

TEST REPORT

BNetzA-CAB-02/21-102

Test report no.: 1-2063/21-01-10

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: https://www.ctcadvanced.com

e-mail: <u>mail@ctcadvanced.com</u>

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Applicant

Roche Diagnostics GmbH

Sandhofer Str. 116

68305 Mannheim / GERMANY Phone: +49 621 759-3409 Contact: Bernhard Lieske

e-mail: <u>bernhard.lieske@roche.com</u>

Manufacturer

Roche Diagnostics GmbH

Sandhofer Str. 116

68305 Mannheim / GERMANY

Test standard/s

FCC - Title 47 CFR Part 15 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio

frequency devices

RSS - 247 Issue 2 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence - Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: blood measuring instrument

Model name: CoaguChek Pro II
FCC ID: VO9-CCPROII
IC: 3100B-CCPROII

Lab Manager

Radio Communications

Frequency: 5150 MHz to 5250 MHz & 5725 MHz to 5850 MHz

Technology tested: IEEE 802.11 (W-LAN)

Antenna: Integrated antenna

Power supply: 3.7 V DC by Li-Ion battery

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:	
René Oelmann	David Lang	

Lab Manager

Radio Communications

Table of contents

1	Table of	contents	2
2	General	information	4
	2.2 A	otes and disclaimerpplication detailsest laboratories sub-contracted	4
3	Test sta	ndard/s, references and accreditations	5
4	Reportir	ng statements of conformity — decision rule	6
5	Test env	rironment	7
6	Test iter	n	7
		eneral descriptiondditional information	
7	Descript	ion of the test setup	8
	7.2 S 7.3 R	hielded semi anechoic chamberhielded fully anechoic chamberadiated measurements > 18 GHzonducted measurements with peak power meter & spectrum analyzer	.10 .11
8	Sequen	ce of testing	.13
	8.2 S 8.3 S	equence of testing radiated spurious 9 kHz to 30 MHzequence of testing radiated spurious 30 MHz to 1 GHzequence of testing radiated spurious 1 GHz to 18 GHzequence of testing radiated spurious above 18 GHz	.14 .15
9	Measure	ement uncertainty	.17
10	Sun	nmary of measurement results	.18
11	Add	litional comments	.19
12	Mea	asurement results	.21
	12.1 12.2 12.3	Identify worst case data rate	.22
	12.3	Duty cycle Maximum output power	
	12.4.1	Maximum output power according to FCC requirements	
	12.4.2	Maximum output power according to ISED requirements	
	12.5	Power spectral density Power spectral density according to FCC requirements	
	12.5.1 12.5.2	Power spectral density according to ISED requirements	
	12.5.2 12.6	Minimum emission bandwidth for the band 5.725-5.85 GHz	
	12.7	Spectrum bandwidth / 26 dB bandwidth	
	12.8	Occupied bandwidth / 99% emission bandwidth	
	12.9	Band edge compliance radiated	
	12.10	Spurious emissions radiated below 30 MHz	
	12.11	Spurious emissions radiated 30 MHz to 1 GHz	
	12.12	Spurious emissions radiated 1 GHz to 40 GHz	

13	Observations	73
14	Glossary	73
15	Document history	74
16	Accreditation Certificate - D-PL-12076-01-04	74
17	Accreditation Certificate - D-PL-12076-01-05	75

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2021-04-13

Date of receipt of test item: 2021-07-30

Start of test:* 2021-08-18

End of test:* 2021-11-26

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 4 of 75

^{*}Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

3 Test standard/s, references and accreditations

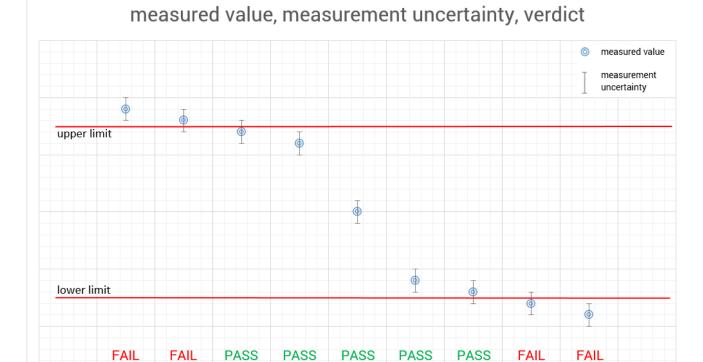
Test standard	Date	Description
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices
RSS - Gen Issue 5 incl. Amendment 1 & 2	February 2021	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus

Guidance	Version	Description
KDB 789033 D02	v02r01	Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E American National Standard for Methods of Measurement of
ANSI C63.4-2014	-/-	Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
KDB 996369 D04	v02	MODULAR TRANSMITTERINTEGRATION GUIDEGUIDANCE FOR HOSTPRODUCTMANUFACTURERS

Accreditation	Description	
D-PL-12076-01-04	Telecommunication and EMC Canada https://www.dakks.de/as/ast/d/D-PL-12076-01-04e.pdf	DAKKS Deutsche Akkreditierungsstelle D-PL-12076-01-04
D-PL-12076-01-05	Telecommunication FCC requirements https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf	DAKKS Deutsche Akkreditierungsstelle D-PL-12076-01-05

ISED Testing Laboratory Recognized Listing Number: DE0001

FCC designation number: DE0002


© CTC advanced GmbH Page 5 of 75

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

© CTC advanced GmbH Page 6 of 75

5 Test environment

Temperature	:	T _{nom} T _{max} T _{min}	+22 °C during room temperature tests No testing under extreme temperature conditions required. No testing under extreme temperature conditions required.
Relative humidity content	:		55 %
Barometric pressure	:		1021 hpa
		V_{nom}	3.7 V DC by Li-lon battery
Power supply	:	V_{max}	No testing under extreme voltage conditions required.
		V_{min}	No testing under extreme voltage conditions required.

6 Test item

6.1 General description

Kind of test item :	blood measuring instrument		
Model name :	CoaguChek Pro II		
HMN :	-/-		
PMN :	CoaguChek Pro II		
HVIN :	CC Pro II 4.5		
FVIN :	-/-		
S/N serial number :	Rad. 21072705		
5/14 Seriai Humber .	Cond. 21072707		
Hardware status :	HBM4.50		
Software status :	04.07.00-Dev1		
Firmware status :	-/-		
Frequency band :	5150 MHz to 5250 MHz & 5725 MHz to 5850 MHz		
Type of radio transmission:	OFDM		
Use of frequency spectrum :	Of DIVI		
Type of modulation :	CCK, (D)BPSK, (D)QPSK, 16 - QAM, 64 - QAM		
Number of channels :	9 (20 MHz) & 4 (40 MHz)		
Antenna :	Integrated antenna;		
Antenna .	1.5dBi (as declared by the manufacturer)		
Power supply :	3.7 V DC by Li-lon battery		

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-2063/21-01-01_AnnexA

1-2063/21-01-01_AnnexB 1-2063/21-01-01_AnnexD

© CTC advanced GmbH Page 7 of 75

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Each block diagram listed can contain several test setup configurations. All devices belonging to a test setup are identified with the same letter syntax. For example: Column Setup and all devices with an A.

Agenda: Kind of Calibration

k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlk!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 8 of 75

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

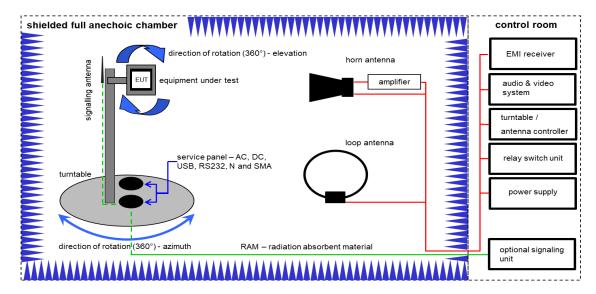
EMC32 software version: 10.59.00

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \(\mu V/m \))$


Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	А	Semi anechoic chamber	3000023	MWB AG		300000551	ne	-/-	-/-
3	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	01029	300005379	vIKI!	18.08.2021	17.08.2023
7	Α	Turntable	2089-4.0	EMCO		300004394	ne	-/-	-/-
8	Α	PC	TecLine	F+W		300004388	ne	-/-	-/-
9	Α	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	10.12.2020	09.12.2021

© CTC advanced GmbH Page 9 of 75

7.2 Shielded fully anechoic chamber

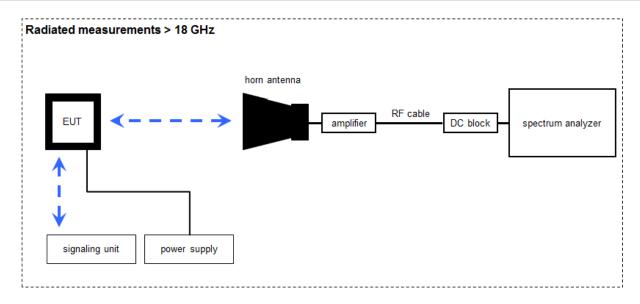
Measurement distance: horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \(\mu V/m \))$


Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	С	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKI!	13.06.2019	12.06.2022
2	B, C	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	В	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	vlKI!	12.03.2021	11.03.2023
4	B, C	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
5	В	Highpass Filter	WHKX2.9/18G-12SS	Wainwright	1	300003492	ev	-/-	-/-
6	B, C	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	11.12.2020	10.12.2021
7	В	Highpass Filter	WHK1.1/15G-10SS	Wainwright	3	300003255	ev	-/-	-/-
8	В	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
9	В	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	371	300003854	vlKI!	14.01.2020	13.01.2022
10	В	High Pass Filter	VHF-3500+	Mini Circuits	-/-	400000193	ne	-/-	-/-
11	В	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
12	B, C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
13	B, C	NEXIO EMV- Software	BAT EMC V3.20.0.26	EMCO		300004682	ne	-/-	-/-
14	B, C	PC	ExOne	F+W		300004703	ne	-/-	-/-
15	В	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011572	300005241	ev	-/-	-/-

© CTC advanced GmbH Page 10 of 75

7.3 Radiated measurements > 18 GHz

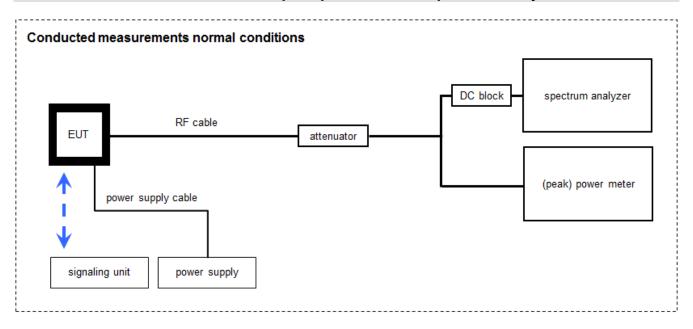
Measurement distance: horn antenna 50 cm

