

FCC RF Test Report

APPLICANT : PAX Technology Limited
EQUIPMENT : Smart Mini Payment Terminal
BRAND NAME : PAX
MODEL NAME : A60
MARKETING NAME : A60
FCC ID : V5PA60
STANDARD : FCC 47 CFR Part 2, 22(H), 24(E), 27(L)
CLASSIFICATION : PCS Licensed Transmitter (PCB)

The product was received on Mar. 05, 2018 and completely tested on May 10, 2018. We, Sporton International (Shenzhen) Inc., would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.26-2015 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Shenzhen) Inc., the test report shall not be reproduced except in full.

Approved by: Eric Shih / Manager

Sportun International (Shenzhen) Inc.
1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan Shenzhen City
Guangdong Province 518055 China

TABLE OF CONTENTS

REVISION HISTORY.....	3
SUMMARY OF TEST RESULT	4
1 GENERAL DESCRIPTION.....	5
1.1 Applicant.....	5
1.2 Manufacturer	5
1.3 Product Feature of Equipment Under Test	5
1.4 Product Specification of Equipment Under Test	6
1.5 Modification of EUT	6
1.6 Maximum ERP/EIRP Power, Frequency Tolerance, and Emission Designator	6
1.7 Testing Location	7
1.8 Applicable Standards	7
2 TEST CONFIGURATION OF EQUIPMENT UNDER TEST.....	8
2.1 Test Mode.....	8
2.2 Connection Diagram of Test System	9
2.3 Support Unit used in test configuration	9
2.4 Measurement Results Explanation Example	9
2.5 Frequency List of Low/Middle/High Channels.....	10
3 CONDUCTED TEST RESULT.....	11
3.1 Measuring Instruments.....	11
3.2 Test Setup	11
3.3 Test Result of Conducted Test.....	11
3.4 Conducted Output Power and ERP/EIRP	12
3.5 Peak-to-Average Ratio	13
3.6 99% Occupied Bandwidth and 26dB Bandwidth Measurement.....	14
3.7 Conducted Band Edge	15
3.8 Conducted Spurious Emission	16
3.9 Frequency Stability	17
4 RADIATED TEST ITEMS	18
4.1 Measuring Instruments.....	18
4.2 Test Setup	18
4.3 Test Result of Radiated Test.....	18
4.4 Field Strength of Spurious Radiation Measurement	19
5 LIST OF MEASURING EQUIPMENT	20
6 UNCERTAINTY OF EVALUATION.....	21
APPENDIX A. TEST RESULTS OF CONDUCTED TEST	
APPENDIX B. TEST RESULTS OF RADIATED TEST	
APPENDIX C. TEST SETUP PHOTOGRAPHS	

REVISION HISTORY

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.4	§2.1046	Conducted Output Power	Reporting Only	PASS	-
	§22.913(a)(5)	Effective Radiated Power	< 7 Watts	PASS	-
	§24.232(c)	Equivalent Isotropic Radiated Power	< 2 Watts	PASS	-
	§27.50(d)(4)	Equivalent Isotropic Radiated Power	< 1 Watts	PASS	-
3.5	§24.232(d)	Peak-to-Average Ratio	< 13 dB	PASS	-
3.6	§2.1049	Occupied Bandwidth	Reporting Only	PASS	-
3.7	§2.1051 §22.917(a) §24.238(a) §27.53(h)	Band Edge Measurement	< 43+10log10(P[Watts])	PASS	-
3.8	§2.1051 §22.917(a) §24.238(a) §27.53(h)	Conducted Emission	< 43+10log10(P[Watts])	PASS	-
3.9	§2.1055 §22.355	Frequency Stability for Temperature & Voltage	< 2.5 ppm for Part 22H	PASS	-
	§2.1055 §24.235 §27.54		Within Authorized Band		
4.4	§2.1053 §22.917(a) §24.238(a) §27.53(h)	Field Strength of Spurious Radiation	< 43+10log10(P[Watts])	PASS	Under limit 22.04 dB at 7010.400 MHz

1 General Description

1.1 Applicant

PAX Technology Limited

Room 2416, 24/F., Sun Hung Kai Centre, 30 Harbour Road, Wanchai, Hong Kong

1.2 Manufacturer

PAX Computer Technology (Shenzhen) Co., Ltd.

4/F, No.3 Building, Software Park, Second Central Science-Tech Road, High-Tech industrial Park, Shenzhen, Guangdong, P.R.C

1.3 Product Feature of Equipment Under Test

Product Feature	
Equipment	Smart Mini Payment Terminal
Brand Name	PAX
Model Name	A60
Marketing Name	A60
FCC ID	V5PA60
EUT supports Radios application	WCDMA/HSPA/HSPA+/LTE/NFC WLAN 2.4GHz 802.11b/g/n HT20 Bluetooth v3.0+EDR/Bluetooth v4.0 LE
IMEI Code	Conducted: 355678099990107 Radiation: 355678099990156
HW Version	N/A
SW Version	N/A
EUT Stage	Production Unit

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification	
Tx Frequency	Band V: 826.4 MHz ~ 846.6 MHz Band II: 1852.4 MHz ~ 1907.6 MHz Band IV: 1712.4 MHz ~ 1752.6 MHz
Rx Frequency	Band V: 871.4 MHz ~ 891.6 MHz Band II: 1932.4 MHz ~ 1987.6 MHz Band IV: 2112.4 MHz ~ 2152.6 MHz
Maximum Output Power to Antenna	Band V: 22.28 dBm Band II: 22.64 dBm Band IV: 22.52 dBm
Antenna Type	FPC Antenna
Antenna Gain	Cellular Band: 1.50 dBi PCS Band: 2.00 dBi AWS Band: 2.00 dBi
Type of Modulation	WCDMA: BPSK (Uplink) HSDPA: QPSK (Uplink) HSUPA: QPSK (Uplink) HSPA+: 16QAM (Uplink)

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Maximum ERP/EIRP Power, Frequency Tolerance, and Emission Designator

FCC Rule	System	Type of Modulation	Maximum ERP/EIRP (W)	Frequency Tolerance (ppm)	Emission Designator
Part 22H	WCDMA Band V RMC 12.2Kbps	BPSK	0.1455	0.0123 ppm	4M09F9W
Part 24E	WCDMA Band II RMC 12.2Kbps	BPSK	0.2911	0.0197 ppm	4M10F9W
Part 27L	WCDMA Band IV RMC 12.2Kbps	BPSK	0.2831	0.0066 ppm	4M13F9W

1.7 Testing Location

Sportun International (Shenzhen) Inc. is accredited to ISO 17025 by National Voluntary Laboratory Accreditation Program (NVLAP code: 600156-0) and the FCC designation No. are CN5018 and CN5019.

Test Site	Sportun International (Shenzhen) Inc.	
Test Site Location	1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan Shenzhen City Guangdong Province 518055 China TEL: +86-755-8637-9589 FAX: +86-755-8637-9595	
Test Site No.	Sportun Site No.	FCC Test Firm Registration No.
	TH01-SZ	251365
Test Site	Sportun International (Shenzhen) Inc.	
Test Site Location	No. 3 Bldg the third floor of south, Shahe River west, Fengzeyuan Warehouse, Nanshan District Shenzhen City Guangdong Province 518055 China TEL: +86-755-3320-2398	
Test Site No.	Sportun Site No.	FCC Test Firm Registration No.
	03CH03-SZ	577730

Note: The test site complies with ANSI C63.4 2014 requirement.

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 2, 22(H), 24(E), 27(L)
- ANSI C63.26-2015
- FCC KDB 971168 D01 Power Meas. License Digital Systems v03r01
- FCC KDB 412172 D01 Determining ERP and EIRP v01r01

Remark:

1. All test items were verified and recorded according to the standards and without any deviation during the test.
2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

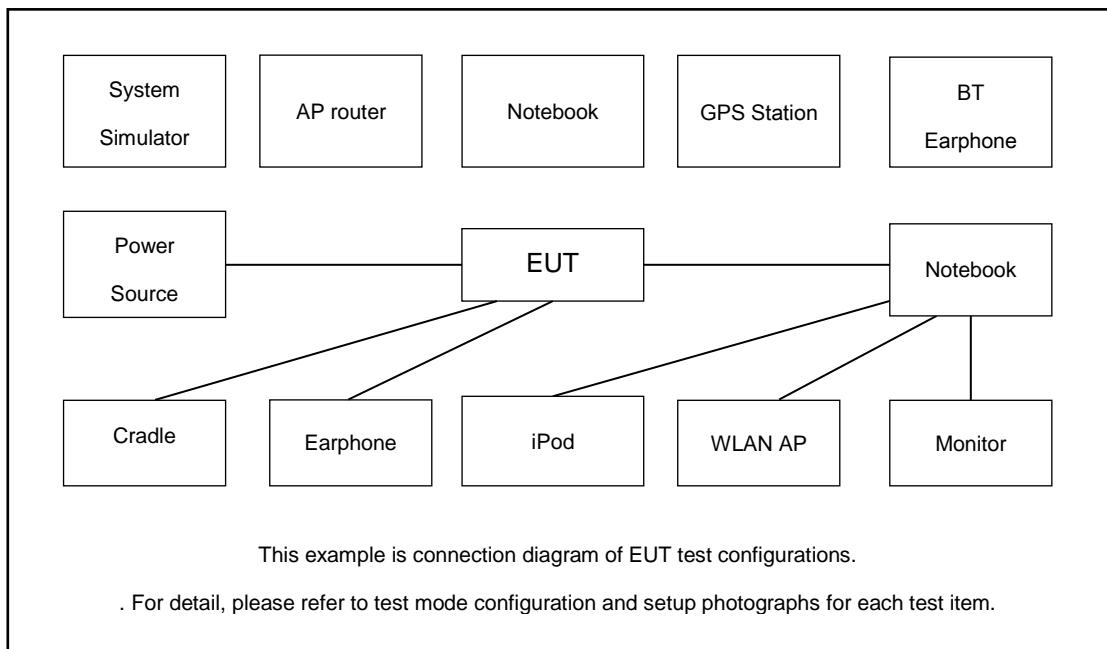
2 Test Configuration of Equipment Under Test

2.1 Test Mode

Antenna port conducted and radiated test items were performed according to KDB 971168 D01 Power Meas. License Digital Systems v03r01 with maximum output power.

Radiated measurements were performed with rotating EUT in different three orthogonal test planes to find the maximum emission.

Radiated emissions were investigated as following frequency range:


1. 30 MHz to 10th harmonic for WCDMA Band V.
2. 30 MHz to 10th harmonic for WCDMA Band IV.
3. 30 MHz to 10th harmonic for WCDMA Band II.

All modes and data rates and positions were investigated.

