Report Number: C00108J1

FCC PART 15, SUBPART B and C

for

TEST REPORT

## HES HYBRID ELECTRIC STRIKE iCLASS

Model: IC5020-EA

Prepared for

HANCHETT ENTRY SYSTEMS, INC. 22630 NORTH 17<sup>th</sup> AVENUE PHOENIX, CALIFORNIA 85027

| Prepared by:  |                 |
|---------------|-----------------|
|               | SCOTT McCUTCHAN |
| Approved by:_ |                 |
|               | JOSH HANSEN     |

COMPATIBLE ELECTRONICS INC. 19121 EL TORO ROAD SILVERADO, CALIFORNIA 92676 (949) 589-0700

DATE: APRIL 30, 2010

|       | REPORT |                  | APPENDICES |   |    | TOTAL |    |
|-------|--------|------------------|------------|---|----|-------|----|
|       | BODY   | $\boldsymbol{A}$ | В          | C | D  | E     |    |
| PAGES | 18     | 2                | 2          | 2 | 13 | 13    | 50 |

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.

## TABLE OF CONTENTS

| Section / Title                                                                                                                                                                                                                         | PAGE                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| GENERAL REPORT SUMMARY                                                                                                                                                                                                                  | 4                          |
| SUMMARY OF TEST RESULTS                                                                                                                                                                                                                 | 5                          |
| 1. PURPOSE                                                                                                                                                                                                                              | 6                          |
| <ul> <li>2. ADMINISTRATIVE DATA</li> <li>2.1 Location of Testing</li> <li>2.2 Traceability Statement</li> <li>2.3 Cognizant Personnel</li> <li>2.4 Date Test Sample was Received</li> <li>2.5 Disposition of the Test Sample</li> </ul> | <b>7</b> 7 7 7 7 7 7       |
| 2.6 Abbreviations and Acronyms                                                                                                                                                                                                          | 7                          |
| 3. APPLICABLE DOCUMENTS                                                                                                                                                                                                                 | 8                          |
| <ul> <li>4. Description of Test Configuration</li> <li>4.1 Description of Test Configuration - EMI</li> <li>4.1.1 Cable Construction and Termination</li> </ul>                                                                         | <b>9</b><br>9<br>10        |
| <ul> <li>5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT</li> <li>5.1 EUT and Accessory List</li> <li>5.2 EMI Test Equipment</li> </ul>                                                                                                 | <b>11</b><br>11<br>12      |
| <ul> <li>6. TEST SITE DESCRIPTION</li> <li>6.1 Test Facility Description</li> <li>6.2 EUT Mounting, Bonding and Grounding</li> </ul>                                                                                                    | 13<br>13<br>13             |
| <ul> <li>7. CHARACTERISTICS OF THE TRANSMITTER</li> <li>7.1 Operating Frequency</li> <li>7.2 Channel Number and Frequencies</li> </ul>                                                                                                  | <b>14</b><br>14<br>14      |
| <ul> <li>8. Test Procedures</li> <li>8.1 RF Emissions</li> <li>8.1.1 Conducted Emissions Test</li> <li>8.1.2 Radiated Emissions (Spurious and Harmonics) Test</li> <li>8.2 Frequency Tolerance of Carrier Signal</li> </ul>             | 15<br>15<br>15<br>16<br>17 |
| 9. CONCLUSIONS                                                                                                                                                                                                                          | 18                         |



### LIST OF APPENDICES

| APPENDIX | TITLE                                       |  |  |
|----------|---------------------------------------------|--|--|
|          |                                             |  |  |
| A        | Laboratory Recognitions                     |  |  |
| В        | Modifications to the EUT                    |  |  |
| С        | Additional Models Covered Under This Report |  |  |
| D        | Diagrams, Charts, and Photos                |  |  |
|          | Test Setup Diagrams                         |  |  |
|          | Radiated and Conducted Emissions Photos     |  |  |
|          | Antenna and Effective Gain Factors          |  |  |
| Е        | Data Sheets                                 |  |  |

## LIST OF FIGURES

| FIGURE | TITLE                                           |
|--------|-------------------------------------------------|
|        |                                                 |
| 1      | Conducted Emissions Test Setup                  |
| 2      | Plot Map And Layout of Radiated Site – 3 Meters |

### GENERAL REPORT SUMMARY

This electromagnetic emission test report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced without the written permission of Compatible Electronics, unless done so in full.

This report must not be used to claim product endorsement by NVLAP or any other agency of the U.S. Government.

Device Tested: HES Hybrid Electric Strike iCLASS

Model: IC5020-EA

S/N: N/A

Product Description: The product is a 13.56 MHz RFID System used for keyless doorway entry.

Modifications: The EUT was modified during the testing. Please see list of modifications in Appendix B.

Manufacturer: Hanchett Entry Systems, Inc.

22630 North 17<sup>th</sup> Avenue Phoenix, Arizona 85027

Test Dates: The tests were performed on January 5, 19, and February 26, 2010.

Test Specifications: EMI requirements

CFR Title 47, Part 15, Subpart B, sections 15.31(e), 15.107, and 15.109; and Subpart C,

sections 15.205, 15.207, 15.209, and 15.225

Test Procedure: ANSI C63.4: 2003 and ANSI C63.10: 2009

Test Deviations: The test procedure was not deviated from during the testing.



## **SUMMARY OF TEST RESULTS**

| TEST | DESCRIPTION                                            | RESULTS                                                                                                                                                                                                         |
|------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Conducted RF Emissions, 150 kHz – 30 MHz               | Complies with the <b>Class B</b> limits of CFR Title 47, Part 15 Subpart B; and the limits of CFR Title 47, Part 15, Subpart C, section 15.207                                                                  |
| 2    | Radiated RF Emissions, 10 kHz – 1 GHz                  | Complies with the <b>Class B</b> limits of CFR Title 47, Part 15 Subpart B, sections 15.31(e), 15.107 and 15.109; and the limits of CFR Title 47, Part 15, Subpart C, section 15.209 and 15.225(a) through (d). |
| 3    | Frequency Tolerance, Temperature and Voltage Variation | Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.225(e)                                                                                                                  |



#### 1. PURPOSE

This document is a qualification test report based on the Electromagnetic Interference (EMI) tests performed on the HES Hybrid Electric Strike iCLASS, Model: IC5020-EA. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4: 2003. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the Class B specification limits defined by CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.207, 15.209, and 15.225.