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \text{ }\text{μV/m})$


Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Microwave System Amplifier, 0.5-26.5 GHz	83017A	НР	00419	300002268	ev	-/-	-/-
2	A	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda	01096	300000486	vlKI!	21.01.2020	20.01.2022
3	А	Std. Gain Horn Antenna 26.5-40.0 GHz	V637	Narda	82-16	300000510	vlKI!	23.01.2020	22.01.2022
4	А	Broadband Low Noise Amplifier 18- 50 GHz	CBL18503070-XX	CERNEX	19338	300004273	ev	-/-	-/-
5	Α	Signal analyzer	FSV40	Rohde&Schwarz	101042	300004517	k	07.12.2020	06.12.2021
6	А	RF-Cable	ST18/SMAm/SMAm /48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
7	А	RF-Cable	ST18/SMAm/SMAm /48	Huber & Suhner	Batch no. 127377	400001183	ev	-/-	-/-
8	А	DC-Blocker 0.1-40 GHz	8141A	Inmet		400001185	ev	-/-	-/-

© CTC advanced GmbH Page 11 of 75

7.4 Conducted measurements with peak power meter & spectrum analyzer

WLAN tester version: 1.1.13; LabView2015

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	PC Tester R005	Intel Core i3 3220/3,3 GHz, Prozessor	Schwarzbeck Mess - Elektronik	2V2403033A45 23	300004589	ne	-/-	-/-
2	Α	RF-Cable	ST18/SMAm/SMAm/ 60	Huber & Suhner	Batch no. 606844	400001181	ev	-/-	-/-
3	Α	Coax Attenuator 10 dB 2W 0-40 GHz	MCL BW-K10- 2W44+	Mini Circuits		400001186	ev	-/-	-/-
4	А	Tester Software RadioStar (C.BER2 for BT Conformance)	Version 1.0.0.X	CTC advanced GmbH	0001	400001380	ne	-/-	-/-
5	Α	Signal analyzer	FSV40	Rohde&Schwarz	101042	300004517	k	07.12.2020	06.12.2021

© CTC advanced GmbH Page 12 of 75

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*) Note: The sequence will be repeated three times with different EUT orientations.

© CTC advanced GmbH Page 13 of 75

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 14 of 75

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna
 polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the
 premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 15 of 75

8.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 16 of 75

9 Measurement uncertainty

Measurement uncertainty				
Test case	Uncertainty			
Antenna gain	± 3	dB		
Power spectral density	± 1.5	66 dB		
DTS bandwidth	± 100 kHz (depends	s on the used RBW)		
Occupied bandwidth	± 100 kHz (depends	s on the used RBW)		
Maximum output power conducted	± 1.5	66 dB		
Detailed spurious emissions @ the band edge - conducted	± 1.56 dB			
Band edge compliance radiated	± 3 dB			
	> 3.6 GHz	± 1.56 dB		
Spurious emissions conducted	> 7 GHz	± 1.56 dB		
Spurious erifissions conducted	> 18 GHz	± 2.31 dB		
	≥ 40 GHz	± 2.97 dB		
Spurious emissions radiated below 30 MHz	± 3	dB		
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB			
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB			
Spurious emissions radiated above 12.75 GHz	± 4.5 dB			
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB			

© CTC advanced GmbH Page 17 of 75

10 Summary of measurement results

	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
×	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Title 47 Part 15 RSS 247, Issue 2	See table	2022-01- 21	Reduced test plan according customers specification.

Test specification clause	Test case		NC	NA	NP	Remark
-/-	Output power verification (cond.)		-/	/_		Declared
-/-	Antenna gain		-/	/-		Declared
U-NII Part 15	Duty cycle		-/	/-		-/-
§15.407(a) RSS - 247 (6.2.x.1)	Maximum output power (conducted & radiated)	\boxtimes				-/-
§15.407(a) RSS - 247 (6.2.x.1)	Power spectral density	\boxtimes				-/-
RSS - 247 (6.2.4.1)	Spectrum bandwidth 6dB bandwidth					-/-
§15.407(a) RSS - 247 (6.2.x.2)	Spectrum bandwidth 26dB bandwidth					-/-
RSS Gen clause 6.6	Spectrum bandwidth 99% bandwidth	_/_		-/-		
§15.205 RSS - 247 (6.2.x.2)	Band edge compliance radiated					-/-
§15.407(b) RSS - 247 (6.2.x.2)	TX spurious emissions radiated	×				-/-
§15.109 RSS-Gen	RX spurious emissions radiated				\boxtimes	-/-
§15.209(a) RSS-Gen	Spurious emissions radiated < 30 MHz					-/-
§15.107(a) §15.207	Spurious emissions conducted emissions< 30 MHz					-/-
§15.407 RSS - 247 (6.3)	DFS				\boxtimes	-/-

Notes:

C·	Compliant	NC:	Not compliant	NA:	Not applicable	NÞ.	Not performed
U.	Compliant	140.	Not compliant	INA.	Not applicable	141 .	Not perioritied

© CTC advanced GmbH Page 18 of 75

11 Additional comments

Reference documents: Module specification: WM PAN9026 Product Specification V1.3

Special test descriptions: None

Configuration descriptions: Operating mode vs. data rate vs. power setting:

Test mode:	Data rate:	Power setting:
a-mode	6 Mbps	20
nHT20-mode	MCS0	20
nHT40-mode	MCS0	20

☐ Devices selected by the customer

☐ Devices selected by the laboratory (Randomly)

Provided channels:

Channels with 20 MHz channel bandwidth:

U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz)						
	channel number & center frequency					
channel	36	40	44	48		
f _c / MHz	5180	5200	5220	5240	- /-	

U-NII-3 (5725 MHz to 5850 MHz)					
channel number & center frequency					
channel	149	153	157	161	165
f _c / MHz	5745	5765	5785	5805	5825

Channels with 40 MHz channel bandwidth:

U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz)				
channel number & center frequency				
channel	38	46	,	
f _c / MHz	5190	5230	-/-	

U-NII-3 (5725 MHz to 5850 MHz) channel number & center frequency				
channel 151		159		
f _c / MHz	5755	5795		

Note: The channels used for the tests were marked in bold in the list.

© CTC advanced GmbH Page 19 of 75

Test mode:		No test mode available. Iperf is used to transmit data to a companion device
	\boxtimes	Special software is used. EUT is transmitting pseudo random data by itself
Antennas and transmit op	erating m	odes:
		 Operating mode 1 (single antenna) Equipment with 1 antenna, Equipment with 2 diversity antennas operating in switched diversit mode by which at any moment in time only 1 antenna is used, Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)
		Operating mode 2 (multiple antennas, no beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming.
		Operating mode 3 (multiple antennas, with beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming. In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the

measurements.

© CTC advanced GmbH Page 20 of 75

12 Measurement results

12.1 Identify worst case data rate

Measurement:

All modes of the module will be measured with an average power meter to identify the maximum transmission power on mid channel. In the case that only one or two channels are available, only these will be measured.

In further tests only the identified worst case modulation scheme or bandwidth will be measured.

Measurement parameters:

Measurement parameter			
Detector:	Peak		
Sweep time:	Auto		
Resolution bandwidth:	3 MHz		
Video bandwidth:	3 MHz		
Trace mode: Max hold			
Used test setup:	See chapter 7.4 – A		
Measurement uncertainty: See chapter 9			

Results:

	Modulation scheme / bandwidth					
OFDM – mode	U-N	III-1	U-N	I-2C	U-N	III-3
	lowest	highest	lowest	highest	lowest	highest
	channel	channel	channel	channel	channel	channel
a – mode	6 Mbit/s	6 Mbit/s	-/-	-/-	6 Mbit/s	6 Mbit/s
n/ac HT20 – mode	MCS 0	MCS 0	-/-	-/-	MCS 0	MCS 0
n/ac HT40 – mode	MCS 0	MCS 0	-/-	-/-	MCS 0	MCS 0

© CTC advanced GmbH Page 21 of 75

12.2 Antenna gain

Maximum antenna gain: 1.5dBi (as per manufacturers declaration, see referenced documents section 10).

12.3 Duty cycle

Description:

The duty cycle is necessary to compute the maximum power during an actual transmission. The shown plots and values are to show an example of the measurement procedure. The real value is measured direct during the power measurement or power density measurement. The correction value is shown in each plot of these measurements.

Measurement:

Measurement parameter			
According to: KDB789033 D02, B.			
External result file(s) 1-2063_21-01-10_Annex_MR_A_1.pdf FCC Part 15.407 Max Output Power and PSD			
Used test setup: See chapter 7.4 – A			
Measurement uncertainty: See chapter 9			

Results:

Duty cycle and correction factor:

	Calculation method Ton (D2plot) * 100 / Tcomplete (D3plot) = duty cycle			
OFDM – mode				e
OFDIVI - IIIOGE	10 * log(duty cycle) = correction factor			
	Ton (D2plot) Tcomplete (D3plot) Duty cycle Co		Correction factor	
a – mode	-/-	-/-	99.9%	0dB
n/ac HT20 – mode	-/-	-/-	99.9%	0dB
n/ac HT40 – mode	-//- 99.9% OdB		0dB	

© CTC advanced GmbH Page 22 of 75

12.4 Maximum output power

12.4.1 Maximum output power according to FCC requirements

Description:

Measurement of the maximum output power conducted

Measurement:

Measurement parameter			
According to: KDB789033 D02, E.2.e.			
External result file(s) 1-2063_21-01-10_Annex_MR_A_1.pdf FCC Part 15.407 Max Output Power and PSD			
Used test setup:	See chapter 7.4 – A		
Measurement uncertainty: See chapter 9			

Limits:

Radiated output power	Conducted output power for mobile equipment	
Conducted power + 6 dBi antenna gain	250mW 5.150-5.250 GHz The lesser one of 250mW or 11 dBm + 10 log Bandwidth 5.250-5.350 GHz 250mW or 11 dBm + 10 log Bandwidth 5.470-5.725 GHz (where Bandwidth is the 26dB Bandwidth [MHz]) 1W 5.725-5.85 GHz	

© CTC advanced GmbH Page 23 of 75

Results:

	Maximum output power conducted [dBm]		
	U-NII-1 (5150 MHz to 5250 MHz)		
	Lowest channel Middle channel Highest channel		
а	11.3	12.8	10.9
	U-NII-3 (5725 MHz to 5850 MHz)		
	Lowest channel	Middle channel	Highest channel
	6.2	7.4	5.9

Results:

	Maximum output power conducted [dBm]			
	U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel Middle channel Highest channel			
n/ac HT20	10.4 11.9 10.2			
	U-NII-3 (5725 MHz to 5850 MHz)			
	Lowest channel	Middle channel	Highest channel	
	6.3	7.5	5.9	

Results:

	Maximum output power conducted [dBm]			
	U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel Highest channel			
n/ac HT40	10.3	8.9		
	U-NII-3 (5725 MHz to 5850 MHz)			
	Lowest channel	Highest channel		
	5.2 6.4			

© CTC advanced GmbH Page 24 of 75

12.4.2 Maximum output power according to ISED requirements

Description:

Measurement of the maximum output power conduced + radiated

Measurement:

Measurement parameter			
External result file(s) 1-2063_21-01-10_Annex_MR_A_1.pdf ISED Max Output Power and PSD			
Used test setup:	See chapter 7.4 – A		
Measurement uncertainty:	See chapter 9		

