

FCC Measurement/Technical Report on

Bluetooth® / Bluetooth® Low Energy Wireless Module 50164

FCC ID: TXH-50164

IC: 6315A-50164

Test Report Reference: MDE_COGNEX_1803_FCC_02_rev1

Test Laboratory:

7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH

Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0

F +49 (0) 2102 749 350

Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Table of Contents

1	Applied Standards and Test Summary	3
1.1	Applied Standards	3
1.2	FCC-IC Correlation Table	4
1.3	Measurement Summary	5
2	Revision History / Signatures	7
3	Administrative Data	8
3.1	Testing Laboratory	8
3.2	Project Data	8
3.3	Applicant Data	8
3.4	Manufacturer Data	8
4	Test object Data	9
4.1	General EUT Description	9
4.2	EUT Main components	9
4.3	Ancillary Equipment	10
4.4	Auxiliary Equipment	10
4.5	EUT Setups	11
4.6	Operating Modes / Test Channels	11
4.7	Product labelling	11
5	Test Results	12
5.1	Conducted Emissions at AC Mains	12
5.2	Occupied Bandwidth (6 dB)	17
5.3	Occupied Bandwidth (99%)	19
5.4	Peak Power Output	21
5.5	Spurious RF Conducted Emissions Transmitter Spurious Redicted Emissions	24 27
5.6 5.7	Transmitter Spurious Radiated Emissions Band Edge Compliance Conducted	36
5.7 5.8	Band Edge Compliance Radiated	39
5.9	Power Density	42
6	Test Equipment	45
7	Antenna Factors, Cable Loss and Sample Calculations	51
7.1	LISN R&S ESH3-Z5 (150 kHz – 30 MHz)	51
7.2	Antenna R&S HFH2-Z2 (9 kHz - 30 MHz)	52
7.3	Antenna R&S HL562 (30 MHz – 1 GHz)	53
7.4	Antenna R&S HF907 (1 GHz – 18 GHz)	54
7.5	Antenna EMCO 3160-09 (18 GHz - 26.5 GHz)	55
7.6	Antenna EMCO 3160-10 (26.5 GHz - 40 GHz)	56
8	Setup Drawings	57
9	Photo Report	57
10	Measurement Uncertainties	58

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-19 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C – Intentional Radiators

§ 15.201 Equipment authorization requirement

§ 15.207 Conducted limits

§ 15.209 Radiated emission limits; general requirements

§ 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz

Note:

The tests were selected and performed with reference to the FCC Public Notice "Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of the FCC Rules, 558074 D01 15.247 Meas Guidance v05r02, 2019-04-02". ANSI C63.10–2013 is applied.

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for DTS (e.g. WLAN 2.4 GHz, BT LE) equipment from FCC and IC

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 5: 8.8
Occupied bandwidth	§ 15.247 (a) (2)	RSS-247 Issue 2: 5.2 (a)
Peak conducted output power	§ 15.247 (b) (3), (4)	RSS-247 Issue 2: 5.4 (d)
Transmitter spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 5: 6.13 / 8.9/8.10; RSS-247 Issue 2: 5.5
Transmitter spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 5: 6.13 / 8.9/8.10; RSS-247 Issue 2: 5.5
Band edge compliance	§ 15.247 (d)	RSS-247 Issue 2: 5.5
Power density	§ 15.247 (e)	RSS-247 Issue 2: 5.2 (b)
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 5: 8.3
Receiver spurious emissions	_	_

1.3 MEASUREMENT SUMMARY

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.207			
Conducted Emissions at AC Mains The measurement was performed according	ng to ANSI C63.10)	Final Re	sult
OP-Mode Operating mode, Connection to AC mains	Setup	Date	FCC	IC
worst case, via ancillary/auxiliary equipment	S02_AE02	2020-03-12	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (a) (2)		
Occupied Bandwidth (6 dB)				
The measurement was performed according OP-Mode Radio Technology, Operating Frequency	ng to ANSI C63.10 Setup	Date	Final Re	sult IC
Bluetooth LE 1 Mbps, high	S01_AH02	2020-05-20	Passed	Passed
Bluetooth LE 1 Mbps, low	S01_AH02	2020-05-20	Passed	Passed
Bluetooth LE 1 Mbps, nid	S01_AH02	2020-05-20	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	IC RSS-Gen &	IC TRC-43;	Ch. 6.7 &	Ch. 8
Occupied Bandwidth (99%)				
The measurement was performed according	ng to ANSI C63.10)	Final Re	sult
OP-Mode	Setup	Date	FCC	IC
Radio Technology, Operating Frequency	-			
Bluetooth LE 1 Mbps, high	S01_AH02	2020-05-20	N/A	Performed
Bluetooth LE 1 Mbps, low	S01_AH02	2020-05-20	N/A	Performed
Bluetooth LE 1 Mbps, mid	S01_AH02	2020-05-20	N/A	Performed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (b) (3)		
Peak Power Output				
The measurement was performed according	O .		Final Re	
OP-Mode Radio Technology, Operating Frequency, Measurement method	Setup	Date	FCC	IC
Bluetooth LE 1 Mbps, high, conducted	S01_AH02	2020-05-20	Passed	Passed
Bluetooth LE 1 Mbps, low, conducted	S01_AH02	2020-05-20	Passed	Passed
Bluetooth LE 1 Mbps, mid, conducted	S01_AH02	2020-05-20	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (d)			
Spurious RF Conducted Emissions				
The measurement was performed according OP-Mode	ng to ANSI C63.10 Setup	Date	Final Re	sult IC
Radio Technology, Operating Frequency				
Bluetooth LE 1 Mbps, high	S01_AH02	2020-05-20	Passed	Passed
Bluetooth LE 1 Mbps, low	S01_AH02	2020-05-20	Passed	Passed
Bluetooth LE 1 Mbps, mid	S01_AH02	2020-05-20	Passed	Passed

47 CFR CHAPTER I FCC PART 15	§ 15.247 (d)
Subpart C §15.247	

Transmitter Spurious Radiated Emissions				
The measurement was performed according		Final Re		
OP-Mode	Setup	Date	FCC	IC
Radio Technology, Operating Frequency, Measurement range				
Bluetooth LE 1 Mbps, high, 1 GHz - 26 GHz Remark: 1-DH1 packets transmitted	S01_AE02	2020-03-04	Passed	Passed
Bluetooth LE 1 Mbps, high, 30 MHz - 1 GHz Remark: 1-DH1 packets transmitted	S01_AE02	2020-03-11	Passed	Passed
Bluetooth LE 1 Mbps, low, 1 GHz - 26 GHz Remark: 1-DH1 packets transmitted	S01_AE02	2020-03-05	Passed	Passed
Bluetooth LE 1 Mbps, low, 30 MHz - 1 GHz Remark: 1-DH1 packets transmitted	S01_AE02	2020-03-11	Passed	Passed
Bluetooth LE 1 Mbps, mid, 1 GHz - 26 GHz Remark: 1-DH1 packets transmitted	S01_AE02	2020-03-05	Passed	Passed
Bluetooth LE 1 Mbps, mid, 30 MHz - 1 GHz Remark: 1-DH1 packets transmitted	S01_AE02	2020-03-11	Passed	Passed
Bluetooth LE 1 Mbps, mid, 9 kHz - 30 MHz Remark: 1-DH1 packets transmitted	S01_AE02	2020-03-11	Passed	Passed
47 CFR CHAPTER I FCC PART 15	§ 15.247 (d)			
Subpart C §15.247	§ 15.247 (d)			
Subpart C §15.247 Band Edge Compliance Conducted			Final Do	.eult
Subpart C §15.247 Band Edge Compliance Conducted The measurement was performed according	ng to ANSI C63.10		Final Re	
Subpart C §15.247 Band Edge Compliance Conducted		Date	Final Re FCC	esult IC
Subpart C §15.247 Band Edge Compliance Conducted The measurement was performed according OP-Mode Radio Technology, Operating Frequency,	ng to ANSI C63.10			
Subpart C §15.247 Band Edge Compliance Conducted The measurement was performed according OP-Mode Radio Technology, Operating Frequency, Band Edge	ng to ANSI C63.10 Setup	Date	FCC	IC
Subpart C §15.247 Band Edge Compliance Conducted The measurement was performed according OP-Mode Radio Technology, Operating Frequency, Band Edge Bluetooth LE 1 Mbps, high, high Bluetooth LE 1 Mbps, low, low 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	ng to ANSI C63.10 Setup S01_AH02	Date 2020-05-20	FCC Passed	IC Passed
Band Edge Compliance Conducted The measurement was performed according OP-Mode Radio Technology, Operating Frequency, Band Edge Bluetooth LE 1 Mbps, high, high Bluetooth LE 1 Mbps, low, low 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Band Edge Compliance Radiated	ng to ANSI C63.10 Setup S01_AH02 S01_AH02 § 15.247 (d)	Date 2020-05-20 2020-05-20	Passed Passed	Passed Passed
Subpart C §15.247 Band Edge Compliance Conducted The measurement was performed according OP-Mode Radio Technology, Operating Frequency, Band Edge Bluetooth LE 1 Mbps, high, high Bluetooth LE 1 Mbps, low, low 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Band Edge Compliance Radiated The measurement was performed according	ng to ANSI C63.10 Setup S01_AH02 S01_AH02 § 15.247 (d) ng to ANSI C63.10	2020-05-20 2020-05-20	Passed Passed Final Re	Passed Passed
Band Edge Compliance Conducted The measurement was performed according OP-Mode Radio Technology, Operating Frequency, Band Edge Bluetooth LE 1 Mbps, high, high Bluetooth LE 1 Mbps, low, low 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Band Edge Compliance Radiated The measurement was performed according OP-Mode	ng to ANSI C63.10 Setup S01_AH02 S01_AH02 § 15.247 (d)	Date 2020-05-20 2020-05-20	Passed Passed	Passed Passed
Band Edge Compliance Conducted The measurement was performed according OP-Mode Radio Technology, Operating Frequency, Band Edge Bluetooth LE 1 Mbps, high, high Bluetooth LE 1 Mbps, low, low 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Band Edge Compliance Radiated The measurement was performed according OP-Mode Radio Technology, Operating Frequency, Band Edge	ng to ANSI C63.10 Setup S01_AH02 S01_AH02 § 15.247 (d) ng to ANSI C63.10 Setup	Date 2020-05-20 2020-05-20 Date	Passed Passed Final Re	Passed Passed Passed
Band Edge Compliance Conducted The measurement was performed according OP-Mode Radio Technology, Operating Frequency, Band Edge Bluetooth LE 1 Mbps, high, high Bluetooth LE 1 Mbps, low, low 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Band Edge Compliance Radiated The measurement was performed according OP-Mode Radio Technology, Operating Frequency,	ng to ANSI C63.10 Setup S01_AH02 S01_AH02 § 15.247 (d) ng to ANSI C63.10	2020-05-20 2020-05-20	Passed Passed Final Re	Passed Passed

