

FCC RF Test Report

APPLICANT : Brightstar Corporation
EQUIPMENT : smart phone
BRAND NAME : mint
MODEL NAME : Mint M240
FCC ID : WVB240M
STANDARD : FCC 47 CFR Part 2, 22(H), 24(E)
CLASSIFICATION : PCS Licensed Transmitter Held to Ear (PCE)

The product was received on Mar. 16, 2016 and testing was completed on Mar. 28, 2016. We, SPORTON INTERNATIONAL (SHENZHEN) INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI / TIA / EIA-603-D-2010 and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (SHENZHEN) INC., the test report shall not be reproduced except in full.

Prepared by: Ken Chen / Manager

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL (SHENZHEN) INC.

1F & 2F, Building A, Morning Business Center, No. 4003 ShiGu Rd., Xili Town,
Nanshan District, Shenzhen, Guangdong, P. R. China

TABLE OF CONTENTS

REVISION HISTORY.....	3
SUMMARY OF TEST RESULT	4
1 GENERAL DESCRIPTION.....	5
1.1 Applicant.....	5
1.2 Manufacturer	5
1.3 Product Feature of Equipment Under Test	5
1.4 Product Specification of Equipment Under Test	6
1.5 Modification of EUT	7
1.6 Maximum ERP/EIRP Power, Frequency Tolerance, and Emission Designator	7
1.7 Testing Location	7
1.8 Applicable Standards	8
2 TEST CONFIGURATION OF EQUIPMENT UNDER TEST.....	9
2.1 Test Mode.....	9
2.2 Connection Diagram of Test System	10
2.3 Support Unit used in test configuration	11
2.4 Measurement Results Explanation Example	11
3 CONDUCTED TEST RESULT.....	12
3.1 Measuring Instruments.....	12
3.2 Test Setup	12
3.3 Test Result of Conducted Test.....	12
3.4 Conducted Output Power	13
3.5 Peak-to-Average Ratio	14
3.6 99% Occupied Bandwidth and 26dB Bandwidth Measurement.....	15
3.7 Conducted Band Edge	16
3.8 Conducted Spurious Emission	17
3.9 Frequency Stability	18
4 RADIATED TEST ITEMS	19
4.1 Measuring Instruments.....	19
4.2 Test Setup	19
4.3 Test Result of Radiated Test.....	19
4.4 Effective Radiated Power and Effective Isotropic Radiated Power Measurement	20
4.5 Field Strength of Spurious Radiation Measurement	22
5 LIST OF MEASURING EQUIPMENT	23
6 UNCERTAINTY OF EVALUATION	24

APPENDIX A. TEST RESULTS OF CONDUCTED TEST

APPENDIX B. TEST RESULTS OF RADIATED TEST

APPENDIX C. TEST SETUP PHOTOGRAPHS

REVISION HISTORY

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.4	§2.1046	Conducted Output Power	Reporting Only	PASS	-
3.5	§24.232(d)	Peak-to-Average Ratio	< 13 dB	PASS	-
3.6	§2.1049 §22.917(b) §24.238(b)	Occupied Bandwidth	Reporting Only	PASS	-
3.7	§2.1051 §22.917(a) §24.238(a)	Band Edge Measurement	< 43+10log10(P[Watts])	PASS	-
3.8	§2.1051 §22.917(a) §24.238(a)	Conducted Emission	< 43+10log10(P[Watts])	PASS	-
3.9	§2.1055 §22.355	Frequency Stability for Temperature & Voltage	< 2.5 ppm for Part 22	PASS	-
	§2.1055 §24.235		Within Authorized Band		
4.4	§22.913(a)(2)	Effective Radiated Power	< 7 Watts	PASS	-
	§24.232(c)	Equivalent Isotropic Radiated Power	< 2 Watts	PASS	-
4.5	§2.1053 §22.917(a) §24.238(a)	Field Strength of Spurious Radiation	< 43+10log10(P[Watts])	PASS	Under limit 22.35 dB at 2510.000 MHz

1 General Description

1.1 Applicant

Brightstar Corporation

9725 NW 117th Ave., Miami, Florida, FL 33178, United States

1.2 Manufacturer

Mobiwire Mobiles (Ningbo) Co., Ltd

No. 999 Dacheng East Road Fenghua, Zhejiang China

1.3 Product Feature of Equipment Under Test

Product Feature	
Equipment	smart phone
Brand Name	mint
Model Name	Mint M240
FCC ID	WVB240M
EUT supports Radios application	GSM/GPRS/EGPRS(Downlink Only)/ WCDMA/HSPA/HSPA+(16QAM uplink is not supported) WLAN 2.4GHz 802.11b/g/n HT20/HT40/ Bluetooth v3.0 + EDR/Bluetooth v4.0 LE
IMEI Code	Conducted: 867092020062377/867092020062385 Radiation: 354648020000251/354648020000251 ERP&EIRP: 354648020000251/354648020000251
HW Version	V01
SW Version	V03
EUT Stage	Pre-Production

Remark:

1. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
2. After pre-scan two SIM cards power, we found test result of the SIM2 was the worse, so we chose dual SIM2 card to perform all tests

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification	
Tx Frequency	GSM/GPRS 850: 824.2 MHz ~ 848.8 MHz 1900: 1850.2 MHz ~ 1909.8MHz WCDMA: Band V: 826.4 MHz ~ 846.6 MHz Band II: 1852.4 MHz ~ 1907.6 MHz
Rx Frequency	GSM/GPRS 850: 869.2 MHz ~ 893.8 MHz 1900: 1930.2 MHz ~ 1989.8 MHz WCDMA: Band V: 871.4 MHz ~ 891.6 MHz Band II: 1932.4 MHz ~ 1987.6 MHz
Maximum Output Power to Antenna	GSM/GPRS 850: 31.52 dBm 1900: 29.56 dBm WCDMA: Band V: 21.70 dBm Band II: 22.85 dBm
Antenna Type	PIFA Antenna
Type of Modulation	GSM: GMSK GPRS: GMSK WCDMA : QPSK (Uplink) HSDPA : QPSK (Uplink) HSUPA : QPSK (Uplink) HSPA+ : 16QAM (16QAM uplink is not supported)

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Maximum ERP/EIRP Power, Frequency Tolerance, and Emission Designator

FCC Rule	System	Type of Modulation	Maximum ERP/EIRP (W)	Frequency Tolerance (ppm)	Emission Designator
Part 22	GSM850 GSM	GMSK	0.8035	0.0586 ppm	244KGXW
Part 22	WCDMA Band V RMC 12.2Kbps	QPSK	0.0783	0.0299 ppm	4M15F9W
Part 24	GSM1900 GSM	GMSK	0.5992	0.0489 ppm	245KGXW
Part 24	WCDMA Band II RMC 12.2Kbps	QPSK	0.1232	0.0133 ppm	4M16F9W

1.7 Testing Location

Test Site	SPORTON INTERNATIONAL (SHENZHEN) INC.
Test Site Location	1F & 2F, Building A, Morning Business Center, No. 4003 ShiGu Rd., Xili Town, Nanshan District, Shenzhen, Guangdong, P. R. China TEL: +86-755-8637-9589 FAX: +86-755-8637-9595
Test Site No.	Sporton Site No.
	TH01-SZ

Test Site	SPORTON INTERNATIONAL (SHENZHEN) INC.	
Test Site Location	No. 3 Building, the third floor of south, Shahe River west, Fengzeyuan warehouse, Nanshan District, Shenzhen, Guangdong, P. R. China TEL: +86-755- 3320-2398	
Test Site No.	Sporton Site No.	FCC Registration No.
	03CH01-SZ	831040

Note: The test site complies with ANSI C63.4 2009 requirement.

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 2, 22(H), 24(E), 27(L)
- ANSI / TIA / EIA-603-D-2010
- FCC KDB 971168 D01 Power Meas. License Digital Systems v02r02

Remark:

1. All test items were verified and recorded according to the standards and without any deviation during the test.
2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

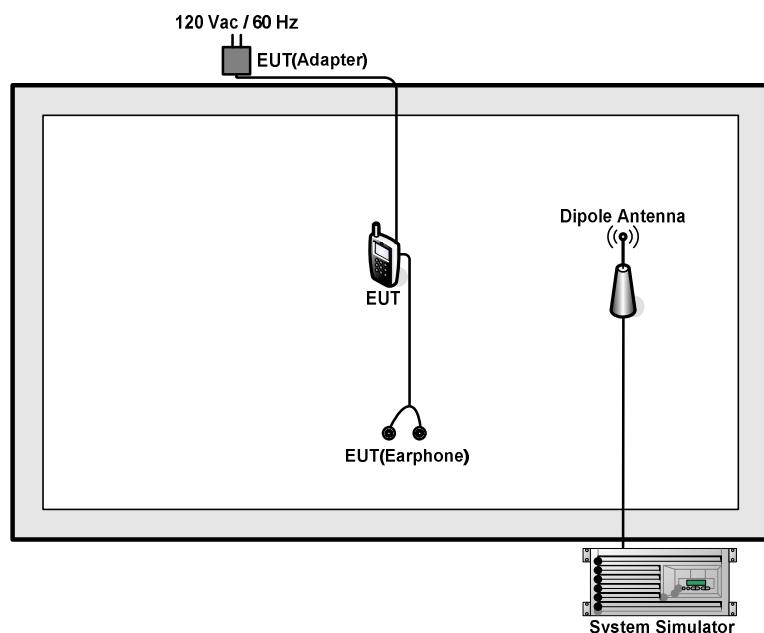
2.1 Test Mode

Antenna port conducted and radiated test items were performed according to KDB 971168 D01 Power Meas. License Digital Systems v02r02 with maximum output power.

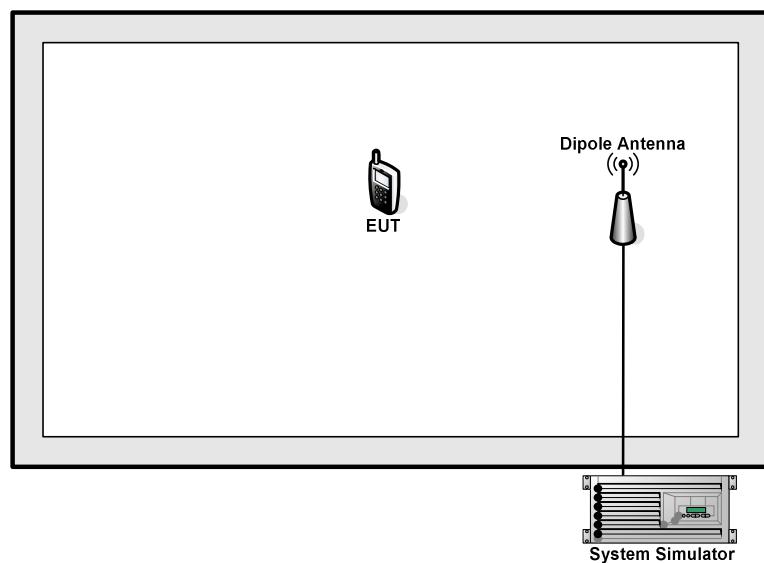
Radiated measurements were performed with rotating EUT in different three orthogonal test planes to find the maximum emission.

Radiated emissions were investigated as following frequency range:

1. 30 MHz to 9000 MHz for GSM850 and WCDMA Band V.
2. 30 MHz to 19000 MHz for GSM1900 and WCDMA Band II.


All modes and data rates and positions were investigated.

Test modes are chosen to be reported as the worst case configuration below:


Test Modes		
Band	Radiated TCs	Conducted TCs
GSM 850	■ GSM Link	■ GSM Link
GSM 1900	■ GSM Link	■ GSM Link
WCDMA Band V	■ RMC 12.2Kbps Link	■ RMC 12.2Kbps Link
WCDMA Band II	■ RMC 12.2Kbps Link	■ RMC 12.2Kbps Link

2.2 Connection Diagram of Test System

For 22H

For 24E

2.3 Support Unit used in test configuration

Item	Equipment	Trade Name	Model No.	FCC ID	Data Cable	Power Cord
1.	System Simulator	R&S	CMU 200	N/A	N/A	Unshielded, 1.8 m
2.	DC Power Supply	GW INSTEK	GPS-3030D	N/A	N/A	Unshielded, 1.8 m

2.4 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between RF conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level will be exactly the RF output level.

