

Test report No. Page Issued date : 12366336H-B-R1 : 1 of 26 : October 20, 2020

EMI TEST REPORT

Test Report No.: 12366336H-B-R1

Applicant : Ascensia Diabetes Care Holdings AG

Type of EUT : CONTOUR NEXT

Model Number of EUT : 7901

Test regulation : FCC Part 15 Subpart B: 2020 Class B

ICES-003 Issue 6: 2016 + Amendment 1: 2017 Class B

Test Result : Complied (Refer to SECTION 3.2)

1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.

- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the above regulation.
- 4. The test results in this report are traceable to the national or international standards.
- 5. This test report covers EMC technical requirements. It does not cover administrative issues such as Manual or non-EMC test related Requirements. (if applicable)
- 6. The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- 7. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.
- 8. The information provided from the customer for this report is identified in SECTION 1.
- 9. This report is a revised version of 12366336H-B. 12366336H-B is replaced with this report.

Date of test:

Representative test engineer:

July 6 to 13, 2018

Ken Fujita Engineer

Consumer Technology Division

Approved by:

Shinichi Miyazono Engineer

Consumer Technology Division

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address,

http://japan.ul.com/resources/emc_accredited/

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan.

There is no testing item of "Non-accreditation".

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 12366336H-B-R1

 Page
 : 2 of 26

 Issued date
 : October 20, 2020

REVISION HISTORY

Original Test Report No.: 12366336H-B

Revision	Test report No.	Date	Page revised	Contents
-	12366336Н-В	December 5, 2018	-	-
(Original)				
1	12366336H-B-R1	October 20, 2020	corresponding	Correction due to ISO 17025 revision
			page	
1	12366336H-B-R1	October 20, 2020	P.1	Change of NVLAP logo to NVLAP
				combined ILAC MRA mark
1	12366336H-B-R1	October 20, 2020	P.1, 7	Update of FCC version
1	12366336H-B-R1	October 20, 2020	P.3	Addition of the Abbreviations list
1	12366336H-B-R1	October 20, 2020	P.6	Addition of the following variant model;
				CONTOUR NEXT GEN (7902, 7902H)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12366336H-B-R1
Page : 3 of 26
Issued date : October 20, 2020

Reference: Abbreviations (Including words undescribed in this report)

AAN Asymmetric Artificial Network ILAC International Laboratory Accreditation Conference Alternating Current ISED Innovation, Science and Economic Development Canada AC AM Amplitude Modulation ISN Impedance Stabilization Network AMN ISO Artificial Mains Network International Organization for Standardization Amp, AMP Amplifier JAB Japan Accreditation Board ANSI American National Standards Institute Local Area Network LAN Ant, ANT Antenna LCL Longitudinal Conversion Loss ΑP Access Point LIMS Laboratory Information Management System ASK Amplitude Shift Keying LISN Line Impedance Stabilization Network Atten., ATT Attenuator MRA Mutual Recognition Arrangement ΑV Average N/A Not Applicable Binary Phase-Shift Keying National Institute of Standards and Technology BPSK NIST Bluetooth Basic Rate BR NS No signal detect. BT Bluetooth NSA Normalized Site Attenuation National Voluntary Laboratory Accreditation Program BT LE Bluetooth Low Energy NVLAP BW BandWidth OBW Occupied Band Width OFDM C.F Correction Factor Orthogonal Frequency Division Multiplexing Cal Int Calibration Interval PK CAV CISPR AV long-term flicker severity P_{LT} POHC(A) Partial Odd Harmonic Current CCK Complementary Code Keving Coupling Decoupling Network Pol., Pola. Polarization Ch., CH PR-ASK Phase Reversal ASK CISPR Comite International Special des Perturbations Radioelectriques short-term flicker severity Pst Quadrature Amplitude Modulation Corr. Correction QAM CPE Customer premise equipment OP Ouasi-Peak CW QPSK Quadri-Phase Shift Keying Continuous Wave DBPSK Differential BPSK r.m.s., RMS Root Mean Square Resolution Band Width DC Direct Current RBW DET Detector RE Radio Equipment D-factor Distance factor REV Reverse maximum absolute voltage change during an observation period Radio Frequency RF Dmax **DQPSK** Differential QPSK RFID Radio Frequency Identifier DSSS Direct Sequence Spread Spectrum RSS Radio Standards Specifications **EDR** Enhanced Data Rate RxReceiving e.i.r.p., EIRP Equivalent Isotropically Radiated Power SINAD Ratio of (Signal + Noise + Distortion) to (Noise + Distortion) EM clamp Electromagnetic clamp S/N Signal to Noise ratio **EMC** ElectroMagnetic Compatibility SA, S/A Spectrum Analyzer SG EMI ElectroMagnetic Interference Signal Generator SVSWR **EMS** ElectroMagnetic Susceptibility Site-Voltage Standing Wave Ratio European Norm THC(A) Total Harmonic Current e.r.p., ERP Effective Radiated Power THD(%) Total Harmonic Distortion EU European Union TR Test Receiver EUT Equipment Under Test Tx Transmitting Fac. VBW Video BandWidth FCC Federal Communications Commission Vert. Vertical **FHSS** WLAN Frequency Hopping Spread Spectrum Wireless LAN xDSL FM Frequency Modulation Generic term for all types of DSL technology (DSL: Digital Subscriber Line) Frea. Frequency FSK Frequency Shift Keying Fundamental Fund FWD Forward **GFSK** Gaussian Frequency-Shift Keying GNSS Global Navigation Satellite System Global Positioning System Hori. Horizontal **ICES** Interference-Causing Equipment Standard I/O Input/Output IEC International Electrotechnical Commission

