# FCC/IC BT REPORT

# **FCC/IC Certification**

**Applicant Name:** 

Murata Manufacturing Co., Ltd.

Address:

10-1, Higashikotari 1-chome Nagaokakyo-shi

Kyoto, 617-8555 Japan

Date of Issue:

April 01, 2015

Test Site/Location:

HCT CO., LTD., 74, Seoicheon-ro 578beon-gil, Majang-myeo, Icheon-si, Gyeonggi-do, Korea

Report No.: HCT-R-1504-F002

HCT FRN: 0005866421

IC Recognition No.: 5944A-3

FCC ID: VPYLB1DM

IC: 772C-LB1DM

APPLICANT: Murata Manufacturing Co.,Ltd.

FCC/IC Model(s): LBEE6ZZ1DM

**EUT Type:** Communication module

Max. RF Output Power: 8.99 dBm (7.92 mW)

Frequency Range: 2402 MHz - 2480 MHz (Bluetooth)

Modulation type GFSK(Normal), π/4DQPSK and 8DPSK(EDR)

FCC Classification: FCC Part 15 Spread Spectrum Transmitter

FCC Rule Part(s): Part 15 subpart C 15.247

IC Rule Part(s): RSS-210 Issue 8(December 2010), RSS-GEN Issue 4(November 2014)

The measurements shown in this report were made in accordance with the procedures specified in §2.947. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

Report prepared by : Jong Seok Lee

Test engineer of RF Team

Approved by : Sang Jun Lee

Manager of RF Team

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

F-01P-02-014 (Rev.00) HCT Co.,LTD.





Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM

# **Version**

| TEST REPORT NO. | DATE           | DESCRIPTION             |
|-----------------|----------------|-------------------------|
| HCT-R-1504-F002 | April 01, 2015 | - First Approval Report |
|                 |                |                         |
|                 |                |                         |
|                 |                |                         |
|                 |                |                         |

Report No.: HCT-R-1504-F002



# **Table of Contents**

Model: LBEE6ZZ1DM

| 1. | GENERA  | AL INFORMATION                                     | 4    |
|----|---------|----------------------------------------------------|------|
| 2. | EUT DES | SCRIPTION                                          | 4    |
| 3. | TEST MI | ETHODOLOGY                                         | 5    |
|    | 3.1     | EUT CONFIGURATION                                  | 5    |
|    | 3.2     | EUT EXERCISE                                       | 5    |
|    | 3.3     | GENERAL TEST PROCEDURES                            | 5    |
|    | 3.4     | DESCRIPTION OF TEST MODES                          | 5    |
| 4. | INSTRU  | MENT CALIBRATION                                   | 5    |
| 5. | FACILIT | IES AND ACCREDITATIONS                             | 6    |
|    | 5.1     | FACILITIES                                         | 6    |
|    | 5.2     | EQUIPMENT                                          | 6    |
| 6. | ANTENN  | IA REQUIREMENTS                                    | 6    |
| 7. | SUMMA   | RY OF TEST RESULTS                                 | 7    |
| 8. | FCC PA  | RT 15.247 REQUIREMENTS                             | 8    |
|    | 8.1     | PEAK POWER                                         | 8    |
|    | 8.2     | BAND EDGES                                         | 15   |
|    | 8.3     | FREQUENCY SEPARATION / OCCUPIED BANDWIDTH (99% BW) | 17   |
|    | 8.4     | NUMBER OF HOPPING FREQUENCY                        | 25   |
|    | 8.5     | TIME OF OCCUPANCY (DWELL TIME)                     | 33   |
|    | 8.6     | SPURIOUS EMISSIONS                                 | 43   |
|    | 8.6.1   | CONDUCTED SPURIOUS EMISSIONS                       | . 43 |
|    | 8.6.2   | RADIATED SPURIOUS EMISSIONS                        | . 45 |
|    | 8.6.3   | RECEIVER SPURIOUS EMISSIONS                        | . 66 |
|    | 8.6.4   | RADIATED RESTRICTED BAND EDGES                     | . 67 |
|    | 8.7     | POWERLINE CONDUCTED EMISSIONS                      | 70   |
| 9. | LIST OF | TEST EQUIPMENT                                     | 71   |
|    | 9.1     | LIST OF TEST EQUIPMENT(Conducted Test)             | 71   |
|    | 9.2     | LIST OF TEST EQUIPMENT(Radiated Test)              | 72   |



Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 4 of 72

# 1. GENERAL INFORMATION

Applicant: Murata Manufacturing Co.,Ltd..

Address: 10-1, Higashikotari 1-chome Nagaokakyo-si Kyoto, 617-8555 Japan

FCC ID: VPYLB1DM
IC: 772C-LB1DM

**EUT Type:** Communication module

FCC/IC Model name(s): LBEE6ZZ1DM

**Date(s) of Tests:** March 02, 2015 ~ March 31, 2015

Place of Tests: HCT Co., Ltd.

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea

(IC Recognition No.: 5944A-3)

# 2. EUT DESCRIPTION

| FCC Model Name        | LBEE6ZZ1DM                                    |  |  |  |
|-----------------------|-----------------------------------------------|--|--|--|
| IC Model Name         | LBEE6ZZ1DM                                    |  |  |  |
| EUT Type              | Communication module                          |  |  |  |
| Power Supply          | DC 5.0 V                                      |  |  |  |
| Frequency Range       | 2402 MHz - 2480 MHz (Bluetooth)               |  |  |  |
| Transmit Power        | 8.99 dBm (7.92 mW)                            |  |  |  |
| BT Operating Mode     | Normal, EDR, AFH                              |  |  |  |
| Modulation Type       | GFSK(Normal), π/4DQPSK and 8DPSK(EDR)         |  |  |  |
| Modulation Technique  | FHSS                                          |  |  |  |
| Number of Channels    | 79Channels, Minimum 20 Channels(AFH)          |  |  |  |
| Antenna Specification | Manufacturer: Murata innovator in electronics |  |  |  |
|                       | Antenna type: External Antenna                |  |  |  |
|                       | Peak Gain : 1.4 dBi                           |  |  |  |

#### ※ 15.247 Requirements for Bluetooth transmitter

- This Bluetooth module has been tested by a Bluetooth Qualification Lab, and we confirm the following:
- 1) This system is hopping pseudo-randomly.
- 2) Each frequency is used equally on the average by each transmitter.
- 3) The receiver input bandwidths that match the hopping channel bandwidths of their corresponding transmitters
- 4) The receiver shifts frequencies in synchronization with the transmitted signals.
- 15.247(g): The system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this Section 15.247 should the transmitter be presented with a continuous data (or information) stream.
- 15.247(h): The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

F-01P-02-014 (Rev.00)

FCC ID: VPYLB1DM/ IC: 772C-LB1DM HCT Co.,LTD.



Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 5 of 72

# 3. TEST METHODOLOGY

The measurement procedure described in the American National Standard for Testing Unlicensed Wireless Devices(ANSI C63.4-2003) and FCC Public Notice DA 00-705 dated March 30, 2000 entitled "Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems" were used in the measurement of the **Murata Manufacturing Co.,Ltd.** 

Communication module FCC ID: VPYLB1DM / IC: 772C-LB1DM

# 3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

#### 3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

### 3.3 GENERAL TEST PROCEDURES

#### **Conducted Emissions**

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4. (Version :2003) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

#### **Radiated Emissions**

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical according to the requirements in Section 6.3 of ANSI C63.10. (Version: 2009)

#### **Conducted Antenna Terminal**

See Section from 8.1 to 8.6.1.(DA 00-705)

# 3.4 DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Channel low, mid and high with highest data rate (worst case) is chosen for full testing.

### 4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipments, which is traceable to recognized national standards.



Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 6 of 72

# 5. FACILITIES AND ACCREDITATIONS

### 5.1 FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea. The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2003) and CISPR Publication 22. Detailed description of test facility was submitted to the Commission and accepted dated February 28, 2014 (Registration Number: 90661)

### 5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

# 6. ANTENNA REQUIREMENTS

# According to FCC 47 CFR §15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

\* The antennas of this E.U.T are permanently attached.

\*The E.U.T Complies with the requirement of §15.203

F-01P-02-014 (Rev.00) FCC ID: VPYLB1DM/ IC: 772C-LB1DM





Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Pag

# 7. SUMMARY OF TEST RESULTS

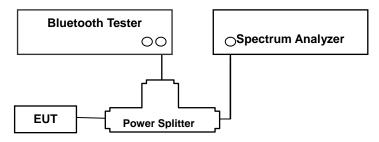
| Test Description                    | IC Part Section(s)                        | FCC Part<br>Section(s)        | Test Limit                                              | Test<br>Condition | Test<br>Result |
|-------------------------------------|-------------------------------------------|-------------------------------|---------------------------------------------------------|-------------------|----------------|
| 20 dB Bandwidth                     | RSS-210, A8.1(a)                          | §15.247(a)(1)(ii) or (iii)    | NA                                                      |                   | PASS           |
| Occupied Bandwidth                  | RSS-210, A1.1.3                           | NA                            | NA                                                      |                   | PASS           |
| Conducted Maximum Peak Output Power | RSS-210, A8.4(2)                          | §15.247(b)(1)                 | < 1 Watts for 1Mbps<br>< 125 Milliwatts for 2,<br>3Mbps |                   | PASS           |
| Carrier Frequency Separation        | RSS-210, A8.1(b)                          | §15.247(a)(1)                 | >25 kHz or<br>>2/3 of the 20dB BW                       |                   | PASS           |
| Number of Hopping<br>Frequencies    | RSS-210, A8.1(d)                          | §15.247(a)(1)(iii)            | >15                                                     | CONDUCTED         | PASS           |
| Time of Occupancy                   | ime of Occupancy RSS-210, A8.1(d) §15.2   |                               | <400 ms                                                 |                   | PASS           |
| Conducted Spurious Emissions        | RSS-210, A 8.5 RSS-<br>GEN, Section 7.2.3 | §15.247(d)                    | < 20 dB for<br>all out-of band<br>emissions             |                   | PASS           |
| Band Edge(Out of Band<br>Emissions) | RSS-210, A 8.5                            | §15.247(d)                    | < 20 dB for<br>all out-of band<br>emissions             |                   | PASS           |
| AC Power line Conducted Emissions   | RSS-GEN, Section 7.2.2                    | §15.207(a)                    | cf. Section 8.7                                         |                   | PASS           |
| Radiated Spurious<br>Emissions      | RSS-210, A2.9, A 8.5                      | §15.247(d), 15.205,<br>15.209 | cf. Section 8.6.2                                       |                   | PASS           |
| Radiated Restricted  Band Edge      | RSS-210, A2.9, A 8.5                      | §15.247(d), 15.205,<br>15.209 | cf. Section 8.6.4                                       | RADIATED          | PASS           |
| Receiver Spurious<br>Emissions      | RSS-GEN, Section<br>7.2.3                 | §15.109                       | cf. Section 8.6.3                                       |                   | PASS           |





Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 8 of 72

# 8. FCC PART 15.247 REQUIREMENTS


# **8.1 PEAK POWER**

### **LIMIT**

The maximum peak output power of the intentional radiator shall not exceed the following:

- For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 W for hopping mode, 125 mW for AFH mode
- 2. The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi.