Limits:

Radiated output power	Conducted output power for mobile equipment
The lesser one of 200 mW or 10 dBm + 10 log Bandwidth 5.150-5.250 GHz 1 W or 17 dBm + 10 log Bandwidth 5.250-5.350 GHz 1 W or 17 dBm + 10 log Bandwidth 5.470-5.725 GHz (where Bandwidth is the 99% Bandwidth [MHz]) Conducted power + 6dBi antenna gain 5.725-5.825 GHz	The lesser one of 250mW or 11 dBm + 10 log Bandwidth 5.250-5.350 GHz 250mW or 11 dBm + 10 log Bandwidth 5.470-5.725 GHz (where Bandwidth is the 99% Bandwidth [MHz]) 1W 5.725-5.825 GHz

© CTC advanced GmbH Page 25 of 75

Results:

	Maximum output power [dBm]			
	U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel	Middle channel	Highest channel	
		Conducted		
	11.2	12.7	10.8	
	Radiated (calculated – see chapter antenna gain)			
а	12.7	14.2	12.3	
	U-NII-3 (5725 MHz to 5850 MHz)			
	Lowest channel	Middle channel	Highest channel	
	Conducted			
	6.1	7.3	5.7	
	Radiated (calculated – see chapter antenna gain)			
	7.6	8.8	7.2	

Results:

	Maximum output power [dBm]		
	U-NII-1 (5150 MHz to 5250 MHz)		
	Lowest channel	Middle channel	Highest channel
	Conducted		
	10.3	11.8	10.1
	Radiated (calculated – see chapter antenna gain)		
n/ac HT20	11.8	13.3	11.6
	U-NII-3 (5725 MHz to 5850 MHz)		
	Lowest channel	Middle channel	Highest channel
Conducted			
	6.2	7.4	5.9
	Radiated (calculated – see chapter antenna gain)		
	7.7	8.9	7.4

Results:

	Maximum output power [dBm]		
	U-NII-1 (5150 Mi	Hz to 5250 MHz)	
	Lowest channel	Highest channel	
	Cond	ucted	
	10.2	8.9	
	Radiated (calculated – see chapter antenna gain)		
n/ac HT40	11.7	10.4	
	U-NII-3 (5725 MHz to 5850 MHz)		
	Lowest channel	Highest channel	
	Conducted		
	5.0	6.4	
	Radiated (calculated – see chapter antenna gain)		
	6.5	7.9	

© CTC advanced GmbH Page 26 of 75

12.5 Power spectral density

12.5.1 Power spectral density according to FCC requirements

Description:

Measurement of the power spectral density of a digital modulated system. The measurement is repeated at the lowest, middle and highest channel.

Measurement:

Measurement parameter		
According to: KDB789033 D02, F.		
External result file(s)	1-2063_21-01-10_Annex_MR_A_1.pdf FCC Part 15.407 Max Output Power and PSD	
Used test setup:	See chapter 7.4 – A	
Measurement uncertainty:	See chapter 9	

Limits:

Power Spectral Density
power spectral density conducted ≤ 11 dBm in any 1 MHz band (band 5150 - 5250 MHz)
power spectral density conducted ≤ 11 dBm in any 1 MHz band (band 5250 – 5350 MHz) power spectral density conducted ≤ 11 dBm in any 1 MHz band (band 5470 – 5725 MHz)
power spectral density conducted ≤ 30 dBm in any 500 kHz band (band 5725 – 5850 MHz)

© CTC advanced GmbH Page 27 of 75

Results:

	Power spectral density (dBm/1MHz or dBm/500kHz)			
	U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel Middle channel Highest channel			
а	0.7	1.8	0.6	
	U-NII-3 (5725 MHz to 5850 MHz)			
	Lowest channel Middle channel Highest channel			
	-7.4 -6.6 -8.1			

Results:

	Power spectral density (dBm/1MHz or dBm/500kHz)		
	U-NII-1 (5150 MHz to 5250 MHz)		
	Lowest channel	Middle channel	Highest channel
n/ac HT20	-0.3	0.6	-0.4
	U-NII-3 (5725 MHz to 5850 MHz)		
	Lowest channel Middle channel Highe		Highest channel
	-7.5	-6.7	-8.2

Results:

	Power spectral density (dBm/1MHz or dBm/500kHz)		
U-NII-1 (5150 MHz to 5250 MHz)		Hz to 5250 MHz)	
	Lowest channel Highest chan		
n/ac HT40	-4.0	-4.9	
	U-NII-3 (5725 MHz to 5850 MHz)		
	Lowest channel	Highest channel	
	-11.1	-10.3	

© CTC advanced GmbH Page 28 of 75

12.5.2 Power spectral density according to ISED requirements

Description:

Measurement of the power spectral density of a digital modulated system. The measurement is repeated at the lowest, middle and highest channel.

Measurement:

Measurement parameter		
External result file(s) 1-2063_21-01-10_Annex_MR_A_1.pdf ISED Max Output Power and PSD		
Used test setup:	See chapter 7.4 – A	
Measurement uncertainty:	See chapter 9	

Limits:

Power Spectral Density

power spectral density e.i.r.p. ≤ 10 dBm in any 1 MHz band (band 5150 - 5250 MHz)

power spectral density conducted \leq 11 dBm in any 1 MHz band (band 5250 - 5350 MHz) power spectral density conducted \leq 11 dBm in any 1 MHz band (band 5470 - 5725 MHz)

power spectral density conducted ≤ 30 dBm in any 500 kHz band (band 5725 - 5850 MHz)

© CTC advanced GmbH Page 29 of 75

Results:

	Power spectral density (dBm/1MHz or dBm/500kHz)			
	Lowest channel	Middle channel	Highest channel	
	Conducted			
0	0.7	1.8	0.6	
a	Radiated (calculated – see chapter antenna gain)			
	2.2	3.3	2.1	
	U-NII-3 (5725 MHz to 5850 MHz)			
	Lowest channel	Middle channel	Highest channel	
	-7.4	-6.6	-8.1	

Results:

	Power spectral density (dBm/1MHz or dBm/500kHz)		
	U-NII-1 (5150 MHz to 5250 MHz)		
	Lowest channel	Middle channel	Highest channel
		Conducted	
/ LITOO	-0.3	0.6	-0.4
n/ac HT20	Radiated (calculated – see chapter antenna gain)		
	1.2	2.1	1.1
	U-NII-3 (5725 MHz to 5850 MHz)		
	Lowest channel	Middle channel	Highest channel
	-7.5	-6.7	-8.3

Results:

	Power spectral density (dBm/1MHz or dBm/500kHz)		
	U-NII-1 (5150 MHz to 5250 MHz)		
	Lowest channel	Highest channel	
	Cond	ucted	
n/aa UT40	-4.1	-4.8	
n/ac HT40	Radiated (calculated – see chapter antenna gain)		
	-2.6	-3.3	
	U-NII-3 (5725 MHz to 5850 MHz)		
	Lowest channel	Highest channel	
	-11.1	-10.3	

© CTC advanced GmbH Page 30 of 75

12.6 Minimum emission bandwidth for the band 5.725-5.85 GHz

Description:

Measurement of the 6 dB bandwidth of the modulated signal.

Measurement:

Measurement parameter		
According to: KDB789033 D02, C.2.		
External result file(s)	1-2063_21-01-10_Annex_MR_A_1.pdf FCC Part 15.407 & ISED Minimum Emission BW	
Used test setup:	See chapter 7.4 – A	
Measurement uncertainty:	See chapter 9	

Limits:

FCC	ISED
The minimum 6 dB bandwid	lth shall be at least 500 kHz.

Results:

	6 dB emission bandwidth (MHz)		
•	U-NII-3 (5725 MHz to 5850 MHz)		
a	Lowest channel Middle channel Highest channel		
	16.4	16.3	16.4

Results:

	6 dB emission bandwidth (MHz)		
n/00 LIT20	U-NII-3 (5725 MHz to 5850 MHz)		
n/ac HT20	Lowest channel	Middle channel	Highest channel
	17.6	17.3	17.6

Results:

	6 dB emission bandwidth (MHz)		
n/aa UT40	U-NII-3 (5725 MHz to 5850 MHz)		
n/ac HT40	Lowest channel Highest channel		
	36.3	36.3	

© CTC advanced GmbH Page 31 of 75

12.7 Spectrum bandwidth / 26 dB bandwidth

Description:

Measurement of the 26 dB bandwidth of the modulated signal.

Measurement:

Measurement parameter		
According to: KDB789033 D02, C.1.		
External result file(s) 1-2063_21-01-10_Annex_MR_A_1.pdf FCC Part 15.407 & ISED Bandwidths		
Used test setup: see chapter 7.4 – A		
Measurement uncertainty: See chapter 9		

Limits:

Spectrum Bandwidth - 26 dB Bandwidth

IC: Any unwanted emissions that fall into the band 5250-5350 MHz shall be attenuated below the channel power by at least 26 dB, when measured using a resolution bandwidth between 1 and 5% of the occupied bandwidth (i.e. 99% bandwidth), above 5250 MHz. The 26 dB bandwidth may fall into the 5250-5350 MHz band; however, if the occupied bandwidth also falls within the 5250-5350 MHz band, the transmission is considered as intentional and the devices shall comply with all requirements in the band 5250-5350 MHz including implementing dynamic frequency selection (DFS) and TPC, on the portion of the emission that resides in the 5250-5350 MHz band.

FCC: Radar Detection Function of Dynamic Frequency Selection (DFS). U-NII devices operating with any part of its 26 dB emission bandwidth in the 5.25-5.35 GHz and 5.47-5.725 GHz bands shall employ a DFS radar detection mechanism to detect the presence of radar systems and to avoid co-channel operation with radar systems.

© CTC advanced GmbH Page 32 of 75

Results:

	26 dB bandwidth (MHz)			
	U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel	Middle	channel	Highest channel
	19.9	20).4	20.2
	Lowest frequency		Highest frequency	
а	5171.7		5250.2*	
	U-NII-3 (5725 M		Hz to 5850 MHz)	
	Lowest channel	Middle	channel	Highest channel
	21.0	20.0		22.55
	Lowest frequency		Highest frequency	
	5736.5		5836.8	

 $[\]mbox{*}$ As per KDB 789033 D2 the 99% BW is used in lieu of the 26dB BW

Results:

	26 dB bandwidth (MHz)				
	U-NII-1 (5150 MHz to 5250 MHz)				
	Lowest channel	Middle	channel	Highest channel	
	20.6	20	0.6	20.4	
	Lowest frequency	ісу Н		ighest frequency	
n/ac HT20	5171.2			5249.0	
	U-NII-3 (5725 MHz to 5850 MHz)				
	Lowest channel	Middle	channel	Highest channel	
	20.9	20.7		22.1	
	Lowest frequency	су		lighest frequency	
	5734.6		5836.9		

Results:

	26 dB bandwidth (MHz)		
	U-NII-1 (5150 MHz to 5250 MHz)		
	Lowest channel	Highest channel	
	40.5	40.8	
	Lowest frequency	Highest frequency	
n/ac HT40	5171.2	5248.2	
	U-NII-3 (5725 MHz to 5850 MHz)		
	Lowest channel	Highest channel	
	40.3	40.1	
	Lowest frequency	Highest frequency	
	5736.0	5814.8	

© CTC advanced GmbH Page 33 of 75

12.8 Occupied bandwidth / 99% emission bandwidth

Description:

Measurement of the 99% bandwidth of the modulated signal acc. RSS-GEN.