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

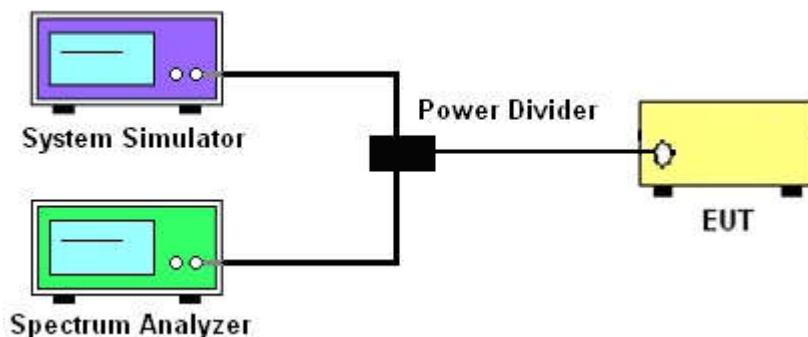
The following shows an offset computation example with RF cable loss 4.5 dB and a 10dB attenuator.

Example :

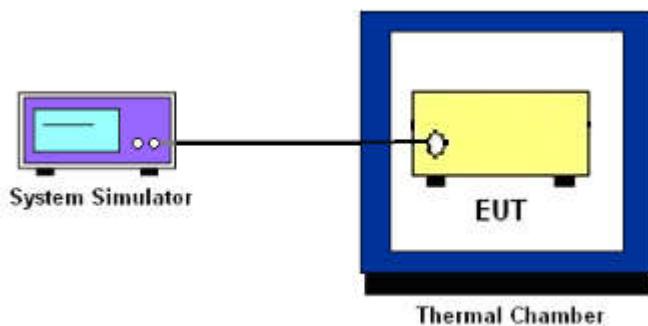
$$\begin{aligned} \text{Offset(dB)} &= \text{RF cable loss(dB)} + \text{attenuator factor(dB)} \\ &= 4.5 + 10 = 14.5 \text{ (dB)} \end{aligned}$$

3 Conducted Test Result

3.1 Measuring Instruments


See list of measuring instruments of this test report.

3.2 Test Setup


3.2.1 Conducted Output Power

3.2.2 Peak-to-Average Ratio, Occupied Bandwidth, Conducted Band-Edge and Conducted Spurious Emission

3.2.3 Frequency Stability

3.3 Test Result of Conducted Test

Please refer to Appendix A.

3.4 Conducted Output Power

3.4.1 Description of the Conducted Output Power

A system simulator was used to establish communication with the EUT. Its parameters were set to enforce EUT transmitting at the maximum power. The measured power in the radio frequency on the transmitter output terminals shall be reported.

3.4.2 Test Procedures

1. The transmitter output port was connected to the system simulator.
2. Set EUT at maximum power through system simulator.
3. Select lowest, middle, and highest channels for each band and different modulation.
4. Measure the maximum burst average power for GSM and maximum average power for other modulation signal.

3.5 Peak-to-Average Ratio

3.5.1 Description of the PAR Measurement

The peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

3.5.2 Test Procedures

1. The testing follows FCC KDB 971168 D01 v02r02 Section 5.7.1.
2. The EUT was connected to spectrum analyzer and system simulator via a power divider.
3. Set EUT to transmit at maximum output power.
4. When the duty cycle is less than 98%, then signal gating will be implemented on the spectrum analyzer by triggering from the system simulator.
5. Set the CCDF (Complementary Cumulative Distribution Function) option of the spectrum analyzer.

Record the maximum PAPR level associated with a probability of 0.1%.

3.6 99% Occupied Bandwidth and 26dB Bandwidth Measurement

3.6.1 Description of 99% Occupied Bandwidth and 26dB Bandwidth Measurement

The occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the total mean transmitted power.

The 26 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 26 dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth.

3.6.2 Test Procedures

1. The testing follows FCC KDB 971168 v02r02 Section 4.2.
2. The EUT was connected to spectrum analyzer and system simulator via a power divider.
3. The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the spectrum analyzer shall be between two and five times the anticipated OBW.
4. The nominal resolution bandwidth (RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.
5. Set the detection mode to peak, and the trace mode to max hold.
6. Determine the reference value: Set the EUT to transmit a modulated signal. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace. (this is the reference value)
7. Determine the “-26 dB down amplitude” as equal to (Reference Value – X).
8. Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display such that each marker is at or slightly below the “-X dB down amplitude” determined in step 6. If a marker is below this “-X dB down amplitude” value it shall be placed as close as possible to this value. The OBW is the positive frequency difference between the two markers.
9. Use the 99 % power bandwidth function of the spectrum analyzer and report the measured bandwidth.

3.7 Conducted Band Edge

3.7.1 Description of Conducted Band Edge Measurement

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least $43 + 10 \log (P)$ dB.

3.7.2 Test Procedures

1. The testing follows FCC KDB 971168 D01 v02r02 Section 6.0.
2. The EUT was connected to the spectrum analyzer and system simulator via a power divider.
3. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator. The path loss was compensated to the results for each measurement.
4. The band edges of low and high channels for the highest RF powers were measured.
5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
6. The limit line is derived from $43 + 10\log(P)$ dB below the transmitter power P(Watts)
 $= P(W) - [43 + 10\log(P)]$ (dB)
 $= [30 + 10\log(P)]$ (dBm) - $[43 + 10\log(P)]$ (dB)
 $= -13$ dBm.

3.8 Conducted Spurious Emission

3.8.1 Description of Conducted Spurious Emission Measurement

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least $43 + 10 \log(P)$ dB.

It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

3.8.2 Test Procedures

1. The testing follows FCC KDB 971168 D01 v02r02 Section 6.0.
2. The EUT was connected to the spectrum analyzer and system simulator via a power divider.
3. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator. The path loss was compensated to the results for each measurement.
4. The middle channel for the highest RF power within the transmitting frequency was measured.
5. The conducted spurious emission for the whole frequency range was taken.
6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
7. The limit line is derived from $43 + 10\log(P)$ dB below the transmitter power P(Watts)
 $= P(W) - [43 + 10\log(P)]$ (dB)
 $= [30 + 10\log(P)]$ (dBm) - $[43 + 10\log(P)]$ (dB)
 $= -13$ dBm.

3.9 Frequency Stability

3.9.1 Description of Frequency Stability Measurement

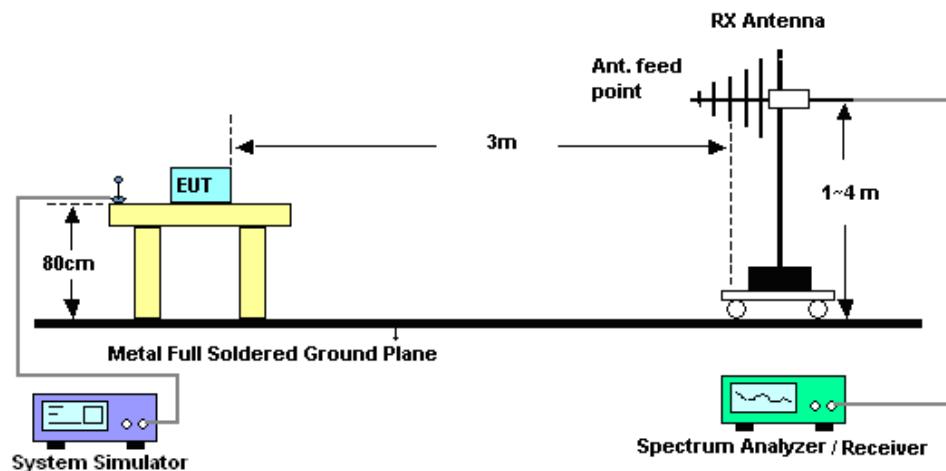
The frequency stability shall be measured by variation of ambient temperature and variation of primary supply voltage to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ ($\pm 2.5\text{ppm}$) of the center frequency.

3.9.2 Test Procedures for Temperature Variation

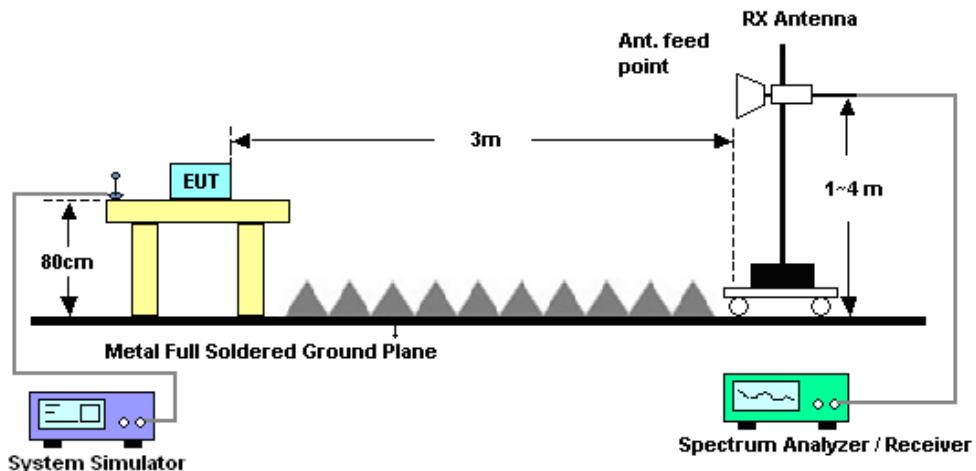
1. The testing follows FCC KDB 971168 D01 v02r02 Section 9.0.
2. The EUT was set up in the thermal chamber and connected with the system simulator.
3. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute.
4. With power OFF, the temperature was raised in 10°C steps up to 50°C . The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

3.9.3 Test Procedures for Voltage Variation

1. The testing follows FCC KDB 971168 D01 v02r02 Section 9.0.
2. The EUT was placed in a temperature chamber at $25\pm 5^\circ\text{C}$ and connected with the system simulator.
3. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
4. The variation in frequency was measured for the worst case.


4 Radiated Test Items

4.1 Measuring Instruments


See list of measuring instruments of this test report.

4.2 Test Setup

4.2.1 For radiated test from 30MHz to 1GHz

4.2.2 For radiated test above 1GHz

4.3 Test Result of Radiated Test

Please refer to Appendix B.

4.4 Effective Radiated Power and Effective Isotropic Radiated Power Measurement

4.4.1 Description of the ERP/EIRP Measurement

The substitution method, in ANSI / TIA / EIA-603-D-2010, was used for ERP/EIRP measurement, and the spectrum analyzer configuration follows KDB 971168 D01 Power Meas. License Digital Systems v02r02. The ERP of mobile transmitters must not exceed 7 Watts (Cellular Band) and the EIRP of mobile transmitters are limited to 2 Watts (PCS Band) and 1 Watts (AWS Band).

4.4.2 Test Procedures

1. The testing follows FCC KDB 971168 D01 v02r02 Section 5.2.1. (for CDMA/WCDMA), Section 5.2.2.2 (for GSM/GPRS/EDGE) and ANSI / TIA-603-D-2010 Section 2.2.17.
2. The EUT was placed on a non-conductive rotating platform 0.8 meters high in a semi-anechoic chamber. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and a spectrum analyzer with RMS detector per section 5. of KDB 971168 D01.
3. During the measurement, the system simulator parameters were set to force the EUT transmitting at maximum output power. The maximum emission was recorded from analyzer power level (LVL) from the 360 degrees rotation of the turntable and the test antenna raised and lowered over a range from 1 to 4 meters in both horizontally and vertically polarized orientations.
4. Effective Isotropic Radiated Power (EIRP) was measured by substitution method according to TIA/EIA-603-D. The EUT was replaced by the substitution antenna at same location, and then a known power from S.G. was applied into the dipole antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. The correction factor (in dB) = S.G. - Tx Cable loss + Substitution antenna gain - Analyzer reading. Then the EUT's EIRP was calculated with the correction factor, $EIRP = LVL + \text{Correction factor}$ and $ERP = EIRP - 2.15$. Take the record of the output power at substitution antenna.