### **Test Configuration**



#### **TEST PROCEDURE**

The transmitter output is connected to the Spectrum Analyzer. The Spectrum Analyzer is set to the peak detector mode. This test is performed with hopping off.

The Spectrum Analyzer is set to (DA 00-705)

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW > the 20 dB bandwidth of the emission being measured

VBW ≥ RBW

Sweep = Auto

Detector = Peak

Trace = Max hold

### SAMPLE CALCULATION

Output Power = Spectrum Reading Power + Power Splitter loss + Cable loss(2 ea)

= 10 dBm + 6 dB + 1.5 dB = 17.5 dBm

# Note:

- 1. Spectrum reading values are not plot data. The power results in plot is already including the actual values of loss for the splitter and cable combination.
- 2. Spectrum offset = Power Splitter loss + Cable loss
- 3. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. Actual value of

F-01P-02-014 (Rev.00)

FCC ID: VPYLB1DM/ IC: 772C-LB1DM HCT Co.,LTD.





Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 9 of 72

loss for the splitter and cable combination is 6.51 dB at 2402 MHz and is 6.54 dB at 2480 MHz. So, 6.5 dB is offset. And the offset gap in the 2.4 GHz range do not affect the conducted peak power final result

# **TEST RESULTS**

No non-compliance noted

# **Test Data**

| Channel | Frequency | -     | Power | Limit | Result |  |
|---------|-----------|-------|-------|-------|--------|--|
|         | (MHz)     | (dBm) | (mW)  | (mW)  |        |  |
| Low     | 2402      | 8.99  | 7.92  |       | PASS   |  |
| Mid     | 2441      | 8.77  | 7.53  | 125   | PASS   |  |
| High    | 2480      | 8.59  | 7.23  |       | PASS   |  |


| Channel | Frequency<br>(MHz) | Output Power<br>(8DPSK) |      | Output<br>(π/4DQ |      | Limit | Result |
|---------|--------------------|-------------------------|------|------------------|------|-------|--------|
|         |                    | (dBm)                   | (mW) | (dBm)            | (mW) | (mW)  |        |
| Low     | 2402               | 7.60                    | 5.75 | 7.04             | 5.06 |       | PASS   |
| Mid     | 2441               | 7.47                    | 5.58 | 6.90             | 4.90 | 125   | PASS   |
| High    | 2480               | 7.31                    | 5.38 | 6.75             | 4.73 |       | PASS   |





Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 10 of 72

Test Plots (GFSK) Peak Power (Low-CH)



Test Plots (GFSK) Peak Power (Mid-CH)







Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 11 of 72

# Test Plots (GFSK) Peak Power (High-CH)



Test Plots (8DPSK) Peak Power (Low-CH)








Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 12 of 72

# Test Plots (8DPSK) Peak Power (Mid-CH)



Test Plots (8DPSK) Peak Power (High-CH)





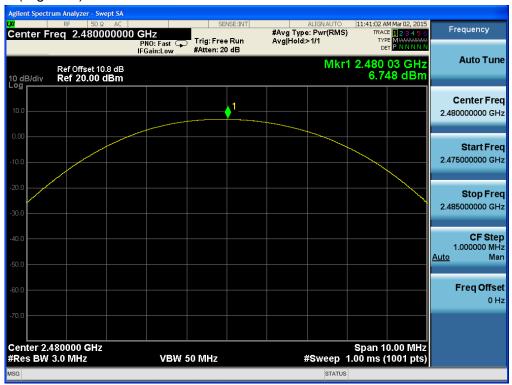


Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 13 of 72

# Test Plots (π/4DQPSK) Peak Power (Low-CH)



Test Plots (π/4DQPSK) Peak Power (Mid-CH)







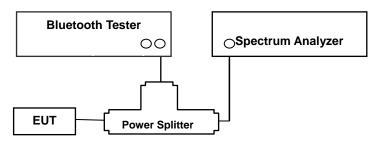

Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 14 of 72

Test Plots (π/4DQPSK) Peak Power (High-CH)








Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM

#### 8.2 BAND EDGES

#### LIMIT

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

# **Test Configuration**



# **TEST PROCEDURE**

# This test is performed with hopping off and hopping on.

The Spectrum Analyzer is set to (DA 00-705)

Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation

RBW ≥ 1% of the span

VBW ≥ RBW

Sweep = Auto

Detector = Peak

Trace = Max hold

### **TEST RESULTS**

See attached.

#### Note:

- 1. The results in plot is already including the actual values of loss for the splitter and cable combination.
- 2. Spectrum offset = Power Splitter loss + Cable loss
- 3. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. Actual value of loss for the splitter and cable combination is 6.51 dB at 2402 MHz and is 6.54 dB at 2480 MHz. So, 6.5 dB is offset. And the offset gap in the 2.4 GHz range do not affect the band edge measurement final result.

F-01P-02-014 (Rev.00) FCC ID: VPYLB1DM/ IC: 772C-LB1DM





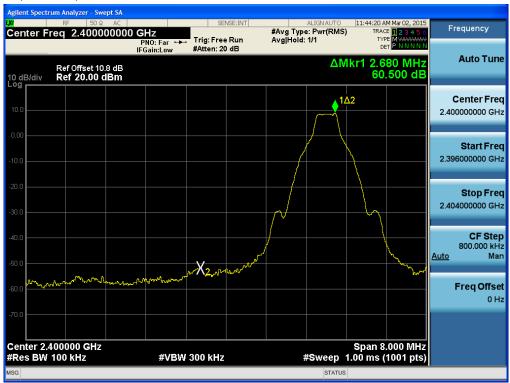
Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM

# **Test Data**

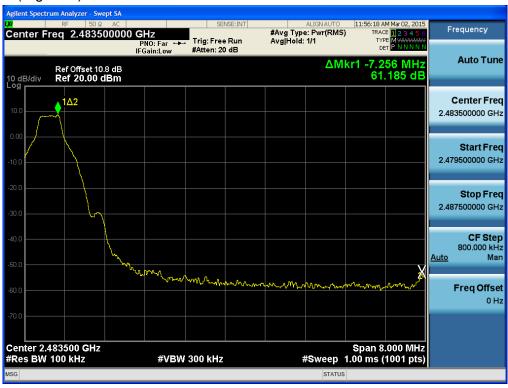
# - Without hopping

| Outoido Eroguanov         | GFSK  | 8DPSK | π/4DQPSK | Margin Limit |       |       |          |        |
|---------------------------|-------|-------|----------|--------------|-------|-------|----------|--------|
| Outside Frequency<br>Band | (AD)  | (dB)  | (dB)     | (dBc)        | GFSK  | 8DPSK | π/4DQPSK | Result |
|                           | (dB)  |       |          |              | (dBc) | (dBc) | (dBc)    |        |
| Lower                     | 60.50 | 50.03 | 51.77    | 20           | 40.50 | 30.03 | 31.77    | PASS   |
| Upper                     | 61.19 | 56.34 | 57.11    | 20           | 41.19 | 36.34 | 37.11    | PASS   |

# - With hopping


| Outside Fraguency         | GFSK                      | 8DPSK | π/4DQPSK | Limit |       | Margin |          |        |
|---------------------------|---------------------------|-------|----------|-------|-------|--------|----------|--------|
| Outside Frequency<br>Band | (AD)                      | (AD)  | (4D)     | (dBc) | GFSK  | 8DPSK  | π/4DQPSK | Result |
| Ballu                     | Band (dB) (dB) (dB) (dBc) | (ubc) | (dBc)    | (dBc) | (dBc) |        |          |        |
| Lower                     | 61.52                     | 52.83 | 50.62    | 20    | 41.52 | 32.83  | 30.62    | PASS   |
| Upper                     | 54.45                     | 56.26 | 56.68    | 20    | 34.45 | 36.26  | 36.68    | PASS   |






Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 17 of 72

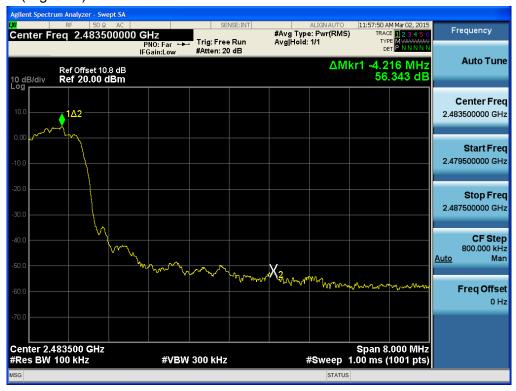
# Test Plots without hopping (GFSK) Band Edges (Low-CH)



Test Plots without hopping (GFSK) Band Edges (High-CH)








Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 18 of 72

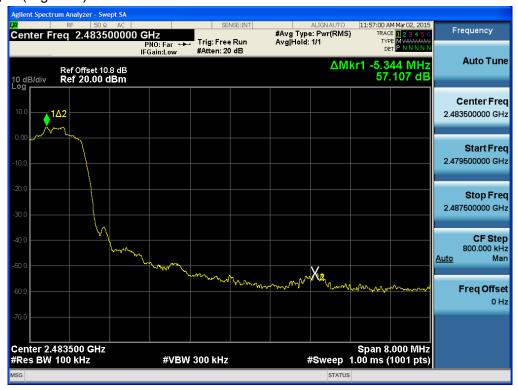
Test Plots without hopping (8DPSK) Band Edges (Low-CH)



Test Plots without hopping (8DPSK) Band Edges (High-CH)







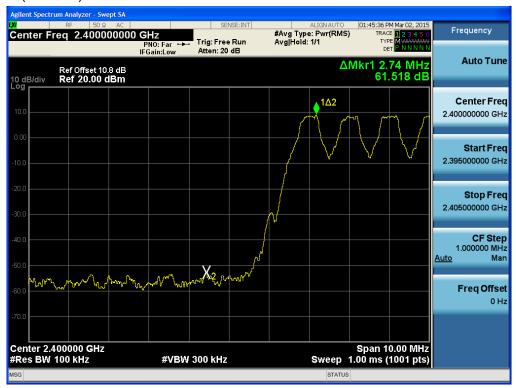

Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 19 of 72

Test Plots without hopping ( $\pi/4DQPSK$ ) Band Edges (Low-CH)



Test Plots without hopping ( $\pi/4DQPSK$ ) Band Edges (High-CH)




Test Plots with hopping (GFSK)





Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 20 of 72

# Band Edges (Low-CH)



Test Plots with hopping (GFSK) Band Edges (High-CH)







Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 21 of 72

Test Plots with hopping (8DPSK) Band Edges (Low-CH)



Test Plots with hopping (8DPSK) Band Edges (High-CH)








Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 22 of 72

# Test Plots with hopping ( $\pi/4DQPSK$ ) Band Edges (Low-CH)

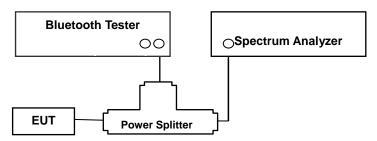


Test Plots with hopping ( $\pi/4DQPSK$ ) Band Edges (High-CH)








Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM

# 8.3 FREQUENCY SEPARATION / OCCUPIED BANDWIDTH (99% BW)

#### LIMIT

According to §15.247(a)(1), Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

# **Test Configuration**



### **TEST PROCEDURE**

The Channel Separation test is performed with hopping on. And the 20 dB Bandwidth test is performed with hopping off.

