Focus Enhancements

Summit FS848 Slave Module (Brighton)

Report No. FOCU0053

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2009Northwest EMC, Inc

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Last Date of Test: May 11, 2009
Focus Enhancements
Model: Summit FS848 Slave Module

Emissions					
Test Description	Specification	Test Method	Pass/Fail		
Spurious Radiated Emissions	FCC 15.407:2009	ANSI C63.4:2003 DA 02-2138:2002	Pass		
Spurious Radiated Emissions	FCC 15.209:2009	ANSI C63.4:2003	Pass		
Peak Transmit Power	FCC 15.407:2009	ANSI C63.4:2003 DA 02-2138:2002	Pass		
Peak Power Spectral Density	FCC 15.407:2009	ANSI C63.4:2003 DA 02-2138:2002	Pass		
Peak Excursion of the Modulation Envelope	FCC 15.407:2009	ANSI C63.4:2003 DA 02-2138:2002	Pass		
Emission Bandwidth	FCC 15.407:2009	ANSI C63.4:2003 DA 02-2138:2002	Pass		
Frequency Stability	FCC 15.407:2009	ANSI C63.4:2003 DA 02-2138:2002	Pass		
AC Powerline Conducted Emissions	FCC 15.207:2009	ANSI C63.4:2003 DA 02-2138:2002	Pass		

Modifications made to the product

See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834D-1).

Approved By:

Timothy O'Shea, Operations Manager

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 05/05/03

Revision Description		Date	Page Number
00	None		

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS-Gen, Issue 2 and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. (Site Filing Numbers - Hillsboro: 2834D-1, 2834D-2, Sultan: 2834C-1, Irvine: 2834B-1, 2834B-2)

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

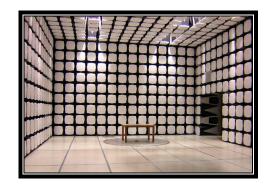
NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071, R-1025, C-2687, T-289, and R-2318, Irvine: R-1943, C-2766, and T-298, Sultan: R-871, C-1784, and T-294).

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement (US0017). License No.SL2-IN-E-1017.

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification


KCC: Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157)

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/

California – Orange County Facility Labs OC01 – OC13

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 Fax: (503) 844-3826

Oregon – Evergreen Facility Labs EV01 – EV11

22975 NW Evergreen Pkwy. Suite 400 Hillsboro, OR 97124 (503) 844-4066 Fax: (503) 844-3826

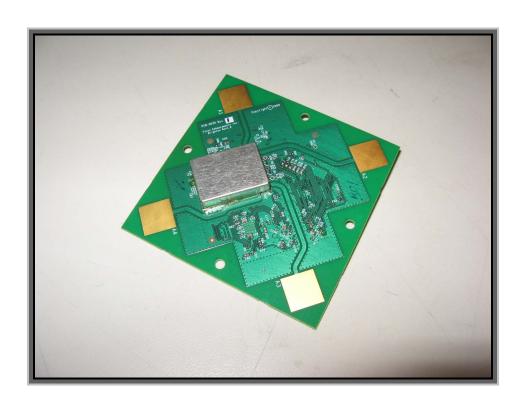
Washington – Sultan Facility Labs SU01 – SU07

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378

Party Requesting the Test

Company Name:	Focus Enhancements
Address:	22867 NW Bennett St., Suite 200
City, State, Zip:	Hillsboro, OR 97124
Test Requested By:	Jim Svoboda
Model:	444-2196
First Date of Test:	April 27, 2009
Last Date of Test:	May 11, 2009
Receipt Date of Samples:	April 27, 2009
Equipment Design Stage:	Preproduction
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test


Functional Description of the EUT (Equipment Under Test):

Summit FS848 Slave Module

Testing Objective:

Seeking modular approval of the client under FCC 15.407 for operation in the 5.2, 5.3, and 5.6 GHz bands

EUT Photo

Configurations

Revision 9/21/05

CONFIGURATION 1 FOCU0053

Software/Firmware Running during test			
Description Version			
Terminal	1.9B		

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Summit FS848 Slave Module – Direct Connect	Focus Enhancements	444-2196	30

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
DC Power / RS-232 Serial Interface	Focus Enhancements	Hermiston	None		
DC Block	MCL	BLK-89	15542		
AC Adapter	PHIHONG	PSA21R-033	None		

Remote Equipment Outside of Test Setup Boundary				
Description Manufacturer Model/Part Number Serial Number				
Remote PC	Dell	Latitude D820	2006-00516	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Multi-pin Flex Cable	No	0.3m	No	Summit FS848 Slave Module Direct Connect	DC Power / RS-232 Serial Interface
Serial	Yes	2.0m	No	DC Power / RS-232 Serial Interface	Remote PC
DC Lead	PA	1.8m	PA	AC Adapter	DC Power / RS-232 Serial Interface
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

CONFIGURATION 2 FOCU0053

Software/Firmware Running during test			
Description	Version		
Terminal	1.9B		

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
Summit FS848 Slave Module - Radiated	Focus Enhancements	444-2196	2		

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
DC Power / RS-232 Serial Interface	Focus Enhancements	Hermiston	None		
AC Adapter	PHIHONG	PSA21R-033	None		

Remote Equipment Outside of Test Setup Boundary				
Description Manufacturer Model/Part Number Serial Number				
Remote PC	Dell	Latitude D820	2006-00516	

Cables	Cables								
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2				
Multi-pin Flex Cable	No	0.3m	No	Summit FS848 Slave Module Radiated	DC Power / RS-232 Serial Interface				
Serial	Yes	2.0m	No	DC Power / RS-232 Serial Interface	Remote PC				
DC Lead	PA	1.8m	PA	AC Adapter	DC Power / RS-232 Serial Interface				
PA = Ca	able is perm	nanently attacl	ned to the d	levice. Shielding and/or presence of fe	rrite may be unknown.				

CONFIGURATION 3 FOCU0053

Software/Firmware Running during test				
Description	Version			
Terminal	1.9B			

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Summit FS848 Slave Module - Radiated 2	Focus Enhancements	444-2196	2

Peripherals in test setup boundary			
Description	Manufacturer	Model/Part Number	Serial Number
DC Power / RS-232 Serial Interface	Focus Enhancements	Hermiston	None
DC Power Supply	Topward	6303D	743645

Remote Equipment Outside of Test Setup Boundary					
Description Manufacturer Model/Part Number Serial Number					
Remote PC	Dell	Latitude D820	2006-00516		

Cables							
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2		
Multi-pin Flex	No	0.3m	No	Summit FS848 Slave Module	DC Power / RS-232		
Cable	INO	0.3111	INO	Radiated 2	Serial Interface		
AC Power	No	1.8m	No	AC Mains	DC Power Supply		
DC Lead	No	1.9m	No	DC Dower Cumply	DC Power / RS-232		
DC Lead	No	1.9111	No	DC Power Supply	Serial Interface		
Coriol	Voo	1.0m	No	DC Power / RS-232 Serial	Romata DC		
Serial	Yes 1.9m	1.9m	No	Interface	Remote PC		
PA = Cab	le is permar	nently attach	ned to the d	evice. Shielding and/or presence of fe	rrite may be unknown.		

Revision 4/28/03

	Equipment modifications					
Itom	Doto	Test	Modification	Note	Disposition of EUT	
Item	Date		Modification	Note	Disposition of EUT	
1	4/27/2009	Peak Excursion of the Modulation Envelope	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
2	5/4/2009	Frequency Stability	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
3	5/6/2009	AC Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
4	5/7/2009	Emission Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
5	5/7/2009	Peak Transmit Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
6	5/8/2009	Peak Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
7	5/11/2009	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was complete.	

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION	
Transmitting, Ch 36, 5180MHz.	
Transmitting, Ch 48, 5240MHz.	
Transmitting, Ch 52, 5260MHz.	
Transmitting, Ch 64, 5320MHz.	
Transmitting, Ch 100, 5500MHz.	
Transmitting, Ch 116, 5580MHz.	
Transmitting Ch 140 5700MHz	

MODE USED FOR FINAL DATA	
Transmitting, Ch 36, 5180MHz.	
Transmitting, Ch 48, 5240MHz.	
Transmitting, Ch 52, 5260MHz.	
Transmitting, Ch 64, 5320MHz.	
Transmitting, Ch 100, 5500MHz.	
Transmitting, Ch 116, 5580MHz.	
Transmitting Ch 140 5700MHz	

POWER SETTINGS INVESTIGATED

120VAC/60Hz

POWER SETTINGS USED FOR FINAL DATA

120VAC/60Hz

FREQUENCY RANGE INVESTIGATED						
Start Frequency	1 GHz	Stop Frequency	40 GHz			

CLOCKS AND OSCILLATORS

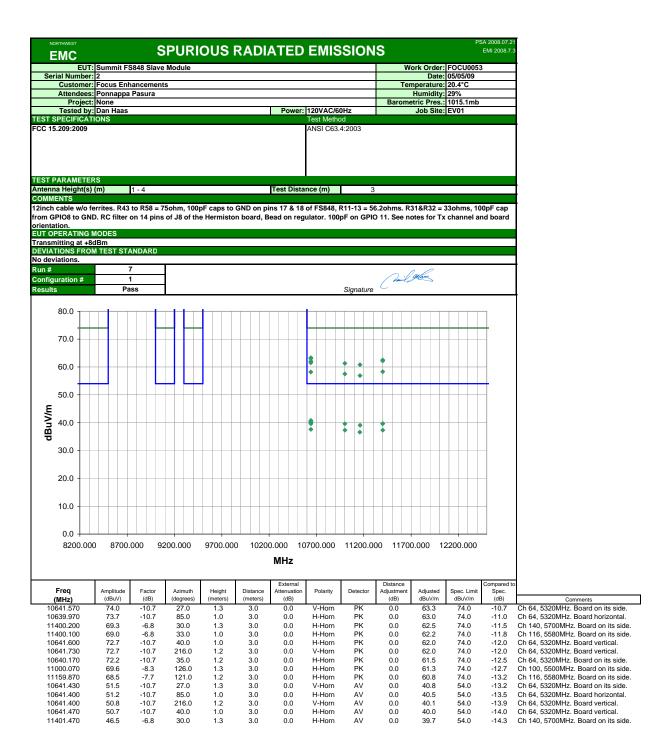
None Provided

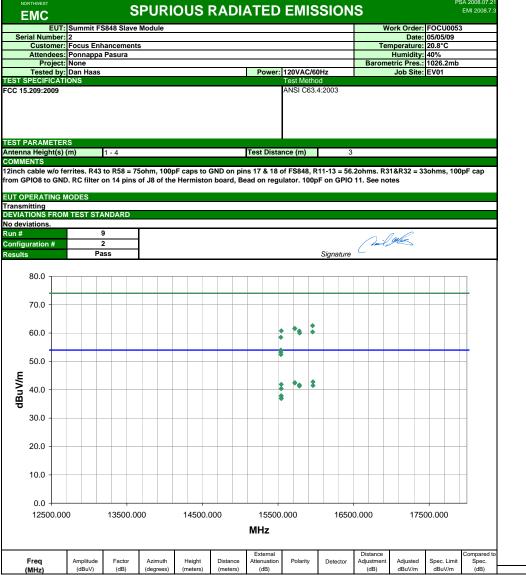
SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAY	12/11/2008	13
5.47-5.725 Notch Filter	Micro-Tronics	BRC50704	HGI	6/16/2008	12
5.25 GHz Notch Filter	K&L Microwave	8N50-5250/X200-0/0	HFK	4/3/2008	24
High Pass Filter	Micro-Tronics	HPM50112	HGA	6/27/2008	13
26-40GHz Cable		TTBJ141-KMKM-72	EVX	7/30/2008	13
EV01 Cables		Standard Gain Horns Cables	EVF	11/13/2008	13
EV01 Cables		18-26GHz Standard Gain	EVD	12/2/2008	13
Evol Cables		Horn Cable	EVD		
EV01 Cables		Standard Gain Horns Cables	EVF	11/13/2008	13
EV01 Cables		Double Ridge Horn Cables	EVB	5/19/2008	13
Pre-Amplifier	Miteq	JSW45-26004000-40-5P	AVN	7/30/2008	13
Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	12/2/2008	13
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVD	6/30/2008	13
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVC	6/30/2008	13
Pre-Amplifier	Miteq	AMF-4D-010100-24-10P	APW	5/19/2008	13
Antenna, Horn	ETS	3160-10	AIC	NCR	0
Antenna, Horn	ETS	3160-09	AHG	NCR	0
Antenna, Horn	ETS	3160-08	AHV	NCR	0
Antenna, Horn	ETS	3160-07	AHU	NCR	0
Antenna, Horn	EMCO	3115	AHC	8/12/2008	24

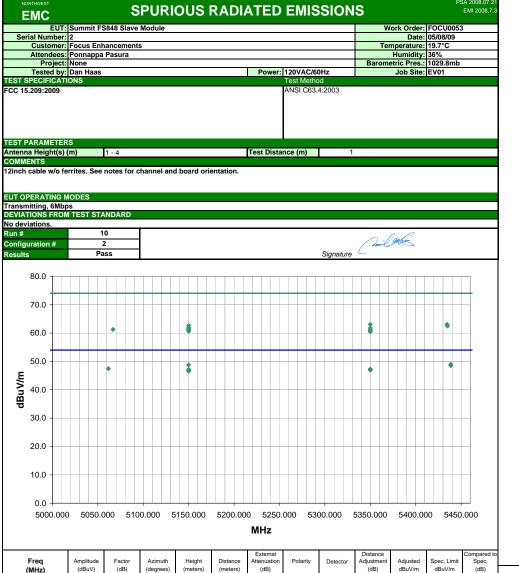
MEASUREMENT BANDWIDTHS							
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data			
	(MHz)	(kHz)	(kHz)	(kHz)			
	0.01 - 0.15	1.0	0.2	0.2			
	0.15 - 30.0	10.0	9.0	9.0			
	30.0 - 1000	100.0	120.0	120.0			
	Above 1000	1000.0	N/A	1000.0			
N	Measurements were made using the bandwidths and detectors specified. No video filter was used.						

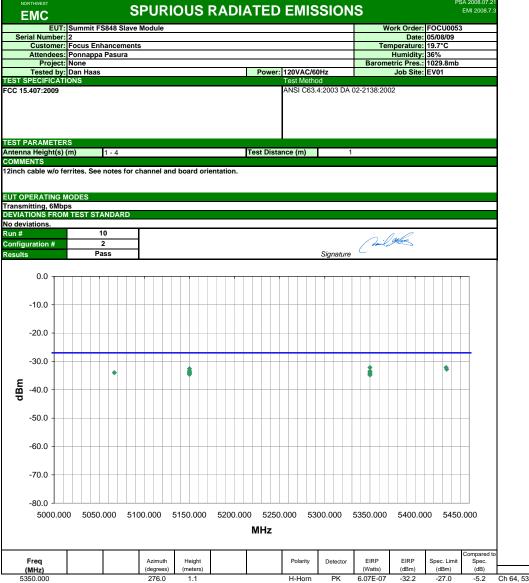

MEASUREMENT UNCERTAINTY


A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

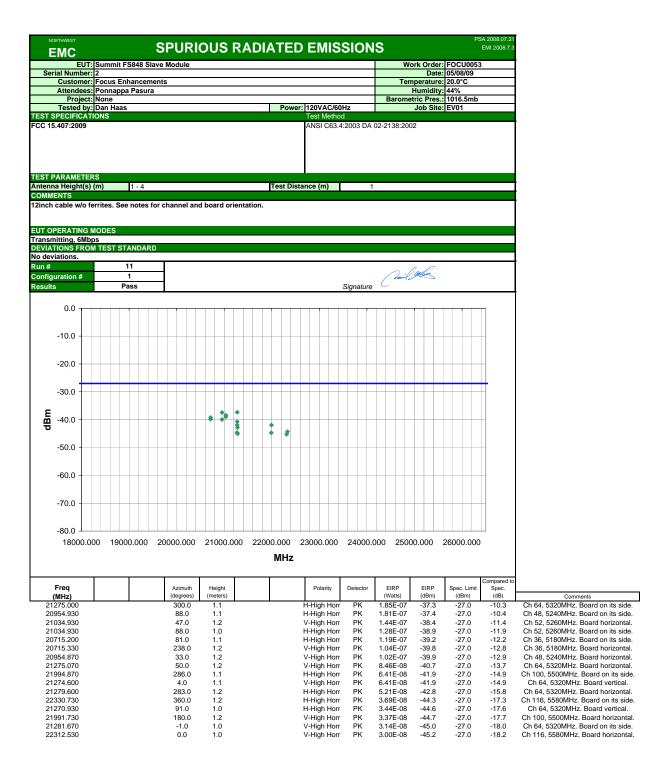
TEST DESCRIPTION

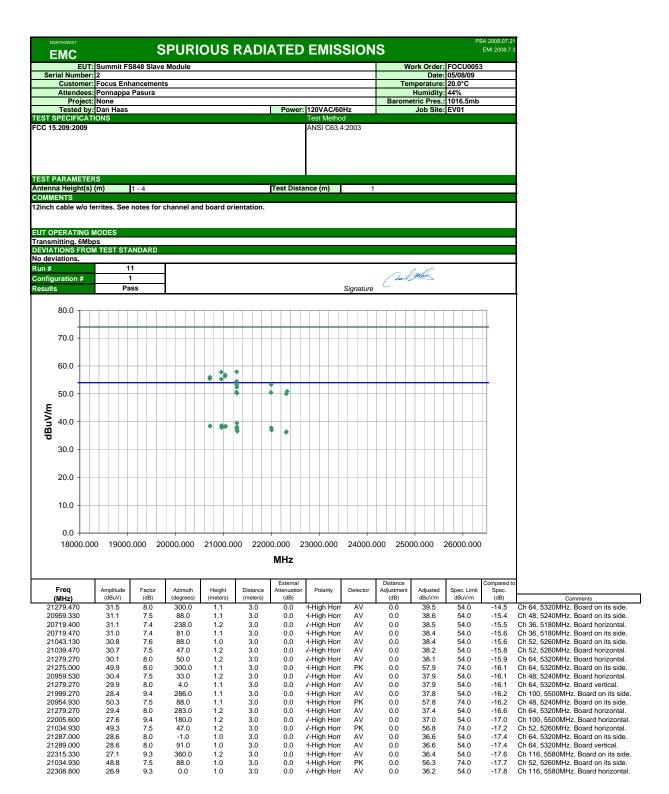
The antennas to be used with the EUT were tested. The EUT was transmitting and receiving while set at the channel available. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and orientation in 3 orthogonal plane, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2003). An active loop antenna was used for this test in order to provide sufficient measurement sensitivity.