UL Japan, Inc. Ise EMC Lab.

IEEE

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Intermediate Frequency

Institute of Electrical and Electronics Engineers

Test report No. Page

: 12366336H-B-R1

: 4 of 26 **Issued date** : October 20, 2020

CONTENTS PAGE SECTION 1: SECTION 2: Equipment under test (EUT)......5 **SECTION 3:** Test specification, procedures & results7 Operation of EUT during testing _______10 **SECTION 4: SECTION 5: SECTION 6:** Test data _______15 **APPENDIX 1:** Photographs of test setup......21

Conducted Emission 21 Radiated Emission22

UL Japan, Inc. Ise EMC Lab.

APPENDIX 3:

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12366336H-B-R1
Page : 5 of 26
Issued date : October 20, 2020

SECTION 1: Customer information

[Applicant]

Company Name : Ascensia Diabetes Care Holdings AG

Address : Peter Merian-Strasse 90 4052 Basel, Switzerland

[Manufacturer]

Company Name : PHC Corporation

Address : 2131-1 Minamigata, Toon, Ehime 791-0395 Japan

Telephone Number : +81-70-1499-9786 Facsimile Number : +81-89-966-2890 Contact Person : Masahiro Kishida

The information provided from the customer is as follows;

- Applicant, Type of EUT, Model Number of EUT on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (EUT) other than the Receipt Date
- SECTION 4: Operation of EUT during testing

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

Type : CONTOUR NEXT

Model Number : 7901

Serial Number : Refer to Section 4, Clause 4.2

Rating : DC 3.0 V Receipt Date : June 26, 2018

Country of Mass-production : Japan

Condition : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification : No Modification by the test lab

2.2 Product Description

Model: 7901 (referred to as the EUT in this report) is a CONTOUR NEXT.

Radio Specification

Bluetooth Low Energy (Ver.4.2)

Equipment Type : Transceiver

Frequency of Operation : 2402 MHz - 2480MHz

Type of Modulation : GFSK

Antenna Type : Pattern Antenna

Antenna Gain : 2.41 dBi

Operating Temperature : 0 deg. C to +55 deg. C

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

Test report No. : 12366336H-B-R1
Page : 6 of 26
Issued date : October 20, 2020

Variant models

Tested model; 7901 has following variant models;

CONTOUR NEXT	CONTOUR NEXT GEN	CONTOUR PLUS ELITE
7901(Tested model)	7902	7926
7901H	7902Н	7926Н

The differences between above variant model's type of equipment are intended country of destination and corresponding test strip.

The differences between above variant model's model No. are range of measurement results displayed and displayed unit.

These models are completely identical in Electrical characteristics and configuration.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12366336H-B-R1 Page : 7 of 26 Issued date : October 20, 2020

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart B

FCC Part 15 final revised on October 13, 2020

Title : FCC 47CFR Part15 Radio Frequency Device

Subpart B Unintentional Radiators

Test specification : ICES-003 Issue 6: 2016 + Amendment 1: 2017
Title : Spectrum Management and Telecommunications

Interference-Causing Equipment Standard

Information Technology Equipment (Including Digital Apparatus) –

Limits and Methods of Measurement

3.2 Procedures and results

Item	Test Procedure	Limits	Deviation	Worst margin	Result
Conducted emission	FCC: ANSI C63.4: 2014 7. AC power - line conducted emission measurements IC: ICES-003 Issue 6: 2016 + Amendment 1: 2017	Class B	N/A	[QP] 6.8 dB 0.19770 MHz, N [AV] 17.4 dB 0.19770 MHz, N	Complied a)
Radiated emission	FCC: ANSI C63.4: 2014 8. Radiated emission measurements IC: ICES-003 Issue 6: 2016 + Amendment 1: 2017	Class B	N/A	9.3 dB 462.000 MHz, Horizontal, QP	Complied b)

^{*}Note: UL Japan, Inc's EMI Work Procedure 13-EM-W0420.