The Spectrum Analyzer is set to (DA 00-705)

Span = wide enough to capture the peaks of two adjacent channels

RBW ≥ 1% of the span

VBW ≥ RBW

Sweep = Auto

Detector = Peak

Trace = Max hold

The trace was allowed to stabilize. The marker-delta function was used to determine the separation between the peaks of the adjacent channels.

### **TEST RESULTS**

No non-compliance noted

F-01P-02-014 (Rev.00) FCC ID: VPYLB1DM/ IC: 772C-LB1DM



Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 24 of 72

# **Test Data**

| Cha  | annel Sep<br>(kHz) | Separation 20dB Bandwidth (kHz) |           |       |        | Limit    | Result      |      |
|------|--------------------|---------------------------------|-----------|-------|--------|----------|-------------|------|
| GFSK | 8DPSK              | π/4DQPSK                        | Channel   | GFSK  | 8DPSK  | π/4DQPSK | (kHz)       |      |
|      |                    |                                 | Low CH    | 962.4 | 1310.0 | 1324.0   | >25 or      |      |
| 996  | 996                | 999                             | Middle CH | 963.9 | 1313.0 | 1323.0   | >2/3 of the | Pass |
|      |                    |                                 | High CH   | 962.8 | 1311.0 | 1324.0   | 20dB BW     |      |

# Occupied Bandwidth (99% BW)

| 99% BW (kHz)                |       |        |        |  |  |  |  |
|-----------------------------|-------|--------|--------|--|--|--|--|
| Channel GFSK 8DPSK π/4DQPSK |       |        |        |  |  |  |  |
| Low CH                      | 866.7 | 1175.7 | 1173.1 |  |  |  |  |
| Middle CH                   | 871.1 | 1175.1 | 1172.0 |  |  |  |  |
| High CH                     | 869.9 | 1174.0 | 1171.6 |  |  |  |  |

Note: We can not know what use channel in AFH mode. So, we can not test in AFH mode. Also, if the test performs some channel in AFH mode, the test result is not different with normal mode.



Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 25 of 72

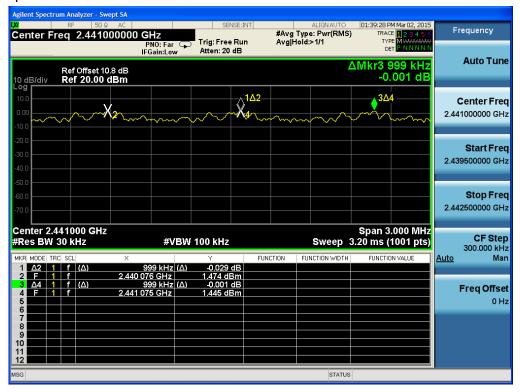
# Test Plots (GFSK)

# **Channel Separation**



# Test Plots (8DPSK) **Channel Separation**




Test Plots (π/4DQPSK)





Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 26 of 72

# **Channel Separation**





Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 27 of 72


# Test Plots (GFSK)

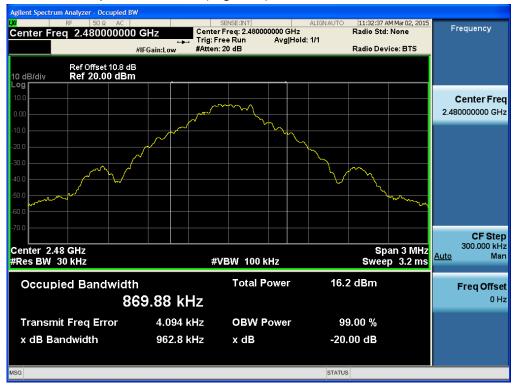
20 dB Bandwidth & Occupied Bandwidth (Low-CH)



# Test Plots (GFSK)

20 dB Bandwidth & Occupied Bandwidth (Mid-CH)








Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 28 of 72

# Test Plots (GFSK)

20 dB Bandwidth & Occupied Bandwidth (High-CH)



# Test Plots (8DPSK)

20 dB Bandwidth & Occupied Bandwidth (Low-CH)








Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 29 of 72

# Test Plots (8DPSK)

20 dB Bandwidth & Occupied Bandwidth (Mid-CH)



# Test Plots (8DPSK)

20 dB Bandwidth & Occupied Bandwidth (High-CH)







Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 30 of 72

# Test Plots (π/4DQPSK)

20 dB Bandwidth & Occupied Bandwidth (Low-CH)



### Test Plots (π/4DQPSK)

20 dB Bandwidth & Occupied Bandwidth (Mid-CH)







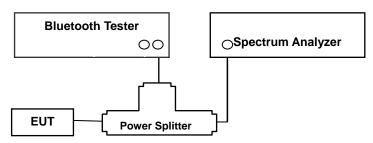
Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 31 of 72

# Test Plots (π/4DQPSK)

20 dB Bandwidth & Occupied Bandwidth (High-CH)






Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM

### 8.4 NUMBER OF HOPPING FREQUENCY

# LIMIT

According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400 MHz ~ 2483.5 MHz bands shall use at least 15 hopping frequencies.

# **Test Configuration**



# **TEST PROCEDURE**

The Bluetooth frequency hopping function of the EUT was enabled.

The Spectrum Analyzer is set to (DA 00-705)

Span = the frequency band of operation

RBW ≥ 1% of the span

VBW ≥ RBW

Sweep = Auto

Detector = Peak

Trace = Max hold

The trace was allowed to stabilize.

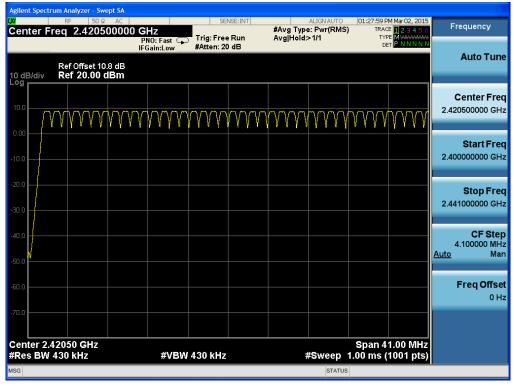
### **TEST RESULTS**

No non-compliance noted

#### **Test Data**

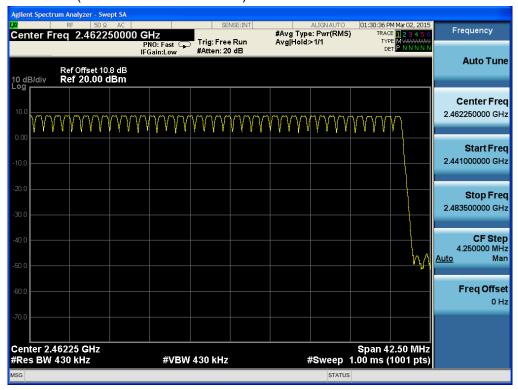
|      | Result (No. of CH) | Limit    | Popult |        |  |
|------|--------------------|----------|--------|--------|--|
| GFSK | 8DPSK              | π/4DQPSK | Limit  | Result |  |
| 79   | 79                 | 79       | >15    | Pass   |  |

Note: In case of AFH mode, minimum number of hopping channels is 20.






Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 33 of 72


# Test Plots (GFSK)

Number of Channels (2.4 GHz - 2.441 GHz)



### Test Plots (GFSK)

Number of Channels (2.441 GHz - 2.4835 GHz)








Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 34 of 72

# Test Plots (8DPSK)

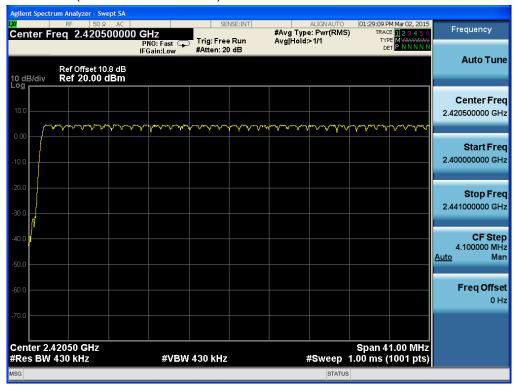
Number of Channels (2.4 GHz - 2.441 GHz)



### Test Plots (8DPSK)

Number of Channels (2.441 GHz - 2.4835 GHz)








Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 35 of 72

# Test Plots (π/4DQPSK)

Number of Channels (2.4 GHz - 2.441 GHz)

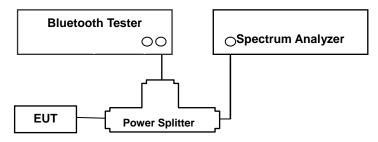


# Test Plots (π/4DQPSK)

Number of Channels (2.441 GHz - 2.4835 GHz)






Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 36 of 72

# 8.5 TIME OF OCCUPANCY (DWELL TIME)

### LIMIT

According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400 MHz ~ 2483.5 MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.

# **Test Configuration**



### **TEST PROCEDURE**

This test is performed with hopping off.

EUT was set to transmit the longest packet type (DH5)

The Spectrum Analyzer is set to (DA 00-705)

Span = Zero span, Centered on a hopping channel

RBW = 1 MHz

VBW ≥ RBW

Sweep = as necessary to capture the entire dwell time per hopping channel

Detector = Peak

Trace = Max hold

The marker-delta function was used to determine the dwell time.

#### Normal Mode / EDR Mode

**DH 5**(The longest packet type for GFSK)

CH Mid: 2.875 \* (1600/6)/79 \* 31.6 = 306.7 (ms)

**2-DH 5**(The longest packet type for  $\pi/4DQPSK$ )

CH Mid: 2.875 \* (1600/6)/79 \* 31.6 = 306.7 (ms)

**3-DH 5**(The longest packet type for 8DPSK)

CH Mid: 2.875 \* (1600/6)/79 \* 31.6 = 306.7 (ms)

#### **AFH Mode**

**DH 5**(The longest packet type for GFSK)

CH Mid: 2.875 \* (800/6)/20 \* 8.0 = 153.33 (ms)CH Mid: 2.885 \* (800/6)/20 \* 8.0 = 153.87 (ms)

F-01P-02-014 (Rev.00)

HCT Co.,LTD. FCC ID: VPYLB1DM/ IC: 772C-LB1DM



Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 37 of 72

**2-DH 5**(The longest packet type for  $\pi/4DQPSK$ )

CH Mid: 2.875 \* (800/6)/20 \* 8.0 = 153.33 (ms)

**3-DH 5**(The longest packet type for 8DPSK)

CH Mid: 2.875 \* (800/6)/20 \* 8.0 = 153.33 (ms)

Note:

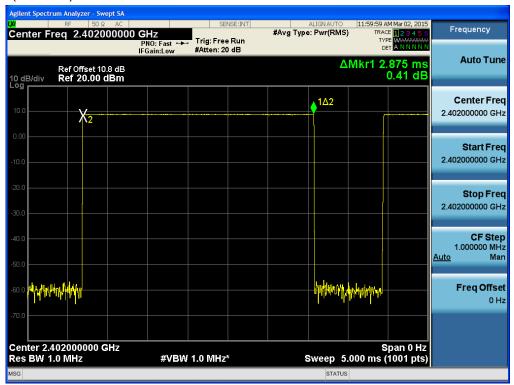
A DH5 Packet need 5 time slot for transmitting and 1 time slot for receiving. Then the system makes worst case 1600/6 hops per second with 79 channels. So the system have each channel 3.3755 times per second and so for 31.6 seconds the system have 106.7 times of appearance. Each tx-time per appearance of DH5 is 2.875 ms.

