

MRT Technology (Suzhou) Co., Ltd Phone: +86-512-66308358

Web: www.mrt-cert.com

Report No.: 1908RSU022-U6 Report Version: V01 Issue Date: 11-18-2019

Co-location Report

FCC ID: VZ4-360SLT2

IC: 12007A-360SLT2

Applicant: Doran Manufacturing, LLC

Application Type: Certification

Product: SmartLink TPMS Tablet

Model No.: 360SLT2

FCC Classification: Digital Transmission System (DTS)

Unlicensed National Information Infrastructure (NII)

FCC Part 15 Security/Remote Control Transmitter (DSC)

Part 15 Low Power Transmitter Below 1705 kHz (DCD)

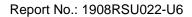
Test Date: November 16, 2019

Reviewed By:

(Sunny Sun)

Approved By: Robin Wu

(Robin Wu)

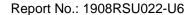


The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.4-2014. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

FCC ID: VZ4-360SLT2 IC: 12007A-360SLT2


Revision History

Report No. Version		Description	Issue Date	Note
1908RSU022-U7	Rev. 01	Initial Report	11-18-2019	Valid

CONTENTS

Des	scriptio	on .	Page				
Ger	neral In	ıformation	4				
1.	INTRODUCTION						
	1.1. 1.2.	Scope					
2.	PROI	DUCT INFORMATION	6				
	2.1.2.2.2.3.2.4.2.5.	Feature of Equipment under Test Worst Case Test Mode Test Configuration EMI Suppression Device(s)/Modifications Labeling Requirements	6 6				
3.	DESC	CRIPTION OF TEST	8				
	3.1. 3.2.	Evaluation ProcedureRadiated Emissions					
4.	ANTE	ENNA REQUIREMENTS	10				
5.	TEST	EQUIPMENT CALIBRATION DATE	11				
6.	MEAS	SUREMENT UNCERTAINTY	12				
7.	TEST	RESULT	13				
	7.1. 7.2. 7.2.1. 7.2.2. 7.2.3. 7.2.4. 7.2.5.	Test Result of Radiated Emissions for Co-location	14 14 14 14 16				
App	endix	A - Test Setup Photograph	21				
App	endix	B - EUT Photograph	22				

General Information

Applicant:	Doran Manufacturing, LLC		
Applicant Address:	2851 Massachusetts Avenue, Cincinnati, OH 45225, USA		
Manufacturer:	Zhangzhou Lilliput Electronic Technology Co., Ltd		
Manufacturer Address:	No.26 Fu Qi North Road, Lan Tian Economic Development Zone,		
	Zhangzhou, Fujian, China		
Test Site:	MRT Technology (Suzhou) Co., Ltd		
Test Site Address:	D8 Building, No.2 Tian'edang Rd., Wuzhong Economic		
	Development Zone, Suzhou, China		

Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Tian'edang Rd., Suzhou, China.

- MRT facility is a FCC registered (MRT Reg. No. 893164) test facility with the site description report on file and has met all the requirements specified in ANSI C63.4-2014.
- MRT facility is an IC registered (MRT Reg. No. 11384A-1) test laboratory with the site description on file at Industry Canada.
- MRT facility is a VCCI registered (R-20025, G-20034, C-20020, T-20020) test laboratory with the site description on file at VCCI Council.
- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (A2LA) under the American Association for Laboratory Accreditation Program (A2LA Cert. No. 3628.01) in EMC, Telecommunications, Radio and SAR testing.

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada and Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The measurement facility compliant with the test site requirements specified in ANSI C63.4-2014.

2. PRODUCT INFORMATION

2.1. Feature of Equipment under Test

Product Name:	SmartLink TPMS Tablet
Model No.:	360SLT2
Wi-Fi Specification:	802.11b/g/n
Bluetooth Version:	V4.0 (BLE only)
LF Transmitter:	125kHz (FSK)
RF Frequency:	434.1MHz (FSK)
Accessories	
Adapter:	Model No.: FJ-SW266B50502000E
	Input: 100 ~ 240V ~ 50/60Hz 0.4A Max
	Output: 5VDC, 2.0A

2.2. Worst Case Test Mode

Test Mode	Mode 1: Transmit by 2.4GHz Wi-Fi & Transmit by 125kHz & Transmit by 434.1MHz
-----------	--

2.3. Test Configuration

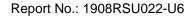
This device was tested per the guidance of ANSI C63.10-2013. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing.

