

Straubing, 11 September 2006

TEST-REPORT

No. 51104-060093 (Edition 2)

for

FQR 50

Radar Level Sensor

Applicant: Kirchgaesser Industrieelektronik GmbH

Test Specifications: FCC Code of Federal Regulations,

CFR 47, Part 15,

Sections 15.205, 15.207 and 15.249

Note:

The test data of this report is related only to the individual item which has been tested. This report shall not be reproduced except in full extent without the written approval of the testing laboratory.

Table of Contents

1	De	Description of the Equipment Under Test (EUT)		
2	Administrative Data			
3	Identification of the Test Laboratory			
4	Su	mmary	6	
5	Ор	eration Mode and Configuration of EUT	7	
6	Me	easurement Procedures	8	
	6.1	Bandwidth Measurements	8	
	6.2	Conducted AC Powerline Emission	9	
	6.3	Radiated Emission in Fully or Semi Anechoic Room	11	
	6.4	Radiated Emission at Open Field Test Site	13	
7	Ph	otographs Taken During Testing	14	
8	Te	st Results	18	
	8.1	Occupied Bandwidth	19	
	8.2	Bandwidth of the Emission	21	
	8.3	Designation of Emissions	23	
	8.4	Restricted Bands of Operation	24	
	8.5	Pulse Train Measurement	25	
	8.6	Conducted Powerline Emission Measurement 150 kHz to 30 MHz	27	
	8.7	Radiated Emission Measurement 30 MHz to 1 GHz	30	
9	Referenced Regulations3			
10	Charts taken during testing32			

1 Description of the Equipment Under Test (EUT)

Type designation¹: FQR 50
Parts²: N/A
Serial number(s): 3105-2006
Manufacturer: Kirchgaesser Industrieelektronik GmbH
Type of equipment: Radar Level Sensor

Version:
FCC ID:
Additional parts/accessories:

Technical data of EUT		
Application frequency range:		
Frequency range:		
Operating frequency:	24.125 GHz	
Type of modulation:	CW	
Pulse train:	1 ms	
Pulse width:	0.33 ms	
Number of RF-channels:	1	
Channel spacing:	N/A	
Designation of emissions ³ :		
Type of antenna:	Integrated	
Size/length of antenna:	N/A	
Connection of antenna:	detachable	⊠ not detachable
Type of power supply:	DC supply	
Specifications for power supply:	nominal voltage: minimum voltage: maximum voltage:	24 V 21.6 V 26.4 V
	nominal frequency:	N/A Hz

¹ Type designation of the system if EUT consists of more than one part.

² Type designations of the parts of the system, if applicable.

³ Also known as "Class of Emission".

Application details

2 Administrative Data

Applicant (full address): Kirchgaesser Industrieelektronik GmbH

Am Rosenbaum 6 40882 Ratingen Deutschland

Contact person: Michael Kuhrig

Contract identification: Verbal

Receipt of EUT: 06 February 2006

Date(s) of test: March 2006

Note(s):

Report details

Report number: 51104-060093 (Edition 2)

Edition:

Issue date: 11 September 2006

3 Identification of the Test Laboratory

Details of the Test Laboratory

Company name: Senton GmbH EMI/EMC Test Center

Address: Aeussere Fruehlingstrasse 45

D-94315 Straubing

Germany

Laboratory accreditation: DAR-Registration No. DAT-P-171/94-02

FCC test site registration number 90926 Industry Canada test site registration: IC 3050

Contact person: Mr. Johann Roidt

Phone: (+49) (0)9421 5522-0 Fax: (+49) (0)9421 5522-99

4 Summary

Summary of test results

The tested sample complies with the requirements set forth in the

Code of Federal Regulations CFR 47, Part 15, Sections 15.205, 15.207 and 15.249 of the Federal Communication Commission (FCC).

Personnel involved in this report		
Laboratory Manager:		
	The Col	
	Mr. Johann Roidt	
Responsible for testing:		
	Skindl Martin	
	Mr. Martin Steindl	
Responsible for test report:	Mr. Johann Roidt	

5 Operation Mode and Configuration of EUT

Operation Mode(s)	
Normal operation	

Configuration(s) of EUT	
N/A	

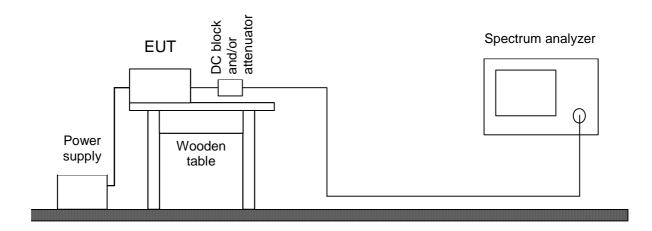
List of ports and cables			
Port Description	Classification ⁴	Cable type	Cable length

List of devices connected to EUT				
Item	Description	Type Designation	Serial no. or ID	Manufacturer
1	DC 24 V Laboratory Power Supply			

List o	List of support devices			
Item 1	Description None	Type Designation	Serial no. or ID	Manufacturer

⁴ Ports shall be classified as ac power, dc power or signal/control port

6 Measurement Procedures


6.1 Bandwidth Measurements

Measurement Procedure:	
Rules and specifications:	CFR 47 Part 2, section 2.202(a) CFR 47 Part 15, section 15.215(c) ANSI C63.4, annex H.6
Guide:	ANSI C63.4
Measurement setup:	Condu cted:
	Radiated: Radiated Emission in Fully or Semi Anechoic Room (6.3)

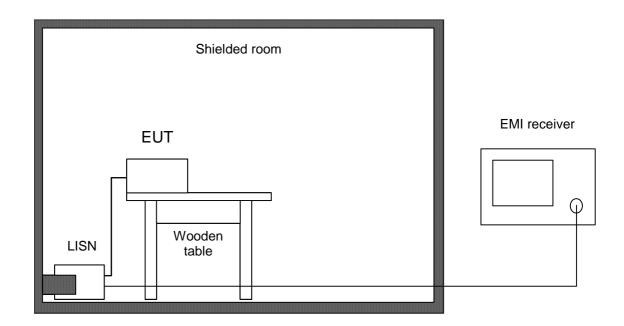
If antenna is detachable bandwidth measurements shall be performed at the antenna connector (conducted measurement) when the transmitter is adjusted in accordance with the tune-up procedure, if applicable. The RF output terminals are connected to a spectrum analyzer. If required, a resistive matching network equal to the impedance specified or employed for the antenna is used as well as dc block and appropriate attenuators (50 Ohms). The electrical characteristics of the radio frequency load attached to the output terminals shall be stated, if applicable.

If radiated measurements are performed the same test setups and instruments are used as with radiated emission measurements for the appropriate frequency range.

The analyzer settings are specified by the test description of the appropriate test record(s).

6.2 Conducted AC Powerline Emission

Measurement Procedure:	leasurement Procedure:		
Rules and specifications:	CFR 47 Part 15, section 15.207		
Guide:	ANSI C63.4 / CISPR 22		


Conducted emission tests in the frequency range 150 kHz to 30 MHz are performed using Line Impedance Stabilization Networks (LISNs). To simplify testing with quasi-peak and average detector the following procedure is used:

First the whole spectrum of emission caused by the equipment under test (EUT) is recorded with detector set to peak using CISPR bandwidth of 10 kHz. After that all emission levels having less margin than 10 dB to or exceeding the average limit are retested with detector set to guasi-peak.

If average limit is kept with quasi-peak levels no additional scan with average detector is necessary. In cases of emission levels between quasi-peak and average limit an additional scan with detector set to average is performed.

According to ANSI C63.4, section 13.1.3.1, testing of intentional radiators with detachable antenna shall be performed using a suitable dummy load connected to the antenna output terminals. Otherwise, the tests shall be made with the antenna connected and, if adjustable, fully extended.

Testing with dummy load may be necessary to distinguish (unintentional) conducted emissions on the supply lines from (intentional) emissions radiated by the antenna and coupling directly to supply lines and/or LISN. Usage of dummy load has to be stated in the appropriate test record(s) and notes should be added to clarify the test setup.

