

TEST REPORT

Test report no.: 1-7881-24-01-02_TR1-R02

Testing laboratory

cetecom advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: https://cetecomadvanced.com
e-mail: mail@cetecomadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number:

D-PL-12047-01-00.

ISED Testing Laboratory Recognized Listing Number: DE0001

FCC designation number: DE0002

Applicant

Pilz GmbH & Co. KG

Felix-Wankel-Straße 2
73760 Ostfildern / GERMANY
Phone: +49 711 3409-0
Contact: Erich Schlotterbeck
e-mail: e.schlotterbeck@pilz.de

Manufacturer

Pilz GmbH & Co. KG

Felix-Wankel-Straße 2 73760 Ostfildern / GERMANY

Test standard/s

FCC - Title 47 CFR Part 15 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio

frequency devices

RSS - 210 Issue 10 incl. Spectrum Management and Telecommunications Radio Standards Specification

Amendment - Licence-Exempt Radio Apparatus: Category I Equipment

RSS - Gen Issue 5 incl. Spectrum Management and Telecommunications Radio Standards Specification

Amendment 1 & 2 - General Requirements for Compliance of Radio Apparatus

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Safety gate system
Model name: PSENmgate1
FCC ID: VT8-PSENMG1
ISED certification number: 7482A-PSENMG1

Frequency: 125 kHz
Technology tested: RFID

Antenna: Integrated antenna

Power supply: 19.2 V to 28.8 V DC by external power supply

Temperature range: -20°C to +55°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:
Christoph Schneider Lab Manager	Hans-Joachim Wolsdorfer Lab Manager
Radio Lahs	Radio Labs

Table of contents

1	Table o	of contents	2
2	Genera	ıl information	3
	2.1 2.2 2.3	Notes and disclaimer	3
3	Test st	andard/s, references and accreditations	2
4	Report	ing statements of conformity – decision rule	5
5	Test er	nvironment	€
6	Test ite	em	(
	6.1 6.2	General description	
7	Descri	otion of the test setup	7
	7.1 7.2 7.3	Shielded fully anechoic chamber	9
8	Sequer	nce of testing	11
	8.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	11
9	Measu	rement uncertainty	12
10	Sun	nmary of measurement results	13
11	Add	litional comments	13
12	Mea	asurement results	14
	12.1 12.2 12.3 12.4	Occupied bandwidth	1 <i>6</i> 17
13	Glos	ssary	22
14	Doc	ument history	23

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. cetecom advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of cetecom advanced GmbH.

The testing service provided by cetecom advanced GmbH has been rendered under the current "General Terms and Conditions for cetecom advanced GmbH".

cetecom advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the cetecom advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the cetecom advanced GmbH test report include or imply any product or service warranties from cetecom advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by cetecom advanced GmbH.

All rights and remedies regarding vendor's products and services for which cetecom advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by cetecom advanced GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-7881-24-01-02_TR1-R01and dated 2024-06-03