2.4. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.5. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19


The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

RSS-Gen Issue 5 Section 4

In addition to complying with the applicable RSSs and RSP-100, each unit of a product model (i.e. of a radio apparatus) shall meet the labelling requirements set out in this section prior to being

FCC ID: VZ4-360SLT2 Page Number: 6 of 22

IC: 12007A-360SLT2

marketed in Canada or imported into Canada.

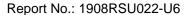
For information regarding the labelling option, see Section 4.1, 4.2, 4.3 4.4. The label for the certified product represents the manufacturer's or importer's compliance with Innovation, Science and Economic Development Canada's (ISED) regulatory requirements.

Please see attachment for IC label and label location.

FCC ID: VZ4-360SLT2 Page Number: 7 of 22

3. DESCRIPTION OF TEST

3.1. Evaluation Procedure


The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) was used in the measurement.

Deviation from measurement procedure......None

3.2. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the Antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive Antenna height using a broadband Antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn Antennas were used. For frequencies below 30MHz, a calibrated loop Antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband Antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-40GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive Antenna height was noted for each frequency found.

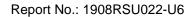
Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn Antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to

compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive Antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive Antenna, whichever produced the worst-case emissions. According to 3dB Beam-Width of horn Antenna, the horn Antenna should be always directed to the EUT when rising height.

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."


- The antenna of this device is **permanently attached.**
- There are no provisions for connection to an external antenna.

Conclusion:

This device complies with the requirement of §15.203.

FCC ID: VZ4-360SLT2 Page Number: 10 of 22

IC: 12007A-360SLT2

5. TEST EQUIPMENT CALIBRATION DATE

Radiated Emissions - AC1

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR7	MRTSUE06001	1 year	2020/08/01
PXA Signal Analyzer	Keysight	9030B	MRTSUE06395	1 year	2020/09/03
Loop Antenna	Schwarzbeck	FMZB 1519	MRTSUE06025	1 year	2020/11/10
Bilog Period Antenna	Schwarzbeck	VULB 9168	MRTSUE06172	1 year	2020/03/31
Broad Band Horn Antenna	Schwarzbeck	BBHA 9120D	MRTSUE06023	1 year	2020/10/13
Broad Band Horn Antenna	Schwarzbeck	BBHA 9170	MRTSUE06024	1 year	2019/12/17
Microwave System Amplifier	Agilent	83017A	MRTSUE06076	1 year	2020/11/15
Preamplifier	Schwarzbeck	BBV 9721	MRTSUE06121	1 year	2020/06/11
Thermohygrometer	Testo	608-H1	MRTSUE06403	1 year	2020/08/08
Anechoic Chamber	TDK	Chamber-AC1	MRTSUE06212	1 year	2020/04/30

Radiated Emission - AC2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Spectrum Analyzer	Keysight	N9038A	MRTSUE06125	1 year	2020/08/01
Loop Antenna	Schwarzbeck	FMZB 1519	MRTSUE06025	1 year	2020/11/10
Bilog Period Antenna	Schwarzbeck	VULB 9162	MRTSUE06022	1 year	2020/10/13
Horn Antenna	Schwarzbeck	BBHA9120D	MRTSUE06171	1 year	2020/10/27
Broad Band Horn Antenna	Schwarzbeck	BBHA 9170	MRTSUE06024	1 year	2019/12/17
Broadband Coaxial Preamplifier	Schwarzbeck	BBV 9718	MRTSUE06176	1 year	2020/11/15
Preamplifier	Schwarzbeck	BBV 9721	MRTSUE06121	1 year	2020/06/11
Temperature/Humidity Meter	Minggao	ETH529	MRTSUE06170	1 year	2019/12/13
Anechoic Chamber	RIKEN	Chamber-AC2	MRTSUE06213	1 year	2020/04/30

