

FCC C2PC Test Report

FCC ID : TWG-SDCM3D30AG
Equipment : 802.11AG Mini Compact Flash Module with antenna connectors
Model No. : SDC-MSD30AG
Brand Name : Summit
Applicant : Summit Data Communications, Inc.
Address : 526 South Main Street Suite 805 Akron, OH 44311
Standard : 47 CFR FCC Part 15.407
Received Date : Jul. 09, 2015
Tested Date : Jul. 16 ~ Jul. 30, 2015

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang / Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information.....	5
1.2	Local Support Equipment List	6
1.3	Test Setup Chart	6
1.4	The Equipment List	7
1.5	Testing Applied Standards	8
1.6	Measurement Uncertainty	8
2	TEST CONFIGURATION.....	9
2.1	Testing Condition	9
2.2	The Worst Test Modes and Channel Details	9
3	TRANSMITTER TEST RESULTS.....	10
3.1	Conducted Emissions.....	10
3.2	Emission Bandwidth	13
3.3	RF Output Power.....	15
3.4	Peak Power Spectral Density.....	16
3.5	Transmitter Radiated and Band Edge Emissions	18
3.6	Frequency Stability	29
4	TEST LABORATORY INFORMATION	31

Release Record

Report No.	Version	Description	Issued Date
FR570901	Rev. 01	Initial issue	Sep. 09, 2015

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	[dBuV]: 0.574MHz 36.35 (Margin -9.65dB) - AV	Pass
15.407(b)(4) 15.209	Radiated Emissions	[dBuV/m at 3m]: 214.30MHz 40.66 (Margin -2.84dB) - PK	Pass
15.407(a)(5)	Emission Bandwidth	Meet the requirement of limit	Pass
15.407(a)(3)	RF Output Power	Max Power [dBm]: 11.42	Pass
15.407(a)(3)	Peak Power Spectral Density	Meet the requirement of limit	Pass
15.407(e)	6dB Bandwidth	Meet the requirement of limit	Pass
15.407(g)	Frequency Stability	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

1 General Description

1.1 Information

This report is prepared for FCC class II change.

This report is issued as a FCC Class II Permissive Change for complying with New U-NII rule requirement. In this test report, all test items has been re-tested and its data was recorded in the following sections.

1.1.1 Specification of the Equipment under Test (EUT)

RF General Information					
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{TX})	Data Rate / MCS
5725-5850	a	5745-5805	149-161 [4]	1	6-54 Mbps

Note 1: RF output power specifies that Maximum Conducted Output Power.
 Note 2: 802.11a uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

1.1.2 Antenna Details

Ant. No.	Brand	Model	Type	Connector	Gain (dBi)
1	Radiall Larsen	R380.500.314	Dipole	RP-TNC plug	5

1.1.3 Power Supply Type of Equipment under Test (EUT)

Power Supply Type	3.3Vdc from host
-------------------	------------------

1.1.4 Accessories

N/A

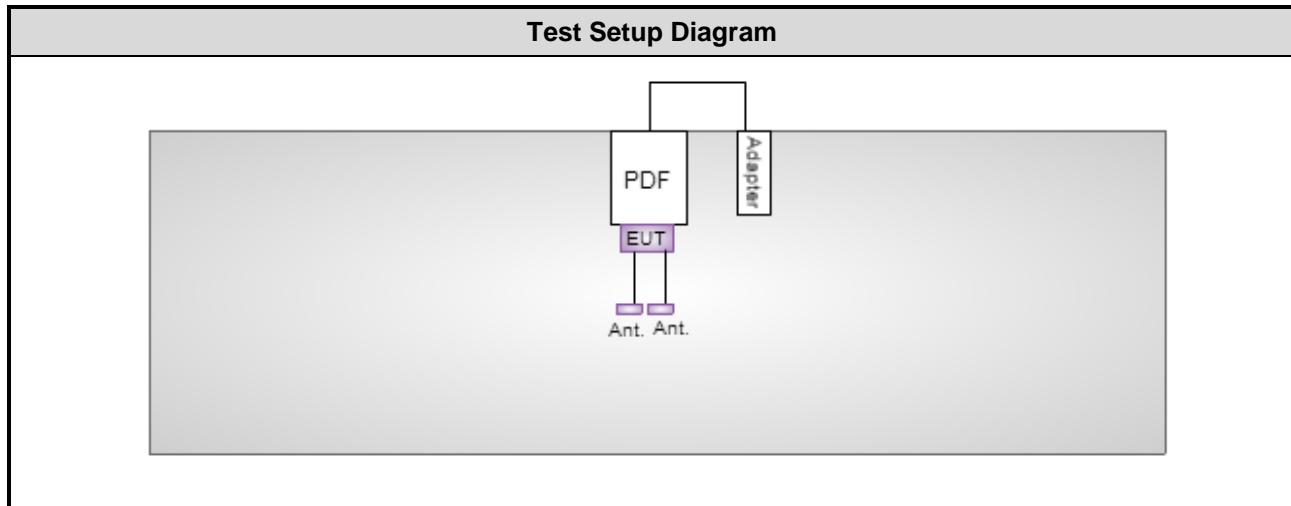
1.1.5 Channel List

802.11 a	
Channel	Frequency(MHz)
149	5745
153	5765
157	5785
161	5805

1.1.6 Test Tool and Duty Cycle

Test Tool	SRU, Version:3.3.10		
Duty Cycle and Duty Factor	Mode	Duty cycle (%)	Duty factor (dB)
	11a	100 %	0

1.1.7 Power Setting


Modulation Mode	Test Frequency (MHz)	Power Set
11a	5745	70%
11a	5785	75%
11a	5805	75%

1.2 Local Support Equipment List

Support Equipment List					
No.	Equipment	Brand	Model	FCC ID	Signal cable / Length (m)
1	PDA	HP	HSTNH-L05C-BT	---	---
2	AC Adapter for PDA	---	3A-041WE05	---	---

Note: No. 1~2 were supplied by applicant.

1.3 Test Setup Chart

1.4 The Equipment List

Test Item	Conducted Emission				
Test Site	Conduction room 1 / (CO01-WS)				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
EMC Receiver	R&S	ESCS 30	100169	Oct. 17, 2014	Oct. 16, 2015
LISN	SCHWARZBECK	Schwarzbeck 8127	8127-667	Nov. 17, 2014	Nov. 16, 2015
RF Cable-CON	Woken	CFD200-NL	CFD200-NL-001	Dec. 31, 2014	Dec. 30, 2015
Measurement Software	AUDIX	e3	6.120210k	NA	NA

Note: Calibration Interval of instruments listed above is one year.

Test Item	Radiated Emission				
Test Site	966 chamber1 / (03CH01-WS)				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV40	101498	Dec. 09, 2014	Dec. 08, 2015
Receiver	R&S	ESR3	101658	Nov. 10, 2014	Nov. 09, 2015
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Sep. 05, 2014	Sep. 04, 2015
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Dec. 11, 2014	Dec. 10, 2015
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 10, 2014	Nov. 09, 2015
Loop Antenna	R&S	HFH2-Z2	11900	Nov. 10, 2014	Nov. 09, 2015
Preamplifier	Burgeon	BPA-530	SN:100219	Sep. 09, 2014	Sep. 08, 2015
Preamplifier	Agilent	83017A	MY39501308	Oct. 09, 2014	Oct. 08, 2015
Preamplifier	EMC	EMC184045B	980192	Aug. 26, 2014	Aug. 25, 2015
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16014/4	Dec. 15, 2014	Dec. 14, 2015
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Dec. 15, 2014	Dec. 14, 2015
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16139/4	Dec. 15, 2014	Dec. 14, 2015
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-001	Dec. 15, 2014	Dec. 14, 2015
LF cable 10M	Woken	CFD400NL-LW	CFD400NL-002	Dec. 15, 2014	Dec. 14, 2015
Measurement Software	AUDIX	e3	6.120210g	NA	NA

Note: Calibration Interval of instruments listed above is one year.

Test Item	RF Conducted				
Test Site	(TH01-WS)				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV40	101063	Feb. 03, 2015	Feb. 02, 2016
TEMP&HUMIDITY CHAMBER	GIANT FORCE	GCT-225-40-SP-SD	MAF1212-002	Dec. 03, 2014	Dec. 02, 2015
Power Meter	Anritsu	ML2495A	1241002	Sep. 29, 2014	Sep. 28, 2015
Power Sensor	Anritsu	MA2411B	1207366	Sep. 29, 2014	Sep. 28, 2015
Measurement Software	Sporton	Sporton_1	1.3.30	NA	NA

Note: Calibration Interval of instruments listed above is one year.