NORTHWEST EMC		SPURI	OUS R	ADIATE	ΞD	EMIS	SSION	IS			A 2008.07.2 EMI 2008.7.3	
	Summit FS848 S	lave Module						W		FOCU0053		<u>1</u>
Serial Number:								Ŧ		05/05/09		4
	Focus Enhancer Ponnappa Pasur							Ter	nperature: Humidity:			1
Project		а						Barome		1015.1mb		1
Tested by:	Dan Haas			Po	wer:	120VAC/6			Job Site:]
TEST SPECIFICAT	TONS					Test Meth		00 0100 00				4
FCC 15.407:2009						ANSI C63	3.4:2003 DA	. 02-2138:20	U2			
TEST PARAMETER Antenna Height(s)				Test	Dista	nce (m)		3				4
COMMENTS	()					,	Ì	,				f
12inch cable w/o for from GPIO8 to GN	D. RC filter on 14									33ohms, 10	0pF cap	
EUT OPERATING I Transmitting at +8												4
DEVIATIONS FROM No deviations.		RD										1
Run #	7							Carl.	Carl.			I
Configuration #	1							Sanils	mar			
Results	Pass						Signature	, –				4
0.0												
-10.0												
-20.0												
-30.0											-	
E -40.0				•	**	*	* :	*				
-50.0												
-60.0												
-70.0												
-80.0 1 8200.00	00 8700.000	9200.000	9700.000	10200.000	10	700.000	11200.0	000 1170	0.000 4	2200.000	_	
8200.00	00 8700.000	9200.000	9700.000	MH		700.000	11200.0	1170	0.000 1.	2200.000		
Freq (MHz)		Azimuth (degrees)	Height (meters)			Polarity	Detector	EIRP (Watts)	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)	Comments
10520.130		67.0	1.2	ı		H-Horn	PK	7.20E-07	-31.4	-27.0	-4.4	Ch 52, 5260MHz. Board on its side.
10480.170 10641.570		66.0 27.0	1.3 1.3			H-Horn V-Horn	PK PK	6.72E-07 6.41E-07	-31.7 -31.9	-27.0 -27.0	-4.7	Ch 48, 5240MHz. Board on its side. Ch 64, 5320MHz. Board on its side.
10639.970		27.0 85.0	1.0			H-Horn	PK PK	5.99E-07	-31.9	-27.0 -27.0	-4.9 -5.2	Ch 64, 5320MHz. Board for its side.
10480.130		28.0	1.4			V-Horn	PK	5.59E-07	-32.5	-27.0	-5.5	Ch 48, 5240MHz. Board on its side.
11400.200		30.0	1.3			H-Horn	PK	5.33E-07	-32.7	-27.0	-5.7	Ch 140, 5700MHz. Board on its side.
10520.030 11400.100		31.0 33.0	1.4 1.0			V-Horn H-Horn	PK PK	5.21E-07 4.98E-07	-32.8 -33.0	-27.0 -27.0	-5.8 -6.0	Ch 52, 5260MHz. Board on its side. Ch 116, 5580MHz. Board on its side.
10641.600		40.0	1.0			H-Horn	PK	4.96E-07 4.75E-07	-33.0	-27.0 -27.0	-6.0 -6.2	Ch 64, 5320MHz. Board vertical.
10641.730		216.0	1.2			V-Horn	PK	4.75E-07	-33.2	-27.0	-6.2	Ch 64, 5320MHz. Board vertical.
10640.170		35.0	1.2			H-Horn	PK	4.24E-07	-33.7	-27.0	-6.7	Ch 64, 5320MHz. Board on its side.
10361.630 11000.070		29.0 126.0	1.1 1.3			V-Horn H-Horn	PK PK	4.14E-07 4.05E-07	-33.8 -33.9	-27.0 -27.0	-6.8 -6.9	Ch 36, 5180MHz. Board on its side. Ch 100, 5500MHz. Board on its side.
10361.530		36.0	1.1			H-Horn	PK	3.95E-07	-34.0	-27.0	-7.0	Ch 36, 5180MHz. Board on its side.
11159.870		121.0	1.2			H-Horn	PK	3.61E-07	-34.4	-27.0	-7.4	Ch 116, 5580MHz. Board on its side.
11400.100 10640.000		16.0 221.0	1.4 1.0			V-Horn V-Horn	PK PK	2.03E-07 1.98E-07	-36.9 -37.0	-27.0 -27.0	-9.9 -10.0	Ch 140, 5700MHz. Board on its side. Ch 64, 5320MHz. Board horizontal.
11000.030		20.0	1.4			V-Horn	PK	1.69E-07	-37.7	-27.0	-10.0	Ch 100, 5500MHz. Board on its side.
11159.830		21.0	1.5			V-Horn	PK	1.47E-07	-38.3	-27.0	-11.3	Ch 116, 5580MHz. Board on its side.



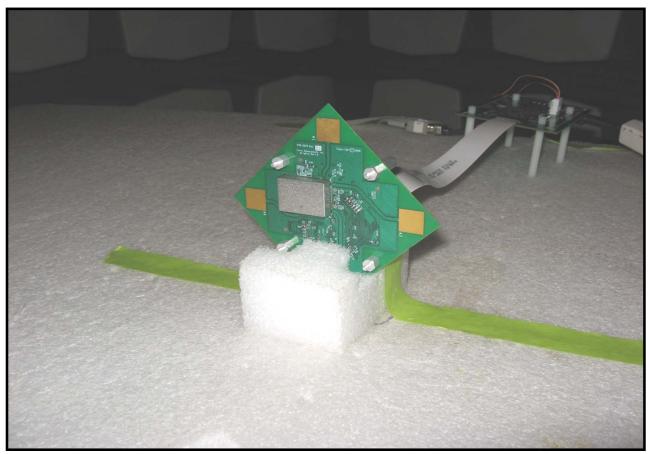
						External			Distance			Compared to	
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	Comments
15962.250	34.5	8.3	305.0	1.2	3.0	0.0	H-Horn	AV	0.0	42.8	54.0	-11.2	Ch 64, 5320MHz. Board on its side.
15957.550	54.3	8.3	305.0	1.2	3.0	0.0	H-Horn	PK	0.0	62.6	74.0	-11.4	Ch 64, 5320MHz. Board on its side.
15722.300	34.7	7.8	30.0	1.1	3.0	0.0	H-Horn	AV	0.0	42.5	54.0	-11.5	Ch 48, 5240MHz. Board on its side.
15722.200	34.6	7.8	4.0	1.1	3.0	0.0	V-Horn	AV	0.0	42.4	54.0	-11.6	Ch 48, 5240MHz. Board vertical.
15542.180	34.4	7.5	313.0	1.2	3.0	0.0	H-Horn	AV	0.0	41.9	54.0	-12.1	Ch 36, 5180MHz. Board on its side.
15782.200	33.7	8.0	8.0	1.2	3.0	0.0	V-Horn	AV	0.0	41.7	54.0	-12.3	Ch 52, 5260MHz. Board vertical.
15721.670	53.8	7.8	4.0	1.1	3.0	0.0	V-Horn	PK	0.0	61.6	74.0	-12.4	Ch 48, 5240MHz. Board vertical.
15722.630	53.8	7.8	30.0	1.1	3.0	0.0	H-Horn	PK	0.0	61.6	74.0	-12.4	Ch 48, 5240MHz. Board on its side.
15962.200	33.2	8.3	6.0	1.2	3.0	0.0	V-Horn	AV	0.0	41.5	54.0	-12.5	Ch 64, 5320MHz. Board vertical.
15782.200	33.3	8.0	26.0	1.1	3.0	0.0	H-Horn	AV	0.0	41.3	54.0	-12.7	Ch 52, 5260MHz. Board on its side.
15543.580	53.3	7.5	313.0	1.2	3.0	0.0	H-Horn	PK	0.0	60.8	74.0	-13.2	Ch 36, 5180MHz. Board on its side.
15781.650	52.7	8.0	8.0	1.2	3.0	0.0	V-Horn	PK	0.0	60.7	74.0	-13.3	Ch 52, 5260MHz. Board vertical.
15542.240	32.9	7.5	25.0	1.2	3.0	0.0	V-Horn	AV	0.0	40.4	54.0	-13.6	Ch 36, 5180MHz. Board vertical.
15957.150	52.1	8.3	6.0	1.2	3.0	0.0	V-Horn	PK	0.0	60.4	74.0	-13.6	Ch 64, 5320MHz. Board vertical.
15786.050	52.0	8.0	26.0	1.1	3.0	0.0	H-Horn	PK	0.0	60.0	74.0	-14.0	Ch 52, 5260MHz. Board on its side.
15537.440	51.0	7.5	25.0	1.2	3.0	0.0	V-Horn	PK	0.0	58.5	74.0	-15.5	Ch 36, 5180MHz. Board vertical.
15542.200	30.4	7.5	207.0	1.3	3.0	0.0	V-Horn	AV	0.0	37.9	54.0	-16.1	Ch 36, 5180MHz. Board horizontal.
15542.260	30.3	7.5	329.0	1.2	3.0	0.0	V-Horn	AV	0.0	37.8	54.0	-16.2	Ch 36, 5180MHz. Board on its side.
15542.350	29.5	7.5	2.0	1.1	3.0	0.0	H-Horn	AV	0.0	37.0	54.0	-17.0	Ch 36, 5180MHz. Board vertical.
15542.400	29.4	7.5	304.0	1.4	3.0	0.0	H-Horn	AV	0.0	36.9	54.0	-17.1	Ch 36, 5180MHz. Board horizontal.

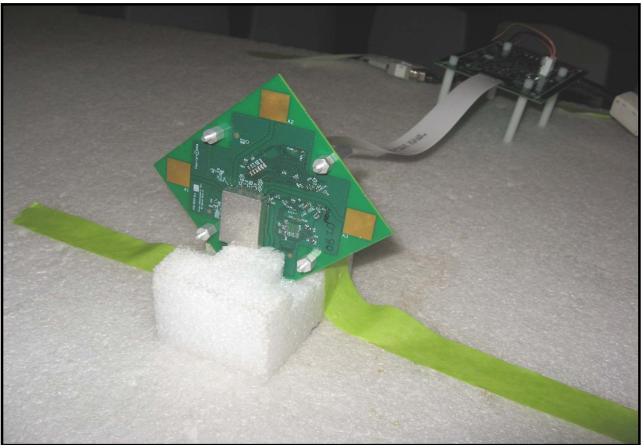

	RTHWEST MC						PURI	οι	JS	R <i>A</i>	ADI	ΔTI	ED	Ε	MI	S	SION	IS					A 2008.0 EMI 200	
0				it FS	348 S	Slave	Module												W			FOCU0053	3	
Ser	ial Numb Custom		Focus	Fnha	ncer	ments													Te			05/05/09 20.8°C		
	Attende																			Hum	idity:	40%		
	Proje											_						E	Barom	etric F		1026.2mb		
TEST S	Tested I			aas								Po	ower:		t Me					Job	Site:	EV01		
	.407:2009		JIVO														:2003 DA	02-2	138:20	002				
	ARAMET a Height(ENTS			ĺ	- 4							Test	Dista	nce	(m)		3	3						
12inch	cable w/c						ohm, 100p of J8 of the														32 = 3	33ohms, 10	0pF ca	сар
Transm																								
DEVIAT No devi	IONS FR	OM	TEST	STA	NDA	RD																		
Run #	utions.			9																0	0			
Configu	ıration #			2														/	Davit] gyla	5			
Results	;			Pas	S												Signature							
	0.0 T					_																1	7	
	-10.0																							
	-20.0																							
	-30.0																						-	
Ε														•	•	•		•	•					
dBm	-40.0													•						•				
	-50.0																							
	-60.0																							
	-70.0																							
	90.0																							
	-80.0 ¹	.00.	0		135	0.00	00	1	4500	.000		1	5500).()()	0		1650	00.00	00		175	00.000	_	
	.2000				.00	.00.0			.000	.000		МН		,,,,,	•			,0.00	, ,			00.000		
	Freq MHz)						Azimuth (degrees)		eight eters)					Р	olarity	,	Detector		IRP Vatts)	EII (dE		Spec. Limit (dBm)	Compan Spec (dB)	pec.
159	957.550	1					305.0		1.2	-					-Horr		PK	5.4	6E-07	-32	2.6	-27.0	-5.6	5.6 Ch 64, 5320MHz. Board on its side.
	721.670 722.630						4.0 30.0		1.1						-Horr -Horr		PK PK		4E-07 4E-07	-33	3.6 3.6	-27.0 -27.0	-6.6	
	722.630 543.580						313.0		1.1 1.2						-Horr		PK PK		4E-07		3.6 1.4	-27.0 -27.0	-6.6 -7.4	
157	781.650						8.0		1.2					V-	-Horr	n	PK	3.5	2E-07	-34	1.5	-27.0	-7.5	7.5 Ch 52, 5260MHz. Board vertical.
	957.150						6.0		1.2						-Horr		PK		9E-07	-34		-27.0	-7.8	
	786.050 537.440						26.0 25.0		1.1 1.2						-Horr -Horr		PK PK		0E-07 2E-07	-36 -36		-27.0 -27.0	-8.2 -9.7	
	737.250						237.0		1.2						-Horr		PK		8E-07			-27.0	-9.8	
	492.550						241.0		1.1					H	-Horr	n	PK	1.8	1E-07	-37	7.4	-27.0	-10.	0.4 Ch 100, 5500MHz. Board on its side.
	501.850						348.0		1.2						-Horr		PK		7E-07	-38		-27.0	-11.	
	097.500 737.400						198.0 162.0		1.1 1.2						-Horr -Horr		PK PK		7E-07 1E-07	-38 -39		-27.0 -27.0	-11. -12.	
	092.700						196.0		1.1					V-	-Horr	n	PK	7.7	1E-08	-4	1.1	-27.0	-14.	4.1 Ch 140, 5700MHz. Board vertical.
	536.850						207.0		1.3						-Horr		PK		4E-08			-27.0	-14.	
	537.390 538.550						329.0 2.0		1.2 1.1						-Horr -Horr		PK PK		0E-08 7E-08			-27.0 -27.0	-14. -15.	
	538.500						304.0		1.4						-Horr		PK		1E-08			-27.0	-15.	



Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)	Comments
5438.550	21.7	36.8	158.0	1.0	1.0	0.0	H-Horn	AV	-9.5	49.0	54.0	-5.0	Ch 64, 5320MHz. Board horizontal.
5150.000	22.0	36.3	139.0	1.0	1.0	0.0	H-Horn	AV	-9.5	48.8	54.0	-5.2	Ch 36, 5180MHz. Board vertical.
5438.650	21.3	36.8	28.0	1.0	1.0	0.0	H-Horn	AV	-9.5	48.6	54.0	-5.4	Ch 64, 5320MHz. Board on its side.
5061.617	20.9	36.1	360.0	1.0	1.0	0.0	H-Horn	AV	-9.5	47.5	54.0	-6.5	Ch 36, 5180MHz. Board horizontal.
5350.000	20.1	36.7	276.0	1.1	1.0	0.0	H-Horn	AV	-9.5	47.3	54.0	-6.7	Ch 64, 5320MHz. Board horizontal.
5150.000	20.4	36.3	-1.0	1.0	1.0	0.0	H-Horn	AV	-9.5	47.2	54.0	-6.8	Ch 36, 5180MHz. Board on its side.
5350.000	20.0	36.7	176.0	1.1	1.0	0.0	H-Horn	AV	-9.5	47.2	54.0	-6.8	Ch 64, 5320MHz. Board on its side.
5350.000	20.0	36.7	116.0	1.1	1.0	0.0	V-Horn	AV	-9.5	47.2	54.0	-6.8	Ch 64, 5320MHz. Board vertical.
5150.000	20.3	36.3	263.0	1.1	1.0	0.0	H-Horn	AV	-9.5	47.1	54.0	-6.9	Ch 36, 5180MHz. Board horizontal.
5350.000	19.9	36.7	268.0	1.4	1.0	0.0	V-Horn	AV	-9.5	47.1	54.0	-6.9	Ch 64, 5320MHz. Board on its side.
5150.000	20.2	36.3	360.0	1.0	1.0	0.0	V-Horn	AV	-9.5	47.0	54.0	-7.0	Ch 36, 5180MHz. Board vertical.
5350.000	19.8	36.7	23.0	1.3	1.0	0.0	V-Horn	AV	-9.5	47.0	54.0	-7.0	Ch 64, 5320MHz. Board horizontal.
5350.000	19.8	36.7	220.0	1.1	1.0	0.0	H-Horn	AV	-9.5	47.0	54.0	-7.0	Ch 64, 5320MHz. Board vertical.
5150.000	19.9	36.3	5.0	1.1	1.0	0.0	V-Horn	AV	-9.5	46.7	54.0	-7.3	Ch 36, 5180MHz. Board on its side.
5150.000	19.8	36.3	24.0	1.2	1.0	0.0	V-Horn	AV	-9.5	46.6	54.0	-7.4	Ch 36, 5180MHz. Board horizontal.
5350.000	35.9	36.7	276.0	1.1	1.0	0.0	H-Horn	PK	-9.5	63.1	74.0	-10.9	Ch 64, 5320MHz. Board horizontal.
5434.400	35.8	36.8	158.0	1.0	1.0	0.0	H-Horn	PK	-9.5	63.1	74.0	-10.9	Ch 64, 5320MHz. Board horizontal.
5150.000	35.9	36.3	263.0	1.1	1.0	0.0	H-Horn	PK	-9.5	62.7	74.0	-11.3	Ch 36, 5180MHz. Board horizontal.
5435.000	35.2	36.8	28.0	1.0	1.0	0.0	H-Horn	PK	-9.5	62.5	74.0	-11.5	Ch 64, 5320MHz. Board on its side.
5150.000	35.1	36.3	-1.0	1.0	1.0	0.0	H-Horn	PK	-9.5	61.9	74.0	-12.1	Ch 36, 5180MHz. Board on its side.

Freq		Azimuth	Height		Polarity	Detector	EIRP	EIRP	Spec. Limit	Spec.	
(MHz)	(0	(degrees)	(meters)				(Watts)	(dBm)	(dBm)	(dB)	Comments
5350.000		276.0	1.1		H-Horn	PK	6.07E-07	-32.2	-27.0	-5.2	Ch 64, 5320MHz. Board horizontal.
5434.400		158.0	1.0		H-Horn	PK	6.07E-07	-32.2	-27.0	-5.2	Ch 64, 5320MHz. Board horizontal.
5150.000		263.0	1.1		H-Horn	PK	5.53E-07	-32.6	-27.0	-5.6	Ch 36, 5180MHz. Board horizontal.
5435.000		28.0	1.0		H-Horn	PK	5.28E-07	-32.8	-27.0	-5.8	Ch 64, 5320MHz. Board on its side.
5150.000		-1.0	1.0		H-Horn	PK	4.60E-07	-33.4	-27.0	-6.4	Ch 36, 5180MHz. Board on its side.
5350.000		176.0	1.1		H-Horn	PK	4.50E-07	-33.5	-27.0	-6.5	Ch 64, 5320MHz. Board on its side.
5150.000		139.0	1.0		H-Horn	PK	4.20E-07	-33.8	-27.0	-6.8	Ch 36, 5180MHz. Board vertical.
5066.717		360.0	1.0		H-Horn	PK	4.01E-07	-34.0	-27.0	-7.0	Ch 36, 5180MHz. Board horizontal.
5150.000		360.0	1.0		V-Horn	PK	3.92E-07	-34.1	-27.0	-7.1	Ch 36, 5180MHz. Board vertical.
5350.000		116.0	1.1		V-Horn	PK	3.92E-07	-34.1	-27.0	-7.1	Ch 64, 5320MHz. Board vertical.
5350.000		268.0	1.4		V-Horn	PK	3.92E-07	-34.1	-27.0	-7.1	Ch 64, 5320MHz. Board on its side.
5150.000		24.0	1.2		V-Horn	PK	3.83E-07	-34.2	-27.0	-7.2	Ch 36, 5180MHz. Board horizontal.
5150.000		5.0	1.1		V-Horn	PK	3.49E-07	-34.6	-27.0	-7.6	Ch 36, 5180MHz. Board on its side.
5350.000		23.0	1.3		V-Horn	PK	3.49E-07	-34.6	-27.0	-7.6	Ch 64, 5320MHz. Board horizontal.
5350.000		220.0	1.1		H-Horn	PK	3.33E-07	-34.8	-27.0	-7.8	Ch 64, 5320MHz. Board vertical.




Spurious Radiated Emissions

Spurious Radiated Emissions

RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION
Transmitting channel 165, 5825 MHz
Transmitting channel 157, 5785 MHz
Transmitting channel 149, 5745 MHz
Transmitting channel 140, 5700 MHz
Transmitting channel 116, 5580 MHz
Transmitting channel 100, 5500 MHz
Transmitting channel 64, 5320 MHz
Transmitting channel 52, 5260 MHz
Transmitting channel 48, 5240 MHz
Transmitting channel 36, 5180 MHz

POWER SETTINGS INVESTIGATED

120VAC/60Hz

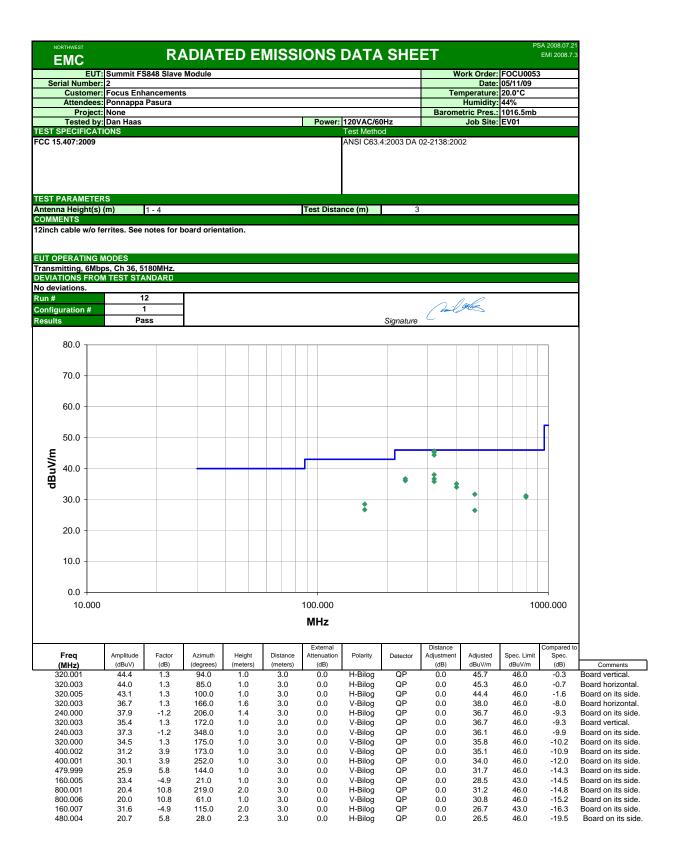
FREQUENCY RANGE INV	ESTIGATED		
Start Frequency	30MHz	Stop Frequency	1000MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAY	12/11/2008	13
EV01 Cables		Bilog Cables	EVA	5/19/2008	13
Pre-Amplifier	Miteq	AM-1616-1000	AOL	5/19/2008	13
Antenna, Biconilog	EMCO	3141	AXE	1/15/2008	24

MEASUREMENT BANDWIDTHS									
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data					
	(MHz)	(kHz)	(kHz)	(kHz)					
	0.01 - 0.15	1.0	0.2	0.2					
	0.15 - 30.0	10.0	9.0	9.0					
	30.0 - 1000	100.0	120.0	120.0					
	Above 1000	1000.0	N/A	1000.0					
	Measurements were made us	sing the bandwidths and detec	ctors specified. No video filte	r was used.					

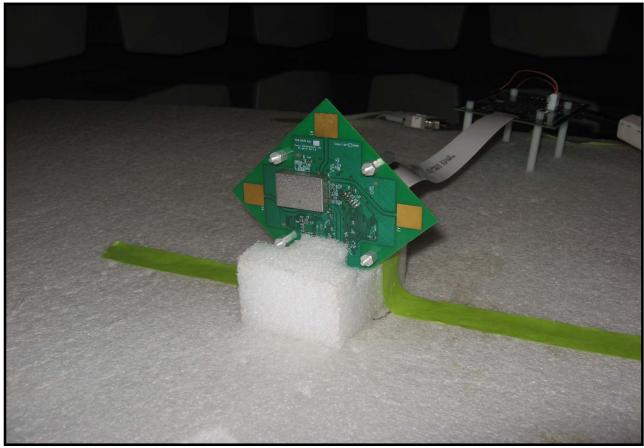

MEASUREMENT UNCERTAINTY

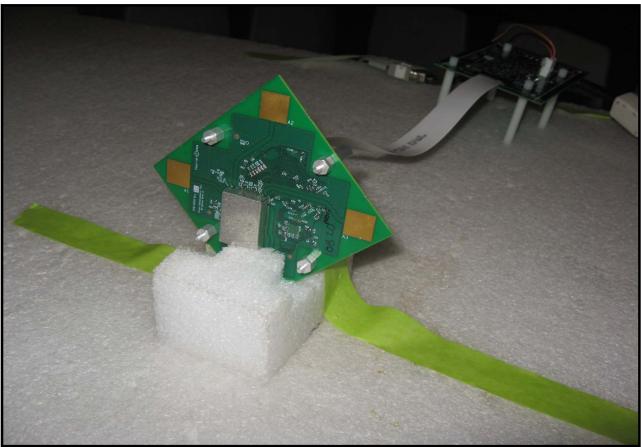
A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, a final radiated emissions test was performed. The frequency range investigated (scanned), is also noted in this report. Radiated emissions measurements were made at the EUT azimuth and antenna height such that the maximum radiated emissions level will be detected. This requires the use of a turntable and an antenna positioner. The preferred method of a continuous azimuth search is utilized for frequency scans of the EUT field strength with both polarities of the measuring antenna. A calibrated, linearly polarized antenna was positioned at the specified distance from the periphery of the EUT.

Tests were made with the antenna positioned in both the horizontal and vertical planes of polarization. The antenna was varied in height above the conducting ground plane to obtain the maximum signal strength. Though specified in the report, the measurement distance shall be 3 meters or 10 meters. At any measurement distance, the antenna height was varied from 1 meter to 4 meters. These height scans apply for both horizontal and vertical polarization, except that for vertical polarization the minimum height of the center of the antenna shall be increased so that the lowest point of the bottom of the antenna clears the ground surface by at least 25 cm.




Radiated Emissions

Radiated Emissions

AC POWERLINE CONDUCTED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

IODES OF OPERATION
ransmitting, +8dBm, CH140, 5700MHz
ransmitting, +8dBm, CH116, 5580MHz
ransmitting, +8dBm, CH100, 5500MHz
ransmitting, +8dBm, CH64, 5320MHz
ransmitting, +8dBm, CH52, 5260MHz
ransmitting, +8dBm, CH48, 5240MHz
ransmitting, +8dBm, CH36, 5180MHz

POWER SETTINGS INVESTIGATED

3.3VDC

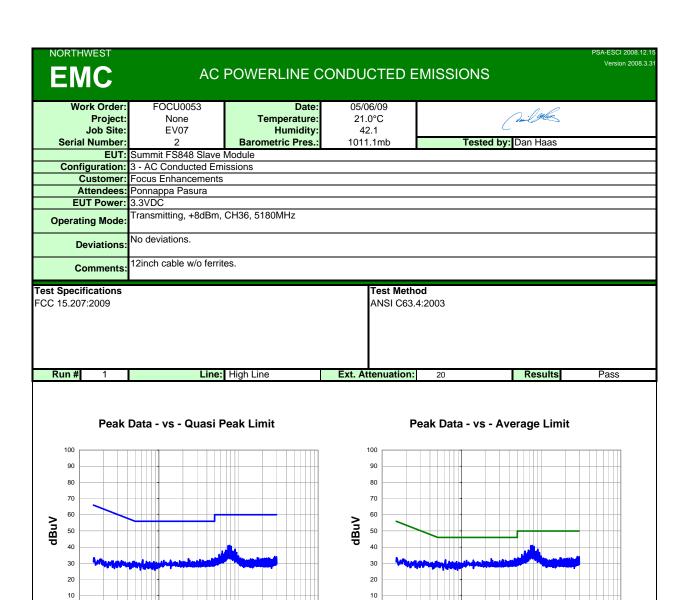
CONFIGURATIONS INVESTIGATED

FOCU0053 - 3

SAMPLE CALCULATIONS

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Receiver	Rohde & Schwarz	ESCI	ARH	8/28/2008	24 mo
Attenuator	Coaxicom	66702 2910-20	ATO	6/30/2008	13 mo
High Pass Filter	T.T.E.	7766	HFG	2/23/2009	13 mo
EV07 Cables		Conducted Cables	EVG	5/2/2008	13 mo
LISN	Solar	9252-50-R-24-BNC	LIP	2/4/2009	13 mo
LISN	Solar	9252-50-R-24-BNC	LIR	2/4/2009	13 mo


Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4-2. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50ohm measuring port is terminated by a 50ohm EMI meter or a 50ohm resistive load. All 50ohm measuring ports of the LISN are terminated by 50ohm.

Peak Data - vs	- Quasi Peak L	mit		 Р	eak Data - vs	- Average Lin	nit

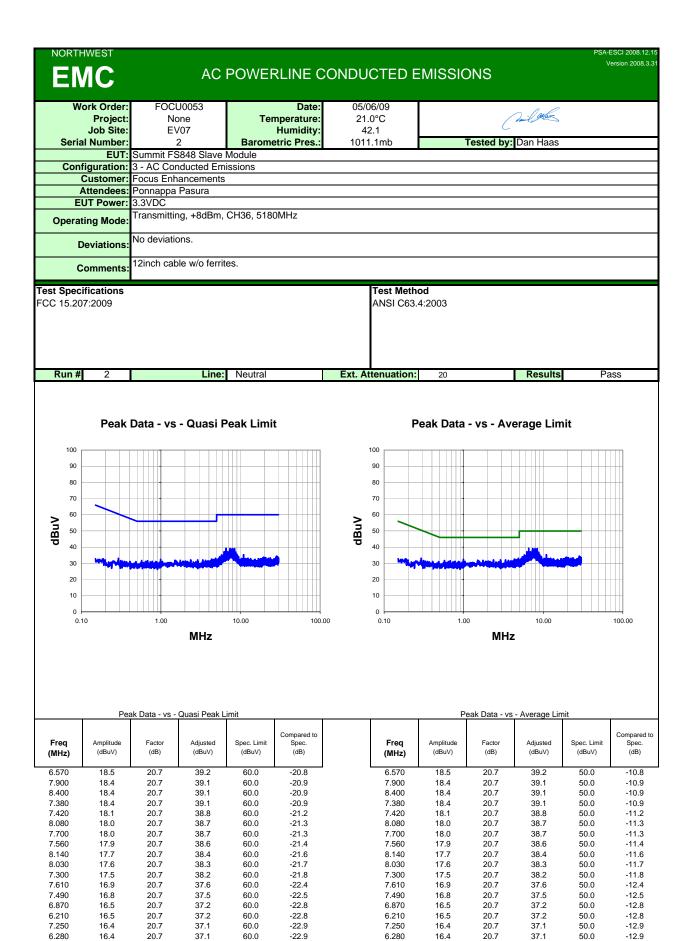
1.00

MHz

10.00

100.00

100.00


1.00

10.00

MHz

0.10

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
7.710	20.4	20.7	41.1	60.0	-18.9	7.710	20.4	20.7	41.1	50.0	-8.9
7.390	20.2	20.7	40.9	60.0	-19.1	7.390	20.2	20.7	40.9	50.0	-9.1
8.080	19.8	20.7	40.5	60.0	-19.5	8.080	19.8	20.7	40.5	50.0	-9.5
7.840	19.1	20.7	39.8	60.0	-20.2	7.840	19.1	20.7	39.8	50.0	-10.2
9.060	18.0	20.7	38.7	60.0	-21.3	9.060	18.0	20.7	38.7	50.0	-11.3
7.950	17.6	20.7	38.3	60.0	-21.7	7.950	17.6	20.7	38.3	50.0	-11.7
7.630	17.6	20.7	38.3	60.0	-21.7	7.630	17.6	20.7	38.3	50.0	-11.7
7.590	17.6	20.7	38.3	60.0	-21.7	7.590	17.6	20.7	38.3	50.0	-11.7
8.990	17.5	20.7	38.2	60.0	-21.8	8.990	17.5	20.7	38.2	50.0	-11.8
6.910	17.3	20.7	38.0	60.0	-22.0	6.910	17.3	20.7	38.0	50.0	-12.0
7.760	17.2	20.7	37.9	60.0	-22.1	7.760	17.2	20.7	37.9	50.0	-12.1
7.010	17.1	20.7	37.8	60.0	-22.2	7.010	17.1	20.7	37.8	50.0	-12.2
6.890	17.1	20.7	37.8	60.0	-22.2	6.890	17.1	20.7	37.8	50.0	-12.2
7.520	16.9	20.7	37.6	60.0	-22.4	7.520	16.9	20.7	37.6	50.0	-12.4
6.250	16.8	20.7	37.5	60.0	-22.5	6.250	16.8	20.7	37.5	50.0	-12.5
8.840	16.6	20.7	37.3	60.0	-22.7	8.840	16.6	20.7	37.3	50.0	-12.7
8.260	16.6	20.7	37.3	60.0	-22.7	8.260	16.6	20.7	37.3	50.0	-12.7
8.480	16.5	20.7	37.2	60.0	-22.8	8.480	16.5	20.7	37.2	50.0	-12.8
8.670	16.5	20.7	37.2	60.0	-22.8	8.670	16.5	20.7	37.2	50.0	-12.8
7.210	16.5	20.7	37.2	60.0	-22.8	7.210	16.5	20.7	37.2	50.0	-12.8