	GSM/GPRS/EDGE	WCDMA/HSPA
SPAN	500kHz	10MHz
RBW	10kHz	100kHz
VBW	30kHz	300kHz
Detector	RMS	RMS
Trace	Average	Average
Average Type	Power	Power
Sweep Count	100	100

4.5 Field Strength of Spurious Radiation Measurement

4.5.1 Description of Field Strength of Spurious Radiated Measurement

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least $43 + 10 \log (P)$ dB. The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

4.5.2 Test Procedures

1. The testing follows FCC KDB 971168 D01 v02r02 Section 5.8 and ANSI / TIA-603-D-2010 Section 2.2.12.
2. The EUT was placed on a rotatable wooden table 0.8 meters above the ground.
3. The EUT was set 3 meters from the receiving antenna, which was mounted on the antenna tower.
4. The table was rotated 360 degrees to determine the position of the highest spurious emission.
5. The height of the receiving antenna is varied between one meter and four meters to search for the maximum spurious emission for both horizontal and vertical polarizations.
6. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking record of maximum spurious emission.
7. A horn antenna was substituted in place of the EUT and was driven by a signal generator.
8. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.
9. Taking the record of output power at antenna port.
10. Repeat step 7 to step 8 for another polarization.
11. $EIRP \text{ (dBm)} = S.G. \text{ Power} - Tx \text{ Cable Loss} + Tx \text{ Antenna Gain}$
12. $ERP \text{ (dBm)} = EIRP - 2.15$
13. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
14. The limit line is derived from $43 + 10\log(P)$ dB below the transmitter power P(Watts)
 $= P(W) - [43 + 10\log(P)] \text{ (dB)}$
 $= [30 + 10\log(P)] \text{ (dBm)} - [43 + 10\log(P)] \text{ (dB)}$
 $= -13 \text{ dBm.}$

5 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101078	9kHz~40GHz	May 05, 2015	Mar. 24, 2016	May 04, 2016	Conducted (TH01-SZ)
Thermal Chamber	Ten Billion Hongzhangroup	LP-150U	H2014081803	-40~+150°C	Aug. 07, 2015	Mar. 24, 2016	Aug. 06, 2016	Conducted (TH01-SZ)
EMI Test Receiver&SA	Agilent Technologies	N9038A	MY52260185	20Hz~26.5GHz	May 26, 2015	Mar. 28, 2016	May 25, 2016	Radiation (03CH01-SZ)
Spectrum Analyzer	KEYSIGHT	N9010A	MY55150213	10Hz~44GHz; Max 30dBm	Jun. 07, 2015	Mar. 28, 2016	Jun. 06, 2016	Radiation (03CH01-SZ)
Bilog Antenna	TeseQ	CBL6112D	23188	30MHz~2GHz	Oct. 17, 2015	Mar. 28, 2016	Oct. 16, 2016	Radiation (03CH01-SZ)
Double Ridge Horn Antenna	ETS Lindgren	3117	00119436	1GHz~18GHz	Oct. 17, 2015	Mar. 28, 2016	Oct. 16, 2016	Radiation (03CH01-SZ)
SHF-EHF Horn	com-power	AH-840	101071	18GHz~40GHz	Aug. 19, 2015	Mar. 28, 2016	Aug. 18, 2016	Radiation (03CH01-SZ)
Amplifier	Agilent Technologies	83017A	MY39501302	500MHz~26.5GHz	Jan. 12, 2016	Mar. 28, 2016	Jan. 11, 2017	Radiation (03CH01-SZ)
Amplifier	HP	8447F	3113A04622	9kHz~1300MHz / 30 dB	Aug. 07, 2015	Mar. 28, 2016	Aug. 06, 2016	Radiation (03CH01-SZ)
HF Amplifier	MITEQ	TTA1840-35-HG	1871923	18GHz~40GHz	Jul. 18, 2015	Mar. 28, 2016	Jul. 17, 2016	Radiation (03CH01-SZ)
AC Power Source	Chroma	61601	616010001985	N/A	NCR	Mar. 28, 2016	NCR	Radiation (03CH01-SZ)
Turn Table	EM	EM1000	N/A	0~360 degree	NCR	Mar. 28, 2016	NCR	Radiation (03CH01-SZ)
Antenna Mast	EM	EM1000	N/A	1 m~4 m	NCR	Mar. 28, 2016	NCR	Radiation (03CH01-SZ)

NCR: No Calibration Required

6 Uncertainty of Evaluation

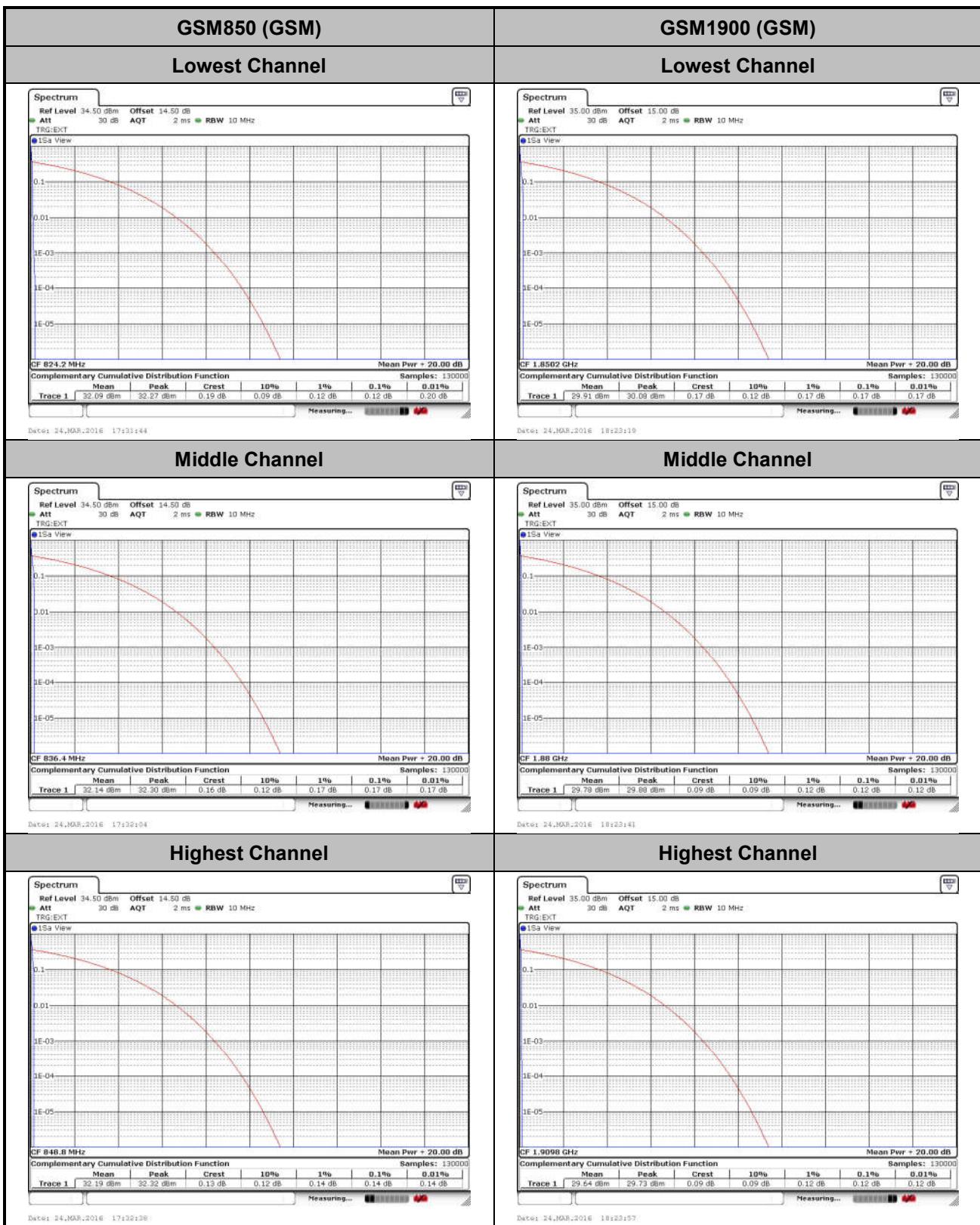
Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

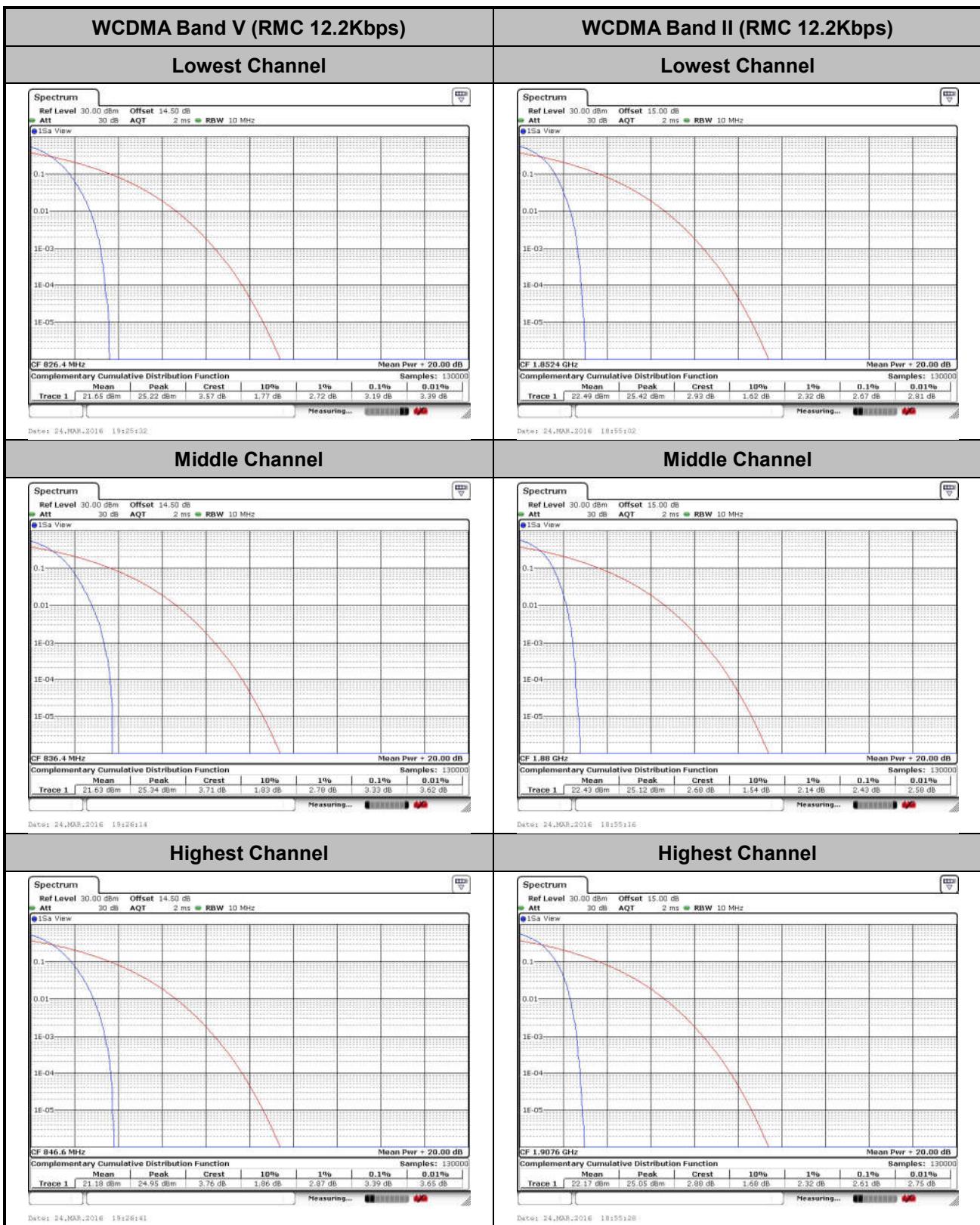
Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	4.8dB
---	-------

Appendix A. Test Results of Conducted Test

Conducted Output Power (Average power)

Conducted Power (*Unit: dBm)						
Band	GSM850			GSM1900		
Channel	128	189	251	512	661	810
Frequency	824.2	836.4	848.8	1850.2	1880.0	1909.8
GSM	31.32	31.50	31.52	29.56	29.33	29.17
GPRS class 8	31.31	31.47	31.51	29.55	29.31	29.15
GPRS class 10	30.38	30.54	30.60	28.69	28.48	28.32
GPRS class 11	28.56	28.70	28.75	26.76	26.58	26.44
GPRS class 12	27.67	27.70	27.77	25.67	25.49	25.37