Note: For the unintentional radiator portion of the test, the EUT was within the **Class B** specification limits defined by CFR Title 47, Part 15, Subpart B.



#### ADMINISTRATIVE DATA

#### 2.1 Location of Testing

2.

The EMI tests described herein were performed at the test facility of Compatible Electronics, 19121 El Toro Road, Silverado, CA 92676.

### 2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

### 2.3 Cognizant Personnel

Hanchett Entry Systems, Inc.

Dominik Scheffler Mechanical Engineer

Compatible Electronics Inc.

Kyle Fujimoto Test Engineer Scott McCutchan Lab Manager Josh Hansen Lab Manager

Jeff Klinger Director of Engineering

## 2.4 Date Test Sample was Received

The test sample was received on January 5, 2010.

### 2.5 Disposition of the Test Sample

The test sample has not yet been returned as of the date of this report.

### 2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

RF Radio Frequency

EMI Electromagnetic Interference EUT Equipment Under Test

P/N Part Number S/N Serial Number HP Hewlett Packard

ITE Information Technology Equipment

CML Corrected Meter Limit

LISN Line Impedance Stabilization Network

N/A Not Applicable



**3.** 

## APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this EMI Test Report.

| SPEC                                  | TITLE                                                                                                                                |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| FCC Title 47,<br>Part 15 Subpart<br>B | FCC Rules - Radio frequency devices (including digital devices) – Unintentional Radiators                                            |
| FCC Title 47,<br>Part 15 Subpart<br>C | FCC Rules - Radio frequency devices (including digital devices) – Intentional Radiators                                              |
| ANSI C63.4<br>2003                    | Methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz |
| ANSI C63.10<br>2009                   | American National Standard for Unlicensed Wireless Devices                                                                           |



#### I. DESCRIPTION OF TEST CONFIGURATION

## 4.1 Description of Test Configuration - EMI

The HES Hybrid Electric Strike iCLASS, Model: IC5020-EA (EUT) consists of a main PCB assembly and an antenna board, which were installed in a typical arrangement inside a metallic test fixture, simulating installation inside a metal door jam. The EUT was connected to a bench-top DC power supply via the red and black wires of its input cable. The yellow wire of its input cable was left unterminated. The white and green wires of its input cable were connected to the negative terminal on the power supply, each through an individual 470 k $\Omega$  resistor. The EUT was continuously transmitting and receiving throughout the testing.

The EUT was tested in two configurations, once with the PCB assembly mounted to the test fixture, and once with it hanging from a small chain inside the test fixture.

For conducted emissions testing, the bench-top power supply was replaced with an off-the-shelf AC to DC power adapter, typically of what could be used in an actual installation. The EUT is not marketed with a power source.

It was determined that the emissions were at their highest level when the EUT was operating in the above configuration The final emissions data was taken in this mode of operation and cable placements were maximized. Photographs of the test setup are in Appendix D of this report.



## 4.1.1 Cable Construction and Termination

- <u>Cables 1-2</u> These are 1 meter wires (red & black) connecting the EUT to the power source. They have a 5-pin connector at the EUT end, and are hard-wired to the power source.
- <u>Cable 3-4</u> These are 1 meter wires (white & green) connecting the EUT to the negative terminal on the power source, each through a separate 470 kΩ resistor. They have a 5-pin connector at the EUT end, and are hard-wired to the resistors, which were hard-wired to the power source.
- <u>Cables 5</u> This is a 1 meter, unterminated wire connected to the EUT. It has a 5-pin connector at the EUT end.



## 5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT

## 5.1 EUT and Accessory List

| EQUIPMENT                                                 | MANUFACTURER                    | MODEL NUMBER     | SERIAL<br>NUMBER | FCC ID   |
|-----------------------------------------------------------|---------------------------------|------------------|------------------|----------|
| HES Hybrid Electric Strike iCLASS (EUT)                   | HANCHETT ENTRY<br>SYSTEMS, INC. | IC5020-EA        | N/A              | VC3-XX20 |
| BENCH-TOP<br>DC POWER SUPPLY<br>(radiated emissions only) | BK PRECISION                    | 1670             | 281-00414        | N/A      |
| AC to DC POWER ADAPTER (conducted emissions only)         | I.T.E.                          | W012-2120-100-1A | N/A              | N/A      |