Test modes are chosen to be reported as the worst case configuration below:

Test Modes		
Band	Radiated TCs	Conducted TCs
WCDMA Band V	■ RMC 12.2Kbps Link	■ RMC 12.2Kbps Link
WCDMA Band II	■ RMC 12.2Kbps Link	■ RMC 12.2Kbps Link
WCDMA Band IV	■ RMC 12.2Kbps Link	■ RMC 12.2Kbps Link

2.2 Connection Diagram of Test System

2.3 Support Unit used in test configuration

Item	Equipment	Trade Name	Model No.	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
2.	DC Power Supply	GW INSTEK	GPS-3030D	N/A	N/A	Unshielded, 1.8 m

2.4 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between RF conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level will be exactly the RF output level.

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

$\text{Offset} = \text{RF cable loss} + \text{attenuator factor}$.

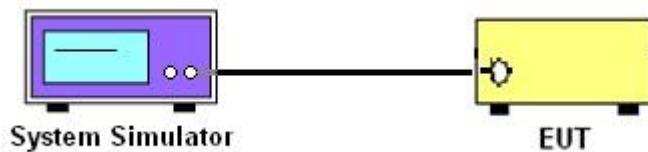
The following shows an offset computation example with RF cable loss 4.5 dB and a 10dB attenuator.

Example :

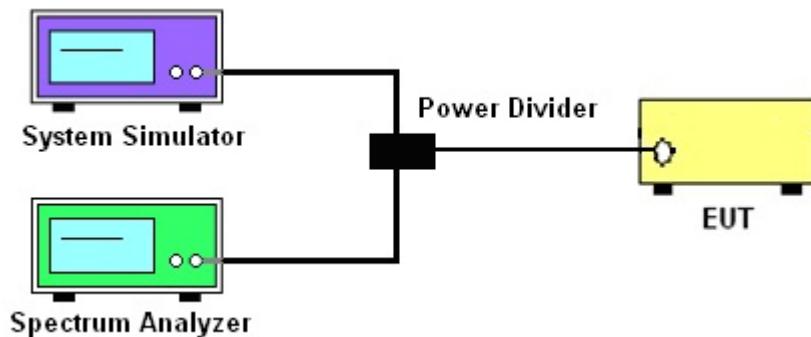
$$\begin{aligned}\text{Offset(dB)} &= \text{RF cable loss(dB)} + \text{attenuator factor(dB)} \\ &= 4.5 + 10 = 14.5 \text{ (dB)}\end{aligned}$$

2.5 Frequency List of Low/Middle/High Channels

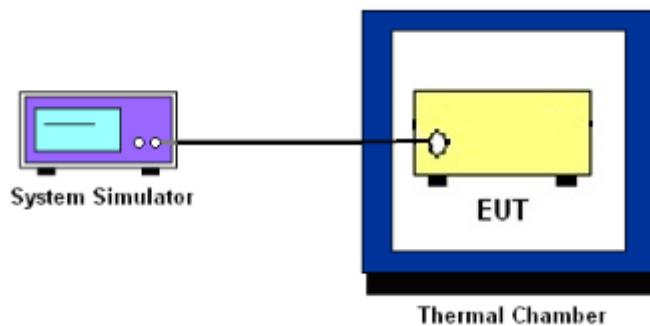
Frequency List				
Band	Channel/Frequency(MHz)	Lowest	Middle	Highest
WCDMA Band V	Channel	4132	4182	4233
	Frequency	826.4	836.4	846.6
WCDMA Band II	Channel	9262	9400	9538
	Frequency	1852.4	1880.0	1907.6
WCDMA Band IV	Channel	1312	1413	1513
	Frequency	1712.4	1732.6	1752.6


3 Conducted Test Result

3.1 Measuring Instruments


See list of measuring instruments of this test report.

3.2 Test Setup


3.2.1 Conducted Output Power

3.2.2 Peak-to-Average Ratio, Occupied Bandwidth, Conducted Band-Edge and Conducted Spurious Emission

3.2.3 Frequency Stability

3.3 Test Result of Conducted Test

Please refer to Appendix A.

3.4 Conducted Output Power and ERP/EIRP

3.4.1 Description of the Conducted Output Power and ERP/EIRP

A system simulator was used to establish communication with the EUT. Its parameters were set to enforce EUT transmitting at the maximum power. The measured power in the radio frequency on the transmitter output terminals shall be reported.

The ERP of mobile transmitters must not exceed 7 Watts for WCDMA Band V.

The EIRP of mobile transmitters must not exceed 2 Watts for WCDMA Band II.

The EIRP of mobile transmitters must not exceed 1 Watts for WCDMA Band IV.

According to KDB 412172 D01 Power Approach,

$EIRP = P_T + G_T - L_C$, $ERP = EIRP - 2.15$, where

P_T = transmitter output power in dBm

G_T = gain of the transmitting antenna in dBi

L_C = signal attenuation in the connecting cable between the transmitter and antenna in dB

3.4.2 Test Procedures

1. The testing follows ANSI C63.26 Section 5.2
2. The transmitter output port was connected to the system simulator.
3. Set EUT at maximum power through the system simulator.
4. Select lowest, middle, and highest channels for each band and different modulation.
5. Measure and record the power level from the system simulator.

3.5 Peak-to-Average Ratio

3.5.1 Description of the PAR Measurement

The peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

3.5.2 Test Procedures

1. The testing follows ANSI C63.26 Section 5.2.3.4 (CCDF).
2. The EUT was connected to spectrum and system simulator via a power divider.
3. Set the CCDF (Complementary Cumulative Distribution Function) option in spectrum analyzer.
4. The highest RF powers were measured and recorded the maximum PAPR level associated with a probability of 0.1 %.
5. Record the deviation as Peak to Average Ratio.

3.6 99% Occupied Bandwidth and 26dB Bandwidth Measurement

3.6.1 Description of 99% Occupied Bandwidth and 26dB Bandwidth Measurement

The occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the total mean transmitted power.

The 26 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 26 dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth.

3.6.2 Test Procedures

1. The testing follows ANSI C63.26 Section 5.4
2. The EUT was connected to spectrum analyzer and system simulator via a power divider.
3. The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the spectrum analyzer shall be between two and five times the anticipated OBW.
4. The nominal resolution bandwidth (RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.
5. Set the detection mode to peak, and the trace mode to max hold.
6. Determine the reference value: Set the EUT to transmit a modulated signal. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace. (this is the reference value)
7. Determine the “-26 dB down amplitude” as equal to (Reference Value – X).
8. Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display such that each marker is at or slightly below the “-X dB down amplitude” determined in step 6. If a marker is below this “-X dB down amplitude” value it shall be placed as close as possible to this value. The OBW is the positive frequency difference between the two markers.
9. Use the 99 % power bandwidth function of the spectrum analyzer and report the measured bandwidth.

3.7 Conducted Band Edge

3.7.1 Description of Conducted Band Edge Measurement

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least $43 + 10 \log (P)$ dB.

3.7.2 Test Procedures

1. The testing follows ANSI C63.26 section 5.7
2. The EUT was connected to the spectrum analyzer and system simulator via a power divider.
3. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator. The path loss was compensated to the results for each measurement.
4. The band edges of low and high channels for the highest RF powers were measured.
5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
6. The limit line is derived from $43 + 10\log(P)$ dB below the transmitter power P(Watts)

3.8 Conducted Spurious Emission

3.8.1 Description of Conducted Spurious Emission Measurement

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least $43 + 10 \log (P)$ dB.

It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

3.8.2 Test Procedures

1. The testing follows ANSI C63.26 section 5.7
2. The EUT was connected to the spectrum analyzer and system simulator via a power divider.
3. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator. The path loss was compensated to the results for each measurement.
4. The middle channel for the highest RF power within the transmitting frequency was measured.
5. The conducted spurious emission for the whole frequency range was taken.
6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
7. The limit line is derived from $43 + 10\log(P)$ dB below the transmitter power P(Watts)

3.9 Frequency Stability

3.9.1 Description of Frequency Stability Measurement

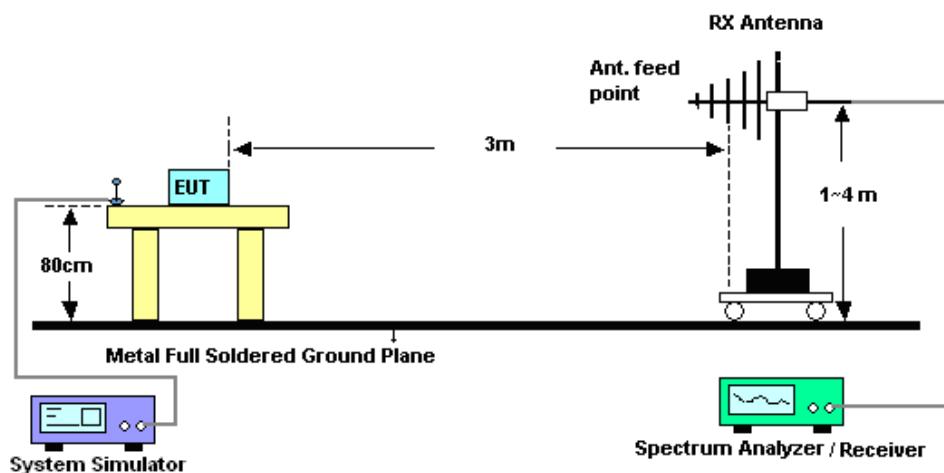
The frequency stability shall be measured by variation of ambient temperature and variation of primary supply voltage to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ ($\pm 2.5\text{ppm}$) of the center frequency.

3.9.2 Test Procedures for Temperature Variation

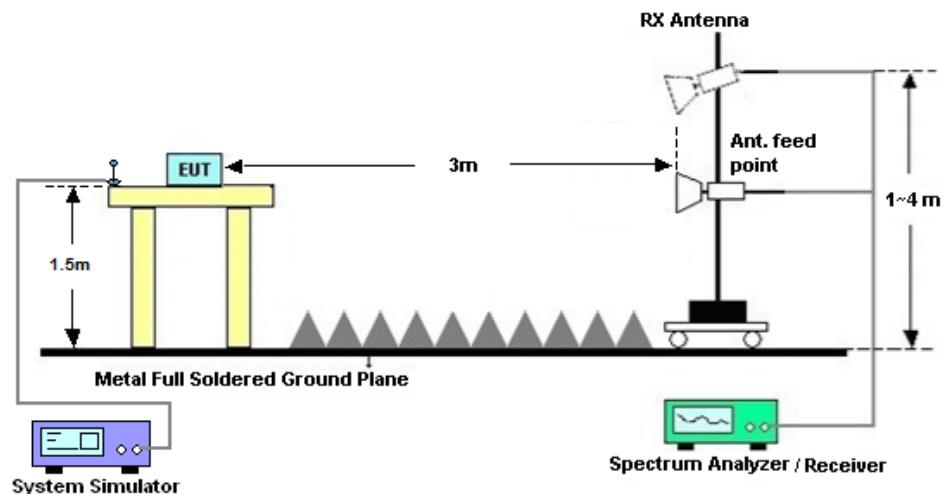
1. The testing follows ANSI C63.26 section 5.6.4
2. The EUT was set up in the thermal chamber and connected with the system simulator.
3. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute.
4. With power OFF, the temperature was raised in 10°C step up to 50°C . The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

3.9.3 Test Procedures for Voltage Variation

1. The testing follows ANSI C63.26 section 5.6.5
2. The EUT was placed in a temperature chamber at $20\pm 5^{\circ}\text{C}$ and connected with the system simulator.
3. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value for other than hand carried battery equipment.
4. For hand carried, battery powered equipment, reduce the primary ac or dc supply voltage to the battery operating end point, which shall be specified by the manufacturer.
5. The variation in frequency was measured for the worst case.