エラー! 参照元が見つかりません。 Refer to APPENDIX 1 (data of Conducted Emission) エラー! 参照元が見つかりません。 Refer to APPENDIX 1 (data of Radiated Emission)

Symbols:

Complied The data of this test item has enough margin, more than the measurement uncertainty.

Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.

3.3 Addition to standard

No addition, exclusion nor deviation has been made from the standard.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} The revision does not affect the test result conducted before its effective date.

Test report No. : 12366336H-B-R1
Page : 8 of 26
Issued date : October 20, 2020

3.4 Uncertainty

There is no applicable rule of uncertainty in this applied standard. Therefore, the results are derived depending on whether or not laboratory uncertainty is applied.

\mathbf{EMI}

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Frequency range	Conducted emission using AMN(LISN) (+/-)
0.009 MHz to 0.15 MHz	3.8 dB
0.15 MHz to 30 MHz	3.4 dB

	Radiated emission (Below 1 GHz)					
Polarity	(3 m	*)(+/-)	(10 m*)(+/-)			
	30 MHz to 200 MHz	200 MHz to 1000 MHz	30 MHz to 200 MHz	200 MHz to 1000 MHz		
Horizontal	4.8 dB	5.2 dB	4.8 dB	5.0 dB		
Vertical	5.0 dB	6.3 dB	4.9 dB	5.0 dB		

Radiated emission (Above 1 GHz)						
(3 m [*]	*)(+/-)	(1 r	(10 m*)(+/-)			
1 GHz to 6 GHz	6 GHz to 18 GHz	10 GHz to 26.5 GHz	26.5 GHz to 40 GHz	1 GHz to 18 GHz		
5.0 dB	5.3 dB	5.8 dB	5.8 dB	5.2 dB		

^{*} Measurement distance

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12366336H-B-R1 Page : 9 of 26

Issued date : October 20, 2020

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

 $*NVLAP\ Lab.\ code:\ 200572-0\ /\ FCC\ Test\ Firm\ Registration\ Number:\ 199967\ /\ ISED\ Lab\ Company\ Number:\ 2973C$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	M aximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-

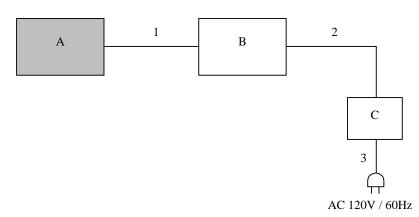
3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12366336H-B-R1
Page : 10 of 26
Issued date : October 20, 2020


SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

Mode		Remarks		
Measuring mode		Radiated emission test only		
2)	USB Communication mode	-		

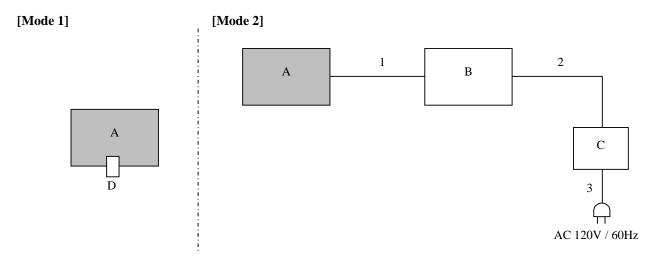
4.2 Configuration and peripherals

[Conducted emission test]

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	CONTOUR NEXT	7901	P200225	PHC Corporation	EUT
В	Laptop PC	CF-N8HWCDPS	9LKSA04258	Panasonic	-
С	AC Adapter	CF-AA6372B	6372BM409X14190B	Panasonic	-


List of cables used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	USB Cable	1.5	Shielded	Shielded	-
2	DC Cable	1.8	Unshielded	Unshielded	-
3	AC Cable	0.9	Unshielded	Unshielded	-

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12366336H-B-R1 Page : 11 of 26 Issued date : October 20, 2020

[Radiated emission test]

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks
Δ.	CONTOUR NEXT	7901	P200532	Ascensia Diabetes	EUT
Α				Care Holdings AG	
В	Laptop PC	CF-N8HWCOPS	0BKSA08723	Panasonic	-
C	AC Adapter	CF-AA6372B	6372BM409X18054B	Panasonic	-
D	Resister strip	-	-	-	-