## 5.2 EMI Test Equipment

|                                        | 2.2 Eivit Test Equipment                               |                 |                  |                      |                         |  |  |  |
|----------------------------------------|--------------------------------------------------------|-----------------|------------------|----------------------|-------------------------|--|--|--|
| EQUIPMENT<br>TYPE                      | MANU-<br>FACTURER                                      | MODEL<br>NUMBER | SERIAL<br>NUMBER | CALIBRATI<br>ON DATE | CALIBRATION<br>DUE DATE |  |  |  |
|                                        | GENERAL TEST EQUIPMENT USED FOR ALL RF EMISSIONS TESTS |                 |                  |                      |                         |  |  |  |
| Computer                               | Hewlett Packard                                        | 4530            | US91925900       | N.C.R.               | N/A                     |  |  |  |
| Spectrum Analyzer –<br>Main Section    | Hewlett Packard                                        | 8566B           | 2747A04875       | 5-8-2009             | 5-8-2010                |  |  |  |
| Spectrum Analyzer –<br>Display Section | Hewlett Packard                                        | 85662A          | 2848A18214       | 5-8-2009             | 5-8-2010                |  |  |  |
| Quasi-Peak Adapter                     | Hewlett Packard                                        | 85650A          | 2811A01081       | 5-8-2009             | 5-8-2010                |  |  |  |
| Monitor                                | Envision                                               | EFT720          | I9CG48A767451    | N.C.R.               | N/A                     |  |  |  |
|                                        | RF RA                                                  | DIATED EMIS     | SIONS TEST EQUI  | PMENT                |                         |  |  |  |
| Biconical Antenna                      | Com Power                                              | AB-900          | 2819             | 10-16-2009           | 10-16-2010              |  |  |  |
| Log Periodic<br>Antenna                | Com Power                                              | AL-100          | 1116             | 10-16-2009           | 10-16-2010              |  |  |  |
| Preamplifier                           | Com-Power                                              | PA-103A         | 161206           | 12-7-2009            | 12-7-2010               |  |  |  |
| Loop Antenna                           | Com-Power                                              | AL-130          | 17085            | 8-12-2008            | 8-12-2010               |  |  |  |
| Antenna Mast                           | Com Power                                              | AM-100          | N/A              | N/A                  | N/A                     |  |  |  |
|                                        | RF CON                                                 | DUCTED EMI      | SSIONS TEST EQU  | IPMENT               |                         |  |  |  |
| Emissions Program                      | Compatible<br>Electronics                              | SR21            | N/A              | N/A                  | N/A                     |  |  |  |
| LISN                                   | Com Power                                              | LI-215          | 12081            | 7-9-2009             | 7-9-2010                |  |  |  |
| LISN                                   | Com Power                                              | LI-215          | 12072            | 7-9-2009             | 7-9-2010                |  |  |  |
| TEMPERATURE TESTING TEST EQUIPMENT     |                                                        |                 |                  |                      |                         |  |  |  |
| Multimeter                             | Fluke                                                  | 87              | 956410240        | 5-28-2009            | 5-28-2010               |  |  |  |
| Temperature<br>Chamber                 | Despatch<br>Industries, Inc.                           | 16212A          | 149857           | 6-13-2008            | 6-13-2010               |  |  |  |
| EMI Receiver                           | Rohde & Schwarz                                        | ESIB40          | 100194           | 9-17-2008            | 9-17-2010               |  |  |  |
| Near Field Probe                       | Com-Power                                              | PS-400          | 1152             | N/A                  | N/A                     |  |  |  |

### 6. TEST SITE DESCRIPTION

## 6.1 Test Facility Description

Please refer to section 2.1 and 7.1 of this report for EMI test location.

## 6.2 EUT Mounting, Bonding and Grounding

The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 0.8 meters above the ground plane.

The EUT was not grounded

### 7. CHARACTERISTICS OF THE TRANSMITTER

## 7.1 Operating Frequency

The EUT operates at 13.56141 MHz.

## 7.2 Channel Number and Frequencies

The EUT is a single-channel transmitter.

#### 8. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section. Data sheets and/or plots for all tests are located in Appendix E.

#### **8.1 RF** Emissions

#### 8.1.1 Conducted Emissions Test

The spectrum analyzer was used as a measuring meter. The data was collected with the spectrum analyzer in the peak detect mode with the "Max Hold" feature activated. The quasi-peak was used only where indicated in the data sheets. A transient limiter was used for the protection of the spectrum analyzer input stage, and the offset was adjusted accordingly to read the actual data measured. The LISN output was measured using the spectrum analyzer. The output of the second LISN was terminated by a 50 ohm termination. The effective measurement bandwidth used for this test was 9 kHz.

Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The EUT was powered through the LISN, which was bonded to the ground plane. The LISN power was filtered and the filter was bonded to the ground plane. The EUT was set up with the minimum distances from any conductive surfaces as specified in ANSI C63.4: 2003. The excess power cord was wrapped in a figure eight pattern to form a bundle not exceeding 0.4 meters in length.

The conducted emissions from the EUT were maximized for operating mode as well as cable placement. The final data was collected under program control by the Compatible Electronics conducted emissions software in several overlapping sweeps by running the spectrum analyzer at a minimum scan rate of 10 seconds per octave.

#### **Test Results:**

Complies with the **Class B** limits of CFR Title 47, Part 15 Subpart B; and the limits of CFR Title 47, Part 15, Subpart C, section 15.207.

## **8.1.2** Radiated Emissions (Spurious and Harmonics) Test

The spectrum analyzer was used as a measuring meter along with the quasi-peak adapter. Amplifiers were used to increase the sensitivity of the instrument. The Com Power Preamplifier Model: PA-102 was used for frequencies from 30 MHz to 1 GHz and the Com Power Microwave Preamplifier Model: PA-122 was used for frequencies above 1 GHz. The spectrum analyzer was used in the peak detect mode with the "Max Hold" feature activated. In this mode, the spectrum analyzer records the highest measured reading over all the sweeps.

The quasi-peak adapter was used only for those readings which are marked accordingly on the data sheets.

The measurement bandwidths and transducers used for the radiated emissions test were:

| FREQUENCY RANGE   | EFFECTIVE<br>MEASUREMENT<br>BANDWIDTH | TRANSDUCER           |
|-------------------|---------------------------------------|----------------------|
| 10 kHz to 150 kHz | 200 Hz                                | Active Loop Antenna  |
| 150 kHz to 30 MHz | 9 kHz                                 | Active Loop Antenna  |
| 30 MHz to 300 MHz | 120 kHz                               | Biconical Antenna    |
| 300 MHz to 1 GHz  | 120 kHz                               | Log Periodic Antenna |

The open field test site of Compatible Electronics, Inc. was used for radiated emission testing. This test site is set up according to ANSI C63.4: 2003. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT by the Radiated Emission Manual Test software. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength). The gunsight method was used when measuring with the horn antenna in order to ensure accurate results.

## Radiated Emissions (Spurious and Harmonics) Test (con't)

The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT. The EUT was tested at a 3 meter test distance.