Power Density				
The measurement was performed accor	Final Result			
OP-Mode	Setup	Date	FCC	IC
Radio Technology, Operating Frequency				
Bluetooth LE 1 Mbps, high	S01_AH02	2020-05-20	Passed	Passed
Bluetooth LE 1 Mbps, low	S01_AH02	2020-05-20	Passed	Passed
Bluetooth LE 1 Mbps, mid	S01_AH02	2020-05-20	Passed	Passed

N/A: Not applicable

Subpart C §15.247

47 CFR CHAPTER I FCC PART 15 § 15.247 (e)

2 REVISION HISTORY / SIGNATURES

Report version control				
Version	Release date	Change Description	Version validity	
initial	2020-08-26		valid	
rev1	2020-09-02	Plots of path correction added to test cases related to absolute power (conducted measurements)	valid	

COMMENT: -

(responsible for accreditation scope)
Dipl.-Ing. Daniel Gall

(responsible for testing and report)
Dipl.-Ing. Andreas Petz

3 ADMINISTRATIVE DATA

3.1 TESTING LABORATORY

Company Name: 7layers GmbH

Address: Borsigstr. 11

40880 Ratingen

Germany

The test facility is accredited by the following accreditation organisation:

Laboratory accreditation no: DAkkS D-PL-12140-01-01 | -02 | -03

FCC Designation Number: DE0015

FCC Test Firm Registration: 929146

ISED CAB Identifier DE0007; ISED#: 3699A

Responsible for accreditation scope: Dipl.-Ing. Daniel Gall

Report Template Version: 2020-06-15

3.2 PROJECT DATA

Responsible for testing and report: Dipl.-Ing. Andreas Petz

Employees who performed the tests: documented internally at 7Layers

Date of Report: 2020-09-02

Testing Period: 2020-02-20 to 2020-08-19

3.3 APPLICANT DATA

Company Name: Cognex Germany Aachen GmbH

Address: Krefelder Straße 218

52070 Aachen

Germany

Contact Person: Mr. Simon Juenger

3.4 MANUFACTURER DATA

Company Name: please see Applicant Data

4 TEST OBJECT DATA

4.1 GENERAL EUT DESCRIPTION

Kind of Device product description	Cognex wireless module 50164 for integration in Cognex 8700 series Handheld Readers and Base Stations
Product name	Bluetooth® / Bluetooth® Low Energy Wireless Module
Туре	50164
Declared EUT data by	the supplier
Voltage Type	DC
Voltage Level	5 V
Tested Modulation Type	BT LE: GFSK Modulation
General product description	wireless communication module for Cognex industrial vision systems
Specific product description for the EUT	Cognex wireless module 50164 for integration in Cognex 8700 series Handheld Readers and Base Stations
The EUT provides the following ports:	UART, SDIO, I2C ,+5V,GND
Tested datarates	GFSK Modulation 1 Mbps
Special software used for testing	Cognex device specific Diags2 ver 0.12

4.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description
#ae02	DE1408000ae02	
Sample Parameter	Valu	е
Serial No.	-	
HW Version	IDI88 RC	
SW Version	Diags2 0.12	
Comment		
Integral Antenna	yes, antenna gain = 4.0 dBi	

Sample Name	Sample Code	Description
#ah02	DE1408000ah02	
Sample Parameter	Va	alue
Serial No.	-	
HW Version	IDI88 RC	
SW Version	Diags2 0.12	
Comment		
Integral Antenna	yes, antenna gain = 4.0 dBi	

NOTE: The short description is used to simplify the identification of the EUT in this test report.

4.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Device	Details	Description
	(Manufacturer, Type Model, OUT	
	Code)	
_	_	_

4.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, HW, SW, S/N)	Description
AC adapter (DE1408000ACDC0)	GlobTek, GTM96060-0606-0.5, -, - , 786356123/19	providing additional current to USB input of cradle
Cradle (DE1408000CRA1)	Cognex, DM8700 series Base Station R00087, IDB83-RE, Diags2 0.12, -	Part of Base Station modified to test modules
Cradle (DE1408000CRA3)	Cognex, DM8700 series Base Station R00087, IDB83-RE, Diags2 0.12, -	Part of Base Station modified to test modules
Laptop RE06	Fujitsu Ltd., Laptop RE06:Lifebook U758, -, -, DSAL009842	Lifebook U758

4.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale
S01_AE02	#ae02, Cradle (DE1408000CRA1), AC adapter (DE1408000ACDC0),	Module in Cradle, supplied by USB and ext. AC adapter (for radiated tests)
S01_AH02	#ah02, AC adapter (DE1408000ACDC0), Cradle (DE1408000CRA3),	Module in Cradle, supplied by USB and ext. AC adapter (for conducted tests)
S02_AE02	#ae02, Cradle (DE1408000CRA1), AC adapter (DE1408000ACDC0), Laptop RE06,	Module in Cradle, supplied by USB and ext. AC adapter, Laptop

4.6 OPERATING MODES / TEST CHANNELS

This chapter describes the operating modes of the EUTs used for testing.

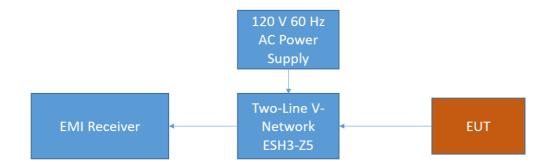
BT LE Test Channels: Channel: Frequency [MHz]

2.4 GHz ISM					
2400 - 2483.5 MHz					
low	low mid hig				
0	19	39			
2402	2440	2480			

4.7 PRODUCT LABELLING

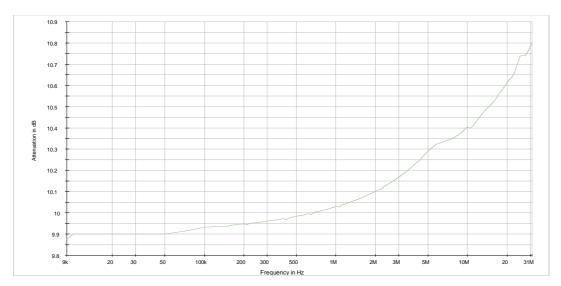
Please refer to the documentation of the applicant.

5 TEST RESULTS


5.1 CONDUCTED EMISSIONS AT AC MAINS

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10


5.1.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C 63.10 The Equipment Under Test (EUT) was setup in a shielded room to perform the conducted emissions measurements in a typical installation configuration. The EUT was powered from $50\mu\text{H}$ || 50 Ohm Line Impedance Stabilization Network (LISN). The LISN's unused connections were terminated with 50 Ohm loads.

FCC Conducted Emissions on AC

Path loss EUT - EMI Receiver:

The measurement procedure consists of two steps. It is implemented into the EMI test software EMC-32 from R&S.

Step 1: Preliminary scan

Intention of this step is, to determine the conducted EMI-profile of the EUT.

EMI receiver settings:

Detector: Peak – Maxhold & AverageFrequency range: 150 kHz – 30 MHz

Frequency steps: 2.5 kHzIF-Bandwidth: 9 kHz

- Measuring time / Frequency step: 100 ms (FFT-based)

- Measurement on phase + neutral lines of the power cords

On basis of this preliminary scan the highest amplitudes and the corresponding frequencies relative to the limit are identified. Emissions above the limit and emissions which are in the 10 dB range below the limit are considered.

Step 2: Final measurement

Intention of this step is, to determine the highest emissions with the settings defined in the test specification for the frequencies identified in step 1.

EMI receiver settings:

- Detector: Quasi-Peak & (CISPR) Average

- IF Bandwidth: 9 kHz

- Measuring time: 1 s / frequency

At each frequency determined in step 1, four measurements are performed in the following combinations:

- 1) Neutral lead reference ground (PE grounded)
- 2) Phase lead reference ground (PE grounded)
- 3) Neutral lead reference ground (PE floating)
- 4) Phase lead reference ground (PE floating)

The highest value is reported.

5.1.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.207

Frequency (MHz)	QP Limits (dBµV)	AV Limits (dBµV)
0.15 - 0.5	66 - 56	56 - 46
0.5 - 5	56	46
5 - 30	60	50

Used conversion factor: Limit (dB μ V) = 20 log (Limit (μ V)/1 μ V).

5.1.3 TEST PROTOCOL

Temperature: 25 °C
Air Pressure: 1005 hPa
Humidity: 37 %

Power line	PE	Frequency [MHz]	Measured value QP [dBµV]	Measured value AV [dBµV]	Limit [dBµV]	Margin [dB]
L1	GND	0.303		40.4	50.2	9.7
N	GND	0.303	49.2		60.2	11.0
N	FLO	0.321	43.0		59.7	16.6
L1	GND	0.323		34.3	49.6	15.4
N	FLO	0.503	31.0		56.0	25.0
L1	GND	0.521		27.0	46.0	19.0
N	FLO	0.537	36.8		56.0	19.2
L1	FLO	0.542		26.5	46.0	19.5
N	GND	0.641	33.5		56.0	22.6
L1	GND	0.647		24.5	46.0	21.5
N	FLO	0.663	36.0		56.0	20.0
L1	GND	0.668		25.7	46.0	20.3
N	FLO	0.688	39.5		56.0	16.6
L1	GND	0.690		27.3	46.0	18.8
L1	GND	0.710		28.3	46.0	17.8
N	FLO	0.710	39.1		56.0	16.9
N	GND	0.731	38.9		56.0	17.1
L1	GND	0.733		28.3	46.0	17.7
N	GND	0.753	37.1		56.0	18.9
L1	GND	0.753		27.6	46.0	18.5
N	FLO	0.870	32.2		56.0	23.9
L1	GND	0.888		25.0	46.0	21.0
N	FLO	0.893	32.2		56.0	23.8
L1	FLO	0.908		27.3	46.0	18.7
N	FLO	0.929	37.4		56.0	18.6
L1	FLO	0.929		27.0	46.0	19.0
N	FLO	1.030	33.3		56.0	22.7
L1	GND	1.034		19.9	46.0	26.1
N	GND	1.052	34.7		56.0	21.3
L1	GND	1.055		20.6	46.0	25.4