List of cables used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	USB Cable	2.0	Shielded	Shielded	-
2	DC Cable	1.0	Unshielded	Unshielded	-
3	AC Cable	0.9	Unshielded	Unshielded	-

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12366336H-B-R1
Page : 12 of 26
Issued date : October 20, 2020

SECTION 5: Conducted Emission

5.1 Operating environment

Test place : No.2 semi anechoic chamber

Temperature : See data Humidity : See data

5.2 Test configuration

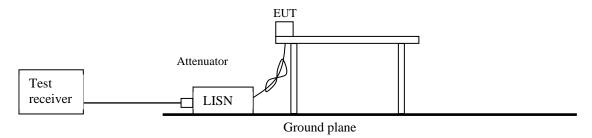
EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The rear of tabletop was located 40 cm to the vertical conducting plane. The rear of EUT and its peripherals was aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80 cm from any other grounded conducting surface. EUT was located 80 cm from the LISN/AMN and excess AC cable was bundled in center. I/O cables that were connected to the other peripherals were bundled in center. They were folded back and forth forming a bundle 30 cm to 40 cm long and were hanged at a 40 cm height to the ground plane. Each EUT current-carrying power lead, except the ground (safety) lead, was individually connected through a LISN/AMN to the input power source. All unused 50 ohm connectors of the LISN/AMN were resistivity terminated in 50 ohm when not connected to the measuring equipment.

Photographs of the set up are shown in Appendix 3.

Frequency range : 0.15 MHz - 30 MHz

EUT position : Table top EUT operation mode : See Clause 4.1

5.3 Test procedure


The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT within a semi anechoic chamber. The EUT was connected to a Line Impedance Stabilization Network (LISN)/ Artificial Mains network (AMN). An overview sweep with peak detection has been performed. The measurements have been performed with a quasi-peak detector and if required, with an average detector.

The conducted emission measurements were made with the following detector function of the test receiver.

Detector Type : Quasi-Peak and CISPR AV

IF Bandwidth : 9 kHz

[Test Setup]

5.4 Test result

Summary of the test results: Pass

The test result is rounded off to one or two decimal places, so some differences might be observed.

Date: July 6, 2018 Test engineer: Ken Fujita

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12366336H-B-R1
Page : 13 of 26
Issued date : October 20, 2020

SECTION 6: Radiated Emission

6.1 Operating environment

Test place : No.2 semi anechoic chamber

Temperature : See data Humidity : See data

6.2 Test configuration

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The EUT was set on the center (Mode 1) / edge (Mode 2) of the tabletop.

Test was made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna was varied in height above the conducting ground plane to obtain the maximum signal strength. Photographs of the set up are shown in Appendix 3.

6.3 Test conditions

Frequency range : 30 MHz - 200 MHz (Biconical antenna) / 200 MHz - 1000 MHz (Logperiodic antenna)

1000 MHz - 13000 MHz (Horn antenna)

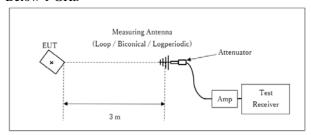
Test distance : 3 m
EUT position : Table top
EUT operation mode : See Clause 4.1

6.4 Test procedure

The height of the measuring antenna varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

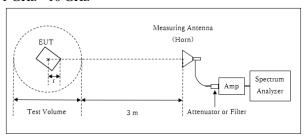
The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver.

The radiated emission measurements were made with the following detector function of the Test Receiver.

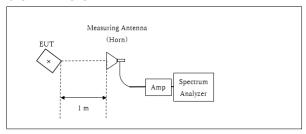

Frequency	Below 1GHz	Above 1GHz
Instrument used	Test Receiver	Test Receiver
IF Bandwidth	QP: BW 120 kHz	PK: BW 1 MHz, CISPR AV: BW 1 MHz

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12366336H-B-R1
Page : 14 of 26
Issued date : October 20, 2020


Test Setup

Below 1 GHz


× : Center of turn table

1 GHz - 10 GHz

- r : Radius of an outer periphery of EUT
- ×: Center of turn table

10 GHz - 13 GHz

×: Center of turn table

Test Distance: 3 m

[Mode 1]

Distance Factor: $20 \times \log (3.75 \text{ m} / 3.0 \text{ m}) = 1.94 \text{ dB}$ * Test Distance: (3 + Test Volume / 2) - r = 3.75 m

Test Volume: 1.5 m

(Test Volume has been calibrated based on CISPR 16-1-4.)

r = 0.0 m

* The test was performed with r = 0.0 m since EUT is small and it was the rather conservative condition.