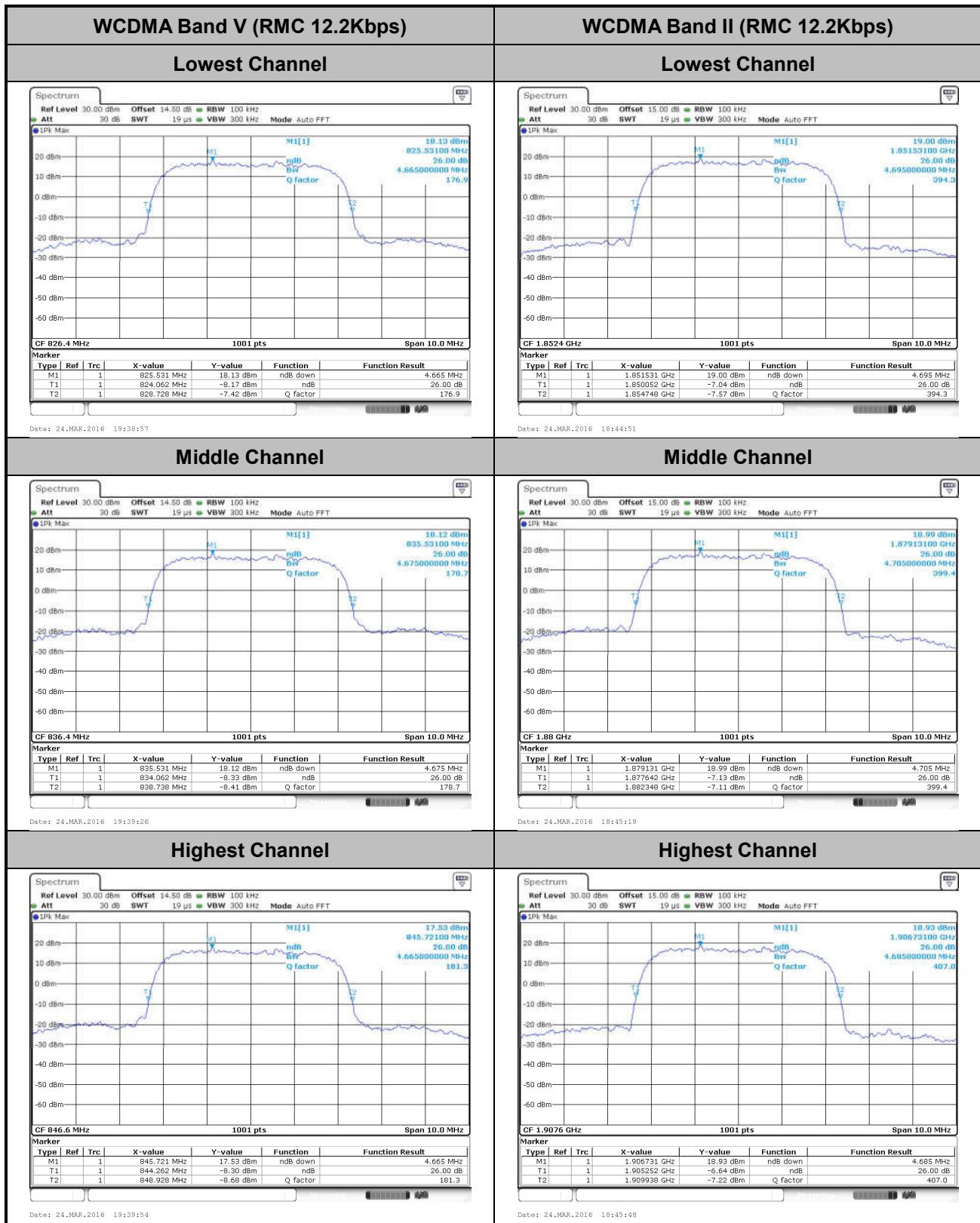

Conducted Power (*Unit: dBm)						
Band	WCDMA Band V			WCDMA Band II		
Channel	4132	4182	4233	9262	9400	9538
Frequency	826.4	836.4	846.6	1852.4	1880	1907.6
AMR 12.2Kbps	21.38	21.62	21.69	22.83	22.65	22.33
RMC 12.2Kbps	21.41	21.64	21.70	22.85	22.66	22.35
HSDPA Subtest-1	19.98	20.27	20.22	21.58	21.36	21.09
HSDPA Subtest-2	19.95	20.30	20.22	21.58	21.34	21.07
HSDPA Subtest-3	19.52	19.83	19.78	21.08	20.88	20.59
HSDPA Subtest-4	19.51	19.80	19.76	21.08	20.86	20.58
HSUPA Subtest-1	17.96	18.26	18.21	19.53	19.38	19.15
HSUPA Subtest-2	18.00	18.29	18.21	19.54	19.36	19.14
HSUPA Subtest-3	18.93	19.27	19.20	20.51	20.33	20.09
HSUPA Subtest-4	17.43	17.73	17.68	19.03	18.83	18.62
HSUPA Subtest-5	20.00	20.30	20.20	21.50	21.30	21.10



Peak-to-Average Ratio

Mode	GSM		Limit: 13dB
Mod.	GSM850	GSM1900	Result
Lowest CH	0.12	0.17	PASS
Middle CH	0.17	0.12	
Highest CH	0.14	0.12	

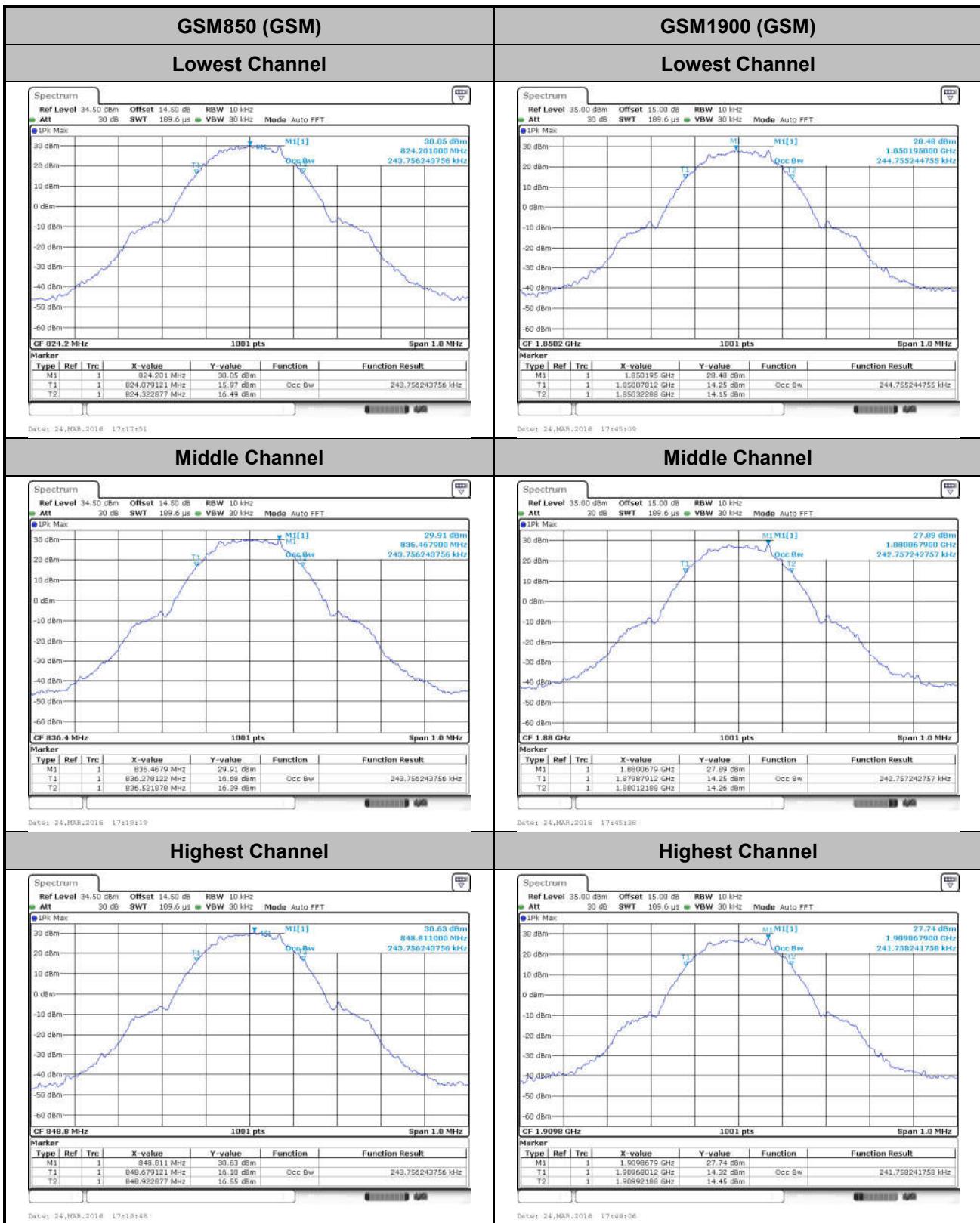
Mode	WCDMA Band V	WCDMA Band II	Limit: 13dB
Mod.	RMC 12.2Kbps	RMC 12.2Kbps	Result
Lowest CH	3.19	2.67	PASS
Middle CH	3.33	2.43	
Highest CH	3.39	2.61	

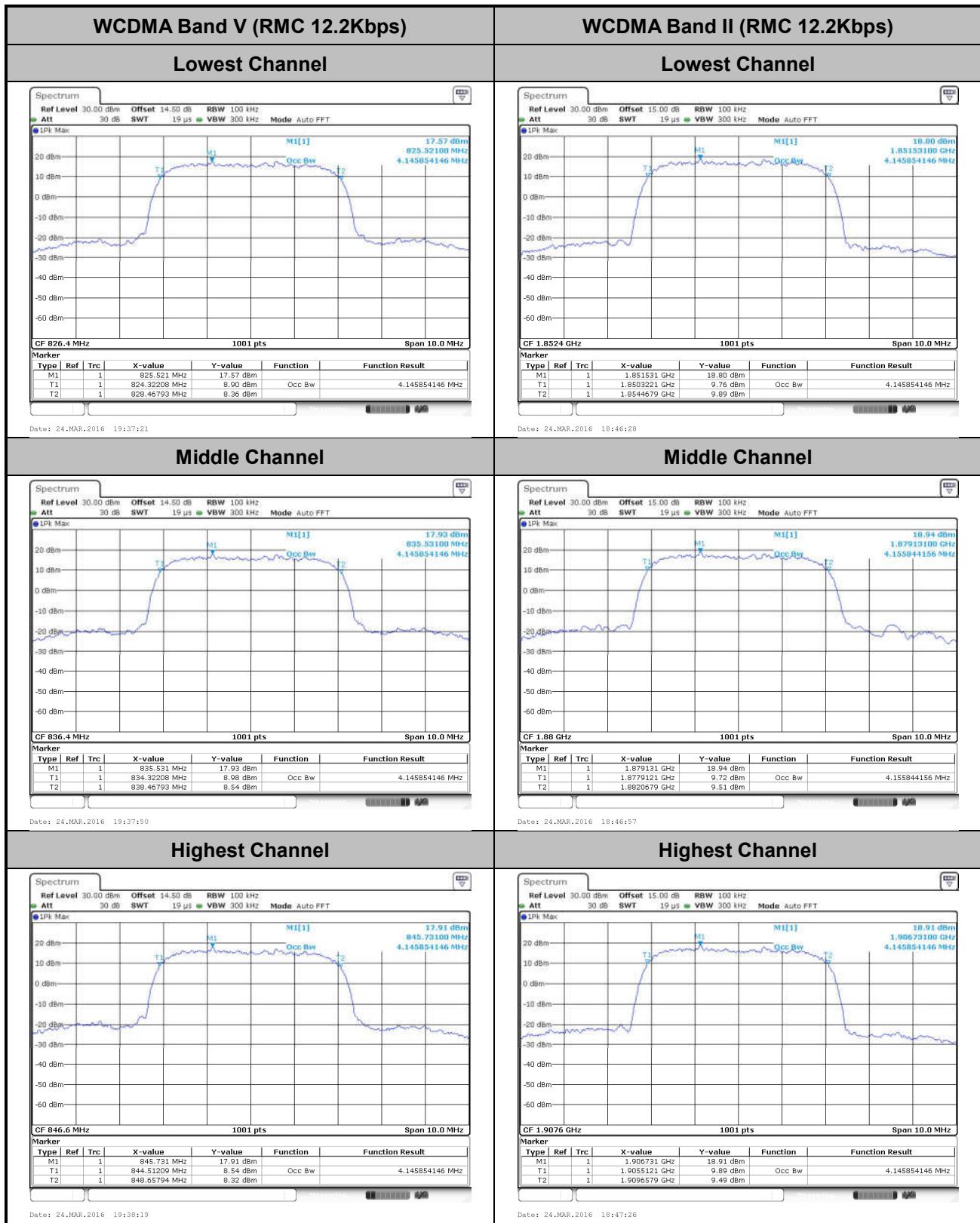


26dB Bandwidth

Mode	GSM	
Mod.	GSM850	GSM1900
Lowest CH	0.317	0.311
Middle CH	0.317	0.317
Highest CH	0.315	0.316

