

FCC PART 15.231

MEASUREMENT AND TEST REPORT

For

Long-e Technology(Shenzhen) Co., Ltd.

C-6F, HuaHan Chuangxin Block, KeYuan Road, Hi-Tech Industry Zone, Shenzhen, China

FCC ID: TUCTA31TA37

This Report Concerns:		Equipment Type: Remote Control	
Test Engineer:	Vicent Kang Vi cent. Kang		
Report No.:	RSZ08031401		
Test Date:	2008-03-28 to 2008-04-10		
Report Date:	2008-04-10		
Reviewed By:	EMC Manager: Gre	een Xu Green . Thu	
Prepared By:		g, China 18	

Note: This test report is for the customer shown above and their specific product only. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Shenzhen). This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the Federal Government.

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
Objective	3
RELATED SUBMITTAL(S)/GRANT(S)	3
TEST METHODOLOGY	
TEST FACILITY	4
SYSTEM TEST CONFIGURATION	5
JUSTIFICATION	5
EUT Exercise Software	5
SPECIAL ACCESSORIES	
EQUIPMENT MODIFICATIONS	5
CONFIGURATION OF TEST SETUP	
BLOCK DIAGRAM OF TEST SETUP	6
SUMMARY OF TEST RESULTS	7
§15.203 - ANTENNA REQUIREMENT	8
STANDARD APPLICABLE	
§15.205, §15.209, §15.231 (B) - RADIATED EMISSIONS	9
MEASUREMENT UNCERTAINTY	
EUT Setup	
EMI TEST RECEIVER SETUP	
TEST EQUIPMENT LIST AND DETAILS	10
TEST PROCEDURE	10
STANDARD APPLICABLE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST DATA	
§15.231(C) - 20DB BANDWIDTH TESTING	
REQUIREMENT	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
TEST DATA	
§15.231(A) - DEACTIVATION TESTING	
REQUIREMENT	
EUT SETUP	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
TEST DATA	
§15.231- DUTY CYCLE	
LIMIT	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
TEST DATA	18

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Long-e Technology (Shenzhen) Co., Ltd.* 's product, model: *TA37* or the "EUT" as referred to in this report is a Remote Control which measures approximately 5.8 cm L x 3.2 cm W x 1.0 cm H, rated input voltage: DC 12V battery.

* All measurement and test data in this report was gathered from production sample serial number: 0803028 (Assigned by BACL, Shenzhen). The EUT was received on 2008-03-14.

Objective

This document is a test report based on the Electromagnetic Interference (EMI) tests performed on the EUT. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4 - 2003.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.209 and 15.231 rules.

Related Submittal(s)/Grant(s)

No Related Submittals

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4 - 2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz. All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located in the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on November 04, 2004. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Laboratories Corp. (Shenzhen) is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200707-0).

The current scope of accreditations can be found at http://ts.nist.gov/Standards/scopes/2007070.htm

SYSTEM TEST CONFIGURATION

Justification

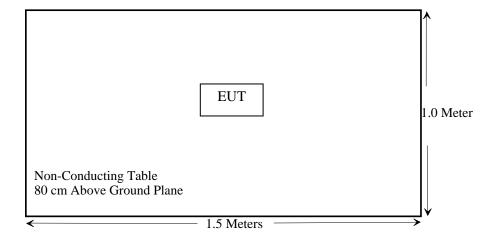
The system was configured for testing in a typical fashion (as normally used by a typical user).

EUT Exercise Software

N/A.

Special Accessories

The special accessories were provided by Bay Area Compliance Laboratories Corp. (Shenzhen).


Equipment Modifications

No modifications were made to the unit tested.