[Mode 2]

Distance Factor: $20 \times \log (3.55 \text{ m} / 3.0 \text{ m}) = 1.46 \text{ dB}$ * Test Distance: (3 + Test Volume / 2) - r = 3.55 m

Test Volume: 1.5 m

(Test Volume has been calibrated based on CISPR 16-1-4.)

 $r=0.2\ m$

Distance Factor: $20 \times \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

*Test Distance: 1 m

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

6.5 Test result

Summary of the test results: Pass

The limit is rounded down to one decimal place.

The test result is rounded off to one or two decimal places, so some differences might be observed.

Date: July 11, 2018 Test engineer: Takafumi Noguchi
July 13, 2018 Takeshi Hiyaji

UL Japan, Inc. Ise EMC Lab.

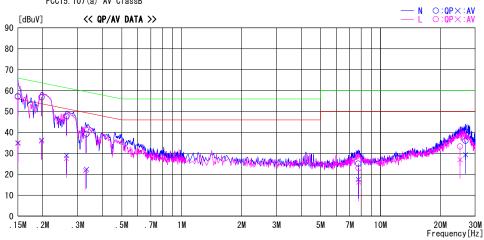
4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12366336H-B-R1
Page : 15 of 26
Issued date : October 20, 2020

APPENDIX 1: Test data

Conducted Emission

Report No. 12366336H Test place Ise EMC Lab.


Semi Anechoic Chamber No.2

Date July 6, 2018

Temperature / Humidity 24 deg. C / 54 % RH

Engineer Ken Fujita Mode Mode 2

LIMIT : FCC15.107(a) QP ClassB

Frequency	Reading		Corr.	Resu		Lir		Mar			
Frequency	QP	AV	Factor	QP	AV	QP	AV	QP	AV	Phase	Comment
[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
0. 15000	44. 0	21. 8	13. 3	57. 3	35. 1	66.0	56.0	8. 7	20.9	N	
0. 19770	43. 6	23. 0	13. 3	56. 9	36.3	63.7	53.7	6.8	17.4	N	
0. 26363	34. 5	15. 8	13. 3	47. 8	29. 1	61.3	51.3	13.5	22. 2	N	
0. 33236	26. 1	9. 1	13. 3	39. 4	22. 4	59.4	49.4	20.0	27.0	N	
7. 74143	10. 6	3. 1	14. 5	25. 1	17. 6	60.0	50.0	34. 9	32.4	N	
26.80142	18. 3	11.6	17. 7	36.0	29.3	60.0	50.0	24. 0	20. 7	N	
0. 15000	43. 7	21. 5	13. 3	57. 0	34.8	66.0	56.0	9.0	21.2	L	
0. 19699	43. 4	22. 6	13. 3	56. 7	35.9	63.7	53.7	7.0	17.8	L	
0. 26293	33. 9	14. 2	13. 3	47. 2	27. 5	61.3	51.3	14. 1	23.8	L	
0. 32886	25. 6	8. 5	13. 3	38. 9	21.8	59.5	49.5	20. 6	27.7	L	
7. 77330	8. 4	1. 7	14. 5	22. 9	16. 2	60.0	50.0	37. 1	33.8	L	
25. 16016	15. 9	9. 6	17. 4	33. 3	27.0	60.0	50.0	26. 7	23. 0	L	
	-										
		}									

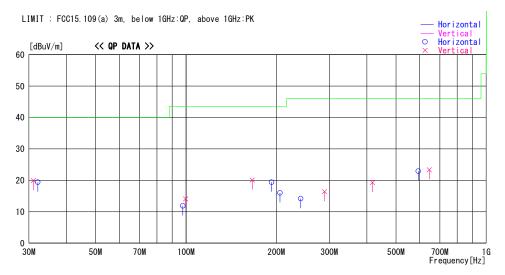
 $CHART: WITH FACTOR \ Peak \ hold \ data. \ CALCULATION: RESULT = READING + C.F \ (LISN + CABLE + ATT) \\ Except \ for \ the \ above \ table: \ adequate \ margin \ data \ below \ the \ limits.$

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12366336H-B-R1 Page : 16 of 26 **Issued date** : October 20, 2020

Radiated emission (Below 1 GHz)


Report No. 12366336H Test place Ise EMC Lab.