1.5 Testing Applied Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.407

ANSI C63.10-2013

FCC KDB 789033 D02 General UNII Test Procedures New Rules v01

FCC KDB 644545 D03 Guidance for IEEE 802.11ac New Rules v01

FCC KDB 412172 D01 Determining ERP and EIRP v01

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty	
Parameters	Uncertainty
Bandwidth	±34.134 Hz
Conducted power	±0.808 dB
Frequency error	±34.134 Hz
Power density	±0.463 dB
Conducted emission	±2.670 dB
AC conducted emission	±2.92 dB
Radiated emission ≤ 1GHz	±3.72 dB
Radiated emission > 1GHz	±5.65 dB
Time	±0.1%
Temperature	±0.6 °C

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	21°C / 60%	Kevin Ma
Radiated Emissions	03CH01-WS	24-26°C / 66%	Aska Huang
RF Conducted	TH01-WS	25°C / 63%	Felix Sung

➤ FCC site registration No.: 657002

➤ IC site registration No.: 10807A-1

2.2 The Worst Test Modes and Channel Details

For Frequency band 5725-5850 MHz				
Test item	Modulation Mode	Test Frequency (MHz)	Data Rate (Mbps) / MCS	Test Configuration
Conducted Emissions	11a	5785	6 Mbps	---
Radiated Emissions ≤1GHz	11a	5785	6 Mbps	---
RF Output Power	11a	5745 / 5785 / 5805	6 Mbps	---
Radiated Emissions >1GHz Emission Bandwidth 6dB bandwidth Peak Power Spectral Density	11a	5745 / 5785 / 5805	6 Mbps	---
Frequency Stability	Un-modulation	5785	---	---

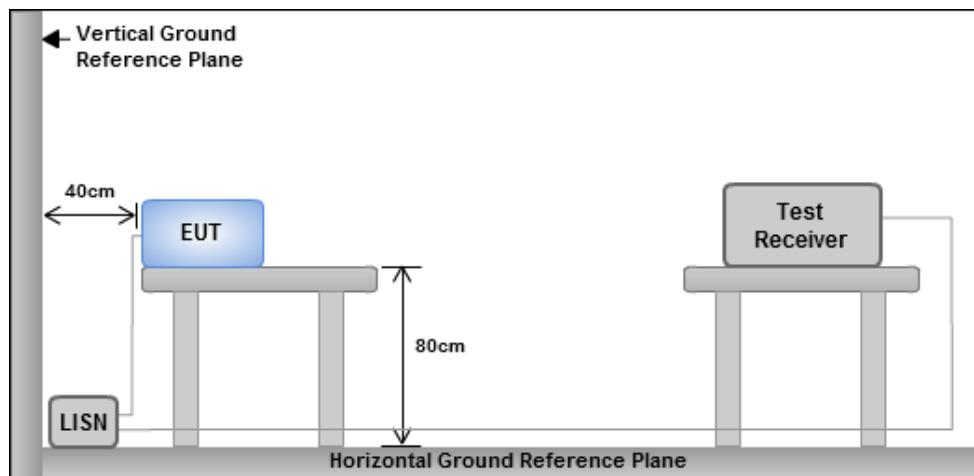
NOTE:

1. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement – X, Y, and Z-plane. The **X-plane** results were found as the worst case and were shown in this report.

3 Transmitter Test Results

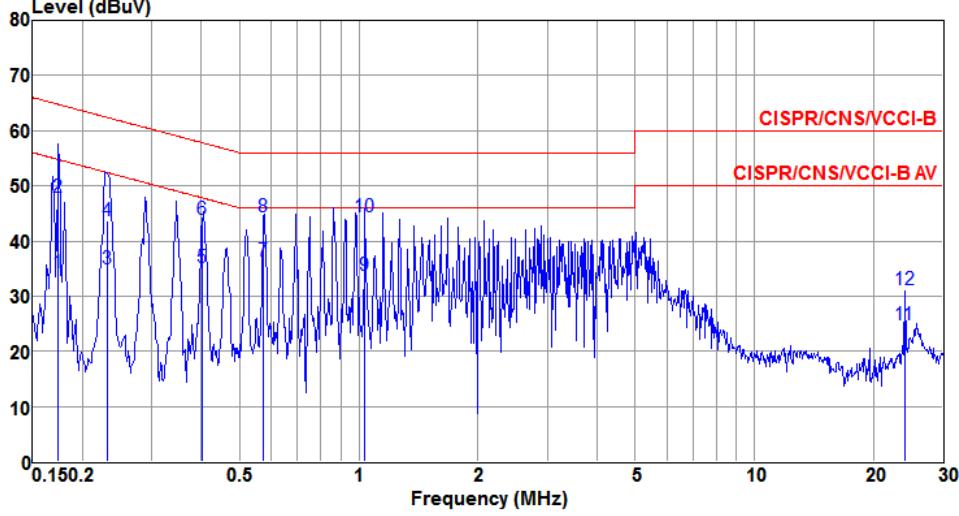
3.1 Conducted Emissions

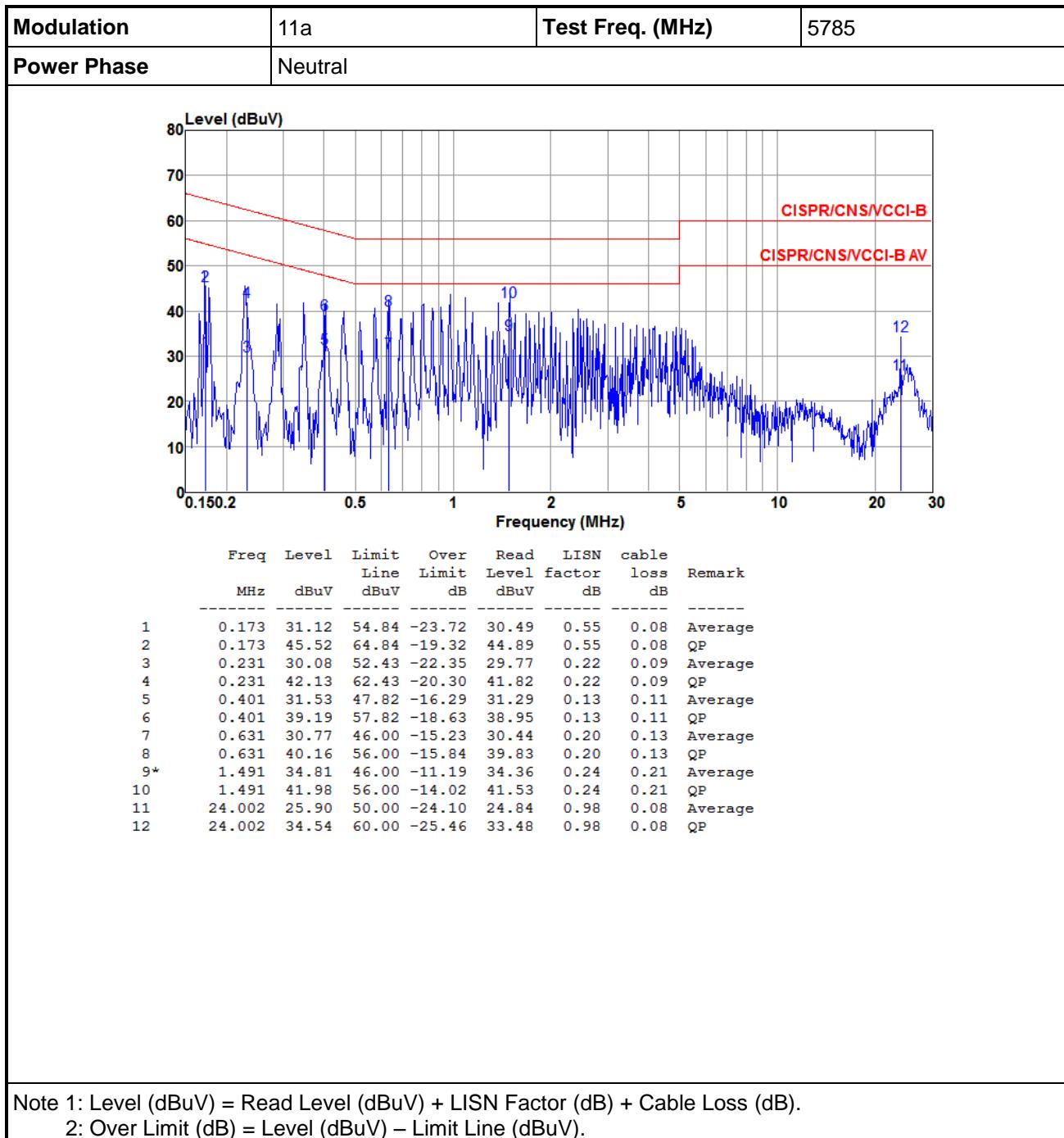
3.1.1 Limit of Conducted Emissions


Conducted Emissions Limit		
Frequency Emission (MHz)	Quasi-Peak	Average
0.15-0.5	66 - 56 *	56 - 46 *
0.5-5	56	46
5-30	60	50

Note 1: * Decreases with the logarithm of the frequency.

3.1.2 Test Procedures


1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
4. This measurement was performed with AC 120V / 60Hz.