Configuration of Test Setup

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliant
§15.205	Restricted Band	Compliant
§15.209	General Requirement	Compliant
§15.231 (b)	Radiated Emissions	Compliant
§15.231 (c)	20dB Band Width Testing	Compliant
§15.231 (a)(1)	Deactivation Testing	Compliant
§15.231	Duty Cycle	Compliant

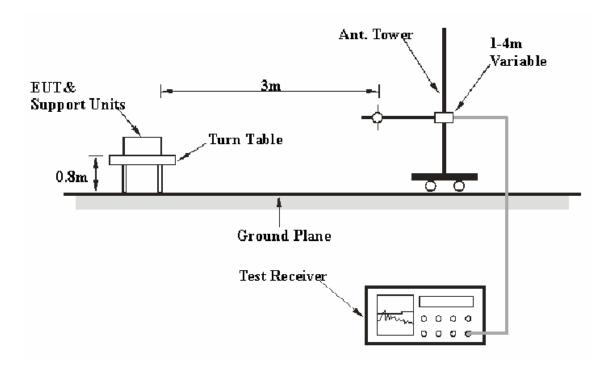
§15.203 - ANTENNA REQUIREMENT

Standard Applicable

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The antenna of the EUT was built on PCB board.

Result: Compliant.


§15.205, §15.209, §15.231 (b) - RADIATED EMISSIONS

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at Bay Area Compliance Laboratories Corp. (Shenzhen) is±4.0 dB.

EUT Setup

The radiated emission tests were performed in the 3 meters chamber B test site, using the setup accordance with the ANSI C63.4 - 2003. The specification used was the FCC 15 § 15.209 and 15.231.

EMI Test Receiver Setup

The system was investigated from 30 MHz to 5 GHz.

During the radiated emission test, the test receiver was set with the following configurations:

Frequency Range	RBW	VBW
30 – 1000 MHz	100 kHz	300 kHz
1000 MHz -5 GHz	1 MHz	3 MHz

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
HP	Amplifier	HP8447D	2944A09795	2007-11-15	2008-11-15
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2007-10-16	2008-10-16
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2007-08-14	2008-08-14
HP	Amplifier	8449B	3008A00277	2007-09-29	2008-09-29
Sunol Sciences	Horn Antenna	DRH-118	A052604	2007-09-25	2008-09-25

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in the Peak and Average detection mode.

Standard Applicable

According to §15.231(b), the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Fundamental frequency (MHz)	Field Strength of Fundamental (Micro volts /meter)	Field Strength of spurious emissions (Micro volts /meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	1,250 to 3,370	125 to375
174-260	3,750	375
260-470	3,750 to12, 500	375 to 1,250
Above 470	12,500	1,250

Linear interpolations for frequency ranges 130 - 174 MHz and 260 - 470 MHz.

The above field strength limits are specified at a distance of 3-meters the tighter limits apply at the band edges.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Loss and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Loss + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 5.8dB means the emission is 5.8dB below the limit. The equation for margin calculation is as follows:

Margin = Limit –Corrected Amplitude

Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	52%
ATM Pressure:	100.9 kPa

The testing was performed by Vicent Kang on 2008-03-28.

Test Mode: Transmitting

Frequency (MHz)	Meter	Detector D	Direction		Antenna		Cable Amn		Cable Loss	Pre- Amp	Cord.	FC	C Part 15	.231
(MHz)	(dBµV)	PK/AV	Degree	Height (m)	Polar (H/V)	Factor (dB)	(dB)	Gain (dB)	Amp. (dB μV/m)	Limit (dBµV/m)	Margin (dB)	Comment		
315.02	73.94	PK	180	1.0	Н	12.20	1.51	25.55	62.10	95.6	33.50	Fund.		
315.02	60.52	PK	180	1.0	V	12.20	1.51	25.55	48.68	95.6	46.92	Fund.		
630.04	60.05	PK	45	1.0	Н	17.70	3.56	26.82	54.49	75.6	21.11	Harmonic		
630.04	59.69	PK	45	1.0	V	17.70	3.56	26.82	54.13	75.6	21.47	Harmonic		
945.06	59.11	PK	90	1.0	Н	20.80	3.93	26.07	57.77	75.6	17.83	Harmonic		
945.06	48.92	PK	180	1.2	V	20.80	3.93	26.07	47.58	75.6	28.02	Harmonic		
1260.08	50.26	PK	45	1.2	Н	24.92	2.50	35.90	41.78	75.6	33.82	Harmonic		
1260.08	49.37	PK	135	1.2	V	24.92	2.50	35.90	40.89	75.6	34.71	Harmonic		