Semi Anechoic Chamber No.2

July 13, 2018 Date 22 deg. C / 58 % RH Temperature / Humidity Engineer Takeshi Hiyaji (Below 1 GHz)

Mode 1

Mode

Frequency	Reading	DET	Antenna Factor	Loss& Gain	Level	Angle	Height	Polar.	Limit	Margin	Comment
[MHz]	[dBuV]		[dB/m]	[dB]	[dBuV/m]	[Deg]	[cm]		[dBuV/m]	[dB]	
31. 038		QP	18. 1	-23. 8	19. 9	166	200	Vert.	40. 0	20. 1	
32. 114	25. 4	QP	17. 7	-23. 7	19. 4	0	400	Hori.	40. 0	20. 6	
97. 547	25. 3	QP	9.5	-22. 9	11. 9	0	400	Hori.	43. 5	31.6	
99. 696	26.8	QP	10.0	-22. 7	14. 1	356	100	Vert.	43. 5	29. 4	
166. 348	26.6	QP	15. 4	-21. 9	20. 1	0	100	Vert.	43. 5	23. 4	
192. 899		QP	16.3	-21.6	19. 4	2	400	Hori.	43. 5		
205. 715	26. 1	QP	11.3	-21.4	16. 0	46	200	Hori.	43. 5	27. 5	
240. 913	23.8	QP	11.4	-21.0	14. 2	0	200	Hori.	46. 0	31.8	
289. 134		QP	13.3	-20. 4	16. 4	0	100	Vert.	46. 0		
417. 598	23.7	QP	15. 9	-20. 3	19. 3	100	100	Vert.	46. 0	26. 7	
593. 445	23. 6	QP	18.8	-19. 5	22. 9	346	200	Hori.	46. 0	23. 1	
645. 632	23. 4	QP	19.1	-19. 1	23. 4	353	200	Vert.	46. 0	22. 6	

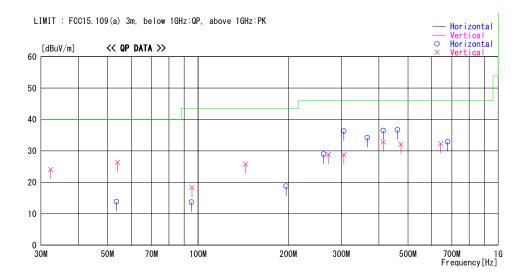
CHART: WITH FACTOR

ANT TYPE: - 30 MHz: LOOP, 30 MHz - 200 MHz: BICONICAL, 200 MHz - 1000 MHz: LOGPERIODIC, 1000 MHz -: HORN CALCULATION: RESULT = READING + ANT FACTOR + LOSS & GAIN (CABLE + ATT - GAIN(AMP))

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12366336H-B-R1 Page : 17 of 26 **Issued date** : October 20, 2020


Radiated emission (Below 1 GHz)

Report No. 12366336H Test place Ise EMC Lab.

Semi Anechoic Chamber No.2

July 13, 2018 Date 22 deg. C / 58 % RH Temperature / Humidity Engineer Takeshi Hiyaji (Below 1 GHz)

Mode 2 Mode

Frequency	Reading	DET	Antenna Factor	Loss& Gain	Level	Angle	Height	Polar.	Limit	Margin	Comment
[MHz]	[dBuV]	DET	[dB/m]	[dB]	[dBuV/m]	[Deg]	[cm]	Total.	[dBuV/m]	[dB]	COMMISSION
32. 331	30. 2	QP	17. 6	-23. 7	24. 1	0	100	Vert.	40.0	15. 9	
53. 540	27. 3	QP	9.9	-23. 4	13. 8	183	299	Hori.	40.0	26. 2	
53. 990	40.0	QP	9.8	-23. 4	26. 4	250	100	Vert.	40.0	13. 6	
95. 202	27. 6	QP	9.0	-22. 9	13. 7	359	300	Hori.	43.5	29. 8	
95. 440	32.3	QP	9.0	-22. 9	18. 4	236	100	Vert.	43.5	25. 1	
144. 000	33.5	QP	14. 5	-22. 2	25. 8	156	100	Vert.	43.5	17. 7	
196. 564	23.9	QP	16.5	-21.6	18. 8	0	278	Hori.	43. 5	24. 7	
261.836	37.5	QP	12. 2	-20. 7	29. 0	244	100	Hori.	46.0	17. 0	
272. 040	36.7	QP	12.8	-20. 6	28. 9	12	183	Vert.	46.0	17. 1	
306.004	43.0	QP	13.6	-20. 3	36. 3	191	100	Hori.	46. 0	9. 7	
306.004	35.5	QP	13. 6	-20. 3	28. 8	62	190	Vert.	46.0	17. 2	
366.000	39.5	QP	14. 9	-20. 2	34. 2	298	100	Hori.	46.0	11.8	
414. 000	40.9	QP	15. 9	-20. 3	36. 5	130	100	Hori.	46. 0	9. 5	
414. 007	37. 2	QP	15. 9	-20. 3	32. 8	229	171	Vert.	46.0	13. 2	
462. 000	40.3	QP	16. 7	-20. 3	36. 7	235	100	Hori.	46.0	9. 3	
474. 000	35.6	QP	16.8	-20. 3	32. 1	254	100	Vert.	46. 0	13. 9	
642. 012	32. 4	QP	19.0	-19. 1	32. 3	234	100	Vert.	46.0	13. 7	
678. 000	32.3	QP	19.4	-18. 8	32. 9	133	100	Hori.	46.0	13. 1	

