH01-KS)
Amplifier	com-power	PA-103A	161069	1MHz~1GHz	May 23, 2013	Aug. 25, 2013~Sep. 07, 2013	May 22, 2014	Radiation (03CH01-KS)
Amplifier	Agilent	8449B	3008A023 70	1GHz~26.5GHz	Dec. 29, 2012	Aug. 25, 2013~Sep. 07, 2013	Dec. 28, 2013	Radiation (03CH01-KS)
Active Horn Antenna	com-power	AHA-118	701023	1GHz~18GHz	Nov. 07, 2012	Aug. 25, 2013~Sep. 07, 2013	Nov. 06, 2013	Radiation (03CH01-KS)
SHF-EHF Horn	Schwarzbeck	BBHA 9170	9170249	15GHz~40GHz	Nov. 23, 2012	Aug. 25, 2013~Sep. 07, 2013	Nov. 22, 2013	Radiation (03CH01-KS)
ESCI TEST Receiver	R&S	1142.8007.03	100724	9kHz~3GHz	Mar. 08, 2013	Sep. 02, 2013	Mar. 07, 2014	Conduction (CO01-SZ)
AC LISN	ETS-LINDGREN	3816/2SH	00103912	0.1MHz~108MHz	Feb. 28, 2013	Sep. 02, 2013	Feb. 27, 2014	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	ETS-LINDGREN	3816/2SH	00103892	0.1MHz~108MHz	Feb. 28, 2013	Sep. 02, 2013	Feb. 27, 2014	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	616020000 891N/A	N/A	Oct. 12, 2012	Sep. 02, 2013	Oct. 11, 2013	Conduction (CO01-SZ)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence of 95% ($U = 2U_{C(y)}$)	2.26
---	------

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% ($U = 2U_{C(y)}$)	2.54
---	------

Uncertainty of Radiated Emission Measurement (1 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of Confidence of 95% ($U = 2U_{C(y)}$)	4.72
---	------