Test instruments used:

Used	Туре	Model	Serial No. or ID	Manufacturer
\boxtimes	EMI receiver	ESHS 10	860043/016	Rohde & Schwarz
\boxtimes	LISN	ESH3-Z5	862770/021	Rohde & Schwarz
	LISN	ESH3-Z5	830952/025	Rohde & Schwarz
	Artificial mains network	ESH 2-Z5	842966/004	Rohde & Schwarz
	Shielded room	No. 1	1451	Albatross Projects
\boxtimes	Shielded room	No. 4	3FD-100 544	Euroshield

6.3 Radiated Emission in Fully or Semi Anechoic Room

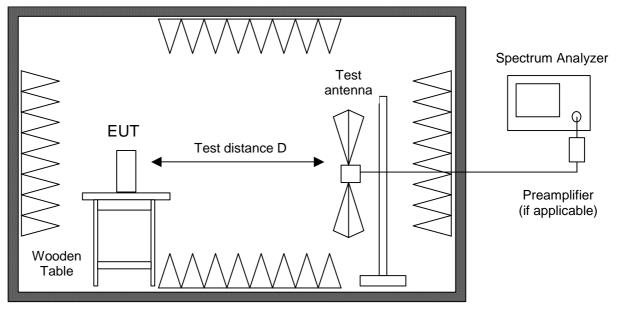
Measurement Procedure:		
Rules and specifications:	CFR 47 Part 15, section 15.209	
Guide:	ANSI C63.4	

Radiated emission in fully or semi anechoic room is measured in the frequency range from 30 MHz to the maximum frequency as specified in CFR 47 Part 15 section 15.33.

Measurements are made in both the horizontal and vertical planes of polarization in a fully anechoic room using a spectrum analyzer with the detector function set to peak and resolution as well as video bandwidth set to 100 kHz (below 1 GHz) or 1 MHz (above 1 GHz).

Testing up to 1 GHz is performed with a linear polarized logarithmic periodic antenna combined with a 4:1 broadband dipole ("Trilog broadband antenna"). For testing above 1 GHz horn antennas are used.

All tests below 18 GHz are performed at a test distance D of 3 meters. For higher frequencies the test distance is reduced (e.g. to 1 meter) due to the sensitivity of the measuring instrument(s) and the test results are calculated according to CFR 47 Part 15 section 15.31(f)(1) using an extrapolation factor of 20 dB/decade. If required, preamplifiers are used for the whole frequency range. Special care is taken to avoid overload, using appropriate attenuators and filters, if necessary.


If the radiated emission limits are expressed in terms of the average value of the emission there also is a peak limit corresponding to 20 dB above the maximum permitted average limit. Additionally, if pulsed operation is employed, the average field strength is determined by averaging over one complete pulse train, including blanking intervals, as specified in CFR 47 Part 15 section 15.35(c). If the pulse train exceeds 0.1 second that 0.1 second interval during which the value of the emission is at its maximum is selected for calculation. The pulse train correction is added to the peak value of the emission to get the average value.

Hand-held or body-worn devices are rotated through three orthogonal axes to determine which attitude and configuration produces the highest emission relative to the limit and therefore shall be used for final testing.

During testing the EUT is rotated all around to find the maximum levels of emissions. Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

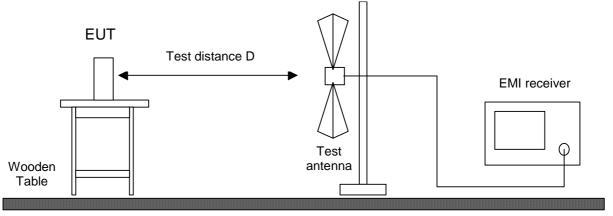
For final testing below 1 GHz an open field test-site is used and the plots recorded in the fully or semi anechoic room are indicated as prescans.

Fully or semi anechoic room

Test instruments used:

Used	Туре	Model	Serial No. or ID	Manufacturer
\boxtimes	Spectrum Analyzer	FSP 30	100063	Rohde & Schwarz
	Spectrum analyzer	R 3271	05050023	Advantest
	EMI test receiver	ESMI	839379/013 839587/006	Rohde & Schwarz
	Preamplifier	CPA9231A	3393	Schaffner
	Preamplifier	R14601		Advantest
\boxtimes	Preamplifier 1-8 GHz	AFS3-00100800-32-LN	847743	Miteq
\boxtimes	Preamplifier 0.5-8 GHz	AMF-4D-005080-25-13P	860149	Miteq
\boxtimes	Preamplifier 8-18 GHz	ACO/180-3530	32641	CTT
	External Mixer	WM782A	845881/005	Tektronix
	Harmonic Mixer Accessories	FS-Z30	843389/007	Rohde & Schwarz
\boxtimes	Trilog broadband antenna	VULB 9163	9163-188	Schwarzbeck
\boxtimes	Horn antenna	3115	9508-4553	EMCO
\boxtimes	Horn antenna	3160-03	9112-1003	EMCO
\boxtimes	Horn antenna	3160-04	9112-1001	EMCO
\boxtimes	Horn antenna	3160-05	9112-1001	EMCO
\boxtimes	Horn antenna	3160-06	9112-1001	EMCO
\boxtimes	Horn antenna	3160-07	9112-1008	EMCO
\boxtimes	Horn antenna	3160-08	9112-1002	EMCO
\boxtimes	Horn antenna	3160-09	9403-1025	EMCO
\boxtimes	Horn antenna	3160-10	399185	EMCO
\boxtimes	Fully anechoic room	No. 2	1452	Albatross Projects
	Semi-anechoic room	No. 3	1453	Siemens

6.4 Radiated Emission at Open Field Test Site


Measurement Procedure:		
Rules and specifications:	CFR 47 Part 15, section 15.209	
Guide:	ANSI C63.4	

Radiated emission at open field test site is measured in the frequency range 30 MHz to 1 GHz using a biconical antenna up to 300 MHz and a logarithmic periodic antenna above. The measurement bandwidth of the test receiver is set to 120 kHz with quasi-peak detector selected.

If the radiated emission limits are expressed in terms of the average value of the emission there also is a peak limit corresponding to 20 dB above the maximum permitted average limit. Additionally, if pulsed operation is employed, the average field strength is determined by averaging over one complete pulse train, including blanking intervals, as specified in CFR 47 Part 15 section 15.35(c). If the pulse train exceeds 0.1 second that 0.1 second interval during which the value of the emission is at its maximum is selected for calculation. The pulse train correction is added to the peak value of the emission to get the average value.

Hand-held or body-worn devices are tested in the position producing the highest emission relative to the limit as verified by prescans in the fully anechoic room. EUT is rotated all around and receiving antenna is raised and lowered within 1 meter to 4 meters to find the maximum levels of emission. Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

For measuring emissions of intentional radiators and receivers a test distance D of 3 meters is selected. Testing of unintentional radiators is performed at a distance of 10 meters. If limits specified for 3 meters shall be used for measurements performed at 10 meters distance the limits are calculated according to CFR 47 Part 15 section 15.31(d) and (f)(1) using an inverse linear-distance extrapolation factor of 20 dB/decade.

Ground plane

Test instruments used:

Used	Туре		Model	Serial No. or ID	Manufacturer
\boxtimes	EMI receiver		ESVP	881120/024	Rohde & Schwarz
\boxtimes	Biconical antenna	EG 1	HK 116	842204/001	Rohde & Schwarz
\boxtimes	Log. per. antenna	EG 1	HL 223	841516/023	Rohde & Schwarz
	Open field test site		EG 1	1450	Senton

7 Photographs Taken During Testing

Test setup for conducted AC powerline emission measurement

Test setup for radiated emission measurement (fully anechoic room)

Test setup for radiated emission measurement (open field test site)

8 Test Results

FCC CFR 47 Parts 2 and 15			
Section(s)	Test	Page	Result
2.1046(a)	Conducted output power		Not applicable
2.202(a)	Occupied bandwidth	19	Recorded
2.201, 2.202	Class of emission	23	Calculated
15.35(c)	Pulse train measurement for pulsed operation		Not applicable
15.205(a)	Restricted bands of operation	24	Test passed
15.207	Conducted AC powerline emission 150 kHz to 30 MHz	27	Test passed
15.205(b) Radiated emission N 15.209 9 kHz to 30 MHz		Not applicable	
15.205(b) 15.249	Radiated emission 30 MHz to 1 GHz	30	Test passed