CHART: WITH FACTOR

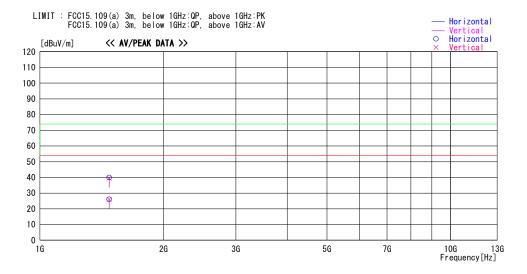
ANT TYPE: - 30 MHz: LOOP, 30 MHz - 200 MHz: BICONICAL, 200 MHz - 1000 MHz: LOGPERIODIC, 1000 MHz -: HORN CALCULATION: RESULT = READING + ANT FACTOR + LOSS & GAIN (CABLE + ATT - GAIN(AMP))

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12366336H-B-R1
Page : 18 of 26
Issued date : October 20, 2020

Radiated emission (Above 1 GHz)


Report No. 12366336H Test place Ise EMC Lab.

Semi Anechoic Chamber No.2

Date
July 11, 2018
Temperature / Humidity
Engineer
July 11, 2018
20 deg. C / 60 % RH
Takafumi Noguchi
(Above 1 GHz)

(1100 VC 1

Mode 1

Frequency	Reading	DET	Antenna Factor	Loss& Gain	Level	Angle	Height	Polar.	Limit	Margin	Comment
[MHz]	[dBuV]	DET	[dB/m]		[Deg]	[cm]	rolal.	[dBuV/m]	[dB]	Comment	
1475. 002	45. 4	PK	26. 1	-31. 6		0		Hori.	73. 9		
1475. 002			26. 1	-31.6	26. 1	0			53.9		
1475. 002	45. 0		26. 1	-31. 6	39. 5	0	100		73. 9		
1475. 002			26. 1	-31. 6	26. 0				53. 9		
1473.002	31.3	AV	20.1	-31.0	20.0	U	100	VCI L.	33. 9	21. 9	
			l 1								
			1 1								
			1								
			1								
			1								
			1 1								
			1								
			1								
			1 1								
										1 1	

CHART: WITH FACTOR

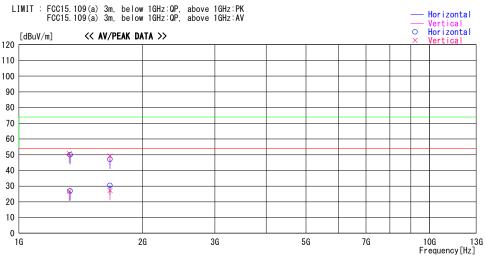
ANT TYPE: - 30 MHz: LOOP, 30 MHz - 200 MHz: BICONICAL, 200 MHz - 1000 MHz: LOGPERIODIC, 1000 MHz -: HORN CALCULATION: RESULT = READING + ANT FACTOR + LOSS & GAIN (CABLE - GAIN(AMP) + D-factor)

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 12366336H-B-R1 Test report No. Page : 19 of 26 **Issued date** : October 20, 2020

Radiated emission (Above 1 GHz)


Report No. 12366336H Test place Ise EMC Lab.