 $\label{lem:Remark: Please see next sub-clause for the measurement plot.}$

5.1.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Operating mode = worst case, Connection to AC mains = via ancillary/auxiliary equipment (S02_AE02)

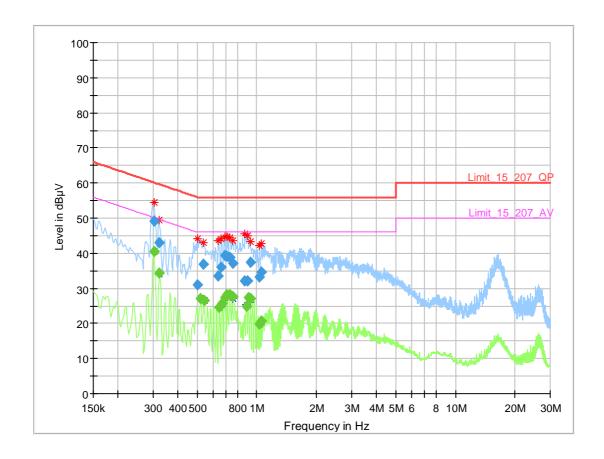
Common Information

Test Description: Conducted Emissions
Test Standard: FCC §15.207, ANSI C63.10

EUT / Setup Code: DE1408000 ae02

Operating Conditions: 120 V 60 Hz, BTTest (CH:39)

Operator Name: MER


Comment:

Legend: Trace: blue = PK, green = CISPR AV; Star: red or blue = critical

frequency; Rhombus: blue = final QP, green = final CISPR AV

Tested Port / used LISN: AC mains => ESH3-Z5

Termination of other ports: N/A

Final Result

Frequency (MHz)	QuasiPeak (dBµV)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Line	PE	Corr. (dB)
0.303000		40.42	50.16	9.74	1000.0	9.000	L1	GND	10.1
0.303000	49.21		60.16	10.95	1000.0	9.000	N	GND	10.1
0.321000	43.04		59.68	16.64	1000.0	9.000	N	FLO	10.1
0.323250		34.25	49.62	15.37	1000.0	9.000	L1	GND	10.1
0.503250	30.98		56.00	25.02	1000.0	9.000	N	FLO	10.1
0.521250		27.01	46.00	18.99	1000.0	9.000	L1	GND	10.1
0.537000	36.76		56.00	19.24	1000.0	9.000	N	FLO	10.1
0.541500		26.52	46.00	19.48	1000.0	9.000	L1	FLO	10.1
0.640500	33.45		56.00	22.56	1000.0	9.000	N	GND	10.1
0.647250		24.52	46.00	21.48	1000.0	9.000	L1	GND	10.1
0.663000	35.96		56.00	20.04	1000.0	9.000	N	FLO	10.1
0.667500		25.72	46.00	20.28	1000.0	9.000	L1	GND	10.1
0.687750	39.45		56.00	16.55	1000.0	9.000	N	FLO	10.1
0.690000		27.25	46.00	18.75	1000.0	9.000	L1	GND	10.1
0.710250		28.25	46.00	17.75	1000.0	9.000	L1	GND	10.1
0.710250	39.14		56.00	16.86	1000.0	9.000	N	FLO	10.1
0.730500	38.91		56.00	17.09	1000.0	9.000	N	GND	10.1
0.732750		28.29	46.00	17.71	1000.0	9.000	L1	GND	10.1
0.753000	37.14		56.00	18.86	1000.0	9.000	N	GND	10.1
0.753000		27.55	46.00	18.45	1000.0	9.000	L1	GND	10.1
0.870000	32.15		56.00	23.85	1000.0	9.000	N	FLO	10.1
0.888000		24.97	46.00	21.03	1000.0	9.000	L1	GND	10.1
0.892500	32.19		56.00	23.81	1000.0	9.000	N	FLO	10.1
0.908250		27.30	46.00	18.70	1000.0	9.000	L1	FLO	10.1
0.928500	37.38		56.00	18.62	1000.0	9.000	N	FLO	10.1
0.928500		26.96	46.00	19.04	1000.0	9.000	L1	FLO	10.1
1.029750	33.28		56.00	22.72	1000.0	9.000	N	FLO	10.2
1.034250		19.91	46.00	26.09	1000.0	9.000	L1	GND	10.2
1.052250	34.69		56.00	21.31	1000.0	9.000	N	GND	10.2
1.054500		20.63	46.00	25.37	1000.0	9.000	L1	GND	10.2

5.1.5 TEST EQUIPMENT USED

- Conducted Emissions FCC

5.2 OCCUPIED BANDWIDTH (6 DB)

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

5.2.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

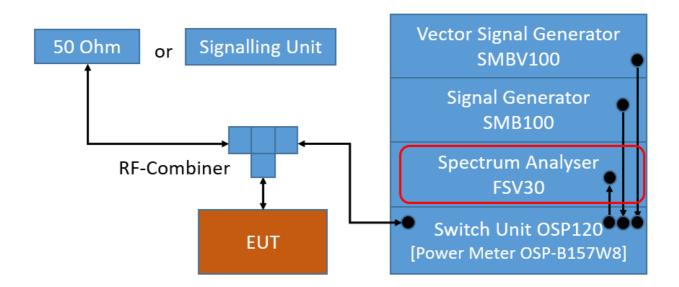
The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The results recorded were measured with the modulation which produce the worst-case (smallest) emission bandwidth.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:

• Resolution Bandwidth (RBW): 100 kHz


Video Bandwidth (VBW): 300 kHz

Span: Two times nominal bandwidth

Trace: Maxhold

Sweeps: Till stable (min. 500, max. 15000)

Sweeptime: AutoDetector: Peak

TS8997; Channel Bandwidth

5.2.2 TEST REQUIREMENTS / LIMITS

26 °C

FCC Part 15, Subpart C, §15.247 (a) (2)

Systems using digital modulation techniques may operate in the 902-928 MHz and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

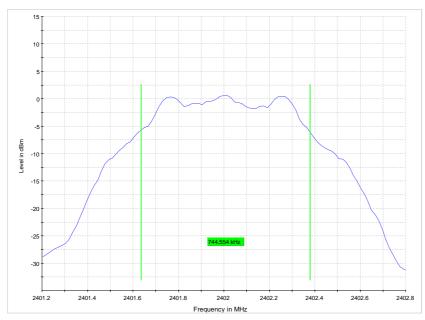
5.2.3 TEST PROTOCOL

Ambient

temperature:

Air Pressure: 1010 hPa Humidity: 32 %

BT LE 1 Mbit/s


Band / Mode	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	0	2402	0.744	0.5	0.244
	19	2440	0.744	0.5	0.244
	39	2480	0.744	0.5	0.244

Remark: Please see next sub-clause for the measurement plot.

5.2.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = low (S01_AH02)

5.2.5 TEST EQUIPMENT USED

- R&S TS8997

5.3 OCCUPIED BANDWIDTH (99%)

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

5.3.1 TEST DESCRIPTION

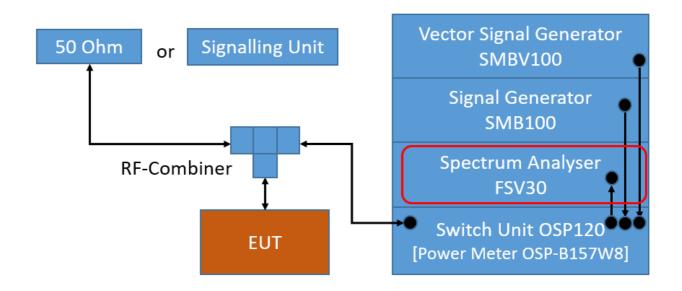
The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:

Resolution Bandwidth (RBW): 1 to 5 % of the OBW


• Video Bandwidth (VBW): ≥ 3 times the RBW

• Span: 1.5 to 5 times the OBW

• Trace: Maxhold

• Sweeps: Till stable (min. 500, max. 75000)

Sweeptime: AutoDetector: Peak

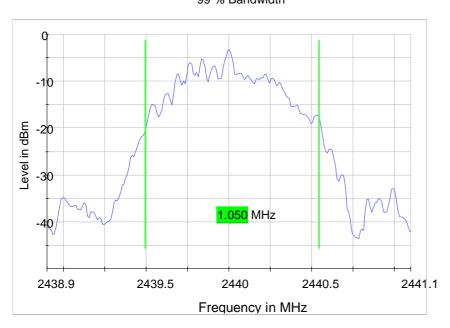
TS8997; Channel Bandwidth

5.3.2 TEST REQUIREMENTS / LIMITS

No applicable limit.

5.3.3 TEST PROTOCOL

 $\begin{array}{lll} \mbox{Ambient temperature:} & 26 \ ^{\circ}\mbox{C} \\ \mbox{Air Pressure:} & 1010 \ \mbox{hPa} \\ \mbox{Humidity:} & 32 \ \% \end{array}$


BT LE 1 Mbit/s

Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	0	2402	1.050
	19	2440	1.050
	39	2480	1.050

Remark: Please see next sub-clause for the measurement plot.

5.3.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = mid (S01_AH02)

99 % Bandwidth

5.3.5 TEST EQUIPMENT USED

- R&S TS8997

5.4 PEAK POWER OUTPUT

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.4.1 TEST DESCRIPTION

DTS EQUIPMENT:

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power.

Maximum peak conducted output power (e.g. Bluetooth Low Energy):

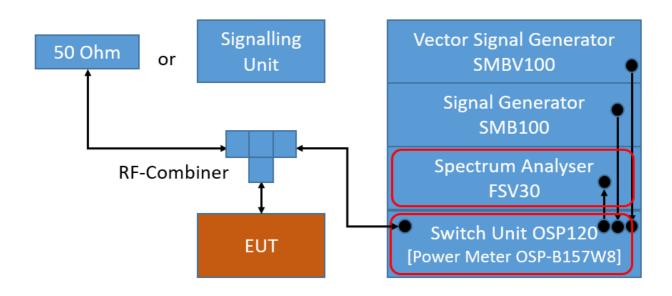
The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered. The reference level of the spectrum analyser was set higher than the output power of the EUT.