Software	Version	Function
EMI Software	V3	EMI Test Software

FCC ID: VZ4-360SLT2 Page Number: 11 of 22 IC: 12007A-360SLT2

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Radiated Emission Measurement - AC1

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

Horizontal: 30MHz~300MHz: 4.07dB

300MHz~1GHz: 3.63dB

1GHz~18GHz: 4.16dB

Vertical: 30MHz~300MHz: 4.18dB

300MHz~1GHz: 3.60dB 1GHz~18GHz: 4.76dB

Radiated Emission Measurement - AC2

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

Horizontal: 30MHz~300MHz: 3.75dB

300MHz~1GHz: 3.53dB

1GHz~18GHz: 4.28dB

Vertical: 30MHz~300MHz: 3.86dB

300MHz~1GHz: 3.53dB

1GHz~18GHz: 4.33dB

7. TEST RESULT

7.1. Summary

FCC Part	RSS	Test Description	Test Limit	Test	Test	Reference
Section(s)	Section(s)			Condition	Result	
	RSS-247 [5.5]	General Field	Emissions in			
45 005		Strength Limits	restricted bands			0 (
15.205 15.209		(Restricted Bands	must meet the	Radiated	Pass	Section
		and Radiated	radiated limits			7.2
		Emission Limits)	detailed in 15.209			

Note: All modes of operation and data rates were investigated. For radiated emission test, every axis (X, Y, Z) was also verified. The test results shown in the following sections represent the worst case emissions.

7.2. Radiated Emissions for Co-location Measurement

7.2.1.Test Limit

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table per Section 15.209.

OTA Mask not exceed the limits shown in Table per ession 10.200.								
FCC Part 15 Subpart C Paragraph 15.209								
Frequency Field Strength Measured Distance								
(MHz)	(μV/m)	(Meters)						
0.009 - 0.490	2400/F (kHz)	300						
0.490 - 1.705	24000/F (kHz)	30						
1.705 - 30	30	30						
30 - 88	100	3						
88 - 216	150	3						
216 - 960	200	3						
Above 960	500	3						

7.2.2.Test Procedure Used

ANSI C63.10 Section 6.3 (General Requirements)

ANSI C63.10 Section 6.4 (Standard test method below 30MHz)

ANSI C63.10 Section 6.5 (Standard test method above 30MHz to 1GHz)

ANSI C63.10 Section 6.6 (Standard test method above 1GHz)

7.2.3.Test Setting

Quasi-Peak Measurements below 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = 120 kHz
- 4. Detector = CISPR quasi-peak or average
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

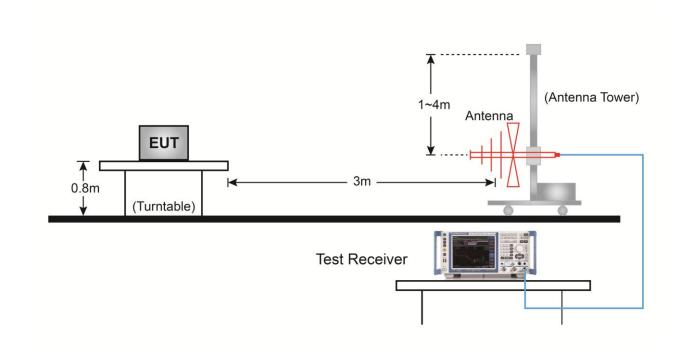
FCC ID: VZ4-360SLT2 Page Number: 14 of 22

Peak Measurements above 1GHz

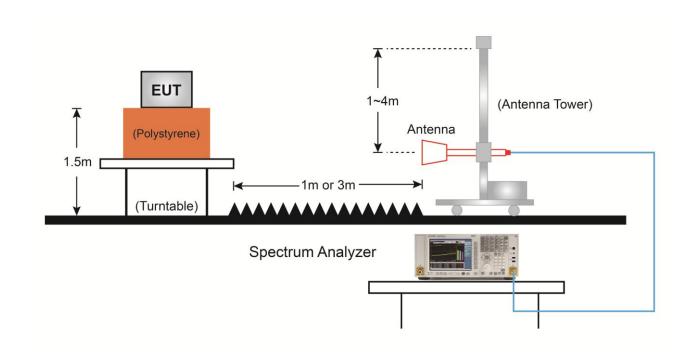
- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

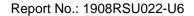
Average Measurements above 1GHz (Method VB)

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW; If the EUT is configured to transmit with duty cycle ≥ 98%, set VBW = 10 Hz.