#### **Test Results:**

The EUT complies with the **Class B** limits of CFR Title 47, Part 15, Subpart B; and the limits of CFR Title 47, Part 15, Subpart C, Sections 15.209 and 15.225(a) through (d) for radiated emissions. The EUT also complies with the voltage variation requirements contained in section 15.31(e); the amplitude does not change when the voltage is varied.

## 8.2 Frequency Tolerance of Carrier Signal

The EUT was placed in temperature chamber and set to -20 degrees C. The EUT was exposed to this temperature for a period of 10 minutes. The temperature was subsequently increased at 10 degree increments up to +50 degrees with a 30 minute acclimation period between each temperature. At each temperature, the EUT was checked with an EMI Receiver to determine whether the carrier signal was within 0.01% of the fundamental frequency at startup, 2 minutes, 5 minutes and 10 minutes after removal from the temperature chamber. The frequency tolerance of the carrier signal was also checked at 85% and 115% of the rated supply voltage at 20 degrees C. A data sheet of the Frequency Tolerance testing is located in Appendix E.

### **Test Results:**

The EUT complies with the frequency tolerance requirements of CFR Title 47, Part 15, Subpart C, Section 15.225(e).



## 9. CONCLUSIONS

With the EUT configured and operating as described in this report, the HES Hybrid Electric Strike iCLASS Model: IC5020-EA meets all of the specification limits defined in FCC Title 47, Part 15, sections 15.31(e), 15.205, 15.207, 15.209, and 15.247.

Note: For the unintentional radiator portion of the test, the EUT was within the **Class B** specification limits defined by CFR Title 47, Part 15, Subpart B.

## **APPENDIX A**

## LABORATORY RECOGNITIONS

## LABORATORY ACCREDITATIONS AND RECOGNITIONS



For US, Canada, Australia/New Zealand, Taiwan and the European Union, Compatible Electronics is currently accredited by NVLAP to ISO/IEC 17025 an ISO 9002 equivalent. Please follow the link to the NIST site for each of our facilities NVLAP certificate and scope of accreditation.

#### **NVLAP listing links**

Agoura Division - http://ts.nist.gov/Standards/scopes/2000630.htm
Brea Division - http://ts.nist.gov/Standards/scopes/2005280.htm
Silverado/Lake Forest Division - http://ts.nist.gov/Standards/scopes/2005270.htm



#### **ANSI listing**

**CETCB** 



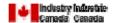
Compatible Electronics has been nominated as a Conformity Assessment Body (CAB) for EMC under the US/EU Mutual Recognition Agreement (MRA).



Compatible Electronics has been nominated as a Conformity Assessment Body (CAB) for Taiwan/BSMI under the US/APEC (Asia-Pacific Economic Cooperation) Mutual Recognition Agreement (MRA).

We are also certified/listed for IT products by the following country/agency:




VCCI Listing, from VCCI site

Enter "Compatible" in search form http://www.vcci.or.jp/vcci\_e/activity/registration/setsubi.html



FCC Listing, from FCC OET site

FCC test lab search https://fjallfoss.fcc.gov/oetcf/eas/reports/TestFirmSearch.cfm



Compatible Electronics IC listing can be found at:

http://www.ic.gc.ca/eic/site/ic1.nsf/eng/home



## **APPENDIX B**

## **MODIFICATIONS TO THE EUT**



## MODIFICATIONS TO THE EUT

The modifications listed below were made to the EUT to pass FCC Subpart B and FCC 15.247 specifications.

All the rework described below was implemented during the test in a method that could be reproduced in all the units by the manufacturer.

1) Added clip-on ferrite (TDK P/N: ZCAT2035-0930) on all wires with two turns on the main power cable.



## APPENDIX C

## ADDITIONAL MODELS COVERED UNDER THIS REPORT



# ADDITIONAL MODELS COVERED UNDER THIS REPORT

USED FOR THE PRIMARY TEST

HES Hybrid Electric Strike iCLASS

Model: IC5020-EA

S/N: N/A

The following five models are covered under similarity. The only differences between the models are the Electric Strikes. They differ in application and accommodation of various locksets. The locksets vary in style (cylindrical lockset or mortise lockset) and length of the latch (1/2) to 3/4.

HES Hybrid Electric Strike iCLASS

Model: IC5220-EA

HES Hybrid Electric Strike iCLASS

Model: IC4520-EA

HES Hybrid Electric Strike iCLASS

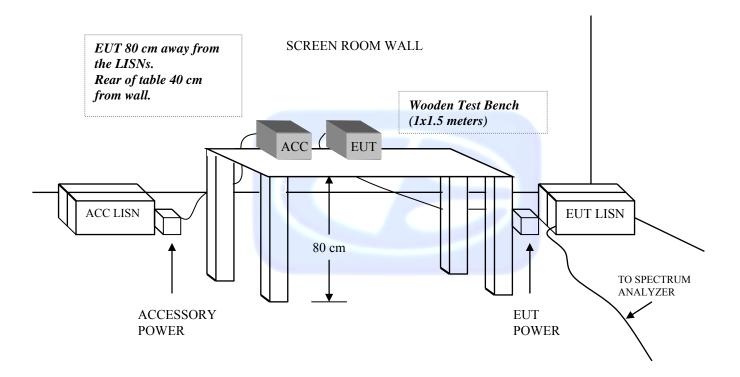
Model: IC8020-EA

HES Hybrid Electric Strike iCLASS

Model: IC8320-EA

HES Hybrid Electric Strike iCLASS

Model: IC8520-EA

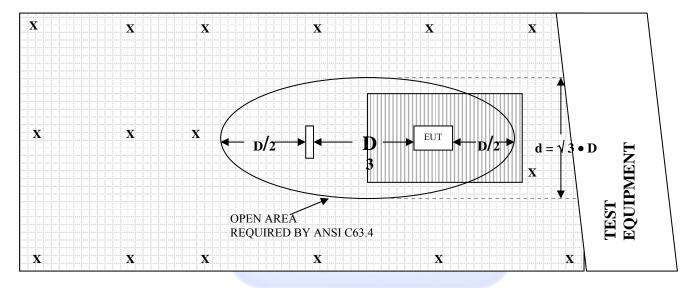



## APPENDIX D

DIAGRAMS, CHARTS, AND PHOTOS



## FIGURE 1: CONDUCTED EMISSIONS TEST SETUP




D



## FIGURE 2: PLOT MAP AND LAYOUT OF RADIATED SITE -3 METERS

## **OPEN LAND > 15 METERS**



### **OPEN LAND > 15 METERS**

= TEST DISTANCE (meters)