8.680

6.660

12.4

16.2

16.0

20.6

20.7

20.7

33.0

36.9

36.7

56.0

60.0

60.0

-23.0

-23.1

-23.3

4.864

8.680

6.660

12.4

16.2

16.0

20.6

20.7

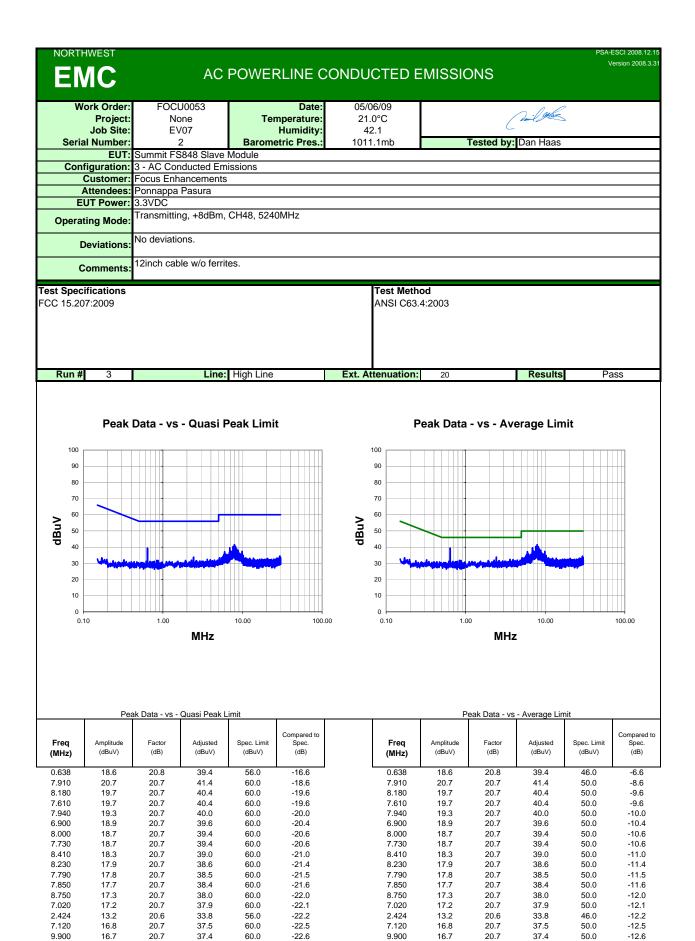
20.7

33.0

36.9

36.7

46.0


50.0

50.0

-13.0

-13.1

-13.3

7.540

7.330

16.7

16.5

16.5

20.7

20.7

20.7

37.4

37.2

37.2

60.0

60.0

60.0

-22.6

-22.8

-22.8

7.500

7.540

7.330

16.7

16.5

16.5

20.7

20.7

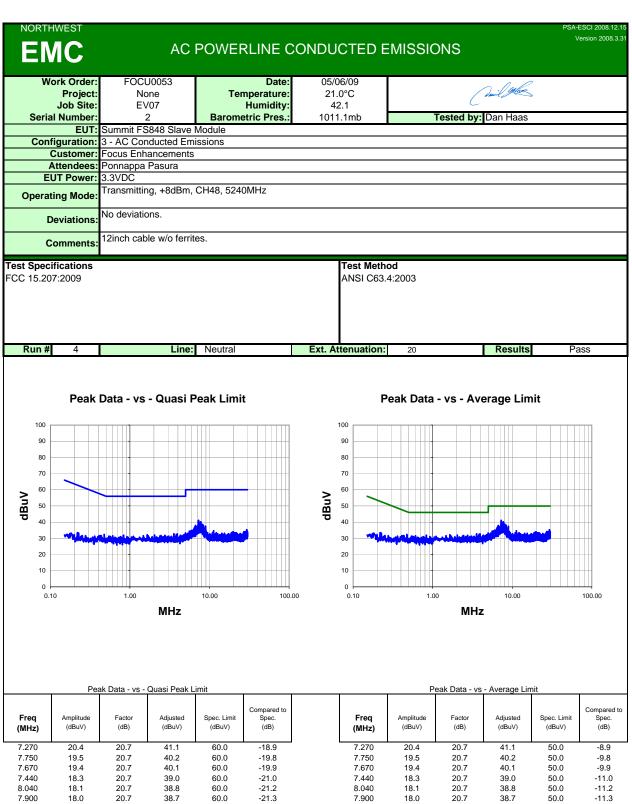
20.7

37.4

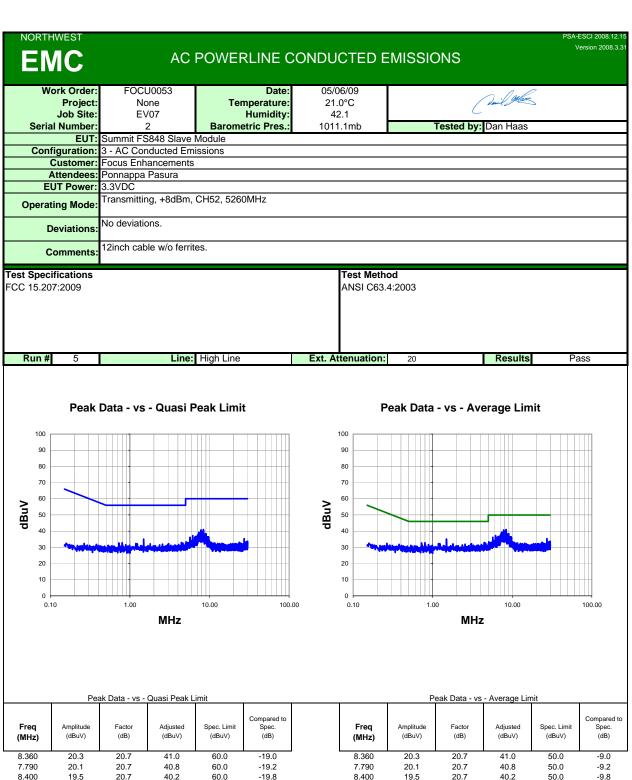
37.2

37.2

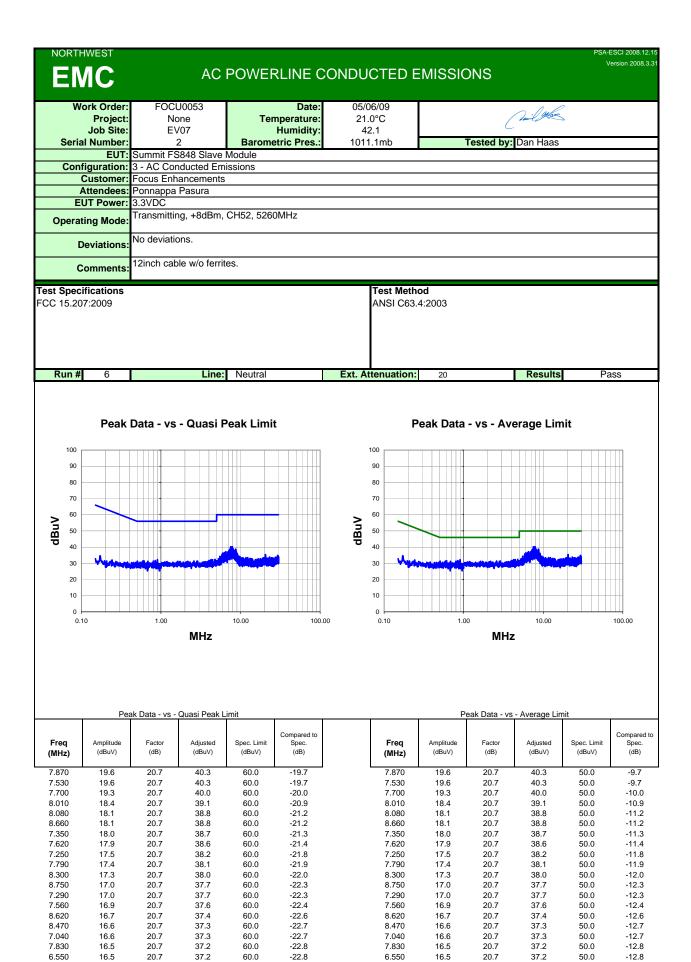
50.0


50.0

50.0


-12.6

-12.8


-12.8

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
7.270	20.4	20.7	41.1	60.0	-18.9	7.270	20.4	20.7	41.1	50.0	-8.9
7.750	19.5	20.7	40.2	60.0	-19.8	7.750	19.5	20.7	40.2	50.0	-9.8
7.670	19.4	20.7	40.1	60.0	-19.9	7.670	19.4	20.7	40.1	50.0	-9.9
7.440	18.3	20.7	39.0	60.0	-21.0	7.440	18.3	20.7	39.0	50.0	-11.0
8.040	18.1	20.7	38.8	60.0	-21.2	8.040	18.1	20.7	38.8	50.0	-11.2
7.900	18.0	20.7	38.7	60.0	-21.3	7.900	18.0	20.7	38.7	50.0	-11.3
7.630	18.0	20.7	38.7	60.0	-21.3	7.630	18.0	20.7	38.7	50.0	-11.3
7.610	18.0	20.7	38.7	60.0	-21.3	7.610	18.0	20.7	38.7	50.0	-11.3
7.820	17.6	20.7	38.3	60.0	-21.7	7.820	17.6	20.7	38.3	50.0	-11.7
7.300	17.6	20.7	38.3	60.0	-21.7	7.300	17.6	20.7	38.3	50.0	-11.7
8.350	17.5	20.7	38.2	60.0	-21.8	8.350	17.5	20.7	38.2	50.0	-11.8
7.530	17.5	20.7	38.2	60.0	-21.8	7.530	17.5	20.7	38.2	50.0	-11.8
7.390	17.4	20.7	38.1	60.0	-21.9	7.390	17.4	20.7	38.1	50.0	-11.9
7.150	17.3	20.7	38.0	60.0	-22.0	7.150	17.3	20.7	38.0	50.0	-12.0
6.650	17.3	20.7	38.0	60.0	-22.0	6.650	17.3	20.7	38.0	50.0	-12.0
8.910	16.8	20.7	37.5	60.0	-22.5	8.910	16.8	20.7	37.5	50.0	-12.5
4.968	12.7	20.7	33.4	56.0	-22.6	4.968	12.7	20.7	33.4	46.0	-12.6
6.960	16.5	20.7	37.2	60.0	-22.8	6.960	16.5	20.7	37.2	50.0	-12.8
6.540	16.3	20.7	37.0	60.0	-23.0	6.540	16.3	20.7	37.0	50.0	-13.0
3.560	12.2	20.6	32.8	56.0	-23.2	3.560	12.2	20.6	32.8	46.0	-13.2

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
8.360	20.3	20.7	41.0	60.0	-19.0	8.360	20.3	20.7	41.0	50.0	-9.0
7.790	20.1	20.7	40.8	60.0	-19.2	7.790	20.1	20.7	40.8	50.0	-9.2
8.400	19.5	20.7	40.2	60.0	-19.8	8.400	19.5	20.7	40.2	50.0	-9.8
7.890	19.4	20.7	40.1	60.0	-19.9	7.890	19.4	20.7	40.1	50.0	-9.9
8.020	19.1	20.7	39.8	60.0	-20.2	8.020	19.1	20.7	39.8	50.0	-10.2
7.360	18.6	20.7	39.3	60.0	-20.7	7.360	18.6	20.7	39.3	50.0	-10.7
7.710	18.5	20.7	39.2	60.0	-20.8	7.710	18.5	20.7	39.2	50.0	-10.8
1.488	14.5	20.6	35.1	56.0	-20.9	1.488	14.5	20.6	35.1	46.0	-10.9
7.820	18.0	20.7	38.7	60.0	-21.3	7.820	18.0	20.7	38.7	50.0	-11.3
9.030	17.7	20.7	38.4	60.0	-21.6	9.030	17.7	20.7	38.4	50.0	-11.6
8.810	17.7	20.7	38.4	60.0	-21.6	8.810	17.7	20.7	38.4	50.0	-11.6
8.430	17.7	20.7	38.4	60.0	-21.6	8.430	17.7	20.7	38.4	50.0	-11.6
8.230	17.4	20.7	38.1	60.0	-21.9	8.230	17.4	20.7	38.1	50.0	-11.9
7.620	17.4	20.7	38.1	60.0	-21.9	7.620	17.4	20.7	38.1	50.0	-11.9
7.430	17.4	20.7	38.1	60.0	-21.9	7.430	17.4	20.7	38.1	50.0	-11.9
7.210	17.3	20.7	38.0	60.0	-22.0	7.210	17.3	20.7	38.0	50.0	-12.0
7.160	17.0	20.7	37.7	60.0	-22.3	7.160	17.0	20.7	37.7	50.0	-12.3
7.320	16.9	20.7	37.6	60.0	-22.4	7.320	16.9	20.7	37.6	50.0	-12.4
7.070	16.8	20.7	37.5	60.0	-22.5	7.070	16.8	20.7	37.5	50.0	-12.5
8.490	16.6	20.7	37.3	60.0	-22.7	8.490	16.6	20.7	37.3	50.0	-12.7