If the EUT duty cycle is < 98%, set VBW ≥ 1/T. T is the minimum transmission duration.

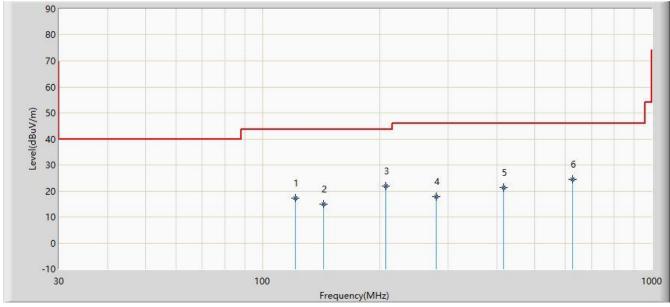
- 4. Detector = Peak
- 5. Sweep time = auto
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize




7.2.4.Test Setup

Below 1GHz Test Setup:

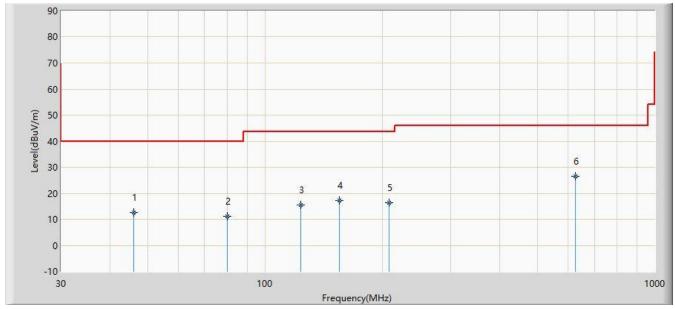
Above 1GHz Test Setup:



7.2.5.Test Result of Radiated Emissions for Co-location

Site: AC1	Time: 2019/11/16 - 12:03
Limit: FCC_Part15.209_RE(3m)	Engineer: Snake Ni
Probe: VULB 9168 _20-2000MHz	Polarity: Horizontal
EUT: SmartLink TPMS Tablet	Power: By Battery
Test Mode 1	

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			121.180	17.285	4.014	-26.215	43.500	13.271	QP
2			143.490	14.890	0.100	-28.610	43.500	14.790	QP
3			207.000	21.748	10.450	-21.752	43.500	11.298	QP
4			279.290	17.848	4.015	-28.152	46.000	13.832	QP
5			416.545	21.306	4.321	-24.694	46.000	16.985	QP
6		*	625.095	24.491	3.400	-21.509	46.000	21.091	QP

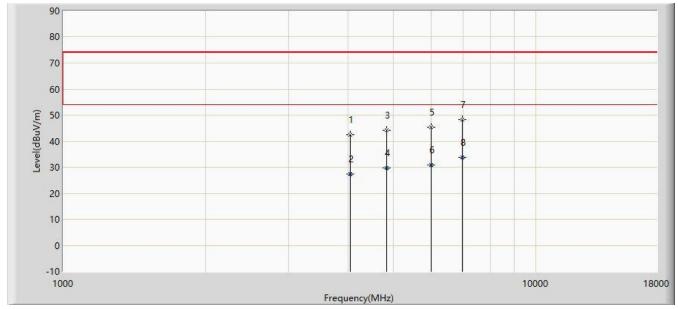

Note 1: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

Note 2: There is the ambient noise within frequency range 9kHz~30MHz and 18GHz~40GHz, the permissible value is not show in the report.