4 Radiated Test Items

4.1 Measuring Instruments


See list of measuring instruments of this test report.

4.2 Test Setup

4.2.1 For radiated test from 30MHz to 1GHz

4.2.2 For radiated test above 1GHz

4.3 Test Result of Radiated Test

Please refer to Appendix B.

4.4 Field Strength of Spurious Radiation Measurement

4.4.1 Description of Field Strength of Spurious Radiated Measurement

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least $43 + 10 \log (P)$ dB. The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

4.4.2 Test Procedures

1. The testing follows ANSI C63.26 Section 5.5
2. The EUT was placed on a rotatable wooden table 0.8 meters for frequency below 1GHz and 1.5 meter for frequency above 1GHz above the ground.
3. The EUT was set 3 meters from the receiving antenna, which was mounted on the antenna tower.
4. The table was rotated 360 degrees to determine the position of the highest spurious emission.
5. The height of the receiving antenna is varied between one meter and four meters to search for the maximum spurious emission for both horizontal and vertical polarizations.
6. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking record of maximum spurious emission.
7. A horn antenna was substituted in place of the EUT and was driven by a signal generator.
8. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.
9. Taking the record of output power at antenna port.
10. Repeat step 7 to step 8 for another polarization.
11. EIRP (dBm) = S.G. Power – Tx Cable Loss + Tx Antenna Gain
12. ERP (dBm) = EIRP - 2.15
13. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
14. The limit line is derived from $43 + 10\log(P)$ dB below the transmitter power P(Watts)

5 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101078	9kHz~40GHz	Apr. 20, 2017	Apr. 11, 2018~Apr. 19, 2018	Apr. 19, 2018	Conducted (TH01-SZ)
Thermal Chamber	Ten Billion Hongzhangroup	LP-150U	H2014081803	-40~+150°C	Jul. 20, 2017	Apr. 11, 2018~Apr. 19, 2018	Jul. 19, 2018	Conducted (TH01-SZ)
Radio communication analyzer	Anritsu	MT8820C	6201563777	2G/3G/4G	Dec. 26, 2017	Apr. 11, 2018~Apr. 19, 2018	Dec. 25, 2018	Conducted (TH01-SZ)
EMI Test Receiver&SA	KEYSIGHT	N9038A	MY54450083	20Hz~8.4GHz	Apr. 20, 2017	Apr. 17, 2018~May 10, 2018	Apr. 19, 2018	Radiation (03CH03-SZ)
EMI Test Receiver&SA	KEYSIGHT	N9038A	MY54450083	20Hz~8.4GHz	Apr. 19, 2018	Apr. 17, 2018~May 10, 2018	Apr. 18, 2019	Radiation (03CH03-SZ)
EXA Spectrum Anaiyzer	KEYSIGHT	N9010A	MY55150246	10Hz~44GHz;	Apr. 20, 2017	Apr. 17, 2018~May 10, 2018	Apr. 19, 2018	Radiation (03CH03-SZ)
EXA Spectrum Anaiyzer	KEYSIGHT	N9010A	MY55150246	10Hz~44GHz;	Apr. 19, 2018	Apr. 17, 2018~May 10, 2018	Apr. 18, 2019	Radiation (03CH03-SZ)
Bilog Antenna	TeseQ	CBL6112D	35408	30MHz-2GHz	May 14, 2017	Apr. 17, 2018~May 10, 2018	May 13, 2018	Radiation (03CH03-SZ)
Double Ridge Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-1355	1GHz~18GHz	Jul. 09, 2017	Apr. 17, 2018~May 10, 2018	Jul. 08, 2018	Radiation (03CH03-SZ)
SHF-EHF Horn	com-power	AH-840	101071	18Ghz-40GHz	Jun. 16, 2017	Apr. 17, 2018~May 10, 2018	Jun. 15, 2018	Radiation (03CH03-SZ)
Amplifier	Burjeon	BPA-530	102210	0.01Hz ~3000MHz	Oct. 19, 2017	Apr. 17, 2018~May 10, 2018	Oct. 18, 2018	Radiation (03CH03-SZ)
Amplifier	Agilent Technologies	83017A	MY39501302	500MHz~26.5GHz	Dec. 27, 2017	Apr. 17, 2018~May 10, 2018	Dec. 26, 2018	Radiation (03CH03-SZ)
HF Amplifier	MITEQ	TTA1840-35-HG	1871923	18GHz~40GHz	Jul. 18, 2017	Apr. 17, 2018~May 10, 2018	Jul. 17, 2018	Radiation (03CH03-SZ)
AC Power Source	Chroma	61601	61601000198 5	N/A	NCR	Apr. 17, 2018~May 10, 2018	NCR	Radiation (03CH03-SZ)
Turn Table	EM	EM1000	N/A	0~360 degree	NCR	Apr. 17, 2018~May 10, 2018	NCR	Radiation (03CH03-SZ)
Antenna Mast	EM	EM1000	N/A	1 m~4 m	NCR	Apr. 17, 2018~May 10, 2018	NCR	Radiation (03CH03-SZ)

NCR: No Calibration Required

6 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	3.0 dB
---	--------

Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	3.6 dB
---	--------

Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	3.8 dB
---	--------

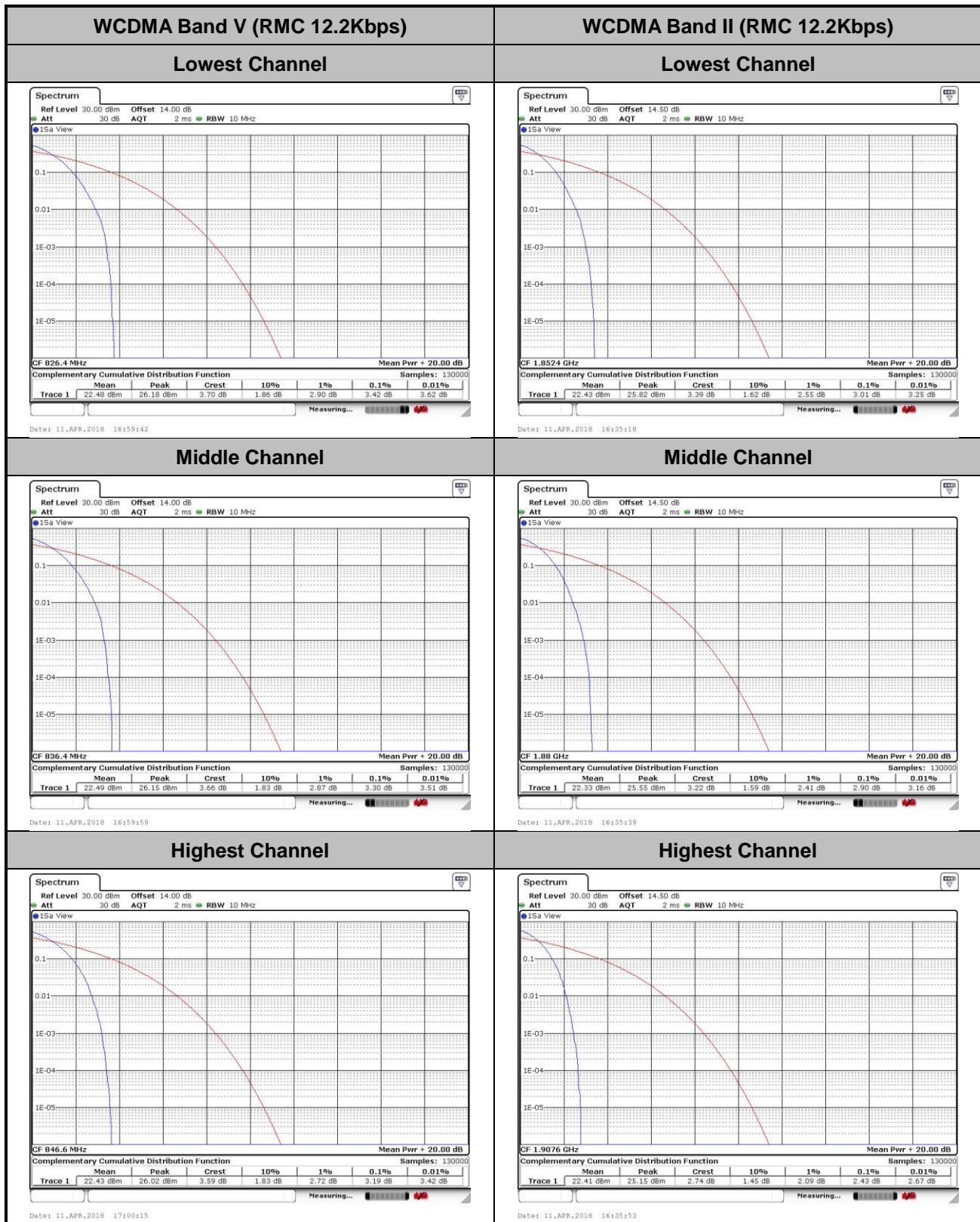
Appendix A. Test Results of Conducted Test

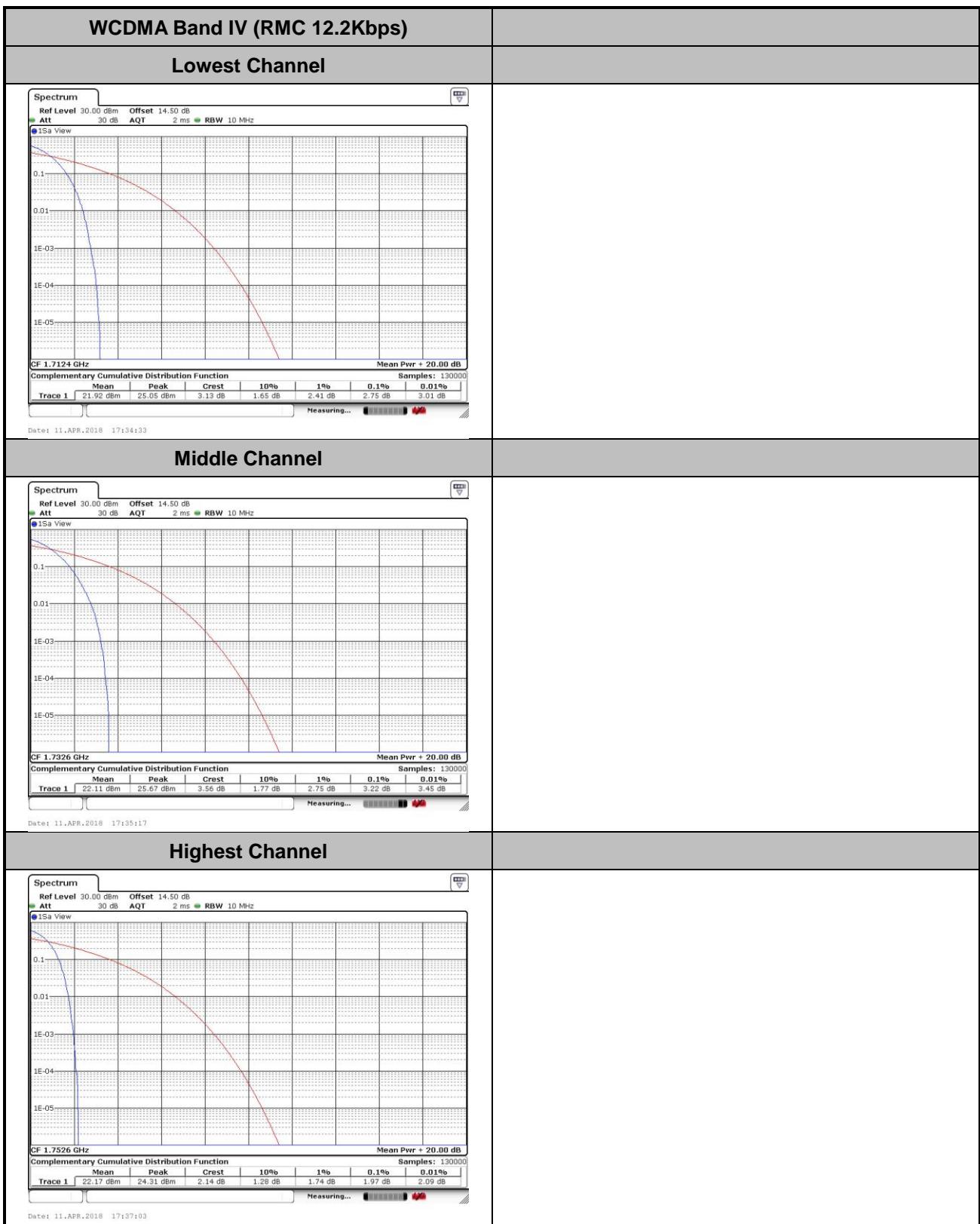
Conducted Output Power(Average power)

Band	Conducted Power (*Unit: dBm)								
	WCDMA Band V			WCDMA Band II			WCDMA Band IV		
Channel	4132	4182	4233	9262	9400	9538	1312	1413	1513
Frequency	826.4	836.4	846.6	1852.4	1880	1907.6	1712.4	1732.6	1752.6
RMC 12.2K	22.21	22.24	22.28	22.52	22.64	22.62	22.39	22.52	22.47
HSDPA Subtest-1	21.75	21.72	21.69	22.15	22.24	22.31	22.05	22.08	22.49
HSDPA Subtest-2	21.85	21.75	21.74	21.99	22.16	22.17	21.87	22.04	22.09
HSDPA Subtest-3	21.96	21.87	21.84	21.93	22.13	22.08	21.82	22.05	21.92
HSDPA Subtest-4	21.90	21.80	21.77	21.87	22.08	22.03	21.77	22.01	21.84
HSUPA Subtest-1	21.25	20.33	20.37	20.79	20.87	21.08	20.62	20.70	21.36
HSUPA Subtest-2	19.22	19.16	19.20	19.60	19.67	19.85	19.38	19.45	20.01
HSUPA Subtest-3	20.60	20.52	20.53	20.83	20.92	21.05	20.69	20.80	21.17
HSUPA Subtest-4	20.09	20.05	20.06	20.28	20.38	20.50	20.14	20.32	20.57
HSUPA Subtest-5	21.80	21.80	21.80	21.90	22.10	22.10	21.80	22.00	22.10
HSUPA+ (16QAM) Subtest-1	19.40	19.57	19.43	19.72	19.87	19.97	19.59	19.67	20.07

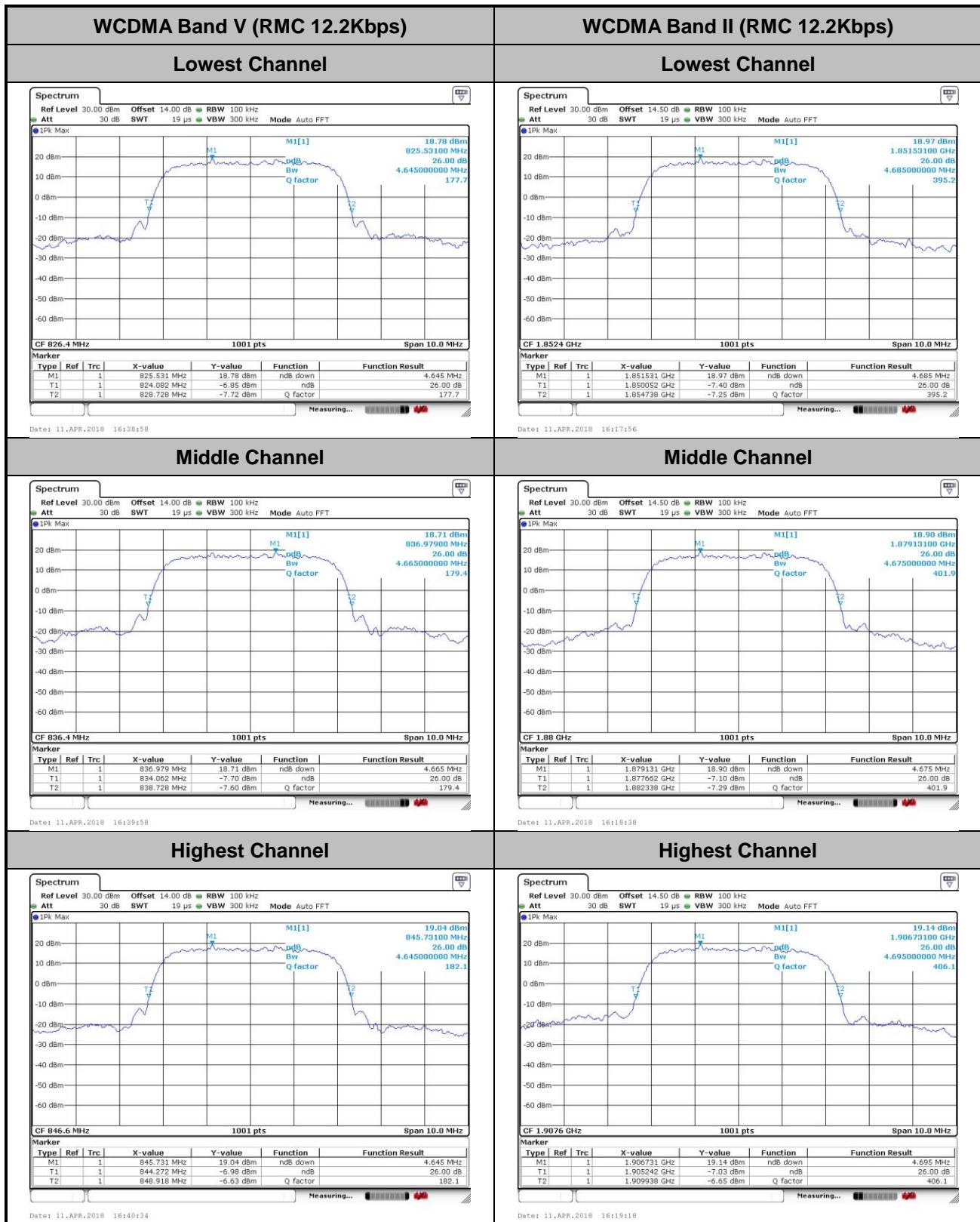
ERP/EIRP

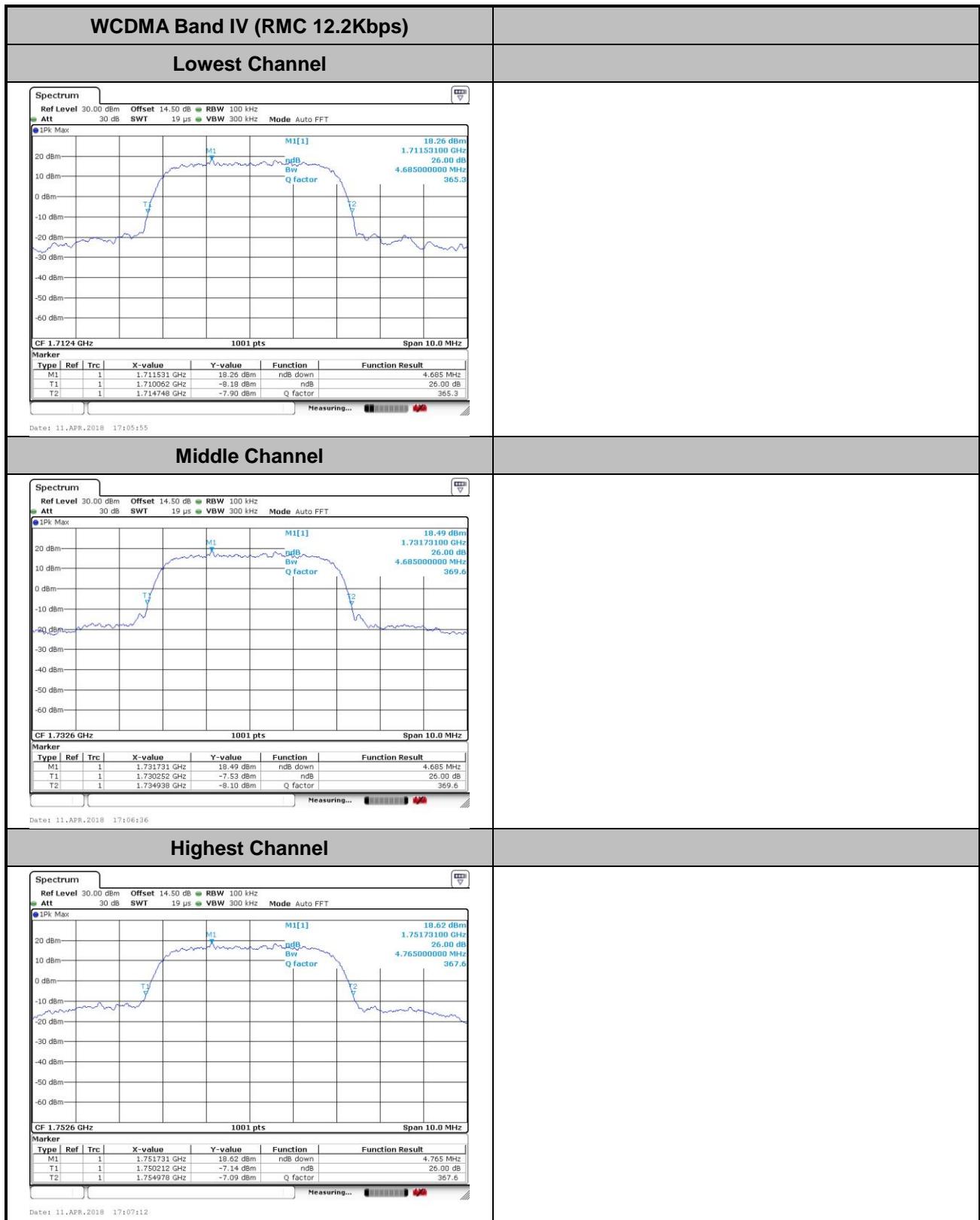
WCDMA Band V ($G_T - L_C = 1.50$ dBi)			
Channel	4132	4182	4233
	(Low)	(Mid)	(High)
Frequency (MHz)	826.4	836.4	846.6
Conducted Power (dBm)	22.21	22.24	22.28
Conducted Power (Watts)	0.1663	0.1675	0.1690
ERP(dBm)	21.56	21.59	21.63
ERP(Watts)	0.1432	0.1442	0.1455


WCDMA Band II ($G_T - L_C = 2.00$ dBi)			
Channel	9262	9400	9538
	(Low)	(Mid)	(High)
Frequency (MHz)	1852.4	1880	1907.6
Conducted Power (dBm)	22.52	22.64	22.62
Conducted Power (Watts)	0.1786	0.1837	0.1828
EIRP(dBm)	24.52	24.64	24.62
EIRP(Watts)	0.2831	0.2911	0.2897


WCDMA Band IV ($G_T - L_C = 2.00$ dBi)			
Channel	1312	1413	1513
	(Low)	(Mid)	(High)
Frequency (MHz)	1712.4	1732.6	1752.6
Conducted Power (dBm)	22.39	22.52	22.47
Conducted Power (Watts)	0.1734	0.1786	0.1766
EIRP(dBm)	24.39	24.52	24.47
EIRP(Watts)	0.2748	0.2831	0.2799

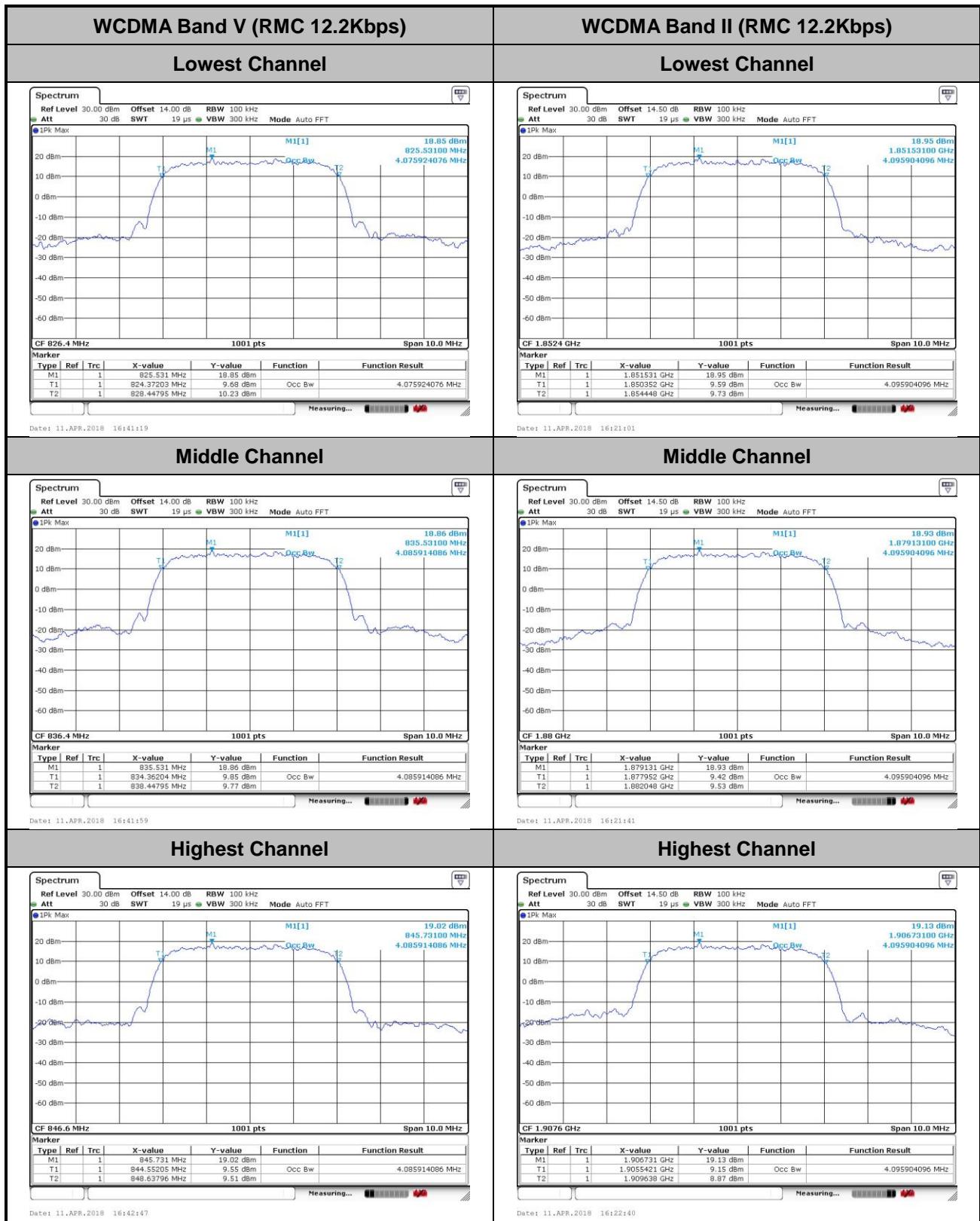
Peak-to-Average Ratio


Mode	WCDMA Band V(dB)	WCDMA Band II(dB)	WCDMA Band IV(dB)	Limit: 13dB
Mod.	RMC 12.2Kbps	RMC 12.2Kbps	RMC 12.2Kbps	Result
Lowest CH	3.42	3.01	2.75	PASS
Middle CH	3.30	2.90	3.22	
Highest CH	3.19	2.43	1.97	