Analyser settings:

• Resolution Bandwidth (RBW): ≥ DTS bandwidth

Video Bandwidth (VBW): ≥ 3 times RBW or maximum of analyzer

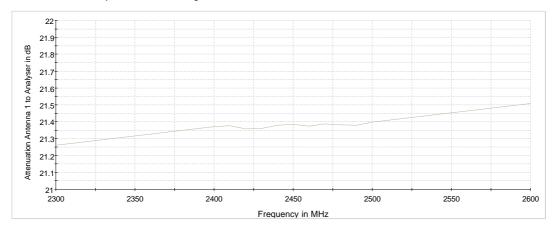
• Span: ≥ 3 times RBW


• Trace: Maxhold

• Sweeps: Till stable (min. 300, max. 15000)

Sweeptime: AutoDetector: Peak

Maximum conducted average output power (e.g. WLAN):


Measurement is performed using the gated RF average power meter integrated in the OSP 120 module OSP-B157W8 with signal bandwidth >300 MHz.

TS8997; Output Power

Path loss EUT - Spectrum Analyser:

5.4.2 TEST REQUIREMENTS / LIMITS

DTS devices:

FCC Part 15, Subpart C, §15.247 (b) (3)

For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt.

==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used).

Frequency Hopping Systems:

FCC Part 15, Subpart C, §15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

FCC Part 15, Subpart C, §15.247 (b) (2)

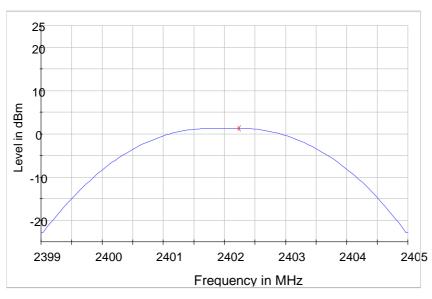
For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Used conversion factor: Limit (dBm) = 10 log (Limit (W)/1mW)

5.4.3 TEST PROTOCOL

Ambient temperature: 26 °C
Air Pressure: 1010 hPa
Humidity: 32 %
BT LE 1 Mbit/s

Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	0	2402	1.9	30.0	28.1	6.5
	19	2440	1.6	30.0	28.4	6.2
	39	2480	0.8	30.0	29.2	5.4


Remark: Please see next sub-clause for the measurement plot.

5.4.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = low, Measurement method = conducted (S01_AH02)

Connector 1 Peak Connector 1

Remark: The plot does not include the antenna gain or adapter cable loss

5.4.5 TEST EQUIPMENT USED

- R&S TS8997

5.5 SPURIOUS RF CONDUCTED EMISSIONS

Standard FCC Part 15 Subpart C

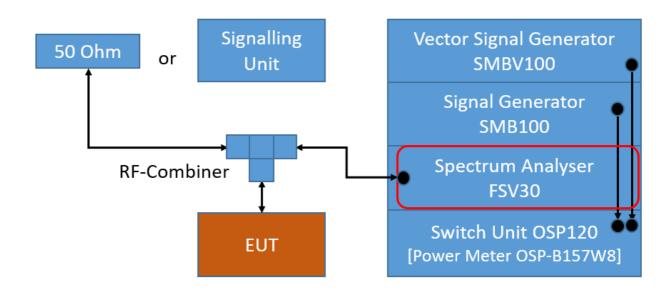
The test was performed according to: ANSI C63.10

5.5.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

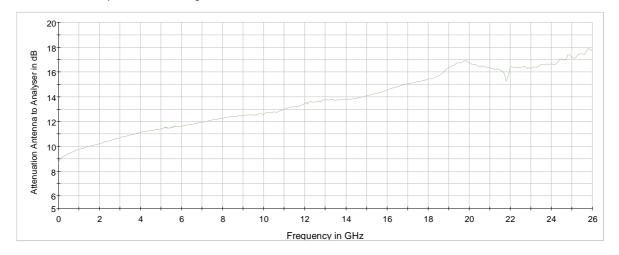
Analyser settings:


Frequency range: 30 – 26000 MHz
Resolution Bandwidth (RBW): 100 kHz
Video Bandwidth (VBW): 300 kHz

• Trace: Maxhold

Sweeps: Till Stable (max. 120)

Sweep Time: AutoDetector: Peak


The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance conducted". This value is used to calculate the 20 dBc or 30 dBc limit.

TS8997; Spurious RF Conducted Emissions

Path loss EUT – Spectrum analyser:

5.5.2 TEST REQUIREMENTS / LIMITS

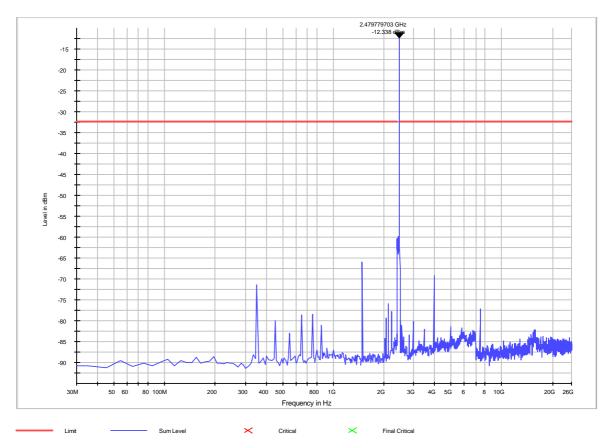
FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b) (3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

5.5.3 TEST PROTOCOL

Ambient temperature: 26 °C
Air Pressure: 1010 hPa
Humidity: 32 %
BT LE 1 Mbit/s

Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	1488.8	-65.9	PEAK	100	-0.9	-20.9	45.0
19	2440	1488.8	-66.0	PEAK	100	-1.9	-21.9	44.1
39	2480	2488.5	-65.7	PEAK	100	-0.7	-20.7	45.0


Remark: Please see next sub-clause for the measurement plot.

5.5.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = mid (S01_AH02)

Spurious

Note: The plot does not include the antenna gain or cable loss

5.5.5 TEST EQUIPMENT USED

- R&S TS8997

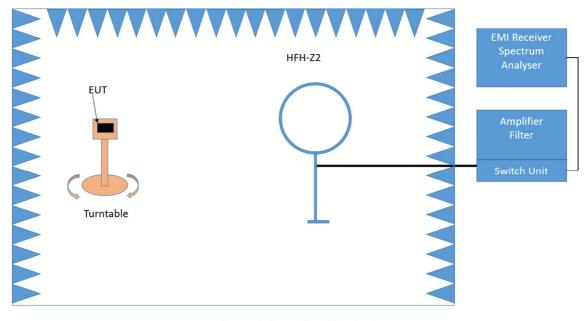
5.6 TRANSMITTER SPURIOUS RADIATED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.6.1 TEST DESCRIPTION


The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered.

Below 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The influence of the EUT support table that is used between 30–1000 MHz was evaluated.

1. Measurement up to 30 MHz

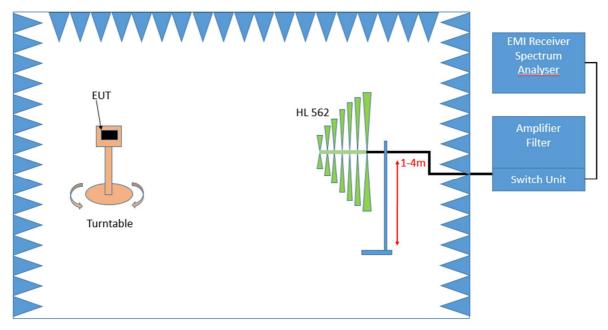
Test Setup; Spurious Emission Radiated (SAC), 9 kHz – 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber
- Antenna distance: 3 m
- Antenna height: 1 m
- Detector: Peak-Maxhold
- Frequency range: 0.009 0.15 MHz and 0.15 30 MHz
- Frequency steps: 0.05 kHz and 2.25 kHz
- IF-Bandwidth: 0.2 kHz and 9 kHz

TEST REPORT REFERENCE: MDE_COGNEX_1803_FCC_02_rev1


• Measuring time / Frequency step: 100 ms (FFT-based)
Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Detector: Quasi-Peak (9 kHz 150 kHz, Peak / Average 150 kHz- 30 MHz)
- Frequency range: 0.009 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 0.2 10 kHz
- Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Test Setup; Spurious Emission Radiated (SAC), 30 MHz- 1GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1:

- Antenna distance: 3 m
- Detector: Peak-Maxhold / Quasipeak (FFT-based)
- Frequency range: 30 1000 MHz
- Frequency steps: 30 kHzIF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 ms
- Turntable angle range: -180° to 90°
- Turntable step size: 90°
- Height variation range: 1 3 m
- Height variation step size: 2 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

- IF – Bandwidth: 120 kHz - Measuring time: 100 ms

- Turntable angle range: \pm 45 ° around the determined value - Height variation range: \pm 100 cm around the determined value

- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

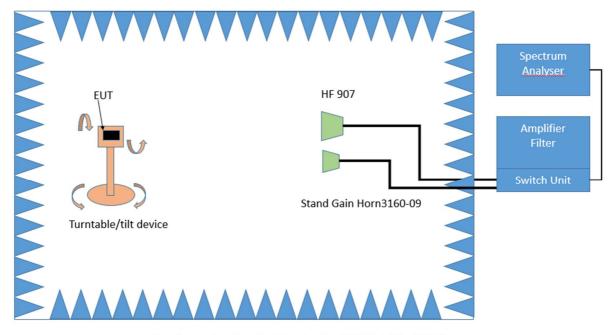
With the settings determined in step 2, the final measurement will be performed: EMI receiver settings for step 3:

- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.



Above 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

3. Measurement above 1 GHz

Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

Step 1:

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 $^{\circ}.$

The turn table step size (azimuth angle) for the preliminary measurement is 45 °.

Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna in step 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed.

The turn table azimuth will slowly vary by $\pm 22.5^{\circ}$.