3.1.3 Test Setup

Note: 1. Support units were connected to second LISN.
 2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

3.1.4 Test Result of Conducted Emissions

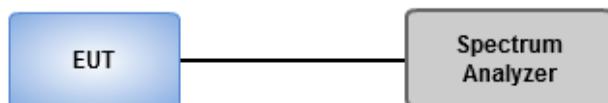
Modulation	11a	Test Freq. (MHz)	5785																																																																																																																					
Power Phase	Line																																																																																																																							
<table border="1"> <thead> <tr> <th></th> <th>Freq MHz</th> <th>Level dBuV</th> <th>Limit Line dBuV</th> <th>Over Limit dB</th> <th>Read Level dBuV</th> <th>LISN factor dB</th> <th>cable loss dB</th> <th>Remark</th> </tr> </thead> <tbody> <tr><td>1</td><td>0.173</td><td>34.16</td><td>54.79</td><td>-20.63</td><td>33.49</td><td>0.58</td><td>0.09</td><td>Average</td></tr> <tr><td>2</td><td>0.173</td><td>47.97</td><td>64.79</td><td>-16.82</td><td>47.30</td><td>0.58</td><td>0.09</td><td>QP</td></tr> <tr><td>3</td><td>0.231</td><td>34.98</td><td>52.42</td><td>-17.44</td><td>34.65</td><td>0.24</td><td>0.09</td><td>Average</td></tr> <tr><td>4</td><td>0.231</td><td>43.68</td><td>62.42</td><td>-18.74</td><td>43.35</td><td>0.24</td><td>0.09</td><td>QP</td></tr> <tr><td>5</td><td>0.402</td><td>35.13</td><td>47.80</td><td>-12.67</td><td>34.84</td><td>0.18</td><td>0.11</td><td>Average</td></tr> <tr><td>6</td><td>0.402</td><td>43.85</td><td>57.80</td><td>-13.95</td><td>43.56</td><td>0.18</td><td>0.11</td><td>QP</td></tr> <tr><td>7*</td><td>0.574</td><td>36.35</td><td>46.00</td><td>-9.65</td><td>36.08</td><td>0.14</td><td>0.13</td><td>Average</td></tr> <tr><td>8</td><td>0.574</td><td>44.33</td><td>56.00</td><td>-11.67</td><td>44.06</td><td>0.14</td><td>0.13</td><td>QP</td></tr> <tr><td>9</td><td>1.034</td><td>33.77</td><td>46.00</td><td>-12.23</td><td>33.49</td><td>0.12</td><td>0.16</td><td>Average</td></tr> <tr><td>10</td><td>1.034</td><td>44.41</td><td>56.00</td><td>-11.59</td><td>44.13</td><td>0.12</td><td>0.16</td><td>QP</td></tr> <tr><td>11</td><td>24.002</td><td>24.88</td><td>50.00</td><td>-25.12</td><td>23.87</td><td>0.93</td><td>0.08</td><td>Average</td></tr> <tr><td>12</td><td>24.002</td><td>31.17</td><td>60.00</td><td>-28.83</td><td>30.16</td><td>0.93</td><td>0.08</td><td>QP</td></tr> </tbody> </table>					Freq MHz	Level dBuV	Limit Line dBuV	Over Limit dB	Read Level dBuV	LISN factor dB	cable loss dB	Remark	1	0.173	34.16	54.79	-20.63	33.49	0.58	0.09	Average	2	0.173	47.97	64.79	-16.82	47.30	0.58	0.09	QP	3	0.231	34.98	52.42	-17.44	34.65	0.24	0.09	Average	4	0.231	43.68	62.42	-18.74	43.35	0.24	0.09	QP	5	0.402	35.13	47.80	-12.67	34.84	0.18	0.11	Average	6	0.402	43.85	57.80	-13.95	43.56	0.18	0.11	QP	7*	0.574	36.35	46.00	-9.65	36.08	0.14	0.13	Average	8	0.574	44.33	56.00	-11.67	44.06	0.14	0.13	QP	9	1.034	33.77	46.00	-12.23	33.49	0.12	0.16	Average	10	1.034	44.41	56.00	-11.59	44.13	0.12	0.16	QP	11	24.002	24.88	50.00	-25.12	23.87	0.93	0.08	Average	12	24.002	31.17	60.00	-28.83	30.16	0.93	0.08	QP
	Freq MHz	Level dBuV	Limit Line dBuV	Over Limit dB	Read Level dBuV	LISN factor dB	cable loss dB	Remark																																																																																																																
1	0.173	34.16	54.79	-20.63	33.49	0.58	0.09	Average																																																																																																																
2	0.173	47.97	64.79	-16.82	47.30	0.58	0.09	QP																																																																																																																
3	0.231	34.98	52.42	-17.44	34.65	0.24	0.09	Average																																																																																																																
4	0.231	43.68	62.42	-18.74	43.35	0.24	0.09	QP																																																																																																																
5	0.402	35.13	47.80	-12.67	34.84	0.18	0.11	Average																																																																																																																
6	0.402	43.85	57.80	-13.95	43.56	0.18	0.11	QP																																																																																																																
7*	0.574	36.35	46.00	-9.65	36.08	0.14	0.13	Average																																																																																																																
8	0.574	44.33	56.00	-11.67	44.06	0.14	0.13	QP																																																																																																																
9	1.034	33.77	46.00	-12.23	33.49	0.12	0.16	Average																																																																																																																
10	1.034	44.41	56.00	-11.59	44.13	0.12	0.16	QP																																																																																																																
11	24.002	24.88	50.00	-25.12	23.87	0.93	0.08	Average																																																																																																																
12	24.002	31.17	60.00	-28.83	30.16	0.93	0.08	QP																																																																																																																
Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB). 2: Over Limit (dB) = Level (dBuV) – Limit Line (dBuV).																																																																																																																								

3.2 Emission Bandwidth

3.2.1 Limit of Emission Bandwidth

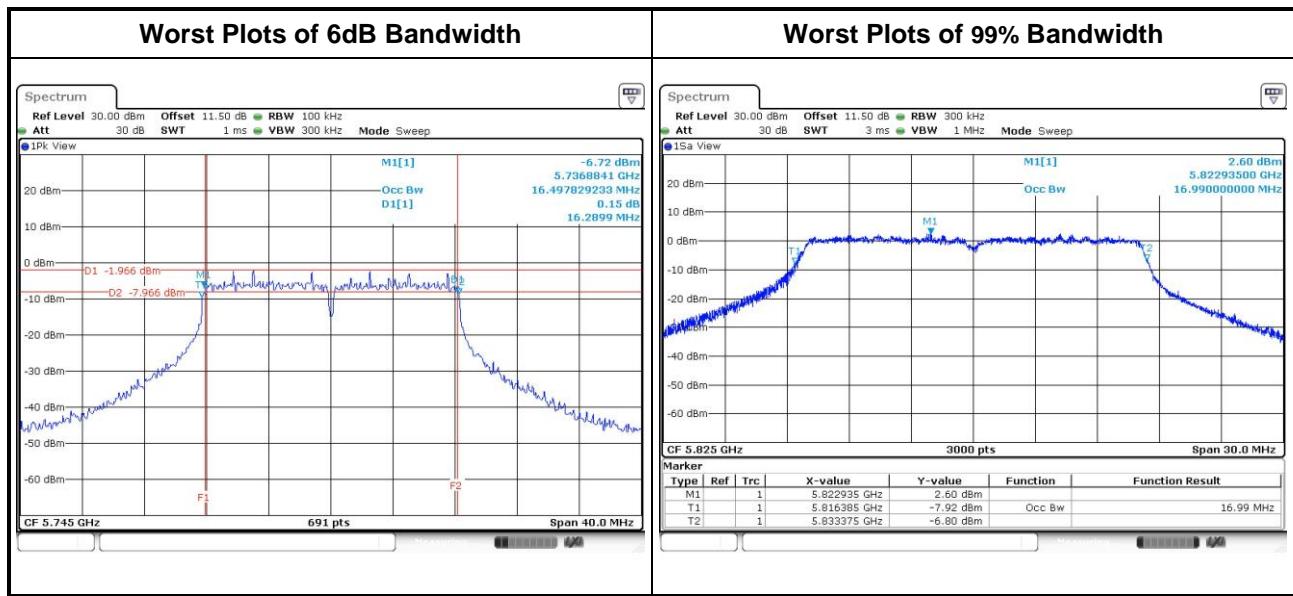
The minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

3.2.2 Test Procedures


Occupied Bandwidth

1. Set RBW = 1 % to 5 % of the OBW
2. Set VBW \geq 3 RBW
3. Sample detection and single sweep mode shall be used
4. Use the 99 % power bandwidth function of the instrument

6dB Bandwidth


1. Set RBW = 100 kHz, video bandwidth = 300 kHz
2. Detector = Peak, Trace mode = max hold, Sweep = auto couple, Allow the trace to stabilize
3. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

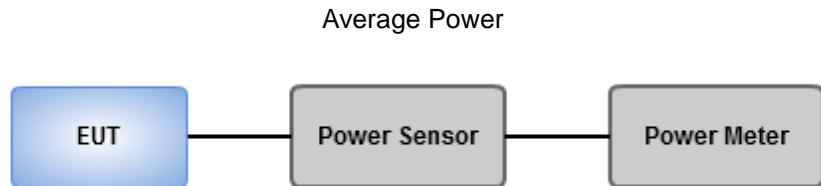
3.2.3 Test Setup

3.2.4 Test Result of Emission Bandwidth

Mode	N _{TX}	Freq. (MHz)	OBW Bandwidth (MHz)				6dB Bandwidth (MHz)				6dB BW Limit (MHz)
			Chain 0	Chain 1	Chain 2	Chain 3	Chain 0	Chain 1	Chain 2	Chain 3	
11a	1	5745	16.98	---	---	---	16.29	---	---	---	0.5
11a	1	5785	16.99	---	---	---	16.35	---	---	---	0.5
11a	1	5805	17.07	---	---	---	16.35	---	---	---	0.5