2.2 Application details

 Date of receipt of order:
 2024-04-22

 Date of receipt of test item:
 2024-05-10

 Start of test:*
 2024-05-20

 End of test:*
 2024-05-24

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

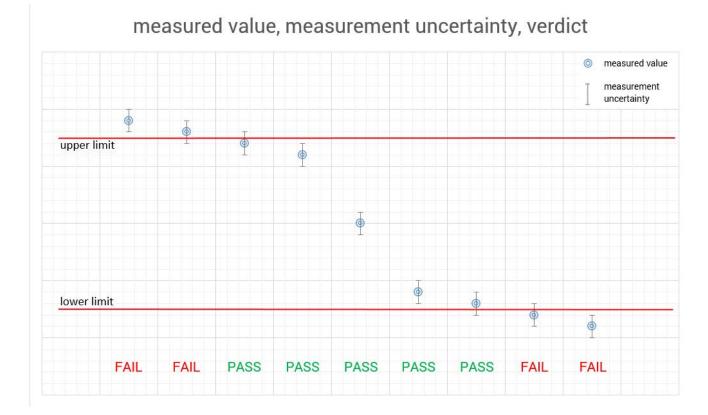
None

© cetecom advanced GmbH Page 3 of 23

^{*}Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

3 Test standard/s, references and accreditations

Test standard	Date	Description
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 210 Issue 10 incl. Amendment	April 2020	Spectrum Management and Telecommunications Radio Standards Specification - Licence-Exempt Radio Apparatus: Category I Equipment
RSS - Gen Issue 5 incl. Amendment 1 & 2	February 2021	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus
Guidance	Version	Description
ANSI C63.4-2014 ANSI C63.10-2013	-/-	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices


© cetecom advanced GmbH Page 4 of 23

4 Reporting statements of conformity - decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 8, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

© cetecom advanced GmbH Page 5 of 23

5 Test environment

Temperature	:	T _{nom} T _{max} T _{min}	+22 °C during room temperature tests +55 °C -20 °C Testing under extreme temperature conditions not required.
Relative humidity content			55 %
Barometric pressure			1021 hpa
Power supply		$\begin{matrix} V_{nom} \\ V_{max} \\ V_{min} \end{matrix}$	24.0 V DC by external power supply 28.8 V 19.2 V Testing under extreme voltage conditions not required.

6 Test item

6.1 General description

Kind of test item :	Safety gate system
Model name :	PSENmgate1
HMN :	-/-
PMN :	PSEN mg1
HVIN :	MG01
FVIN :	-/-
S/N serial number :	SH000004488
Hardware status :	1.0
Software status :	1.01
Firmware status :	-/-
Frequency band :	125 kHz
Type of radio transmission: Use of frequency spectrum:	modulated carrier
Type of modulation :	ASK
Number of channels :	1
Antenna :	Integrated antenna
Power supply :	19.2 V to 28.8 V DC by external power supply
Temperature range :	-20°C to +55°C

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-7881-24-01-01_TR1-A101-R01

1-7881-24-01-01_TR1-A102-R01 1-7881-24-01-01_TR1-A104-R01

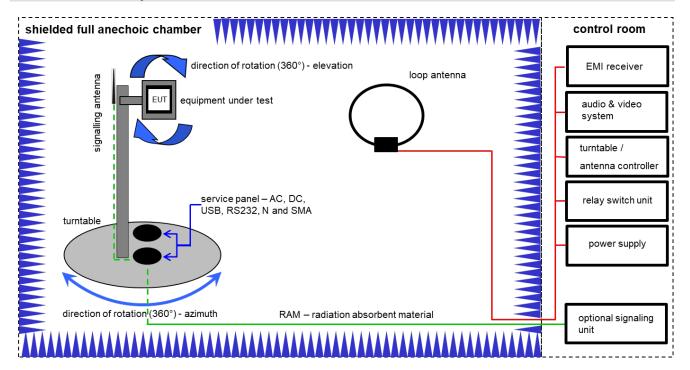
© cetecom advanced GmbH Page 6 of 23

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Each block diagram listed can contain several test setup configurations. All devices belonging to a test setup are identified with the same letter syntax. For example: Column Setup and all devices with an A.


Agenda: Kind of Calibration

k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© cetecom advanced GmbH Page 7 of 23

7.1 Shielded fully anechoic chamber

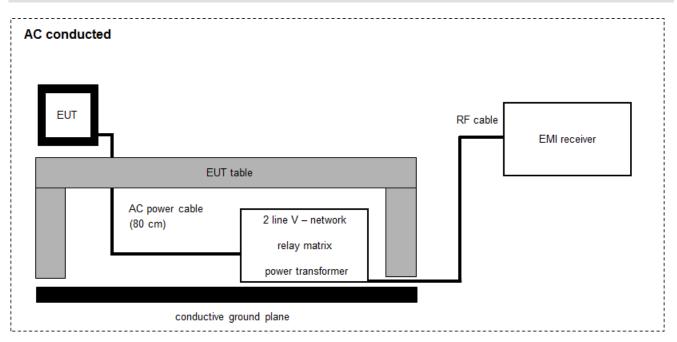
Measurement distance: loop antenna 1 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \(\mu V/m \))$


Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vIKI!	02.08.2023	31.08.2025
2	Α	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000032	300004510	ne	-/-	-/-
3	Α	NEXIO EMV- Software	BAT EMC V2022.0.32.0	Nexio		300004682	ne	-/-	-/-
4	Α	Anechoic chamber		TDK		300003726	ne	-/-	-/-
5	Α	EMI Test Receiver 9kHz-26,5GHz	ESR26	Rohde & Schwarz	101376	300005063	k	15.01.2024	31.01.2025
6	Α	Power Supply	HMP2020	Rohde & Schwarz	120626	300006408	k	02.05.2023	31.05.2025

© cetecom advanced GmbH Page 8 of 23

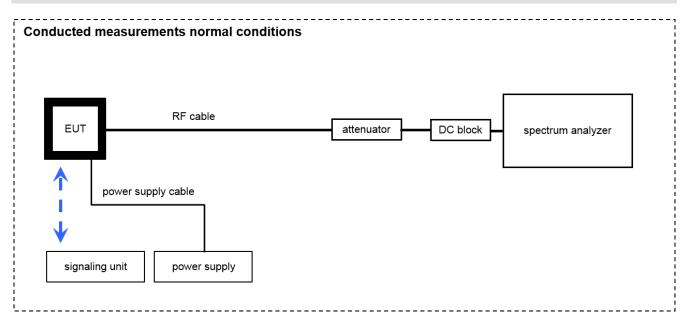
7.2 AC conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Example calculation:

FS $[dB\mu V/m] = 37.62 [dB\mu V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB\mu V/m] (244.06 <math>\mu V/m$)


Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	Rohde & Schwarz	892475/017	300002209	vlKI!	12.12.2023	31.12.2025
2	Α	RF-Filter-section	85420E	HP	3427A00162	300002214	NK!	-/-	-/-
3	Α	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	-/-	-/-
4	Α	PC	TecLine	F+W		300003532	ne	-/-	-/-
5	А	Analyzer- Impedence-System	AIS16/1	Spitzenberger + Spies GmbH & Co. KG	U02076 07/0 1023	400001751	k	19.10.2023	31.10.2025
6	А	EMI Test Receiver 3.6 GHz	ESR3	Rohde & Schwarz	102981	300006318	k	08.12.2023	31.12.2024

© cetecom advanced GmbH Page 9 of 23

7.3 Conducted measurements

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Loop Antenna		ZEG TS Steinfurt		400001208	ev	-/-	-/-
2	Α	Signal analyzer	FSW26	Rohde&Schwarz	101371	300005697	k	07.12.2023	31.12.2024
3	Ā	Power Supply	HMP2020	Rohde & Schwarz	101961	300006102	k	15.12.2022	31.12.2024

© cetecom advanced GmbH Page 10 of 23

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all
 emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

© cetecom advanced GmbH Page 11 of 23

^{*)}Note: The sequence will be repeated three times with different EUT orientations.