Site: AC1	Time: 2019/11/16 - 12:09
Limit: FCC_Part15.209_RE(3m)	Engineer: Snake Ni
Probe: VULB 9168 _20-2000MHz	Polarity: Vertical
EUT: SmartLink TPMS Tablet	Power: By Battery
Test Mode 1	

No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			46.005	12.559	-1.650	-27.441	40.000	14.209	QP
2			79.955	11.160	1.025	-28.840	40.000	10.135	QP
3			123.605	15.558	2.140	-27.942	43.500	13.419	QP
4			155.130	17.248	2.000	-26.252	43.500	15.248	QP
5			207.950	16.456	5.140	-27.044	43.500	11.315	QP
6		*	625.095	26.405	5.314	-19.595	46.000	21.091	QP

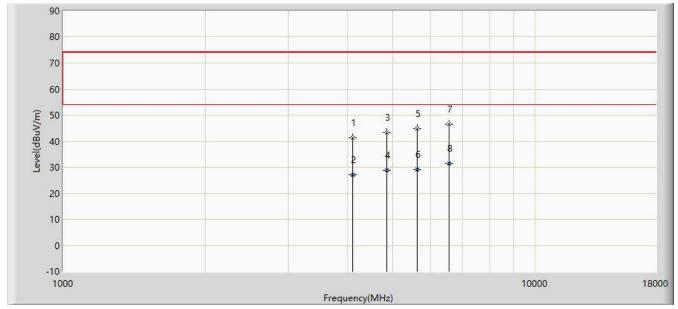

Note 1: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

Note 2: There is the ambient noise within frequency range 9kHz~30MHz and 18GHz~40GHz, the permissible value is not show in the report.

Site: AC1	Time: 2019/11/16 - 10:33
Limit: FCC_Part15.209_RE(3m)	Engineer: Snake Ni
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: SmartLink TPMS Tablet	Power: AC 120V/60Hz
Test Mode 1	

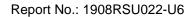
No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			4051.500	42.391	38.999	-31.609	74.000	3.392	PK
2			4051.500	27.446	24.054	-26.554	54.000	3.392	AV
3			4825.000	44.258	38.201	-29.742	74.000	6.057	PK
4			4825.000	29.697	23.640	-24.303	54.000	6.057	AV
5			6006.500	45.495	37.588	-28.505	74.000	7.906	PK
6			6006.500	30.747	22.840	-23.253	54.000	7.906	AV
7			6992.500	48.376	37.688	-25.624	74.000	10.689	PK
8		*	6992.500	33.728	23.040	-20.272	54.000	10.689	AV


Note 1: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB).

Note 2: There is the ambient noise within frequency range 9kHz~30MHz and 18GHz~40GHz, the permissible value is not show in the report.

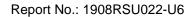
Site: AC1	Time: 2019/11/16 - 10:36
Limit: FCC_Part15.209_RE(3m)	Engineer: Snake Ni
Probe: BBHA9120D_1-18GHz	Polarity: Vertical
EUT: SmartLink TPMS Tablet	Power: AC 120V/60Hz
Test Mode 1	


N	FI	М	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
0	ag	ar	(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
		k		(dBuV/m)	(dBuV)				
1			4111.000	41.288	37.901	-32.712	74.000	3.387	PK
2			4111.000	27.097	23.710	-26.903	54.000	3.387	AV
3			4850.500	43.197	37.324	-30.803	74.000	5.873	PK
4			4850.500	28.913	23.040	-25.087	54.000	5.873	AV
5			5615.500	44.679	37.627	-29.321	74.000	7.051	PK
6			5615.500	29.152	22.100	-24.848	54.000	7.051	AV
7			6567.500	46.446	36.802	-27.554	74.000	9.644	PK
8		*	6567.500	31.404	21.760	-22.596	54.000	9.644	AV

Note 1: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB).

Note 2: There is the ambient noise within frequency range 9kHz~30MHz and 18GHz~40GHz, the permissible value is not show in the report.


FCC ID: VZ4-360SLT2 Page Number: 20 of 22 IC: 12007A-360SLT2

Appendix A - Test Setup Photograph

Refer to "1908RSU022-UT" file.

Appendix B - EUT Photograph

Refer to "1908RSU022-UE" file.