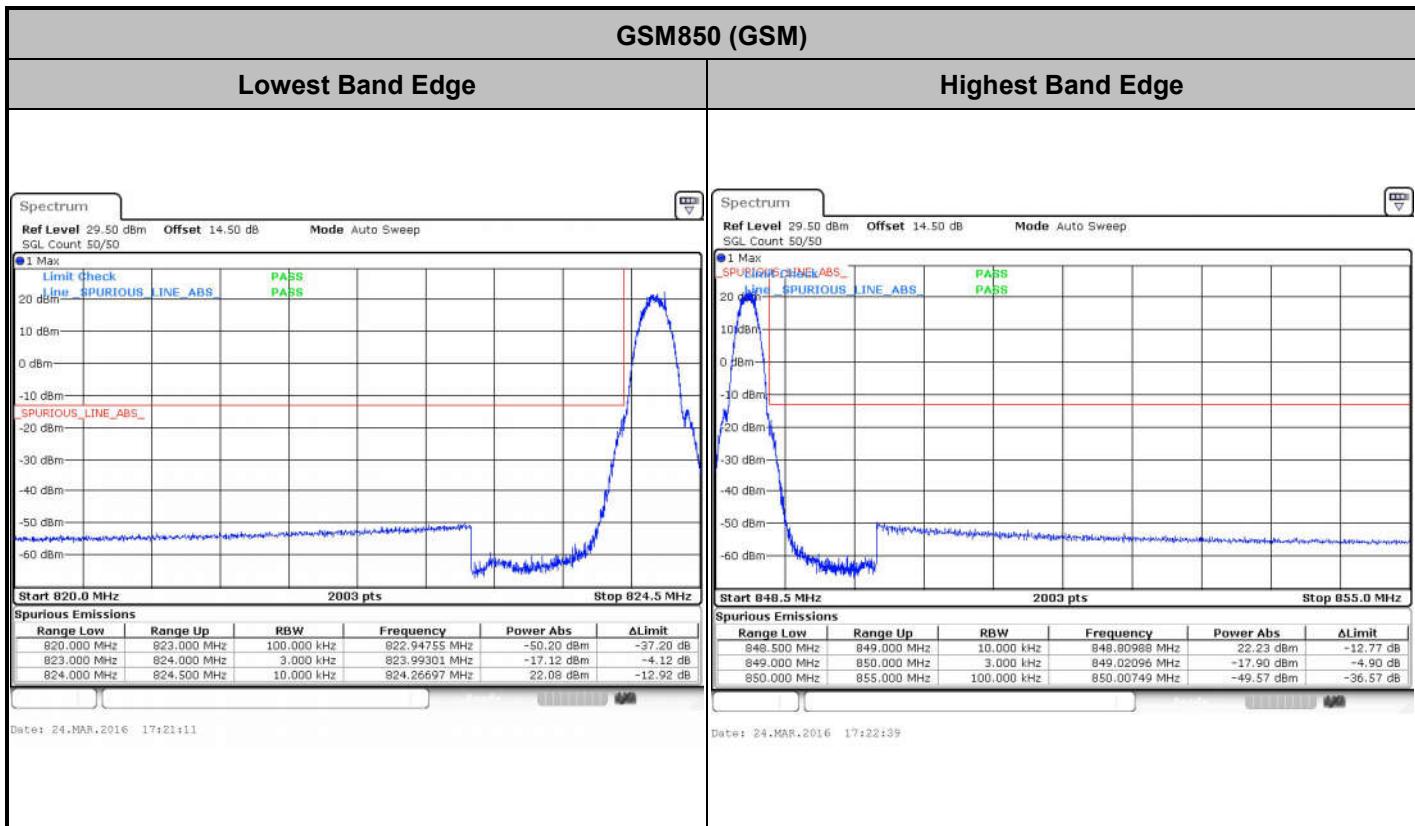
Mode	WCDMA Band V	WCDMA Band II
Mod.	RMC 12.2Kbps	RMC 12.2Kbps
Lowest CH	4.67	4.70
Middle CH	4.68	4.71
Highest CH	4.67	4.69