Measurement:

Measurement parameter			
External result file(s) 1-2063_21-01-10_Annex_MR_A_1.pdf FCC Part 15.407 & ISED Bandwidths			
Test setup:	See sub clause 7.4 – B		
Measurement uncertainty:	See chapter 9		

Usage:

-/-	ISED
OBW is necessary for	r Emission Designator

© CTC advanced GmbH Page 34 of 75

Results:

	99% bandwidth (kHz)		
	U-NII-1 (5150 MHz to 5250 MHz)		
	Lowest channel Middle channel Highest channel		
a	16883	16783	16883
	U-NII-3 (5725 MHz to 5850 MHz)		
	Lowest channel	Middle channel	Highest channel
	16933	16833	16983

Results:

	99% bandwidth (kHz)		
	U-NII-1 (5150 MHz to 5250 MHz)		
	Lowest channel	Middle channel	Highest channel
n/ac HT20	17782	17732	17832
	U-NII-3 (5725 MHz to 5850 MHz)		
	Lowest channel	Middle channel	Highest channel
	17882	17782	17932

Results:

	99% bandwidth (kHz)	
	U-NII-1 (5150 MHz to 5250 MHz)	
	Lowest channel	Highest channel
n/ac HT40	36763	37063
	U-NII-3 (5725 MHz to 5850 MHz)	
	Lowest channel	Highest channel
	37063	36763

© CTC advanced GmbH Page 35 of 75

12.9 Band edge compliance radiated

Description:

Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to the lowest channel for the lower restricted band and to the highest channel for the upper restricted band. Measurement distance is 3m.

Measurement:

Measurement parameter		
Detector:	Peak / RMS	
Sweep time:	Auto	
Resolution bandwidth:	1 MHz	
Video bandwidth:	≥ 3 x RBW	
Span:	See plots!	
Trace mode:	Max Hold	
Test setup:	See sub clause 7.2 – B	
Measurement uncertainty:	See chapter 9	

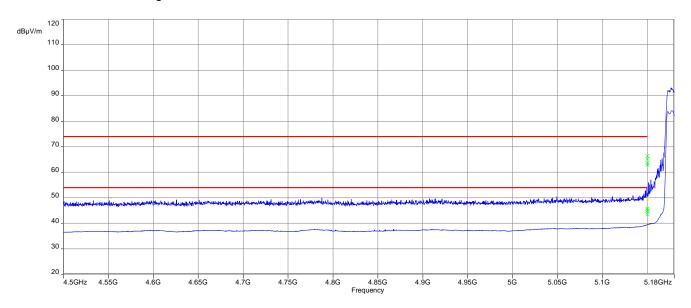
Limits:

Band Edge Compliance Radiated

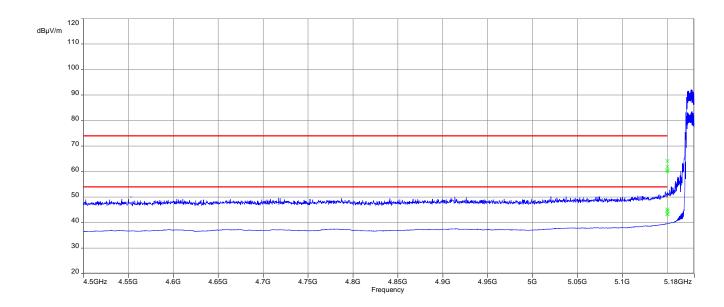
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)).

74 dBµV/m (peak) 54 dBµV/m (average)

Result:


Scenario	Band Edge Compliance Radiated [dBµV/m]
band edge	< 74 dBμV/m (peak) < 54 dBμV/m (average)

© CTC advanced GmbH Page 36 of 75



Plots:

Plot 1: lower band edge; U-NII-1; lowest channel; 20 MHz channel bandwidth

Plot 2: lower band edge; U-NII-1; lowest channel; 40 MHz channel bandwidth

© CTC advanced GmbH Page 37 of 75

12.10 Spurious emissions radiated below 30 MHz

Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The limits are re-calculated to a measurement distance of 3 m with 40 dB/decade according CFR Part 2.

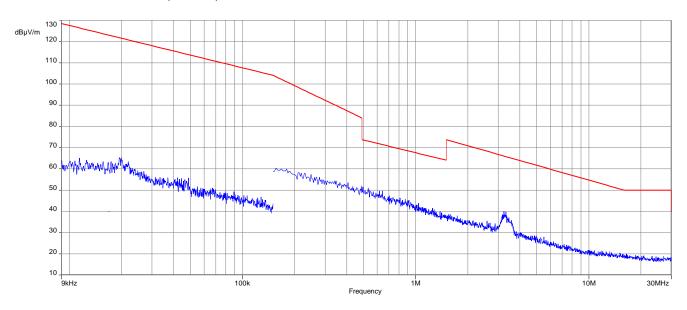
Measurement:

Measureme	nt parameter				
Detector:	Peak / Quasi Peak				
Sweep time:	Auto				
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz				
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz				
Span:	9 kHz to 30 MHz				
Trace mode:	Max Hold				
Test setup:	See sub clause 7.2 – C				
Measurement uncertainty:	See chapter 9				

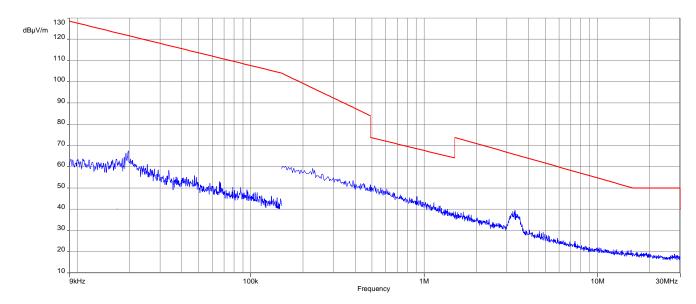
Limits:

Spurious Emissions Radiated < 30 MHz							
Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance					
0.009 - 0.490	2400/F(kHz)	300					
0.490 - 1.705	24000/F(kHz)	30					
1.705 – 30.0	30	30					

Results:

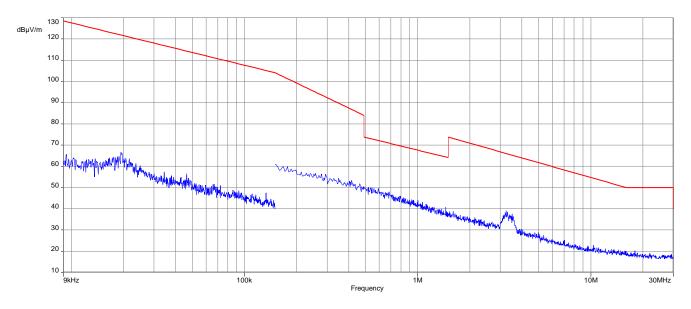

Spurious Emissions Radiated < 30 MHz [dBµV/m]							
F [MHz] Detector Level [dBµV/m]							
All detected emissions are more than 20 dB below the limit.							

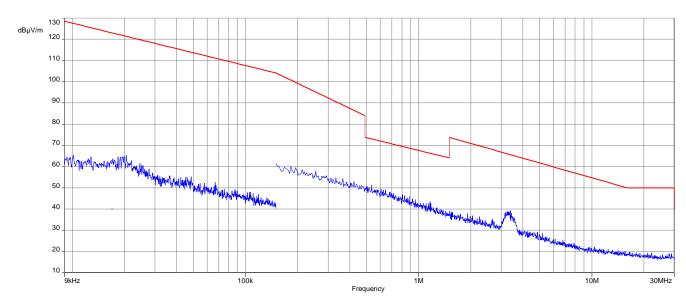
© CTC advanced GmbH Page 38 of 75



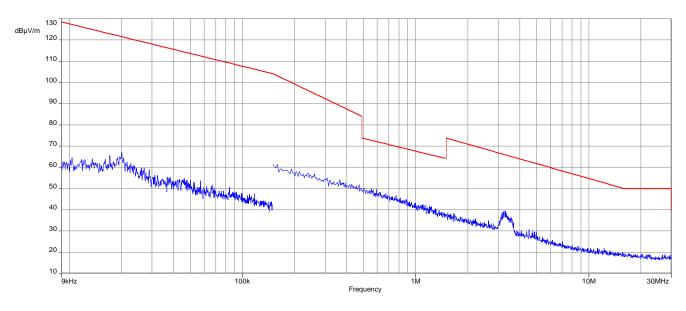
Plots: 20 MHz channel bandwidth

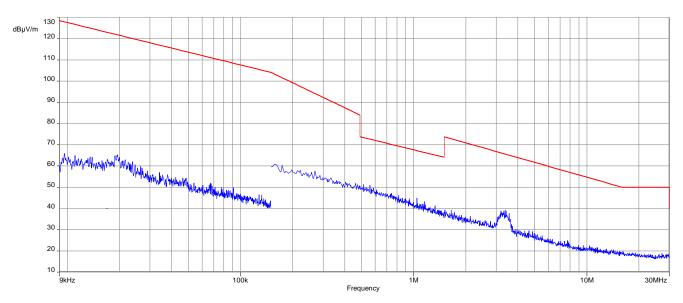
Plot 1: 9 kHz to 30 MHz, U-NII-1; lowest channel


Plot 2: 9 kHz to 30 MHz, U-NII-1; middle channel


© CTC advanced GmbH Page 39 of 75

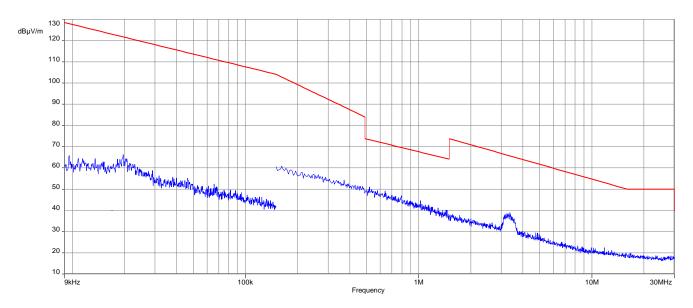
Plot 3: 9 kHz to 30 MHz, U-NII-1; highest channel