9 Measurement uncertainty

Measurement uncertainty						
Test case Uncertainty						
Occupied bandwidth	± used RBW					
Field strength of the fundamental	± 3 dB					
Field strength of the harmonics and spurious	± 3 dB					
Receiver spurious emissions and cabinet radiations	± 3 dB					
Conducted limits	± 2.6 dB					

© cetecom advanced GmbH Page 12 of 23

10 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
	CFR Part 15			
RF-Testing	RSS 210 Issue 10	See table!	2024-06-10	-/-
	RSS Gen Issue 5			

Test specification clause	Test case	Temperature conditions	Power source conditions	С	NC	NA	NP	Remark
RSS Gen Issue 4 (6.6)	Occupied bandwidth	Nominal	Nominal	\boxtimes				-/-
§ 15.209	Field strength of the fundamental	Nominal	Nominal	\boxtimes				-/-
§ 15.209 RSS Gen Issue 4 (6.13)	Field strength of the harmonics and spurious	Nominal	Nominal	\boxtimes				-/-
§15.107 §15.207	Conducted limits	Nominal	Nominal	\boxtimes				-/-

Note: NA = Not applicable; NP = Not performed; C = Compliant; NC = Not compliant

11 Additional comments

Reference documents: None

Special test descriptions: None

Configuration descriptions: AC conducted measurement has been performed by the use of an AC/DC

Adapter from Mean Well HLG-60H-24

© cetecom advanced GmbH Page 13 of 23

12 Measurement results

12.1 Occupied bandwidth

Measurement:

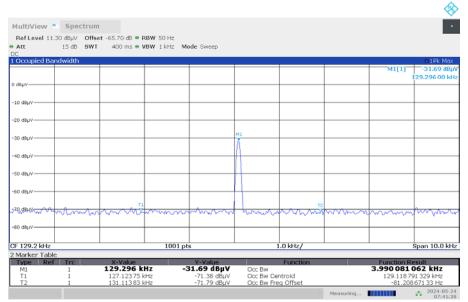
The emission bandwidth (x dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated x dB below the maximum inband spectral density of the modulated signal.

Measurement parameters			
Detector:	Peak		
Resolution bandwidth:	1 % - 5 % of the occupied bandwidth		
Video bandwidth:	≥ 3x RBW		
Trace mode:	Max hold		
Analyser function:	99 % power function		
Used test setup:	See sub clause 7.3A		
Measurement uncertainty:	See sub clause 8		

Limit:

IC		
for RSP-100 test report coversheet only		

Result:


99% emission bandwidth
3.9 kHz

© cetecom advanced GmbH Page 14 of 23

Plot:

Plot 1:99 % emission bandwidth

07:41:38 AM 05/24/2024

12.2 Field strength of the fundamental

Measurement:

The maximum detected field strength for the carrier signal.

Measurement parameters			
Detector:	average		
Resolution bandwidth:	200Hz		
Video bandwidth:	≥ 3x RBW		
Trace mode:	Max hold		
Used test setup	See sub clause 7.1A		
Measurement uncertainty:	See sub clause 8		

Limit:

FCC & IC			
Frequency (MHz)	Field strength (μV/m)	Measurement distance (m)	
0.009 - 0.490	2400 / f (kHz) 25.66 dΒμV/m	30	

Recalculation:

According to ANSI C63.10				
Frequency	Formula	Correction value		
125 kHz	$FS_{limit} = FS_{max} - 40 \log \left(\frac{d_{\textit{neasure}}}{d_{\textit{measure}}}\right) - 20 \log \left(\frac{d_{\textit{limit}}}{d_{\textit{nearfield}}}\right)$ $FS_{limit} \qquad \text{is the calculation of field strength at the limit distance,} $ $\text{expressed in dB}_{\mu\nu}/m$ $\text{is the measured field strength, expressed in dB}_{\mu\nu}/m$ $\text{is the measured field strength, expressed in dB}_{\mu\nu}/m$ $\text{is the istance of the measurement point from EUT}$ limit $\text{is the reference limit distance}$	-101.2 dB from 1 m to 300 m		

Result:

Field strength of the fundamental					
Frequency 125 kHz					
Distance	@ 1 m				
Measured / calculated value	70.87 dBμV/m	-30.33 dBμV/m			

© cetecom advanced GmbH Page 16 of 23

12.3 Field strength of the harmonics and spurious

Measurement:

The maximum detected field strength for the harmonics and spurious.