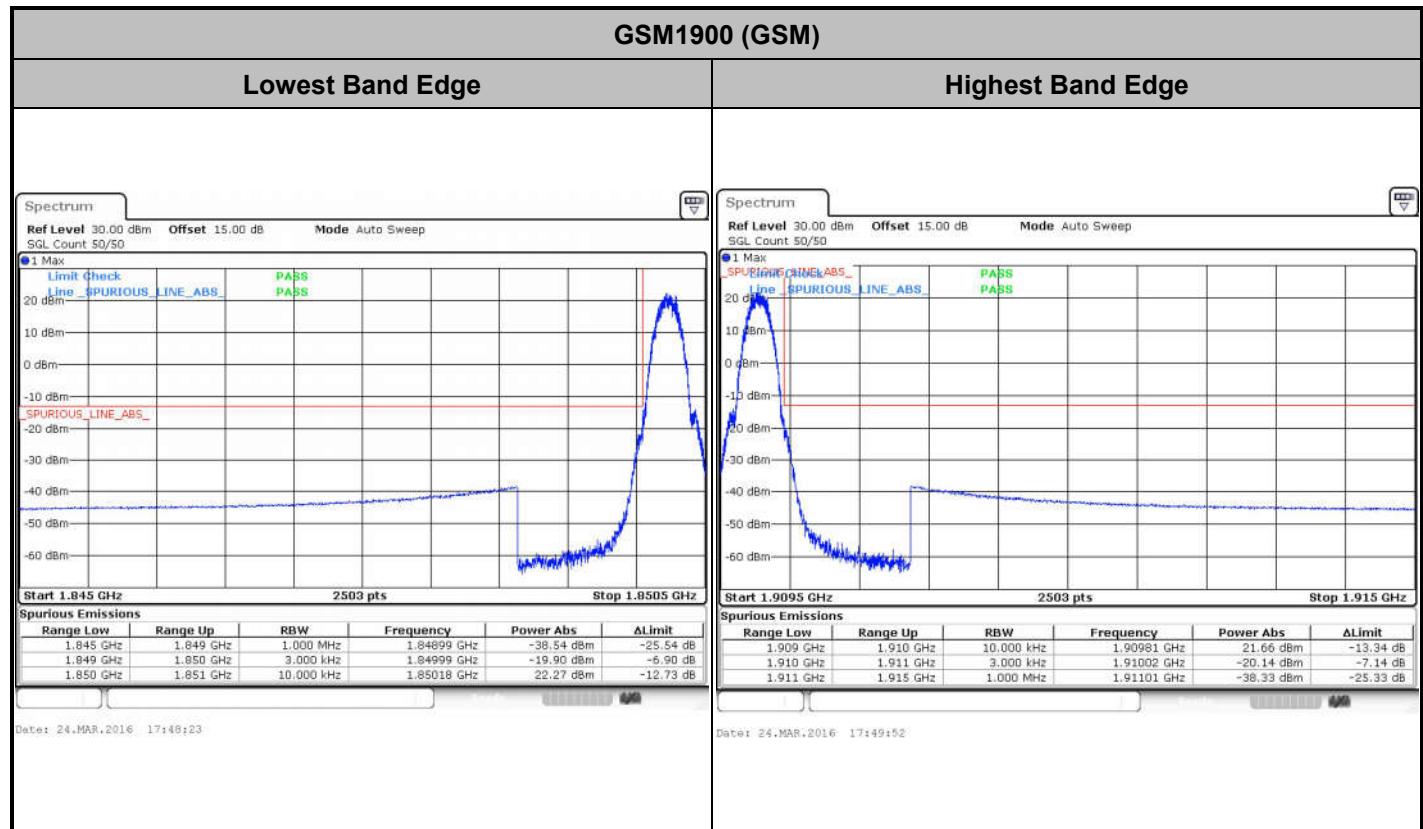


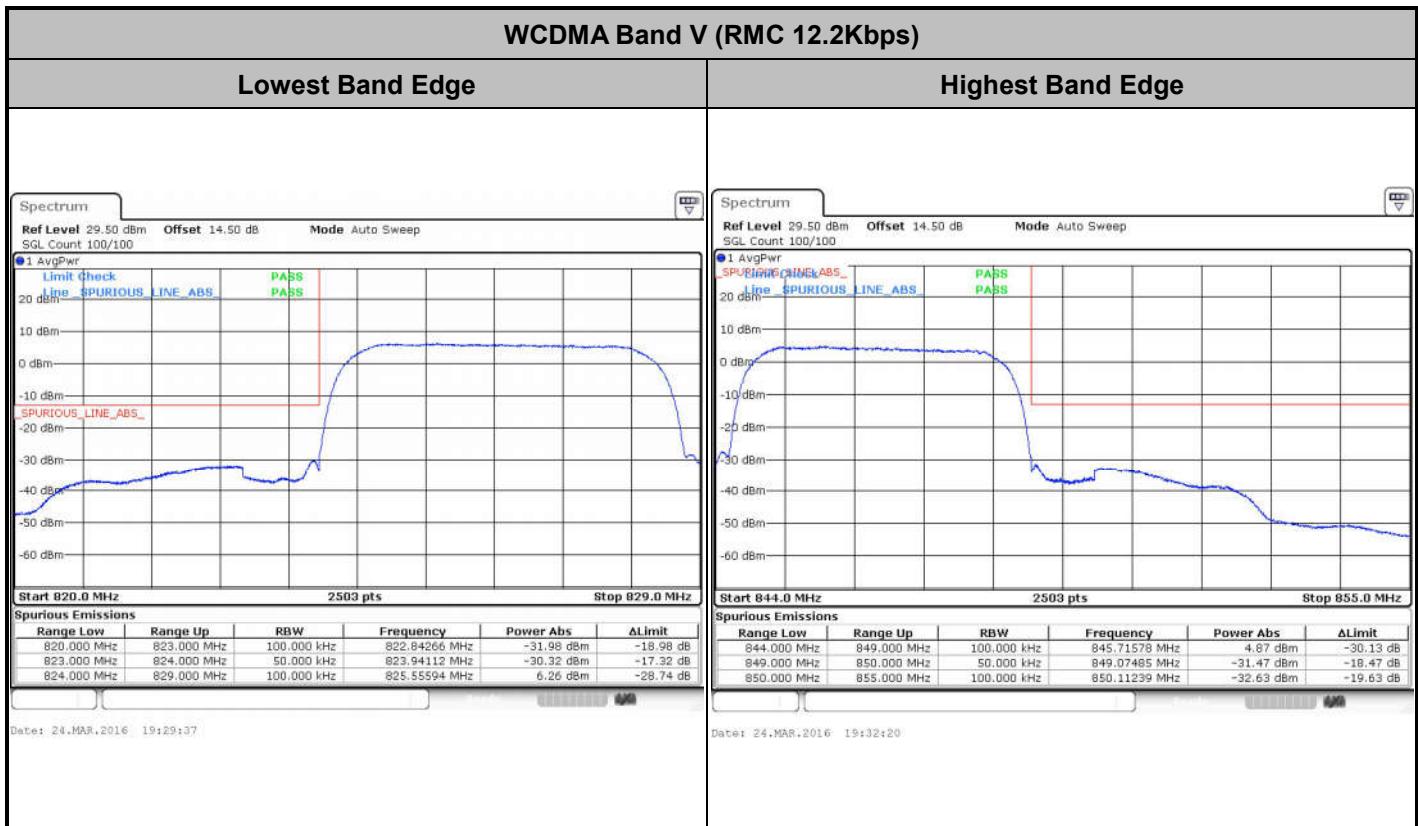


Occupied Bandwidth

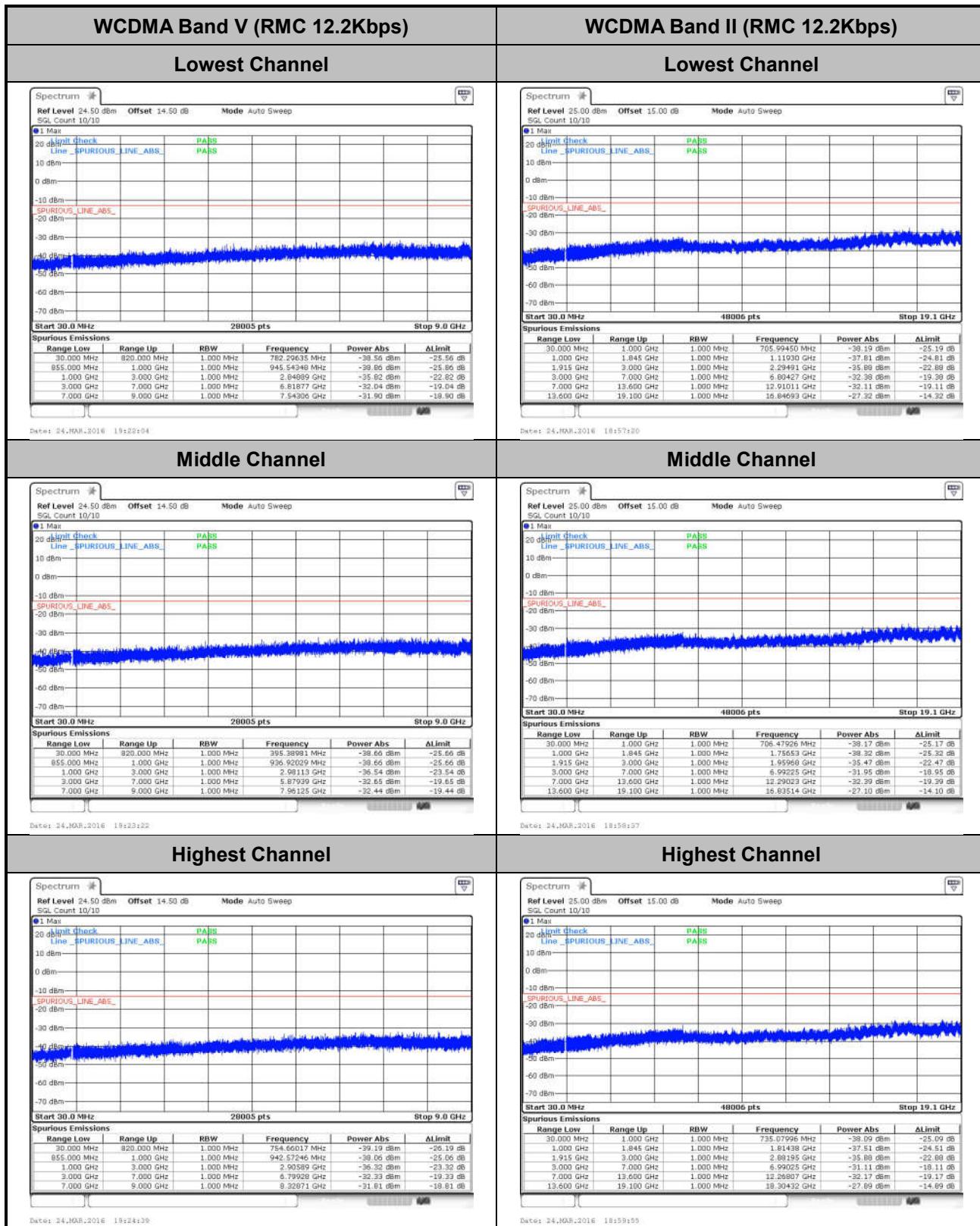
Mode	GSM	
	GSM850	GSM1900
Lowest CH	0.244	0.245
Middle CH	0.244	0.243
Highest CH	0.244	0.242


Mode	WCDMA Band V	WCDMA Band II
	RMC 12.2Kbps	RMC 12.2Kbps
Lowest CH	4.15	4.15
Middle CH	4.15	4.16
Highest CH	4.15	4.15