The elevation angle will slowly vary by \pm 45°

EMI receiver settings (for all steps):

- Detector: Peak, Average
- IF Bandwidth = 1 MHz

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / CISPR Average
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 1 MHzMeasuring time: 1 s

5.6.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 – 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 – 23.0)@30m
1.705 – 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)
30 – 88	100@3m	3	40.0@3m
88 – 216	150@3m	3	43.5@3m
216 – 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

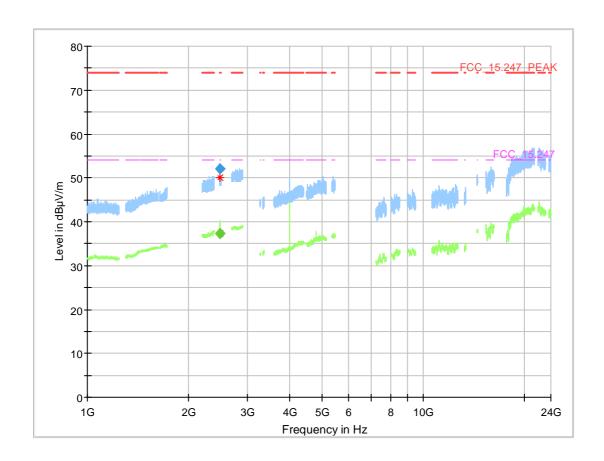
§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

5.6.3 TEST PROTOCOL

Ambient temperature: 23–24 °C
Air Pressure: 985-1004 hPa
Humidity: 33-36 %
BT LE 1 Mbit/s

Applied duty cycle correction (AV): 10.3 dB


Ch. No.	Ch. Center Freg.	Spurious Freq. [MHz]	Spurious Level	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
	[MHz]		[dBµV/m]			[. 7 -
0	2402	149.99	37.3	QP	120	43.5	6.2	RB
0	2402	249.99	38.7	QP	120	46.0	7.3	RB
0	2402	399.99	23.8	QP	120	46.0	22.2	RB
0	2402	> 1 GHz						RB
19	2440	< 30		PEAK	9	-		RB
19	2440	149.99	37.3	QP	120	43.5	6.2	RB
19	2440	249.99	39.3	QP	120	46.0	6.7	RB
19	2440	399.99	24.4	QP	120	46.0	21.6	RB
19	2440	> 1 GHz						RB
39	2480	149.99	30.3	QP	120	43.5	13.2	RB
39	2480	249.99	36.4	QP	120	46.0	9.7	RB
39	2480	399.99	25.8	QP	120	46.0	20.2	RB
39	2480	> 1 GHz						RB

Remark: Please see next sub-clause for the measurement plot.

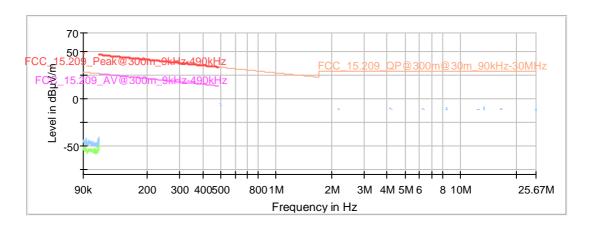
5.6.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = high, Measurement range = 1 GHz - 26 GHz (S01_AE02)

Final_Result

Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margi n	Meas. Time (ms)	Bandwidt h	Heigh t	Pol	Azimut h	Elevatio n
2483.913	52.0		74.00	21.99	1000.0	1000.000	150.0	Н	84.0	15.0

Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = mid, Measurement range = 9 kHz - 30 MHz (S01_AE02)

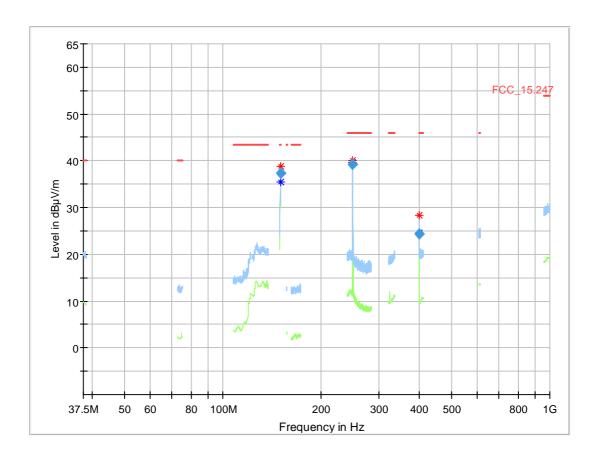

Common Information

Test Description: Radiated Emissions, Test Site: Semi Anechoic Chamber @ 3 m

Test Standard FCC15c247

Operating Conditions: DE1408000 ae02, BT Test

Operator Name: Nel Comment: x-y-z axis



Final_Result

Frequency	MaxPeak	QuasiPeak	Limit	Margi	Meas. Time	Bandwidt	Heigh	Pol	Azimut	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	n	(ms)	h	t		h	(dB/m)

Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = mid, Measurement range = 30 MHz - 1 GHz (S01_AE02)

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margi n	Meas. Time (ms)	Bandwidt h	Heigh t	Pol	Azimut h	Corr. (dB/m)	Comment
149.990000	37.34	43.50	6.16	1000.0	120.000	207.0	Н	-131.0	9.2	
249.990000	39.27	46.00	6.73	1000.0	120.000	108.0	Н	92.0	11.3	
399.990000	24.37	46.00	21.63	1000.0	120.000	100.0	Н	-98.0	15.9	

5.6.5 TEST EQUIPMENT USED

- Radiated Emissions

5.7 BAND EDGE COMPLIANCE CONDUCTED

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.7.1 TEST DESCRIPTION

For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room. The reference power was measured in the test case "Spurious RF Conducted Emissions".

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:

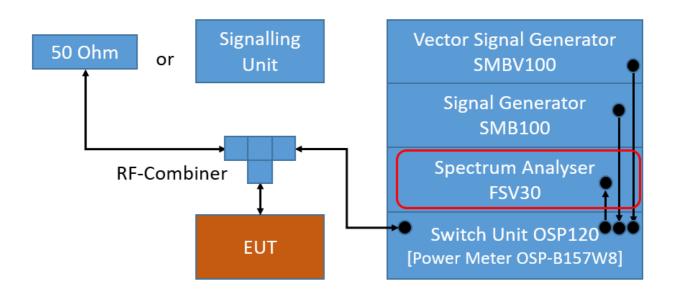
• Lower Band Edge:

Measured range: 2310.0 MHz to 2483.5 MHz

Upper Band Edge

Measured range: 2400.0 MHz to 2500 MHz

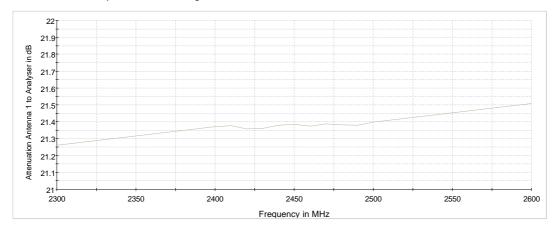
• Detector: Peak


• Resolution Bandwidth (RBW): 100 kHz

• Video Bandwidth (VBW): 300 kHz

• Sweeptime: Auto

• Sweeps: Till stable (min. 300, max. 15000)


• Trace: Maxhold

TS8997; Band Edge Conducted

Path loss EUT - Spectrum Analyser:

5.7.2 TEST REQUIREMENTS / LIMITS

FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ...

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

5.7.3 TEST PROTOCOL

Ambient 26 °C

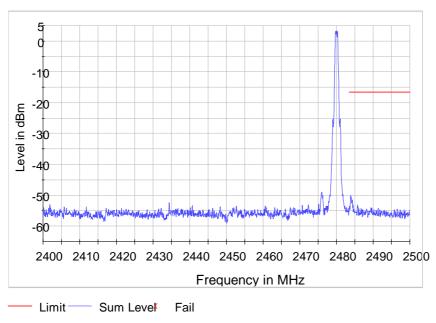
temperature:

Air Pressure: 1010 hPa

Humidity: 32 %

BT LE 1 Mbit/s

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	2398.28	-49.4	PEAK	100	4.5	-15.5	33.9
39	2480	2483.93	-50.1	PEAK	100	3.5	-16.5	33.6


Remark: Please see next sub-clause for the measurement plot.

5.7.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = high, Band Edge = high (S01_AH02)

5.7.5 TEST EQUIPMENT USED

- R&S TS8997

5.8 BAND EDGE COMPLIANCE RADIATED

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.8.1 TEST DESCRIPTION

Please see test description for the test case "Spurious Radiated Emissions"

5.8.2 TEST REQUIREMENTS / LIMITS

For band edges connected to a restricted band, the limits are specified in Section 15.209(a)

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)	
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 – 13.8)@300m	
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 – 23.0)@30m	
1.705 – 30	30@30m	3	29.5@30m	

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)
30 – 88	100@3m	3	40.0@3m
88 – 216	150@3m	3	43.5@3m
216 – 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

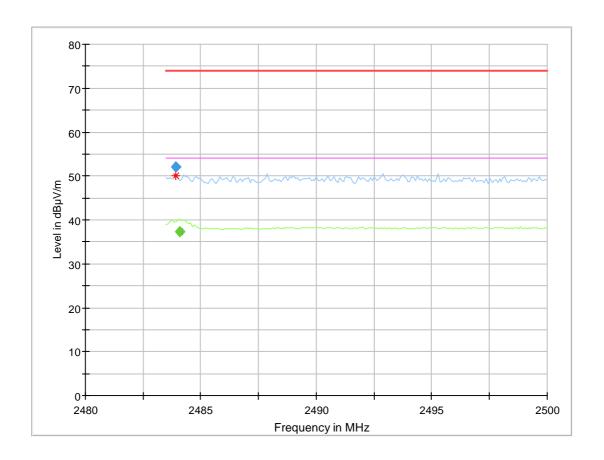
Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

5.8.3 TEST PROTOCOL

Ambient temperature: 24 °C
Air Pressure: 1002 hPa
Humidity: 36 %

BT LE 1 Mbit/s

Applied duty cycle correction (AV): 10.3 dB


Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
39	2480	2483.913	52.0	PEAK	1000	74.0	22.0	BE
39	2480	2484.078	47.6	AV	1000	54.0	6.4	BE

Remark: Please see next sub-clause for the measurement plot.

5.8.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = high, Band Edge = high (S01_AE02)

Final_Result

Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margi n	Meas. Time (ms)	Bandwidt h	Heigh t	Pol	Azimut h	Elevatio n
2483.913	52.0		74.00	21.99	1000.0	1000.000	150.0	Н	84.0	15.0
2484.078		37.3	54.00	16.70	1000.0	1000.000	150.0	V	152.0	105.0

5.8.5 TEST EQUIPMENT USED

- Radiated Emissions

5.9 POWER DENSITY

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.9.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up in a shielded room to perform the Power Density measurements.