Field Strength of Radiated Emission (Average)							
Freq. (MHz)	Peak Measurement @3m (dBμV/m)	Polar (H/V)	Duty Cycle Correction (dB)	Corrected Amp. (dBµV/m)	FCC 15.231 Limit(dBµV/m)	Comment	
315.02	62.10	Н	-5.79	56.31	75.6	Fund.	
315.02	48.68	V	-5.79	42.89	75.6	Fund.	
630.04	54.49	Н	-5.79	48.70	55.6	Harmonic	
630.04	54.13	V	-5.79	48.34	55.6	Harmonic	
945.06	57.77	Н	-5.79	51.98	55.6	Harmonic	
945.06	47.58	V	-5.79	41.79	55.6	Harmonic	
1260.08	41.78	Н	-5.79	35.99	55.6	Harmonic	
1260.08	40.89	V	-5.79	46.68	55.6	Harmonic	

§15.231(c) - 20dB BANDWIDTH TESTING

Requirement

Per 15.231(c), The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2007-10-16	2008-10-16
НР	Amplifier	8447E	1937A01046	2007-11-15	2008-11-15
Sunol Sciences	Bilog Antenna	JB1	A040904-2	2007-08-14	2008-08-14

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

Test Procedure

With the EUT's antenna attached, the EUT's 20dB Bandwidth power was received by the test antenna which was connected to the spectrum analyzer with the START and STOP frequencies set to the EUT's operation band.

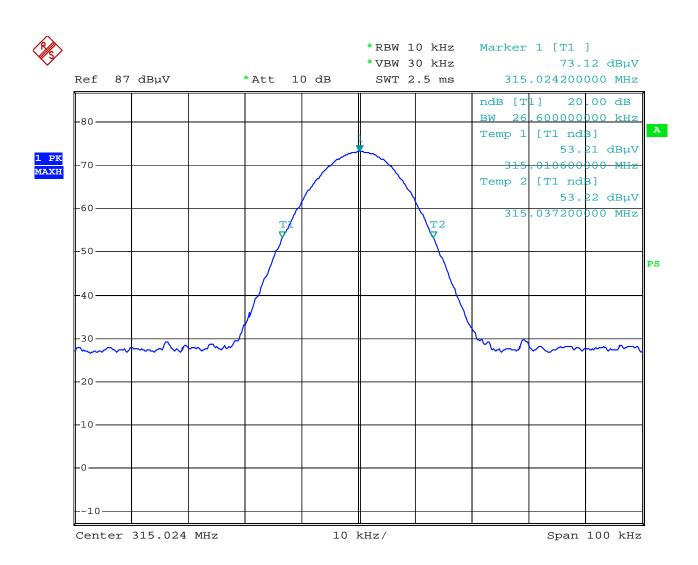
Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	50%
ATM Pressure:	100.9 kPa

The testing was performed by Vicent Kang on 2008-03-28.

Test Mode: Transmitting


20 dB Bandwidth Limit = Fundamental * 0.25% = 315 MHz *0.25% = 787.5 kHz

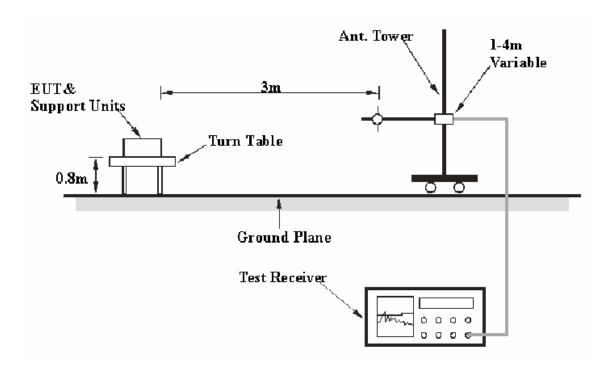
Test Result: Compliant.

Please refer to following table and plot.