8.1 Occupied Bandwidth

Rules and specifications:	CFR 47 Part 2, section 2.202(a) ANSI C63.4, annex H.6		
Guide:	ANSI C63.4		
Description:	The occupied bandwidth according to measured as the 99% emission bandits upper frequency limits, the mean p 0.5% of the total mean power radiated	width, i.e. below its lower and above owers radiated are each equal to	
	The occupied bandwidth according to as the frequency range defined by the to the maximum level of the modulate	•	
	The resolution bandwidth of the spect greater than 5.0% of the allowed band are given, the following guidelines are	dwidth. If no bandwidth specifications	
	Fundamental frequency	Minimum resolution bandwidth	
	9 kHz to 30 MHz	1 kHz	
	30 MHz to 1000 MHz	10 kHz	
	1000 MHz to 40 GHz	100 kHz	
	The video bandwidth shall be at least three times greater than the resolution bandwidth.		
Measurement procedure:	Bandwidth Measurements (6.1)		

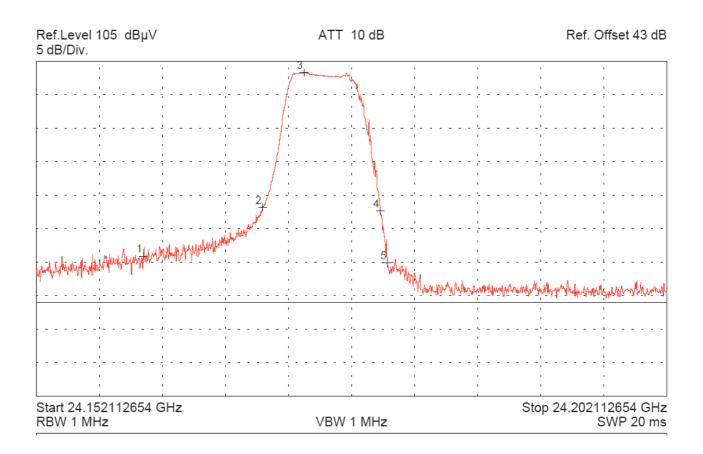
Comment:	
Date of test:	09 February 2006
Test site:	Fully anechoic room, cabin no. 2

Occupied Bandwidth (99 %):

Occupied Bandwidth (99 %):	9.33 MHz
----------------------------	----------

Occupied Bandwidth (-26 dB):

|--|



8.2 Bandwidth of the Emission

Rules and specifications:			
Guide:			
Description:	The 20 dB bandwidth of the emission is measured as the frequency range defined by the points that are 20 dB down relative to the maximum level of the modulated carrier. For intentional radiators operating under the alternative provisions to the general emission limits the requirement to contain the 20 dB bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation. The resolution bandwidth of the spectrum analyzer shall be set to a value greater than 5.0% of the allowed bandwidth. If no bandwidth specifications are given, the following guidelines are used:		
	Fundamental frequency	Minimum resolution bandwidth	
	9 kHz to 30 MHz	1 kHz	
	30 MHz to 1000 MHz	10 kHz	
	1000 MHz to 40 GHz	100 kHz	
	The video bandwidth shall be at lea resolution bandwidth.	st three times greater than the	
Measurement procedure:	Bandwidth Measurements (6.1)		

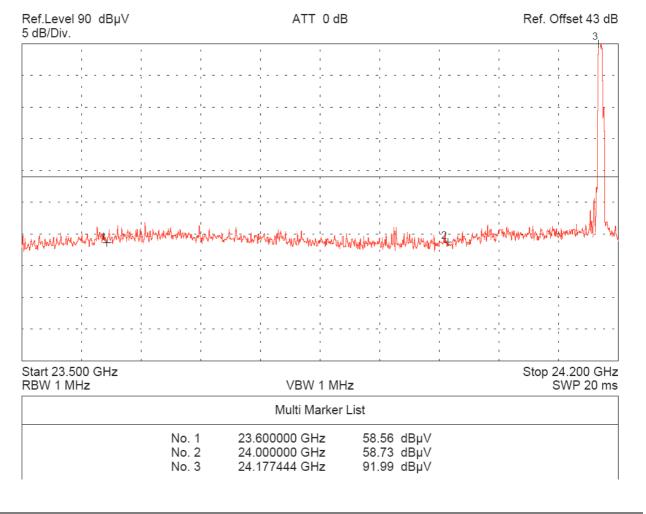
Comment:	
Date of test:	09 February 2006
Test site:	Fully anechoic room, cabin no. 2

andwidth of the emission:

8.3 Designation of Emissions

Rules and specifications:	CFR 47 Part 2, sections 2.201 and 2.202
Guide:	ANSI C63.4 / TRC-43

B _n = Necessary Bandwidth	$B_n = 2BK$
B = Modulation rate	B = 1 kHz
K = Overall numerical factor	K = 1
Calculation:	$B_n = 2 \cdot (1 \text{ kHz}) \cdot 1 = 2 \text{ kHz}$

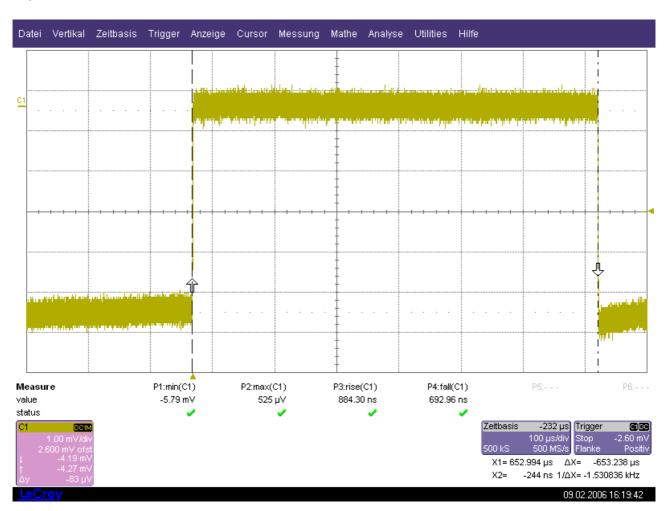

Designation of Emissions:

8.4 Restricted Bands of Operation

Rules and specifications:	CFR 47 Part 15, section 15.205(a)
Guide:	ANSI C63.4
Limit:	Only spurious emissions are permitted in any of the frequency bands listed in CFR 47 Part 15, section 15.205(a)
Measurement procedure:	Radiated Emission in Fully or Semi Anechoic Room (6.3)

Comment:	
Date of test:	07 February 2006
Test site:	Fully anechoic room, cabin no. 2
Test distance:	3 meters

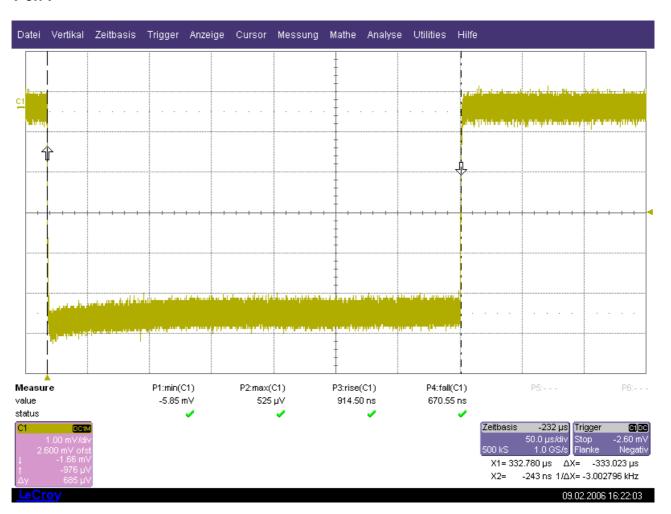
Test Result: Test passed



8.5 Pulse Train Measurement

Rules and specifications:	CFR 47 Part 15, section 15.35(c)
Guide:	ANSI C63.4
Measurement procedure:	Pulse Train Measurement (6.2)

Comment:	
Date of test:	09 February 2006
Test site:	Fully anechoic room, cabin no. 2


T on:

Note: Due to the detector used (negative diode), the above graph is inverse.