The results recorded were measured with the modulation which produces the worst-case (highest) power density.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Maximum Peak Power Spectral Density (e.g. Bluetooth low energy):

Analyser settings:

• Resolution Bandwidth (RBW): 100 kHz, 10 kHz or 3 kHz

• Video Bandwidth (VBW): ≥ 3 times RBW

• Trace: Maxhold

• Sweeps: Till stable (min. 200, max. 15000)

Sweeptime: AutoDetector: Peak

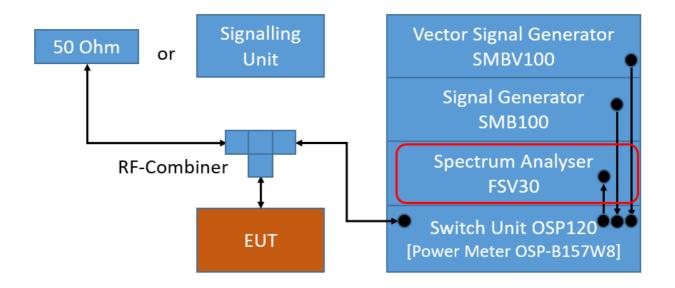
Maximum Average Power Spectral Density (e.g. WLAN):

Analyser settings:

• Resolution Bandwidth (RBW): 100 kHz, 10 kHz or 3 kHz

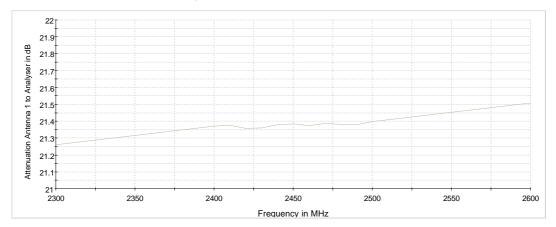
• Video Bandwidth (VBW): ≥ 3 times RBW

• Sweep Points: ≥ 2 times span / RBW


• Trace: Maxhold

• Sweeps: Till stable (max. 150)

• Sweeptime: ≤ Number of Sweep Points x minimum transmission duration


• Detector: RMS

TS8997; Power Spectral Density

Path loss EUT – Spectrum Analyser:

5.9.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (e)

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

. .

The same method of determining the conducted output power shall be used to determine the power spectral density.

FCC Part 15, Subpart C, §15.247 (f)

(f) For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques.

. . .

The power spectral density conducted from the intentional radiator to the antenna due to the digital modulation operation of the hybrid system, with the frequency hopping operation turned

15.8

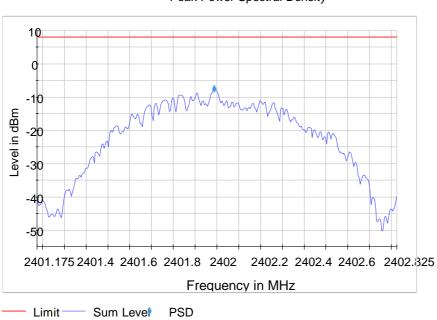
8.0

off, shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission

5.9.3 TEST PROTOCOL

Ambient temperature: 26 °C
Air Pressure: 1010 hPa
Humidity: 32 %
BT LE 1 Mbit/s

39


Band	Channel No.	Frequency [MHz]	Power Density [dBm/10kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	0	2402	-6.8	8.0	14.8
	10	2440	7 1	0.0	15 1

Remark: Please see next sub-clause for the measurement plot.

2480

5.9.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = low (S01_AH02)

Peak Power Spectral Density

Remark: The plot does not include adapter cable loss

5.9.5 TEST EQUIPMENT USED

- R&S TS8997

6 TEST EQUIPMENT

Conducted Emissions FCC: Conducted Emissions AC Mains for FCC Standards

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.1	MFS	Rubidium Frequency Normal MFS	Datum GmbH	002	2019-10	2020-10
1.2	Opus10 TPR (8253.00)	T/P Logger 13	Lufft Mess- und Regeltechnik GmbH	13936	2019-05	2021-05
1.3	SMBV100A	Vector Signal Generator 9 kHz - 3.2 GHz (GNSS / Broadcast Signalling Unit)	Rohde & Schwarz GmbH & Co. KG	260001	2018-01	2021-01
1.4	ESH3-Z5	Two-Line V- Network (AUX)	Rohde & Schwarz GmbH & Co. KG	828304/029	2019-06	2021-06
1.5	EP 1200/B, NA/B1	AC Source,	Spitzenberger & Spies GmbH & Co. KG	B6278		
1.6	CMU 200	"CMU2" Universal Radio Communicatio n Tester	Rohde & Schwarz	837983/052	2018-05	2021-05
1.7	Chroma 6404	AC Source	Chroma ATE INC.	64040001304		
1.8	CMW500	Callbox OIL- RE, SUW	Rohde & Schwarz GmbH & Co. KG	155999-Ei	2019-09	2022-09
1.9	CMU 200	"CMU1" Universal Radio Communicatio n Tester	Rohde & Schwarz GmbH & Co. KG	102366	2017-12	2020-12
1.10	СВТ	Bluetooth Tester "CBT- 02" incl. BLE- Option	Rohde & Schwarz	100302	2018-03	2021-03
1.11	CMW500		Rohde & Schwarz GmbH & Co. KG	163529-bw	2020-07	2023-07
1.12	Shielded Room 02	Shielded Room 4m x 3m	Frankonia Germany EMC Solution GmbH			
1.13	CMW500	Callbox OIL- RE, SUA-160 MHz	Rohde & Schwarz GmbH & Co. KG	168927-cv	2020-05	2023-05
1.14	CMW 500	callbox, 2G, 3G, LTE, WLAN, BT, Audio	Rohde & Schwarz GmbH & Co. KG	149268-Qf	2018-04	2021-04
1.15	CMD 55		Rohde & Schwarz	831050/020		
1.16	ESH3-Z5	Two-Line V-	Rohde & Schwarz GmbH & Co. KG	829996/002	2019-06	2021-06
1.17	ESR 7		Rohde & Schwarz	101424	2019-01	2021-01

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.18			Rohde & Schwarz GmbH & Co. KG	167766-By	2019-07	2020-07
1.19	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	7489	2019-05	2021-05
1.20			Rohde & Schwarz GmbH & Co. KG	100912		
1.21		Wideband Radio communicatio n Tester	Rohde & Schwarz	107500		
1.22			Rohde & Schwarz GmbH & Co. KG	100589	2018-05	2021-05

2 R&S TS8997: FCC Part 15 Subpart C Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.1	SMB100A	Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	107695	2020-08	2023-08
2.2	FSV30	Signal Analyzer 10 Hz - 30 GHz	Rohde & Schwarz	103005	2020-05	2022-05
2.3	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2020-04	2022-04
2.4	NGSM 32/10	Power Supply	Rohde & Schwarz GmbH & Co. KG	3456	2020-01	2022-01
2.5	SMBV100A	Enhanced GNSS	Rohde & Schwarz GmbH & Co. KG	262682-eP	2018-01	2021-01
2.6	Temperature Chamber VT 4002	Temperature Chamber Vötsch 03	Vötsch	58566002150010	2020-05	2022-05
2.7	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	7482	2019-06	2021-06
2.8	SMBV100A		Rohde & Schwarz	259291	2019-11	2022-11
2.9	OSP120	Contains Power Meter and Switching Unit OSP- B157W8	Rohde & Schwarz	101158	2018-05	2021-05
2.10	Temperature Chamber VT 4002	Temperature Chamber Vötsch 05	Vötsch	58566080550010	2020-05	2022-05

Radiated Emissions: Lab to perform radiated emission tests

Ref.No.	Device Name	Description	Manufacturer	Serial Number		Calibration
0.4	MEC	D. I. I. I.	D. I	000	Calibration	
3.1	MFS	Frequency Normal MFS	Datum GmbH	002	2019-10	2020-10
3.2	N5000/NP	Filter for EUT, 2 Lines, 250 V, 16 A	ETS-LINDGREN	241515		
3.3	Opus10 TPR (8253.00)		Lufft Mess- und Regeltechnik GmbH	13936	2019-05	2021-05
3.4	ESW44	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz GmbH & Co. KG	101603	2019-12	2021-12
3.5	Anechoic Chamber 01	SAC/FAR, 10.58 m x 6.38 m x 6.00 m	Frankonia	none	2018-06	2020-06
3.6	HL 562 ULTRALOG	0	Rohde & Schwarz GmbH & Co. KG	830547/003	2018-07	2021-07
3.7	AMF- 7D00101800- 30-10P-R	Broadband Amplifier 100 MHz - 18 GHz	Miteq			
3.8	5HC2700/12750 -1.5-KK		Trilithic	9942012		
3.9		Antenna Mast	Maturo GmbH	-		
3.10	Anechoic Chamber 03	FAR, 8.80m x 4.60m x 4.05m (I x w x h)		P26971-647-001- PRB	2018-06	2020-06
3.11	SMBV100A	Vector Signal	Rohde & Schwarz GmbH & Co. KG	260001	2018-01	2021-01
3.12	Fluke 177		Fluke Europe B.V.	86670383	2020-04	2022-04
3.13	WRD1920/1980- 5/22-5EESD	Reject Filter	Wainwright Instruments GmbH	11		
3.14	TDS 784C	Digital Oscilloscope [SA2] (Aux)	Tektronix	B021311		
3.15	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	12488	2019-06	2021-06
3.16	foRS232 Unit 2	Fibre optic link RS232		4031516037		
3.17	PONTIS Con4101	PONTIS Camera Controller		6061510370		
3.18	NRVD	Power Meter	Rohde & Schwarz GmbH & Co. KG	828110/016	2019-08	2020-08
3.19	OLS-1 R	Fibre optic link USB 1.1		018		

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
3.20	HF 906	Double-ridged horn	Rohde & Schwarz	357357/002	2018-09	2021-09
3.21	JS4-18002600- 32-5P	Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
3.22	FSW 43		Rohde & Schwarz	103779	2019-02	2021-02
3.23	3160-09		EMCO Elektronic GmbH	00083069		
3.24	foRS232 Unit 1	Fibre optic link RS232	PONTIS Messtechnik GmbH	4021516036		
	FSP3	Analyzer	Rohde & Schwarz GmbH & Co. KG	836722/011		
3.26	8SS	Filter	Wainwright Instruments GmbH	09		
3.27	DS 420S	Turn Table 2 m diameter	HD GmbH	420/573/99		
3.28		Filter	Trilithic	9942011		
3.29		Fibre optic link USB 2.0	PONTIS Messtechnik GmbH	4471520061		
3.30	WRCD1879.8- 0.2/40-10EE		Wainwright Instruments GmbH	16		
3.31	SMB100A		Rohde & Schwarz Vertriebs-GmbH	181486	2019-11	2021-11
3.32	JS4-00102600- 42-5A	Broadband Amplifier 30 MHz - 26 GHz	Miteq	619368		
3.33	TT 1.5 WI		Maturo GmbH	-		
3.34	HL 562 ULTRALOG	U	Rohde & Schwarz GmbH & Co. KG	100609	2019-05	2022-05
3.35	HF 906	Double-ridged horn	Rohde & Schwarz	357357/001	2018-03	2021-03
3.36	foCAN (v 4.0)	Fibre optic link CAN	Audivo GmbH (PONTIS EMC)	492 1607 014		
3.37	CMW500	Callbox OIL- RE, SUW	Rohde & Schwarz GmbH & Co. KG	155999-Ei	2019-09	2022-09
3.38	CMU 200		Rohde & Schwarz GmbH & Co. KG	102366	2017-12	2020-12
3.39	MA4985-XP-ET		innco systems GmbH	none		
3.40	СВТ		Rohde & Schwarz	100302	2018-03	2021-03
3.41	CMW500	Callbox OIL- RE, SUW	Rohde & Schwarz GmbH & Co. KG	163529-bw	2020-07	2023-07
3.42	CMW500	Callbox OIL-	Rohde & Schwarz GmbH & Co. KG	168927-cv	2020-05	2023-05
3.43	A8455-4	4 Way Power Divider (SMA)		-		