20 dB Bandwidth:

Channel Frequency	20dB Bandwidth	Limit
(MHz)	(kHz)	(kHz)
315.0	26.60	787.5

TA37H 20 dB bandwidth


Date: 28.MAR.2008 03:43:43

§15.231(a) - DEACTIVATION TESTING

Requirement

Per 15.231(a) (1), a manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

EUT Setup

The deactivation test was performed in the 3 meters chamber B test site, using the setup accordance with the ANSI C63.4 - 2003. The specification used was the FCC 15.231(a) limits.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2007-10-16	2008-10-16
HP	Amplifier	8447E	1937A01046	2007-11-15	2008-11-15
Sunol Sciences	Bilog Antenna	JB1	A040904-2	2007-08-14	2008-08-14

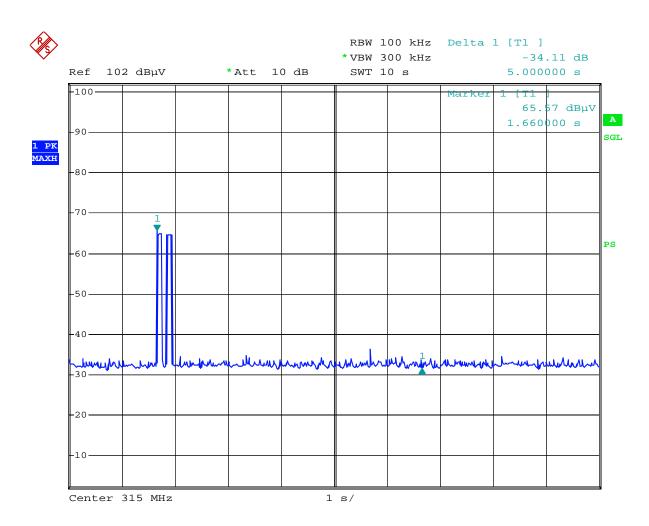
^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Test Data

Environmental Conditions


Temperature:	25 ° C
Relative Humidity:	50%
ATM Pressure:	103.2 kPa

The testing was performed by Vicent Kang on 2008-04-08

Test Mode: Transmitting

Test Result: Compliant.

Please refer to following plot

TA37H Deactivation time

Date: 8.APR.2008 04:08:52

Note: The transmitter transmitting time is not more than 5 seconds

§15.231- DUTY CYCLE

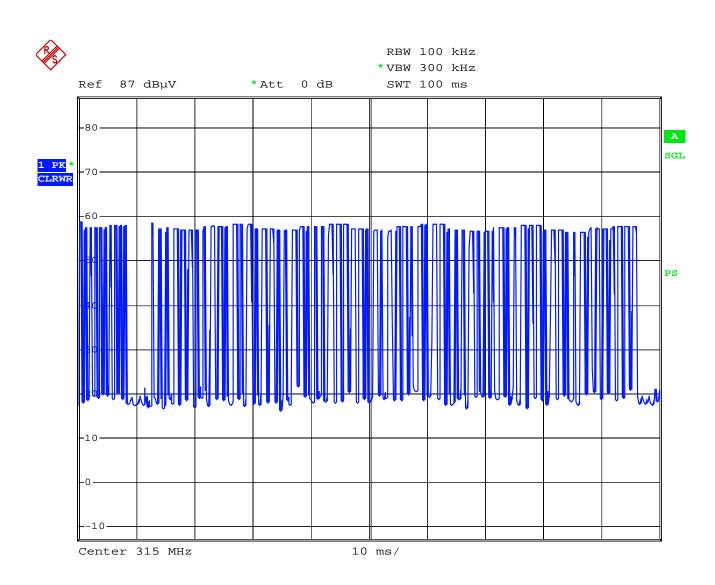
Limit

Nil (No dedicated limit specified in the Rules).