X = GROUND RODS = GROUND SCREEN = WOOD COVER

(714) 579-0500

## COM-POWER AL-130

## **ACTIVE LOOP ANTENNA (E-FIELD)**

S/N: 17085

CALIBRATION DATE: AUGUST 12, 2008

| FREQUENCY<br>(MHz) | FACTOR (dB) | FREQUENCY<br>(MHz) | FACTOR (dB) |
|--------------------|-------------|--------------------|-------------|
| 0.009              | 8.5         | 0.8                | 9.97        |
| 0.01               | 9.57        | 0.9                | 10.04       |
| 0.02               | 10.21       | 1.0                | 10.21       |
| 0.03               | 10.77       | 2.0                | 10.53       |
| 0.4                | 10.47       | 3.0                | 10.4        |
| 0.05               | 9.13        | 4.0                | 10.14       |
| 0.06               | 9.9         | 5.0                | 10.57       |
| 0.07               | 9.54        | 6.0                | 10.83       |
| 0.08               | 9.4         | 7.0                | 10.43       |
| 0.09               | 9.67        | 8.0                | 10.6        |
| 0.1                | 9.67        | 9.0                | 11.4        |
| 0.2                | 7.04        | 10.0               | 10.34       |
| 0.3                | 9.77        | 15.0               | 3.53        |
| 0.4                | 9.7         | 20.0               | 10.73       |
| 0.5                | 9.7         | 25.0               | 7.13        |
| 0.6                | 10.17       | 30.0               | 8.4         |
| 0.7                | 10.14       |                    |             |

## **COM-POWER AB-900**

## LAB J - BICONICAL ANTENNA

S/N: 2819

CALIBRATION DATE: OCTOBER 16, 2009

| FREQUENCY | FACTOR | FREQUENCY | FACTOR |
|-----------|--------|-----------|--------|
| (MHz)     | (dB)   | (MHz)     | (dB)   |
| 30.0      | 12.3   | 100.0     | 11.4   |
| 35.0      | 11.3   | 120.0     | 14.3   |
| 40.0      | 11.5   | 140.0     | 12.1   |
| 45.0      | 12.7   | 160.0     | 15     |
| 50.0      | 11.7   | 180.0     | 18.3   |
| 60.0      | 11     | 200.0     | 16.2   |
| 70.0      | 8.9    | 250.0     | 16.8   |
| 80.0      | 7.6    | 275.0     | 18.7   |
| 90.0      | 9.3    | 300.0     | 19.8   |

## COM-POWER AL-100

## LAB J - LOG PERIODIC ANTENNA

S/N: 1116

CALIBRATION DATE: OCTOBER 16, 2009

| FREQUENCY (MHz) | FACTOR (dB) |
|-----------------|-------------|
| 300             | 16.4        |
| 400             | 17.5        |
| 500             | 18.8        |
| 600             | 20.3        |
| 700             | 22.6        |
| 800             | 22.2        |
| 900             | 23.6        |
| 1000            | 25.2        |

## **COM-POWER PA-103**

## LAB J - PREAMPLIFIER

S/N: 161206

CALIBRATION DATE: DECEMBER 7, 2009

| FREQUENCY | FACTOR | FREQUENCY | FACTOR |
|-----------|--------|-----------|--------|
| (MHz)     | (dB)   | (MHz)     | (dB)   |
| 30        | 31.7   | 300       | 31.6   |
| 40        | 31.9   | 350       | 31.6   |
| 50        | 31.8   | 400       | 31.5   |
| 60        | 31.8   | 450       | 31.4   |
| 70        | 31.7   | 500       | 31.2   |
| 80        | 31.8   | 550       | 31.6   |
| 90        | 31.9   | 600       | 31.1   |
| 100       | 31.8   | 650       | 31.4   |
| 125       | 31.8   | 700       | 30.3   |
| 150       | 31.9   | 750       | 31.0   |
| 175       | 31.8   | 800       | 29.1   |
| 200       | 31.9   | 850       | 29.7   |
| 225       | 31.8   | 900       | 28.1   |
| 250       | 31.7   | 950       | 32.4   |
| 275       | 31.9   | 1000      | 32.3   |



HANCHETT ENTRY SYSTEMS, INC.
HES HYBRID ELECTRIC STRIKE iCLASS
MODEL: IC5020-EA
FCC SUBPART C – RADIATED EMISSIONS (9 kHz to 30 MHz)



#### **FRONT VIEW**

HANCHETT ENTRY SYSTEMS, INC.
HES HYBRID ELECTRIC STRIKE iCLASS
MODEL: IC5020-EA
FCC SUBPARTS B AND C – RADIATED EMISSIONS (30 MHz to 1 GHz)



### **REAR VIEW**

HANCHETT ENTRY SYSTEMS, INC.
HES HYBRID ELECTRIC STRIKE iCLASS
MODEL: IC5020-EA
FCC SUBPART B AND C – RADIATED EMISSIONS (30 MHz to 1 GHz)



### **FRONT VIEW**

HANCHETT ENTRY SYSTEMS, INC.
HES HYBRID ELECTRIC STRIKE iCLASS
MODEL: IC5020-EA
FCC SUBPART B AND C – CONDUCTED EMISSIONS



#### **REAR VIEW**

HANCHETT ENTRY SYSTEMS, INC.
HES HYBRID ELECTRIC STRIKE iCLASS
MODEL: IC5020-EA
FCC SUBPART B AND C – CONDUCTED EMISSIONS







HANCHETT ENTRY SYSTEMS, INC.
HES HYBRID ELECTRIC STRIKE iCLASS
MODEL: IC5020-EA
FCC SUBPART C – FREQUENCY STABILITY (TEMPERATURE & VOLTAGE)

# PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS



**APPENDIX E** 

### RADIATED EMISISONS



#### RADIATED EMISSIONS TEST DATA

Test Location :Compatible ElectronicsPage : 1/1Customer :Dominik ShefflerDate : 1/8/2010Manufacturer :HES, Inc.Time : 12:50:43 PM

EUT name: HES Hybrid Electric Strike iCLASS Lab: J

Model: IC5020-EA Test Distance: 3 Meters

Serial #: N/A

Specification: FCC Part 15, Section 15.205, 15.209, 15.225

Qualification Data; Frequency Range: 9 kHz to 30 MHz

Tested by: Scott McCutchan

Tempurate: 17 degrees C, 47% Humidity, 102.0 kPA

| Pol | Freq.  | Reading | Meas.<br>Type | Cable<br>Loss | Antenna<br>factor | Amplifier<br>gain | Corr'd<br>rdg = R | Limit *<br>= L | Delta<br>R-L |
|-----|--------|---------|---------------|---------------|-------------------|-------------------|-------------------|----------------|--------------|
|     | MHz    | dBuV    |               | dB            | dB                | dB                | dBuV/m            | dBuV/m         | dB           |
|     | 13.56  | 45.80   | Peak          | 0.00          | 5.23              | 0.00              | 51.03             | 124.00         | -72.97       |
|     | 13.552 | 35.10   | Peak          | 0.00          | 5.23              | 0.00              | 40.33             | 90.50          | -50.17       |
|     | 13.567 | 33.80   | Peak          | 0.00          | 5.22              | 0.00              | 39.02             | 90.50          | -51.48       |
|     | 13.409 | 20.10   | Peak          | 0.00          | 5.41              | 0.00              | 25.51             | 80.50          | -54.99       |
|     | 13.710 | 22.90   | Peak          | 0.00          | 5.04              | 0.00              | 27.94             | 80.50          | -52.56       |
|     | 13.109 | 16.00   | Peak          | 0.00          | 5.79              | 0.00              | 21.79             | 69.54          | -47.75       |
|     | 14.112 | 17.10   | Peak          | 0.00          | 4.55              | 0.00              | 21.65             | 69.54          | -47.89       |
|     | 27.123 | 16.20   | Peak          | 0.00          | 7.70              | 0.00              | 23.90             | 69.54          | -45.64       |

#### NO HARMONICS OR OTHER SPURIOUS EMISSIONS FROM 9 kHz to 30 MHz

Sample Calculation for 13.56 MHz: Limit @ 30m = 15,848 uV/m = 84 dBuV/m

40 \* log ( Spec Limit Distance [30m] / Test Distance [3m] ) = 40 dB distance factor

Limit @ 3 meters = 124 dBuV/m

<sup>\*</sup> Limits adjusted for 3 meter test distance using an extrapolation factor of 40 dB/decade.



Test Location : Compatible Electronics Page : 1/1 : Dominik Scheffler : HES, Inc. : HES Hybrid Electric Strike iCLASS Customer **Date :** 01/05/2010 Manufacturer Time : 01:07:04 PM

Eut name Lab : J

Test Distance : 3.00 Meters Model : IC5020-EA

Serial # : N/A Specification : FCC Pt. 15 B

Distance correction factor (20 \* log(test/spec)) : 0.00

Test Mode

: 30 MHz to 1 GHz - Qualification Data Stationary mounting configuration Temp: 17 degrees C, Humidity: 47%, Pressure: 102.0 kPa Tested By: Scott McCutchan

| Pol              | Freq<br>MHz                                      | Reading<br>dBuV                           | Cable<br>loss<br>dB                  | Antenna<br>factor<br>dB                 | Amplifier<br>gain<br>dB                   | Corr'd<br>rdg = R<br>dBuV/m               | Limit<br>= L<br>dBuV/m                    | Delta<br>R-L<br>dB                             |
|------------------|--------------------------------------------------|-------------------------------------------|--------------------------------------|-----------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------------|
| V<br>V           | 40.677<br>54.129<br>67.703                       | 46.90<br>51.50<br>54.30                   | 1.20<br>1.37<br>1.68                 | 11.67<br>11.40<br>9.35                  | 31.89<br>31.80<br>31.72                   | 27.88<br>32.47<br>33.61                   | 40.00<br>40.00<br>40.00                   | -12.12<br>-7.53<br>-6.39                       |
| V<br>V           | 81.299<br>108.355                                | 49.90<br>47.90                            | 1.80                                 | 7.83<br>12.68                           | 31.81<br>31.80                            | 27.72                                     | 40.00                                     | -12.28<br>-12.65                               |
| V<br>V<br>H<br>H | 122.039<br>149.245<br>54.237<br>67.835<br>81.246 | 43.10<br>39.10<br>39.90<br>42.20<br>46.10 | 2.18<br>2.30<br>1.38<br>1.68<br>1.80 | 14.06<br>13.49<br>11.39<br>9.33<br>7.82 | 31.80<br>31.90<br>31.80<br>31.72<br>31.81 | 27.54<br>22.99<br>20.87<br>21.49<br>23.91 | 43.50<br>43.50<br>40.00<br>40.00<br>40.00 | -15.96<br>-20.51<br>-19.13<br>-18.51<br>-16.09 |





Page : 1/1 Test Location : Compatible Electronics Customer : Dominik Scheffler **Date :** 01/19/2010 Manufacturer : HES, Inc. Time : 10:42:14 PM