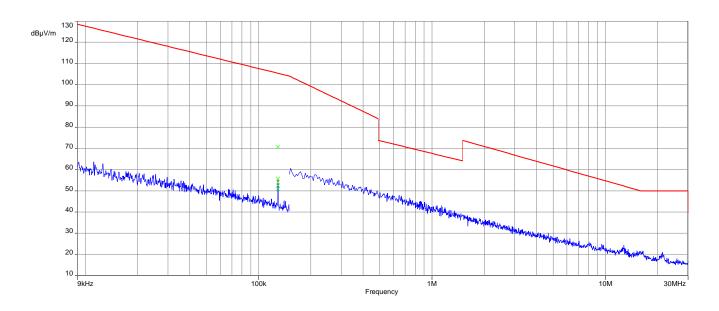
Measurement parameters			
Detector:	Quasi peak / average or		
Detector.	peak (worst case - pre-scan)		
	F < 150 kHz: 200 Hz		
Resolution bandwidth:	150 kHz < F < 30 MHz: 9 kHz		
	30 MHz < F < 1 GHz: 120 kHz		
	F < 150 kHz: 1 kHz		
Video bandwidth:	150 kHz < F < 30 MHz: 100 kHz		
	30 MHz < F < 1 GHz: 300 kHz		
Trace mode:	Max hold		
Used test setup:	9 kHz to 30 MHz: see sub clause 7.1A		
Measurement uncertainty:	See sub clause 8		

Limit:

FCC				
Frequency	Field strength	Measurement distance		
(MHz)	(dBµV/m)	(m)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 - 1.705	24000/F(kHz)	30		
1.705 – 30	30 (29.5 dBμV/m)	30		
30 – 88	100 (40 dBμV/m)	3		
88 - 216	150 (43.5 dBµV/m)	3		
216 - 960	200 (46 dBμV/m)	3		

IC				
Frequency	Field strength	Measurement distance		
(MHz)	(μA/m)	(m)		
0.009 - 0.490	6.37/F (F in kHz)	300		
0.490 - 1.705	63.7/F (F in kHz)	30		
1.705 - 30	0.08 (-22 dBμA/m)	30		

Result:


Detected emissions				
Frequency (MHz)	Detector	Resolution bandwidth (kHz)	Detected value	
All detected peak emissions below 30 MHz are more than 20 dB below the average limit.				

© cetecom advanced GmbH Page 17 of 23

Plots:

Plot 1: 9 kHz - 30 MHz, magnetic spurious emissions FCC

Plot 2: 9 kHz - 30 MHz, magnetic spurious emissions IC

© cetecom advanced GmbH Page 18 of 23

12.4 Conducted limits

Measurement:

Measurement of the conducted spurious emissions for an intentional radiator that is designed to be connected to the public utility (AC) power line. Measurement performed according to ANSI C63.10, chapter 6.2

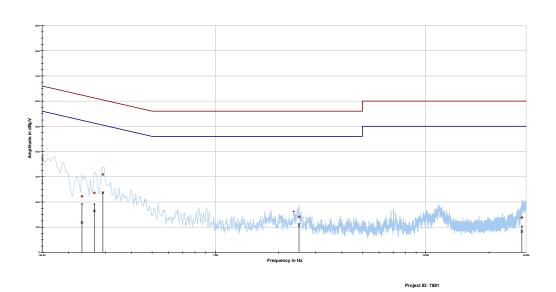
Measurement parameters					
Detector:	Quasi peak / average or				
Detector.	peak (worst case - pre-scan)				
Resolution bandwidth:	F < 150 kHz: 200 Hz				
Resolution bandwidth.	F > 150 kHz: 9 kHz				
Video bandwidth:	F < 150 kHz: 1 kHz				
Video bandwidth:	F > 150 kHz: 100 kHz				
Trace mode:	Max hold				
Used equipment:	See chapter 7.2A				
Measurement uncertainty:	See chapter 8				