Plot 4: 9 kHz to 30 MHz, U-NII-3; lowest channel

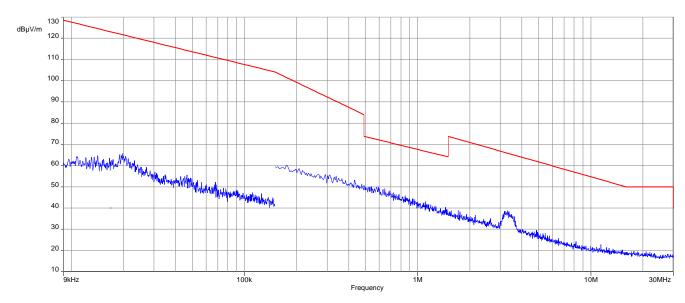

© CTC advanced GmbH Page 40 of 75

Plot 5: 9 kHz to 30 MHz, U-NII-3; middle channel

Plot 6: 9 kHz to 30 MHz, U-NII-3; highest channel

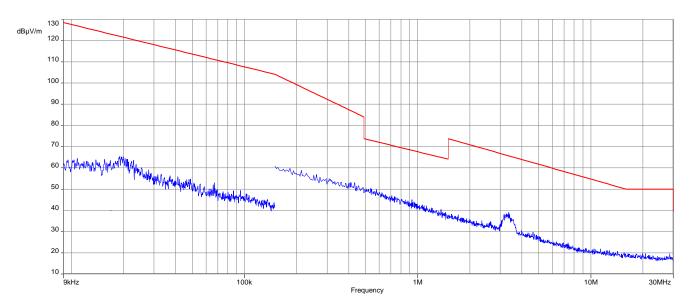


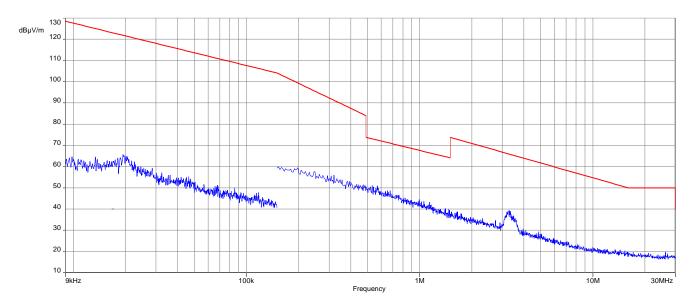
© CTC advanced GmbH Page 41 of 75



Plots: 40 MHz channel bandwidth

Plot 1: 9 kHz to 30 MHz, U-NII-1; lowest channel


Plot 2: 9 kHz to 30 MHz, U-NII-1; highest channel


© CTC advanced GmbH Page 42 of 75

Plot 3: 9 kHz to 30 MHz, U-NII-3; lowest channel

Plot 4: 9 kHz to 30 MHz, U-NII-3; highest channel

© CTC advanced GmbH Page 43 of 75

12.11 Spurious emissions radiated 30 MHz to 1 GHz

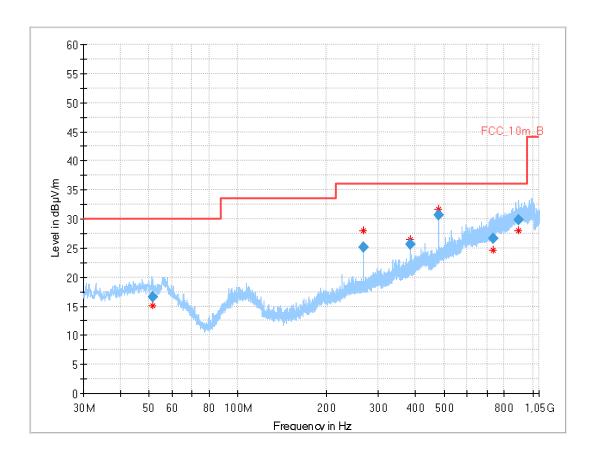
Description:

Measurement of the radiated spurious emissions and cabinet radiations below 1 GHz.

Measurement:

Measurement parameter							
Detector:	Quasi Peak						
Sweep time:	Auto						
Resolution bandwidth:	120 kHz						
Video bandwidth:	500 kHz						
Span:	30 MHz to 1 GHz						
Test setup:	See sub clause 7.1 – A						
Measurement uncertainty:	See chapter 9						

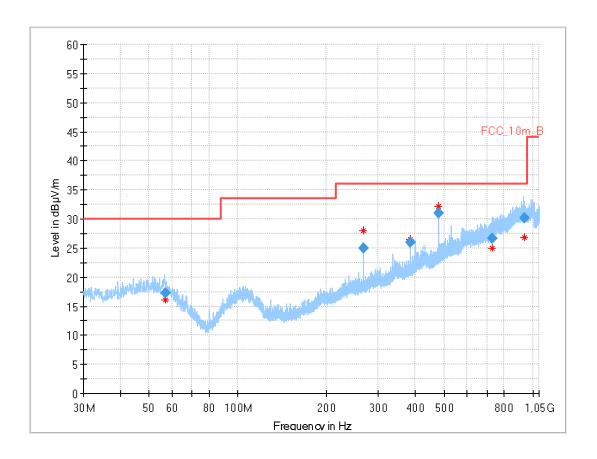
Limits:


	TX Spurious Emissions Radiated								
§15.209 / RSS-247									
Frequency (MHz) Field Strength (dBµV/m) Measurement distance									
30 - 88	30.0	10							
88 – 216	33.5	10							
216 – 960	36.0	10							
Above 960	54.0	3							
§15.407									
Outside the restricted bands!	-27 dBn	n / MHz							

© CTC advanced GmbH Page 44 of 75

Plots: 20 MHz channel bandwidth

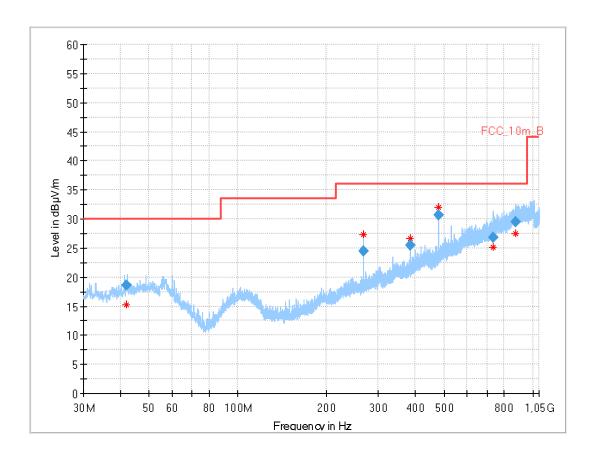
Plot 1: 30 MHz to 1 GHz; vertical & horizontal polarization; U-NII-1; lowest channel


Results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
51.578	16.64	30.0	13.4	1000	120.0	131.0	٧	112	15
265.997	25.16	36.0	10.8	1000	120.0	101.0	٧	-3	14
384.003	25.60	36.0	10.4	1000	120.0	105.0	٧	-22	17
480.005	30.59	36.0	5.4	1000	120.0	100.0	٧	-22	19
734.840	26.71	36.0	9.3	1000	120.0	170.0	V	112	23
895.287	29.76	36.0	6.2	1000	120.0	170.0	V	10	25

© CTC advanced GmbH Page 45 of 75

Plot 2: 30 MHz to 1 GHz; vertical & horizontal polarization; U-NII-1; middle channel



Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
56.738	17.33	30.0	12.7	1000	120.0	170.0	٧	270	16
266.001	24.98	36.0	11.0	1000	120.0	102.0	٧	22	14
383.990	25.99	36.0	10.0	1000	120.0	98.0	٧	-22	17
479.997	30.98	36.0	5.0	1000	120.0	98.0	٧	-22	19
730.673	26.64	36.0	9.4	1000	120.0	170.0	٧	-22	23
933.278	30.11	36.0	5.9	1000	120.0	170.0	Н	22	26

© CTC advanced GmbH Page 46 of 75

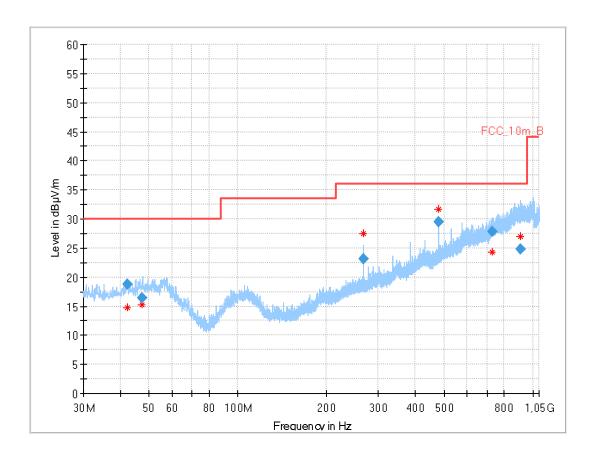
Plot 3: 30 MHz to 1 GHz; vertical & horizontal polarization; U-NII-1; highest channel



Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
41.850	18.65	30.0	11.4	1000	120.0	113.0	Н	-17	15
266.021	24.40	36.0	11.6	1000	120.0	114.0	٧	8	14
384.007	25.49	36.0	10.5	1000	120.0	104.0	٧	-22	17
479.991	30.74	36.0	5.3	1000	120.0	101.0	٧	-22	19
734.480	26.77	36.0	9.2	1000	120.0	170.0	V	247	23
874.729	29.55	36.0	6.5	1000	120.0	170.0	Н	248	25

© CTC advanced GmbH Page 47 of 75

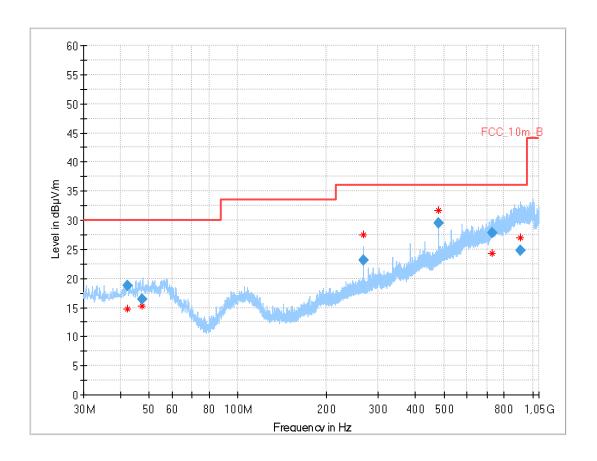
Plot 4: 30 MHz to 1 GHz; vertical & horizontal polarization; U-NII-3; lowest channel



Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
38.723	18.27	30.0	11.7	1000	120.0	110.0	Н	67	14
42.879	13.90	30.0	16.1	1000	120.0	114.0	V	67	15
266.003	23.66	36.0	12.3	1000	120.0	101.0	٧	4	14
479.999	30.10	36.0	5.9	1000	120.0	98.0	٧	-22	19
733.937	26.70	36.0	9.3	1000	120.0	101.0	V	-22	23
926.768	25.01	36.0	11.0	1000	120.0	170.0	٧	105	26

© CTC advanced GmbH Page 48 of 75

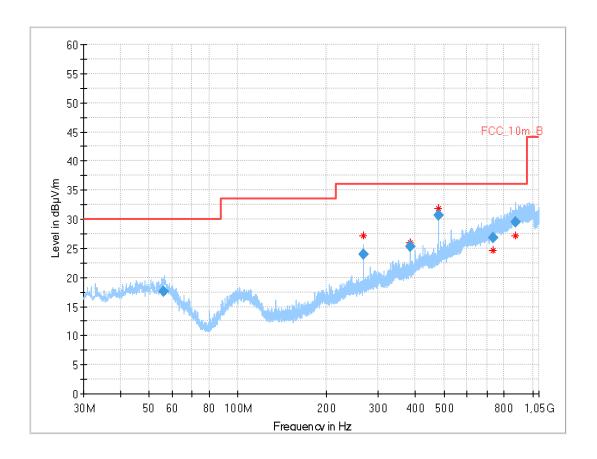
Plot 5: 30 MHz to 1 GHz; vertical & horizontal polarization; U-NII-3; middle channel



Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
42.233	18.81	30.0	11.2	1000	120.0	170.0	Н	292	15
47.300	16.45	30.0	13.6	1000	120.0	114.0	Н	247	15
265.978	23.05	36.0	13.0	1000	120.0	118.0	٧	16	14
479.984	29.58	36.0	6.4	1000	120.0	102.0	٧	-22	19
727.128	27.78	36.0	8.2	1000	120.0	140.0	٧	172	23
910.297	24.85	36.0	11.2	1000	120.0	170.0	Н	191	26

© CTC advanced GmbH Page 49 of 75

Plot 6: 30 MHz to 1 GHz; vertical & horizontal polarization; U-NII-3; highest channel


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
42.233	18.81	30.0	11.2	1000	120.0	170.0	Н	292	15
47.300	16.45	30.0	13.6	1000	120.0	114.0	Н	247	15
265.978	23.05	36.0	13.0	1000	120.0	118.0	٧	16	14
479.984	29.58	36.0	6.4	1000	120.0	102.0	٧	-22	19
727.128	27.78	36.0	8.2	1000	120.0	140.0	٧	172	23
910.297	24.85	36.0	11.2	1000	120.0	170.0	Н	191	26

© CTC advanced GmbH Page 50 of 75

Plots: 40 MHz channel bandwidth

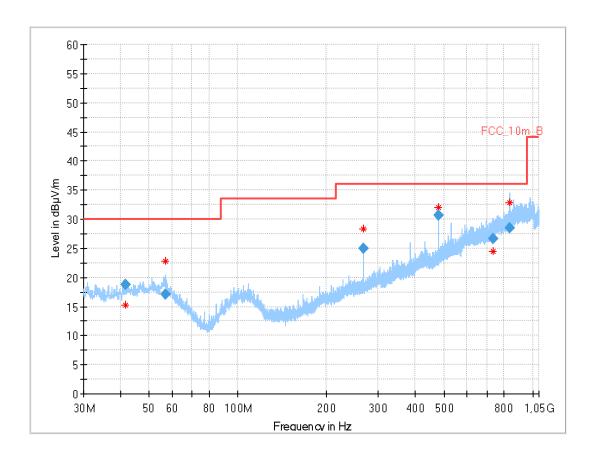
Plot 1: 30 MHz to 1 GHz; vertical & horizontal polarization; U-NII-1; lowest channel

Results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
55.984	17.68	30.0	12.3	1000	120.0	113.0	٧	247	16
265.961	23.97	36.0	12.0	1000	120.0	119.0	٧	12	14
383.976	25.26	36.0	10.7	1000	120.0	102.0	V	-22	17
479.997	30.75	36.0	5.3	1000	120.0	101.0	٧	-22	19
734.510	26.77	36.0	9.2	1000	120.0	170.0	V	247	23
874.202	29.51	36.0	6.5	1000	120.0	170.0	٧	-22	25

© CTC advanced GmbH Page 51 of 75

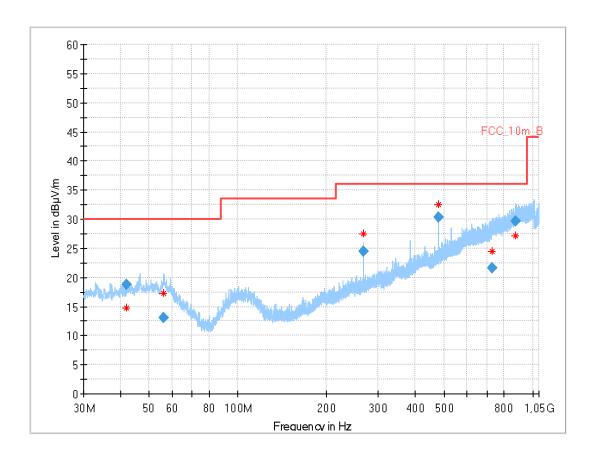
Plot 2: 30 MHz to 1 GHz; vertical & horizontal polarization; U-NII-1; highest channel



Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
56.442	12.49	30.0	17.5	1000	120.0	170.0	٧	67	16
266.019	24.43	36.0	11.6	1000	120.0	110.0	٧	-10	14
383.982	24.01	36.0	12.0	1000	120.0	100.0	٧	-22	17
479.992	30.97	36.0	5.0	1000	120.0	98.0	٧	-22	19
732.909	21.65	36.0	14.4	1000	120.0	170.0	Н	247	23
874.989	24.69	36.0	11.3	1000	120.0	126.0	٧	-2	25

© CTC advanced GmbH Page 52 of 75

Plot 3: 30 MHz to 1 GHz; vertical & horizontal polarization; U-NII-3; lowest channel



Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
41.647	18.75	30.0	11.3	1000	120.0	163.0	Н	247	15
56.891	17.10	30.0	12.9	1000	120.0	101.0	٧	157	16
266.008	24.96	36.0	11.0	1000	120.0	102.0	٧	-10	14
479.983	30.71	36.0	5.3	1000	120.0	101.0	٧	-21	19
731.779	26.58	36.0	9.4	1000	120.0	170.0	Н	67	23
834.520	28.52	36.0	7.5	1000	120.0	170.0	٧	157	24

© CTC advanced GmbH Page 53 of 75

Plot 4: 30 MHz to 1 GHz; vertical & horizontal polarization; U-NII-3; highest channel

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
41.800	18.73	30.0	11.3	1000	120.0	139.0	Н	157	15
56.027	13.15	30.0	16.9	1000	120.0	170.0	٧	100	16
266.020	24.50	36.0	11.5	1000	120.0	105.0	٧	-4	14
479.993	30.26	36.0	5.7	1000	120.0	98.0	V	-22	19
731.060	21.59	36.0	14.4	1000	120.0	170.0	٧	67	23
873.990	29.65	36.0	6.4	1000	120.0	118.0	٧	247	25

© CTC advanced GmbH Page 54 of 75

12.12 Spurious emissions radiated 1 GHz to 40 GHz

Description:

Measurement of the radiated spurious emissions and cabinet radiations from 1 GHz to 40 GHz.

Measurement:

Measure	ement parameter
	Quasi Peak below 1 GHz
Detector:	(alternative Peak)
	Peak above 1 GHz / RMS
Sweep time:	Auto
Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Span:	1 GHz to 40 GHz
Trace mode:	Max Hold / Average with 100 counts + 20 log (1 / X) for duty cycle lower than 100 %
Test setup:	See sub clause 7.2 – B See sub clause 7.3 – A
Measurement uncertainty:	See chapter 9

Limits:

TX Spurious Emissions Radiated						
§15.209 / RSS-247						
Frequency (MHz) Field Strength (dBµV/m) Measurement distance						
Above 960	54.0	3				
§15.407						
Outside the restricted bands! -27 dBm / MHz						

© CTC advanced GmbH Page 55 of 75

Results: 20 MHz channel bandwidth

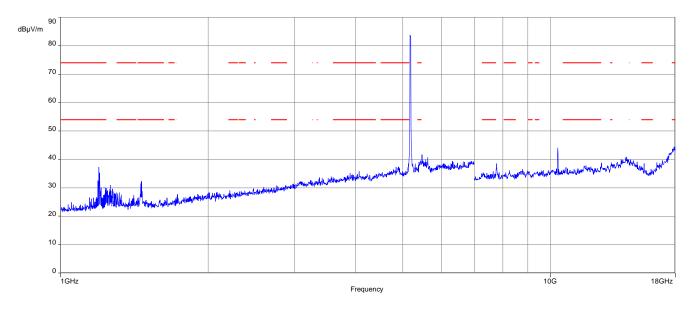
	TX Spurious Emissions Radiated [dBµV/m] / dBm							
	U-NII-1 (5150 MHz to 5250 MHz)							
Lowest channel			Middle channel			Highest channel		
F [MHz]	LIMHZI Detector				Level [dBµV/m]			
All detected peak emissions are below the average limit		All detected peak emissions are below the average limit			All detected peak emissions are below the average limit			
For emissions above 18 GHz please take look at the plots.			sions abov ake look at t		For emissions above 18 GHz please take look at the plots.			

	TX Spurious Emissions Radiated [dBμV/m] / dBm							
	U-NII-3 (5725 MHz to 5850 MHz)							
L	owest chanr	nel	М	iddle chann	iel	Highest channel		
F [MHz]	Detector	Level [dBµV/m]	FIMHz Detector				Level [dBµV/m]	
All detect	ed peak emi	ssions are	All detected peak emissions are			All detected peak emissions are		
below the average limit			below the average limit			below the average limit		
For emissions above 18 GHz			For emissions above 18 GHz			For emissions above 18 GHz		
please t	please take look at the plots.			ake look at t	he plots.	please ta	ake look at t	he plots.

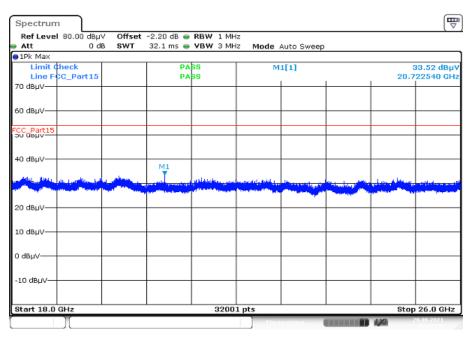
© CTC advanced GmbH Page 56 of 75

Results: 40 MHz channel bandwidth

	TX Spurious Emissions Radiated [dBµV/m] / dBm							
	U-NII-1 (5150 MHz to 5250 MHz)							
L	owest chan	nel	М	iddle chann	iel	Highest channel		
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	FIMHzI Detector The FIMHzI Detector				Level [dBµV/m]
All detected peak emissions are below the average limit			All detected peak emissions are below the average limit			All detected peak emissions are below the average limit		
For emissions above 18 GHz please take look at the plots.				sions above ake look at t			ssions above ake look at t	


	TX Spurious Emissions Radiated [dBµV/m] / dBm								
	U-NII-3 (5725 MHz to 5850 MHz)								
L	owest chanr	nel	М	iddle chann	iel	Hi	Highest channel		
F [MHz]	Detector	Level [dBµV/m]	FIMHz Detector FIMHz Detector				Level [dBµV/m]		
All detect	ed peak emi	ssions are	All detected peak emissions are			All detected peak emissions are			
below the average limit			below the average limit			below the average limit			
For emissions above 18 GHz			For emissions above 18 GHz			For emissions above 18 GHz			
please t	please take look at the plots.			ake look at t	he plots.	please take look at the plots.			