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
	JUN-AIR Mod. 6- 15		JUN-AIR Deutschland GmbH	612582		
3.45	foEthernet_M	Fibre optic link		4841516023		
3.46	5HC3500/18000 -1.2-KK		Trilithic	200035008		
3.47	OLS-1 M	Fibre optic link USB 1.1	Ingenieurbüro Scheiba	018		
3.48	HFH2-Z2	Loop Antenna	Rohde & Schwarz	829324/006	2018-01	2021-01
3.49	Voltcraft M- 3860M		Conrad	IJ096055		
3.50	CMW 500	callbox, 2G, 3G, LTE, WLAN, BT, Audio	Rohde & Schwarz GmbH & Co. KG	149268-Qf	2018-04	2021-04
3.51	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	12482	2019-06	2021-06
3.52	ESR 7		Rohde & Schwarz	101424	2019-01	2021-01
3.53	SB4- 100.OLD20- 3T/10 Airwin 2 x 1.5 kW	Air compressor (oil-free)	airWin Kompressoren UG	901/00503		
3.54	UNI-T UT195E	Digital	UNI-T UNI-TREND TECHNOLOGY (CHINA) CO., LTD.	C190729561		
3.55	foEthernet_M	Fibre optic link		4841516022		
3.56	JS4-00101800- 35-5P		Miteq	896037		
3.57	AS 620 P	Antenna Mast (pneumatic polarisation)	HD GmbH	620/37		
3.58	CMW500	Callbox OIL-	Rohde & Schwarz GmbH & Co. KG	167766-By	2019-07	2020-07
	6005D (30 V / 5 A)	Laboratory Power Supply 120 V 60 Hz	PeakTech	81062045		
3.60	TD1.5-10kg	EUT Tilt Device (Rohacell)	Maturo GmbH	TD1.5- 10kg/024/37907 09		
3.61	ESIB 26	Spectrum Analyzer	Rohde & Schwarz	830482/004		
3.62	Innco Systems CO3000		innco systems GmbH	CO3000/967/393 71016/L		
3.63	NRV-Z1	Sensor Head B	Rohde & Schwarz GmbH & Co. KG	827753/006	2019-08	2020-08
3.64	HF 907-2		Rohde & Schwarz	102817	2019-04	2022-04
3.65		Fibre optic link CAN	Audivo GmbH (PONTIS EMC)	492 1607 013		
3.66	PAS 2.5 - 10 kg	Antenna Mast	Maturo GmbH	-		

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last	Calibration
					Calibration	Due
	00101800-25-S-		Miteq	2035324		
		Tunable Notch Filter	Wainwright Instruments GmbH	20		
3.69	AM 4.0	Antenna Mast 4 m	Maturo GmbH	AM4.0/180/1192 0513		
3.70	HF 907	Double-ridged horn	Rohde & Schwarz	102444	2018-07	2021-07
3.71		Analyser (9	Agilent Technologies Deutschland GmbH	MY45103714		

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

7 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

7.1 LISN R&S ESH3-Z5 (150 KHZ – 30 MHZ)

Frequency	Corr.
MHz	dB
0.15	10.1
5	10.3
7	10.5
10	10.5
12	10.7
14	10.7
16	10.8
18	10.9
20	10.9
22	11.1
24	11.1
26	11.2
28	11.2
30	11.3

	cable
LISN	loss
insertion	(incl. 10
loss	dB
ESH3-	atten-
Z 5	uator)
dB	dB
0.1	10.0
0.1	10.2
0.2	10.3
0.2	10.3
0.3	10.4
0.3	10.4
0.4	10.4
0.4	10.5
0.4	10.5
0.5	10.6
0.5	10.6
0.5	10.7
0.5	10.7
0.5	10.8

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used) Linear interpolation will be used for frequencies in between the values in the table.

7.2 ANTENNA R&S HFH2-Z2 (9 KHZ – 30 MHZ)

.Z ANTE		З ПГП2-
	AF	
Frequency	HFH-Z2)	Corr.
MHz	dB (1/m)	dB
0.009	20.50	-79.6
0.01	20.45	-79.6
0.015	20.37	-79.6
0.02	20.36	-79.6
0.025	20.38	-79.6
0.03	20.32	-79.6
0.05	20.35	-79.6
0.08	20.30	-79.6
0.1	20.20	-79.6
0.2	20.17	-79.6
0.3	20.14	-79.6
0.49	20.12	-79.6
0.490001	20.12	-39.6
0.5	20.11	-39.6
0.8	20.10	-39.6
1	20.09	-39.6
2	20.08	-39.6
3	20.06	-39.6
4	20.05	-39.5
5	20.05	-39.5
6	20.02	-39.5
8	19.95	-39.5
10	19.83	-39.4
12	19.71	-39.4
14	19.54	-39.4
16	19.53	-39.3
18	19.50	-39.3
20	19.57	-39.3
22	19.61	-39.3
24	19.61	-39.3
26	19.54	-39.3
28	19.46	-39.2
30	19.73	-39.1

Cable loss 1 (inside loss 2 (inside chamber) Cable loss 3 (switch chamber) Cable loss 3 (witch chamber) Cable loss 3 (witch chamber) Cable loss 4 (to corr. (areas. distance corr. (areas. distance decade) Cable loss 4 (to chamber) Cable decade) Cable decade) <th>() </th> <th>- JO WILL</th> <th>,</th> <th></th> <th></th> <th></th> <th></th>	()	- JO WILL	,				
dB dB dB dB dB m m 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 <td< td=""><td>loss 1 (inside</td><td>loss 2 (outside</td><td>loss 3 (switch</td><td>loss 4 (to</td><td>corr. (-40 dB/</td><td>(meas. distance</td><td>(meas. distance</td></td<>	loss 1 (inside	loss 2 (outside	loss 3 (switch	loss 4 (to	corr. (-40 dB/	(meas. distance	(meas. distance
0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1	,						, ,
0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1							
0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1							
0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1							
0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1							
0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1							
0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1							
0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 0.1 -40 30 3 0.2 0.1							
0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0							
0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.2 0.							
0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40							
0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40<							
0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1<							
0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1<							
0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40<							
0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40<							
0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40<							
0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1<							
0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1<							
0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1<	0.2	0.1	0.1	0.1	-40	30	
0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1<	0.2	0.1	0.1	0.1	-40	30	
0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.3 0.1 -40 30 3	0.2	0.1	0.1	0.1	-40	30	
0.2 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.3 0.1 -40 30 3	0.2	0.1	0.2	0.1	-40	30	3
0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.3 0.1 -40 30 3 0.3 0.1 0.3 0.1 -40 30 3	0.2	0.1	0.2	0.1	-40	30	3
0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.3 0.1 -40 30 3 0.3 0.1 0.3 0.1 -40 30 3	0.2	0.1	0.2	0.1	-40	30	3
0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.3 0.1 -40 30 3 0.3 0.1 0.3 0.1 -40 30 3	0.3	0.1	0.2	0.1	-40	30	
0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.3 0.1 -40 30 3 0.3 0.1 0.3 0.1 -40 30 3	0.3	0.1	0.2	0.1	-40	30	
0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.3 0.1 -40 30 3 3 0.3 0.3 0.1 -40 30 3	0.3	0.1	0.2	0.1	-40	30	
0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.3 0.1 -40 30 3	0.3	0.1	0.2	0.1	-40	30	
0.3 0.1 0.3 0.1 -40 30 3	0.3	0.1		0.1	-40	30	
	0.3	0.1	0.2	0.1	-40		
0.4 0.1 0.3 0.1 -40 30 3		0.1		0.1			
	0.4	0.1	0.3	0.1	-40	30	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-40 \times LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

7.3 ANTENNA R&S HL562 (30 MHZ – 1 GHZ)

$d_{Limit} = 3 m$		1
F	AF R&S	0.000
Frequency	HL562	Corr.
MHz	dB (1/m)	dB
30	18.6	0.6
50	6.0	0.9
100	9.7	1.2
150	7.9	1.6
200	7.6	1.9
250	9.5	2.1
300	11.0	2.3
350	12.4	2.6
400	13.6	2.9
450	14.7	3.1
500	15.6	3.2
550	16.3	3.5
600	17.2	3.5
650	18.1	3.6
700	18.5	3.6
750	19.1	4.1
800	19.6	4.1
850	20.1	4.4
900	20.8	4.7
950	21.1	4.8
1000	21.6	4.9

cable	cable	cable	cable	distance	d_{Limit}	dused
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-20 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

$(d_{Limit} = 10 \text{ m})$	1)						
30	18.6	-9.9	0.29	0.04	0.23	0.02	-10.5
50	6.0	-9.6	0.39	0.09	0.32	0.08	-10.5
100	9.7	-9.2	0.56	0.14	0.47	0.08	-10.5
150	7.9	-8.8	0.73	0.20	0.59	0.12	-10.5
200	7.6	-8.6	0.84	0.21	0.70	0.11	-10.5
250	9.5	-8.3	0.98	0.24	0.80	0.13	-10.5
300	11.0	-8.1	1.04	0.26	0.89	0.15	-10.5
350	12.4	-7.9	1.18	0.31	0.96	0.13	-10.5
400	13.6	-7.6	1.28	0.35	1.03	0.19	-10.5
450	14.7	-7.4	1.39	0.38	1.11	0.22	-10.5
500	15.6	-7.2	1.44	0.39	1.20	0.19	-10.5
550	16.3	-7.0	1.55	0.46	1.24	0.23	-10.5
600	17.2	-6.9	1.59	0.43	1.29	0.23	-10.5
650	18.1	-6.9	1.67	0.34	1.35	0.22	-10.5
700	18.5	-6.8	1.67	0.42	1.41	0.15	-10.5
750	19.1	-6.3	1.87	0.54	1.46	0.25	-10.5
800	19.6	-6.3	1.90	0.46	1.51	0.25	-10.5
850	20.1	-6.0	1.99	0.60	1.56	0.27	-10.5
900	20.8	-5.8	2.14	0.60	1.63	0.29	-10.5
950	21.1	-5.6	2.22	0.60	1.66	0.33	-10.5
1000	21.6	-5.6	2.23	0.61	1.71	0.30	-10.5