Semi Anechoic Chamber No.2

Mode

July 11, 2018 Date Temperature / Humidity 20 deg. C / 60 % RH Engineer Takafumi Noguchi (Above 1 GHz)

Mode 2

			Antenna	Loss&							
Frequency	Reading	DET	Factor	Gain	Level	Angle	Height	Polar.	Limit	Margin	Comment
[MHz]	[dBuV]		[dB/m]	[dB]	[dBuV/m]	[Deg]	[cm]		[dBuV/m]	[dB]	
1332. 641	55. 7	PK	26. 1	-31. 8	50. 0	264	100	Hori.	73. 9	23. 9	
1332. 641	32. 6	AV	26. 1	-31.8	26. 9	264	100	Hori.	53.9	27. 0	
1326. 251	56.6	PK	26.0	-31.8	50. 8	190	100	Vert.	73. 9	23. 1	
1326. 251	32. 5	AV	26.0	-31.8	26. 7	190	100	Vert.	53. 9	27. 2	
1666. 401	53. 2	PK	25.0	-31. 2	47. 0	256	100	Hori.	73. 9	26. 9	
1666. 401	36.6	AV	25.0	-31. 2	30. 4	256	100	Hori.	53. 9	23. 5	
1666. 401	55.4	PK	25.0	-31. 2	49. 2	299	100	Vert.	73. 9	24. 7	
1666. 401	33.4	AV	25.0	-31. 2	27. 2	299	100	Vert.	53. 9	26. 7	

CHART: WITH FACTOR

ANT TYPE: - 30 MHz: LOOP, 30 MHz - 200 MHz: BICONICAL, 200 MHz - 1000 MHz: LOGPERIODIC, 1000 MHz -: HORN CALCULATION: RESULT = READING + ANT FACTOR + LOSS & GAIN (CABLE - GAIN(AMP) + D-factor)

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12366336H-B-R1
Page : 20 of 26
Issued date : October 20, 2020

APPENDIX 2: Test instruments

Test Instruments

Test	LIMS	Description	Manufacturer	Model	Serial	Last	Calibration	Cal
item	ID					Calibration Date	Due Date	Int
CE	141885	Spectrum Analyzer	AGILENT	E4448A	US44300523	11/14/2017	11/30/2018	12
CE	141222	Coaxial Cable	FUJIKURA	3D-2W(12m)/	-	2/23/2018	2/28/2019	12
				5D-2W(5m)/				
				5D-2W(0.8m)/5				
CE	141246	Attenuator	JFW Industries,	50FP-013H2 N	-	12/19/2017	12/31/2018	12
		(13dB)	Inc.					
RE/	142182	Measure	KOMELON	KMC-36	-	-	-	-
CE								
RE/	142004	AC2_Semi	TDK	Semi Anechoic	DA-06902	8/31/2017	8/31/2018	12
CE		Anechoic Chamber (NSA)		Chamber 3m				
RE	142006	AC2_Semi	TDK	Semi Anechoic	DA-06902	4/2/2018	4/30/2019	12
		Anechoic Chamber		Chamber 3m				
		(SVSWR)						
RE/	141542	Digital Tester	Fluke	FLUKE 26-3	78030611	8/7/2017	8/31/2018	12
CE			Corporation					
RE	141392	Microwave Cable	Junkosha	MWX221	1604S253(1 m) / 1608S087(5 m)	8/4/2017	8/31/2018	12
RE	141579	Pre Amplifier	AGILENT	8449B	3008A02142	1/23/2018	1/31/2019	12
RE	141512	Horn Antenna 1- 18GHz	Schwarzbeck	BBHA9120D	254	6/6/2018	6/30/2019	12
RE/	141556	Thermo-	CUSTOM	CTH-201	0003	12/21/2017	12/31/2018	12
CE		Hygrometer						
RE	141152	EMI measurement	TSJ	TEPTO-DV	-	-	-	-
		program						
RE	141884	Spectrum Analyzer	AGILENT	E4448A	MY44020357	11/7/2017	11/30/2018	12
RE	141203	Attenuator(6dB)	Weinschel Corp	2	BK7970	11/14/2017	11/30/2018	12
RE	141265	Logperiodic	Schwarzbeck	VUSLP9111B	911B-190	5/31/2018	5/31/2019	12
		Antenna(200-						
		1000MHz)						
RE	141427	Biconical Antenna	Schwarzbeck	VHA9103B	8031	5/31/2018	5/31/2019	12
RE	141317	Coaxial Cable	Fujikura/ Agilent	-	-	2/23/2018	2/28/2019	12
RE/	141942	Test Receiver	Rohde &	ESCI	100300	8/21/2017	8/31/2018	12
CE			Schwarz					
RE	141578	Pre Amplifier	AGILENT	8447D	2944A10845	9/27/2017	9/30/2018	12
RE	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	1/30/2018	1/31/2019	12

^{*}Hyphens for Last Calibration Date, Calibration Due Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test item:

CE: Conducted emission RE: Radiated emission

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN