

Prediction of MPE limit at a given distance

$$S = \frac{EIRP}{4\pi R^2} \text{ re - arranged } R = \sqrt{\frac{EIRP}{S 4\pi}}$$

Where:

S = power density

R = distance to the centre of radiation of the antenna

EIRP = EUT Maximum power

Note:

The EIRP value was calculated using the peak E Field measurement.

Result

Prediction Frequency (MHz)	Maximum EIRP (mW)	Power density limit (S) (mW/cm ²)	Distance (R) cm required to be less than 1.67 mW/cm ²
10.39	1.28 x10 ⁻⁹	1.67	7.8 x 10 ⁻⁶