T off:

Calculation of pulse train correction:

TX-On-Time (worst case):	T _{on}	=	0.33 ms
Pulse Train Time:	T_{pt}	=	1.00 ms
Period Time:	T _{period}	=	1.00 ms
Pulse Train Correction:	C _{pt}	=	20 · Log(T _{on} / T _{period}) dB
	·	=	9.6 dB

Note: Due to the detector used (negative diode), the above graph is inverse.

8.6 Conducted Powerline Emission Measurement 150 kHz to 30 MHz

Rules and specifications:	CFR 47 Part 15, section 15.207				
Guide:	ANSI C63.4 / CISPR 22				
Limit:	Frequency of Emission Conducted Limit (dBµV)				
	(MHz)	Quasi-peak	Average		
	0.15 - 0.5	66 to 56	56 to 46		
	0.5 - 5	56	46		
	5 - 30	60	50		
Measurement procedure:	Conducted AC Powerline Emission (6.2)				

Comment:	
Date of test:	11 May 2006
Test site:	Shielded room, cabin no. 1

Test Result:	Test passed
--------------	-------------

Tested on: Linecord AC supply of AC/DC convertor - Phase L1

Frequency	Detector	Reading	Correction	Final	Limit	Margin
		Value	Factor	Value		
(MHz)		(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)
0.180	Quasi-Peak	47.0	0.0	47.0	64.5	17.5
0.180	Average	37.4	0.0	37.4	54.5	17.1
0.240	Average	36.3	0.0	36.3	52.1	15.8
0.300	Average	35.7	0.0	35.7	50.2	14.5
0.355	Quasi-Peak	36.6	0.0	36.6	58.8	22.2
0.360	Average	35.0	0.0	35.0	48.7	13.7
0.475	Average	34.5	0.0	34.5	46.4	11.9
0.535	Quasi-Peak	34.1	0.0	34.1	56.0	21.9
0.535	Average	32.9	0.0	32.9	46.0	13.1
0.775	Quasi-Peak	51.3	0.0	51.3	56.0	4.7
0.775	Average	45.8	0.0	45.8	46.0	0.2
0.840	Quasi-Peak	37.4	0.0	37.4	56.0	18.6
0.895	Average	34.8	0.0	34.8	46.0	11.2
1.015	Average	29.8	0.0	29.8	46.0	16.2
1.490	Average	28.5	0.0	28.5	46.0	17.5
1.610	Average	27.7	0.0	27.7	46.0	18.3
1.965	Average	27.9	0.0	27.9	46.0	18.1
2.860	Average	23.8	0.0	23.8	46.0	22.2
2.920	Average	23.1	0.0	23.1	46.0	22.9
4.110	Average	22.9	0.0	22.9	46.0	23.1
5.155	Quasi-Peak	39.6	0.0	39.6	60.0	20.4
5.180	Average	29.7	0.0	29.7	50.0	20.3
5.535	Average	29.4	0.0	29.4	50.0	20.6
18.445	Quasi-Peak	42.5	0.0	42.5	60.0	17.5
19.210	Average	32.7	0.0	32.7	50.0	17.3
19.660	Quasi-Peak	40.5	0.0	40.5	60.0	19.5
20.280	Average	27.0	0.0	27.0	50.0	23.0

Sample calculation of final values:

Final Value ($dB\mu V$) = Reading Value ($dB\mu V$) + Correction Factor (dB)

Tested on: Linecord AC supply of AC/DC convertor - Phase N

Frequency	Detector	Reading	Correction	Final	Limit	Margin
' '		Value	Factor	Value		
(MHz)		(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)
0.180	Quasi-Peak	44.3	0.0	44.3	64.5	20.2
0.180	Average	40.0	0.0	40.0	54.5	14.5
0.235	Quasi-Peak	41.0	0.0	41.0	62.3	21.3
0.240	Average	39.3	0.0	39.3	52.1	12.8
0.295	Quasi-Peak	41.1	0.0	41.1	60.4	19.3
0.295	Average	40.0	0.0	40.0	50.4	10.4
0.355	Quasi-Peak	40.7	0.0	40.7	58.8	18.1
0.355	Average	39.6	0.0	39.6	48.8	9.2
0.475	Quasi-Peak	38.0	0.0	38.0	56.4	18.4
0.475	Average	36.8	0.0	36.8	46.4	9.6
0.535	Average	34.4	0.0	34.4	46.0	11.6
0.655	Quasi-Peak	35.6	0.0	35.6	56.0	20.4
0.770	Quasi-Peak	52.7	0.0	52.7	56.0	3.3
0.770	Average	45.5	0.0	45.5	46.0	0.5
0.830	Average	38.5	0.0	38.5	46.0	7.5
0.835	Quasi-Peak	41.1	0.0	41.1	56.0	14.9
1.070	Average	30.6	0.0	30.6	46.0	15.4
1.485	Average	28.5	0.0	28.5	46.0	17.5
1.545	Average	27.6	0.0	27.6	46.0	18.4
1.960	Average	26.1	0.0	26.1	46.0	19.9
2.375	Average	25.5	0.0	25.5	46.0	20.5
3.560	Average	27.1	0.0	27.1	46.0	18.9
4.450	Average	28.9	0.0	28.9	46.0	17.1
5.280	Average	33.7	0.0	33.7	50.0	16.3
5.365	Quasi-Peak	40.8	0.0	40.8	60.0	19.2
5.515	Average	35.5	0.0	35.5	50.0	14.5
5.530	Quasi-Peak	40.7	0.0	40.7	60.0	19.3
19.145	Average	39.3	0.0	39.3	50.0	10.7
19.305	Quasi-Peak	47.4	0.0	47.4	60.0	12.6
19.690	Quasi-Peak	42.8	0.0	42.8	60.0	17.2
20.095	Average	35.3	0.0	35.3	50.0	14.7

Sample calculation of final values:

Final Value ($dB\mu V$) = Reading Value ($dB\mu V$) + Correction Factor (dB)

8.7 Radiated Emission Measurement 30 MHz to 1 GHz

Rules and specifications:	CFR 47 Part 15, section 15.249					
Guide:	ANSI C63.4					
Limit:	Frequency of Emission (MHz)	Field Strength (μV/m)	Field Strength (dBµV/m)			
	30 - 88	100	40.0			
	88 - 216	150	43.5			
	216 - 960	200	46.0			
	Above 960	500	54.0			
	Additionally, the level of any unwanted emissions shall not exceed to of the fundamental emission.					
Measurement procedures:	Radiated Emission in Fully or Semi Anechoic Room (6.3) Radiated Emission at Open Field Test Site (6.4)					

Comment:	
Date of test:	09 February / 11 May 2006
Test site:	Frequencies ≤ 1 GHz: Open field test site Frequencies > 1 GHz: Fully anechoic room, cabin no. 2
Test distance:	3 meters

Test Result:	Test passed	

Frequency	Antenna	Detector	Receiver	Correction	Pulse Train	Final	Limit	Margin
	Polarization		Reading	Factor	Correction	Value		
(MHz)			(dBµV)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
24173.000	vertical	Peak	69.0	43.0	-6.9	105.1	108.0	2.9
48350.000	horizontal	Quasi-Peak	17.5	44.1	-6.9	54.7	68.0	13.3
72525.000	horizontal	Quasi-Peak	21.4	46.2	-6.9	60.7	68.0	7.3
96700.000	horizontal	Quasi-Peak	18.0	49.6	-6.9	60.7	68.0	7.3

Sample calculation of final values:

Final Value (dB μ V/m) = Reading Value (dB μ V) + Correction Factor (dB/m) + Pulse Train Correction (dB)

9 Referenced Regulations

All tests were performed with reference to the following regulations and standards:

•	• •	
CFR 47 Part 2	Code of Federal Regulations Part 2 (Frequency allocation and radio treaty matters; General rules and regulations) of the Federal Communication Commission (FCC)	October 10, 2004
CFR 47 Part 15	Code of Federal Regulations Part 15 (Radio Frequency Devices) of the Federal Communication Commission (FCC)	September 19, 2005
ANSI C63.4	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz	December 11, 2003 (published on January 30, 2004)
RSS-Gen	Radio Standards Specification RSS-Gen Issue 1 containing General Requirements and Information for the Certification of Radiocommunication Equimpment, published by Industry Canada	September 2005
RSS-210	Radio Standards Specification RSS-210 Issue 6 for Low Power Licence-Exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment, published by Industry Canada	September 2005
RSS-310	Radio Standards Specification RSS-310 Issue 1 for Low Power Licence-Ecempt Radiocommunication Devices (All Frequency Bands): Category II Equipment, published by Industry Canada	September 2005
RSS-102	Radio Standards Specification RSS-102 Issue 2: Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)	November 2005
ICES-003	Interference-Causing Equipment Standard ICES-003 Issue 4 for Digital Apparatus, published by Industry Canada	February 7, 2004
CISPR 22	Third Edition of the International Special Committee on Radio Interference (CISPR), Pub. 22, "Information Technology Equipment – Radio Disturbance Characteristics – Limits and Methods of Measurement"	1997
CAN/CSA- CEI/IEC CISPR 22	Limits and Methods of Measurement of Radio Disturbance Characteristics of Information Technology Equipment	2002
TRC-43	Notes Regarding Designation of Emission (Including Necessary Bandwidth and Classification), Class of Station and Nature of Service, published by Industry Canada	October 9, 1982

10 Charts taken during testing

Model: FQR50 Serial no.: 3105-2006 Applicant: Kirchgaesser Industrieelektronik GmbH Test site: Shielded room, cabin no. 4 Tested on: Linecord AC supply of AC/DC convertor Phase L1 Date of test: Operator: 05/11/2006 M. Steindl Test performed: File name: semi automatically

Mode:

- DC 24 V power supply
- EUT in normal position
- transmitting continiously
- with SIEMENS SITOP AC/DC convertor

Detector:

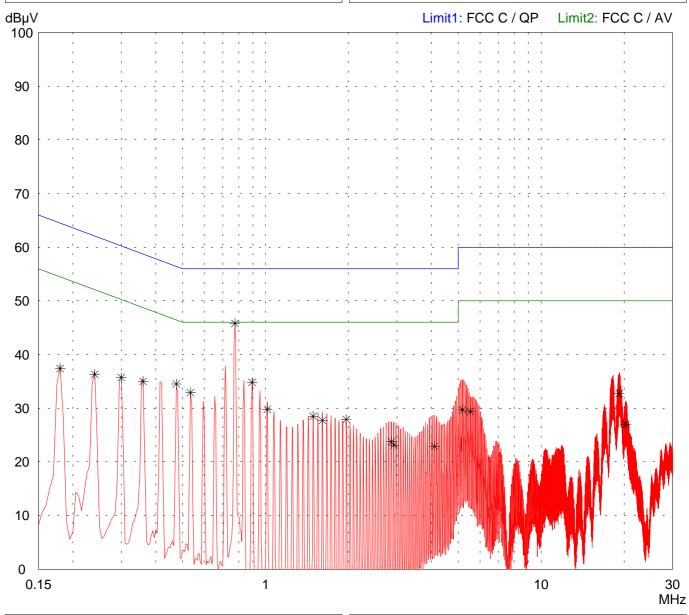
Peak / Final Results: QP

Final results:
20 dB Margin
25 Subranges

Result: Limit kept

Model: FQR50 Serial no.: 3105-2006 Applicant: Kirchgaesser Industrieelektronik GmbH Test site: Shielded room, cabin no. 4 Tested on: Linecord AC supply of AC/DC convertor Phase L1 Date of test: Operator: 05/11/2006 M. Steindl Test performed: File name: automatically

Mode:


- DC 24 V power supply
- EUT in normal position
- transmitting continiously
- with SIEMENS SITOP AC/DC convertor

Detector:

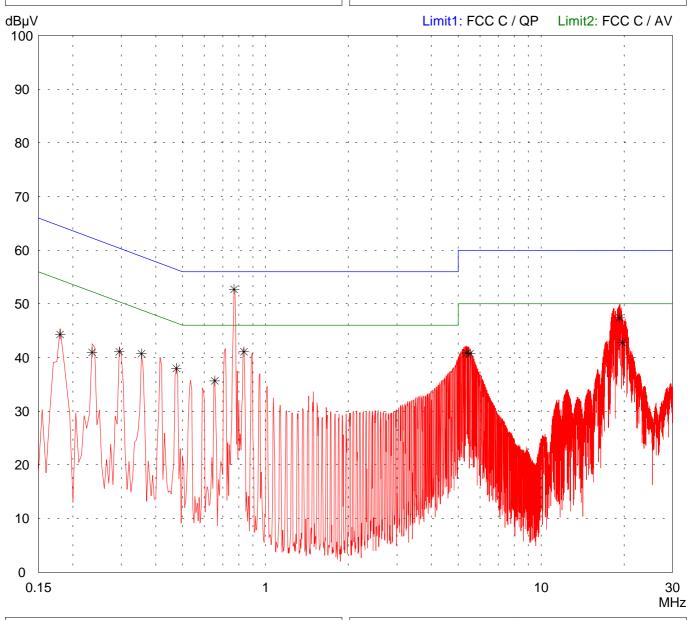
Average / Final Results: AV

Final results: 20 dB Margin

argin 25 Subranges

Result: Limit kept

Model: FQR50 Serial no.: 3105-2006 Applicant: Kirchgaesser Industrieelektronik GmbH Test site: Shielded room, cabin no. 4 Tested on: Linecord AC supply of AC/DC convertor Phase N Date of test: Operator: 05/11/2006 M. Steindl Test performed: File name: automatically


Mode:

- DC 24 V power supply
- EUT in normal position
- transmitting continiously
- with SIEMENS SITOP AC/DC convertor

Detector:

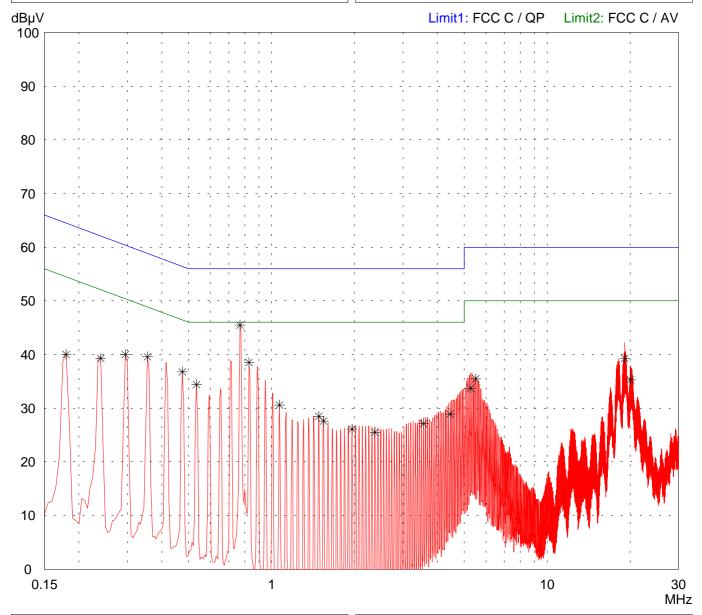
Peak / Final Results: QP

Final results:
20 dB Margin
25 Subranges

Result: Limit kept

Model: FQR50 Serial no.: 3105-2006 Applicant: Kirchgaesser Industrieelektronik GmbH Test site: Shielded room, cabin no. 4 Tested on: Linecord AC supply of AC/DC convertor Phase N Date of test: Operator: 05/11/2006 M. Steindl Test performed: File name: automatically

Mode:


- DC 24 V power supply
- EUT in normal position
- transmitting continiously
- with SIEMENS SITOP AC/DC convertor

Detector:

Average / Final Results: AV

Final results: 20 dB Margin

IB Margin 25 Subranges

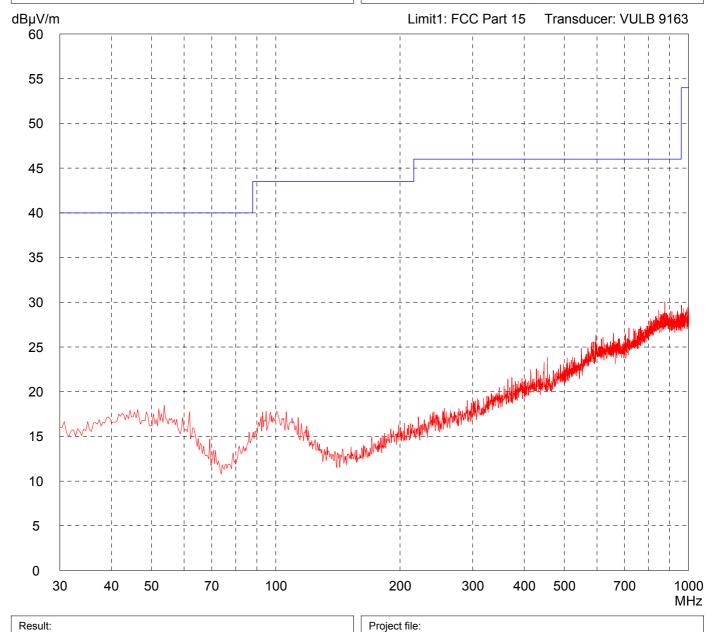
Result: Limit kept

Radiated Emission Test 30 MHz - 1 GHz acc. to FCC Part 15.225 (Fully Anechoic Chamber)

Model: FQR50					
Serial no.: 3105 - 2006					
Applicant: Kirchgaesser Industrieelektronik GmbH					
Test site: Fully anechoic room, cabin no. 2					
Tested on: Test distance 3 metre Horizontal Polarizatio	· 				
Date of test: 02/07/2006	Operator: M. Steindl				
Test performed: automatically	File name: default.emi				
Data ata m					

Prescan

Comment:


- DC 24 V power supply
- EUT in normal position
- transmitting continiously

Detector:

Peak

List of values:
10 dB Margin

50 Subranges

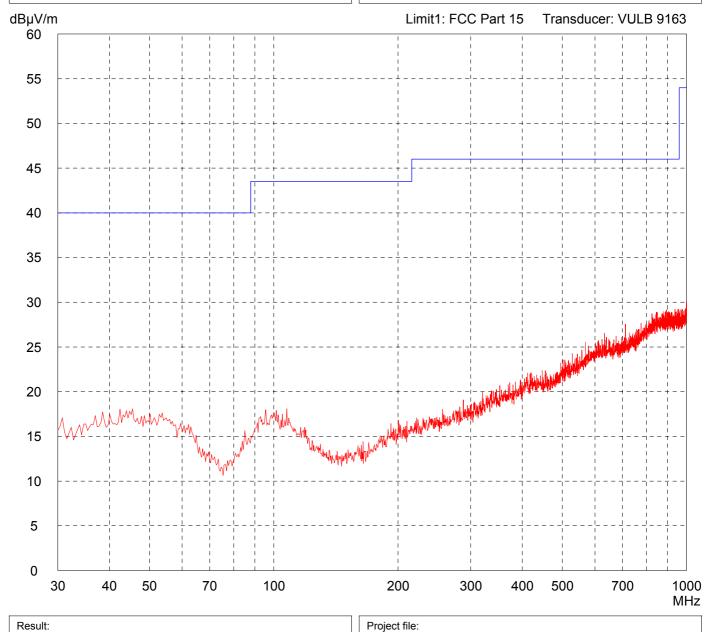
51104-60093

Radiated Emission Test 30 MHz - 1 GHz acc. to FCC Part 15.225 (Fully Anechoic Chamber)

Model: FQR50 Serial no.: 3105 - 2006 Applicant: Kirchgaesser Industrieelektronik GmbH Fully anechoic room, cabin no. 2 Tested on: Test distance 3 metres Vertical Polarization Date of test: Operator: 02/07/2006 M. Steindl File name: Test performed: automatically default.emi

Prescan

Comment:


- DC 24 V power supply
- EUT in normal position
- transmitting continiously

Detector:

Peak

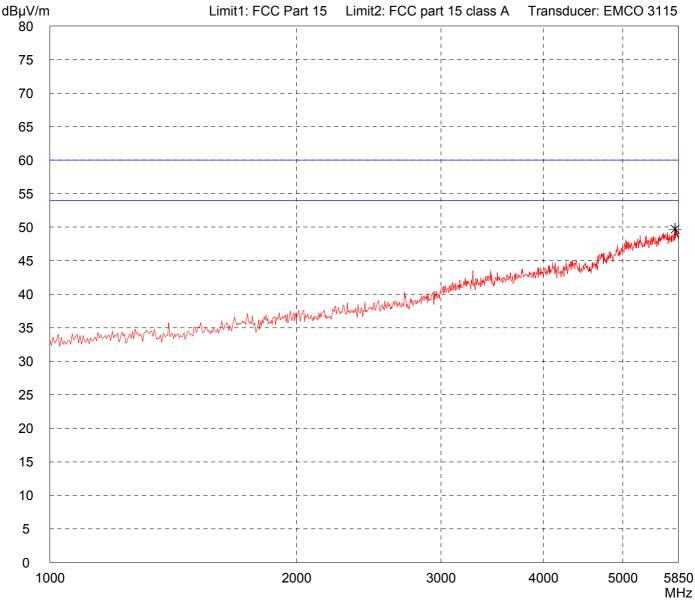
List of values:
10 dB Margin

50 Subranges

51104-60093

Radiated Emission Test 1 GHz - 5.85 GHz acc. to FCC Part 15 (EMCO 3115)

Model: FQR50 Serial no.: 3105 - 2006 Applicant: Kirchgaesser Industrieelektronik GmbH Test site: Fully anechoic room, cabin no. 2 Tested on: Test distance 3 metres Horizontal Polarization Date of test: Operator: 02/07/2006 M. Steindl Test performed: File name: automatically default.emi


Comment:

- DC 24 V power supply
- EUT in normal position
- transmitting continiously

Detector:

Peak

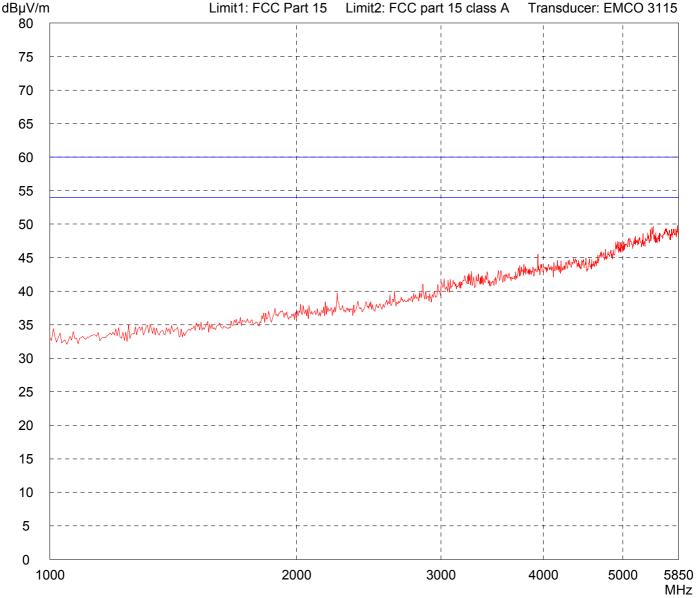
List of values:
Selected by hand

Result:
Limit kept

Project file:
51104-60093

Radiated Emission Test 1 GHz - 5.85 GHz acc. to FCC Part 15 (EMCO 3115)

Model: FQR50 Serial no.: 3105 - 2006 Applicant: Kirchgaesser Industrieelektronik GmbH Test site: Fully anechoic room, cabin no. 2 Tested on: Test distance 3 metres Vertical Polarization Date of test: Operator: 02/07/2006 M. Steindl Test performed: File name: automatically default.emi


Comment:

- DC 24 V power supply
- EUT in normal position
- transmitting continiously

Detector:

Peak

List of values:
Selected by hand

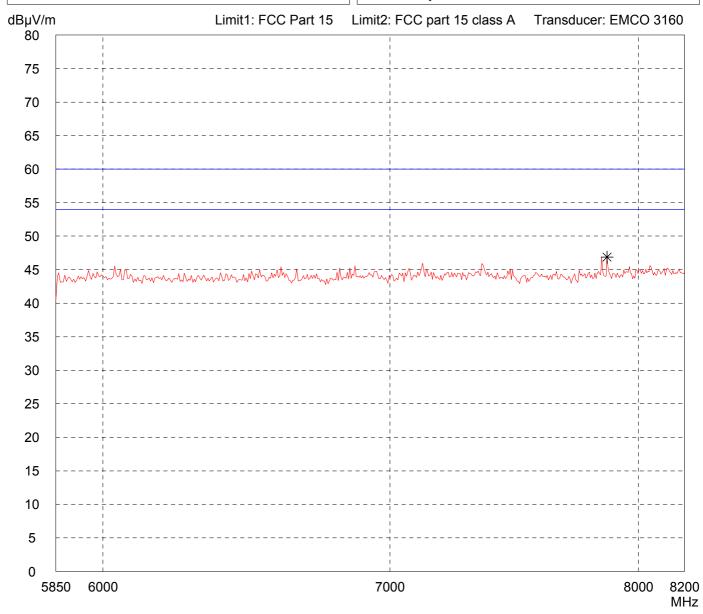
Result:
Limit kept

Project file:
51104-60093

Radiated Emission Test 5.85 GHz - 8.2 GHz acc. to FCC Part 15 (EMCO 3160)

Model:					
FQR50					
Serial no.:					
3105 - 2006					
Applicant:					
Kirchgaesser Industrie	elektronik GmhH				
	CICKEOTIIK CITIOTI				
Test site:					
Fully anechoic room, c	Fully anechoic room, cabin no. 2				
Tested on:					
Test distance 3 metres					
Horizontal Polarization					
Date of test: Operator:					
02/07/2006 M. Steindl					
02/01/2000 IVI. Stelliul					
Test performed:	File name:				
automatically	default.emi				
D					

Comment:


- DC 24 V power supply
- EUT in normal position
- transmitting continiously

Detector:

Peak

List of values:

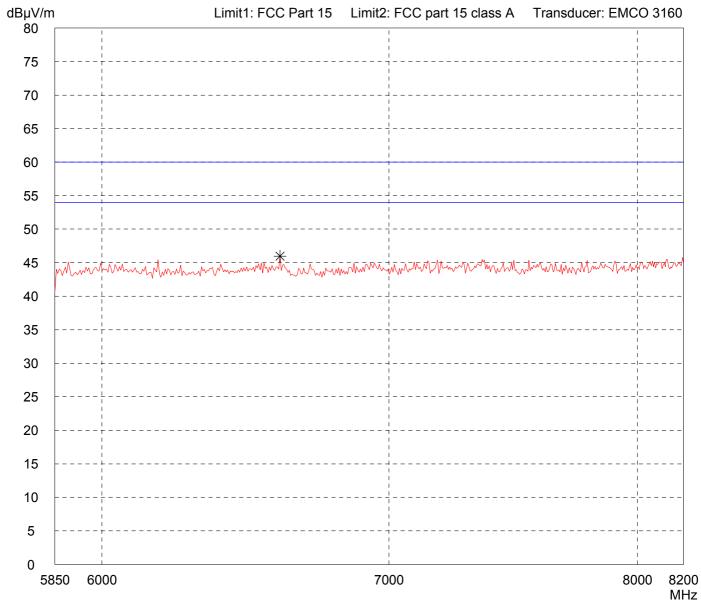
Selected by hand

Result: Project file: 51104-60093

Radiated Emission Test 5.85 GHz - 8.2 GHz acc. to FCC Part 15 (EMCO 3160)

Model: FQR50 Serial no.: 3105 - 2006 Applicant: Kirchgaesser Industrieelektronik GmbH Test site: Fully anechoic room, cabin no. 2 Tested on: Test distance 3 metres Vertical Polarization Date of test: Operator: 02/07/2006 M. Steindl Test performed: File name: automatically default.emi

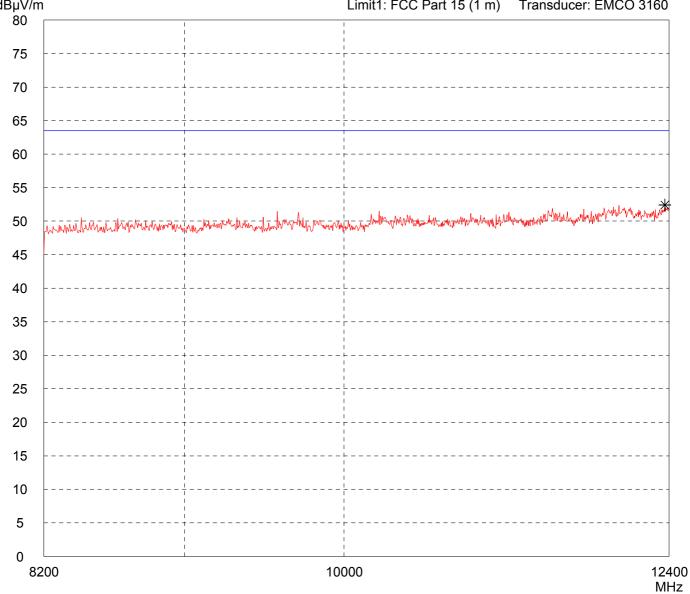
Comment:


- DC 24 V power supply
- EUT in normal position
- transmitting continiously

Detector:

Peak

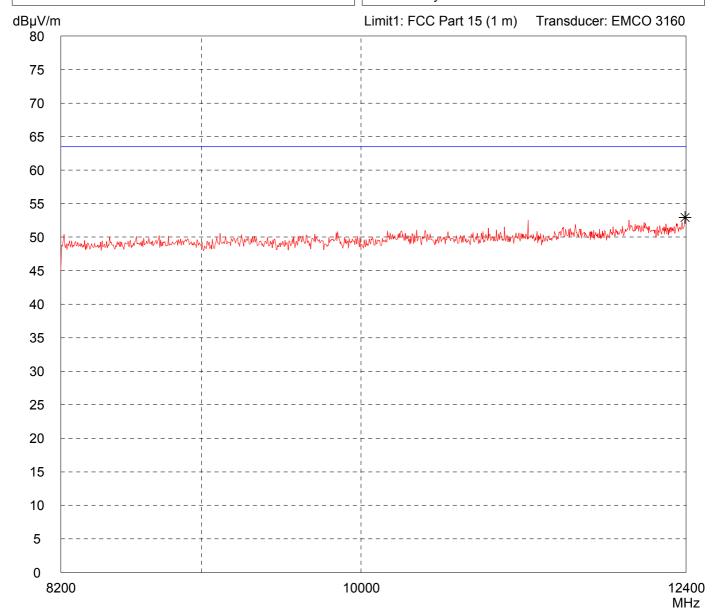
List of values:


Selected by hand

Result: Project file: 51104-60093

Radiated Emission Test 8.2 GHz - 12.4 GHz acc. to FCC Part 15 (EMCO 3160)

t 15 (EMICO 3160)
Comment: - DC 24 V power supply
- EUT in normal position
- transmitting continiously
List of values: Selected by hand
Limit1: FCC Part 15 (1 m) Transducer: EMCO 3160


Result:
Limit kept
Project file:
51104-60093

Radiated Emission Test 8.2 GHz - 12.4 GHz acc. to FCC Part 15 (EMCO 3160)

Model: Comment: FQR50 Serial no.: 3105 - 2006 Applicant: Kirchgaesser Industrieelektronik GmbH Test site: Fully anechoic room, cabin no. 2 Tested on: Test distance 1 meter Vertical Polarization Date of test: Operator: 02/07/2006 M. Steindl File name: Test performed: automatically default.emi Detector:

- DC 24 V power supply
- EUT in normal position
- transmitting continiously

List of values: Peak Selected by hand

Result: Project file: Limit kept 51104-60093

Radiated Emission Test 12.4 GHz - 18 GHz acc. to FCC Part 15 (EMCO 3160)

			,				
Model: FQR5	0		Comment: - DC 24 V power supply				
Serial no			- EUT in normal position				
Applicant: Kirchgaesser Industrieelektronik GmbH		ctronik GmbH	- transmitting continiously				
Test site	e :		- VBW = 100 kHz				
	nechoic room, cabir	n no. 2	4				
Tested of	on: istance 1 meter						
Horizo	ntal Polarization						
Date of 02/08/		Operator: M. Steindl					
Test per		File name:					
autom	atically	default.emi					
Detecto Peak	r:		List of values: Selected by hand				
L dΒμV/m	า		Limit1: FCC Part 15 (1 m) Transducer: EMCO 3160				
80							
75							
70							
65							
60							
55			*m********************************				
50	wyn marker Mark	**************************************					
	V - V0						
45							
40							
35							
30							
25							
20							
15							
10							
5							
0							
	400		1800 MHz				
Dogult:			Project file:				