3.3 RF Output Power

3.3.1 Limit of RF Output Power


The maximum conducted output power over the frequency band of operation shall not exceed 1 W

3.3.2 Test Procedures

Method PM-G (Measurement using a gated RF average power meter)

- Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

3.3.3 Test Setup

3.3.4 Test Result of Maximum Conducted Output Power

Mode	N _{TX}	Freq. (MHz)	Conducted (average) output power (dBm)				Total Power (mW)	Total Power (dBm)	Limit (dBm)
			Chain 0	Chain 1	Chain 2	Chain 3			
11a	1	5745	10.47	---	---	---	11.143	10.47	30.00
11a	1	5785	11.42	---	---	---	13.868	11.42	30.00
11a	1	5805	11.36	---	---	---	13.677	11.36	30.00

3.4 Peak Power Spectral Density

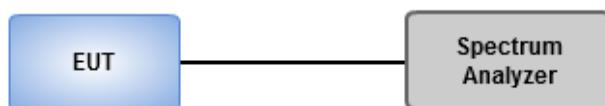
3.4.1 Limit of Peak Power Spectral Density

The maximum power spectral density shall not exceed 30 dBm in any 500 kHz band.

3.4.2 Test Procedures

Method SA-1

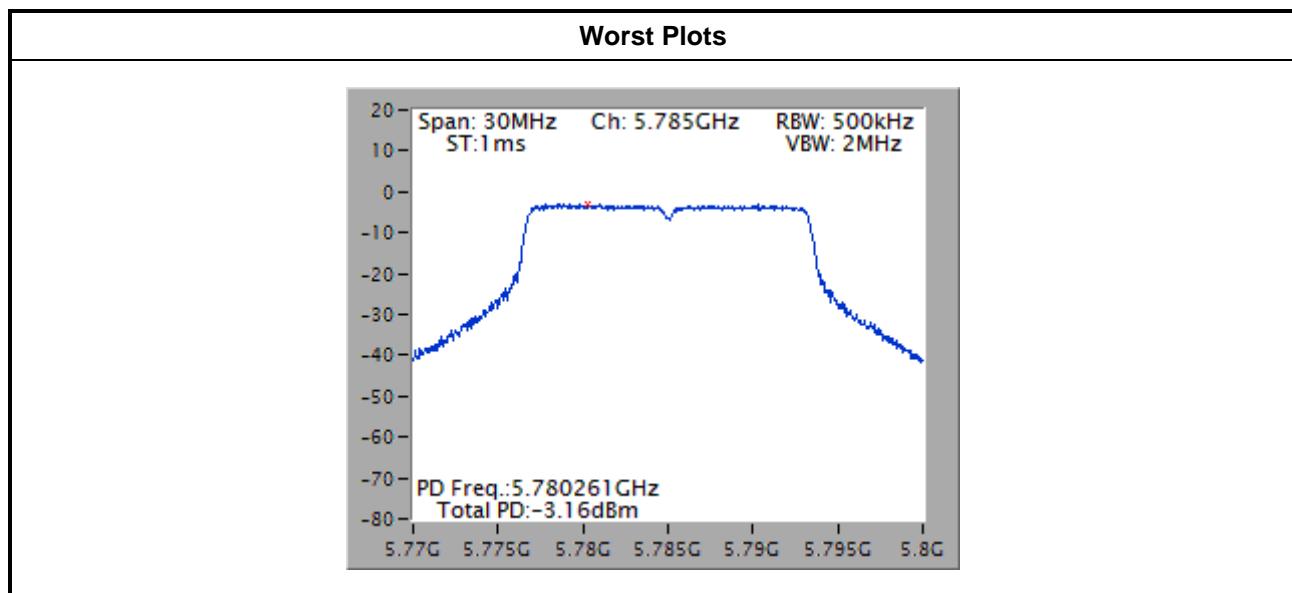
1. Set RBW = 1 MHz, VBW = 3 MHz, Sweep time = auto, Detector = RMS.
2. Trace average 100 traces.
3. Use the peak marker function to determine the maximum amplitude level.


Method SA-2

1. Set RBW = 1 MHz, VBW = 3 MHz, Sweep time = auto, Detector = RMS.
2. Trace average at 100 traces
3. Use the peak marker function to determine the maximum amplitude level.
4. Add $10 \log(1/x)$, where x is the duty cycle

Method SA-2 Alternative (VHT80 only)

1. Set RBW = 1 MHz, VBW = 3 MHz, Detector = RMS.
2. Set sweep time $\geq 10 * (\text{number of points in sweep}) * (\text{total on/off period of the transmitted signal})$.
3. Perform a single sweep.
4. Use the peak marker function to determine the maximum amplitude level.
5. Add $10 \log(1/x)$, where x is the duty cycle.


3.4.3 Test Setup

3.4.4 Test Result of Peak Power Spectral Density

For Frequency band 5725-5850 MHz						
Condition			Peak Power Spectral Density (dBm/500kHz)			
Modulation Mode	N _{TX}	Freq. (MHz)	PPSD w/o D.F (dBm/500kHz)	Duty Factor (dB)	PPSD with D.F (dBm/500kHz)	PPSD Limit (dBm/500kHz)
11a	1	5745	-4.12	0.00	-4.12	30.00
11a	1	5785	-3.16	0.00	-3.16	30.00
11a	1	5805	-3.22	0.00	-3.22	30.00

Note: D.F is duty factor.

3.5 Transmitter Radiated and Band Edge Emissions

3.5.1 Limit of Transmitter Radiated and Band Edge Emissions

Restricted Band Emissions Limit			
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

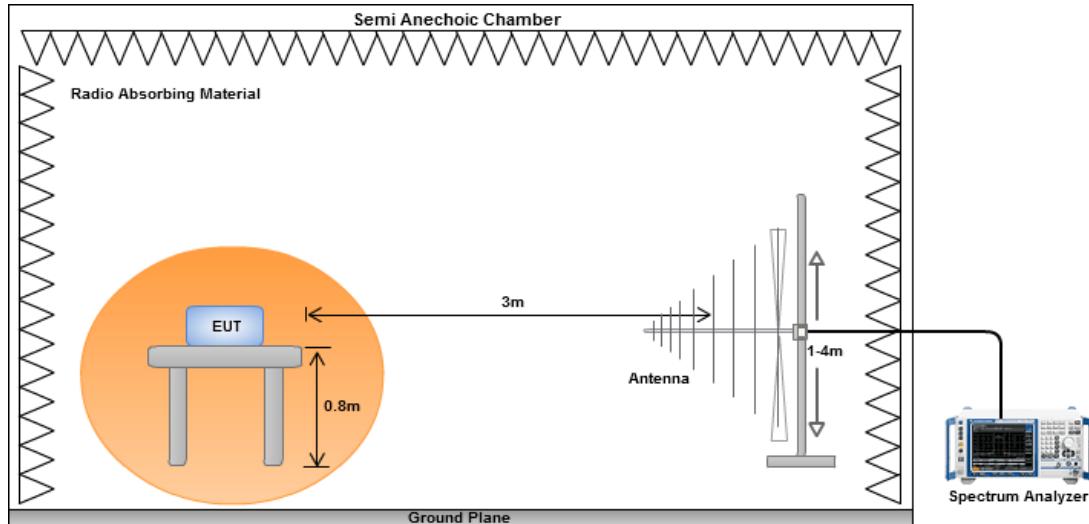
Note 1:
Quasi-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit

Note 2:
Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

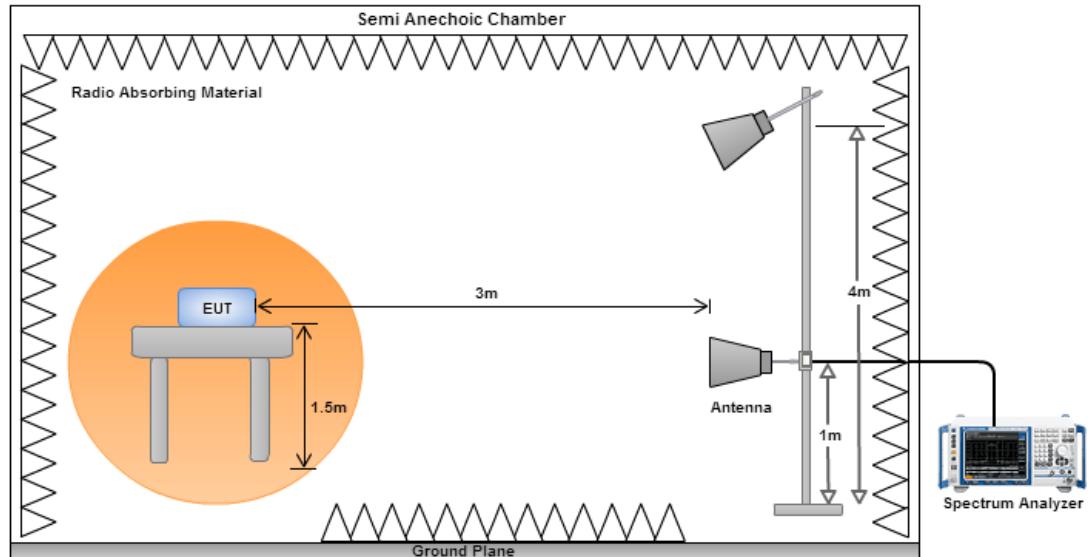
Un-restricted band emissions above 1GHz Limit	
Operating Band	Limit
5.15 - 5.25 GHz	e.i.r.p. -27 dBm [68.2 dBuV/m@3m]
5.25 - 5.35 GHz	e.i.r.p. -27 dBm [68.2 dBuV/m@3m]
5.47 - 5.725 GHz	e.i.r.p. -27 dBm [68.2 dBuV/m@3m]
5.725 - 5.850 GHz	5.715 5.725 GHz: e.i.r.p. -17 dBm [78.2 dBuV/m@3m] 5.850 5.860 GHz: e.i.r.p. -17 dBm [78.2 dBuV/m@3m] Other un-restricted band: e.i.r.p. -27 dBm [68.2 dBuV/m@3m]

Note 1: Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

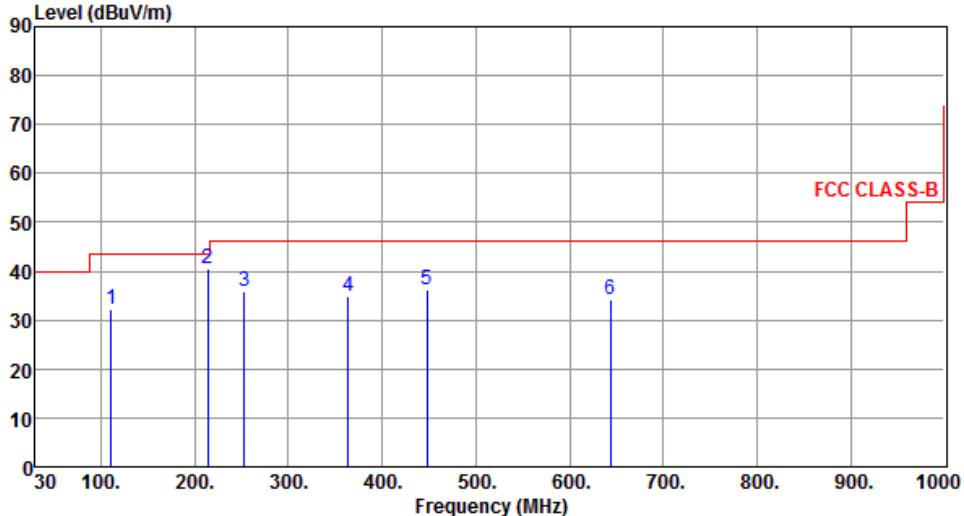
3.5.2 Test Procedures

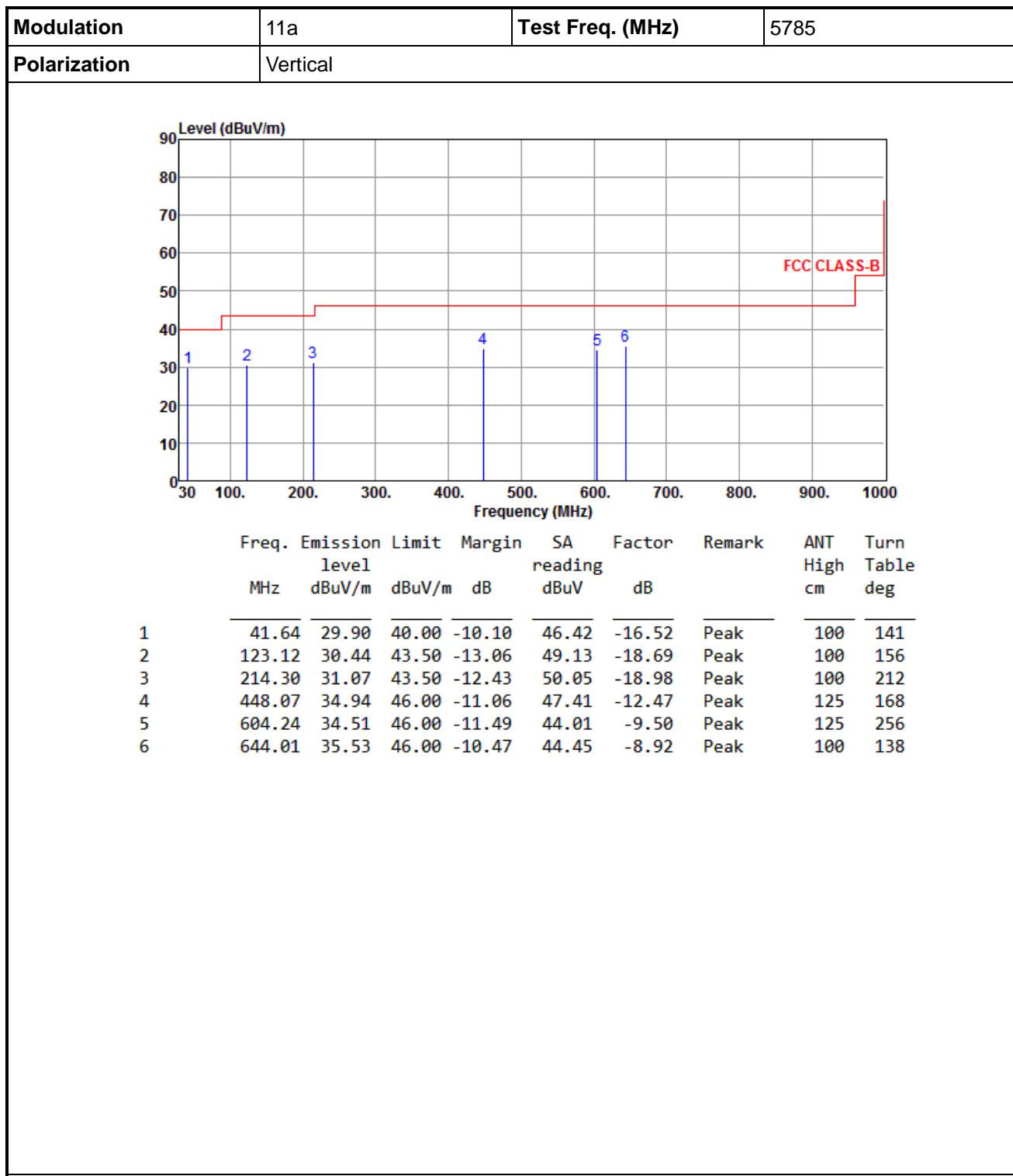

1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m.
2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:


1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

3.5.3 Test Setup

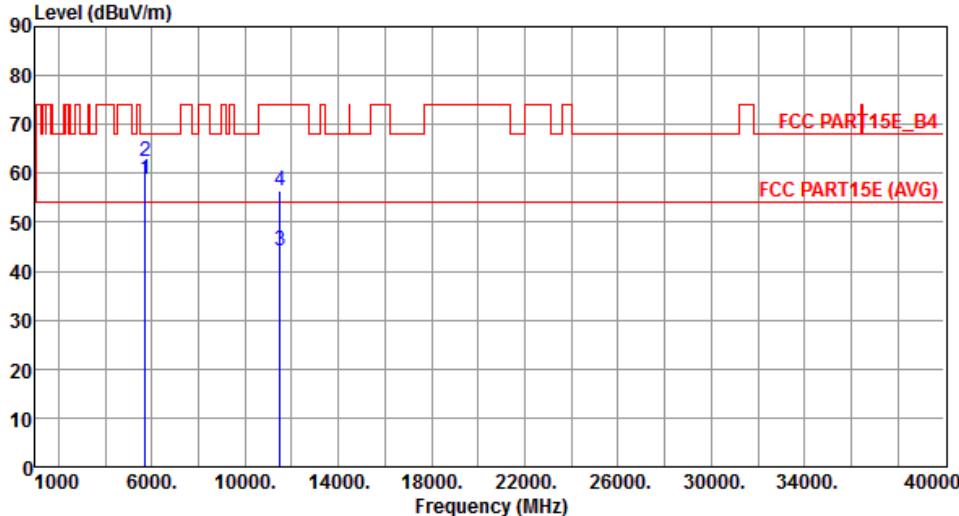

Radiated Emissions below 1 GHz

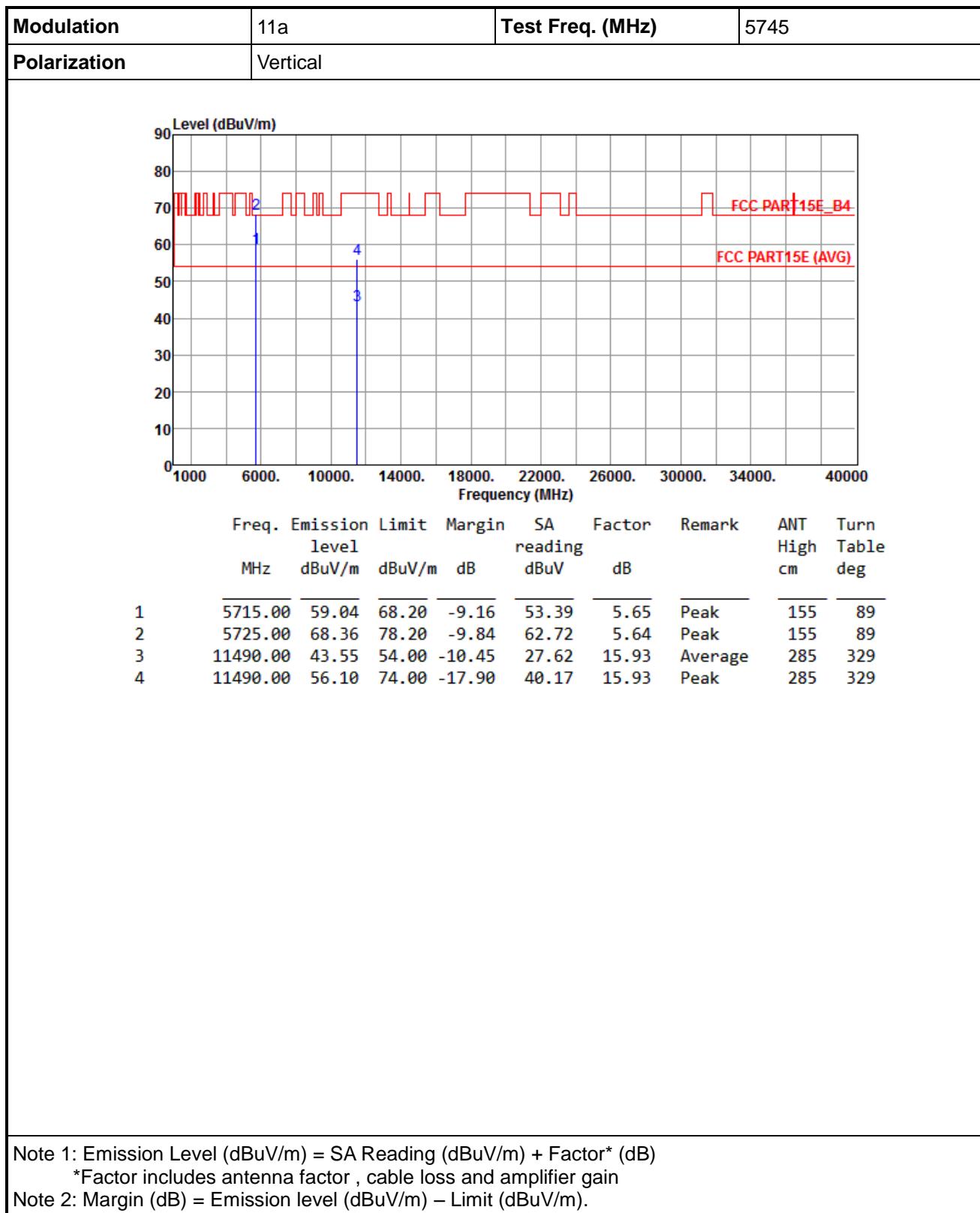


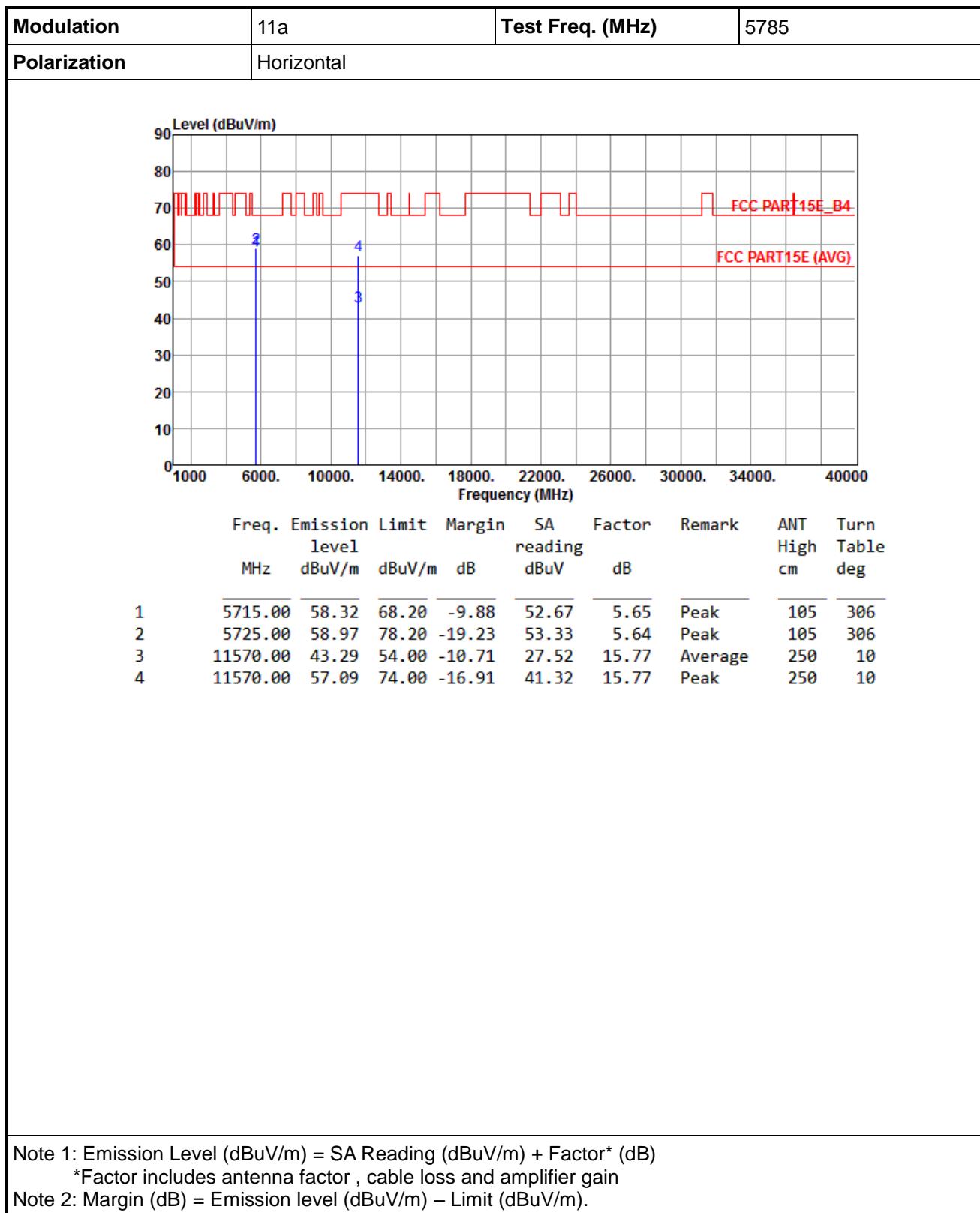
Radiated Emissions above 1 GHz

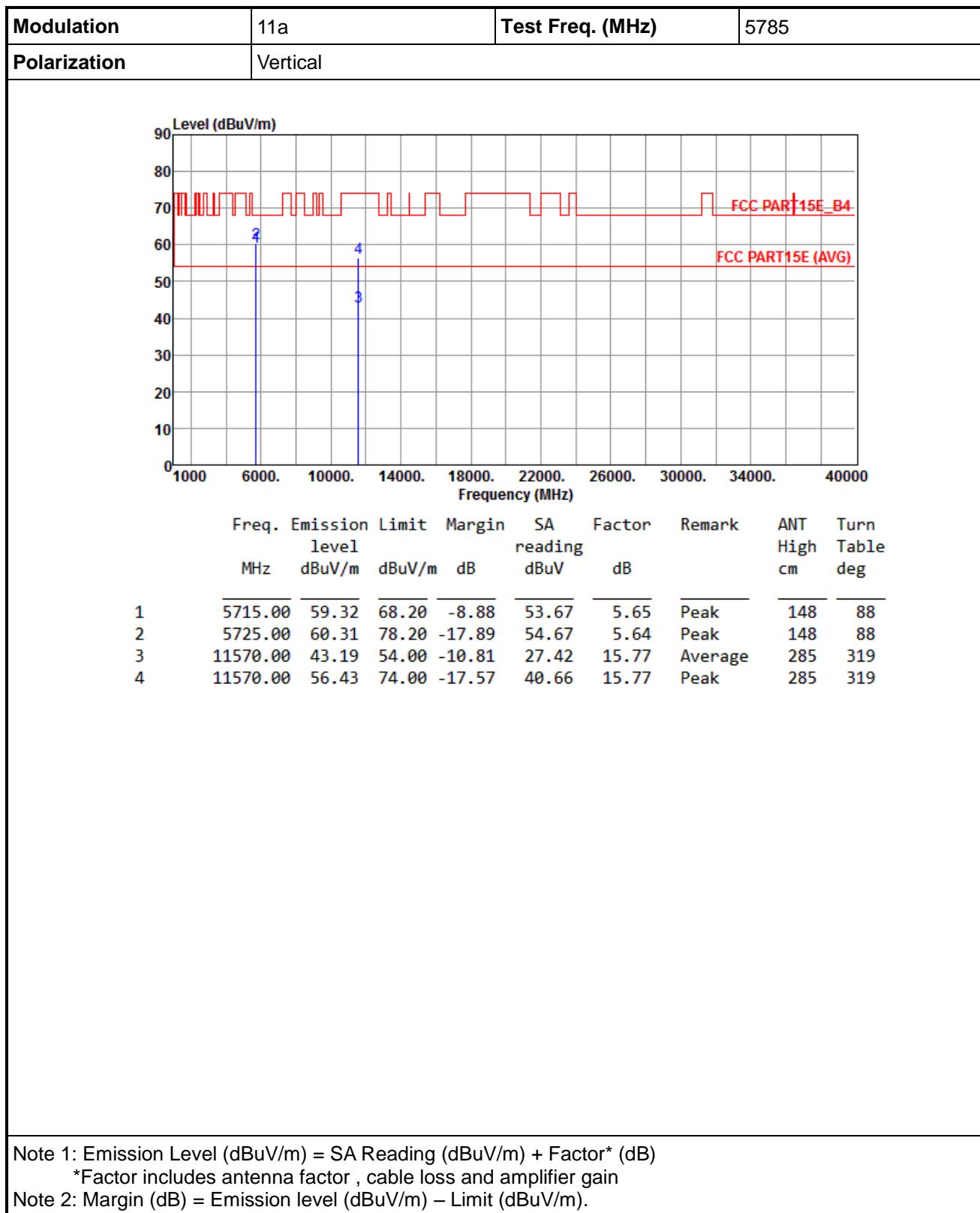
3.5.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

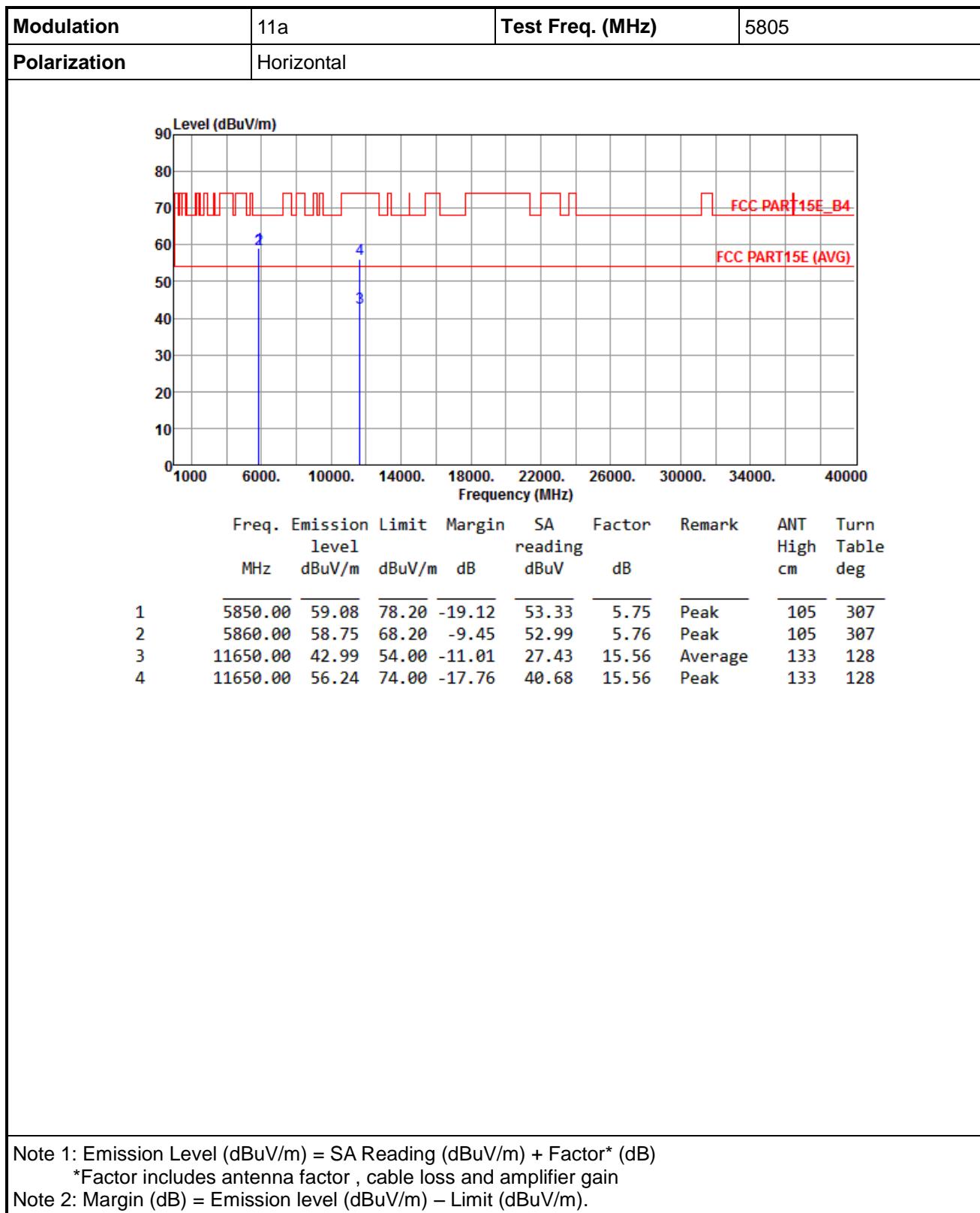
Modulation	11a	Test Freq. (MHz)	5785																																																																												
Polarization	Horizontal																																																																														
<table border="1"> <thead> <tr> <th>Freq.</th> <th>Emission Limit</th> <th>Margin</th> <th>SA</th> <th>Factor</th> <th>Remark</th> <th>ANT</th> <th>Turn</th> </tr> <tr> <th>MHz</th> <th>level</th> <th>level</th> <th>reading</th> <th>reading</th> <th></th> <th>High</th> <th>Table</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>110.51</td> <td>32.27</td> <td>43.50</td> <td>-11.23</td> <td>52.08</td> <td>-19.81</td> <td>Peak</td> <td>100</td> <td>125</td> </tr> <tr> <td>2</td> <td>214.30</td> <td>40.66</td> <td>43.50</td> <td>-2.84</td> <td>59.64</td> <td>-18.98</td> <td>Peak</td> <td>100</td> <td>133</td> </tr> <tr> <td>3</td> <td>253.10</td> <td>35.75</td> <td>46.00</td> <td>-10.25</td> <td>53.30</td> <td>-17.55</td> <td>Peak</td> <td>125</td> <td>138</td> </tr> <tr> <td>4</td> <td>363.68</td> <td>35.04</td> <td>46.00</td> <td>-10.96</td> <td>49.53</td> <td>-14.49</td> <td>Peak</td> <td>100</td> <td>212</td> </tr> <tr> <td>5</td> <td>448.07</td> <td>36.16</td> <td>46.00</td> <td>-9.84</td> <td>48.63</td> <td>-12.47</td> <td>Peak</td> <td>100</td> <td>311</td> </tr> <tr> <td>6</td> <td>644.01</td> <td>34.17</td> <td>46.00</td> <td>-11.83</td> <td>43.09</td> <td>-8.92</td> <td>Peak</td> <td>150</td> <td>126</td> </tr> </tbody> </table>				Freq.	Emission Limit	Margin	SA	Factor	Remark	ANT	Turn	MHz	level	level	reading	reading		High	Table	1	110.51	32.27	43.50	-11.23	52.08	-19.81	Peak	100	125	2	214.30	40.66	43.50	-2.84	59.64	-18.98	Peak	100	133	3	253.10	35.75	46.00	-10.25	53.30	-17.55	Peak	125	138	4	363.68	35.04	46.00	-10.96	49.53	-14.49	Peak	100	212	5	448.07	36.16	46.00	-9.84	48.63	-12.47	Peak	100	311	6	644.01	34.17	46.00	-11.83	43.09	-8.92	Peak	150	126
Freq.	Emission Limit	Margin	SA	Factor	Remark	ANT	Turn																																																																								
MHz	level	level	reading	reading		High	Table																																																																								
1	110.51	32.27	43.50	-11.23	52.08	-19.81	Peak	100	125																																																																						
2	214.30	40.66	43.50	-2.84	59.64	-18.98	Peak	100	133																																																																						
3	253.10	35.75	46.00	-10.25	53.30	-17.55	Peak	125	138																																																																						
4	363.68	35.04	46.00	-10.96	49.53	-14.49	Peak	100	212																																																																						
5	448.07	36.16	46.00	-9.84	48.63	-12.47	Peak	100	311																																																																						
6	644.01	34.17	46.00	-11.83	43.09	-8.92	Peak	150	126																																																																						
<p>Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m). Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.</p>																																																																															

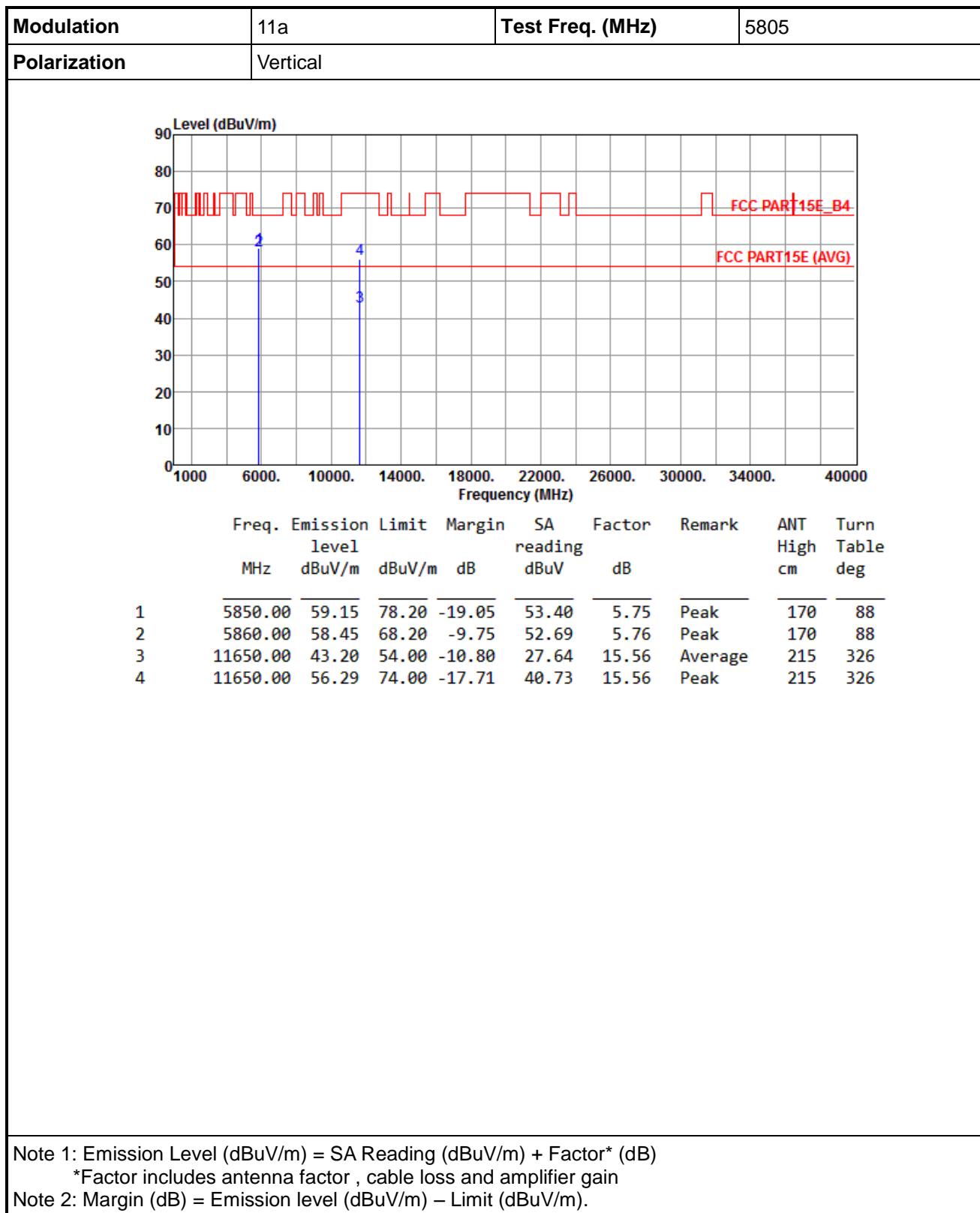

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)


*Factor includes antenna factor , cable loss and amplifier gain

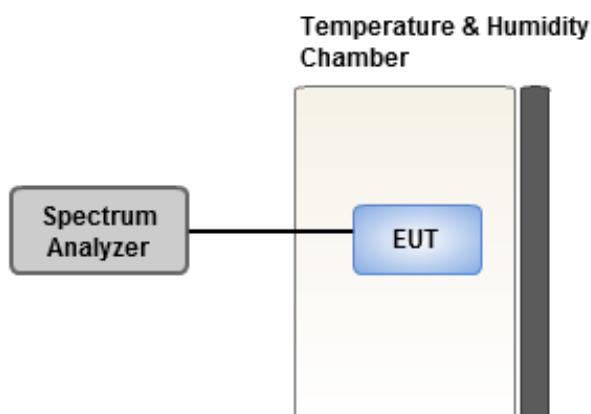

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.


3.5.5 Transmitter Radiated Unwanted Emissions (Above 1GHz)


Modulation	11a	Test Freq. (MHz)	5745																																																	
Polarization	Horizontal																																																			
<table border="1"> <thead> <tr> <th>Freq. MHz</th><th>Emission level dBuV/m</th><th>Limit dBuV/m</th><th>Margin dB</th><th>SA reading dBuV</th><th>Factor dB</th><th>Remark</th><th>ANT High cm</th><th>Turn Table deg</th></tr> </thead> <tbody> <tr> <td>1</td><td>5715.00</td><td>58.69</td><td>68.20</td><td>-9.51</td><td>53.04</td><td>5.65</td><td>Peak</td><td>101</td><td>304</td></tr> <tr> <td>2</td><td>5725.00</td><td>62.46</td><td>78.20</td><td>-15.74</td><td>56.82</td><td>5.64</td><td>Peak</td><td>101</td><td>304</td></tr> <tr> <td>3</td><td>11490.00</td><td>44.10</td><td>54.00</td><td>-9.90</td><td>28.17</td><td>15.93</td><td>Average</td><td>254</td><td>16</td></tr> <tr> <td>4</td><td>11490.00</td><td>56.47</td><td>74.00</td><td>-17.53</td><td>40.54</td><td>15.93</td><td>Peak</td><td>254</td><td>16</td></tr> </tbody> </table>				Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Margin dB	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg	1	5715.00	58.69	68.20	-9.51	53.04	5.65	Peak	101	304	2	5725.00	62.46	78.20	-15.74	56.82	5.64	Peak	101	304	3	11490.00	44.10	54.00	-9.90	28.17	15.93	Average	254	16	4	11490.00	56.47	74.00	-17.53	40.54	15.93	Peak	254	16
Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Margin dB	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg																																												
1	5715.00	58.69	68.20	-9.51	53.04	5.65	Peak	101	304																																											
2	5725.00	62.46	78.20	-15.74	56.82	5.64	Peak	101	304																																											
3	11490.00	44.10	54.00	-9.90	28.17	15.93	Average	254	16																																											
4	11490.00	56.47	74.00	-17.53	40.54	15.93	Peak	254	16																																											
Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).																																																				

3.6 Frequency Stability


3.6.1 Limit of Frequency Stability

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

3.6.2 Test Procedures

1. The EUT is installed in an environment test chamber with external power source.
2. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT.
3. A sufficient stabilization period at each temperature is used prior to each frequency measurement.
4. When temperature is stabled, measure the frequency stability.
5. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions.

3.6.3 Test Setup

3.6.4 Test Result of Frequency Stability

Frequency: 5785 MHz	Frequency Drift (ppm)			
Temperature (°C)	0 minute	2 minutes	5 minutes	10 minutes
T20°C Vmax	5.64	6.06	6.08	6.37
T20°C Vmin	4.89	4.41	5.60	5.39
T50°C Vnom	5.14	4.48	5.14	4.39
T40°C Vnom	3.73	4.31	3.82	4.29
T30°C Vnom	4.64	4.69	4.50	4.65
T20°C Vnom	3.52	3.45	3.57	4.09
T10°C Vnom	4.15	3.89	3.35	3.29
T0°C Vnom	2.90	3.50	3.26	3.59
T-10°C Vnom	1.77	1.66	1.14	2.01
T-20°C Vnom	2.12	1.73	1.89	1.32
T-30°C Vnom	2.20	2.32	2.17	2.34
Vnom [Vac]: 120	Vmax [Vac]: 138		Vmin [Vac]: 102	
Tnom [°C]: 20	Tmax [°C]: 50		Tmin [°C]: -30	

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp, it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan Hsiang. Location map can be found on our website <http://www.icertifi.com.tw>.

Linkou

Tel: 886-2-2601-1640

No. 30-2, Ding Fwu Tsuen, Lin Kou
District, New Taipei City, Taiwan,
R.O.C.

Kwei Shan

Tel: 886-3-271-8666

No. 3-1, Lane 6, Wen San 3rd
St., Kwei Shan Hsiang, Tao Yuan
Hsien 333, Taiwan, R.O.C.

Kwei Shan Site II

Tel: 886-3-271-8640

No. 14-1, Lane 19, Wen San 3rd
St., Kwei Shan Hsiang, Tao Yuan
Hsien 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666

Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

==END==