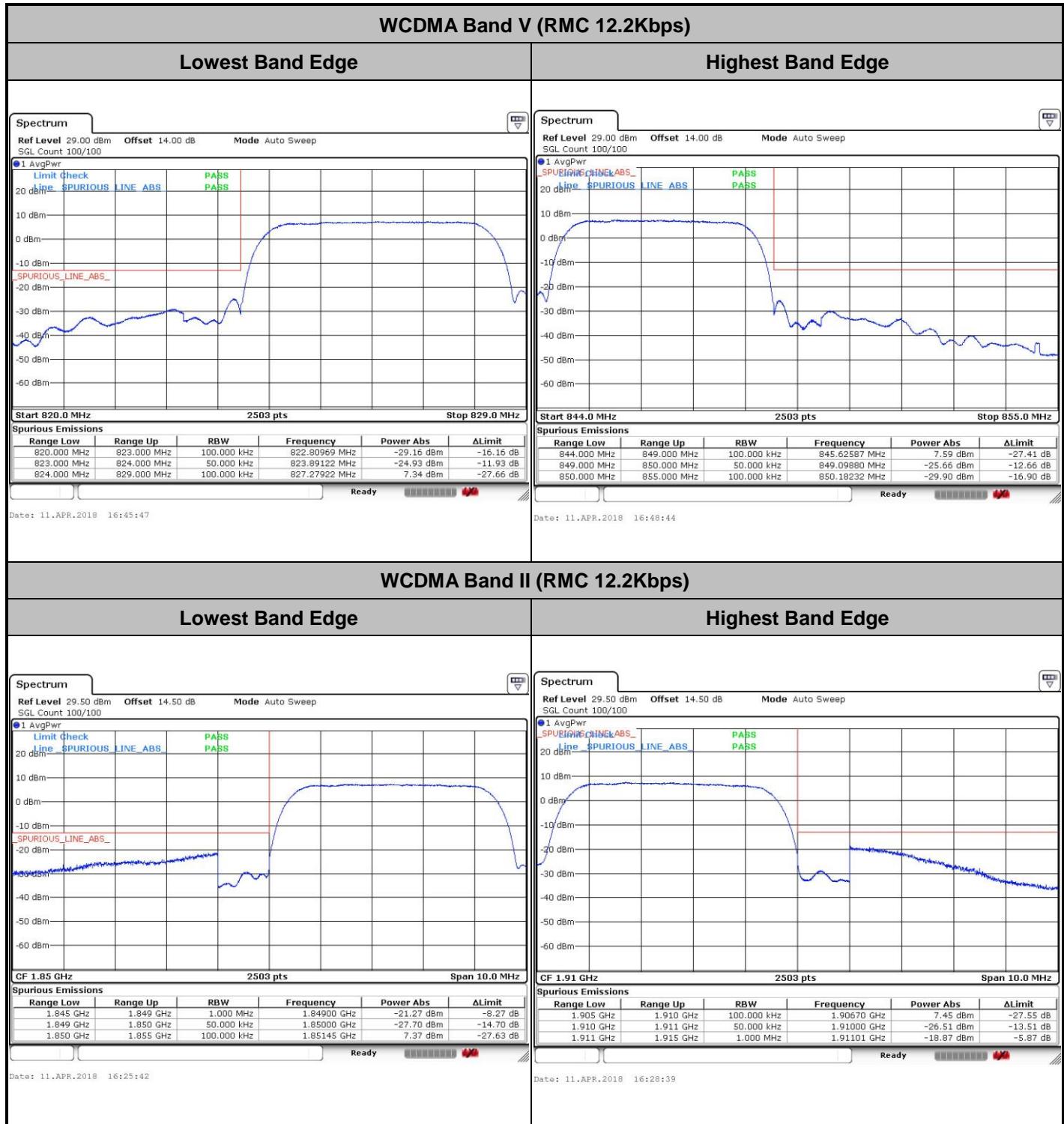


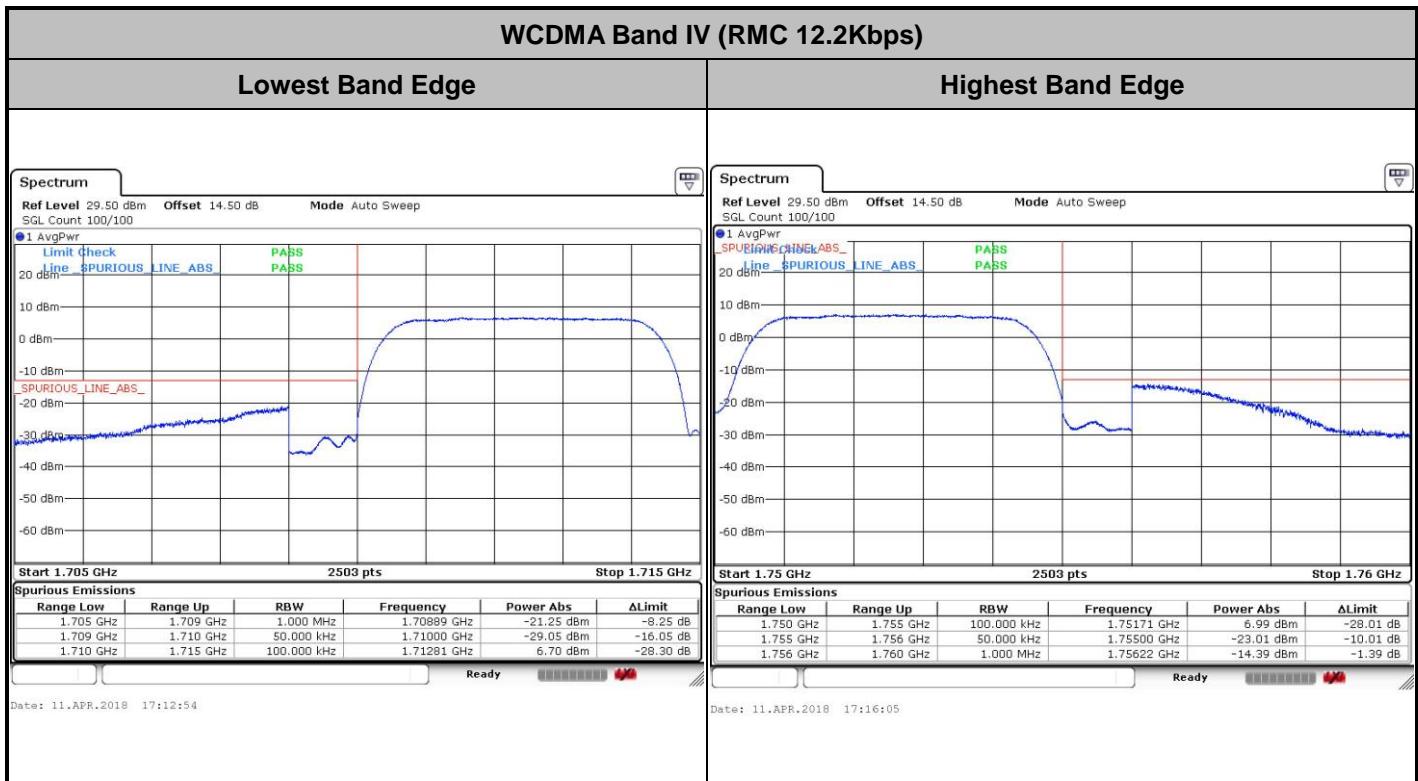
26dB Bandwidth

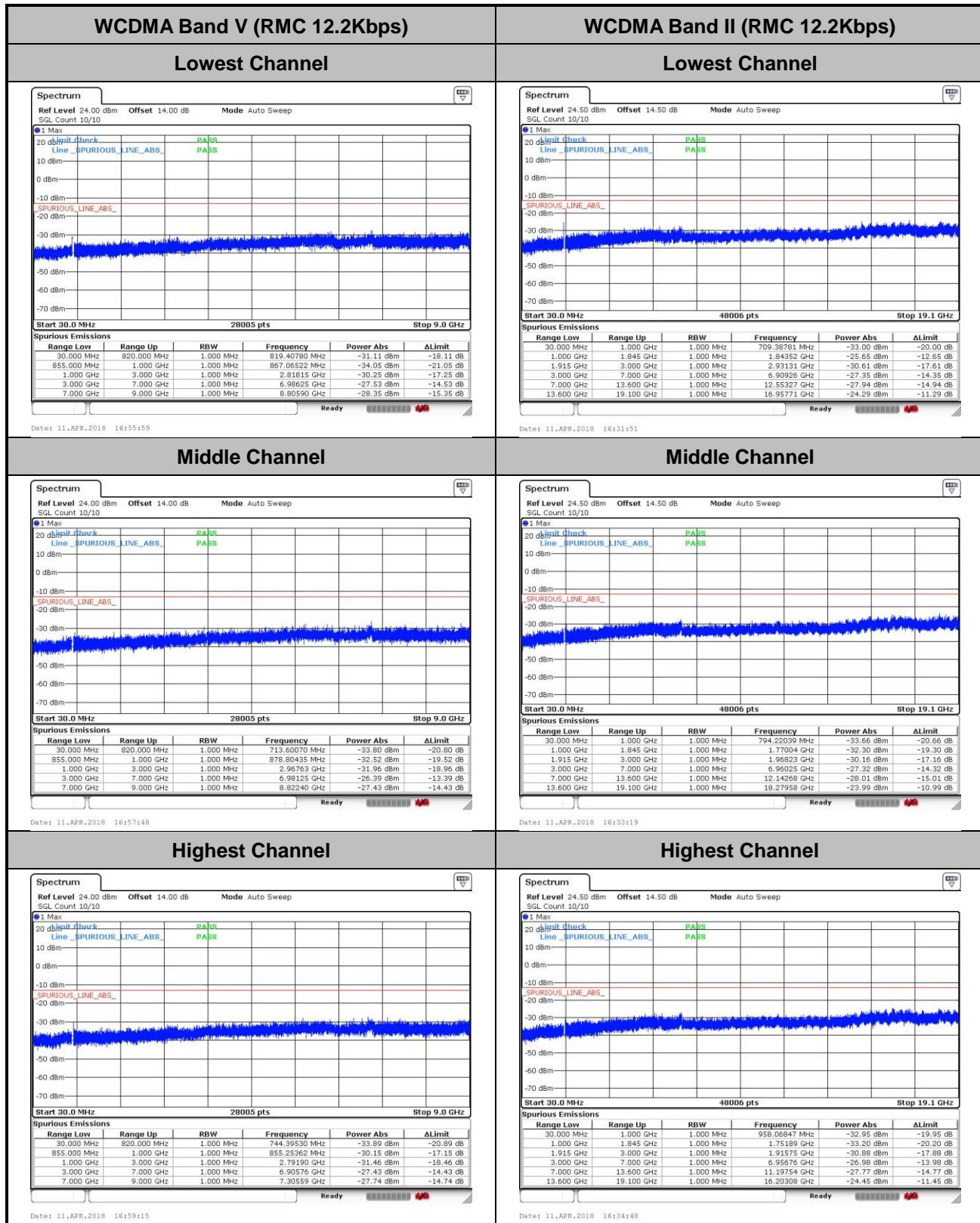
Mode	WCDMA Band V(MHz)	WCDMA Band II(MHz)	WCDMA Band IV(MHz)
Mod.	RMC 12.2Kbps	RMC 12.2Kbps	RMC 12.2Kbps
Lowest CH	4.65	4.69	4.69
Middle CH	4.67	4.68	4.69
Highest CH	4.65	4.70	4.77

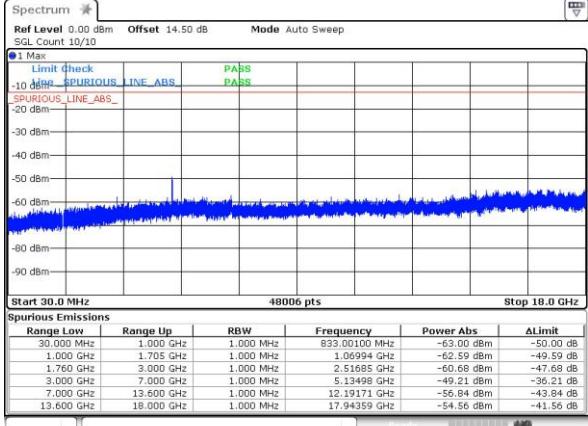
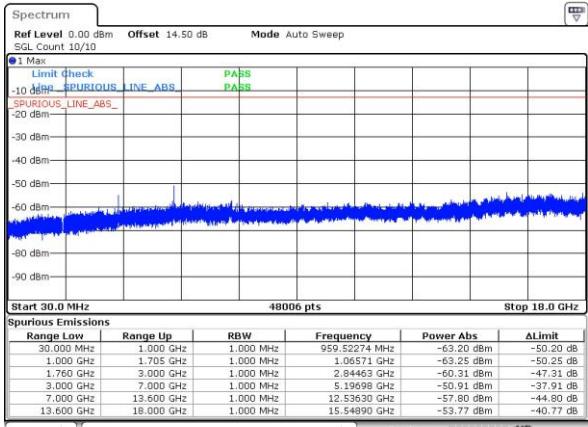
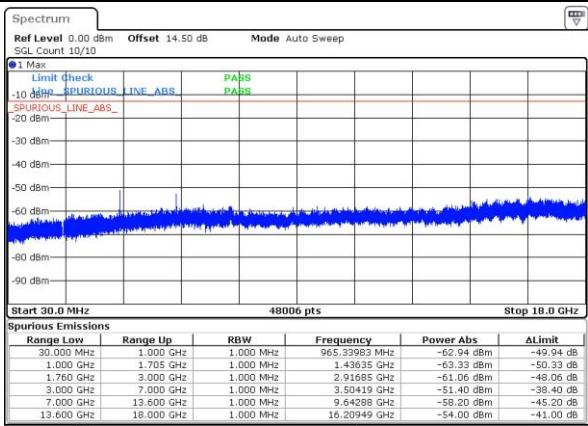


Occupied Bandwidth


Mode	WCDMA Band V(MHz)	WCDMA Band II(MHz)	WCDMA Band IV(MHz)
Mod.	RMC 12.2Kbps	RMC 12.2Kbps	RMC 12.2Kbps
Lowest CH	4.08	4.10	4.10
Middle CH	4.09	4.10	4.10
Highest CH	4.09	4.10	4.13




Conducted Band Edge

Conducted Spurious Emission

WCDMA Band IV (RMC 12.2Kbps)																																																																																																																	
Lowest Channel																																																																																																																	
<p>Spectrum Ref Level 0.00 dBm Offset 14.50 dB Mode Auto Sweep SQL Count 10/10</p> <table border="1"> <thead> <tr> <th colspan="2">Limit check</th> <th>PASS</th> <th>PASS</th> <th></th> <th></th> <th></th> </tr> </thead> <tbody> <tr> <td>-10 dBm</td> <td>SPURIOUS</td> <td>LINE</td> <td>ABS</td> <td></td> <td></td> <td></td> </tr> <tr> <td>-20 dBm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>-30 dBm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>-40 dBm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>-50 dBm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>-60 dBm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>-70 dBm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>-80 dBm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>-90 dBm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> </tbody> </table> <p>Start 30.0 MHz 48000 pts Stop 18.0 GHz</p> <p>Spurious Emissions</p> <table border="1"> <thead> <tr> <th>Range Low</th> <th>Range Up</th> <th>RBW</th> <th>Frequency</th> <th>Power Abs</th> <th>ALimit</th> </tr> </thead> <tbody> <tr> <td>30.000 MHz</td> <td>1.000 GHz</td> <td>1.000 MHz</td> <td>833.00100 MHz</td> <td>-63.00 dBm</td> <td>-50.00 dB</td> </tr> <tr> <td>1.000 GHz</td> <td>1.705 GHz</td> <td>1.000 MHz</td> <td>1.06994 GHz</td> <td>-62.59 dBm</td> <td>-49.59 dB</td> </tr> <tr> <td>1.705 GHz</td> <td>3.000 GHz</td> <td>1.000 MHz</td> <td>2.93465 GHz</td> <td>-60.68 dBm</td> <td>-41.00 dB</td> </tr> <tr> <td>3.000 GHz</td> <td>7.000 GHz</td> <td>1.000 MHz</td> <td>5.13496 GHz</td> <td>-49.40 dBm</td> <td>-36.21 dB</td> </tr> <tr> <td>7.000 GHz</td> <td>13.600 GHz</td> <td>1.000 MHz</td> <td>12.19171 GHz</td> <td>-56.94 dBm</td> <td>-43.94 dB</td> </tr> <tr> <td>13.600 GHz</td> <td>18.000 GHz</td> <td>1.000 MHz</td> <td>17.94359 GHz</td> <td>-64.56 dBm</td> <td>-41.56 dB</td> </tr> </tbody> </table>		Limit check		PASS	PASS				-10 dBm	SPURIOUS	LINE	ABS				-20 dBm							-30 dBm							-40 dBm							-50 dBm							-60 dBm							-70 dBm							-80 dBm							-90 dBm							Range Low	Range Up	RBW	Frequency	Power Abs	ALimit	30.000 MHz	1.000 GHz	1.000 MHz	833.00100 MHz	-63.00 dBm	-50.00 dB	1.000 GHz	1.705 GHz	1.000 MHz	1.06994 GHz	-62.59 dBm	-49.59 dB	1.705 GHz	3.000 GHz	1.000 MHz	2.93465 GHz	-60.68 dBm	-41.00 dB	3.000 GHz	7.000 GHz	1.000 MHz	5.13496 GHz	-49.40 dBm	-36.21 dB	7.000 GHz	13.600 GHz	1.000 MHz	12.19171 GHz	-56.94 dBm	-43.94 dB	13.600 GHz	18.000 GHz	1.000 MHz	17.94359 GHz	-64.56 dBm	-41.56 dB
Limit check		PASS	PASS																																																																																																														
-10 dBm	SPURIOUS	LINE	ABS																																																																																																														
-20 dBm																																																																																																																	
-30 dBm																																																																																																																	
-40 dBm																																																																																																																	
-50 dBm																																																																																																																	
-60 dBm																																																																																																																	
-70 dBm																																																																																																																	
-80 dBm																																																																																																																	
-90 dBm																																																																																																																	
Range Low	Range Up	RBW	Frequency	Power Abs	ALimit																																																																																																												
30.000 MHz	1.000 GHz	1.000 MHz	833.00100 MHz	-63.00 dBm	-50.00 dB																																																																																																												
1.000 GHz	1.705 GHz	1.000 MHz	1.06994 GHz	-62.59 dBm	-49.59 dB																																																																																																												
1.705 GHz	3.000 GHz	1.000 MHz	2.93465 GHz	-60.68 dBm	-41.00 dB																																																																																																												
3.000 GHz	7.000 GHz	1.000 MHz	5.13496 GHz	-49.40 dBm	-36.21 dB																																																																																																												
7.000 GHz	13.600 GHz	1.000 MHz	12.19171 GHz	-56.94 dBm	-43.94 dB																																																																																																												
13.600 GHz	18.000 GHz	1.000 MHz	17.94359 GHz	-64.56 dBm	-41.56 dB																																																																																																												
Date: 11.APR.2018 17:41:18																																																																																																																	
Middle Channel																																																																																																																	
<p>Spectrum Ref Level 0.00 dBm Offset 14.50 dB Mode Auto Sweep SQL Count 10/10</p> <table border="1"> <thead> <tr> <th colspan="2">Limit check</th> <th>PASS</th> <th>PASS</th> <th></th> <th></th> <th></th> </tr> </thead> <tbody> <tr> <td>-10 dBm</td> <td>SPURIOUS</td> <td>LINE</td> <td>ABS</td> <td></td> <td></td> <td></td> </tr> <tr> <td>-20 dBm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>-30 dBm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>-40 dBm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>-50 dBm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>-60 dBm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>-70 dBm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>-80 dBm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>-90 dBm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> </tbody> </table> <p>Start 30.0 MHz 48000 pts Stop 18.0 GHz</p> <p>Spurious Emissions</p> <table border="1"> <thead> <tr> <th>Range Low</th> <th>Range Up</th> <th>RBW</th> <th>Frequency</th> <th>Power Abs</th> <th>ALimit</th> </tr> </thead> <tbody> <tr> <td>30.000 MHz</td> <td>1.000 GHz</td> <td>1.000 MHz</td> <td>959.52274 MHz</td> <td>-63.20 dBm</td> <td>-50.20 dB</td> </tr> <tr> <td>1.000 GHz</td> <td>1.705 GHz</td> <td>1.000 MHz</td> <td>1.06571 GHz</td> <td>-63.25 dBm</td> <td>-50.25 dB</td> </tr> <tr> <td>1.705 GHz</td> <td>3.000 GHz</td> <td>1.000 MHz</td> <td>2.84463 GHz</td> <td>-60.31 dBm</td> <td>-47.31 dB</td> </tr> <tr> <td>3.000 GHz</td> <td>7.000 GHz</td> <td>1.000 MHz</td> <td>5.19946 GHz</td> <td>-50.91 dBm</td> <td>-37.91 dB</td> </tr> <tr> <td>7.000 GHz</td> <td>13.600 GHz</td> <td>1.000 MHz</td> <td>12.53630 GHz</td> <td>-57.80 dBm</td> <td>-44.80 dB</td> </tr> <tr> <td>13.600 GHz</td> <td>18.000 GHz</td> <td>1.000 MHz</td> <td>15.54690 GHz</td> <td>-53.77 dBm</td> <td>-40.77 dB</td> </tr> </tbody> </table>		Limit check		PASS	PASS				-10 dBm	SPURIOUS	LINE	ABS				-20 dBm							-30 dBm							-40 dBm							-50 dBm							-60 dBm							-70 dBm							-80 dBm							-90 dBm							Range Low	Range Up	RBW	Frequency	Power Abs	ALimit	30.000 MHz	1.000 GHz	1.000 MHz	959.52274 MHz	-63.20 dBm	-50.20 dB	1.000 GHz	1.705 GHz	1.000 MHz	1.06571 GHz	-63.25 dBm	-50.25 dB	1.705 GHz	3.000 GHz	1.000 MHz	2.84463 GHz	-60.31 dBm	-47.31 dB	3.000 GHz	7.000 GHz	1.000 MHz	5.19946 GHz	-50.91 dBm	-37.91 dB	7.000 GHz	13.600 GHz	1.000 MHz	12.53630 GHz	-57.80 dBm	-44.80 dB	13.600 GHz	18.000 GHz	1.000 MHz	15.54690 GHz	-53.77 dBm	-40.77 dB
Limit check		PASS	PASS																																																																																																														
-10 dBm	SPURIOUS	LINE	ABS																																																																																																														
-20 dBm																																																																																																																	
-30 dBm																																																																																																																	
-40 dBm																																																																																																																	
-50 dBm																																																																																																																	
-60 dBm																																																																																																																	
-70 dBm																																																																																																																	
-80 dBm																																																																																																																	
-90 dBm																																																																																																																	
Range Low	Range Up	RBW	Frequency	Power Abs	ALimit																																																																																																												
30.000 MHz	1.000 GHz	1.000 MHz	959.52274 MHz	-63.20 dBm	-50.20 dB																																																																																																												
1.000 GHz	1.705 GHz	1.000 MHz	1.06571 GHz	-63.25 dBm	-50.25 dB																																																																																																												
1.705 GHz	3.000 GHz	1.000 MHz	2.84463 GHz	-60.31 dBm	-47.31 dB																																																																																																												
3.000 GHz	7.000 GHz	1.000 MHz	5.19946 GHz	-50.91 dBm	-37.91 dB																																																																																																												
7.000 GHz	13.600 GHz	1.000 MHz	12.53630 GHz	-57.80 dBm	-44.80 dB																																																																																																												
13.600 GHz	18.000 GHz	1.000 MHz	15.54690 GHz	-53.77 dBm	-40.77 dB																																																																																																												
Date: 11.APR.2018 17:42:50																																																																																																																	
Highest Channel																																																																																																																	
<p>Spectrum Ref Level 0.00 dBm Offset 14.50 dB Mode Auto Sweep SQL Count 10/10</p> <table border="1"> <thead> <tr> <th colspan="2">Limit check</th> <th>PASS</th> <th>PASS</th> <th></th> <th></th> <th></th> </tr> </thead> <tbody> <tr> <td>-10 dBm</td> <td>SPURIOUS</td> <td>LINE</td> <td>ABS</td> <td></td> <td></td> <td></td> </tr> <tr> <td>-20 dBm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>-30 dBm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>-40 dBm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>-50 dBm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>-60 dBm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>-70 dBm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>-80 dBm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>-90 dBm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> </tbody> </table> <p>Start 30.0 MHz 48000 pts Stop 18.0 GHz</p> <p>Spurious Emissions</p> <table border="1"> <thead> <tr> <th>Range Low</th> <th>Range Up</th> <th>RBW</th> <th>Frequency</th> <th>Power Abs</th> <th>ALimit</th> </tr> </thead> <tbody> <tr> <td>30.000 MHz</td> <td>1.000 GHz</td> <td>1.000 MHz</td> <td>965.33983 MHz</td> <td>-62.94 dBm</td> <td>-49.94 dB</td> </tr> <tr> <td>1.000 GHz</td> <td>1.705 GHz</td> <td>1.000 MHz</td> <td>1.43635 GHz</td> <td>-63.33 dBm</td> <td>-50.33 dB</td> </tr> <tr> <td>1.705 GHz</td> <td>3.000 GHz</td> <td>1.000 MHz</td> <td>2.91685 GHz</td> <td>-61.06 dBm</td> <td>-48.06 dB</td> </tr> <tr> <td>3.000 GHz</td> <td>7.000 GHz</td> <td>1.000 MHz</td> <td>3.50419 GHz</td> <td>-51.40 dBm</td> <td>-38.40 dB</td> </tr> <tr> <td>7.000 GHz</td> <td>13.600 GHz</td> <td>1.000 MHz</td> <td>9.64289 GHz</td> <td>-58.20 dBm</td> <td>-45.20 dB</td> </tr> <tr> <td>13.600 GHz</td> <td>18.000 GHz</td> <td>1.000 MHz</td> <td>16.20949 GHz</td> <td>-54.00 dBm</td> <td>-41.00 dB</td> </tr> </tbody> </table>		Limit check		PASS	PASS				-10 dBm	SPURIOUS	LINE	ABS				-20 dBm							-30 dBm							-40 dBm							-50 dBm							-60 dBm							-70 dBm							-80 dBm							-90 dBm							Range Low	Range Up	RBW	Frequency	Power Abs	ALimit	30.000 MHz	1.000 GHz	1.000 MHz	965.33983 MHz	-62.94 dBm	-49.94 dB	1.000 GHz	1.705 GHz	1.000 MHz	1.43635 GHz	-63.33 dBm	-50.33 dB	1.705 GHz	3.000 GHz	1.000 MHz	2.91685 GHz	-61.06 dBm	-48.06 dB	3.000 GHz	7.000 GHz	1.000 MHz	3.50419 GHz	-51.40 dBm	-38.40 dB	7.000 GHz	13.600 GHz	1.000 MHz	9.64289 GHz	-58.20 dBm	-45.20 dB	13.600 GHz	18.000 GHz	1.000 MHz	16.20949 GHz	-54.00 dBm	-41.00 dB
Limit check		PASS	PASS																																																																																																														
-10 dBm	SPURIOUS	LINE	ABS																																																																																																														
-20 dBm																																																																																																																	
-30 dBm																																																																																																																	
-40 dBm																																																																																																																	
-50 dBm																																																																																																																	
-60 dBm																																																																																																																	
-70 dBm																																																																																																																	
-80 dBm																																																																																																																	
-90 dBm																																																																																																																	
Range Low	Range Up	RBW	Frequency	Power Abs	ALimit																																																																																																												
30.000 MHz	1.000 GHz	1.000 MHz	965.33983 MHz	-62.94 dBm	-49.94 dB																																																																																																												
1.000 GHz	1.705 GHz	1.000 MHz	1.43635 GHz	-63.33 dBm	-50.33 dB																																																																																																												
1.705 GHz	3.000 GHz	1.000 MHz	2.91685 GHz	-61.06 dBm	-48.06 dB																																																																																																												
3.000 GHz	7.000 GHz	1.000 MHz	3.50419 GHz	-51.40 dBm	-38.40 dB																																																																																																												
7.000 GHz	13.600 GHz	1.000 MHz	9.64289 GHz	-58.20 dBm	-45.20 dB																																																																																																												
13.600 GHz	18.000 GHz	1.000 MHz	16.20949 GHz	-54.00 dBm	-41.00 dB																																																																																																												
Date: 11.APR.2018 17:44:18																																																																																																																	