Test Equipment List and Details

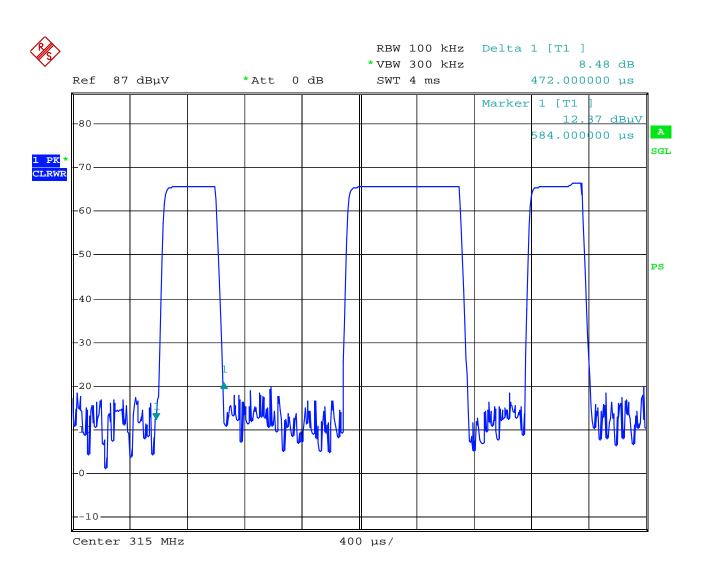
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100224	2007-10-16	2008-10-16

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

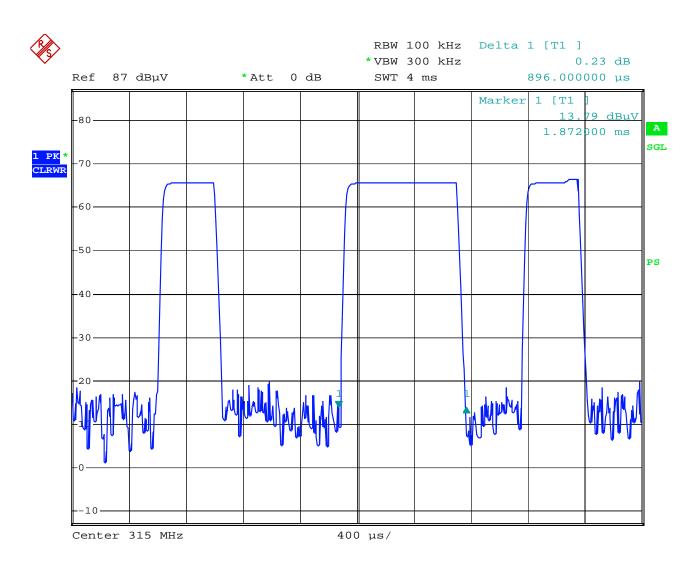

Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer=operating frequency.
- 4. Set the spectrum analyzer as RBW=100 kHz, VBW=300 kHz, Span=0Hz.
- 5. Repeat above procedures until all frequency measured was complete.

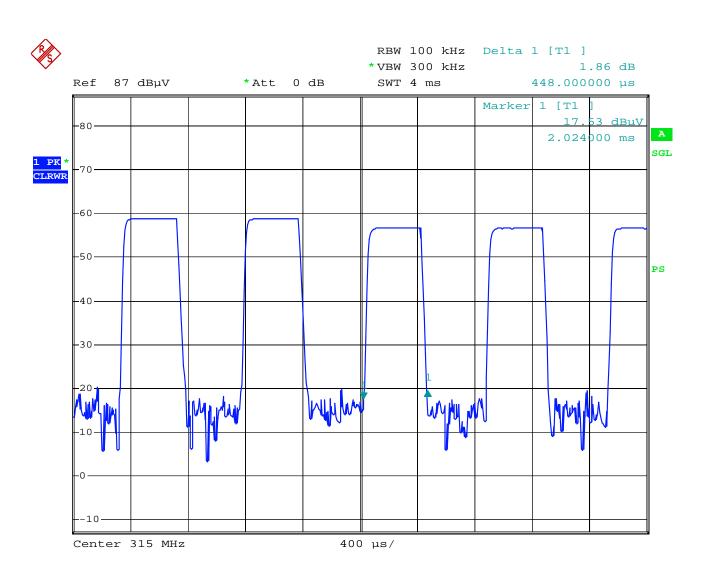
Test Data


$$Tp = 100 \text{ ms}$$

Factor =
$$20 * \log (T_{on} / T_{p}) = 20 * \log (51.32/100) = -5.79 dB$$


TA37H

Date: 10.APR.2008


TA37H-T1

Date: 10.APR.2008

TA37H-T2

Date: 10.APR.2008

TA37H-T3

Date: 10.APR.2008

*****END OF REPORT****