16.4

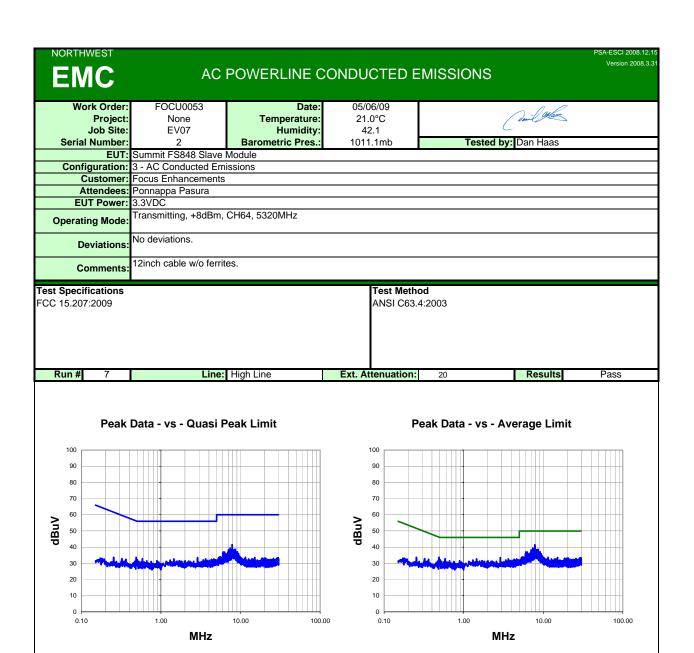
20.7

37.1

60.0

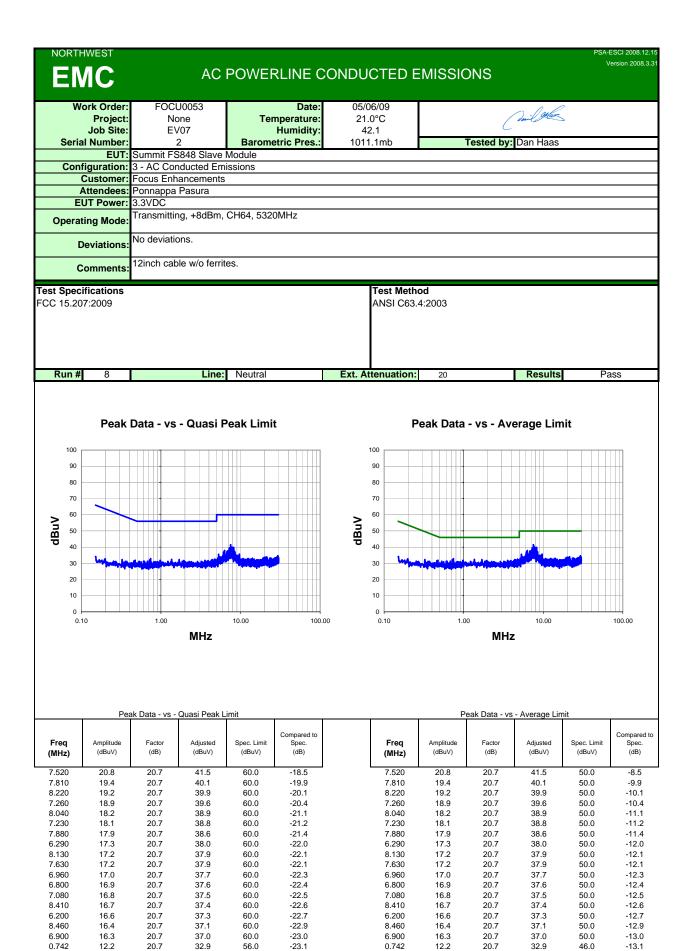
-22.9

6.940


16.4

20.7

37.1


50.0

-12.9

Peak Data - vs - Quasi Peak Limit Peak Data - vs - Average Limit

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
7.850	20.8	20.7	41.5	60.0	-18.5	7.850	20.8	20.7	41.5	50.0	-8.5
7.420	18.8	20.7	39.5	60.0	-20.5	7.420	18.8	20.7	39.5	50.0	-10.5
8.610	18.0	20.7	38.7	60.0	-21.3	8.610	18.0	20.7	38.7	50.0	-11.3
8.380	17.8	20.7	38.5	60.0	-21.5	8.380	17.8	20.7	38.5	50.0	-11.5
7.720	17.6	20.7	38.3	60.0	-21.7	7.720	17.6	20.7	38.3	50.0	-11.7
8.250	17.6	20.7	38.3	60.0	-21.7	8.250	17.6	20.7	38.3	50.0	-11.7
7.050	17.6	20.7	38.3	60.0	-21.7	7.050	17.6	20.7	38.3	50.0	-11.7
7.630	17.3	20.7	38.0	60.0	-22.0	7.630	17.3	20.7	38.0	50.0	-12.0
8.050	17.1	20.7	37.8	60.0	-22.2	8.050	17.1	20.7	37.8	50.0	-12.2
2.880	12.9	20.6	33.5	56.0	-22.5	2.880	12.9	20.6	33.5	46.0	-12.5
0.487	12.8	20.9	33.7	56.2	-22.5	0.487	12.8	20.9	33.7	46.2	-12.5
7.930	16.6	20.7	37.3	60.0	-22.7	7.930	16.6	20.7	37.3	50.0	-12.7
9.110	16.5	20.7	37.2	60.0	-22.8	9.110	16.5	20.7	37.2	50.0	-12.8
6.040	16.4	20.7	37.1	60.0	-22.9	6.040	16.4	20.7	37.1	50.0	-12.9
6.290	16.3	20.7	37.0	60.0	-23.0	6.290	16.3	20.7	37.0	50.0	-13.0
8.860	16.2	20.7	36.9	60.0	-23.1	8.860	16.2	20.7	36.9	50.0	-13.1
7.310	16.2	20.7	36.9	60.0	-23.1	7.310	16.2	20.7	36.9	50.0	-13.1
0.584	12.0	20.8	32.8	56.0	-23.2	0.584	12.0	20.8	32.8	46.0	-13.2
1.456	12.2	20.6	32.8	56.0	-23.2	1.456	12.2	20.6	32.8	46.0	-13.2
6.900	16.1	20.7	36.8	60.0	-23.2	6.900	16.1	20.7	36.8	50.0	-13.2

4.760

16.2

12.0

20.7

20.6

36.9

32.6

60.0

56.0

-23.1

-23.4

8.340

4.760

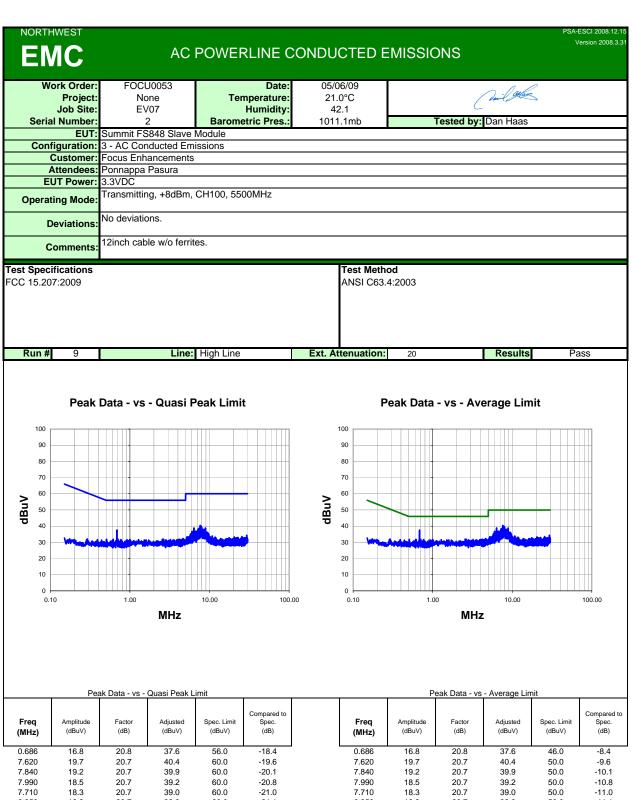
16.2

12.0

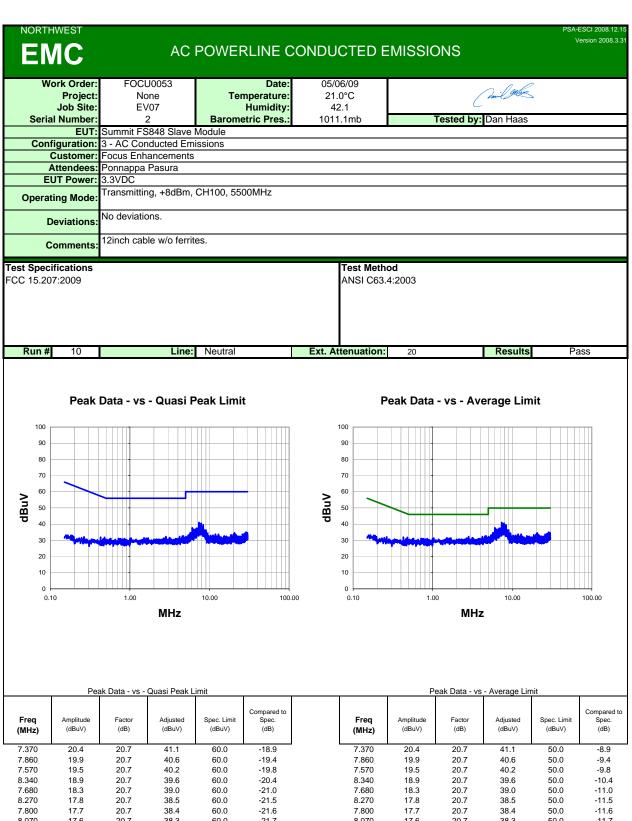
20.7

20.6

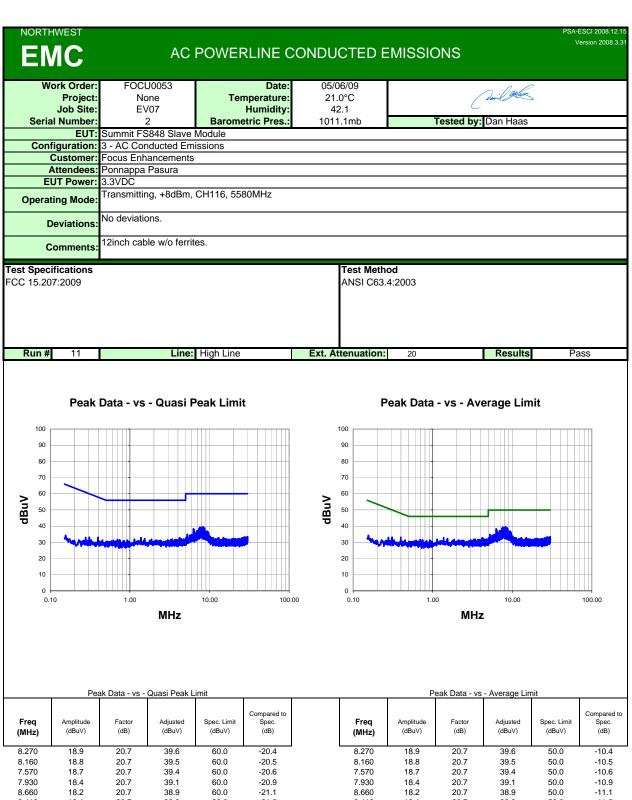
36.9

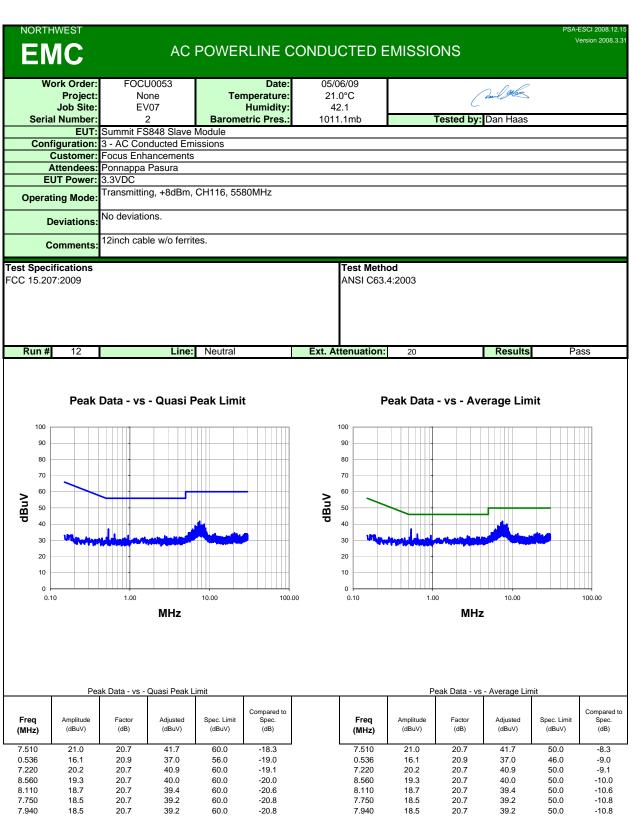

32.6

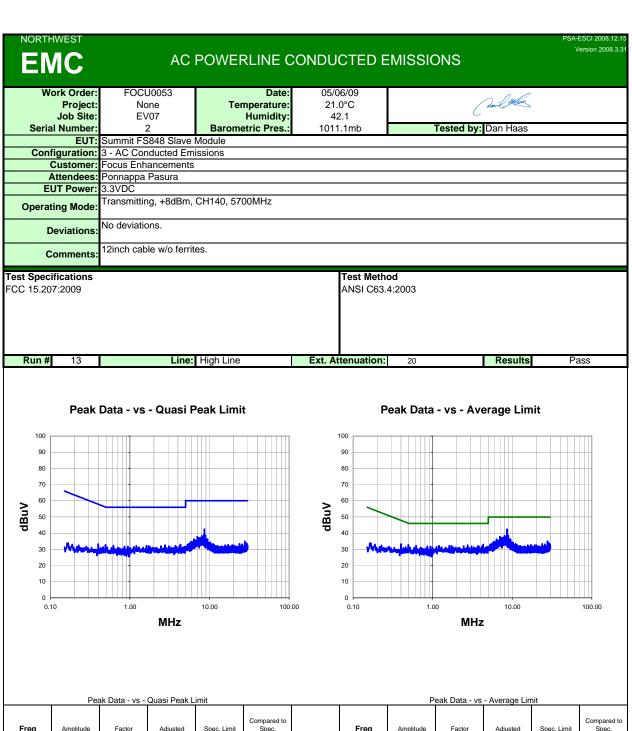
50.0

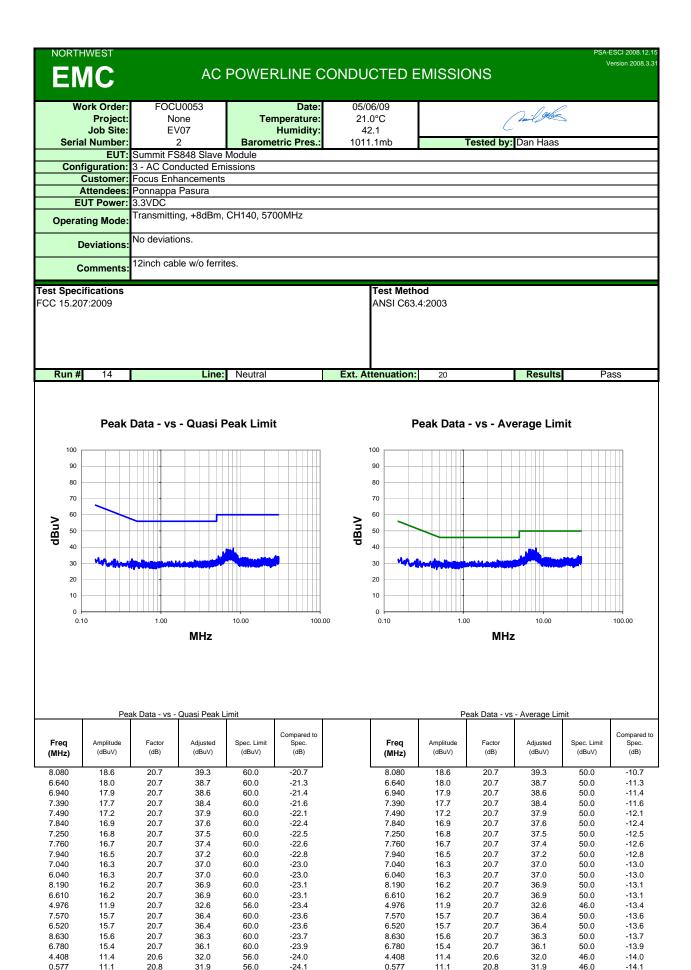

46.0

-13.1


-13.4


Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.686	16.8	20.8	37.6	56.0	-18.4	ij	0.686	16.8	20.8	37.6	46.0	-8.4
7.620	19.7	20.7	40.4	60.0	-19.6		7.620	19.7	20.7	40.4	50.0	-9.6
7.840	19.2	20.7	39.9	60.0	-20.1		7.840	19.2	20.7	39.9	50.0	-10.1
7.990	18.5	20.7	39.2	60.0	-20.8		7.990	18.5	20.7	39.2	50.0	-10.8
7.710	18.3	20.7	39.0	60.0	-21.0		7.710	18.3	20.7	39.0	50.0	-11.0
6.350	18.2	20.7	38.9	60.0	-21.1		6.350	18.2	20.7	38.9	50.0	-11.1
8.890	18.1	20.7	38.8	60.0	-21.2		8.890	18.1	20.7	38.8	50.0	-11.2
7.360	17.9	20.7	38.6	60.0	-21.4		7.360	17.9	20.7	38.6	50.0	-11.4
7.440	17.6	20.7	38.3	60.0	-21.7		7.440	17.6	20.7	38.3	50.0	-11.7
7.290	17.5	20.7	38.2	60.0	-21.8		7.290	17.5	20.7	38.2	50.0	-11.8
7.190	17.4	20.7	38.1	60.0	-21.9		7.190	17.4	20.7	38.1	50.0	-11.9
8.090	17.3	20.7	38.0	60.0	-22.0		8.090	17.3	20.7	38.0	50.0	-12.0
8.250	17.2	20.7	37.9	60.0	-22.1		8.250	17.2	20.7	37.9	50.0	-12.1
8.520	17.2	20.7	37.9	60.0	-22.1		8.520	17.2	20.7	37.9	50.0	-12.1
8.420	17.0	20.7	37.7	60.0	-22.3		8.420	17.0	20.7	37.7	50.0	-12.3
8.580	17.0	20.7	37.7	60.0	-22.3		8.580	17.0	20.7	37.7	50.0	-12.3
7.560	16.9	20.7	37.6	60.0	-22.4		7.560	16.9	20.7	37.6	50.0	-12.4
6.290	16.5	20.7	37.2	60.0	-22.8		6.290	16.5	20.7	37.2	50.0	-12.8
8.770	16.2	20.7	36.9	60.0	-23.1		8.770	16.2	20.7	36.9	50.0	-13.1
6.650	16.2	20.7	36.9	60.0	-23.1		6.650	16.2	20.7	36.9	50.0	-13.1


Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		req (Hz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
, ,						,						
7.370	20.4	20.7	41.1	60.0	-18.9		370	20.4	20.7	41.1	50.0	-8.9
7.860	19.9	20.7	40.6	60.0	-19.4	7.	860	19.9	20.7	40.6	50.0	-9.4
7.570	19.5	20.7	40.2	60.0	-19.8	7.	570	19.5	20.7	40.2	50.0	-9.8
8.340	18.9	20.7	39.6	60.0	-20.4	8.	340	18.9	20.7	39.6	50.0	-10.4
7.680	18.3	20.7	39.0	60.0	-21.0		086	18.3	20.7	39.0	50.0	-11.0
8.270	17.8	20.7	38.5	60.0	-21.5	8.	270	17.8	20.7	38.5	50.0	-11.5
7.800	17.7	20.7	38.4	60.0	-21.6	7.	800	17.7	20.7	38.4	50.0	-11.6
8.070	17.6	20.7	38.3	60.0	-21.7	8.	070	17.6	20.7	38.3	50.0	-11.7
7.490	17.2	20.7	37.9	60.0	-22.1		490	17.2	20.7	37.9	50.0	-12.1
6.060	17.1	20.7	37.8	60.0	-22.2	6.	060	17.1	20.7	37.8	50.0	-12.2
7.100	16.8	20.7	37.5	60.0	-22.5	7.	100	16.8	20.7	37.5	50.0	-12.5
6.860	16.8	20.7	37.5	60.0	-22.5	6.	860	16.8	20.7	37.5	50.0	-12.5
7.890	16.5	20.7	37.2	60.0	-22.8	7.	890	16.5	20.7	37.2	50.0	-12.8
7.080	16.4	20.7	37.1	60.0	-22.9	7.	080	16.4	20.7	37.1	50.0	-12.9
6.170	16.3	20.7	37.0	60.0	-23.0	6.	170	16.3	20.7	37.0	50.0	-13.0
6.900	16.2	20.7	36.9	60.0	-23.1	6.	900	16.2	20.7	36.9	50.0	-13.1
6.270	16.2	20.7	36.9	60.0	-23.1	6.	270	16.2	20.7	36.9	50.0	-13.1
6.590	16.1	20.7	36.8	60.0	-23.2	6.	590	16.1	20.7	36.8	50.0	-13.2
4.680	12.1	20.6	32.7	56.0	-23.3	4.	680	12.1	20.6	32.7	46.0	-13.3
7.260	16.0	20.7	36.7	60.0	-23.3	7.	260	16.0	20.7	36.7	50.0	-13.3


Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
8.270	18.9	20.7	39.6	60.0	-20.4	•	8.270	18.9	20.7	39.6	50.0	-10.4
8.160	18.8	20.7	39.5	60.0	-20.5		8.160	18.8	20.7	39.5	50.0	-10.5
7.570	18.7	20.7	39.4	60.0	-20.6		7.570	18.7	20.7	39.4	50.0	-10.6
7.930	18.4	20.7	39.1	60.0	-20.9		7.930	18.4	20.7	39.1	50.0	-10.9
8.660	18.2	20.7	38.9	60.0	-21.1		8.660	18.2	20.7	38.9	50.0	-11.1
8.410	18.1	20.7	38.8	60.0	-21.2		8.410	18.1	20.7	38.8	50.0	-11.2
7.550	18.1	20.7	38.8	60.0	-21.2		7.550	18.1	20.7	38.8	50.0	-11.2
7.960	18.0	20.7	38.7	60.0	-21.3		7.960	18.0	20.7	38.7	50.0	-11.3
7.890	17.8	20.7	38.5	60.0	-21.5		7.890	17.8	20.7	38.5	50.0	-11.5
8.210	17.8	20.7	38.5	60.0	-21.5		8.210	17.8	20.7	38.5	50.0	-11.5
7.370	17.8	20.7	38.5	60.0	-21.5		7.370	17.8	20.7	38.5	50.0	-11.5
6.280	17.7	20.7	38.4	60.0	-21.6		6.280	17.7	20.7	38.4	50.0	-11.6
8.690	17.6	20.7	38.3	60.0	-21.7		8.690	17.6	20.7	38.3	50.0	-11.7
6.380	17.1	20.7	37.8	60.0	-22.2		6.380	17.1	20.7	37.8	50.0	-12.2
7.830	17.0	20.7	37.7	60.0	-22.3		7.830	17.0	20.7	37.7	50.0	-12.3
7.710	16.9	20.7	37.6	60.0	-22.4		7.710	16.9	20.7	37.6	50.0	-12.4
7.290	16.5	20.7	37.2	60.0	-22.8		7.290	16.5	20.7	37.2	50.0	-12.8
8.470	16.4	20.7	37.1	60.0	-22.9		8.470	16.4	20.7	37.1	50.0	-12.9
7.160	16.4	20.7	37.1	60.0	-22.9		7.160	16.4	20.7	37.1	50.0	-12.9
6.980	16.3	20.7	37.0	60.0	-23.0		6.980	16.3	20.7	37.0	50.0	-13.0

	req IHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		req IHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
7.	510	21.0	20.7	41.7	60.0	-18.3	7.	510	21.0	20.7	41.7	50.0	-8.3
0.	536	16.1	20.9	37.0	56.0	-19.0	0.	536	16.1	20.9	37.0	46.0	-9.0
7.	220	20.2	20.7	40.9	60.0	-19.1	7.	220	20.2	20.7	40.9	50.0	-9.1
8.	560	19.3	20.7	40.0	60.0	-20.0	8.	560	19.3	20.7	40.0	50.0	-10.0
8.	110	18.7	20.7	39.4	60.0	-20.6	8.	110	18.7	20.7	39.4	50.0	-10.6
7.	750	18.5	20.7	39.2	60.0	-20.8	7.	750	18.5	20.7	39.2	50.0	-10.8
7.	940	18.5	20.7	39.2	60.0	-20.8	7.	940	18.5	20.7	39.2	50.0	-10.8
6.	590	18.3	20.7	39.0	60.0	-21.0		590	18.3	20.7	39.0	50.0	-11.0
	200	18.2	20.7	38.9	60.0	-21.1		200	18.2	20.7	38.9	50.0	-11.1
	180	18.1	20.7	38.8	60.0	-21.2		180	18.1	20.7	38.8	50.0	-11.2
6.	780	17.7	20.7	38.4	60.0	-21.6	6.	780	17.7	20.7	38.4	50.0	-11.6
7.	260	17.6	20.7	38.3	60.0	-21.7		260	17.6	20.7	38.3	50.0	-11.7
6.	940	17.6	20.7	38.3	60.0	-21.7		940	17.6	20.7	38.3	50.0	-11.7
	850	17.4	20.7	38.1	60.0	-21.9		850	17.4	20.7	38.1	50.0	-11.9
0.	641	13.0	20.8	33.8	56.0	-22.2	0.	641	13.0	20.8	33.8	46.0	-12.2
7.	780	17.1	20.7	37.8	60.0	-22.2	7.	780	17.1	20.7	37.8	50.0	-12.2
7.	350	17.1	20.7	37.8	60.0	-22.2		350	17.1	20.7	37.8	50.0	-12.2
8.	870	16.8	20.7	37.5	60.0	-22.5	8.	870	16.8	20.7	37.5	50.0	-12.5
7.	160	16.6	20.7	37.3	60.0	-22.7	7.	160	16.6	20.7	37.3	50.0	-12.7
0.	949	12.3	20.6	32.9	56.0	-23.1	0.	949	12.3	20.6	32.9	46.0	-13.1

	reak Data - vs - Quasi reak Elitik								car Data - vs	7 trorage zin		
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
8.590	21.7	20.7	42.4	60.0	-17.6		8.590	21.7	20.7	42.4	50.0	-7.6
8.520	18.4	20.7	39.1	60.0	-20.9		8.520	18.4	20.7	39.1	50.0	-10.9
8.860	18.0	20.7	38.7	60.0	-21.3		8.860	18.0	20.7	38.7	50.0	-11.3
8.940	17.7	20.7	38.4	60.0	-21.6		8.940	17.7	20.7	38.4	50.0	-11.6
7.990	17.6	20.7	38.3	60.0	-21.7		7.990	17.6	20.7	38.3	50.0	-11.7
8.740	17.5	20.7	38.2	60.0	-21.8		8.740	17.5	20.7	38.2	50.0	-11.8
7.010	17.1	20.7	37.8	60.0	-22.2		7.010	17.1	20.7	37.8	50.0	-12.2
8.090	17.0	20.7	37.7	60.0	-22.3		8.090	17.0	20.7	37.7	50.0	-12.3
8.130	16.7	20.7	37.4	60.0	-22.6		8.130	16.7	20.7	37.4	50.0	-12.6
8.550	16.7	20.7	37.4	60.0	-22.6		8.550	16.7	20.7	37.4	50.0	-12.6
8.040	16.5	20.7	37.2	60.0	-22.8		8.040	16.5	20.7	37.2	50.0	-12.8
7.650	16.5	20.7	37.2	60.0	-22.8		7.650	16.5	20.7	37.2	50.0	-12.8
7.310	16.3	20.7	37.0	60.0	-23.0		7.310	16.3	20.7	37.0	50.0	-13.0
7.270	16.3	20.7	37.0	60.0	-23.0		7.270	16.3	20.7	37.0	50.0	-13.0
4.312	12.3	20.6	32.9	56.0	-23.1		4.312	12.3	20.6	32.9	46.0	-13.1
7.830	16.1	20.7	36.8	60.0	-23.2		7.830	16.1	20.7	36.8	50.0	-13.2
0.493	12.0	20.9	32.9	56.1	-23.2		0.493	12.0	20.9	32.9	46.1	-13.2
8.220	16.0	20.7	36.7	60.0	-23.3		8.220	16.0	20.7	36.7	50.0	-13.3
2.752	12.0	20.6	32.6	56.0	-23.4		2.752	12.0	20.6	32.6	46.0	-13.4
7.130	15.9	20.7	36.6	60.0	-23.4		7.130	15.9	20.7	36.6	50.0	-13.4

AC Powerline Conducted Emissions

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4407B	AAU	12/12/2008	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	6/27/2008	13
Power Meter	Gigatronics	8651A	SPM	12/10/2008	13
Power Sensor	Gigatronics	80701A	SPL	12/10/2008	13
Signal Generator	Agilent	E8257D	TGX	12/10/2008	13

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4-2. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

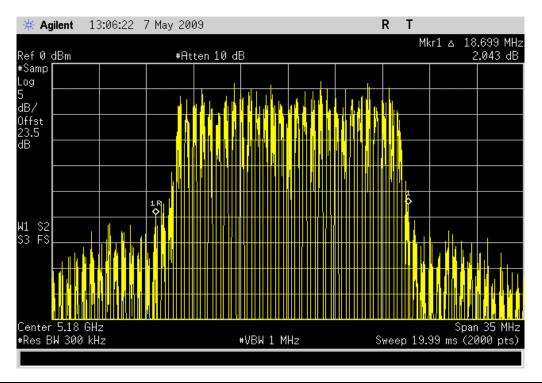
TEST DESCRIPTION

FCC Public Notice DA 02-2138 was followed. The transmit frequency was set to the lowest, a medium, and the highest channels in each band. The transmit power was set to its default maximum. The lowest, a medium, and the highest data rates were measured if available. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input.

The spectrum analyzer settings were as follows:

- > Span = approximately 1.5 to 2 times the emission bandwidth, centered on the transmit channel.
- > RBW = Approx. 1% of the emission bandwidth (B). This was an iterative process where an exact match of 1% may not be achieved. The largest value of RBW that came close to 1% of the emission bandwidth was used.
- A peak detector was used.

The marker-delta function was then used to measure 26 dB emission bandwidth

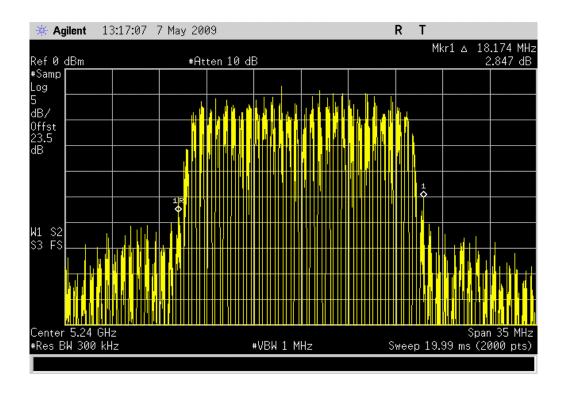

NORTHWEST		EMIC	CION DA	MDV	MIDTH		XMit 2008.12.
EMC		EMIS	SION BA	MDV	MIDIH		
EUT	: Summit FS848 Slave Mo	dule				Work Order:	FOCU0053
Serial Number	: 30					Date	05/07/09
Customer	: Focus Enhancements					Temperature	
	: Ponnappa Pasura					Humidity	
Project						Barometric Pres.:	
	: Rod Peloquin			Power:	3.3 VDC	Job Site:	EV06
TEST SPECIFICAT	TIONS				Test Method		
FCC 15.407:2009					ANSI C63.4:2003 DA 02-2	2138:2002	
COMMENTS							
None							
	M TEST STANDARD						
No Deviations							
			Rochy la Fr	el.			
Configuration #	1	0: 1	0				
		Signature					
					Va	ılue Li	imit Results
6 Mbps							
	5150 - 5250 MHz Band						
	Channel 36,	Low Channel			18.69	9 MHz N	V/A N/A
		High Channel			18.17	4 MHz N	I/A N/A
	5250 - 5350 MHz Band						
	Channel 52,	Low Channel			18.24	4 MHz	I/A N/A
		High Channel			18.33	2 MHz N	N/A N/A
	5470 - 5725 MHz Band						
	Channel 100	, Low Channel			18.22	7 MHz	I/A N/A
		, Mid Channel			18.69		N/A N/A
	Channel 140	, High Channel			18.19	2 MHz N	V/A N/A

6 Mbps, 5150 - 5250 MHz Band, Channel 36, Low Channel

Result: N/A

Value: 18.699 MHz

Limit: N/A



6 Mbps, 5150 - 5250 MHz Band, Channel 48, High Channel

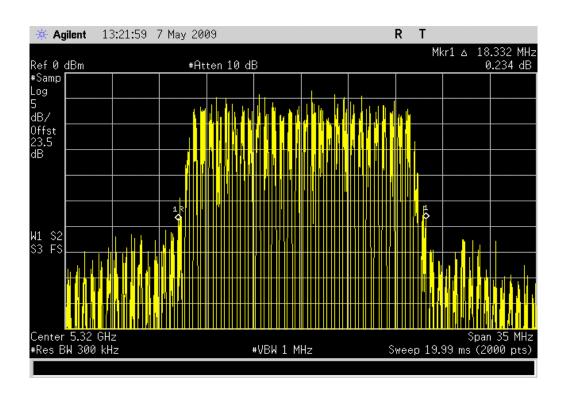
Result: N/A


Value: 18.174 MHz

Limit: N/A

6 Mbps, 5250 - 5350 MHz Band, Channel 52, Low Channel

Result: N/A Value: 18.244 MHz Limit: N/A

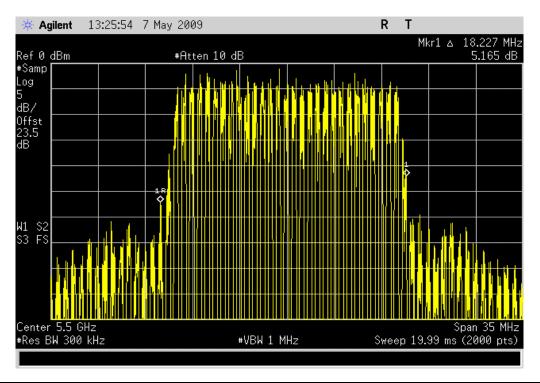


6 Mbps, 5250 - 5350 MHz Band, Channel 64, High Channel

Result: N/A

Value: 18.332 MHz

Limit: N/A

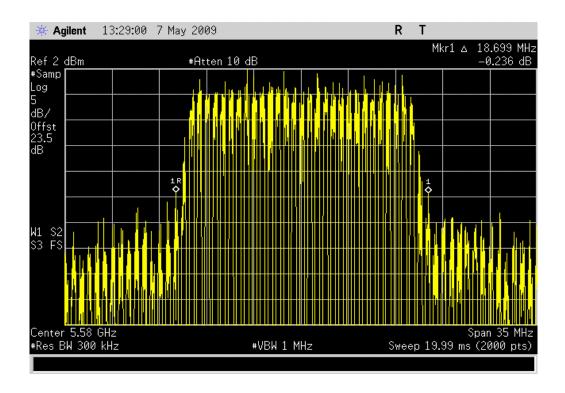


6 Mbps, 5470 - 5725 MHz Band, Channel 100, Low Channel

Result: N/A

Value: 18.227 MHz

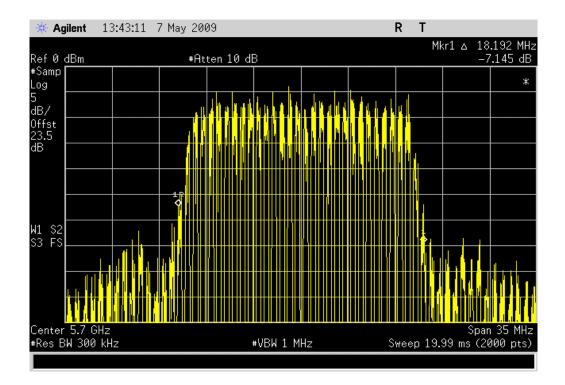
Limit: N/A



6 Mbps, 5470 - 5725 MHz Band, Channel 116, Mid Channel

Result: N/A

Value: 18.699 MHz


Limit: N/A

N/A

EMISSION BANDWIDTH

Result: N/A 6 Mbps, 5470 - 5725 MHz Band, Channel 140, High Channel Value: 18.192 MHz Limit:

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4443A	AAS	12/12/2008	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	6/27/2008	13
Power Meter	Gigatronics	8651A	SPM	12/10/2008	13
Power Sensor	Gigatronics	80701A	SPL	12/10/2008	13
Signal Generator	Agilent	E8257D	TGX	12/10/2008	13

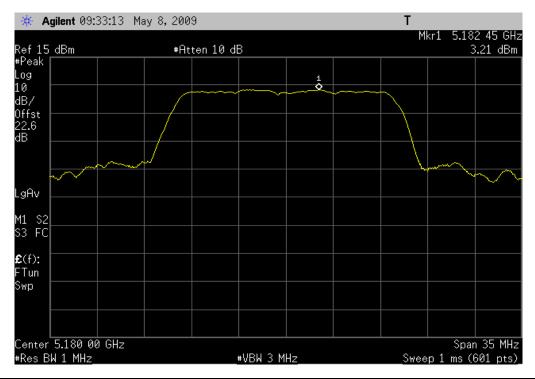
MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4-2. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

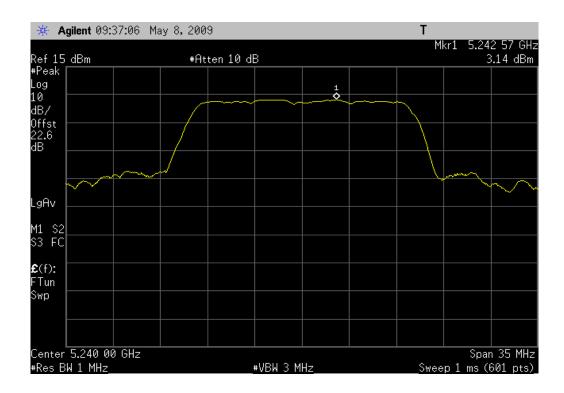
FCC Public Notice DA 02-2138 was followed. The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum. The lowest data rate was measured as it provided the highest output power. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input. The amplitude accuracy of the spectrum analyzer was further enhanced by calibrating the setup using the power meter and synthesized signal generator.

Method #1 found in FCC Public Notice DA02-2138 was used.

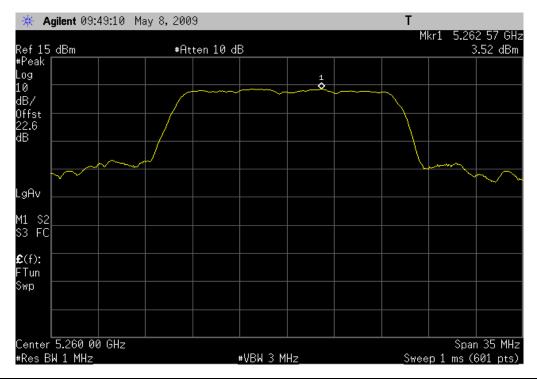

The spectrum analyzer settings were as follows:

- > The span was set to encompass entire emission bandwidth (B), centered on the transmit channel.
- RBW = 1 MHz, VBW >= 3 MHz because the emission bandwidth (B) is greater than 1 MHz
- Peak detector.

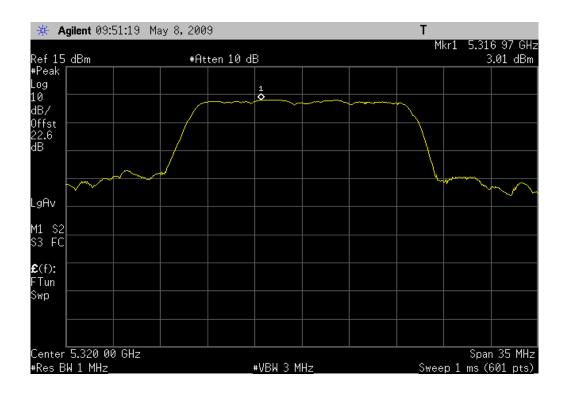
NORTHWEST		DEAK DOW	ER SPECTR	AL DENGITY		XMit 2008.12.29
EMC		PEAR POW	ER SPECIK	AL DENSII I		
EUT:	Summit FS848 Slave Mod	dule			Work Order:	FOCU0053
Serial Number:	30				Date:	05/08/09
Customer:	Focus Enhancements				Temperature:	20°C
Attendees:	Ponnappa Pasura				Humidity:	
Project:	None				Barometric Pres.:	1023.0 mb
	Rod Peloquin		Power:	3.3 VDC	Job Site:	EV06
TEST SPECIFICAT	IONS			Test Method		
FCC 15.407:2009				ANSI C63.4:2003 DA 02-2	2138:2002	
COMMENTS						
None						
DEVIATIONS FROM	M TEST STANDARD					
No Deviations						
			R.O. I P.O			
Configuration #	1		Rolly be Releng			
		Signature	- V			
				Va	lue Li	mit Results
6 Mbps	5450 5050 MIL D					
	5150 - 5250 MHz Band			2.21	10	
	Channel 36, I					dBm Pass
	Channel 48,	High Channel		3.14	dBm 4 d	dBm Pass
	5250 - 5350 MHz Band			2.50	10	
	Channel 52, I					dBm Pass
	Channel 64,	High Channel		3.01	dBm 11	dBm Pass
	5470 - 5725 MHz Band			2.00		in n
		Low Channel				dBm Pass
		, Mid Channel				dBm Pass
	Channel 140	, High Channel		3.21	dBm 11	dBm Pass


6 Mbps, 5150 - 5250 MHz Band, Channel 36, Low Channel

Result: Pass Value: 3.21 dBm Limit: 4 dBm


6 Mbps, 5150 - 5250 MHz Band, Channel 48, High Channel

Result: Pass Value: 3.14 dBm Limit: 4 dBm


6 Mbps, 5250 - 5350 MHz Band, Channel 52, Low Channel

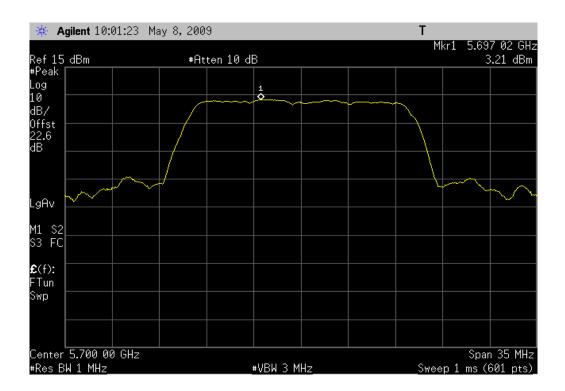
Result: Pass Value: 3.52 dBm Limit: 11 dBm

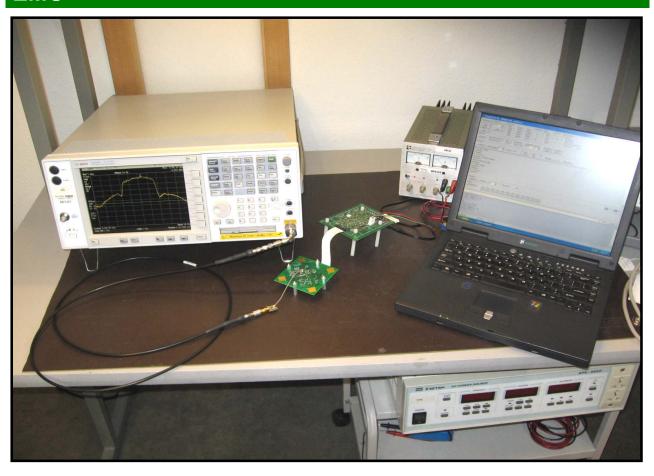

6 Mbps, 5250 - 5350 MHz Band, Channel 64, High Channel

Result: Pass Value: 3.01 dBm Limit: 11 dBm


6 Mbps, 5470 - 5725 MHz Band, Channel 100, Low Channel

Result: Pass Value: 2.96 dBm Limit: 11 dBm


6 Mbps, 5470 - 5725 MHz Band, Channel 116, Mid Channel


Result: Pass Value: 3.04 dBm Limit: 11 dBm

6 Mbps, 5470 - 5725 MHz Band, Channel 140, High Channel

Result: Pass Value: 3.21 dBm Limit: 11 dBm

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

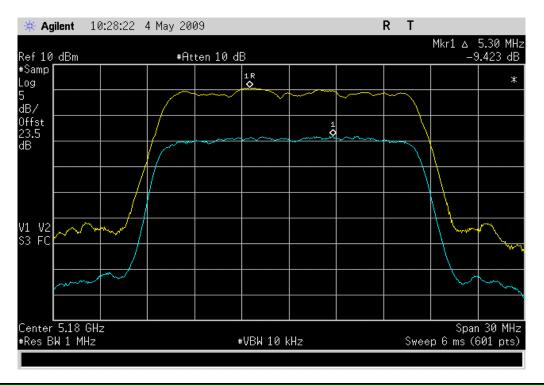
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	6/27/2008	13
Spectrum Analyzer	Agilent	E4407B	AAU	12/12/2008	13
Power Meter	Gigatronics	8651A	SPM	12/10/2008	13
Power Sensor	Gigatronics	80701A	SPL	12/10/2008	13
Signal Generator	Agilent	E8257D	TGX	12/10/2008	13

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4-2. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

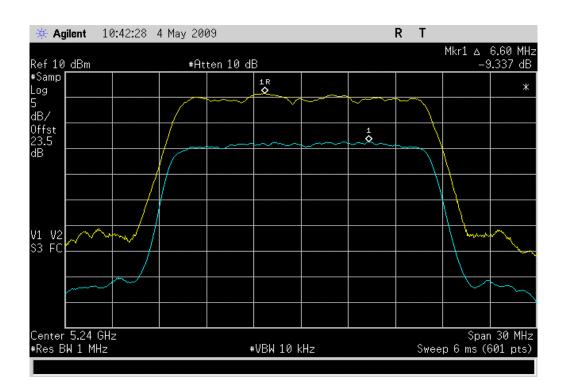
TEST DESCRIPTION

FCC Public Notice DA 02-2138 was followed. The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum. The lowest, a medium, and the highest data rates were measured. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input.

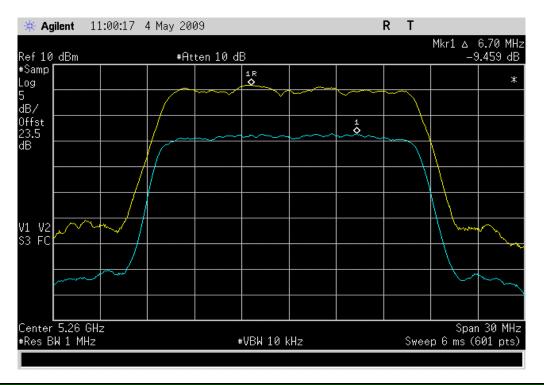

The spectrum analyzer settings were as follows:

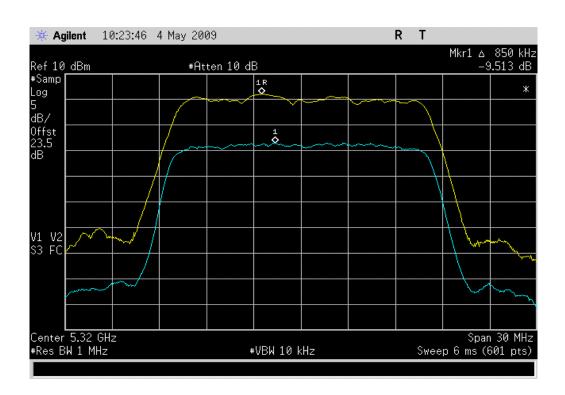
- > Span set to encompass the entire emission bandwidth (B), centered on the transmit channel.
- > Using the marker delta function, the largest difference between the following two traces was measured:
 - o 1st Trace: RBW = 1 MHz, VBW >= 3 MHz with peak detector and max-hold settings.
 - 2nd Trace: Use same settings as were used for peak conducted transmit power. The sample detector was
 used as well as the VBW being matched to that used on the peak conducted transmit power.

NORTHWEST	PFAK	EXCURSIO	N of MODUL	ATION ENVE	OPF	XMit 2008.12.29
EMC	1 =/ 111		IT OF INIODOL	ATTOR ENVE		
	Summit FS848 Slave Modu	ıle			Work Order:	
Serial Number:						04/27/09
Customer:	Focus Enhancements				Temperature:	21°C
	Ponnappa Pasura				Humidity:	
Project:					Barometric Pres.:	
	Rod Peloquin		Power:	3.3 VDC	Job Site:	EV06
TEST SPECIFICAT	ONS			Test Method		
FCC 15.407:2009				ANSI C63.4:2003 DA 02-2	138:2002	
COMMENTS						
None						
DEVIATIONS FROM	N TEST STANDARD					
No Deviations						
			00120			
Configuration #	1		Rochy le Feling			
		Signature				
				Val	uo Lii	mit Results
6 Mbps				Vai	ue Li	iiit Kesuits
	5150 - 5250 MHz Band					
	Channel 36, Lo	ow Channel		9.4 c	IRm < 13	dBm Pass
	Channel 48, H			9.4 0		dBm Pass
	5250 - 5350 MHz Band	ign onamici		0.40	_ 10	T uoo
	Channel 52, Lo	ow Channel		9.5 c	IRm < 13	dBm Pass
	Channel 64, H			9.5 c		dBm Pass
	5470 - 5725 MHz Band	ign chamici		9.5 (210	1 433
	Channel 100. I	ow Channel		9.4 c	Rm < 12	dBm Pass
	Channel 116, I			9.4 0		dBm Pass
	Channel 140, I			9.4 0		dBm Pass

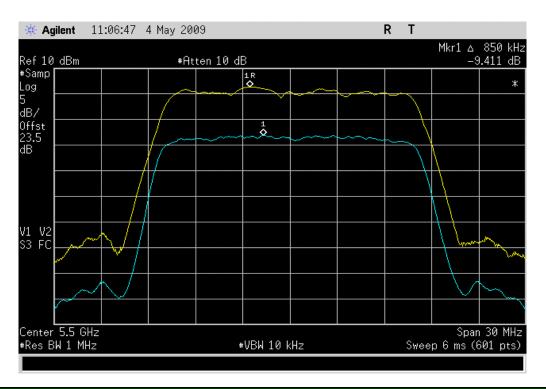

6 Mbps, 5150 - 5250 MHz Band, Channel 36, Low Channel

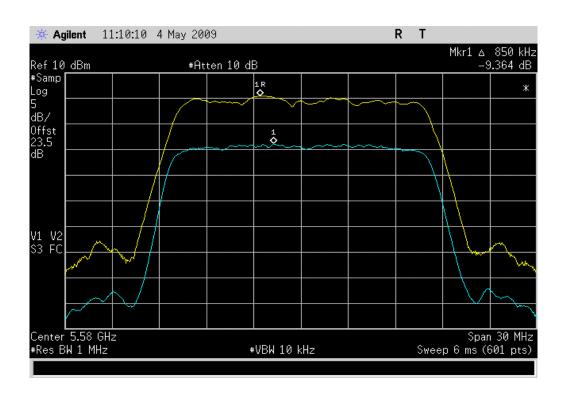
Result: Pass Value: 9.4 dBm Limit: ≤ 13 dBm


6 Mbps, 5150 - 5250 MHz Band, Channel 48, High Channel

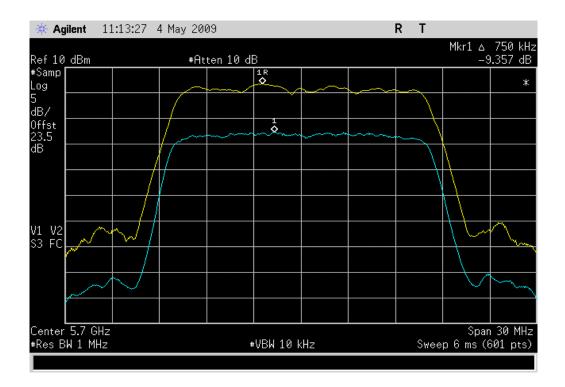

Result: Pass Value: 9.4 dBm Limit: ≤ 13 dBm

6 Mbps, 5250 - 5350 MHz Band, Channel 52, Low Channel


Result: Pass Value: 9.5 dBm Limit: ≤ 13 dBm



6 Mbps, 5470 - 5725 MHz Band, Channel 100, Low Channel


Result: Pass Value: 9.4 dBm Limit: ≤ 13 dBm

6 Mbps, 5470 - 5725 MHz Band, Channel 140, High Channel

Result: Pass Value: 9.4 dBm Limit: ≤ 13 dBm

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4407B	AAU	12/12/2008	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	6/27/2008	13
Power Meter	Gigatronics	8651A	SPM	12/10/2008	13
Power Sensor	Gigatronics	80701A	SPL	12/10/2008	13
Signal Generator	Agilent	E8257D	TGX	12/10/2008	13

MEASUREMENT UNCERTAINTY

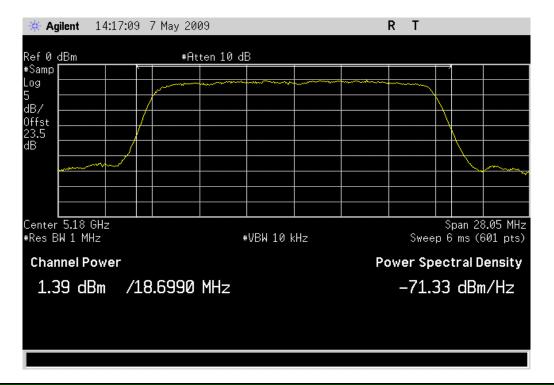
Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4-2. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

FCC Public Notice DA 02-2138 was followed. The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input. The amplitude accuracy of the spectrum analyzer was further enhanced by calibrating the setup using the power meter and synthesized signal generator.