Conducted Band Edge



Conducted Spurious Emission

GSM850 (GSM)		GSM1900 (GSM)																																																																																													
Lowest Channel		Lowest Channel																																																																																													
<p>Spectrum</p> <p>Ref Level 24.50 dBm Offset 14.50 dB Mode Auto Sweep SQL Count 10/10</p> <p>1. Max</p> <table border="1"> <thead> <tr> <th colspan="2">20 dBc/100 kHz</th> <th colspan="2">Line_SPURIOUS_LINE_ABS_</th> </tr> </thead> <tbody> <tr> <td>PASS</td> <td>PASS</td> <td>PASS</td> <td>PASS</td> </tr> </tbody> </table> <p>Start 30.0 MHz 28005 pts Stop 9.0 GHz</p> <p>Spurious Emissions</p> <table border="1"> <thead> <tr> <th>Range Low</th> <th>Range Up</th> <th>RBW</th> <th>Frequency</th> <th>Power Abs</th> <th>ΔLimit</th> </tr> </thead> <tbody> <tr> <td>30.000 MHz</td> <td>820.000 MHz</td> <td>1.000 MHz</td> <td>585.94051 MHz</td> <td>-39.75 dBm</td> <td>-26.75 dB</td> </tr> <tr> <td>855.000 MHz</td> <td>1.000 GHz</td> <td>1.000 MHz</td> <td>979.29710 MHz</td> <td>-39.00 dBm</td> <td>-26.00 dB</td> </tr> <tr> <td>1.000 GHz</td> <td>3.000 GHz</td> <td>1.000 MHz</td> <td>2.78415 GHz</td> <td>-36.00 dBm</td> <td>-23.00 dB</td> </tr> <tr> <td>3.000 GHz</td> <td>7.000 GHz</td> <td>1.000 MHz</td> <td>5.91039 GHz</td> <td>-31.87 dBm</td> <td>-18.87 dB</td> </tr> <tr> <td>7.000 GHz</td> <td>9.000 GHz</td> <td>1.000 MHz</td> <td>7.19635 GHz</td> <td>-32.66 dBm</td> <td>-19.66 dB</td> </tr> </tbody> </table> <p>Date: 24.MAR.2016 17:27:04</p>	20 dBc/100 kHz		Line_SPURIOUS_LINE_ABS_		PASS	PASS	PASS	PASS	Range Low	Range Up	RBW	Frequency	Power Abs	ΔLimit	30.000 MHz	820.000 MHz	1.000 MHz	585.94051 MHz	-39.75 dBm	-26.75 dB	855.000 MHz	1.000 GHz	1.000 MHz	979.29710 MHz	-39.00 dBm	-26.00 dB	1.000 GHz	3.000 GHz	1.000 MHz	2.78415 GHz	-36.00 dBm	-23.00 dB	3.000 GHz	7.000 GHz	1.000 MHz	5.91039 GHz	-31.87 dBm	-18.87 dB	7.000 GHz	9.000 GHz	1.000 MHz	7.19635 GHz	-32.66 dBm	-19.66 dB	<p>Spectrum</p> <p>Ref Level 25.00 dBm Offset 15.00 dB Mode Auto Sweep SQL Count 10/10</p> <p>1. Max</p> <table border="1"> <thead> <tr> <th colspan="2">20 dBc/100 kHz</th> <th colspan="2">Line_SPURIOUS_LINE_ABS_</th> </tr> </thead> <tbody> <tr> <td>PASS</td> <td>PASS</td> <td>PASS</td> <td>PASS</td> </tr> </tbody> </table> <p>Start 30.0 MHz 48006 pts Stop 19.1 GHz</p> <p>Spurious Emissions</p> <table border="1"> <thead> <tr> <th>Range Low</th> <th>Range Up</th> <th>RBW</th> <th>Frequency</th> <th>Power Abs</th> <th>ΔLimit</th> </tr> </thead> <tbody> <tr> <td>30.000 MHz</td> <td>1.000 GHz</td> <td>1.000 MHz</td> <td>947.89855 GHz</td> <td>-39.67 dBm</td> <td>-25.07 dB</td> </tr> <tr> <td>1.000 GHz</td> <td>1.845 GHz</td> <td>1.000 MHz</td> <td>1.80383 GHz</td> <td>-37.57 dBm</td> <td>-24.57 dB</td> </tr> <tr> <td>1.915 GHz</td> <td>3.000 GHz</td> <td>1.000 MHz</td> <td>2.79055 GHz</td> <td>-35.25 dBm</td> <td>-22.25 dB</td> </tr> <tr> <td>3.000 GHz</td> <td>7.000 GHz</td> <td>1.000 MHz</td> <td>6.95576 GHz</td> <td>-31.24 dBm</td> <td>-18.24 dB</td> </tr> <tr> <td>7.000 GHz</td> <td>13.600 GHz</td> <td>1.000 MHz</td> <td>11.35040 GHz</td> <td>-32.54 dBm</td> <td>-19.54 dB</td> </tr> <tr> <td>13.600 GHz</td> <td>19.100 GHz</td> <td>1.000 MHz</td> <td>19.94542 GHz</td> <td>-27.26 dBm</td> <td>-14.26 dB</td> </tr> </tbody> </table> <p>Date: 24.MAR.2016 18:27:34</p>	20 dBc/100 kHz		Line_SPURIOUS_LINE_ABS_		PASS	PASS	PASS	PASS	Range Low	Range Up	RBW	Frequency	Power Abs	ΔLimit	30.000 MHz	1.000 GHz	1.000 MHz	947.89855 GHz	-39.67 dBm	-25.07 dB	1.000 GHz	1.845 GHz	1.000 MHz	1.80383 GHz	-37.57 dBm	-24.57 dB	1.915 GHz	3.000 GHz	1.000 MHz	2.79055 GHz	-35.25 dBm	-22.25 dB	3.000 GHz	7.000 GHz	1.000 MHz	6.95576 GHz	-31.24 dBm	-18.24 dB	7.000 GHz	13.600 GHz	1.000 MHz	11.35040 GHz	-32.54 dBm	-19.54 dB	13.600 GHz	19.100 GHz	1.000 MHz	19.94542 GHz	-27.26 dBm	-14.26 dB
20 dBc/100 kHz		Line_SPURIOUS_LINE_ABS_																																																																																													
PASS	PASS	PASS	PASS																																																																																												
Range Low	Range Up	RBW	Frequency	Power Abs	ΔLimit																																																																																										
30.000 MHz	820.000 MHz	1.000 MHz	585.94051 MHz	-39.75 dBm	-26.75 dB																																																																																										
855.000 MHz	1.000 GHz	1.000 MHz	979.29710 MHz	-39.00 dBm	-26.00 dB																																																																																										
1.000 GHz	3.000 GHz	1.000 MHz	2.78415 GHz	-36.00 dBm	-23.00 dB																																																																																										
3.000 GHz	7.000 GHz	1.000 MHz	5.91039 GHz	-31.87 dBm	-18.87 dB																																																																																										
7.000 GHz	9.000 GHz	1.000 MHz	7.19635 GHz	-32.66 dBm	-19.66 dB																																																																																										
20 dBc/100 kHz		Line_SPURIOUS_LINE_ABS_																																																																																													
PASS	PASS	PASS	PASS																																																																																												
Range Low	Range Up	RBW	Frequency	Power Abs	ΔLimit																																																																																										
30.000 MHz	1.000 GHz	1.000 MHz	947.89855 GHz	-39.67 dBm	-25.07 dB																																																																																										
1.000 GHz	1.845 GHz	1.000 MHz	1.80383 GHz	-37.57 dBm	-24.57 dB																																																																																										
1.915 GHz	3.000 GHz	1.000 MHz	2.79055 GHz	-35.25 dBm	-22.25 dB																																																																																										
3.000 GHz	7.000 GHz	1.000 MHz	6.95576 GHz	-31.24 dBm	-18.24 dB																																																																																										
7.000 GHz	13.600 GHz	1.000 MHz	11.35040 GHz	-32.54 dBm	-19.54 dB																																																																																										
13.600 GHz	19.100 GHz	1.000 MHz	19.94542 GHz	-27.26 dBm	-14.26 dB																																																																																										
<p>Middle Channel</p> <p>Spectrum</p> <p>Ref Level 24.50 dBm Offset 14.50 dB Mode Auto Sweep SQL Count 10/10</p> <p>1. Max</p> <table border="1"> <thead> <tr> <th colspan="2">20 dBc/100 kHz</th> <th colspan="2">Line_SPURIOUS_LINE_ABS_</th> </tr> </thead> <tbody> <tr> <td>PASS</td> <td>PASS</td> <td>PASS</td> <td>PASS</td> </tr> </tbody> </table> <p>Start 30.0 MHz 28005 pts Stop 9.0 GHz</p> <p>Spurious Emissions</p> <table border="1"> <thead> <tr> <th>Range Low</th> <th>Range Up</th> <th>RBW</th> <th>Frequency</th> <th>Power Abs</th> <th>ΔLimit</th> </tr> </thead> <tbody> <tr> <td>30.000 MHz</td> <td>820.000 MHz</td> <td>1.000 MHz</td> <td>705.94052 MHz</td> <td>-39.55 dBm</td> <td>-26.55 dB</td> </tr> <tr> <td>855.000 MHz</td> <td>1.000 GHz</td> <td>1.000 MHz</td> <td>939.45652 MHz</td> <td>-37.90 dBm</td> <td>-24.90 dB</td> </tr> <tr> <td>1.000 GHz</td> <td>3.000 GHz</td> <td>1.000 MHz</td> <td>2.77990 GHz</td> <td>-35.20 dBm</td> <td>-22.20 dB</td> </tr> <tr> <td>3.000 GHz</td> <td>7.000 GHz</td> <td>1.000 MHz</td> <td>6.68829 GHz</td> <td>-31.81 dBm</td> <td>-18.81 dB</td> </tr> <tr> <td>7.000 GHz</td> <td>9.000 GHz</td> <td>1.000 MHz</td> <td>7.24084 GHz</td> <td>-31.98 dBm</td> <td>-18.98 dB</td> </tr> </tbody> </table> <p>Date: 24.MAR.2016 17:29:00</p>	20 dBc/100 kHz		Line_SPURIOUS_LINE_ABS_		PASS	PASS	PASS	PASS	Range Low	Range Up	RBW	Frequency	Power Abs	ΔLimit	30.000 MHz	820.000 MHz	1.000 MHz	705.94052 MHz	-39.55 dBm	-26.55 dB	855.000 MHz	1.000 GHz	1.000 MHz	939.45652 MHz	-37.90 dBm	-24.90 dB	1.000 GHz	3.000 GHz	1.000 MHz	2.77990 GHz	-35.20 dBm	-22.20 dB	3.000 GHz	7.000 GHz	1.000 MHz	6.68829 GHz	-31.81 dBm	-18.81 dB	7.000 GHz	9.000 GHz	1.000 MHz	7.24084 GHz	-31.98 dBm	-18.98 dB	<p>Middle Channel</p> <p>Spectrum</p> <p>Ref Level 25.00 dBm Offset 15.00 dB Mode Auto Sweep SQL Count 10/10</p> <p>1. Max</p> <table border="1"> <thead> <tr> <th colspan="2">20 dBc/100 kHz</th> <th colspan="2">Line_SPURIOUS_LINE_ABS_</th> </tr> </thead> <tbody> <tr> <td>PASS</td> <td>PASS</td> <td>PASS</td> <td>PASS</td> </tr> </tbody> </table> <p>Start 30.0 MHz 48006 pts Stop 19.1 GHz</p> <p>Spurious Emissions</p> <table border="1"> <thead> <tr> <th>Range Low</th> <th>Range Up</th> <th>RBW</th> <th>Frequency</th> <th>Power Abs</th> <th>ΔLimit</th> </tr> </thead> <tbody> <tr> <td>30.000 MHz</td> <td>1.000 GHz</td> <td>1.000 MHz</td> <td>993.45577 MHz</td> <td>-39.03 dBm</td> <td>-25.03 dB</td> </tr> <tr> <td>1.000 GHz</td> <td>1.845 GHz</td> <td>1.000 MHz</td> <td>1.81630 GHz</td> <td>-37.03 dBm</td> <td>-23.03 dB</td> </tr> <tr> <td>1.915 GHz</td> <td>3.000 GHz</td> <td>1.000 MHz</td> <td>2.61630 GHz</td> <td>-35.13 dBm</td> <td>-22.13 dB</td> </tr> <tr> <td>3.000 GHz</td> <td>7.000 GHz</td> <td>1.000 MHz</td> <td>6.93076 GHz</td> <td>-31.78 dBm</td> <td>-18.78 dB</td> </tr> <tr> <td>7.000 GHz</td> <td>13.600 GHz</td> <td>1.000 MHz</td> <td>13.14063 GHz</td> <td>-31.34 dBm</td> <td>-18.34 dB</td> </tr> <tr> <td>13.600 GHz</td> <td>19.100 GHz</td> <td>1.000 MHz</td> <td>16.94356 GHz</td> <td>-27.60 dBm</td> <td>-14.60 dB</td> </tr> </tbody> </table> <p>Date: 24.MAR.2016 18:29:51</p>	20 dBc/100 kHz		Line_SPURIOUS_LINE_ABS_		PASS	PASS	PASS	PASS	Range Low	Range Up	RBW	Frequency	Power Abs	ΔLimit	30.000 MHz	1.000 GHz	1.000 MHz	993.45577 MHz	-39.03 dBm	-25.03 dB	1.000 GHz	1.845 GHz	1.000 MHz	1.81630 GHz	-37.03 dBm	-23.03 dB	1.915 GHz	3.000 GHz	1.000 MHz	2.61630 GHz	-35.13 dBm	-22.13 dB	3.000 GHz	7.000 GHz	1.000 MHz	6.93076 GHz	-31.78 dBm	-18.78 dB	7.000 GHz	13.600 GHz	1.000 MHz	13.14063 GHz	-31.34 dBm	-18.34 dB	13.600 GHz	19.100 GHz	1.000 MHz	16.94356 GHz	-27.60 dBm	-14.60 dB
20 dBc/100 kHz		Line_SPURIOUS_LINE_ABS_																																																																																													
PASS	PASS	PASS	PASS																																																																																												
Range Low	Range Up	RBW	Frequency	Power Abs	ΔLimit																																																																																										
30.000 MHz	820.000 MHz	1.000 MHz	705.94052 MHz	-39.55 dBm	-26.55 dB																																																																																										
855.000 MHz	1.000 GHz	1.000 MHz	939.45652 MHz	-37.90 dBm	-24.90 dB																																																																																										
1.000 GHz	3.000 GHz	1.000 MHz	2.77990 GHz	-35.20 dBm	-22.20 dB																																																																																										
3.000 GHz	7.000 GHz	1.000 MHz	6.68829 GHz	-31.81 dBm	-18.81 dB																																																																																										
7.000 GHz	9.000 GHz	1.000 MHz	7.24084 GHz	-31.98 dBm	-18.98 dB																																																																																										
20 dBc/100 kHz		Line_SPURIOUS_LINE_ABS_																																																																																													
PASS	PASS	PASS	PASS																																																																																												
Range Low	Range Up	RBW	Frequency	Power Abs	ΔLimit																																																																																										
30.000 MHz	1.000 GHz	1.000 MHz	993.45577 MHz	-39.03 dBm	-25.03 dB																																																																																										
1.000 GHz	1.845 GHz	1.000 MHz	1.81630 GHz	-37.03 dBm	-23.03 dB																																																																																										
1.915 GHz	3.000 GHz	1.000 MHz	2.61630 GHz	-35.13 dBm	-22.13 dB																																																																																										
3.000 GHz	7.000 GHz	1.000 MHz	6.93076 GHz	-31.78 dBm	-18.78 dB																																																																																										
7.000 GHz	13.600 GHz	1.000 MHz	13.14063 GHz	-31.34 dBm	-18.34 dB																																																																																										
13.600 GHz	19.100 GHz	1.000 MHz	16.94356 GHz	-27.60 dBm	-14.60 dB																																																																																										
<p>Highest Channel</p> <p>Spectrum</p> <p>Ref Level 24.50 dBm Offset 14.50 dB Mode Auto Sweep SQL Count 10/10</p> <p>1. Max</p> <table border="1"> <thead> <tr> <th colspan="2">20 dBc/100 kHz</th> <th colspan="2">Line_SPURIOUS_LINE_ABS_</th> </tr> </thead> <tbody> <tr> <td>PASS</td> <td>PASS</td> <td>PASS</td> <td>PASS</td> </tr> </tbody> </table> <p>Start 30.0 MHz 28005 pts Stop 9.0 GHz</p> <p>Spurious Emissions</p> <table border="1"> <thead> <tr> <th>Range Low</th> <th>Range Up</th> <th>RBW</th> <th>Frequency</th> <th>Power Abs</th> <th>ΔLimit</th> </tr> </thead> <tbody> <tr> <td>30.000 MHz</td> <td>820.000 MHz</td> <td>1.000 MHz</td> <td>725.89598 MHz</td> <td>-39.64 dBm</td> <td>-26.64 dB</td> </tr> <tr> <td>855.000 MHz</td> <td>1.000 GHz</td> <td>1.000 MHz</td> <td>869.56010 MHz</td> <td>-38.47 dBm</td> <td>-25.47 dB</td> </tr> <tr> <td>1.000 GHz</td> <td>3.000 GHz</td> <td>1.000 MHz</td> <td>2.95613 GHz</td> <td>-36.98 dBm</td> <td>-23.98 dB</td> </tr> <tr> <td>3.000 GHz</td> <td>7.000 GHz</td> <td>1.000 MHz</td> <td>6.96025 GHz</td> <td>-22.45 dBm</td> <td>-19.45 dB</td> </tr> <tr> <td>7.000 GHz</td> <td>9.000 GHz</td> <td>1.000 MHz</td> <td>8.62967 GHz</td> <td>-32.11 dBm</td> <td>-19.11 dB</td> </tr> </tbody> </table> <p>Date: 24.MAR.2016 17:29:27</p>	20 dBc/100 kHz		Line_SPURIOUS_LINE_ABS_		PASS	PASS	PASS	PASS	Range Low	Range Up	RBW	Frequency	Power Abs	ΔLimit	30.000 MHz	820.000 MHz	1.000 MHz	725.89598 MHz	-39.64 dBm	-26.64 dB	855.000 MHz	1.000 GHz	1.000 MHz	869.56010 MHz	-38.47 dBm	-25.47 dB	1.000 GHz	3.000 GHz	1.000 MHz	2.95613 GHz	-36.98 dBm	-23.98 dB	3.000 GHz	7.000 GHz	1.000 MHz	6.96025 GHz	-22.45 dBm	-19.45 dB	7.000 GHz	9.000 GHz	1.000 MHz	8.62967 GHz	-32.11 dBm	-19.11 dB	<p>Highest Channel</p> <p>Spectrum</p> <p>Ref Level 25.00 dBm Offset 15.00 dB Mode Auto Sweep SQL Count 10/10</p> <p>1. Max</p> <table border="1"> <thead> <tr> <th colspan="2">20 dBc/100 kHz</th> <th colspan="2">Line_SPURIOUS_LINE_ABS_</th> </tr> </thead> <tbody> <tr> <td>PASS</td> <td>PASS</td> <td>PASS</td> <td>PASS</td> </tr> </tbody> </table> <p>Start 30.0 MHz 48006 pts Stop 19.1 GHz</p> <p>Spurious Emissions</p> <table border="1"> <thead> <tr> <th>Range Low</th> <th>Range Up</th> <th>RBW</th> <th>Frequency</th> <th>Power Abs</th> <th>ΔLimit</th> </tr> </thead> <tbody> <tr> <td>30.000 MHz</td> <td>1.000 GHz</td> <td>1.000 MHz</td> <td>832.51624 MHz</td> <td>-38.67 dBm</td> <td>-25.67 dB</td> </tr> <tr> <td>1.000 GHz</td> <td>1.845 GHz</td> <td>1.000 MHz</td> <td>1.81509 GHz</td> <td>-38.24 dBm</td> <td>-25.24 dB</td> </tr> <tr> <td>1.915 GHz</td> <td>3.000 GHz</td> <td>1.000 MHz</td> <td>2.61049 GHz</td> <td>-36.47 dBm</td> <td>-23.47 dB</td> </tr> <tr> <td>3.000 GHz</td> <td>7.000 GHz</td> <td>1.000 MHz</td> <td>6.97835 GHz</td> <td>-31.72 dBm</td> <td>-18.72 dB</td> </tr> <tr> <td>7.000 GHz</td> <td>13.600 GHz</td> <td>1.000 MHz</td> <td>12.65603 GHz</td> <td>-32.42 dBm</td> <td>-19.42 dB</td> </tr> <tr> <td>13.600 GHz</td> <td>19.100 GHz</td> <td>1.000 MHz</td> <td>16.93532 GHz</td> <td>-27.53 dBm</td> <td>-14.53 dB</td> </tr> </tbody> </table> <p>Date: 24.MAR.2016 18:30:08</p>	20 dBc/100 kHz		Line_SPURIOUS_LINE_ABS_		PASS	PASS	PASS	PASS	Range Low	Range Up	RBW	Frequency	Power Abs	ΔLimit	30.000 MHz	1.000 GHz	1.000 MHz	832.51624 MHz	-38.67 dBm	-25.67 dB	1.000 GHz	1.845 GHz	1.000 MHz	1.81509 GHz	-38.24 dBm	-25.24 dB	1.915 GHz	3.000 GHz	1.000 MHz	2.61049 GHz	-36.47 dBm	-23.47 dB	3.000 GHz	7.000 GHz	1.000 MHz	6.97835 GHz	-31.72 dBm	-18.72 dB	7.000 GHz	13.600 GHz	1.000 MHz	12.65603 GHz	-32.42 dBm	-19.42 dB	13.600 GHz	19.100 GHz	1.000 MHz	16.93532 GHz	-27.53 dBm	-14.53 dB
20 dBc/100 kHz		Line_SPURIOUS_LINE_ABS_																																																																																													
PASS	PASS	PASS	PASS																																																																																												
Range Low	Range Up	RBW	Frequency	Power Abs	ΔLimit																																																																																										
30.000 MHz	820.000 MHz	1.000 MHz	725.89598 MHz	-39.64 dBm	-26.64 dB																																																																																										
855.000 MHz	1.000 GHz	1.000 MHz	869.56010 MHz	-38.47 dBm	-25.47 dB																																																																																										
1.000 GHz	3.000 GHz	1.000 MHz	2.95613 GHz	-36.98 dBm	-23.98 dB																																																																																										
3.000 GHz	7.000 GHz	1.000 MHz	6.96025 GHz	-22.45 dBm	-19.45 dB																																																																																										
7.000 GHz	9.000 GHz	1.000 MHz	8.62967 GHz	-32.11 dBm	-19.11 dB																																																																																										
20 dBc/100 kHz		Line_SPURIOUS_LINE_ABS_																																																																																													
PASS	PASS	PASS	PASS																																																																																												
Range Low	Range Up	RBW	Frequency	Power Abs	ΔLimit																																																																																										
30.000 MHz	1.000 GHz	1.000 MHz	832.51624 MHz	-38.67 dBm	-25.67 dB																																																																																										
1.000 GHz	1.845 GHz	1.000 MHz	1.81509 GHz	-38.24 dBm	-25.24 dB																																																																																										
1.915 GHz	3.000 GHz	1.000 MHz	2.61049 GHz	-36.47 dBm	-23.47 dB																																																																																										
3.000 GHz	7.000 GHz	1.000 MHz	6.97835 GHz	-31.72 dBm	-18.72 dB																																																																																										
7.000 GHz	13.600 GHz	1.000 MHz	12.65603 GHz	-32.42 dBm	-19.42 dB																																																																																										
13.600 GHz	19.100 GHz	1.000 MHz	16.93532 GHz	-27.53 dBm	-14.53 dB																																																																																										