Limit:

FCC & IC				
Frequency	Quasi-peak	Average		
/ MHz	/ (dBµV/m)	/ (dBµV/m)		
0.15 - 0.5	66 to 56*	56 to 46*		
0.5 - 5	56	46		
5 - 30.0	60	50		

Result:

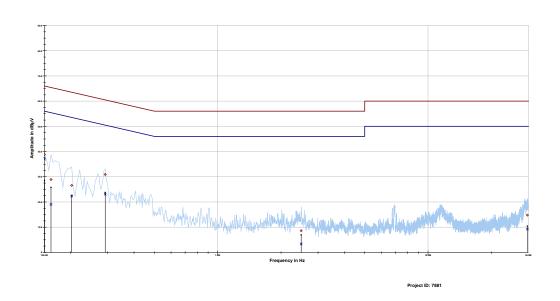
see table below plots


© cetecom advanced GmbH Page 19 of 23

Plots:

Plot 1: 150 kHz to 30 MHz, phase line




Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.150000	38.56	27.44	66.000	36.69	19.31	56.000
0.232088	22.26	40.11	62.375	11.85	41.80	53.655
0.265669	23.57	37.68	61.252	16.43	36.26	52.695
0.291787	30.90	29.57	60.473	23.71	28.24	51.949
2.496956	14.07	41.93	56.000	11.12	34.88	46.000
28.645556	13.84	46.16	60.000	8.28	41.72	50.000

© cetecom advanced GmbH Page 20 of 23

Plot 2: 150 kHz to 30 MHz, neutral line

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin Average	Limit AV
MHz	dBμV	dB	dΒμV	dΒμV	dB	dΒμV
0.150000	38.80	27.20	66.000	36.97	19.03	56.000
0.161194	28.90	36.50	65.402	19.02	36.66	55.680
0.202237	26.58	36.94	63.518	22.30	32.20	54.508
0.291787	30.92	29.55	60.473	23.07	28.88	51.949
2.493225	8.57	47.43	56.000	3.35	42.65	46.000
29.675381	14.79	45.21	60.000	9.23	40.77	50.000

© cetecom advanced GmbH Page 21 of 23

13 Glossary

AVG	Average				
С	Compliant				
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz				
CAC	Channel availability check				
CW	Clean wave				
DC	Duty cycle				
DFS	Dynamic frequency selection				
DSSS	Dynamic sequence spread spectrum				
DUT	Device under test				
EN	European Standard				
ETSI	European Telecommunications Standards Institute				
EMC	Electromagnetic Compatibility				
EUT	Equipment under test				
FCC	Federal Communications Commission				
FCC ID	Company Identifier at FCC				
FHSS	Frequency hopping spread spectrum				
FVIN	Firmware version identification number				
GNSS	Global Navigation Satellite System				
GUE	GNSS User Equipment				
HMN	Host marketing name				
HVIN	Hardware version identification number				
HW	Hardware				
IC	Industry Canada				
Inv. No.	Inventory number				
MC	Modulated carrier				
NA	Not applicable				
NC	Not compliant				
NOP	Non occupancy period				
NP	Not performed				
OBW	Occupied bandwidth				
ОС	Operating channel				
OCW	Operating channel bandwidth				
OFDM	Orthogonal frequency division multiplexing				
ООВ	Out of band				
OP	Occupancy period				
PER	Packet error rate				
PMN	Product marketing name				
PP	Positive peak				
QP	Quasi peak				
RLAN	Radio local area network				
S/N or SN	Serial number				
SW	Software				
UUT	Unit under test				
WLAN	Wireless local area network				

© cetecom advanced GmbH Page 22 of 23

14 Document history

Version	Applied changes	Date of release
-/-	Initial release	2024-06-03
R02	HVIN changed	2024-06-10

© cetecom advanced GmbH Page 23 of 23