ATTACHMENT

** MPE Calculations for Zigbee mode**

The MPE calculation for this exposure is shown below.

The peak radiated output power (EIRP) is calculated as follows:

EIRP = P + G	Where,
EIRP = -2.76dBm + 3.5 dBi	P = Power input to the antenna (mW)
EIRP = 0.74 dBm	G = Power gain of the antenna (dBi)

Power density at the specific separation:

$S = PG/(4R^2\pi)$	Where,
3 – 1 G/(4λC / C)	S = Maximum power density (mW/cm2)
$S = (0.53 * 2.24) / (4 * 20^2 * \pi)$	P = Power input to the antenna (mW)
	G = Numeric power gain of the antenna
$S = 0.0002 \text{ mW/cm}^2$	R = Distance to the center of the radiation of the antenna
	(20 cm = limit for MPE)

The Maximum permissible exposure (MPE) for the general population is $1\ mW/cm^2$.

The power density does not exceed the 1 mW/cm² limit.

Therefore, the exposure condition is compliant with FCC rules.

Estimated safe separation:

$R = \sqrt{(PG/4\pi)}$	Where,
κ γ (10/ 4π)	P = Power input to the antenna (mW)
$R = \sqrt{(0.53 * 2.24 / 4\pi)}$	G = Numeric power gain of the antenna
	R = Distance to the center of the radiation of the antenna
R = 0.31 cm	(20 cm = limit for MPE)

The numeric gain(G) of the antenna with a gain specified in dB is determined by:

$$G = Log^{-1}$$
 (dB antenna gain / 10)

$$G = Log^{-1} (3.5 / 10)$$

$$G = 2.24$$

ATTACHMENT

** MPE Calculations for Bluetooth BLE mode**

The MPE calculation for this exposure is shown below.

The peak radiated output power (EIRP) is calculated as follows:

EIRP = P + G	Where,
EIRP = -7.02 dBm + 3.5 dBi	P = Power input to the antenna (mW)
EIRP = -3.52 dBm	G = Power gain of the antenna (dBi)

Power density at the specific separation:

$S = PG/(4R^2\pi)$	Where,
S = 1 G/(4RC /C)	S = Maximum power density (mW/cm2)
$S = (0.20 * 2.24) / (4 * 20^2 * \pi)$	P = Power input to the antenna (mW)
	G = Numeric power gain of the antenna
$S = 0.0001 \text{ mW/cm}^2$	R = Distance to the center of the radiation of the antenna
	(20 cm = limit for MPE)

The Maximum permissible exposure (MPE) for the general population is 1 mW/cm².

The power density does not exceed the 1 mW/cm² limit.

Therefore, the exposure condition is compliant with FCC rules.

Estimated safe separation:

$R = \sqrt{(PG/4\pi)}$	Where,
	P = Power input to the antenna (mW)
$R = \sqrt{(0.20 * 2.24 / 4\pi)}$	G = Numeric power gain of the antenna
	R = Distance to the center of the radiation of the antenna
R = 0.19 cm	(20 cm = limit for MPE)

The numeric gain(G) of the antenna with a gain specified in dB is determined by:

$$G = Log^{-1}$$
 (dB antenna gain / 10)

$$G = Log^{-1} (3.5 / 10)$$

$$G = 2.24$$