Frequency Stability

Test Conditions	Middle Channel	GSM850 (GSM)	Limit 2.5ppm
Temperature (°C)	Voltage (Volt)	Deviation (ppm)	Result
50	Normal Voltage	0.0060	PASS
40	Normal Voltage	0.0586	
30	Normal Voltage	0.0024	
20(Ref.)	Normal Voltage	0.0000	
10	Normal Voltage	0.0048	
0	Normal Voltage	0.0562	
-10	Normal Voltage	0.0048	
-20	Normal Voltage	0.0096	
-30	Normal Voltage	0.0084	
20	Maximum Voltage	0.0000	
20	Normal Voltage	0.0036	
20	Battery End Point	0.0024	

Note: Normal Voltage = 3.7V. ; Battery End Point (BEP) = 3.6 V. ; Maximum Voltage = 4.2 V

Test Conditions	Middle Channel	GSM1900 (GSM)	Limit Note 2.
Temperature (°C)	Voltage (Volt)	Deviation (ppm)	Result
50	Normal Voltage	0.0016	PASS
40	Normal Voltage	0.0452	
30	Normal Voltage	0.0027	
20(Ref.)	Normal Voltage	0.0000	
10	Normal Voltage	0.0016	
0	Normal Voltage	0.0436	
-10	Normal Voltage	0.0000	
-20	Normal Voltage	0.0021	
-30	Normal Voltage	0.0489	
20	Maximum Voltage	0.0016	
20	Normal Voltage	0.0043	
20	Battery End Point	0.0011	

Note:

1. Normal Voltage = 3.7V. ; Battery End Point (BEP) = 3.6 V. ; Maximum Voltage =4.2 V
2. The frequency fundamental emissions stay within the authorized frequency block based on the frequency deviation measured is small.

Test Conditions	Middle Channel	WCDMA Band V (RMC 12.2Kbps)	Limit 2.5ppm
Temperature (°C)	Voltage (Volt)	Deviation (ppm)	Result
50	Normal Voltage	0.0036	PASS
40	Normal Voltage	0.0263	
30	Normal Voltage	0.0024	
20(Ref.)	Normal Voltage	0.0000	
10	Normal Voltage	0.0024	
0	Normal Voltage	0.0048	
-10	Normal Voltage	0.0299	
-20	Normal Voltage	0.0036	
-30	Normal Voltage	0.0084	
20	Maximum Voltage	0.0048	
20	Normal Voltage	0.0024	
20	Battery End Point	0.0060	

Note: Normal Voltage = 3.7V. ; Battery End Point (BEP) = 3.6 V. ; Maximum Voltage =4.2V

Test Conditions	Middle Channel	WCDMA Band II (RMC 12.2Kbps)	Limit Note 2.
Temperature (°C)	Voltage (Volt)	Deviation (ppm)	Result
50	Normal Voltage	0.0027	PASS
40	Normal Voltage	0.0133	
30	Normal Voltage	0.0011	
20(Ref.)	Normal Voltage	0.0000	
10	Normal Voltage	0.0005	
0	Normal Voltage	0.0122	
-10	Normal Voltage	0.0016	
-20	Normal Voltage	0.0016	
-30	Normal Voltage	0.0032	
20	Maximum Voltage	0.0011	
20	Normal Voltage	0.0000	
20	Battery End Point	0.0016	

Note:

1. Normal Voltage = 3.7V. ; Battery End Point (BEP) = 3.6 V. ; Maximum Voltage =4.2V
2. The frequency fundamental emissions stay within the authorized frequency block based on the frequency deviation measured is small.

Appendix B. Test Results of Radiated Test

ERP/EIRP

Channel	Mode	Horizontal		Vertical	
		ERP(dBm)	ERP(W)	ERP(dBm)	ERP(W)
Lowest	GSM850 GSM	29.05	0.8035	9.38	0.0087
Middle		29.02	0.7978	10.08	0.0102
Highest		28.67	0.7354	10.99	0.0125
Lowest	WCDMA Band V RMC 12.2Kbps	18.61	0.0727	-1.21	0.0008
Middle		18.94	0.0783	-0.18	0.0010
Highest		18.36	0.0686	0.50	0.0011
Limit	ERP < 7W	Result		PASS	

Channel	Mode	Horizontal		Vertical	
		EIRP(dBm)	EIRP(W)	EIRP(dBm)	EIRP(W)
Lowest	GSM1900 GSM	27.46	0.5577	27.78	0.5992
Middle		27.21	0.5265	27.32	0.5401
Highest		27.16	0.5202	27.07	0.5093
Lowest	WCDMA Band II RMC 12.2Kbps	20.49	0.1121	20.91	0.1232
Middle		20.70	0.1176	20.83	0.1210
Highest		20.26	0.1062	20.03	0.1006
Limit	EIRP < 2W	Result		PASS	

Radiated Spurious Emission

GSM850 (GSM)									
Channel	Frequency (MHz)	ERP (dBm)	Limit (dBm)	Over Limit (dB)	SPA Reading (dBm)	S.G. Power (dBm)	TX Cable loss (dB)	TX Antenna Gain (dBi)	Polarization (H/V)
Middle	1672	-42.89	-13	-29.89	-46.28	-49.58	0.56	9.40	H
	2510	-36.98	-13	-23.98	-43.27	-44.68	0.75	10.60	H
	3346	-37.90	-13	-24.90	-49.15	-47.50	0.85	12.60	H
	4182	-44.45	-13	-31.45	-55.30	-54.01	0.89	12.60	H
	5018	-42.19	-13	-29.19	-55.69	-51.80	0.94	12.70	H
	5854	-48.21	-13	-35.21	-61.44	-57.95	1.11	13.00	H
	6691	-46.10	-13	-33.10	-63.30	-54.43	1.22	11.70	H
	1672	-46.90	-13	-33.90	-51.59	-53.59	0.56	9.40	V
	2510	-35.35	-13	-22.35	-43.69	-43.05	0.75	10.60	V
	3346	-40.74	-13	-27.74	-50.36	-50.34	0.85	12.60	V
	4182	-50.86	-13	-37.86	-61.15	-60.42	0.89	12.60	V
	5018	-48.79	-13	-35.79	-60.78	-58.40	0.94	12.70	V
	5854	-44.44	-13	-31.44	-60.09	-54.18	1.11	13.00	V
	6691	-48.05	-13	-35.05	-64.68	-56.38	1.22	11.70	V

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

GSM1900 (GSM)									
Channel	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Over Limit (dB)	SPA Reading (dBm)	S.G. Power (dBm)	TX Cable loss (dB)	TX Antenna Gain (dBi)	Polarization (H/V)
Middle	3760	-50.33	-13	-37.33	-61.58	-62.06	0.87	12.60	H
	5640	-45.19	-13	-32.19	-61.07	-57.22	1.07	13.10	H
	7520	-46.41	-13	-33.41	-64.73	-56.02	1.69	11.30	H
	3760	-49.38	-13	-36.38	-61.85	-61.11	0.87	12.6	V
	5640	-46.27	-13	-33.27	-62.59	-58.30	1.07	13.1	V
	7520	-50.24	-13	-37.24	-68.46	-59.85	1.69	11.3	V

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

WCDMA Band V(RMC 12.2Kbps)									
Channel	Frequency (MHz)	ERP (dBm)	Limit (dBm)	Over Limit (dB)	SPA Reading (dBm)	S.G. Power (dBm)	TX Cable loss (dB)	TX Antenna Gain (dBi)	Polarization (H/V)
Middle	1672	-59.82	-13	-46.82	-61.43	-66.51	0.56	9.40	H
	2510	-61.34	-13	-48.34	-65.24	-69.04	0.75	10.60	H
	3346	-56.93	-13	-43.93	-66.23	-66.53	0.85	12.60	H
	1672	-60.36	-13	-47.36	-62.81	-67.05	0.56	9.40	V
	2510	-61.47	-13	-48.47	-65.85	-69.17	0.75	10.60	V
	3346	-59.96	-13	-46.96	-66.82	-69.56	0.85	12.60	V

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

WCDMA Band II(RMC 12.2Kbps)									
Channel	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Over Limit (dB)	SPA Reading (dBm)	S.G. Power (dBm)	TX Cable loss (dB)	TX Antenna Gain (dBi)	Polarization (H/V)
Middle	3760	-48.00	-13	-35.00	-59.25	-59.73	0.87	12.60	H
	5640	-51.73	-13	-38.73	-67.61	-63.76	1.07	13.10	H
	7520	-50.59	-13	-37.59	-68.91	-60.20	1.69	11.30	H
	3760	-47.14	-13	-34.14	-59.61	-58.87	0.87	12.6	V
	5640	-51.72	-13	-38.72	-68.04	-63.75	1.07	13.1	V
	7520	-51.21	-13	-38.21	-69.43	-60.82	1.69	11.3	V

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.