51104-60093

Limit kept

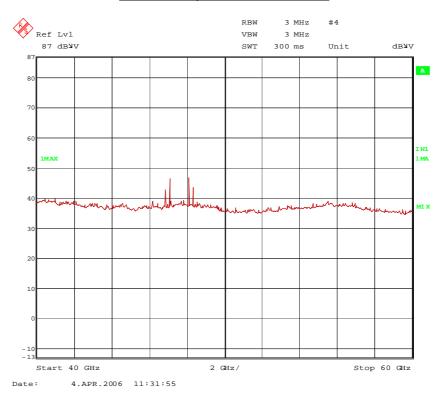
Radiated Emission Test 12.4 GHz - 18 GHz acc. to FCC Part 15 (EMCO 3160)

Model: FQR5	50			Comment: - DC 24 V power supply			
Serial n	10.:						
3105 - 2006 Applicant: Kirchgaesser Industrieelektronik GmbH			- EUT in normal position				
			- transmitting continiously				
Test sit	^{e:} anechoic room, cabi	in no 2		- VBW = 100 kHz			
Tested		11110. 2					
	listance 1 meter al Polarization						
Date of 02/08/		Operator: M. Steindl					
	rformed:	File name:					
II .	natically	default.emi					
Detecto	or:			List of values: Selected by hand			
dBµV/n	n			Limit1: FCC Part 15 (1 m) Transducer: EMCO 3160			
80				, ,			
75							
70							
65							
60							
55			*	manaly MM Manum Many Many Many Many Many Many Many Many			
50	hartfruster.	SAME TO THE WAR TO THE PARTY OF	· 				
45							
40							
35							
30							
25							
20							
15							
10							
5							
0	2400			1800			
12	- 			MHz			
Result:				Project file:			

51104-60093

Limit kept

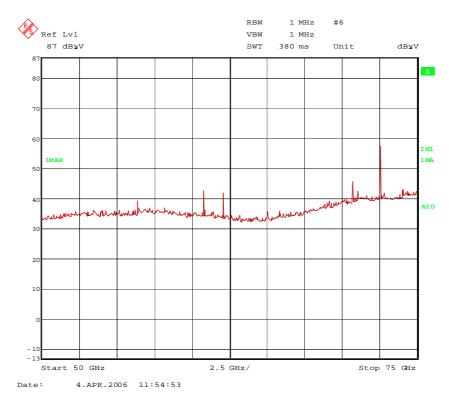
Model: FPR50	Mode: - DC 24 V power supply				
Serial No.: 3105 - 2006	- EUT in normal position				
Applicant: Kirchgaesser Industrieelektronik GmbH	- transmitting continiously - Distance: 0.50 m				
	- Polarisation: horizontal				
Ref.Level 90 dBμV ATT 5 dB/Div.	0 dB Ref. Offset 43 dB				
	1+				
	,				
Lander marine many mandration of the companies of the complete	John Mary Mark Mark Mark Mark Mark Mark Mark Mark				
Start 18.000 GHz	Stop 26.500 GHz				
	00 kHz SWP 260 ms arker List				
No. 1 24.186111					
Tested by: M. Steindl	Project-No.: 51104-060093				
Date: 02/07/2006					

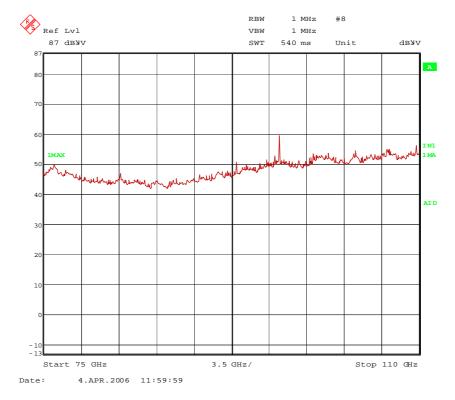

-									
Model: FPR50					Mode:	V power su	vlaa		
Serial No.: 3105 - 2006				- In antenna direction					
Applicant:					- transm	nitting contin	iously		
Kirchgae	sser Indust	rieelektroni	k GmbH			ce: 0.50 m sation: vertic	.al		
					- Polaris	sation: vertic	aı		
Ref.Level	90 dBµV			ATT	0 dB			Ref. C	offset 43 dB
5 dB/Div.	1		r.	1	i	1	1	1	
				' '	· · 		· 		· · ·
				1 1	i i	1			
		:		' · · · · · · · · · · · ·	' '				
	;			· ·			;		·
	· ·		· ·	· ·	· 			!	
				· ·	· ·				
			1	1		1		1	1
				/	 ,	1			
Nahau AMMMAA	, may my hours	www.www.ww	¿MvimiyAtlyvyvidi	whomphown,	in/la/Vinnellman			mhy mhy min	1/m/h/m/h
			! !	· ·	' '	-1	" 		
	1		1	1 1 1	· ·	1			1
		;						,	
Start 18.00	00 GHz		1	1		1		Stop 2	26.500 GHz
RBW 1 MI				VBW 1	00 kHz			·S\	NP 260 ms
				Multi Ma	rker List				
		N	o. 1 2	24.186111	GHz	91.99 dBµ	٧٧		
Tested by: M. Steindl				Project-No 51104-0					
Date:						-			
02/07/20	06								

[
Model: FPR50	Mode: - DC 24 V power supply				
Serial No.: 3105 - 2006	- EUT in normal position				
Applicant:	- transmitting continiously				
Kirchgaesser Industrieelektronik GmbH	- Distance: 0.50 m - Polarisation: horizontal				
Ref.Level 32 dBµV A 5 dB/Div.	TT 0 dB				
Marina ma mandambana makan	warynan Myn Nagunga Mangayan M				
Start 26.500 GHz	Stop 40.000 GHz				
	W 100 kHz SWP 420 ms Marker List				
No. 1 37.7350					
	·				
Tested by: M. Steindl	Project-No.: 51104-060093				
Date: 02/07/2006					

Model: FPR50				Mode: - DC 24 V power supply						
Serial No.: 3105 - 2006				- EUT in normal position						
Applicant:	Applicant:				- transm	itting contin	iously			
Kirchgaes	sser Indust	rieelektroni	ik GmbH		- Distance: 0.50 m - Polarisation: vertical					
					- i dians	auon. veru	ai			
Ref.Level 3 5 dB/Div.	32 dBµV			ATT	0 dB					
						1	1			
			;			·				
	' '	, ,	! !	· /	 -			' '	' !	
				· · · · · · · · · · · · · · · · · · ·						
						1		' ' 1		
 -	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	······································	hyhrumupyw	nnymmhmmmh	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		ilwydowalwow	mynthin	· · · · · · · · · · · · · · · · · · ·	
LANGE AND MINISTER OF THE PROPERTY OF THE PROP		·	,'' , ,	·	_ ['']"""	MANANTANIAN	 Mark Al M. M. M. A. M. M.		: :	
,				· · · · · · · · · · · · · · · · · · ·		1		· ·		
				1				,		
		: :		· 					: 	
		r r	1	1 1	1 1	1	1 1	1 1		
Start 26.50 RBW 1 MF				VBW 1	00 kHz			Stop 4	0.000 GHz NP 420 ms	
	· -			Multi Ma						
		N	o. 1 (38.035000	GHz	11.79 dB _l	V			
Tested by:					Project-No.:					
M. Steindl Date:				51104-060093						
02/07/200	16									

Radiated spurious emissions:


60645emi8.wmf: 40 GHz to 60 GHz, transmit mode


60645emi8a.wmf: 46 GHz to 60 GHz, transmit mode

Examiner: Raimund BLASK Date of issue: 07 April 2006 page 1 of 6

60645emi9.wmf: 50 GHz to 75 GHz, transmit mode

60645emi10.wmf: 75 GHz to 110 GHz, transmit mode

Examiner: Raimund BLASK Date of issue: 07 April 2006 page 2 of 6