Eut name : HES Hybrid Electric Strike iCLASS Lab : J

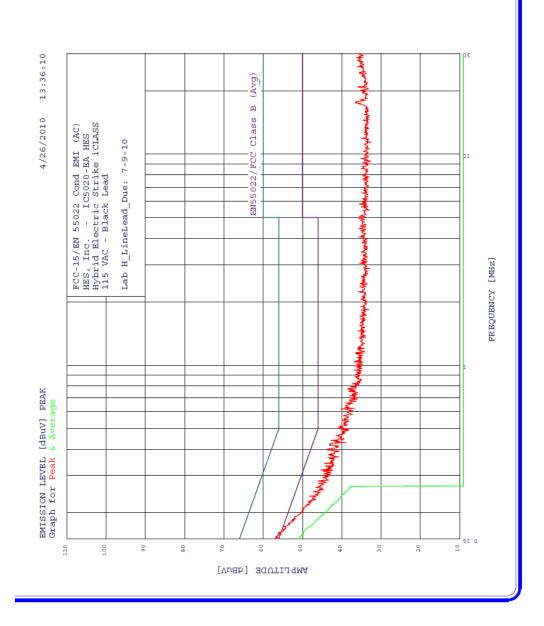
Model Test Distance : 3.00 Meters : IC5020-EA

Serial # : N/A Specification : FCC Pt. 15 B

Distance correction factor (20 \* log(test/spec)) : 0.00

Test Mode : 30 MHz to 1 GHz - Qualification Data

Free-hanging mounting configuration
Temp: 18 degrees C, Humidity: 32%, Pressure: 101.9 kPa
Tested By: Scott McCutchan


| Pol | Freq<br>MHz | Reading<br>dBuV | Cable<br>loss<br>dB | Antenna<br>factor<br>dB | Amplifier<br>gain<br>dB | Corr'd<br>rdg = R<br>dBuV/m | = L   | Delta<br>R-L<br>dB |
|-----|-------------|-----------------|---------------------|-------------------------|-------------------------|-----------------------------|-------|--------------------|
| v   | 40.670      | 44.20           | 1.20                | 11.67                   | 31.89                   | 25.18                       | 40.00 | -14.82             |
| V   | 54.211      | 54.30           | 1.38                | 11.39                   | 31.80                   | 35.27                       | 40.00 | -4.73              |
| V   | 67.813      | 52.50           | 1.68                | 9.33                    | 31.72                   | 31.79                       | 40.00 | -8.21              |
| V   | 81.354      | 48.30           | 1.80                | 7.84                    | 31.81                   | 26.13                       | 40.00 | -13.87             |
| V   | 149.157     | 51.80           | 2.30                | 13.48                   | 31.90                   | 35.68                       | 43.50 | -7.82              |
| V   | 162.719     | 52.00           | 2.46                | 15.47                   | 31.85                   | 38.08                       | 43.50 | -5.42              |
| H   | 40.667      | 43.80           | 1.20                | 11.67                   | 31.89                   | 24.78                       | 40.00 | -15.22             |
| H   | 54.218      | 42.60           | 1.38                | 11.39                   | 31.80                   | 23.57                       | 40.00 | -16.43             |
| Н   | 67.808      | 44.60           | 1.68                | 9.33                    | 31.72                   | 23.89                       | 40.00 | -16.11             |
| H   | 149.161     | 40.80           | 2.30                | 13.48                   | 31.90                   | 24.68                       | 43.50 | -18.82             |
| н   | 162.723     | 41.40           | 2.46                | 15.47                   | 31.85                   | 27.48                       | 43.50 | -16.02             |



#### **CONDUCTED EMISISONS**









29

#### Report Number: C00108J1 FCC Part 15 Subpart B and FCC Section 15.225 Test Report HES Hybrid Electric Strike iCLASS Model: IC5020-EA

page 1/1



4/26/2010

13:36:10

C-15/EN 55022 Cond EMI (AC) HES, Inc. Hybrid Electric Strike iCLASS 115 VAC - Black Lead

Lab H\_LineLead\_Due: 7-9-10 TEST ENGINEER : Scott McCutchan

30 highest peaks above -50.00 dB of EN55022/FCC Class B (Avg) limit line 0.10 dB, Curve : Peak Amp(dBuV) Limit(dB) Peak criteria : Freq(MHz) Delta(dB) Peak# 0.153 56.81 55.82 0.99\*\* 0.161 56.11 55.43 0.68\*\* 0.55\*\* 0.158 56.11 55.56 0.166 55.01 55.16 -0.15\*\* 0.171 54.71 54.90 -0.19\*\* -0.56\*\* 6 7 0.168 54.51 53.51 55.07 54.59 -1.08\*\* 0.178 0.176 53.51 54.68 -1.17\*\* -1.52\*\* -1.73\*\* 52.81 52.51 54.33 54.24 0.183 0.185 10 11 0.187 52.21 54.15 -1.94\*\* 50.01 12 0.210 53.23 -3.22\*\* 13 0.205 53.40 -3.39\*\* 0.202 50.11 53.53 -3.42\*\* 15 0.212 49.61 49.11 53.14 -3.53\*\* 0.216 52.96 -3.85\*\* 16 0.239 52.12 48.81 43.76 52.87 47.86 18 0.219 -4.06\*\* 0.400 -4.10 19 0.226 52.61 -4.20\*\* 20 48.41 42.77 21 0.223 52.70 -4.28\*\* 22 0.440 47.06 -4.29 23 0.417 43.16 47.50 -4.34 24 0.424 42.97 47.37 -4.41 49.75 51.73 25 0.318 45.34 47.22 -4.41 -4.51\*\* 0.251 26 -4.51\*\* -4.71\*\* -4.73 27 0.228 48.01 52.52 0.263 46.62 46.03 51.33 50.76 28