Dwell time = Tx-time \* 106.7

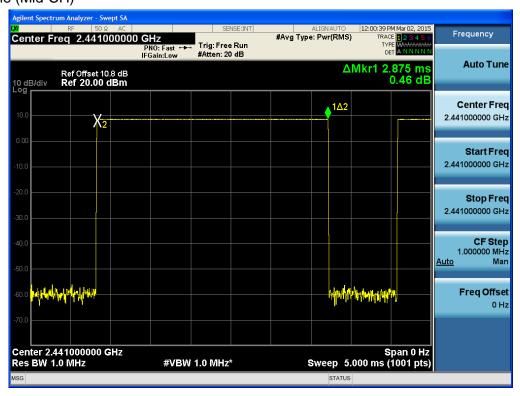
#### **TEST RESULTS**

See the table.

|       | Channel | GFSK  | 8DPSK | π/4DQPSK |
|-------|---------|-------|-------|----------|
| Pulse | Low     | 2.875 | 2.875 | 2.875    |
| Time  | Mid     | 2.875 | 2.875 | 2.875    |
| (ms)  | High    | 2.875 | 2.875 | 2.875    |


|          | Channel | GFSK   | 8DPSK  | π/4DQPSK | Period Time (s) | Limit<br>(ms) | Result |
|----------|---------|--------|--------|----------|-----------------|---------------|--------|
| Total of | Low     | 306.67 | 306.67 | 306.67   | 31.6            |               | PASS   |
| Dwell    | Mid     | 306.67 | 306.67 | 306.67   | 31.6            | 400           | PASS   |
| (ms)     | High    | 306.67 | 306.67 | 306.67   | 31.6            |               | PASS   |



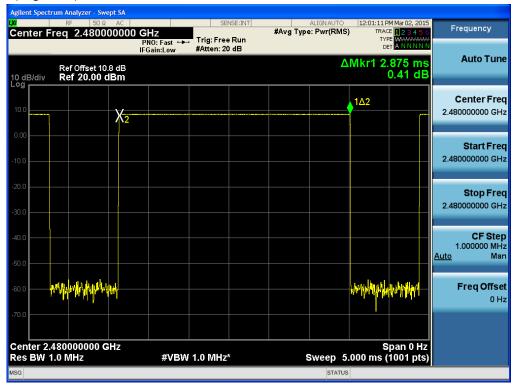



Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 38 of 72

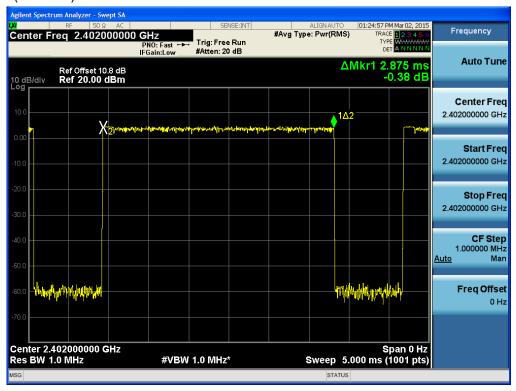
Test Plots (GFSK) Dwell Time (Low-CH)



Test Plots (GFSK) Dwell Time (Mid-CH)






Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 39 of 72

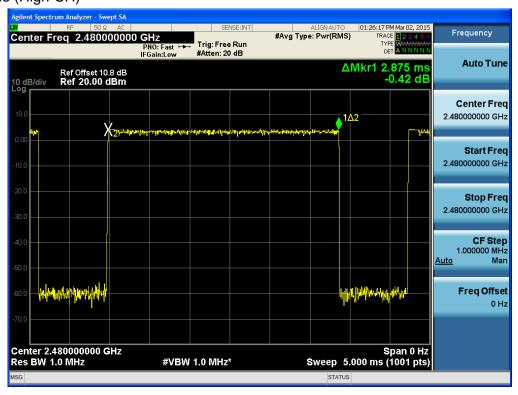
# Test Plots (GFSK) Dwell Time (High-CH)



Test Plots (8DPSK) Dwell Time (Low-CH)





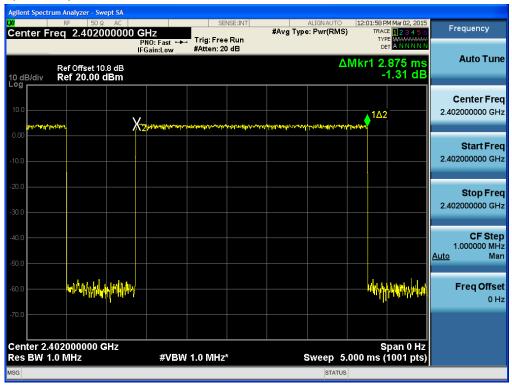



Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 40 of 72

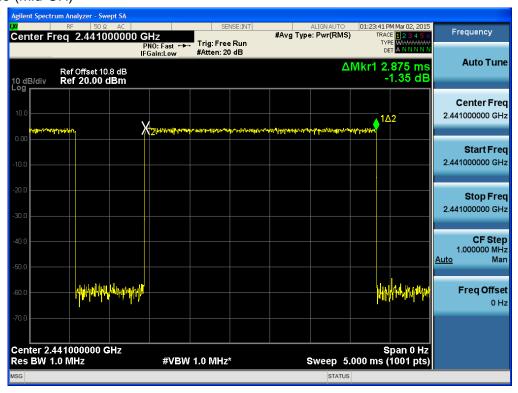
# Test Plots (8DPSK) Dwell Time (Mid-CH)



# Test Plots (8DPSK) Dwell Time (High-CH)





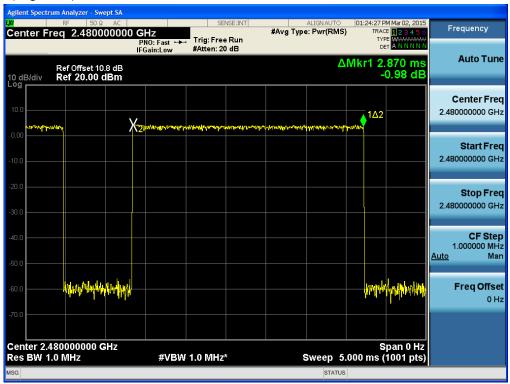




Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 41 of 72

# Test Plots (π/4DQPSK) Dwell Time (Low-CH)



# Test Plots (π/4DQPSK) Dwell Time (Mid-CH)








Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 42 of 72

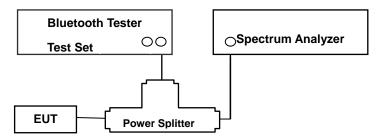
# Test Plots (π/4DQPSK) Dwell Time (High-CH)







Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM


#### 8.6 SPURIOUS EMISSIONS

#### 8.6.1 CONDUCTED SPURIOUS EMISSIONS

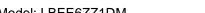
## Test Requirements and limit, §15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Limit: 20 dBc **Test Configuration** 



#### **TEST PROCEDURE**


Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer.

The Spectrum Analyzer is set to (DA 00-705)

- 1. Span = wide enough to capture the peak level of the in-band emission and all spurious emissions(e.g.,harmonics) from the lowest frequency generated in the EUT up through the 10<sup>th</sup> harmonic.
- 2. RBW = 100 kHz
- 3. VBW ≥ 300 kHz
- 4. Sweep = auto
- 5. Sweep point ≥ 2\*span/RBW
- 5. Detector function = peak

HCT Co.,LTD. FCC ID: VPYLB1DM/ IC: 772C-LB1DM





Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 44 of 72

## 6. Trace = max hold

Measurements are made over the 30 MHz to 26 GHz range with the transmitter set to the lowest, middle, and highest channels.

This test is performed with hopping off.

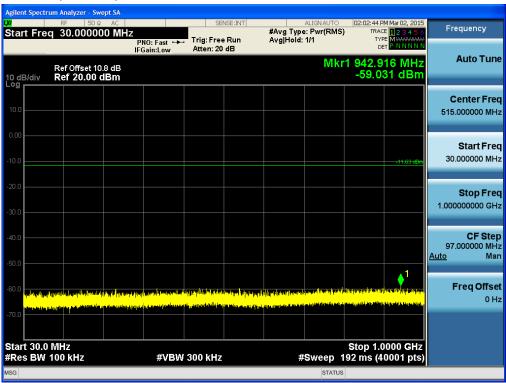
## **TEST RESULTS**

No non-compliance noted.

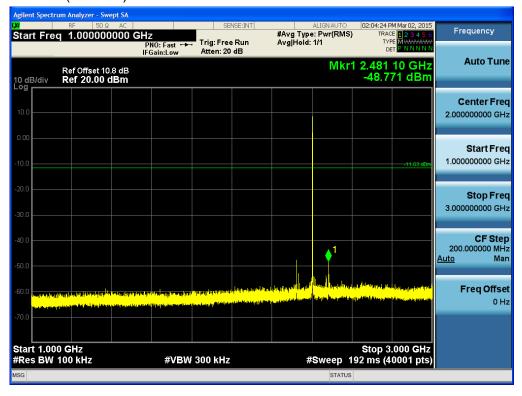
Note: In order to simplify the report, attached plots were only the worst case channel and data rate.

| FACTORS F | OR FREQUENCY |
|-----------|--------------|
| Freq(MHz) | Factor(dB)   |
| 30        | 10.01        |
| 100       | 10.02        |
| 200       | 10.10        |
| 300       | 10.09        |
| 400       | 10.13        |
| 500       | 10.21        |
| 600       | 10.13        |
| 700       | 10.31        |
| 800       | 10.18        |
| 900       | 10.30        |
| 1000      | 10.17        |
| 2000      | 8.53         |
| 2400*     | 6.51         |
| 2500*     | 6.54         |
| 3000      | 8.59         |
| 4000      | 10.02        |
| 5000      | 9.88         |
| 6000      | 5.70         |
| 7000      | 10.21        |
| 8000      | 6.13         |
| 9000      | 8.79         |
| 10000     | 12.46        |
| 11000     | 8.11         |
| 12000     | 9.52         |
| 13000     | 8.98         |
| 14000     | 8.13         |
| 15000     | 11.82        |
| 16000     | 6.92         |
| 17000     | 13.23        |
| 18000     | 10.25        |
| 19000     | 10.28        |
| 20000     | 9.10         |
| 21000     | 10.94        |
| 22000     | 11.54        |
| 23000     | 8.81         |
| 24000     | 11.71        |
| 25000     | 9.37         |
| 26000     | 9.34         |

Note: 1. '\*' is fundamental frequency range.


2. Factor = Cable loss + Splitter loss



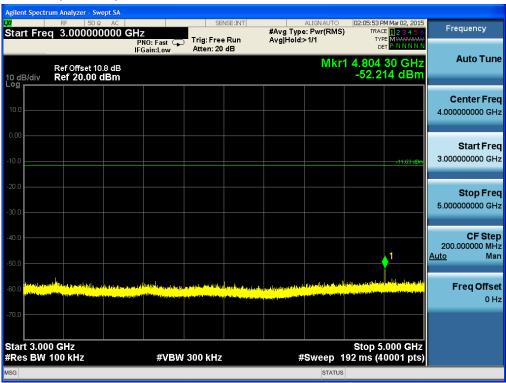



Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 45 of 72

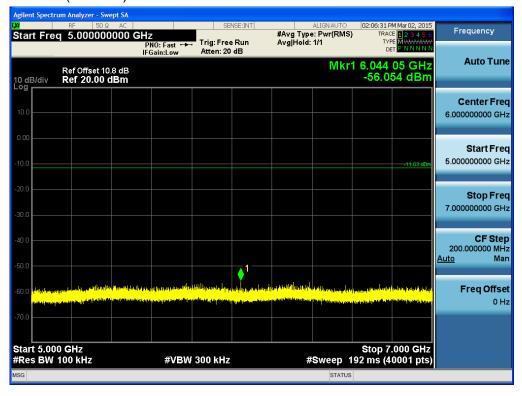
# Test Plots (GFSK)30 MHz - 1 GHz Spurious Emission (Low-CH)



Test Plots (GFSK)- 1 GHz - 3 GHz Spurious Emission (Low-CH)





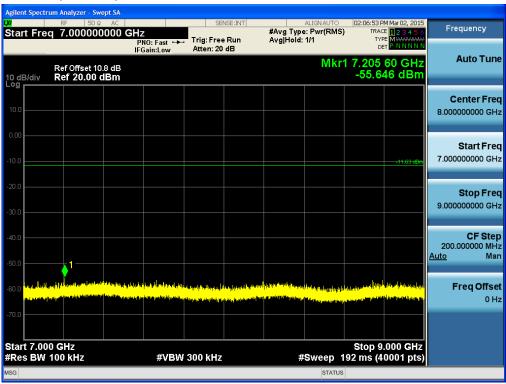




Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 46 of 72

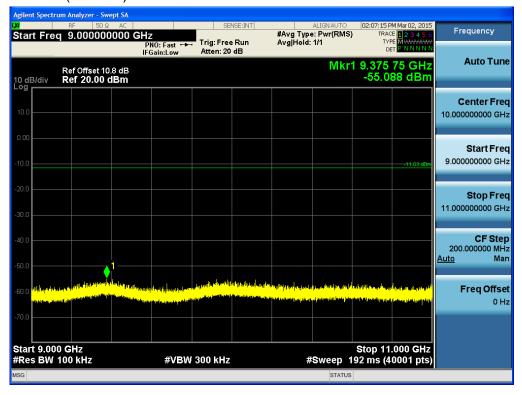
Test Plots (GFSK)- 3 GHz - 5 GHz Spurious Emission (Low-CH)



Test Plots (GFSK)- 5 GHz - 7 GHz Spurious Emission (Low-CH)





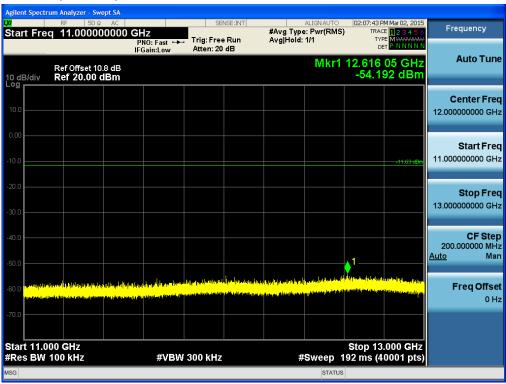




Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 47 of 72

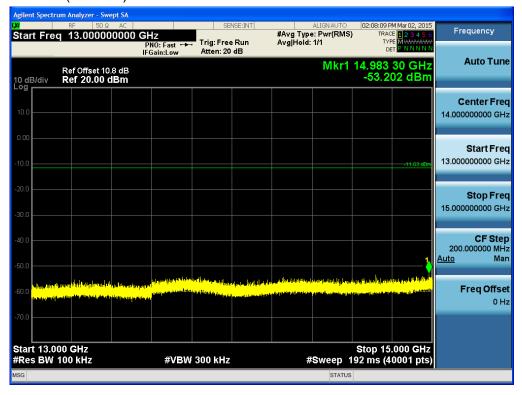
Test Plots (GFSK)- 7 GHz - 9 GHz Spurious Emission (Low-CH)



Test Plots (GFSK)- 9 GHz - 11 GHz Spurious Emission (Low-CH)





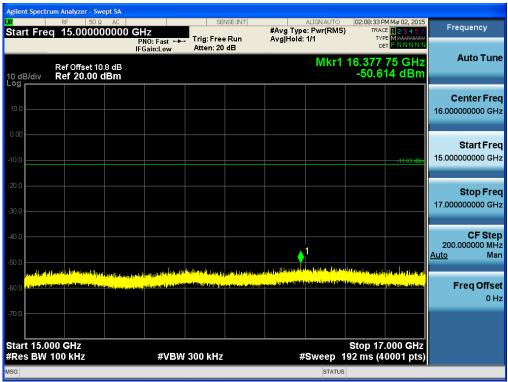




Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 48 of 72

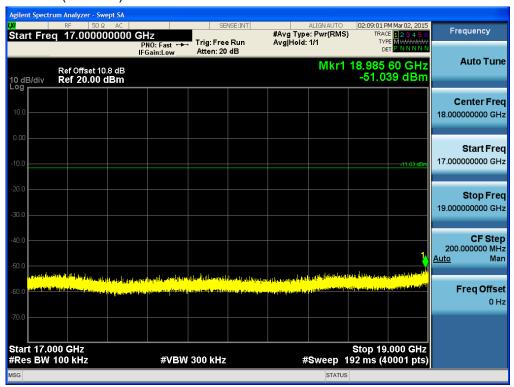
Test Plots (GFSK)- 11 GHz - 13 GHz Spurious Emission (Low-CH)



Test Plots (GFSK)- 13 GHz - 15 GHz Spurious Emission (Low-CH)





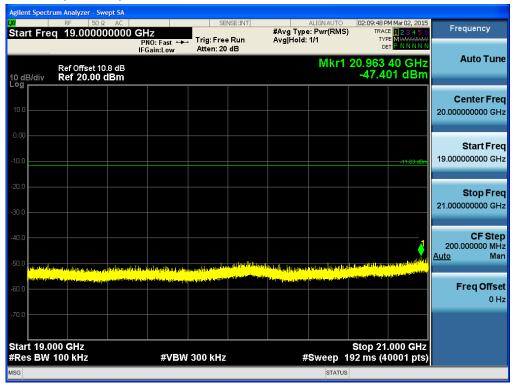




Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 49 of 72

# Test Plots (GFSK)- 15 GHz - 17 GHz Spurious Emission (Low-CH)



Test Plots (GFSK)- 17 GHz - 19 GHz Spurious Emission (Low-CH)





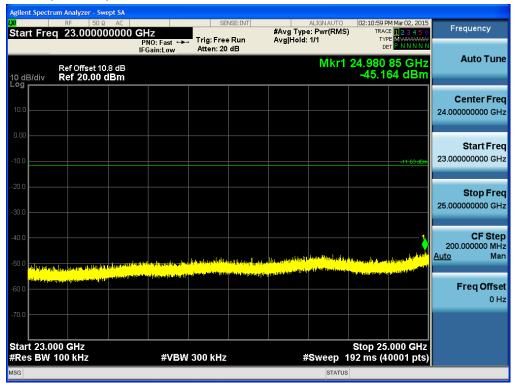



Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 50 of 72

# Test Plots (GFSK)- 19 GHz - 21 GHz Spurious Emission (Low-CH)



Test Plots (GFSK)- 21 GHz - 23 GHz Spurious Emission (Low-CH)








Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM

# Test Plots (GFSK)- 23 GHz - 25 GHz Spurious Emission (Low-CH)



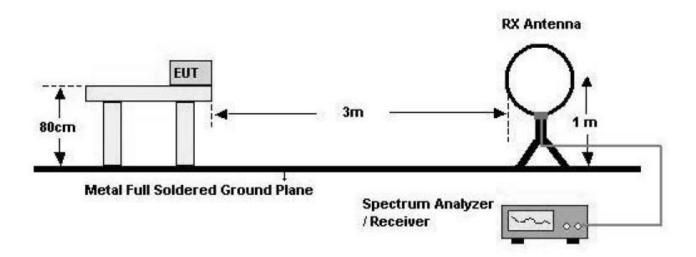




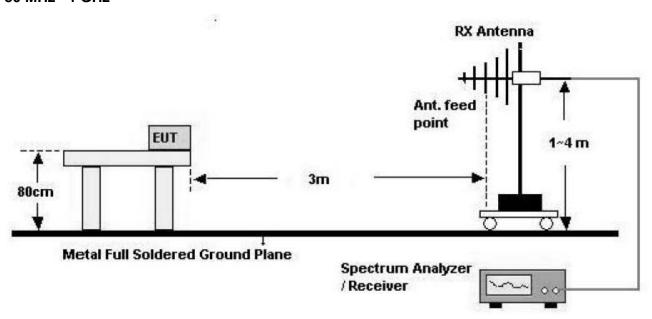
Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM

# 8.6.2 RADIATED SPURIOUS EMISSIONS

LIMIT: §15.247(d), §15.205, §15.209


1. 20dBc in any 100kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

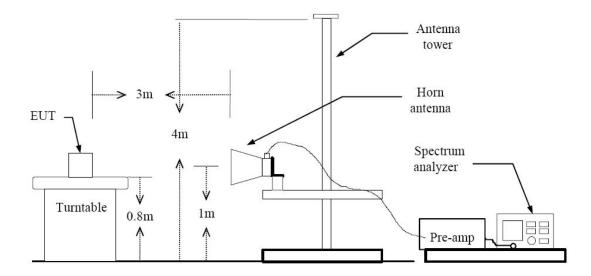
| Frequency (MHz) | Field Strength (uV/m) | Measurement Distance (m) |  |  |
|-----------------|-----------------------|--------------------------|--|--|
| 0.009 - 0.490   | 2400/F(kHz)           | 300                      |  |  |
| 0.490 – 1.705   | 24000/F(kHz)          | 30                       |  |  |
| 1.705 – 30      | 30                    | 30                       |  |  |
| 30-88           | 100                   | 3                        |  |  |
| 88-216          | 150                   | 3                        |  |  |
| 216-960         | 200                   | 3                        |  |  |
| Above 960       | 500                   | 3                        |  |  |


Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 53 of 72

# **Test Configuration**

## **Below 30 MHz**




## 30 MHz - 1 GHz





Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 54 of 72

#### **Above 1 GHz**



## **TEST PROCEDURE**

- 1. The EUT is placed on a turntable, which is 0.8 m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. Spectrum Setting
  - a. Peak Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 MHz.
  - b. AV Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 kHz ≥ 1/τ Hz, where τ = pulse width in seconds.



Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 55 of 72

#### **TEST RESULTS**

## 9 kHz - 30MHz

**Operation Mode:** Normal Mode

| Frequency               | Reading | Ant. factor | Cable loss | Ant. POL | Total           | Limit           | Margin |  |  |
|-------------------------|---------|-------------|------------|----------|-----------------|-----------------|--------|--|--|
| MHz                     | dBμV    | dB/m        | dB         | (H/V)    | dB <i>μ</i> V/m | dB <i>μ</i> V/m | dB     |  |  |
| No Critical peaks found |         |             |            |          |                 |                 |        |  |  |

#### Notes:

- 1. Measuring frequencies from 9 kHz to the 30MHz.
- 2. The reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
- 3. Distance extrapolation factor = 40 log (specific distance / test distance) (dB)
- 4. Limit line = specific Limits (dBuV) + Distance extrapolation factor
- 5. This test is performed with hopping off.
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.



Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 56 of 72

## **TEST RESULTS**

## Below 1 GHz

**Operation Mode:** Normal Mode

| Frequency | Reading                 | Ant. factor | Cable loss | Ant. POL | Total  | Limit           | Margin |  |  |  |
|-----------|-------------------------|-------------|------------|----------|--------|-----------------|--------|--|--|--|
| MHz       | dBμV                    | dB /m       | dB         | (H/V)    | dBμV/m | dB <i>μ</i> V/m | dB     |  |  |  |
|           | No Critical peaks found |             |            |          |        |                 |        |  |  |  |

#### Notes:

- 1. Measuring frequencies from 30 MHz to the 1 GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.
- 3. This test is performed with hopping off.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.



Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 57 of 72

Above 1 GHz

Operation Mode: CH Low(GFSK)

| Frequency | Reading |       | ANT. POL | Duty Cycle | Total    | Limit    | Margin | Measurement |
|-----------|---------|-------|----------|------------|----------|----------|--------|-------------|
|           |         |       |          | Correction |          |          |        | Туре        |
| [MHz]     | DBuV    | [dB]  | [H/V]    | [dB]       | [dBuV/m] | [dBuV/m] | [dB]   | 71 -        |
| 4804      | 64.17   | -7.66 | V        | 0          | 56.51    | 73.98    | 17.47  | PK          |
| 4804      | 60.47   | -7.66 | V        | -24.73     | 28.08    | 53.98    | 25.90  | AV          |
| 7206      | 62.01   | -1.98 | V        | 0          | 60.03    | 73.98    | 13.95  | PK          |
| 7206      | 57.18   | -1.98 | V        | -24.73     | 30.47    | 53.98    | 23.51  | AV          |
| 4804      | 62.67   | -7.66 | Н        | 0          | 55.01    | 73.98    | 18.97  | PK          |
| 4804      | 57.66   | -7.66 | Н        | -24.73     | 25.27    | 53.98    | 28.71  | AV          |
| 7206      | 59.70   | -1.98 | Н        | 0          | 57.72    | 73.98    | 16.26  | PK          |
| 7206      | 52.53   | -1.98 | Н        | -24.73     | 25.82    | 53.98    | 28.16  | AV          |

Operation Mode: CH Low(8DPSK)

| Frequency | Reading | ※A.F+CL-AMP GAIN | ANT. POL | Duty Cycle | Total    | Limit    | Margin | Measurement |
|-----------|---------|------------------|----------|------------|----------|----------|--------|-------------|
|           |         |                  |          | Correction |          |          |        | Type        |
| [MHz]     | DBuV    | [dB]             | [H/V]    | [dB]       | [dBuV/m] | [dBuV/m] | [dB]   | 1,700       |
| 4804      | 61.67   | -7.66            | V        | 0          | 54.01    | 73.98    | 19.97  | PK          |
| 4804      | 53.24   | -7.66            | V        | -24.73     | 20.85    | 53.98    | 33.13  | AV          |
| 7206      | 58.37   | -1.98            | V        | 0          | 56.39    | 73.98    | 17.59  | PK          |
| 7206      | 47.25   | -1.98            | V        | -24.73     | 20.54    | 53.98    | 33.44  | AV          |
| 4804      | 59.77   | -7.66            | Н        | 0          | 52.11    | 73.98    | 21.87  | PK          |
| 4804      | 51.08   | -7.66            | Н        | -24.73     | 18.69    | 53.98    | 35.29  | AV          |
| 7206      | 55.84   | -1.98            | Н        | 0          | 53.86    | 73.98    | 20.12  | PK          |
| 7206      | 43.66   | -1.98            | Н        | -24.73     | 16.95    | 53.98    | 37.03  | AV          |



Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 58 of 72

Operation Mode: CH Low(π/4DQPSK)

| Frequency | Reading | *A.F+CL-AMP GAIN | ANT. POL | Duty Cycle | Total    | Limit    | Margin | Magauramant         |
|-----------|---------|------------------|----------|------------|----------|----------|--------|---------------------|
|           |         |                  |          | Correction |          |          |        | Measurement<br>Type |
| [MHz]     | DBuV    | [dB]             | [H/V]    | [dB]       | [dBuV/m] | [dBuV/m] | [dB]   | .,,,,               |
| 4804      | 61.34   | -7.66            | V        | 0          | 53.68    | 73.98    | 20.30  | PK                  |
| 4804      | 53.09   | -7.66            | V        | -24.73     | 20.70    | 53.98    | 33.28  | AV                  |
| 7206      | 58.40   | -1.98            | V        | 0          | 56.42    | 73.98    | 17.56  | PK                  |
| 7206      | 47.28   | -1.98            | V        | -24.73     | 20.57    | 53.98    | 33.41  | AV                  |
| 4804      | 59.92   | -7.66            | Н        | 0          | 52.26    | 73.98    | 21.72  | PK                  |
| 4804      | 51.11   | -7.66            | Н        | -24.73     | 18.72    | 53.98    | 35.26  | AV                  |
| 7206      | 55.47   | -1.98            | Н        | 0          | 53.49    | 73.98    | 20.49  | PK                  |
| 7206      | 43.68   | -1.98            | Н        | -24.73     | 16.97    | 53.98    | 37.01  | AV                  |

\* A·F: ANTENNA FACTOR

C·L: CABLE LOSS

AMP GAIN: AMPLIFIER GAIN

#### Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. Spectrum setting:
  - a. Peak Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 MHz.
  - b. AV Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 kHz  $\geq$  1/T Hz, where T = pulse width in seconds. We performed using a reduced video BW method was done with the analyzer in linear mode.
- 6. FYI: Duty Cycle Correction Factor (79 channel hopping)
  - a. Time to cycle through all channels =  $\Delta$  t=  $\tau$  [ms] x 79 channels = 229.100 ms, where  $\tau$  = pulse width
  - b. 100 ms/  $\Delta t$  [ms] =  $H \rightarrow$  Round up to next highest integer, H'=1
  - c. Worst Case Dwell Time = T [ms] x H '= 2.900 ms
  - d. Duty Cycle Correction = 20log (Worst Case Dwell Time/ 100ms) dB = -30.752 dB
- 7. Duty Cycle Correction Factor(AFH mode minimum channel number case 20 channels)
  - a. Time to cycle through all channels =  $\Delta$  t=  $\tau$  [ms] x 20 channels = 58.00 ms, where  $\tau$  = pulse width
  - b. 100 ms/  $\Delta t$  [ms] =  $H \rightarrow \text{Round up to next highest integer}$ , H' = 2
  - c. Worst Case Dwell Time =  $\tau$  [ms] x H '= 5.800 ms
  - d. Duty Cycle Correction(AFH) = 20log (Worst Case Dwell Time/ 100ms) dB = -24.7314 dB

FCC ID: VPYLB1DM/ IC: 772C-LB1DM HCT Co.,LTD.



Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 59 of 72

- e. We applied DCCF in the test result which hopping channel number is 20.
- 8. We have done Normal Mode and EDR Mode test.
- 9. This test is performed with hopping off.
- 10. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.





Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 60 of 72

Operation Mode: CH Mid(GFSK)

| Frequency | Reading | *A.F+CL-AMP GAIN | ANT. POL | Duty Cycle | Total    | Limit    | Margin | Measurement |
|-----------|---------|------------------|----------|------------|----------|----------|--------|-------------|
|           |         |                  |          | Correction |          |          |        | Туре        |
| [MHz]     | DBuV    | [dB]             | [H/V]    | [dB]       | [dBuV/m] | [dBuV/m] | [dB]   | турс        |
| 4882      | 62.92   | -7.45            | V        | 0          | 55.47    | 73.98    | 18.51  | PK          |
| 4882      | 59.00   | -7.45            | V        | -24.73     | 26.82    | 53.98    | 27.16  | AV          |
| 7323      | 59.59   | -1.66            | V        | 0          | 57.93    | 73.98    | 16.05  | PK          |
| 7323      | 53.55   | -1.66            | V        | -24.73     | 27.16    | 53.98    | 26.82  | AV          |
| 4882      | 62.54   | -7.45            | Н        | 0          | 55.09    | 73.98    | 18.89  | PK          |
| 4882      | 58.64   | -7.45            | Н        | -24.73     | 26.46    | 53.98    | 27.52  | AV          |
| 7323      | 59.63   | -1.66            | Н        | 0          | 57.97    | 73.98    | 16.01  | PK          |
| 7323      | 53.34   | -1.66            | Н        | -24.73     | 26.95    | 53.98    | 27.03  | AV          |

Operation Mode: CH Mid(8DPSK)

| Frequency | Reading | *A.F+CL-AMP GAIN | ANT. POL | Duty Cycle Correction | Total    | Limit    | Margin | Measurement |
|-----------|---------|------------------|----------|-----------------------|----------|----------|--------|-------------|
| [MHz]     | DBuV    | [dB]             | [H/V]    | [dB]                  | [dBuV/m] | [dBuV/m] | [dB]   | Type        |
| 4882      | 61.12   | -7.45            | V        | 0                     | 53.67    | 73.98    | 20.31  | PK          |
| 4882      | 52.22   | -7.45            | V        | -24.73                | 20.04    | 53.98    | 33.94  | AV          |
| 7323      | 56.34   | -1.66            | V        | 0                     | 54.68    | 73.98    | 19.30  | PK          |
| 7323      | 45.06   | -1.66            | V        | -24.73                | 18.67    | 53.98    | 35.31  | AV          |
| 4882      | 59.13   | -7.45            | Н        | 0                     | 51.68    | 73.98    | 22.30  | PK          |
| 4882      | 51.91   | -7.45            | Н        | -24.73                | 19.73    | 53.98    | 34.25  | AV          |
| 7323      | 57.02   | -1.66            | Н        | 0                     | 55.36    | 73.98    | 18.62  | PK          |
| 7323      | 44.38   | -1.66            | Н        | -24.73                | 17.99    | 53.98    | 35.99  | AV          |



Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 61 of 72

Operation Mode: CH Mid(π/4DQPSK)

| Frequency | Reading | *A.F+CL-AMP GAIN | ANT. POL | Duty Cycle | Total    | Limit    | Margin | Measurement |
|-----------|---------|------------------|----------|------------|----------|----------|--------|-------------|
|           |         |                  |          | Correction |          |          |        | Туре        |
| [MHz]     | DBuV    | [dB]             | [H/V]    | [dB]       | [dBuV/m] | [dBuV/m] | [dB]   | .71         |
| 4882      | 61.34   | -7.45            | V        | 0          | 53.89    | 73.98    | 20.09  | PK          |
| 4882      | 52.29   | -7.45            | V        | -24.73     | 20.11    | 53.98    | 33.87  | AV          |
| 7323      | 56.46   | -1.66            | V        | 0          | 54.80    | 73.98    | 19.18  | PK          |
| 7323      | 45.09   | -1.66            | V        | -24.73     | 18.70    | 53.98    | 35.28  | AV          |
| 4882      | 59.75   | -7.45            | Н        | 0          | 52.30    | 73.98    | 21.68  | PK          |
| 4882      | 52.04   | -7.45            | Н        | -24.73     | 19.86    | 53.98    | 34.12  | AV          |
| 7323      | 56.93   | -1.66            | Н        | 0          | 55.27    | 73.98    | 18.71  | PK          |
| 7323      | 44.40   | -1.66            | Н        | -24.73     | 18.01    | 53.98    | 35.97  | AV          |

\* A·F: ANTENNA FACTOR

C·L: CABLE LOSS

AMP GAIN: AMPLIFIER GAIN

#### Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. Spectrum setting:
  - a. Peak Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 MHz.
  - b. AV Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 kHz  $\geq$  1/T Hz, where T = pulse width in seconds. We performed using a reduced video BW method was done with the analyzer in linear mode.
- 6. FYI: Duty Cycle Correction Factor (79 channel hopping)
  - a. Time to cycle through all channels =  $\Delta$  t=  $\tau$  [ms] x 79 channels = 229.100 ms, where  $\tau$  = pulse width
  - b. 100 ms/  $\Delta t$  [ms] =  $H \rightarrow$  Round up to next highest integer, H'=1
  - c. Worst Case Dwell Time = T [ms] x H '= 2.900 ms
  - d. Duty Cycle Correction = 20log (Worst Case Dwell Time/ 100ms) dB = -30.752 dB
- 7. Duty Cycle Correction Factor(AFH mode minimum channel number case 20 channels)
  - a. Time to cycle through all channels =  $\Delta$  t=  $\tau$  [ms] x 20 channels = 58.00 ms, where  $\tau$  = pulse width
  - b. 100 ms/  $\Delta t$  [ms] =  $H \rightarrow \text{Round up to next highest integer}$ , H' = 2
  - c. Worst Case Dwell Time =  $\tau$  [ms] x H '= 5.800 ms
  - d. Duty Cycle Correction(AFH) = 20log (Worst Case Dwell Time/ 100ms) dB = -24.7314 dB

FCC ID: VPYLB1DM/ IC: 772C-LB1DM HCT Co.,LTD.



Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 62 of 72

- e. We applied DCCF in the test result which hopping channel number is 20.
- 8. We have done Normal Mode and EDR Mode test.
- 9. This test is performed with hopping off.
- 10. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.



Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 63 of 72

Operation Mode: CH High(GFSK)

| Frequency | Reading | ※A.F+CL-AMP GAIN | ANT. POL | Duty Cycle | Total    | Limit    | Margin | Measurement |
|-----------|---------|------------------|----------|------------|----------|----------|--------|-------------|
|           |         |                  |          | Correction |          |          |        | Type        |
| [MHz]     | DBuV    | [dB]             | [H/V]    | [dB]       | [dBuV/m] | [dBuV/m] | [dB]   | .,,,,       |
| 4960      | 62.41   | -7.29            | V        | 0          | 55.12    | 73.98    | 18.86  | PK          |
| 4960      | 57.69   | -7.29            | V        | -24.73     | 25.67    | 53.98    | 28.31  | AV          |
| 7440      | 60.19   | -1.08            | V        | 0          | 59.11    | 73.98    | 14.87  | PK          |
| 7440      | 54.33   | -1.08            | V        | -24.73     | 28.52    | 53.98    | 25.46  | AV          |
| 4960      | 62.79   | -7.29            | Н        | 0          | 55.50    | 73.98    | 18.48  | PK          |
| 4960      | 58.72   | -7.29            | Н        | -24.73     | 26.70    | 53.98    | 27.28  | AV          |
| 7440      | 59.82   | -1.08            | Н        | 0          | 58.74    | 73.98    | 15.24  | PK          |
| 7440      | 53.20   | -1.08            | Н        | -24.73     | 27.39    | 53.98    | 26.59  | AV          |

Operation Mode: CH High(8DPSK)

| Frequency | Reading | *A.F+CL-AMP GAIN | ANT. POL | Duty Cycle | Total    | Limit    | Margin | Measurement |
|-----------|---------|------------------|----------|------------|----------|----------|--------|-------------|
|           |         |                  |          | Correction |          |          |        | Туре        |
| [MHz]     | DBuV    | [dB]             | [H/V]    | [dB]       | [dBuV/m] | [dBuV/m] | [dB]   |             |
| 4960      | 60.98   | -7.29            | V        | 0          | 53.69    | 73.98    | 20.29  | PK          |
| 4960      | 50.99   | -7.29            | V        | -24.73     | 18.97    | 53.98    | 35.01  | AV          |
| 7440      | 56.73   | -1.08            | V        | 0          | 55.65    | 73.98    | 18.33  | PK          |
| 7440      | 45.77   | -1.08            | V        | -24.73     | 19.96    | 53.98    | 34.02  | AV          |
| 4960      | 60.43   | -7.29            | Н        | 0          | 53.14    | 73.98    | 20.84  | PK          |
| 4960      | 52.17   | -7.29            | Н        | -24.73     | 20.15    | 53.98    | 33.83  | AV          |
| 7440      | 56.48   | -1.08            | Н        | 0          | 55.40    | 73.98    | 18.58  | PK          |
| 7440      | 45.38   | -1.08            | Н        | -24.73     | 19.57    | 53.98    | 34.41  | AV          |



Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 64 of 72

#### **Operation Mode:** CH High ( $\pi/4DQPSK$ )

| Frequency | Reading | *A.F+CL-AMP GAIN | ANT. POL | Duty Cycle | Total    | Limit    | Margin | Measurement |
|-----------|---------|------------------|----------|------------|----------|----------|--------|-------------|
|           |         |                  |          | Correction |          |          |        | Туре        |
| [MHz]     | DBuV    | [dB]             | [H/V]    | [dB]       | [dBuV/m] | [dBuV/m] | [dB]   | 1900        |
| 4960      | 60.61   | -7.29            | V        | 0          | 53.32    | 73.98    | 20.66  | PK          |
| 4960      | 51.14   | -7.29            | V        | -24.73     | 19.12    | 53.98    | 34.86  | AV          |
| 7440      | 56.62   | -1.08            | V        | 0          | 55.54    | 73.98    | 18.44  | PK          |
| 7440      | 45.80   | -1.08            | V        | -24.73     | 19.99    | 53.98    | 33.99  | AV          |
| 4960      | 60.64   | -7.29            | Н        | 0          | 53.35    | 73.98    | 20.63  | PK          |
| 4960      | 52.35   | -7.29            | Н        | -24.73     | 20.33    | 53.98    | 33.65  | AV          |
| 7440      | 56.80   | -1.08            | Н        | 0          | 55.72    | 73.98    | 18.26  | PK          |
| 7440      | 45.40   | -1.08            | Н        | -24.73     | 19.59    | 53.98    | 34.39  | AV          |

\* A·F: ANTENNA FACTOR

C·L: CABLE LOSS

AMP GAIN: AMPLIFIER GAIN

#### Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. Spectrum setting:
  - a. Peak Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 MHz.
  - b. AV Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 kHz  $\geq$  1/T Hz, where T = pulse width in seconds. We performed using a reduced video BW method was done with the analyzer in linear mode.
- 6. FYI: Duty Cycle Correction Factor (79 channel hopping)
  - a. Time to cycle through all channels =  $\Delta$  t=  $\tau$  [ms] x 79 channels = 229.100 ms, where  $\tau$  = pulse width
  - b. 100 ms/  $\Delta t$  [ms] =  $H \rightarrow$  Round up to next highest integer, H'=1
  - c. Worst Case Dwell Time = T [ms] x H '= 2.900 ms
  - d. Duty Cycle Correction = 20log (Worst Case Dwell Time/ 100ms) dB = -30.752 dB
- 7. Duty Cycle Correction Factor(AFH mode minimum channel number case 20 channels)
  - a. Time to cycle through all channels =  $\Delta$  t=  $\tau$  [ms] x 20 channels = 58.00 ms, where  $\tau$  = pulse width
  - b. 100 ms/  $\Delta t$  [ms] =  $H \rightarrow Round$  up to next highest integer, H' = 2
  - c. Worst Case Dwell Time =  $\tau$  [ms] x H '= 5.800 ms
  - d. Duty Cycle Correction(AFH) = 20log (Worst Case Dwell Time/ 100ms) dB = -24.7314 dB

FCC ID: VPYLB1DM/ IC: 772C-LB1DM HCT Co.,LTD.



Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 65 of 72

- e. We applied DCCF in the test result which hopping channel number is 20.
- 8. We have done Normal Mode and EDR Mode test.
- 9. This test is performed with hopping off.
- 10. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.



Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 66 of 72

## 8.6.3 RECEIVER SPURIOUS EMISSIONS

IC Rule(s) RSS-GEN

Test Requirements: Blow the table

Operating conditions: Under normal test conditions

Method of testing: Radiated

F < 1 GHz: RBW: 120 kHz, VBW: 300 kHz (Quasi Peak)

S/A. Settings:

F > 1 GHz: RBW: 1 MHz, VBW: 1 MHz (Peak)

Mode of operation: Receive

| Frequency | Field Strength             |
|-----------|----------------------------|
| (MHz)     | (microvolts/m at 3 meters) |
| 30 – 88   | 100                        |
| 88 - 216  | 150                        |
| 216 – 960 | 200                        |
| Above 960 | 500                        |

#### **Operation Mode: Receive:**

30 MHz ~ 1 GHz

| Frequency               | Reading | Ant. factor | Cable loss | Ant. POL | Total  | Limit           | Margin |
|-------------------------|---------|-------------|------------|----------|--------|-----------------|--------|
| MHz                     | dBμV    | dB/m        | dB         | (H/V)    | dBμV/m | dB <i>μ</i> V/m | dB     |
| No Critical peaks found |         |             |            |          |        |                 |        |

## Above 1 GHz

| Frequency               | Reading | Ant. factor | Cable loss | Ant. POL | Total           | Limit           | Margin |
|-------------------------|---------|-------------|------------|----------|-----------------|-----------------|--------|
| MHz                     | dBμV    | dB/m        | dB         | (H/V)    | dB <i>μ</i> V/m | dB <i>μ</i> V/m | dB     |
| No Critical peaks found |         |             |            |          |                 |                 |        |

F-01P-02-014 (Rev.00) FCC ID: VPYLB1DM/ IC: 772C-LB1DM





Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM

#### 8.6.4 RADIATED RESTRICTED BAND EDGES

# Test Requirements and limit, §15.247(d), §15.205, §15.209

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in section 15.209(a) (See section 15.205(c).

**Operation Mode** Normal(GFSK)

Operating Frequency 2402 MHz, 2480 MHz

Channel No CH 0, CH 78

| Frequency | Reading | ፠ A.F.+CL | Ant. Pol. | Total    | Limit    | Margin | Measurement |
|-----------|---------|-----------|-----------|----------|----------|--------|-------------|
| [MHz]     | dBuV    | [dB]      | [H/V]     | [dBuV/m] | [dBuV/m] | [dB]   | Туре        |
| 2390.0    | 26.79   | 31.28     | Н         | 58.07    | 73.98    | 15.91  | PK          |
| 2390.0    | 13.85   | 31.28     | Н         | 45.13    | 53.98    | 8.85   | AV          |
| 2390.0    | 27.25   | 31.28     | V         | 58.53    | 73.98    | 15.45  | PK          |
| 2390.0    | 13.78   | 31.28     | V         | 45.06    | 53.98    | 8.92   | AV          |
| 2483.5    | 26.76   | 31.28     | Н         | 58.04    | 73.98    | 15.95  | PK          |
| 2483.5    | 14.03   | 31.28     | Н         | 45.31    | 53.98    | 8.68   | AV          |
| 2483.5    | 27.56   | 31.28     | V         | 58.84    | 73.98    | 15.15  | PK          |
| 2483.5    | 13.97   | 31.28     | V         | 45.25    | 53.98    | 8.74   | AV          |



Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 68 of 72

Operation Mode EDR(8DPSK)

Operating Frequency 2402 MHz, 2480 MHz

Channel No CH 0, CH 78

| Frequency | Reading | ፠ A.F.+CL | Ant. Pol. | Total    | Limit    | Margin | Measurement |
|-----------|---------|-----------|-----------|----------|----------|--------|-------------|
| [MHz]     | dBuV    | [dB]      | [H/V]     | [dBuV/m] | [dBuV/m] | [dB]   | Туре        |
| 2390.0    | 26.73   | 31.28     | Н         | 58.01    | 73.98    | 15.97  | PK          |
| 2390.0    | 13.82   | 31.28     | Н         | 45.10    | 53.98    | 8.88   | AV          |
| 2390.0    | 26.87   | 31.28     | V         | 58.15    | 73.98    | 15.83  | PK          |
| 2390.0    | 13.72   | 31.28     | V         | 45.00    | 53.98    | 8.98   | AV          |
| 2483.5    | 26.48   | 31.28     | Н         | 57.76    | 73.98    | 16.23  | PK          |
| 2483.5    | 13.80   | 31.28     | Н         | 45.08    | 53.98    | 8.90   | AV          |
| 2483.5    | 27.16   | 31.28     | V         | 58.44    | 73.98    | 15.55  | PK          |
| 2483.5    | 13.58   | 31.28     | V         | 44.86    | 53.98    | 9.13   | AV          |

Operation Mode  $EDR(\pi/4DQPSK)$ 

Operating Frequency 2402 MHz , 2480 MHz

Channel No CH 0, CH 78

| Frequency | Reading | ፠ A.F.+CL | Ant. Pol. | Total    | Limit    | Margin | Measurement |
|-----------|---------|-----------|-----------|----------|----------|--------|-------------|
| [MHz]     | dBuV    | [dB]      | [H/V]     | [dBuV/m] | [dBuV/m] | [dB]   | Туре        |
| 2390.0    | 27.56   | 31.28     | Н         | 58.84    | 73.98    | 15.14  | PK          |
| 2390.0    | 13.82   | 31.28     | Н         | 45.10    | 53.98    | 8.88   | AV          |
| 2390.0    | 27.39   | 31.28     | V         | 58.67    | 73.98    | 15.31  | PK          |
| 2390.0    | 13.73   | 31.28     | V         | 45.01    | 53.98    | 8.97   | AV          |
| 2483.5    | 27.86   | 31.28     | Н         | 59.14    | 73.98    | 14.85  | PK          |
| 2483.5    | 13.74   | 31.28     | Н         | 45.02    | 53.98    | 8.97   | AV          |
| 2483.5    | 26.58   | 31.28     | V         | 57.86    | 73.98    | 16.13  | PK          |
| 2483.5    | 13.49   | 31.28     | V         | 44.77    | 53.98    | 9.22   | AV          |

**\*** A·F: ANTENNA FACTOR

C-L: CABLE LOSS

AMP GAIN: AMPLIFIER GAIN

## Notes:

- 1. Frequency range of measurement = 2483.5 MHz ~ 2500 MHz
- 2. Total = Fundamental Reading Value + Antenna Factor + Cable Loss + Duty Cycle Correction Factor



Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM Page 69 of 72

- 3. Spectrum setting:
  - a. Peak Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 MHz.
  - b. AV Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 kHz  $\geq$  1/T Hz, where T = pulse width in seconds.

We performed using a reduced video BW method was done with the analyzer in linear mode.

- 4. We have done Normal Mode, EDR Mode.
- 5. This test is performed with hopping off.
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.





Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM

## 8.7 POWERLINE CONDUCTED EMISSIONS

#### LIMIT

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolt (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

| Fraguency Denge (MUs) | Limits (dBμV) |          |  |  |  |
|-----------------------|---------------|----------|--|--|--|
| Frequency Range (MHz) | Quasi-peak    | Average  |  |  |  |
| 0.15 to 0.50          | 66 to 56      | 56 to 46 |  |  |  |
| 0.50 to 5             | 56            | 46       |  |  |  |
| 5 to 30               | 60            | 50       |  |  |  |

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

## **Test Configuration**

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

#### **TEST PROCEDURE**

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors Quasi Peak and Average Detector.

Note: We don't perform powerline conducted emission test. Because this EUT is used DC Voltage.





Report No.: HCT-R-1504-F002

9. LIST OF TEST EQUIPMENT

# 9.1 LIST OF TEST EQUIPMENT(Conducted Test)

| Manufacturer    | Model / Equipment           | Calibration<br>Date | Calibration<br>Interval | Serial No.         |
|-----------------|-----------------------------|---------------------|-------------------------|--------------------|
| Rohde & Schwarz | ENV216/ LISN                | 01/13/2015          | Annual                  | 100073             |
| Agilent         | E4440A/ Spectrum Analyzer   | 04/09/2014          | Annual                  | US45303008         |
| Agilent         | N9020A/ SIGNAL ANALYZER     | 05/23/2014          | Annual                  | MY51110063         |
| Agilent         | N1911A/Power Meter          | 01/15/2015          | Annual                  | MY45100523         |
| Agilent         | N1921A /POWER SENSOR        | 07/09/2014          | Annual                  | MY45241059         |
| Agilent         | 87300B/Directional Coupler  | 12/08/2014          | Annual                  | 3116A03621         |
| Hewlett Packard | 11667B / Power Splitter     | 05/19/2014          | Annual                  | 11275              |
| ITECH           | IT6720 / DC POWER SUPPLY    | 11/04/2014          | Annual                  | 010002156287001199 |
| TESCOM          | TC-3000C / BLUETOOTH TESTER | 04/11/2014          | Annual                  | 3000C000276        |
| Rohde & Schwarz | CBT / BLUETOOTH TESTER      | 05/07/2014          | Annual                  | 100422             |
| Agilent         | 8493C / Attenuator(10 dB)   | 07/21/2014          | Annual                  | 76649              |





Report No.: HCT-R-1504-F002 Model: LBEE6ZZ1DM

# 9.2 LIST OF TEST EQUIPMENT(Radiated Test)

|                       | W 11/5                                                    | Calibration | Calibration | 0 : 111     |
|-----------------------|-----------------------------------------------------------|-------------|-------------|-------------|
| Manufacturer          | Model / Equipment                                         | Date        | Interval    | Serial No.  |
| Schwarzbeck           | VULB 9160/ TRILOG Antenna                                 | 10/10/2014  | Biennial    | 3368        |
| HD                    | MA240/ Antenna Position Tower                             | N/A         | N/A         | 556         |
| EMCO                  | 1050/ Turn Table                                          | N/A         | N/A         | 114         |
| HD GmbH               | HD 100/ Controller                                        | N/A         | N/A         | 13          |
| HD GmbH               | KMS 560/ SlideBar                                         | N/A         | N/A         | 12          |
| Rohde & Schwarz       | SCU-18/ Signal Conditioning Unit                          | 09/04/2014  | Annual      | 10094       |
| CERNEX                | CBL18265035 / POWER AMP                                   | 07/23/2014  | Annual      | 22966       |
| CERNEX                | CBL26405040 / POWER AMP                                   | 04/04/2014  | Annual      | 19660       |
| Schwarzbeck           | BBHA 9120D/ Horn Antenna                                  | 07/05/2013  | Biennial    | 1151        |
| Schwarzbeck           | BBHA9170 / Horn Antenna(15 GHz ~ 40                       | 07/05/2013  | Biennial    | BBHA9170541 |
|                       | GHz)                                                      |             |             |             |
| Rohde & Schwarz       | FSP / Spectrum Analyzer                                   | 10/23/2014  | Annual      | 836650/016  |
| Wainwright Instrument | WHF3.0/18G-10EF / High Pass Filter                        | 06/23/2014  | Annual      | 8           |
| Wainwright Instrument | WHNX6.0/26.5G-6SS / High Pass Filter                      | 04/09/2014  | Annual      | 1           |
| Wainwright Instrument | WHNX7.0/18G-8SS / High Pass Filter                        | 04/04/2014  | Annual      | 29          |
| Wainwright Instrument | WRCJ2400/2483.5-2370/2520-60/14SS<br>/ Band Reject Filter | 06/17/2014  | Annual      | 1           |
| TESCOM                | TC-3000C / BLUETOOTH TESTER                               | 04/11/2014  | Annual      | 3000C000276 |
| Rohde & Schwarz       | CBT / BLUETOOTH TESTER                                    | 05/07/2014  | Annual      | 100422      |
| Rohde & Schwarz       | LOOP ANTENNA                                              | 09/03/2014  | Biennial    | 1513-175    |
| CERNEX                | CBL06185030 / POWER AMP                                   | 07/21/2014  | Annual      | 22965       |
| CERNEX                | CBLU1183540 / POWER AMP                                   | 07/21/2014  | Annual      | 22964       |