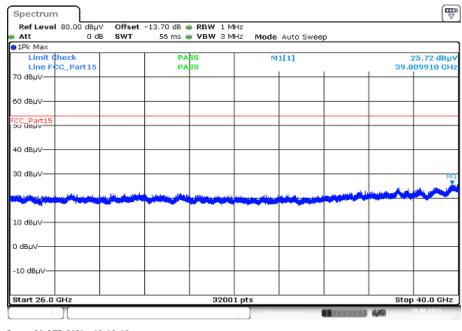
© CTC advanced GmbH Page 57 of 75



Plots: 20 MHz channel bandwidth

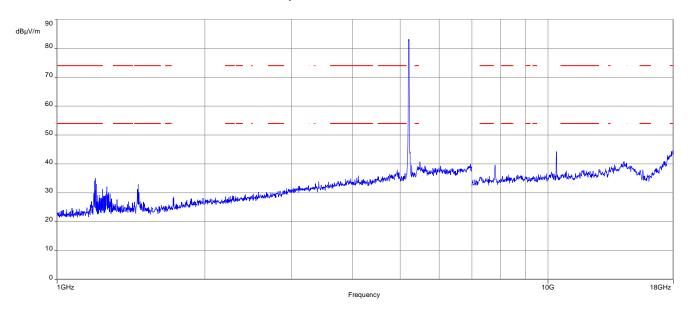
Plot 1: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-1; lowest channel

Plot 2: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-1; lowest channel



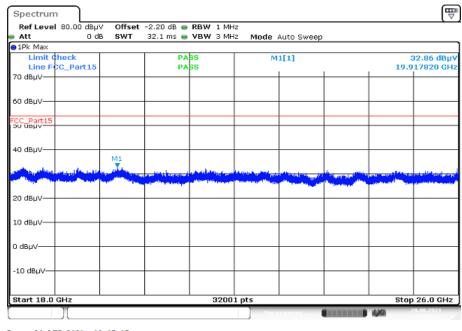
Date: 20.AUG.2021 08:47:38

© CTC advanced GmbH Page 58 of 75

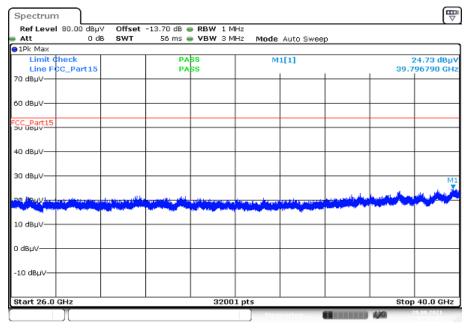


Plot 3: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-1; lowest channel

Date: 20.AUG.2021 09:19:18


Plot 4: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-1; middle channel

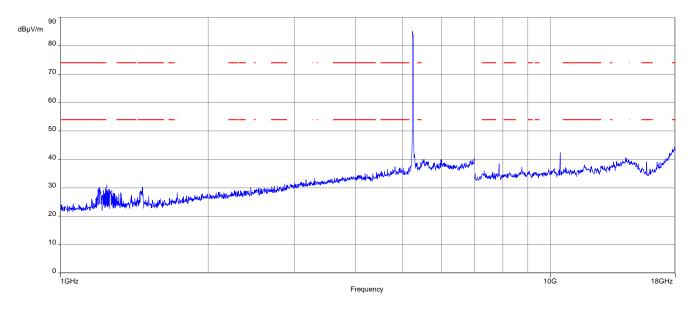
© CTC advanced GmbH Page 59 of 75



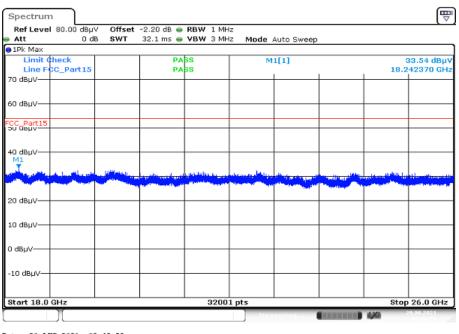
Plot 5: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-1; middle channel

Date: 20.AUG.2021 09:07:17

Plot 6: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-1; middle channel

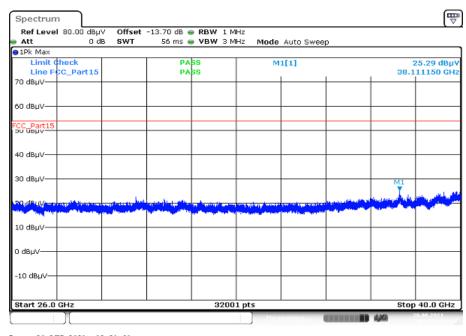


Date: 20.AUG.2021 09:20:25


© CTC advanced GmbH Page 60 of 75

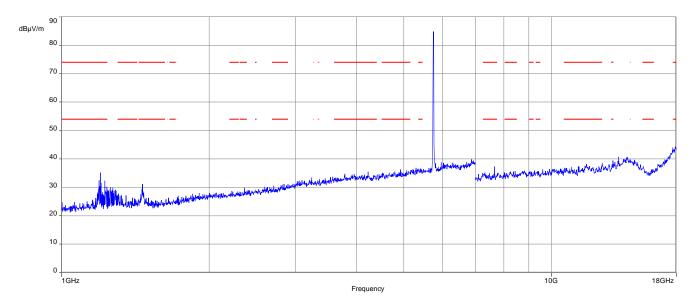
Plot 7: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-1; highest channel

Plot 8: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-1; highest channel



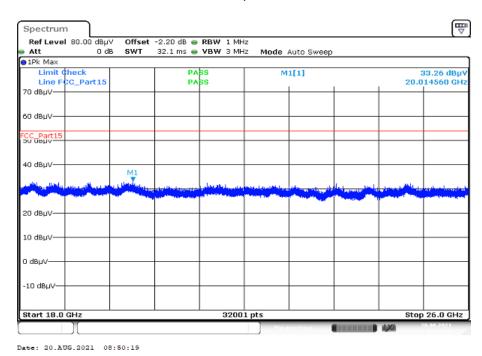
Date: 20.AUG.2021 08:48:59

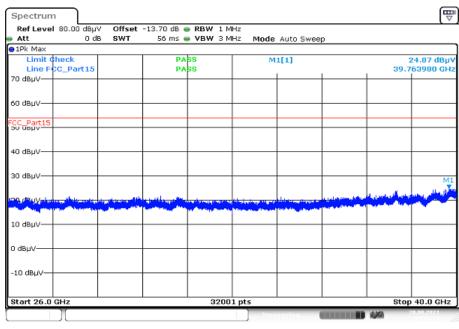
© CTC advanced GmbH Page 61 of 75



Plot 9: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-1; highest channel

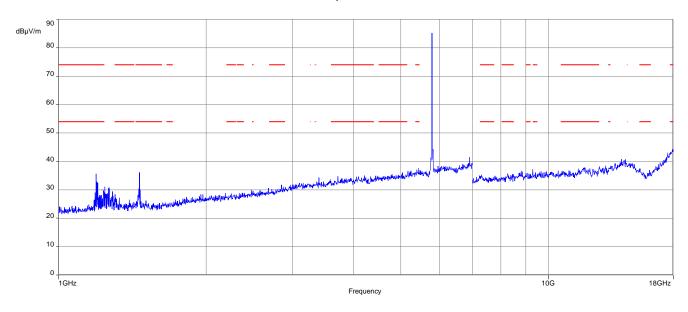
Date: 20.AUG.2021 09:21:31


Plot 10: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; lowest channel

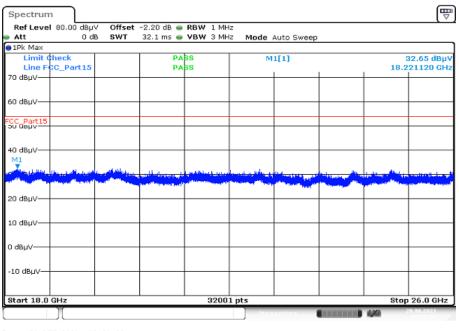

© CTC advanced GmbH Page 62 of 75

Plot 11: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-3; lowest channel

Plot 12: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-3; lowest channel

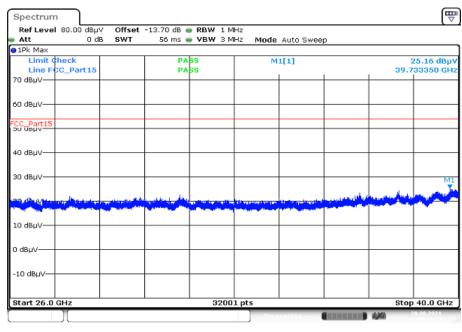


Date: 20.AUG.2021 09:22:38


© CTC advanced GmbH Page 63 of 75

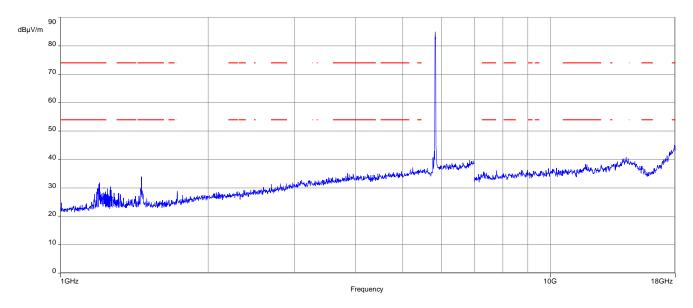
Plot 13: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; middle channel

Plot 14: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-3; middle channel



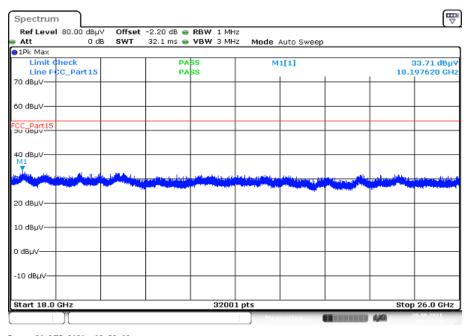
Date: 20.AUG.2021 08:51:22

© CTC advanced GmbH Page 64 of 75

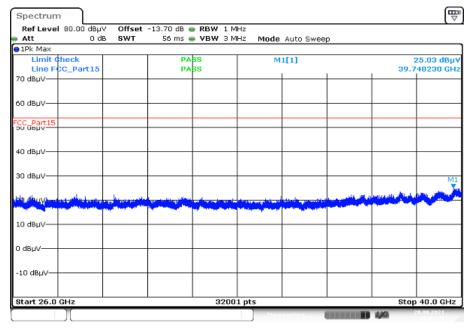


Plot 15: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-3; middle channel

Date: 20.AUG.2021 09:24:15


Plot 16: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; highest channel

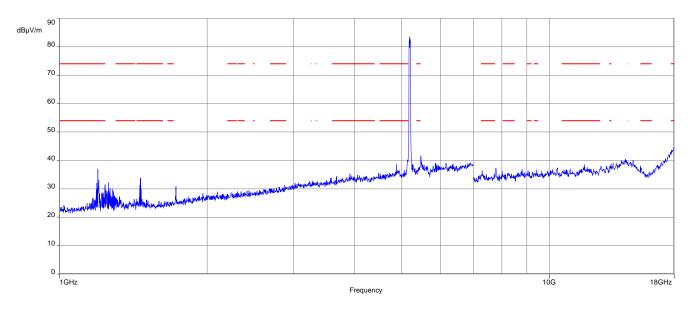
© CTC advanced GmbH Page 65 of 75



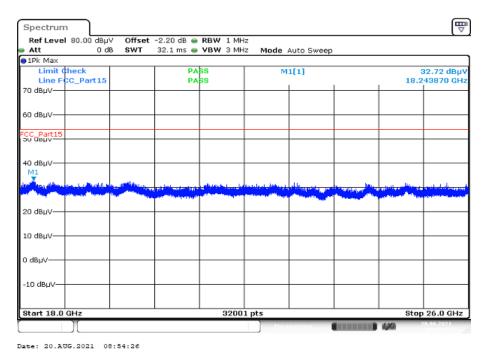
Plot 17: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-3; highest channel