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -20 * LOG (d_{Limit}/d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

7.4 ANTENNA R&S HF907 (1 GHZ – 18 GHZ)

	AF R&S	
Frequency	HF907	Corr.
MHz	dB (1/m)	dB
1000	24.4	-19.4
2000	28.5	-17.4
3000	31.0	-16.1
4000	33.1	-14.7
5000	34.4	-13.7
6000	34.7	-12.7
7000	35.6	-11.0

	cable			
	loss 3			
	(switch			
cable	unit,			
loss 2	atten-	cable		
(outside	uator &	loss 4 (to		
chamber)	pre-amp)	receiver)		
dB	dB	dB		
0.31	-21.51	0.79		
0.44	-20.63	1.38		
0.53	-19.85	1.33		
0.67	-19.13	1.31		
0.86	-18.71	1.40		
0.90	-17.83	1.47		
0.86	-16.19	1.46		
	loss 2 (outside chamber) dB 0.31 0.44 0.53 0.67 0.86 0.90	cable unit, atten- (outside chamber) dB dB 0.31 -21.51 0.44 -20.63 0.53 -19.85 0.67 -19.13 0.86 -18.71 0.90 -17.83	loss 3 (switch unit, atten- cable loss 2 (outside chamber) pre-amp) receiver) dB dB dB dB 0.31 -21.51 0.79 0.44 -20.63 1.38 0.53 -19.85 1.33 0.67 -19.13 1.31 0.86 -18.71 1.40 0.90 -17.83 1.47	loss 3 (switch unit, loss 2 atten- cable loss 4 (to chamber) pre-amp) receiver) dB dB dB dB 0.31 -21.51 0.79 0.44 -20.63 1.38 0.53 -19.85 1.33 0.67 -19.13 1.31 0.86 -18.71 1.40 0.90 -17.83 1.47

	AF R&S	
Frequency	HF907	Corr.
MHz	dB (1/m)	dB
3000	31.0	-23.4
4000	33.1	-23.3
5000	34.4	-21.7
6000	34.7	-21.2
7000	35.6	-19.8

			cable		
			loss 4		
cable			(switch		
loss 1	cable	cable	unit,		used
(relay	loss 2	loss 3	atten-	cable	for
inside	(inside	(outside	uator &	loss 5 (to	FCC
chamber)	chamber)	chamber)	pre-amp)	receiver)	15.247
dB	dB	dB	dB	dB	
0.47	1.87	0.53	-27.58	1.33	
0.56	2.41	0.67	-28.23	1.31	
0.61	2.78	0.86	-27.35	1.40	
0.58	2.74	0.90	-26.89	1.47	
0.66	2.82	0.86	-25.58	1.46	

	AF R&S	
Frequency	HF907	Corr.
MHz	dB (1/m)	dB
7000	35.6	-57.3
8000	36.3	-56.3
9000	37.1	-55.3
10000	37.5	-56.2
11000	37.5	-55.3
12000	37.6	-53.7
13000	38.2	-53.5
14000	39.9	-56.3
15000	40.9	-54.1
16000	41.3	-54.1
17000	42.8	-54.4
18000	44.2	-54.7

cable					
loss 1	cable	cable	cable	cable	cable
(relay	loss 2	loss 3	loss 4	loss 5	loss 6
inside	(High	(pre-	(inside	(outside	(to
chamber)	Pass)	amp)	chamber)	chamber)	receiver)
dB	dB	dB	dB	dB	dB
0.56	1.28	-62.72	2.66	0.94	1.46
0.69	0.71	-61.49	2.84	1.00	1.53
0.68	0.65	-60.80	3.06	1.09	1.60
0.70	0.54	-61.91	3.28	1.20	1.67
0.80	0.61	-61.40	3.43	1.27	1.70
0.84	0.42	-59.70	3.53	1.26	1.73
0.83	0.44	-59.81	3.75	1.32	1.83
0.91	0.53	-63.03	3.91	1.40	1.77
0.98	0.54	-61.05	4.02	1.44	1.83
1.23	0.49	-61.51	4.17	1.51	1.85
1.36	0.76	-62.36	4.34	1.53	2.00
1.70	0.53	-62.88	4.41	1.55	1.91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

7.5 ANTENNA EMCO 3160-09 (18 GHZ – 26.5 GHZ)

	AF EMCO	
Frequency	3160-09	Corr.
MHz	dB (1/m)	dB
18000	40.2	-23.5
18500	40.2	-23.2
19000	40.2	-22.0
19500	40.3	-21.3
20000	40.3	-20.3
20500	40.3	-19.9
21000	40.3	-19.1
21500	40.3	-19.1
22000	40.3	-18.7
22500	40.4	-19.0
23000	40.4	-19.5
23500	40.4	-19.3
24000	40.4	-19.8
24500	40.4	-19.5
25000	40.4	-19.3
25500	40.5	-20.4
26000	40.5	-21.3
26500	40.5	-21.1

cable	cable	cable	cable	cable
loss 1	loss 2	loss 3	loss 4	loss 5
(inside	(pre-	(inside	(switch	(to
chamber)	amp)	chamber)	unit)	receiver)
dB	dB	dB	dB	dB
0.72	-35.85	6.20	2.81	2.65
0.69	-35.71	6.46	2.76	2.59
0.76	-35.44	6.69	3.15	2.79
0.74	-35.07	7.04	3.11	2.91
0.72	-34.49	7.30	3.07	3.05
0.78	-34.46	7.48	3.12	3.15
0.87	-34.07	7.61	3.20	3.33
0.90	-33.96	7.47	3.28	3.19
0.89	-33.57	7.34	3.35	3.28
0.87	-33.66	7.06	3.75	2.94
0.88	-33.75	6.92	3.77	2.70
0.90	-33.35	6.99	3.52	2.66
0.88	-33.99	6.88	3.88	2.58
0.91	-33.89	7.01	3.93	2.51
0.88	-33.00	6.72	3.96	2.14
0.89	-34.07	6.90	3.66	2.22
0.86	-35.11	7.02	3.69	2.28
0.90	-35.20	7.15	3.91	2.36
			•	<u> </u>

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB) U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

7.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

Fraguanay	AF EMCO 3160-10	Corr
Frequency GHz		Corr. dB
	dB (1/m)	
26.5	43.4	-11.2
27.0	43.4	-11.2
28.0	43.4	-11.1
29.0	43.5	-11.0
30.0	43.5	-10.9
31.0	43.5	-10.8
32.0	43.5	-10.7
33.0	43.6	-10.7
34.0	43.6	-10.6
35.0	43.6	-10.5
36.0	43.6	-10.4
37.0	43.7	-10.3
38.0	43.7	-10.2
39.0	43.7	-10.2
40.0	43.8	-10.1

			•			
cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-20 dB/ decade)	d _{Limit} (meas. distance (limit)	d _{used} (meas. distance (used)
dB	dB	dB	dB	dB	m	m
4.4				-9.5	3	1.0
4.4				-9.5	3	1.0
4.5				-9.5	3	1.0
4.6				-9.5	3	1.0
4.7				-9.5	3	1.0
4.7				-9.5	3	1.0
4.8				-9.5	3	1.0
4.9				-9.5	3	1.0
5.0				-9.5	3	1.0
5.1				-9.5	3	1.0
5.1				-9.5	3	1.0
5.2				-9.5	3	1.0
5.3				-9.5	3	1.0
5.4				-9.5	3	1.0
5.5				-9.5	3	1.0

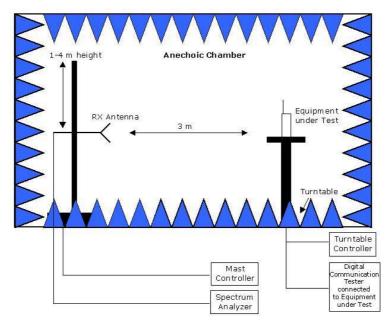
Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

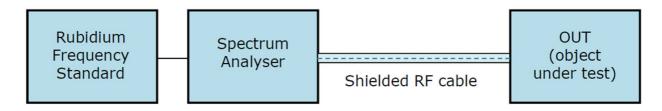
AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.


distance correction = $-20 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.



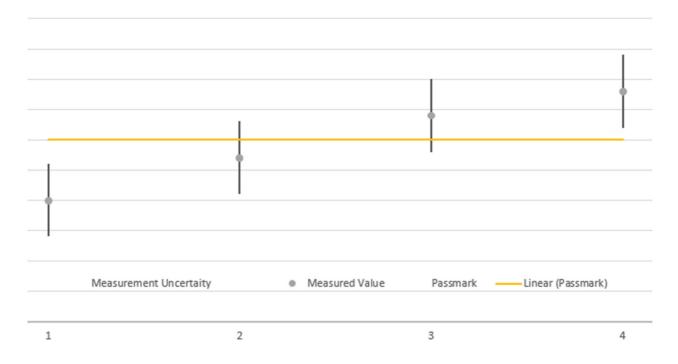
8 SETUP DRAWINGS

<u>Remark:</u> Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting groundplane.

Drawing 2: Setup for conducted radio tests.

9 PHOTO REPORT


Please see separate photo report.

10 MEASUREMENT UNCERTAINTIES

Test Case	Parameter	Uncertainty
AC Power Line	Power	± 3.4 dB
Field Strength of spurious radiation	Power	± 5.5 dB
6 dB / 26 dB / 99% Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz
Conducted Output Power	Power	± 2.2 dB
Band Edge Compliance	Power Frequency	± 2.2 dB ± 11.2 kHz
Frequency Stability	Frequency	± 25 Hz
Power Spectral Density	Power	± 2.2 dB

The measurement uncertainties for all parameters are calculated with an expansion factor (coverage factor) k = 1.96. This means, that the true value is in the corresponding interval with a probability of 95 %.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so-called shared risk principle.