

FCC RADIO TEST REPORT

Applicant's company	Realtek Semiconductor Corp.
Applicant Address	No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan
FCC ID	TX2-RTL8723BE
Manufacturer's company	Realtek Semiconductor Corp.
Manufacturer Address	No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan

Product Name	802.11 b/g/n RTL8723BE Combo module
Brand Name	REALTEK
Model No.	RTL8723BE
Test Rule	47 CFR FCC Part 15 Subpart C § 15.247
Test Freq. Range	2400~2483.5MHz
Received Date	Feb. 08, 2013
Final Test Date	Jan. 10, 2014
Submission Type	Class II Change

Statement

Test result included is only for the Bluetooth LE part of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in **ANSI C63.10-2009, 47 CFR FCC Part 15 Subpart C** and **KDB 558074 D01 v03r01**.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1. CERTIFICATE OF COMPLIANCE	1
2. SUMMARY OF THE TEST RESULT	2
3. GENERAL INFORMATION	3
3.1. Product Details.....	3
3.2. Accessories.....	3
3.3. Table for Filed Antenna.....	4
3.4. Table for Carrier Frequencies	5
3.5. Table for Test Modes.....	5
3.6. Table for Class II Change	6
3.7. Table for Testing Locations.....	6
3.8. Table for Supporting Units	7
3.9. Test Configurations	8
4. TEST RESULT	10
4.1. AC Power Line Conducted Emissions Measurement.....	10
4.2. Maximum Conducted Output Power Measurement.....	14
4.3. Radiated Emissions Measurement.....	16
4.4. Emissions Measurement.....	26
4.5. Antenna Requirements	32
5. LIST OF MEASURING EQUIPMENTS	33
6. MEASUREMENT UNCERTAINTY.....	35
APPENDIX A. TEST PHOTOS	A1 ~ A8
APPENDIX B. ANTNEEA LIST	

History of This Test Report

1. CERTIFICATE OF COMPLIANCE

Product Name : 802.11b/g/n RTL8723BE Combo module
Brand Name : REALTEK
Model No. : RTL8723BE
Applicant : Realtek Semiconductor Corp.
Test Rule Part(s) : 47 CFR FCC Part 15 Subpart C § 15.247

Sportun International as requested by the applicant to evaluate the EMC performance of the product sample received on Feb. 08, 2013 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

A handwritten signature in blue ink, appearing to read 'Sam Chen'.

Sam Chen

SPORTON INTERNATIONAL INC.

2. SUMMARY OF THE TEST RESULT

Applied Standard: 47 CFR FCC Part 15 Subpart C				
Part	Rule Section	Description of Test	Result	Under Limit
4.1	15.207	AC Power Line Conducted Emissions	Complies	9.61 dB
4.2	15.247(b)(3)	Maximum Conducted Output Power	Complies	21.91 dB
4.3	15.247(d)	Radiated Emissions	Complies	3.92 dB
4.4	15.247(d)	Band Edge Emissions	Complies	4.96 dB
4.5	15.203	Antenna Requirements	Complies	-

3. GENERAL INFORMATION

3.1. Product Details

Items	Description
Power Type	From host sysytem
Modulation	DSSS
Data Rate (Mbps)	GFSK: 1
Frequency Range	2400~2483.5MHz
Channel Number	40 (37 hopping + 3 advertising channel)
Channel Band Width (99%)	1.06 MHz
Maximum Conducted Output Power	8.09 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

3.2. Accessories

N/A

3.3. Table for Filed Antenna

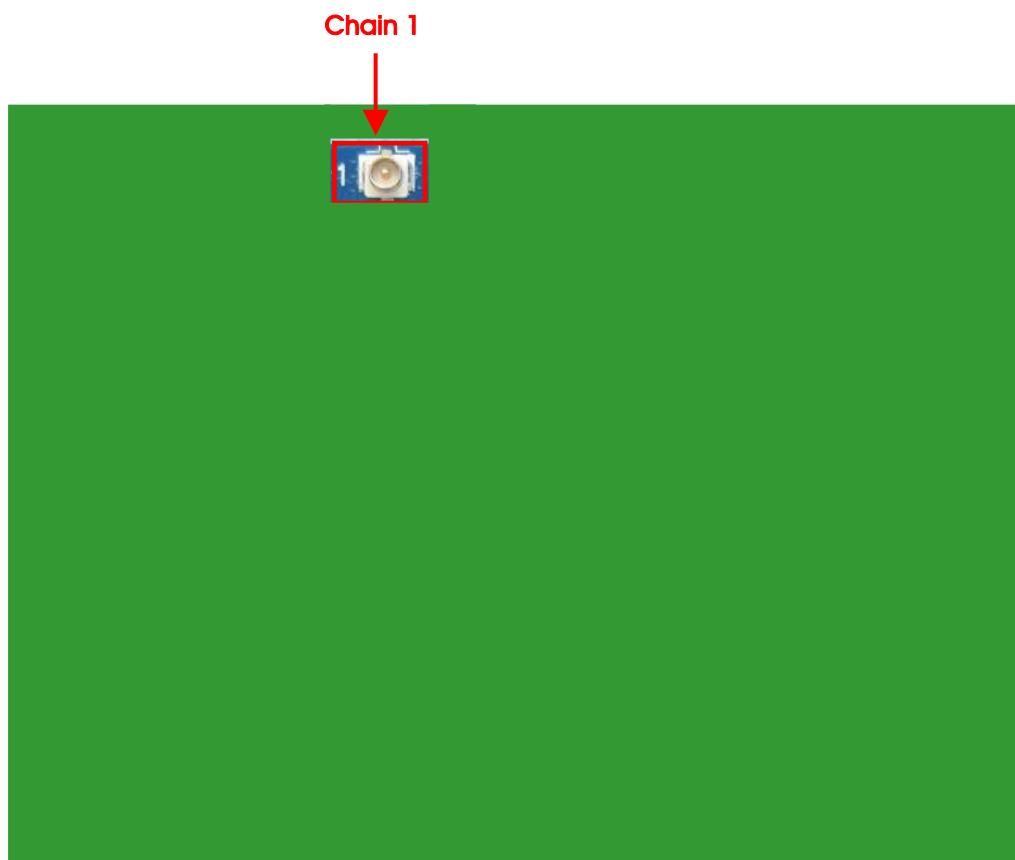
Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	LYNwave	ALA110-222050-300010	PIFA	I-PEX	3.5
2	JOYMAX	TWF-614XMPXX-500	Dipole	I-PEX	3

This project added one configurations of EUT. The more information is listed as below table.

Configuration	Type	Power Type	Type of Antenna
1	HMC	PCI-E (WLAN)	1. PIFA with I-PEX connector
		USB (Bluetooth)	2. Dipole with I-PEX connector

Note:

For WLAN 802.11b/g/n (1TX, 1RX) mode:


Chain 1 could transmit/receive simultaneously.

For Bluetooth mode:

Chain 1 could transmit/receive simultaneously.

The bluetooth gets into idle mode while the WiFi works.

The WiFi gets into idle mode while the bluetooth works.

3.4. Table for Carrier Frequencies

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
2400~2483.5MHz	0	2402 MHz	20	2442 MHz
	1	2404 MHz	:	:
	2	2406 MHz	37	2476 MHz
	:	:	38	2478 MHz
	18	2438 MHz	39	2480 MHz
	19	2440 MHz	-	-

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel	Chain
AC Power Line Conducted Emissions	Normal Link	-	-	-
Maximum Conducted Output Power Power Spectral Density	GFSK	1 Mbps	0/20/39	1
6dB Spectrum Bandwidth	GFSK	1 Mbps	0/20/39	1
Radiated Emissions 9kHz~1GHz	Normal Link	-	-	-
Radiated Emissions 1GHz~10 th Harmonic	GFSK	1 Mbps	0/20/39	1
Band Edge Emissions	GFSK	1 Mbps	0/20/39	1

The following test modes were performed for all tests:

Mode 3 has been evaluated to be the worst case for Radiated emission below 1GHz test.

Consequently, measurement for Conducted emission test will follow this same test mode.

For Conducted Emission test:

Mode 1. HMC + USB (Bluetooth) + PIFA with I-PEX connector

For Radiated Emission test<Below 1GHz>:

Mode 1. HMC + PCIE (WLAN) + PIFA with I-PEX connector

Mode 2. HMC + PCIE (WLAN) + Dipole with I-PEX connector

Mode 1 has been evaluated to be the worst case among Mode 1~2, thus measurement for Mode 3 will follow this same test mode.

Mode 3. HMC + USB (Bluetooth) + PIFA with I-PEX connector

Mode 3 is the worst case, so it was selected to record in this test report.

For Radiated Emission test<Above 1GHz>:

Mode 1. HMC + USB (Bluetooth) + PIFA with I-PEX connector

Mode 2. HMC + USB (Bluetooth) + Dipole with I-PEX connector

Mode 2 is the worst case, so it was selected to record in this test report.

3.6. Table for Class II Change

This product is an extension of original report under Sporton project number: FR322105AC

Below is the table for the change of the product with respect to the original one.

Modifications	Performance Checking
1. The addition new type of one antenna connector from original certified HMC type device.	1. AC Power Line Conducted Emissions 2. Radiated Emissions 3. Band Edge Emissions After evaluating, these test items should be tested and recorded in this report.
2. Antenna List: Add 121 set same type of PIFA antennas, The total antennas amounted to 160 sets.	Do not have to retest assessed.

3.7. Table for Testing Locations

Test Site Location				
Address:	No.8, Lane 724, Bo-ai St., Jhubei City, Hsinchu County 302, Taiwan, R.O.C.			
Test Site No.	Site Category	Location	FCC Reg. No.	IC File No.
03CH01-CB	SAC	Hsin Chu	262045	IC 4086D
CO01-CB	Conduction	Hsin Chu	262045	IC 4086D
TH01-CB	OVEN Room	Hsin Chu	-	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).

3.8. Table for Supporting Units

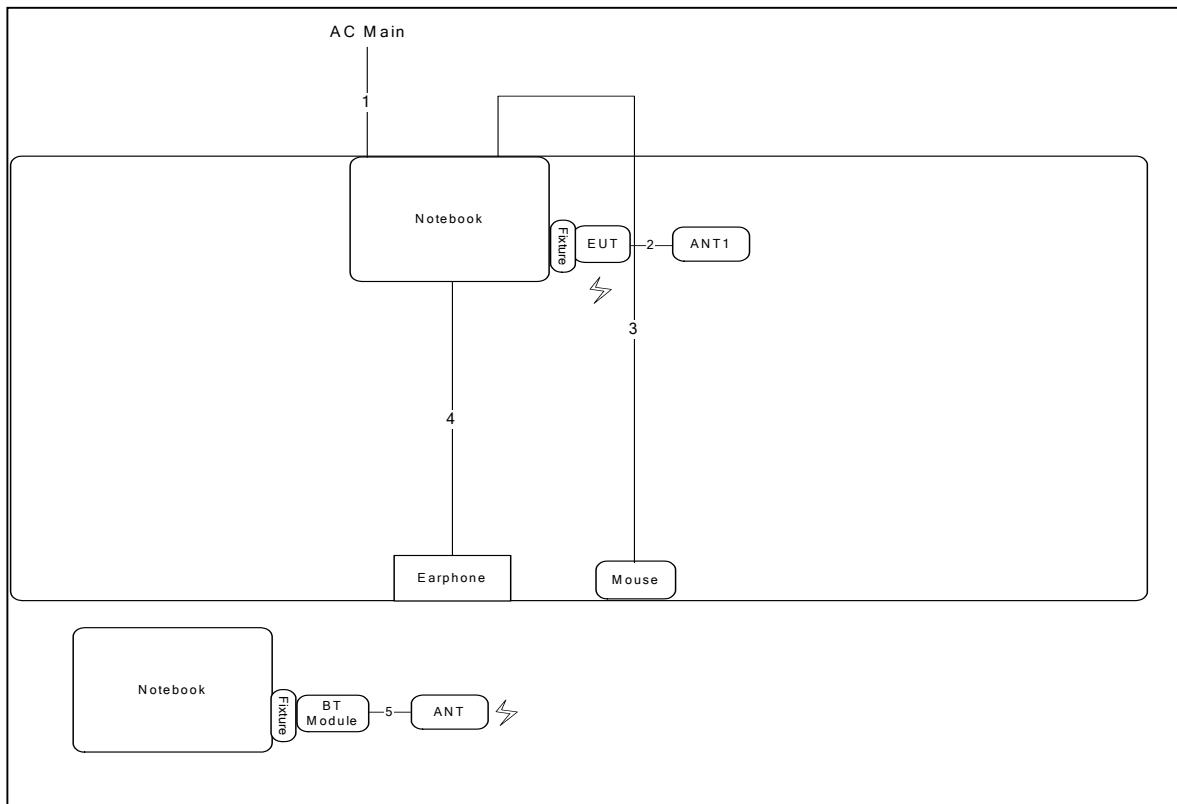
For Test Site No: CO01-CB

Support Unit	Brand	Model	FCC ID
Notebook*2	DELL	E6220	DoC
Mouse	Logitech	M-U0026	DoC
Earphone	SHYARO CHI	MIC-04	N/A
The test fixture	Realtek	PCIE Adapter	N/A

For Test Site No: 03CH01-CB <Below 1GHz>

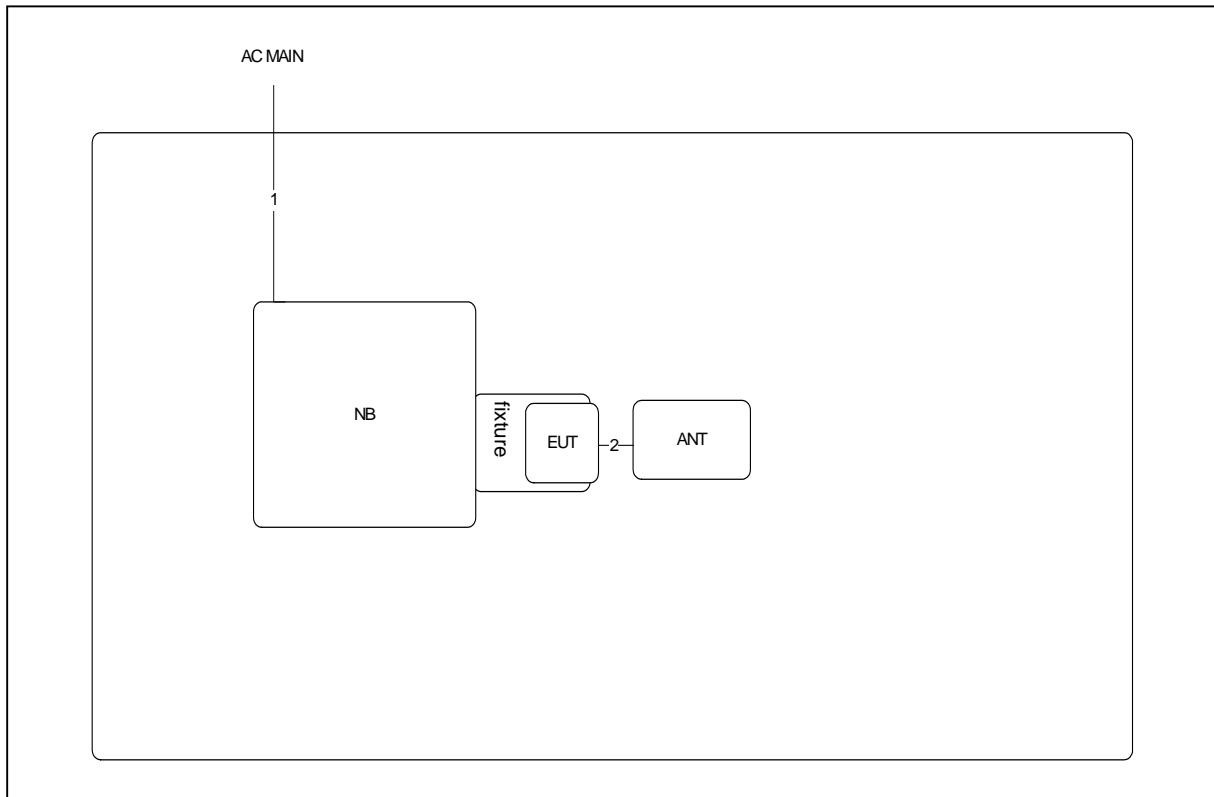
Support Unit	Brand	Model	FCC ID
Notebook	DELL	E6430	DoC
Notebook	DELL	D420	E2KWM3945ABG
Mouse	acer	MOBVUO	DoC
Earphone	E-BOOKI	E-EPC040	N/A
The test fixture	Realtek	PCIE Adapter	N/A

For Test Site No: 03CH01-CB <Above 1GHz>


Support Unit	Brand	Model	FCC ID
Notebook	DELL	D420	E2KWM3945ABG
The test fixture	Realtek	PCIE Adapter	N/A

For Test Site No : TH01-CB

Support Unit	Brand	Model	FCC ID
Notebook	DELL	M1330	E2KWM3945ABG
The test fixture	Realtek	PCIE Adapter	N/A


3.9. Test Configurations

3.9.1. AC Power Line Conduction Emissions and Radiation Emissions (Below 1GHz) Test Configuration

Item	Connection	Shield	Length
1	Power cable	No	2.6m
2	ANT cable	Yes	0.3m
3	USB cable	Yes	1.8m
4	Audio cable	No	1.1m
5	ANT cable	Yes	0.3m

3.9.2. Radiation Emissions Test (above 1GHz) Configuration

Item	Connection	Shielded	Length(m)
1	Power cable	No	2.6m
2	ANT cable	No	0.18m

4. TEST RESULT

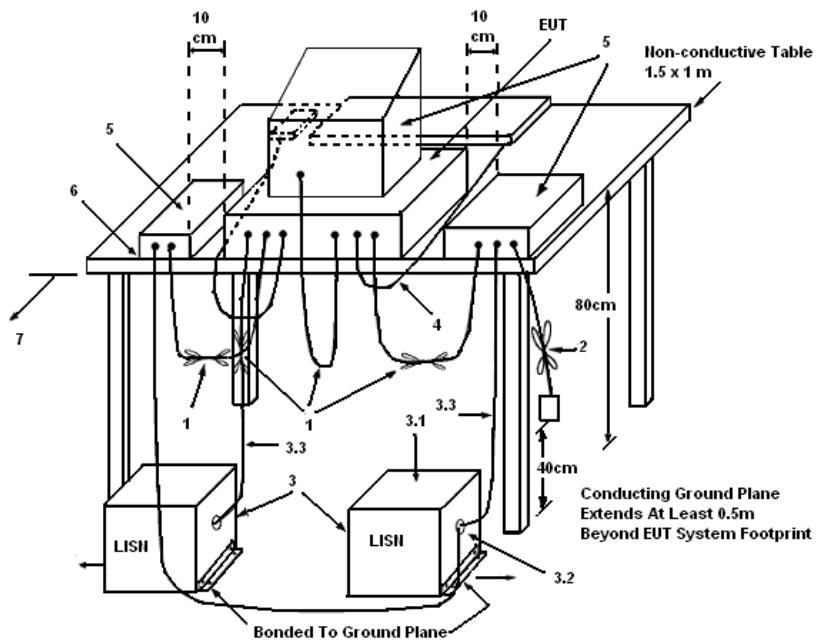
4.1. AC Power Line Conducted Emissions Measurement

4.1.1. Limit

For this product which is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

4.1.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

4.1.3. Test Procedures

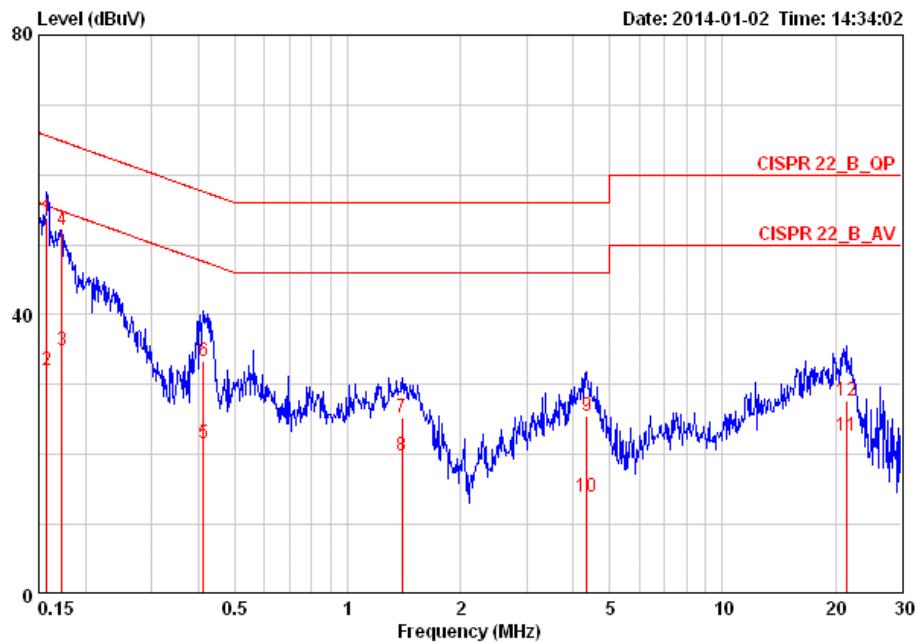
1. Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
4. The frequency range from 150 kHz to 30 MHz was searched.
5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
6. The measurement has to be done between each power line and ground at the power terminal.

4.1.4. Test Setup Layout

LEGEND:

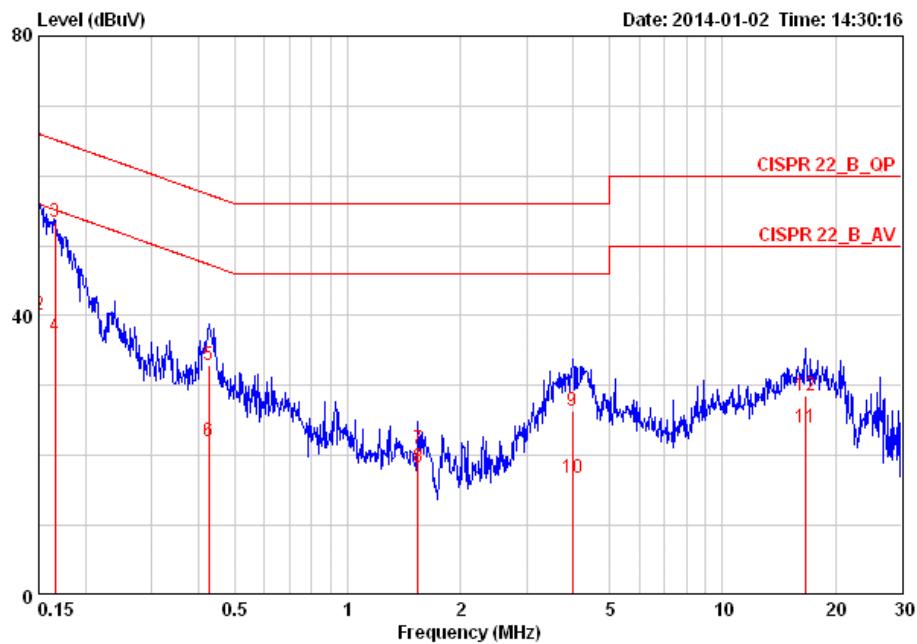
- (1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- (2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- (3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.
 - (3.1) All other equipment powered from additional LISN(s).
 - (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
 - (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
- (7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

4.1.5. Test Deviation


There is no deviation with the original standard.

4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.


4.1.7. Results of AC Power Line Conducted Emissions Measurement

Temperature	23°C	Humidity	54%
Test Engineer	Justin Chiu	Phase	Line
Configuration	Normal Link	Test Mode	Mode 1

Freq	Level	Over Limit	Limit Line	Read Level		LISN Factor	Cable Loss	Remark	Pol/Phase
				MHz	dBuV				
1	0.15733	53.82	-11.78	65.60	53.51	0.15	0.16	QP	LINE
2	0.15733	32.13	-23.47	55.60	31.82	0.15	0.16	AVERAGE	LINE
3	0.17307	34.88	-19.93	54.81	34.57	0.15	0.16	AVERAGE	LINE
4	0.17307	52.09	-12.72	64.81	51.78	0.15	0.16	QP	LINE
5	0.41266	21.55	-26.04	47.59	21.22	0.15	0.18	AVERAGE	LINE
6	0.41266	33.35	-24.24	57.59	33.02	0.15	0.18	QP	LINE
7	1.396	25.21	-30.79	56.00	24.81	0.17	0.22	QP	LINE
8	1.396	19.92	-26.08	46.00	19.52	0.17	0.22	AVERAGE	LINE
9	4.338	25.52	-30.48	56.00	24.93	0.28	0.31	QP	LINE
10	4.338	13.91	-32.09	46.00	13.32	0.28	0.31	AVERAGE	LINE
11	21.373	22.59	-27.41	50.00	21.42	0.64	0.53	AVERAGE	LINE
12	21.373	27.66	-32.34	60.00	26.49	0.64	0.53	QP	LINE

Temperature	23°C	Humidity	54%
Test Engineer	Justin Chiu	Phase	Neutral
Configuration	Normal Link	Test Mode	Mode 1

Freq	Level	Over	Limit	Read	LISN	Cable	Pol/Phase
		Line	Level	Factor	Loss	Remark	
MHz	dBuV	dB	dBuV	dBuV	dB	dB	
1 @	0.15000	56.39	-9.61	66.00	56.16	0.07	0.16 QP NEUTRAL
2	0.15000	40.11	-15.89	56.00	39.88	0.07	0.16 AVERAGE NEUTRAL
3	0.16589	53.35	-11.81	65.16	53.12	0.07	0.16 QP NEUTRAL
4	0.16589	36.97	-18.19	55.16	36.74	0.07	0.16 AVERAGE NEUTRAL
5	0.42599	32.81	-24.52	57.33	32.56	0.07	0.18 QP NEUTRAL
6	0.42599	22.11	-25.22	47.33	21.86	0.07	0.18 AVERAGE NEUTRAL
7	1.544	20.86	-35.14	56.00	20.53	0.10	0.23 QP NEUTRAL
8	1.544	18.33	-27.67	46.00	18.00	0.10	0.23 AVERAGE NEUTRAL
9	3.985	26.29	-29.71	56.00	25.86	0.13	0.30 QP NEUTRAL
10	3.985	16.81	-29.19	46.00	16.38	0.13	0.30 AVERAGE NEUTRAL
11	16.661	24.07	-25.93	50.00	23.21	0.39	0.47 AVERAGE NEUTRAL
12	16.661	28.63	-31.37	60.00	27.77	0.39	0.47 QP NEUTRAL

Note:

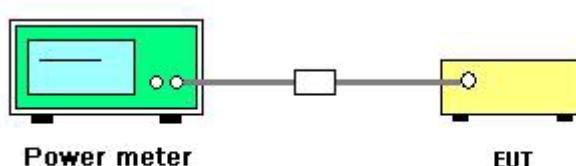
Level = Read Level + LISN Factor + Cable Loss.

4.2. Maximum Conducted Output Power Measurement

4.2.1. Limit

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. The limit has to be reduced by the amount in dB that the gain of the antenna exceeds 6dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

4.2.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the power meter.

Power Meter Parameter	Setting
Bandwidth	50MHz bandwidth is greater than the EUT emission bandwidth
Detector	Average

4.2.3. Test Procedures

1. Test procedures refer KDB 558074 D01 v03r01 section 9.2.2.
2. This procedure provides an alternative for determining the RMS output power using a broadband RF average power meter with a thermocouple detector.

4.2.4. Test Setup Layout

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.2.7. Test Result of Maximum Conducted Output Power

Temperature	23°C	Humidity	63%
Test Engineer	Benson Peng	Configurations	GFSK
Test Date	Mar. 21, 2013		

Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
0	2402 MHz	8.06	30.00	Complies
20	2442 MHz	8.09	30.00	Complies
39	2480 MHz	7.86	30.00	Complies

4.3. Radiated Emissions Measurement

4.3.1. Limit

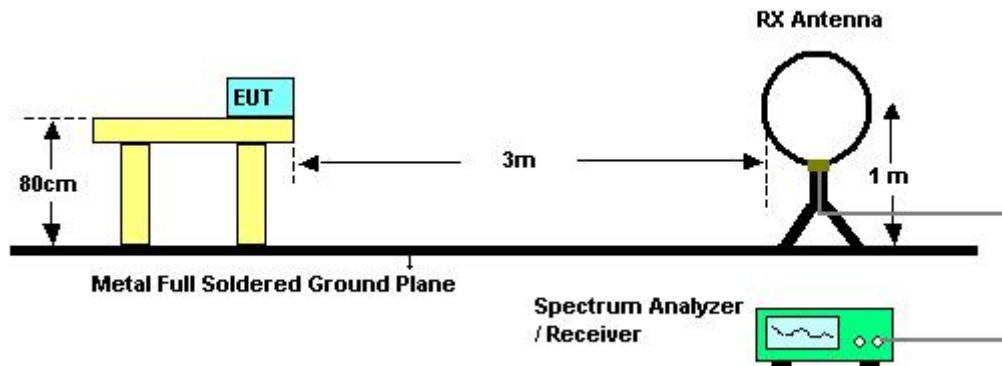
20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

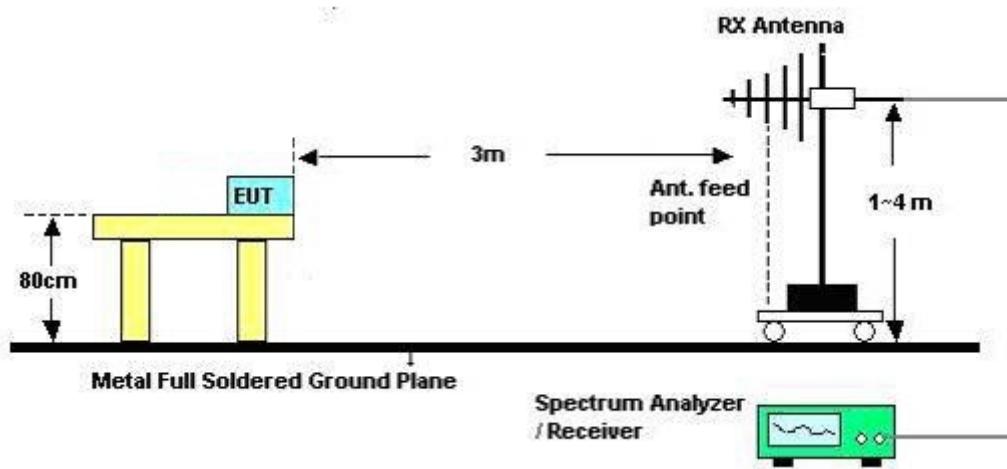
4.3.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

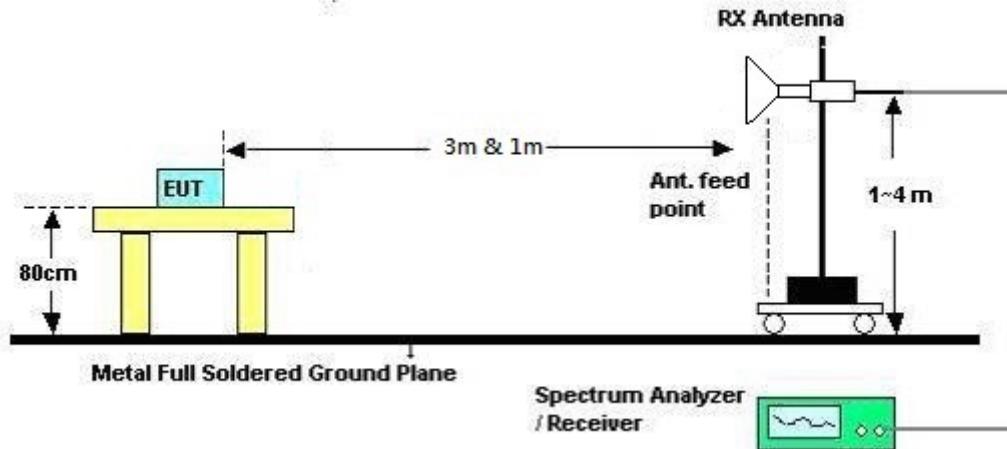
Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak, 1MHz / 10Hz for Average
RBW / VBW (Emission in non-restricted band)	100kHz / 300kHz for peak


Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RBW 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RBW 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RBW 120kHz for QP

4.3.3. Test Procedures


1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High – Low scan is not required in this case.

4.3.4. Test Setup Layout


For Radiated Emissions: 9kHz ~30MHz

For Radiated Emissions: 30MHz~1GHz

For Radiated Emissions: Above 1GHz

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

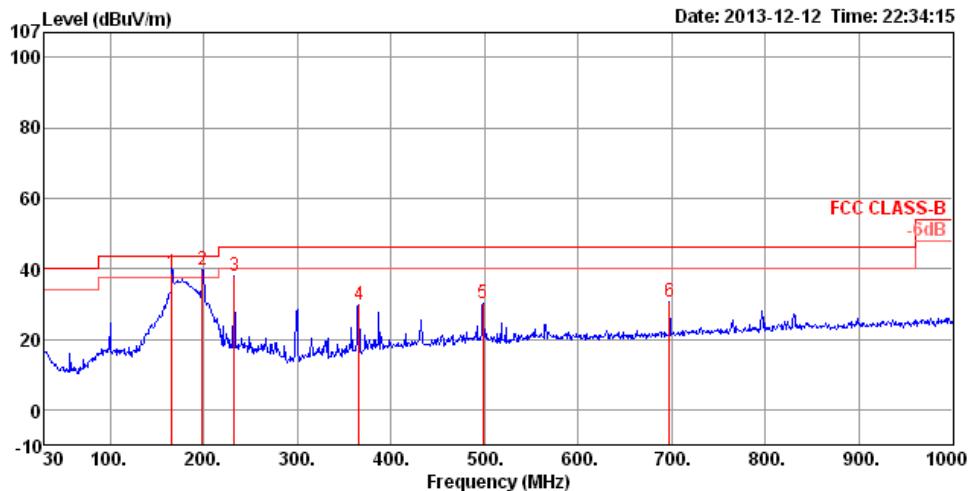
4.3.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	23°C	Humidity	64%
Test Engineer	James Chou	Configurations	Normal Link
Test Date	Dec. 12, 2013	Test Mode	Mode 3

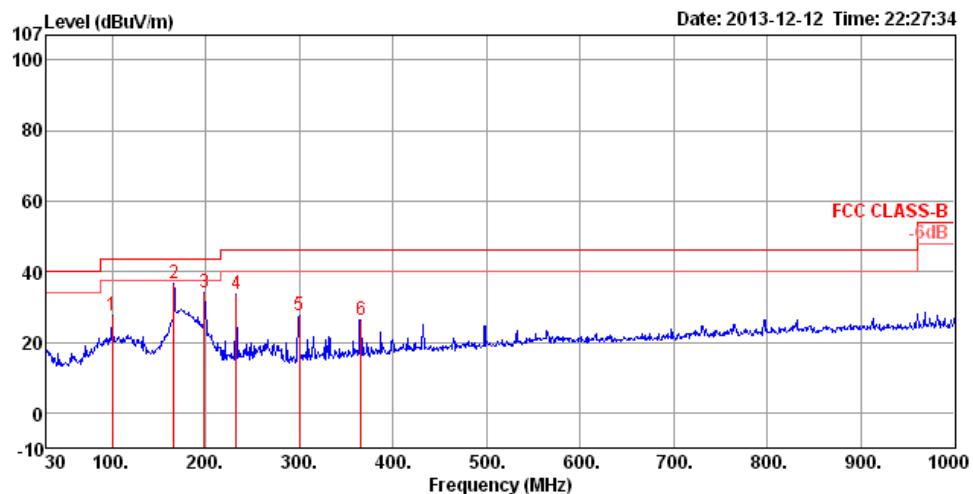
Freq. (MHz)	Level (dBuV)	Over Limit (dB)	Limit Line (dBuV)	Remark
-	-	-	-	See Note

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.


Distance extrapolation factor = $40 \log (\text{specific distance} / \text{test distance})$ (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.


4.3.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	23°C	Humidity	64%
Test Engineer	James Chou	Configurations	Normal Link
Test Mode	Mode 3		

Horizontal

Freq	Level	Limit		Over Line	Read Level	Cable Loss	Antenna Factor	Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg	
1	165.80	38.97	43.50	-4.53	59.57	1.56	9.38	31.54	168	157	HORIZONTAL	QP
2	198.78	39.58	43.50	-3.92	60.64	1.70	8.75	31.51	150	156	HORIZONTAL	Peak
3	232.73	37.87	46.00	-8.13	57.46	1.84	10.02	31.45	125	157	HORIZONTAL	Peak
4	365.62	29.60	46.00	-16.40	43.83	2.39	14.75	31.37	100	156	HORIZONTAL	Peak
5	498.51	30.06	46.00	-15.94	41.75	2.81	16.90	31.40	200	268	HORIZONTAL	Peak
6	697.36	30.47	46.00	-15.53	39.49	3.40	18.89	31.31	150	100	HORIZONTAL	Peak

Vertical

Freq	Level	Limit	Over	Read	Cable			Antenna	Preamp	A/Pos	T/Pos	Pol/Phase	Remark
					Line	Limit	dB						
MHz	dBuV/m	dBuV/m								cm	deg		
1	99.84	27.60	43.50	-15.90	47.72	1.18	10.31	31.61	100	333	VERTICAL	Peak	
2	165.80	36.50	43.50	-7.00	57.10	1.56	9.38	31.54	200	61	VERTICAL	Peak	
3	198.78	33.92	43.50	-9.58	54.98	1.70	8.75	31.51	200	9	VERTICAL	Peak	
4	232.73	33.80	46.00	-12.20	53.39	1.84	10.02	31.45	200	141	VERTICAL	Peak	
5	299.66	27.60	46.00	-18.40	43.87	2.13	13.02	31.42	200	187	VERTICAL	Peak	
6	365.62	26.32	46.00	-19.68	40.55	2.39	14.75	31.37	200	54	VERTICAL	Peak	

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.3.9. Results for Radiated Emissions (1GHz~10th Harmonic)

Temperature	23°C	Humidity	64%
Test Engineer	James Chou	Configurations	Channel 0
Test Date	Dec. 11, 2013		

Horizontal

Freq	Level	Limit	Over	Read	Cable	Preamp	Antenna	Remark	T/Pos	A/Pos	Pol/Phase
		Line	Limit	Level	Loss	Factor	Factor		deg	cm	
MHz	dBuV/m	dBuV/m		dB	dBuV	dB	dB	dB/m			
1	4883.52	32.01	54.00	-21.99	29.80	4.22	34.67	32.66	Average	238	100 HORIZONTAL
2	4888.65	44.88	74.00	-29.12	42.64	4.22	34.67	32.69	Peak	238	100 HORIZONTAL

Vertical

Freq	Level	Limit	Over	Read	Cable	Preamp	Antenna	Remark	T/Pos	A/Pos	Pol/Phase
		Line	Limit	Level	Loss	Factor	Factor		deg	cm	
MHz	dBuV/m	dBuV/m		dB	dBuV	dB	dB	dB/m			
1	4883.31	44.48	74.00	-29.52	42.27	4.22	34.67	32.66	Peak	206	100 VERTICAL
2	4884.91	31.86	54.00	-22.14	29.62	4.22	34.67	32.69	Average	206	100 VERTICAL

Temperature	23°C	Humidity	64%
Test Engineer	James Chou	Configurations	Channel 20
Test Date	Dec. 11, 2013		

Horizontal

Freq	Level	Limit		Over Line	Read Level	Cable			Preamp Factor	Antenna Factor	Remark	T/Pos	A/Pos	Pol/Phase
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB						
1	4879.24	31.77	54.00	-22.23	29.56	4.22	34.67	32.66	Average		238	100	HORIZONTAL	
2	4884.45	44.40	74.00	-29.60	42.19	4.22	34.67	32.66	Peak		238	100	HORIZONTAL	
3	7325.42	50.60	74.00	-23.40	43.20	5.35	34.94	36.99	Peak		275	100	HORIZONTAL	
4	7330.63	37.02	54.00	-16.98	29.62	5.35	34.94	36.99	Average		275	100	HORIZONTAL	

Vertical

Freq	Level	Limit		Over Line	Read Level	Cable			Preamp Factor	Antenna Factor	Remark	T/Pos	A/Pos	Pol/Phase
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB						
1	4884.02	44.39	74.00	-29.61	42.18	4.22	34.67	32.66	Peak		266	100	VERTICAL	
2	4884.35	32.35	54.00	-21.65	30.14	4.22	34.67	32.66	Average		266	100	VERTICAL	
3	7329.11	36.74	54.00	-17.26	29.34	5.35	34.94	36.99	Average		310	100	VERTICAL	
4	7330.74	51.26	74.00	-22.74	43.86	5.35	34.94	36.99	Peak		310	100	VERTICAL	

Temperature	23°C	Humidity	64%
Test Engineer	James Chou	Configurations	Channel 39
Test Date	Dec. 11, 2013		

Horizontal

Freq MHz	Level dBuV/m	Limit Line	Over Limit	Read Level dB	Cable Loss	Preamp Factor	Antenna Factor	Remark	T/Pos	A/Pos	Pol/Phase
				dB	dBuV	dB	dB	dB/m	deg	cm	
1 4956.23	32.73	54.00	-21.27	30.31	4.23	34.64	32.83	Average	124	100	HORIZONTAL
2 4957.12	45.47	74.00	-28.53	43.05	4.23	34.64	32.83	Peak	124	100	HORIZONTAL
3 7439.42	36.76	54.00	-17.24	29.23	5.37	34.98	37.14	Average	176	100	HORIZONTAL
4 7443.16	49.15	74.00	-24.85	41.62	5.37	34.98	37.14	Peak	176	100	HORIZONTAL

Vertical

Freq MHz	Level dBuV/m	Limit Line	Over Limit	Read Level dB	Cable Loss	Preamp Factor	Antenna Factor	Remark	T/Pos	A/Pos	Pol/Phase
				dB	dBuV	dB	dB	dB/m	deg	cm	
1 4959.62	33.25	54.00	-20.75	30.83	4.23	34.64	32.83	Average	215	100	VERTICAL
2 4960.47	45.68	74.00	-28.32	43.26	4.23	34.64	32.83	Peak	215	100	VERTICAL
3 7438.21	49.81	74.00	-24.19	42.27	5.37	34.97	37.14	Peak	250	100	VERTICAL
4 7438.32	36.64	54.00	-17.36	29.10	5.37	34.97	37.14	Average	250	100	VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.4. Emissions Measurement

4.4.1. Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak, 1MHz / 10Hz for Average
RBW / VBW (Emission in non-restricted band)	100 kHz / 300 kHz for Peak

4.4.3. Test Procedures

For Radiated band edges Measurement:

1. The test procedure is the same as section 4.3.3, only the frequency range investigated is limited to 100MHz around band edges.

For Radiated Out of Band Emission Measurement:

1. Test was performed in accordance with KDB 558074 D01 v03r01 for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 section 10.1 Unwanted Emissions into Non-Restricted Frequency Bands Measurement Procedure.
2. The radiated emission test is performed on each TX port of operating mode without summing or adding 10log (N) since the limit is relative emission limit.
Only worst data of each operating mode is presented.

4.4.4. Test Setup Layout

For Radiated band edges Measurement:

This test setup layout is the same as that shown in section 4.3.4.

For Radiated Out of Band Emission Measurement:

This test setup layout is the same as that shown in section 4.3.4.

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.4.7. Test Result of Band Edge and Fundamental Emissions

Temperature	23°C	Humidity	64%
Test Engineer	James Chou	Configurations	Channel 0, 20, 39
Test Date	Dec. 11, 2013		

Channel 0

Freq	Level	Limit		Over Limit	Read Level	Cable Loss Factor			Antenna Factor	Remark	T/Pos	A/Pos	Pol/Phase
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m				
1	2361.96	49.04	54.00	-4.96	18.23	2.89	0.00	27.92	Average	198	100	VERTICAL	
2	2390.00	58.58	74.00	-15.42	27.80	2.91	0.00	27.87	Peak	198	100	VERTICAL	
3	2401.84	106.79			76.01	2.91	0.00	27.87	Peak	198	100	VERTICAL	
4	2402.00	101.44			70.66	2.91	0.00	27.87	Average	198	100	VERTICAL	

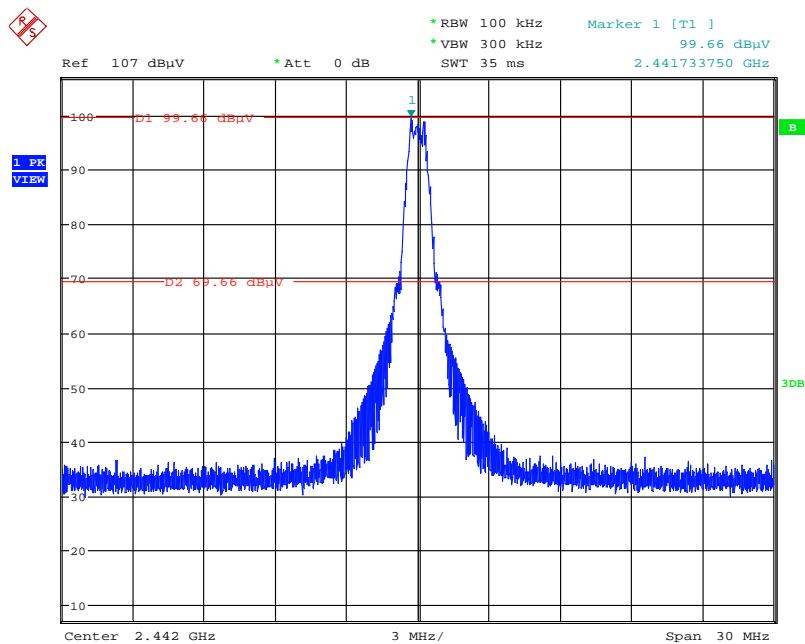
Item 3,4 are the fundamental frequency at 2402 MHz.

Channel 20

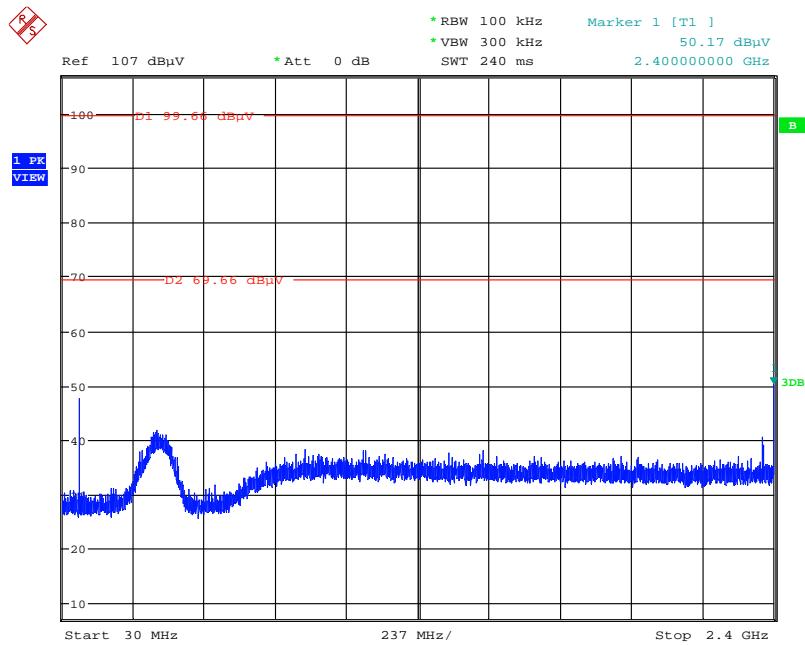
Freq	Level	Limit		Over Limit	Read Level	Cable Loss Factor			Antenna Factor	Remark	T/Pos	A/Pos	Pol/Phase
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m				
1	2388.40	56.91	74.00	-17.09	26.13	2.91	0.00	27.87	Peak	33	100	VERTICAL	
2	2390.00	45.75	54.00	-8.25	14.97	2.91	0.00	27.87	Average	33	100	VERTICAL	
3	2442.00	105.77			75.05	2.94	0.00	27.78	Peak	33	100	VERTICAL	
4	2442.00	100.53			69.81	2.94	0.00	27.78	Average	33	100	VERTICAL	
5	2483.50	55.67	74.00	-18.33	24.98	2.96	0.00	27.73	Peak	33	100	VERTICAL	
6	2483.50	46.06	54.00	-7.94	15.37	2.96	0.00	27.73	Average	33	100	VERTICAL	

Item 3,4 are the fundamental frequency at 2442 MHz.

Channel 39

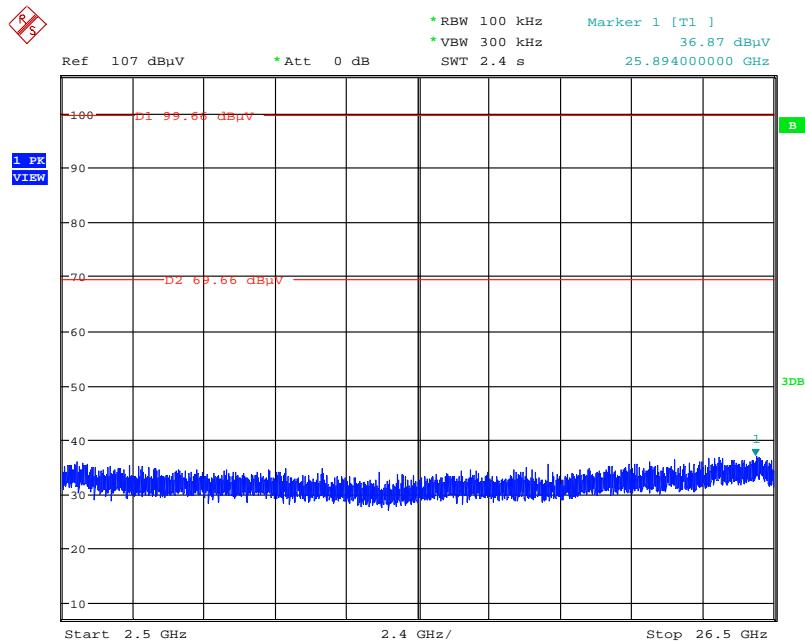

Freq	Level	Limit		Over Limit	Read Level	Cable Loss Factor			Antenna Factor	Remark	T/Pos	A/Pos	Pol/Phase
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m				
1	2479.84	105.28			74.59	2.96	0.00	27.73	Peak	215	100	VERTICAL	
2	2480.00	100.27			69.58	2.96	0.00	27.73	Average	215	100	VERTICAL	
3	2483.50	56.41	74.00	-17.59	25.72	2.96	0.00	27.73	Peak	215	100	VERTICAL	
4	2483.50	46.92	54.00	-7.08	16.23	2.96	0.00	27.73	Average	215	100	VERTICAL	

Item 1,2 are the fundamental frequency at 2480 MHz.


Note:

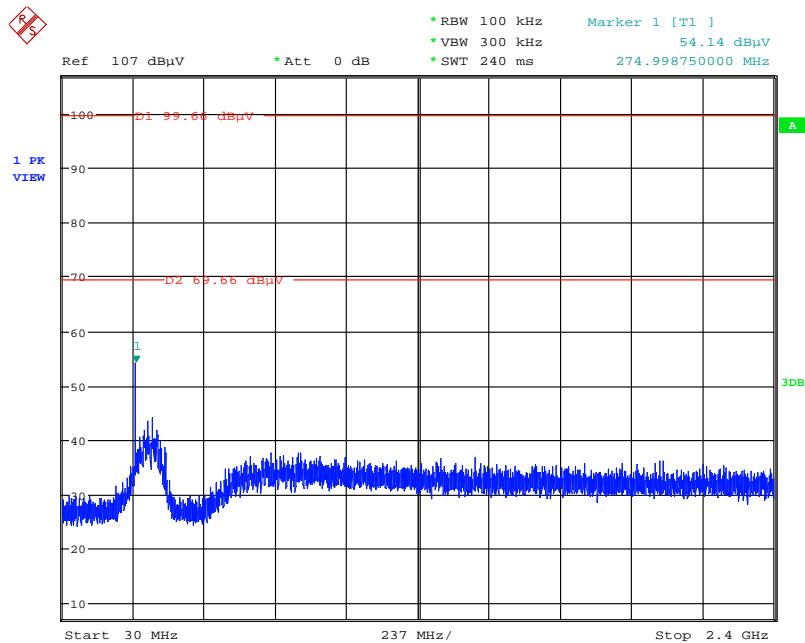
Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

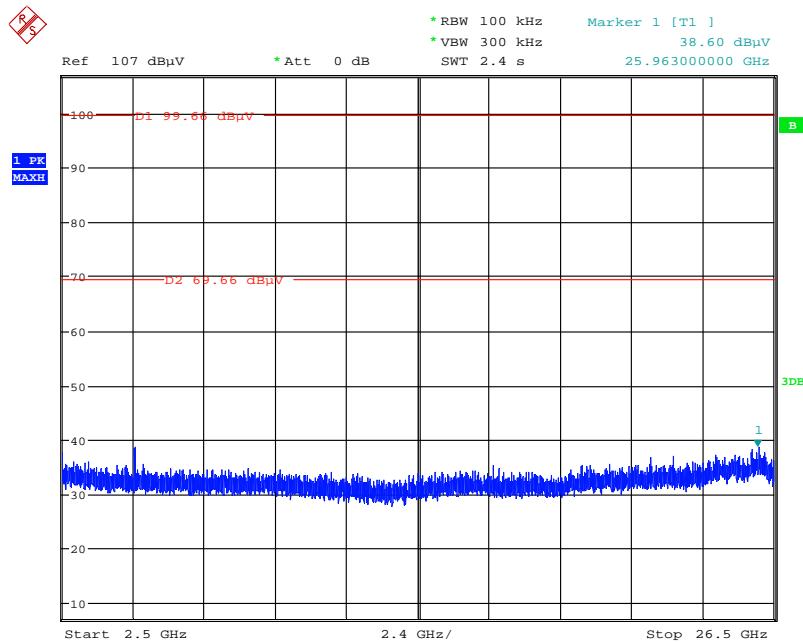

For Emission not in Restricted Band
Plot on Configuration / Reference Level

Date: 13.DEC.2013 19:18:44

Plot on Configuration For Bluetooth 4.0 / Channel 0 / 30MHz~2400MHz (down 30dBc)


Date: 13.DEC.2013 19:20:06

Plot on Configuration For Bluetooth 4.0 / Channel 0 / 2500MHz~26500MHz (down 30dBc)


Date: 13.DEC.2013 19:20:26

Plot on Configuration For Bluetooth 4.0 / Channel 39 / 30MHz~2400MHz (down 30dBc)

Date: 10.JAN.2014 20:38:01

Plot on Configuration For Bluetooth 4.0 / Channel 39 / 2500MHz~26500MHz (down 30dBc)

Date: 13.DEC.2013 19:20:57

4.5. Antenna Requirements

4.5.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.5.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMI Test Receiver	R&S	ESCS 30	100355	9 kHz ~ 2.75 GHz	Apr. 12, 2013	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50-16-2	04083	150 kHz ~ 100 MHz	Nov. 23, 2013	Conduction (CO01-CB)
Artifical Mains Network	Schwarzbeck	NSLK 8127	8127647	9kHz ~ 30MHz	Nov. 23, 2013	Conduction (CO01-CB)
COND Cable	Woken	Cable	01	150 kHz ~ 30 MHz	Dec. 04, 2013	Conduction (CO01-CB)
Software	Audix	E3	5.410e	-	-	Conduction (CO01-CB)
BILOG ANTENNA	Schaffner	CBL6112D	22021	20MHz ~ 2GHz	Apr. 16, 2013	Radiation (03CH01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9 kHz - 30 MHz	Nov. 05, 2012*	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz~18GHz	Nov. 01, 2013	Radiation (03CH01-CB)
Horn Antenna	SCHWARZBEAK	BBHA 9170	9170-507	15GHz ~ 40GHz	Jan. 14, 2013	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	0.1MHz ~ 1.3GHz	Nov. 12, 2013	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02097	1GHz ~ 26.5GHz	Dec. 02, 2013	Radiation (03CH01-CB)
Pre-Amplifier	WM	TF-130N-R1	923365	26GHz ~ 40GHz	Oct. 23, 2013	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSP40	100019	9kHz~40GHz	Dec. 02, 2013	Radiation (03CH01-CB)
EMI Test Receiver	R&S	ESCS 30	100355	9 kHz ~ 2.75 GHz	Apr. 12, 2013	Radiation (03CH01-CB)
Turn Table	INN CO	CO 2000	N/A	0 ~ 360 degree	N.C.R	Radiation (03CH01-CB)
Antenna Mast	INN CO	CO2000	N/A	1 m - 4 m	N.C.R	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz - 1 GHz	Nov. 17, 2013	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-1	N/A	1 GHz – 26.5 GHz	Nov. 17, 2013	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-2	N/A	1 GHz – 26.5 GHz	Nov. 17, 2013	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-3	N/A	1 GHz - 40 GHz	Nov. 17, 2013	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-4	N/A	1 GHz - 40 GHz	Nov. 17, 2013	Radiation (03CH01-CB)
Signal analyzer	R&S	FSV40	100979	9KHz~40GHz	Oct. 08, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-7	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-8	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-9	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-10	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-11	-	1 GHz – 26.5 GHz	Nov. 19, 2012	Conducted (TH01-CB)
Power Sensor	Anritsu	MA2411B	0917223	300MHz~40GHz	Nov. 28, 2012	Conducted (TH01-CB)

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Power Meter	Anritsu	ML2495A	1035008	300MHz~40GHz	Nov. 27, 2012	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

** Calibration Interval of instruments listed above is two years.

N.C.R. means Non-Calibration required.

6. MEASUREMENT UNCERTAINTY

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

Contribution	Uncertainty of x_i			$u(x_i)$
	Value	Unit	Probability Distribution k	
Receiver reading	0.026	dB	normal(k=2)	0.013
Cable loss	0.002	dB	normal(k=2)	0.001
AMN/LISN specification	1.200	dB	normal(k=2)	0.600
Mismatch				
Receiver VSWR 1=	-0.080	dB	U-shaped	0.060
AMN/LISN VSWR 2=				
Combined standard uncertainty $U_c(y)$				1.2
Measuring uncertainty for a level of confidence of 95% $U=2U_c(y)$				2.4

Uncertainty of Radiated Emission Measurement (30MHz ~ 1,000MHz)

Contribution	Uncertainty of x_i			$u(x_i)$
	Value	Unit	Probability Distribution k	
Receiver reading	±0.173	dB	K=1	0.086
Cable loss	±0.174	dB	K=2	0.087
Antenna gain	±0.169	dB	K=2	0.084
Site imperfection	±0.433	dB	Triangular	0.214
Pre-amplifier gain	±0.366	dB	K=2	0.183
Transmitter antenna	±1.200	dB	Rectangular	0.600
Signal generator	±0.461	dB	Rectangular	0.231
Mismatch	±0.080	dB	U-shape	0.040
Spectrum analyzer	±0.500	dB	Rectangular	0.250
Combined standard uncertainty $U_c(y)$				1.778
Measuring uncertainty for a level of confidence of 95% $U=2U_c(y)$				3.555

Uncertainty of Radiated Emission Measurement (1GHz ~ 18GHz)

Contribution	Uncertainty of x_i			$u(x_i)$
	Value	Unit	Probability Distribution k	
Receiver reading	±0.191	dB	K=1	0.095
Cable loss	±0.169	dB	K=2	0.084
Antenna gain	±0.191	dB	K=2	0.096
Site imperfection	±0.582	dB	Triangular	0.291
Pre-amplifier gain	±0.304	dB	K=2	0.152
Transmitter antenna	±1.200	dB	Rectangular	0.600
Signal generator	±0.461	dB	Rectangular	0.231
Mismatch	±0.080	dB	U-shape	0.040
Spectrum analyzer	±0.500	dB	Rectangular	0.250
Combined standard uncertainty $U_c(y)$				1.839
Measuring uncertainty for a level of confidence of 95% $U=2U_c(y)$				3.678

Uncertainty of Radiated Emission Measurement (18GHz ~ 40GHz)

Contribution	Uncertainty of x_i			$u(x_i)$
	Value	Unit	Probability Distribution k	
Receiver reading	±0.186	dB	K=1	0.093
Cable loss	±0.167	dB	K=2	0.083
Antenna gain	±0.190	dB	K=2	0.095
Site imperfection	±0.488	dB	Triangular	0.244
Pre-amplifier gain	±0.269	dB	K=2	0.134
Transmitter antenna	±1.200	dB	Rectangular	0.600
Signal generator	±0.461	dB	Rectangular	0.231
Mismatch	±0.080	dB	U-shape	0.040
Spectrum analyzer	±0.500	dB	Rectangular	0.250
Combined standard uncertainty $U_c(y)$				1.771
Measuring uncertainty for a level of confidence of 95% $U=2U_c(y)$				3.541

Uncertainty of Conducted Emission Measurement

Contribution	Uncertainty of x_i			$u(x_i)$
	Value	Unit	Probability Distribution k	
Cable loss	± 0.038	dB	K=2	0.019
Attenuator	± 0.047	dB	K=2	0.024
Power Meter specification	± 0.300	dB	Triangular	0.150
Power Sensor specification	± 0.300	dB	Rectangular	0.150
Signal generator	± 0.461	dB	Rectangular	0.231
Mismatch	± 0.080	dB	U-shape	0.040
Spectrum analyzer	± 0.500	dB	Rectangular	0.250
Combined standard uncertainty $U_c(y)$				0.863
Measuring uncertainty for a level of confidence of 95% $U=2U_c(y)$				1.726