Frequency Stability

Test Conditions	Middle Channel	WCDMA Band V (RMC 12.2Kbps)	Limit 2.5ppm
Temperature (°C)	Voltage (Volt)	Deviation (ppm)	Result
50	Normal Voltage	0.0123	PASS
40	Normal Voltage	0.0108	
30	Normal Voltage	0.0075	
20(Ref.)	Normal Voltage	0.0000	
10	Normal Voltage	0.0047	
0	Normal Voltage	0.0055	
-10	Normal Voltage	0.0048	
-20	Normal Voltage	0.0046	
-30	Normal Voltage	0.0033	
20	Maximum Voltage	0.0060	
20	Normal Voltage	0.0000	
20	Battery End Point	0.0087	

Note: Normal Voltage = 3.6V. ; Battery End Point (BEP) = 3.4 V. ; Maximum Voltage =4.2 V

Test Conditions	Middle Channel	WCDMA Band II (RMC 12.2Kbps)	Limit Note 2.
Temperature (°C)	Voltage (Volt)	Deviation (ppm)	Result
50	Normal Voltage	0.0005	PASS
40	Normal Voltage	0.0030	
30	Normal Voltage	0.0197	
20(Ref.)	Normal Voltage	0.0000	
10	Normal Voltage	0.0044	
0	Normal Voltage	0.0041	
-10	Normal Voltage	0.0012	
-20	Normal Voltage	0.0004	
-30	Normal Voltage	0.0013	
20	Maximum Voltage	0.0005	
20	Normal Voltage	0.0000	
20	Battery End Point	0.0021	

Note:

1. Normal Voltage = 3.6V. ; Battery End Point (BEP) = 3.4 V. ; Maximum Voltage =4.2 V
2. The frequency fundamental emissions stay within the authorized frequency block based on the frequency deviation measured is small.

Test Conditions	Middle Channel	WCDMA Band IV (RMC 12.2Kbps)	Limit Note 2.
Temperature (°C)	Voltage (Volt)	Deviation (ppm)	Result
50	Normal Voltage	0.0060	PASS
40	Normal Voltage	0.0066	
30	Normal Voltage	0.0004	
20(Ref.)	Normal Voltage	0.0000	
10	Normal Voltage	0.0013	
0	Normal Voltage	0.0003	
-10	Normal Voltage	0.0024	
-20	Normal Voltage	0.0040	
-30	Normal Voltage	0.0050	
20	Maximum Voltage	0.0003	
20	Normal Voltage	0.0000	
20	Battery End Point	0.0051	

Note:

1. Normal Voltage = 3.6V. ; Battery End Point (BEP) = 3.4 V. ; Maximum Voltage =4.2 V
2. The frequency fundamental emissions stay within the authorized frequency block based on the frequency deviation measured is small.

Appendix B. Test Results of Conducted Test

Radiated Spurious Emission

WCDMA Band V(RMC 12.2Kbps)									
Channel	Frequency (MHz)	ERP (dBm)	Limit (dBm)	Over Limit (dB)	SPA Reading (dBm)	S.G. Power (dBm)	TX Cable loss (dB)	TX Antenna Gain (dBi)	Polarization (H/V)
Lowest	1652.8	-66.57	-13	-53.57	-68.28	-71.04	2.76	9.38	H
	2479.2	-68.29	-13	-55.29	-74.35	-74.26	2.45	10.57	H
	3305.6	-69.13	-13	-56.13	-77.13	-74.98	4.58	12.58	H
	1652.8	-65.03	-13	-52.03	-66.87	-69.50	2.76	9.38	V
	2479.2	-70.47	-13	-57.47	-76.42	-76.44	2.45	10.57	V
	3305.6	-68.91	-13	-55.91	-76.94	-74.76	4.58	12.58	V
Middle	1672.8	-67.60	-13	-54.60	-69.31	-71.97	2.88	9.40	H
	2509.2	-67.68	-13	-54.68	-73.74	-73.63	2.5	10.60	H
	3345.6	-69.49	-13	-56.49	-77.49	-75.31	4.63	12.60	H
	1672.8	-65.83	-13	-52.83	-67.67	-4.37	2.88	9.40	H
	2509.2	-70.35	-13	-57.35	-76.30	-5.95	2.50	10.60	H
	3345.6	-68.90	-13	-55.90	-76.93	-5.82	4.63	12.60	H
Highest	1693.2	-70.86	-13	-57.86	-72.57	-75.21	2.92	9.42	H
	2539.8	-68.94	-13	-55.94	-75.00	-74.79	2.63	10.63	H
	3386.4	-69.44	-13	-56.44	-77.44	-75.19	4.74	12.64	H
	4232	-66.97	-13	-53.97	-79.05	-72.32	5.11	12.61	H
	5079.6	-61.64	-13	-48.64	-76.32	-65.90	6.31	12.72	H
	1693.2	-69.11	-13	-56.11	-70.95	-73.46	2.92	9.42	V
	2539.8	-70.89	-13	-57.89	-76.84	-76.74	2.63	10.63	V
	3386.4	-69.15	-13	-56.15	-77.18	-72.90	4.74	10.64	V
	4232	-66.52	-13	-53.52	-78.48	-71.87	5.11	12.61	V
	5079.6	-64.27	-13	-51.27	-78.09	-68.53	6.31	12.72	V

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

WCDMA Band II(RMC 12.2Kbps)									
Channel	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Over Limit (dB)	SPA Reading (dBm)	S.G. Power (dBm)	TX Cable loss (dB)	TX Antenna Gain (dBi)	Polarization (H/V)
Lowest	3704.8	-48.83	-13	-35.83	-68.44	-56.57	4.82	12.56	H
	5557.2	-58.76	-13	-45.76	-82.21	-66.29	5.55	13.08	H
	7409.6	-54.26	-13	-41.26	-77.78	-59.02	6.52	11.28	H
	3704.8	-46.91	-13	-33.91	-67.3	-54.65	4.82	12.56	V
	5557.2	-57.64	-13	-44.64	-81.69	-65.17	5.55	13.08	V
	7409.6	-52.70	-13	-39.70	-76.24	-57.46	6.52	11.28	V
Middle	3760	-47.38	-13	-34.38	-66.99	-55.13	4.85	12.60	H
	5640	-58.12	-13	-45.12	-81.57	-65.64	5.58	13.10	H
	7520	-55.58	-13	-42.58	-79.10	-60.32	6.56	11.30	H
	3760	-44.93	-13	-31.93	-65.32	-52.68	4.85	12.60	V
	5640	-56.52	-13	-43.52	-80.57	-64.04	5.58	13.10	V
	7520	-53.45	-13	-40.45	-76.99	-58.19	6.56	11.30	V
Highest	3815.2	-44.41	-13	-31.41	-64.02	-52.15	4.88	12.62	H
	5722.8	-56.94	-13	-43.94	-80.39	-64.46	5.60	13.12	H
	7630.4	-56.85	-13	-43.85	-80.37	-61.59	6.58	11.32	H
	3815.2	-43.02	-13	-30.02	-63.41	-50.76	4.88	12.62	V
	5722.8	-54.38	-13	-41.38	-78.43	-61.90	5.60	13.12	V
	7630.4	-54.70	-13	-41.70	-78.24	-59.44	6.58	11.32	V

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

WCDMA Band IV(RMC 12.2Kbps)									
Channel	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Over Limit (dB)	SPA Reading (dBm)	S.G. Power (dBm)	TX Cable loss (dB)	TX Antenna Gain (dBi)	Polarization (H/V)
Lowest	3424.8	-57.76	-13	-44.76	-71.46	-65.76	4.58	12.58	H
	5137.2	-37.68	-13	-24.68	-55.64	-44.14	6.21	12.67	H
	6849.6	-43.04	-13	-30.04	-62.66	-47.83	8.16	12.95	H
	3424.8	-59.11	-13	-46.11	-70.52	-67.11	4.58	12.58	V
	5137.2	-40.70	-13	-27.70	-56.59	-47.16	6.21	12.67	V
	6849.6	-44.83	-13	-31.83	-63.95	-49.62	8.16	12.95	V
Middle	3465.2	-54.16	-13	-41.16	-67.86	-62.13	4.63	12.60	H
	5197.8	-35.18	-13	-22.18	-53.51	-41.63	6.25	12.70	H
	6930.4	-43.21	-13	-30.21	-62.83	-47.98	8.23	13.00	H
	3465.2	-56.00	-13	-43.00	-67.41	-63.97	4.63	12.60	V
	5197.8	-39.41	-13	-26.41	-55.68	-45.86	6.25	12.70	V
	6930.4	-43.83	-13	-30.83	-62.95	-48.60	8.23	13.00	V
Highest	3505.2	-55.64	-13	-42.64	-69.34	-63.64	4.66	12.66	H
	5257.8	-39.65	-13	-26.65	-57.58	-46.09	6.31	12.75	H
	7010.4	-35.04	-13	-22.04	-56.36	-39.81	8.35	13.12	H
	3505.2	-59.90	-13	-46.90	-71.31	-67.90	4.66	12.66	V
	5257.8	-43.15	-13	-30.15	-58.35	-49.59	6.31	12.75	V
	7010.4	-35.10	-13	-22.10	-56.49	-39.87	8.35	13.12	V

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.