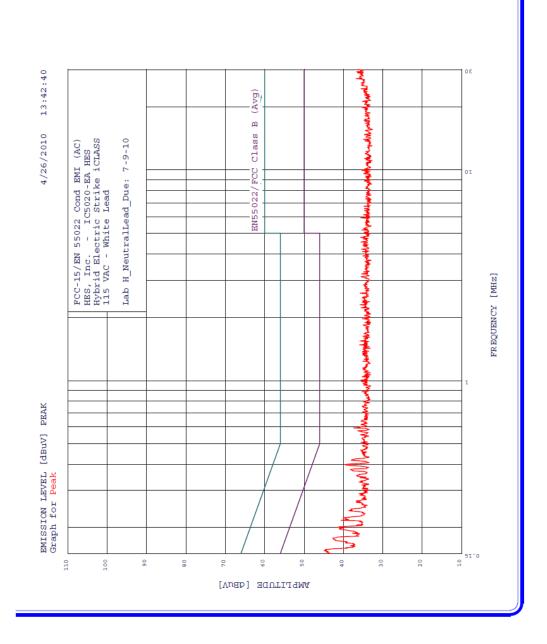


# Report Number: C00108J1 FCC Part 15 Subpart B and FCC Section 15.225 Test Report HES Hybrid Electric Strike iCLASS Model: IC5020-EA

page 1/1



4/26/2010


13:36:10

FCC-15/EN 55022 Cond EMI (AC) HES, Inc. - IC5020-EA HES Hybrid Electric Strike iCLASS 115 VAC - Black Lead

Lab H\_LineLead\_Due: 7-9-10
TEST ENGINEER: Scott McCutchan

2 highest peaks above -50.00 dB of EN55022/FCC Class B (Avg) limit line Peak criteria: 0.10 dB, Curve: Average Peak# Freq(MHz) Amp(dBuV) Limit(dB) Delta(dB) 
1 0.150 51.00 56.00 -5.00\*\* 
2 0.161 49.90 55.43 -5.53







#### Report Number: C00108J1 FCC Part 15 Subpart B and FCC Section 15.225 Test Report HES Hybrid Electric Strike iCLASS Model: IC5020-EA

page 1/1



4/26/2010

13:42:40

FCC-15/EN 55022 Cond EMI (AC) HES, Inc. - IC5020-EA HES Hybrid Electric Strike iCLASS 115 VAC - White Lead

Lab H\_NeutralLead\_Due: 7-9-10 TEST ENGINEER : Scott McCutchan

0.155 0.705 4.092

1.374

0.150

44.91

35.13 35.11

35.10

43.21

27

2.8 29

31

31 highest peaks above -50.00 dB of EN55022/FCC Class B (Avg) limit line Peak criteria : 0.10 dB, Curve : Peak Peak# Freq(MHz) Amp(dBuV) Limit(dB) Delta(dB) 39.56 37.36 37.96 -8.34 -8.64 0.398 47.90 46.00 47.50 0.595 0.417 0.577 36.36 46.00 -9.64 38.25 -10.09 48.34 1.480 35.81 46.00 -10.19 35.77 35.76 35.72 2.286 46.00 -10.24 8 46.00 1.544 46.00 -10.28 35.67 35.57 35.55 46.00 4.774 11 46.00 -10.43 46.00 -10.45 12 1.006 35.55 46.00 -10.45 3.107 35.54 46.00 -10.46 4.552 35.49 15 46.00 -10.510.508 35.48 46.00 -10.52 16 2.214 35.47 46.00 -10.53 0.641 35.45 18 46.00 -10.55 4.204 35.40 46.00 -10.60 0.990 35.35 46.00 -10.65 -10.66 -10.72 -10.72 21 3.209 35.34 46.00 0.885 35.28 46.00 22 0.532 35.28 46.00 2.462 35.26 46.00 -10.74 -10.74 1.043 35.26 35.22 46.00 25 46.00 -10.78 26

55.73 46.00

46.00

46.00

56.00

-10.82 -10.87 -10.89

-12.79



## FREQUENCY STABILITY OF THE CARRIER FREQUENCY

Report Number: C00108J1
FCC Part 15 Subpart B and FCC Section 15.225 Test Report
HES Hybrid Electric Strike iCLASS
Model: IC5020-EA

#### SECTION 15.225[e] TESTING

| COMPANY: | HES CORPORATION                   | DATE:     | 2-26-2010     |
|----------|-----------------------------------|-----------|---------------|
| EUT:     | HES Hybrid Electric Strike iCLASS | ENGINEER: | KYLE FUJIMOTO |
| MODEL:   | IC5020-EA                         | S/N:      | N/A           |

| TEMPERATURE | FREQUENCY   | FREQUENCY   | FREQUENCY   | FREQUENCY   | % OF SUPPLY |
|-------------|-------------|-------------|-------------|-------------|-------------|
|             | (MHz) AT 0  | (MHz) AT 2  | (MHz) AT 5  | (MHz) AT 10 | VOLTAGE     |
|             | MINUTES     | MINUTES     | MINUTES     | MINUTES     |             |
| -20°C       | 13.56148898 | 13.56148898 | 13.56138878 | 13.56138878 | 100         |
| -10°C       | 13.56150902 | 13.56150902 | 13.56152906 | 13.56160922 | 100         |
| +0°C        | 13.56148898 | 13.56148898 | 13.56158918 | 13.56152906 | 100         |
| +10°C       | 13.56138878 | 13.56146894 | 13.56148898 | 13.56146894 | 100         |
| +20°C       | 13.56144890 | 13.56136874 | 13.56144890 | 13.56140882 | 85          |
| +20°C       | 13.56140882 | 13.56138878 | 13.56140882 | 13.56140882 | 100         |
| +20°C       | 13.56140882 | 13.56142886 | 13.56142886 | 13.56142886 | 115         |
| +30°C       | 13.56136874 | 13.56136874 | 13.56136874 | 13.56140882 | 100         |
| +40°C       | 13.56150902 | 13.56142886 | 13.56140882 | 13.56140882 | 100         |
| +50°C       | 13.56142886 | 13.56136874 | 13.56136874 | 13.56138878 | 100         |

The Frequency Tolerance allowed is 0.01% ( $\pm 0.00135614$  MHz) of the frequency measured at  $+20^{\circ}$ C at 100% Supply Voltage.

If the Frequency is between 13.56005268 MHz and 13.56276496 MHz, the EUT is considered within the specification limits of 15.225[e].

FCC Nominal Input Voltage = 12 Vdc