Date: 20.AUG.2021 08:52:38

Plot 18: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-3; highest channel

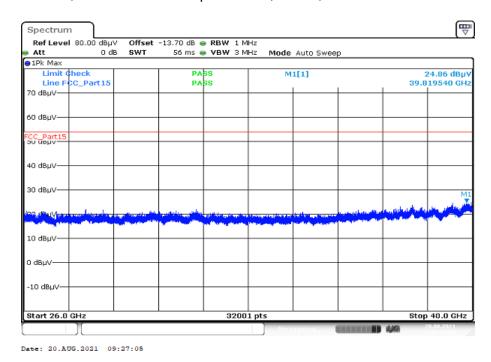

Date: 20.AUG.2021 09:25:48

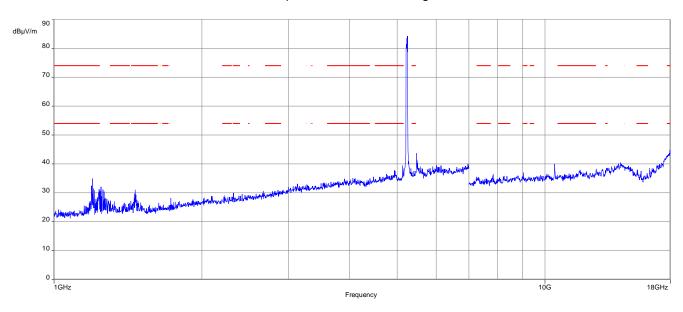
© CTC advanced GmbH Page 66 of 75



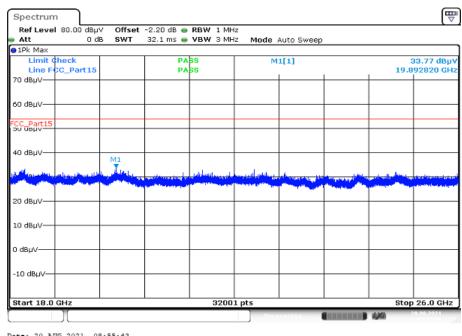
Plots: 40 MHz channel bandwidth

Plot 1: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-1; lowest channel

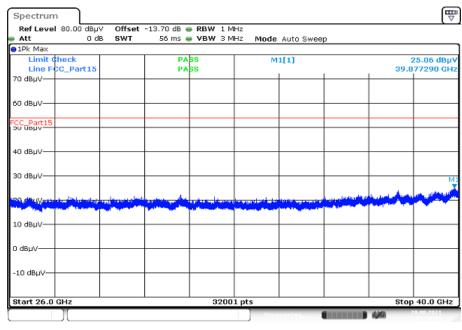

Plot 2: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-1; lowest channel


© CTC advanced GmbH Page 67 of 75

Plot 3: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-1; lowest channel


Plot 4: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-1; highest channel

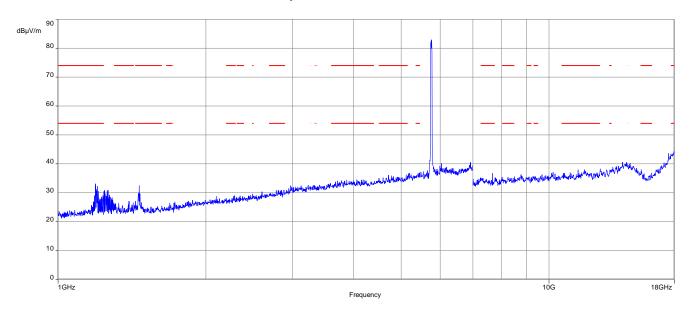
© CTC advanced GmbH Page 68 of 75



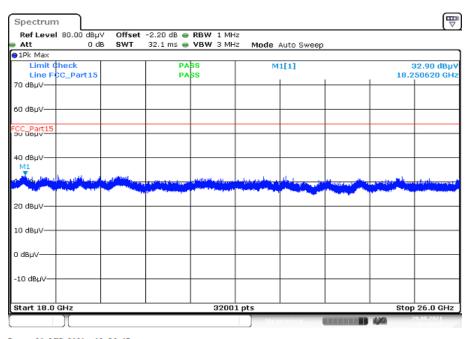
Plot 5: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-1; highest channel

Date: 20.AUG.2021 08:55:43

Plot 6: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-1; highest channel

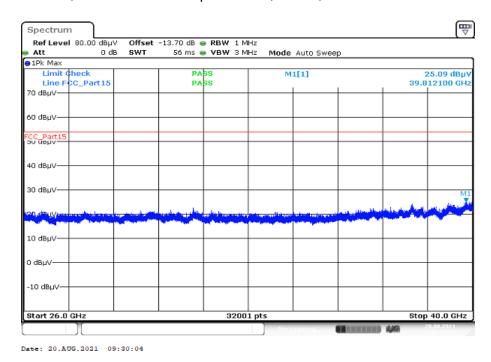


Date: 20.AUG.2021 09:28:30

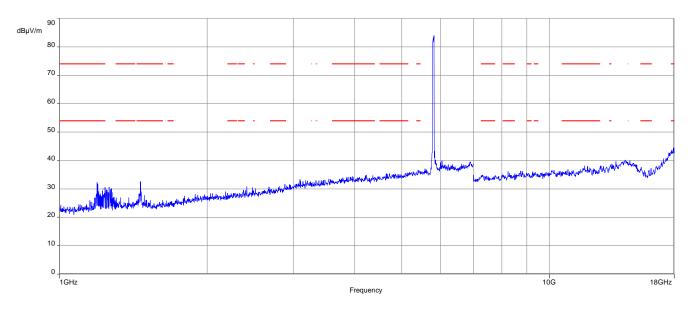

© CTC advanced GmbH Page 69 of 75

Plot 7: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; lowest channel

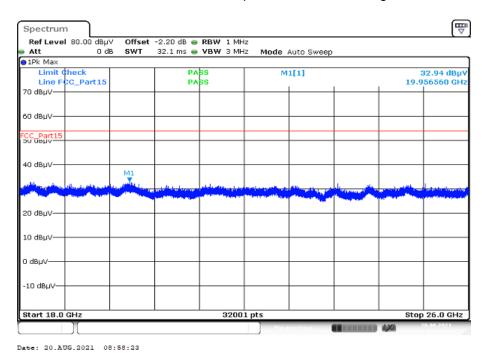
Plot 8: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-3; lowest channel

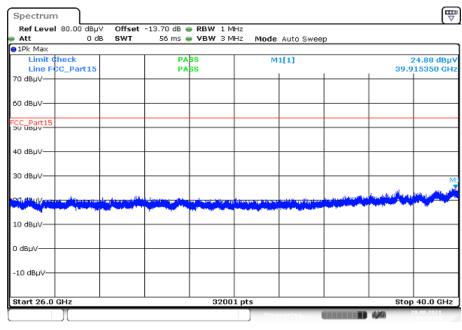


Date: 20.AUG.2021 08:56:47


© CTC advanced GmbH Page 70 of 75

Plot 9: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-3; lowest channel


Plot 10: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; highest channel


© CTC advanced GmbH Page 71 of 75

Plot 11: 18 GHz to 26 GHz; vertical & horizontal polarization; U-NII-3; highest channel

Plot 12: 26 GHz to 40 GHz; vertical & horizontal polarization; U-NII-3; highest channel

Date: 20.AUG.2021 09:31:20

© CTC advanced GmbH Page 72 of 75

13 Observations

No observations except those reported with the single test cases have been made.

14 Glossary

	Γ
EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
OC	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
ООВ	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum

© CTC advanced GmbH Page 73 of 75

15 Document history

Version	Applied changes	Date of release
-/-	Initial release	2022-01-21

16 Accreditation Certificate - D-PL-12076-01-04

first page	last page
DAKKS Deutsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1	Deutsche Akkreditierungsstelle GmbH
subsection 1 AkS/TelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields: Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards	Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmarkt 10 Europa-Allee 20 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-P12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 07 pages. Registration number of the certificate: D-PL-12076-01-04	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkrediticrungsstelle (GmbH (DAKS), Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAKS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkKStelleG) of 31 July 2009 (Federal Luw Gazette Ip. 2659) and the Regulation (EC) No 765/2008 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Union 12.18 of 9 July 2008, 30). ONAS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Accreditation Formul (EA) and International Juboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.uirsc.org ILAC: www.uirsc.org ILAC: www.uirsc.org ILAC: www.uirsc.org
Frankfurt am Main, 09 06.2020 by orded [pla-ling, if Plazelli Eigner Head of Division The certificate together with its annex reflects the stotus of the time of the date of insue. The current stotus of the scope of accreditation can be found in the database of accreditation can be found with the database of accreditation before a found that the database of accreditation before the Aktreditiverungsterile CmbH. Inter View adds. Adv Intercredited bodies—dobbs	

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-04e.pdf

or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-04_Canada_TCEMC.pdf

© CTC advanced GmbH Page 74 of 75

17 Accreditation Certificate - D-PL-12076-01-05

first page	last page
Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGSV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025-2018 to carry out tests in the following fields: Telecommunication (FCC Requirements) The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 09.06.2020 The certificate together with its sones replaces the stones of the feete of sous. The current stone of the scope of	Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmankt 10 Europa-Allee 52 Bundesallee 100 38116 Braunschweig Bundesallee 100 38116 Braunschweig Bundesallee 100 38116 Braunschweig Bundesallee 100 38116 Braunschweig Deutsche Akkreditierungsstelle GmbH (DAMS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation artested by DAMS. The accreditation was granted pursuant to the Act on the Accreditation Body (AMS-fields) of 31 July 2009 (Federal Law, Gazette 1 p. 252) and the Regulation (EC) No 765/2008 of the European Parliament and of the Cauncil of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Diffical Journal of the European Lonion 12 of 9 July 2008). 30, DAMS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EC), International Accreditation of Life Tourism and Cooperation (LIAC). The signationes to these agreements recognise each other's accreditation. The up-to-date state of membership can be retrieved from the following websites: Ex. www.european.accreditation.org IAC: www.iaf.ru
accrafication can be found in the distribuse of accrafiscs bodies of Devisible Alkreditionungsstelle GmbH. https://www.ackisk.do/en/content/accrafiscs-bodies-dokks line sates entituk.	

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-05e.pdf

or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-05_TCB_USA.pdf