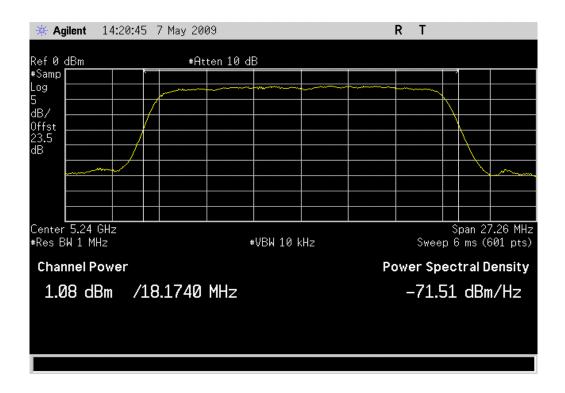
Prior to measuring peak transmit power; the emission bandwidth (B) and the transmission pulse duration (T) were measured. Both are required to determine the method of measuring Peak Transmit Power. The method of measuring the emission bandwidth and the associated data are found elsewhere in this test report. The transmission pulse duration (T) was measured using a zero span on the spectrum analyzer to see the pulses in the time domain.

Method #3 found in FCC Public Notice DA02-2138 was used because the analyzer sweep time was greater than T and the Emission Bandwidth was greater than the largest RBW on the analyzer.

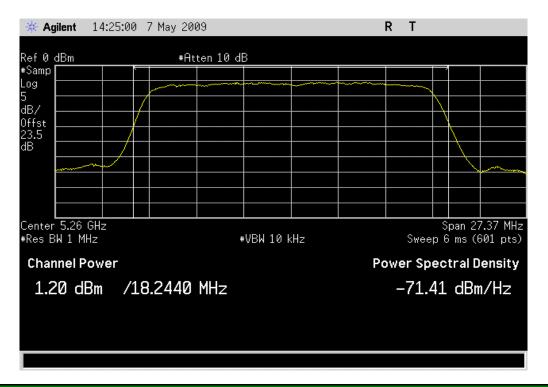

The spectrum analyzer settings were as follows:

- > The span was set to encompass entire emission bandwidth (B), centered on the transmit channel.
- ➤ The RBW = 1 MHz, VBW ? 1/T
- > Sample detector mode because the bin width (span / number of spectral points) < 0.5 RBW.
- Power was integrated across "B", by using the channel power function of the analyzer.

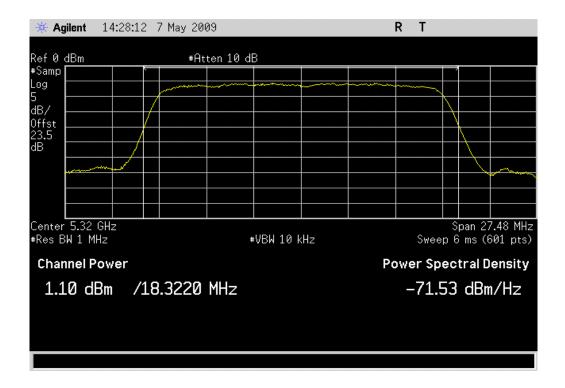
NORTHWEST		DE ALC:	ED ANIONIE I	OWED		XMit 2008.12.29
EMC		PEAK	TRANSMIT F	OWER		
_	Summit FS848 Slave Module				Work Order:	FOCU0053
Serial Number:						05/07/09
Customer:	Focus Enhancements				Temperature:	21°C
Attendees:	Ponnappa Pasura				Humidity:	39%
Project:					Barometric Pres.:	1023.9 mb
	Rod Peloquin		Power	3.3 VDC	Job Site:	EV06
TEST SPECIFICAT	IONS			Test Method		
FCC 15.407:2009				ANSI C63.4:2003 DA 02-2	138:2002	
COMMENTS						
None						
DEVIATIONS FROM	/I TEST STANDARD					
No Deviations						
			201 P.C			
Configuration #	1		Rocky be Felings			
		Signature				
				Va	ا ا	mit Results
6 Mbps				• • • • • • • • • • • • • • • • • • • •	iuc Li	THE TREBUILD
o mapo	5150 - 5250 MHz Band					
	Channel 36, Low C	hannel		1.4 (dBm 17	dBm Pass
	Channel 48, High (1.1 (dBm 17	dBm Pass
	5250 - 5350 MHz Band					
	Channel 52, Low C	hannel		1.2 (dBm 24	dBm Pass
	Channel 64, High 0	Channel		1.1 (dBm 24	dBm Pass
	5470 - 5725 MHz Band					
	Channel 100, Low	Channel		1.1 (dBm 24	dBm Pass
	Channel 116, Mid (Channel		0.9	dBm 24	dBm Pass
	Channel 140, High	Channel		1.2	dBm 24	dBm Pass


6 Mbps, 5150 - 5250 MHz Band, Channel 36, Low Channel

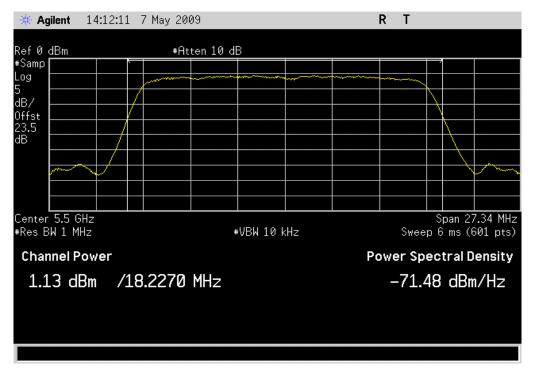
Result: Pass Value: 1.4 dBm Limit: 17 dBm


6 Mbps, 5150 - 5250 MHz Band, Channel 48, High Channel

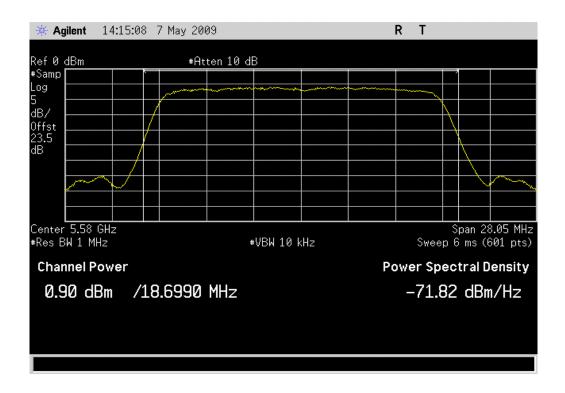
Result: Pass Value: 1.1 dBm Limit: 17 dBm


6 Mbps, 5250 - 5350 MHz Band, Channel 52, Low Channel

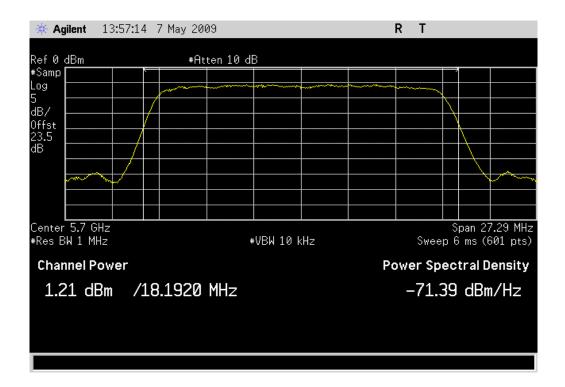
Result: Pass Value: 1.2 dBm Limit: 24 dBm


6 Mbps, 5250 - 5350 MHz Band, Channel 64, High Channel

Result: Pass Value: 1.1 dBm Limit: 24 dBm


6 Mbps, 5470 - 5725 MHz Band, Channel 100, Low Channel

Result: Pass Value: 1.1 dBm Limit: 24 dBm


6 Mbps, 5470 - 5725 MHz Band, Channel 116, Mid Channel

Result: Pass Value: 0.9 dBm Limit: 24 dBm

6 Mbps, 5470 - 5725 MHz Band, Channel 140, High Channel

Result: Pass Value: 1.2 dBm Limit: 24 dBm

FREQUENCY STABILITY

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4407B	AAU	12/12/2008	13
Multimeter	Tektronix	DMM912	MMH	12/10/2008	13
DC Power Supply	Topward	TPS-2000	TPD	NCR	0
Chamber, Temp./Humidity Chamber	Cincinnati Sub Zero (CSZ)	ZH-32-2-2-H/AC	TBA	7/23/2008	24
Chamber Temp. & Humidity Controlle	ESZ / Eurotherm	Dimension II	TBC	7/23/2008	24

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4-2. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

Variation of Supply Voltage

The primary supply voltage was varied over the range specified by the client. Per the client, the chip only works over this voltage range; it will shut off if the voltage is outside the specified range.

Variation of Ambient Temperature

Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range (-30 ° to +50° C) and at 10°C intervals.

A direct connect measurement was made between the EUT's antenna cable and a spectrum analyzer. The spectrum analyzer is equipped with a precision frequency reference that exceeds the stability requirement of the EUT. Measurements were made at the mid channel of each band to determine frequency stability. If the frequency variation is less than 100 ppm, the EUT will meet the requirement of 15.407(g), that the emissions are maintained within the band of operation.

NORTHWEST EMC		FREQUENC	Y STABILITY		XMit 2008.12.29
EUT:	Summit FS848 Slave Modu	ile		Work Order:	FOCU0053
Serial Number:					05/04/09
Customer:	Focus Enhancements			Temperature:	22°C
Attendees:	Ponnappa Pasura			Humidity:	34%
Project:				Barometric Pres.:	1016.0 mb
Tested by:	Rod Peloquin		Power: 3.3 VDC nominal	Job Site:	EV06
TEST SPECIFICATI	IONS		Test Method		
FCC 15.407:2009			ANSI C63.4:2003 DA 0	2-2138:2002	
COMMENTS					
None					
DEVIATIONS FROM	/I TEST STANDARD				
No Deviations					
Configuration #	1	Rocky le. Signature	Relug		
				Value Li	mit Results
Mid Channel 5150 -	5250 MHz Band				

Frequency Stability with Variation of DC Voltage (Ambient Temperature = 20°C)

ĺ	Voltage (VDC)	Assigned Frequency (MHz)	Measured Frequency (MHz)	Tolerance (ppm)	Specification (ppm)
ľ	3.6 (110%)	5200.000000	5200.020559	3.95	n/a
ſ	3.3 (100%)	5200.000000	5200.008707	1.67	n/a
ſ	3.0 (90%)	5200.000000	5199.999452	0.11	n/a

Frequency Stability with Variation of Ambient Temperature (Primary Supply = 3.3 VDC)

Temp	Assigned Frequency	Measured Frequency	Tolerance	Specification
(°C)	(MHz)	(MHz)	(ppm)	(ppm)
50	5200.000000	5199.997490	0.48	n/a
40	5200.000000	5200.004457	0.86	n/a
30	5200.000000	5200.017312	3.33	n/a
20	5200.000000	5200.008707	1.67	n/a
10	5200.000000	5200.046017	8.85	n/a
0	5200.000000	5200.055230	10.62	n/a
-10	5200.000000	5200.061380	11.80	n/a
-20	5200.000000	5200.059040	11.35	n/a
-30	5200.000000	5200.043387	8.34	n/a

Mid Channel 5250 - 5350 MHz Band

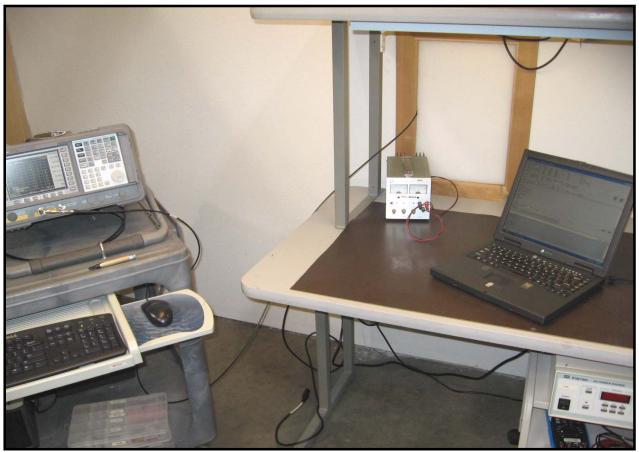
Frequency Stability with Variation of DC Voltage (Ambient Temperature = 20°C)

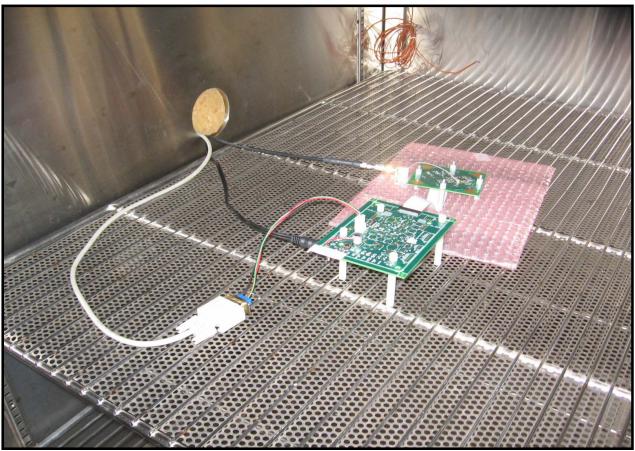
Voltage (VDC)	Assigned Frequency (MHz)	Measured Frequency (MHz)	Tolerance (ppm)	Specification (ppm)
3.6 (110%)	5300.000000	5300.019298	3.64	n/a
3.3 (100%)	5300.000000	5300.008383	1.58	n/a
3.0 (90%)	5300.000000	5299.996416	0.68	n/a

Frequency Stability with Variation of Ambient Temperature (Primary Supply = 3.3 VDC)

Temp	Assigned Frequency	Measured Frequency	Tolerance	Specification
(°C)	(MHz)	(MHz)	(ppm)	(ppm)
50	5300.000000	5299.996980	0.57	n/a
40	5300.000000	5300.004042	0.76	n/a
30	5300.000000	5300.016850	3.18	n/a
20	5300.000000	5300.008383	1.58	n/a
10	5300.000000	5300.046432	8.76	n/a
0	5300.000000	5300.056085	10.58	n/a
-10	5300.000000	5300.064370	12.15	n/a
-20	5300.000000	5300.059030	11.14	n/a
-30	5300.000000	5300.044155	8.33	n/a

Mid Channel 5470 - 5725 MHz Band


Frequency Stability with Variation of DC Voltage (Ambient Temperature = 20°C)


Voltage (VDC)	Assigned Frequency (MHz)	Measured Frequency (MHz)	Tolerance (ppm)	Specification (ppm)
3.6 (110%)	5600.000000	5600.021933	3.92	n/a
3.3 (100%)	5600.000000	5600.010348	1.85	n/a
3.0 (90%)	5600.000000	5599.996941	0.55	n/a

Frequency Stability with Variation of Ambient Temperature (Primary Supply = 3.3 VDC)

Temp	Assigned Frequency	Measured Frequency	Tolerance	Specification
(°C)	(MHz)	(MHz)	(ppm)	(ppm)
50	5600.000000	5599.997100	0.52	n/a
40	5600.000000	5600.005270	0.94	n/a
30	5600.000000	5600.018445	3.29	n/a
20	5600.000000	5600.010348	1.85	n/a
10	5600.000000	5600.050174	8.96	n/a
0	5600.000000	5600.060050	10.72	n/a
-10	5600.000000	5600.066120	11.81	n/a
-20	5600.000000	5600.062120	11.09	n/a
-30	5600.000000	5600.046832	8.36	n/a

FREQUENCY STABILITY

