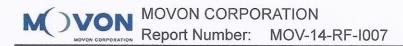
FCC Part 15 Subpart E §15.407

Test Report

Equipment Under Test	Scan Tool
Model Name	VCI II
Applicant	G.I.T Co., Ltd.
FCC ID	TMGG1XDDMN001
Manufacturer	G.I.T Co., Ltd.
Date of Test(s)	2014. 03. 18 ~ 2014. 05. 11
Date of Issue	2014. 05. 12

In the configuration tested, the EUT complied with the standards specified above.

Issue to	Issue by
G.I.T Co., Ltd. GIT BLDG., 38-5 Garakbon-Dong, Songpa-Gu, Seoul, 138-801 KOREA	MOVON CORPORATION 498-2, Geumeo-ro, Pogok-eup, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 449-812
Tel.: +82-2-2189-5470 Fax: +82-2-2189-3344	Tel.: +82-31-338-8837 Fax: +82-31-338-8847



Revision history

Revision	Date of issue	Description	Revised by
	May. 12, 2014	Initial	

Table of contents

1. GENERAL INFORMATION	4
2. EUT DESCRIPTION	5
3. MEASUREMENT EQUIPMENT	6
4. TRANSMITTER RADIATED SPURIOUS EMISSIONS AND EMISSIONS	
5. 26 dB BANDWIDTH	27
6. OUTPUT POWER	31
7. PEAK POWER SPECTRAL DENSITY	35
8. PEAK EXCURSION	39
9. FREQUENCY STABILITY	43
10. ANTENNA REQUIREMENT	45
11. RF EXPOSURE EVALUATION	46
12. TEST SETUP PHOTO OF EUT	48

1. General information

1.1. Details of applicant

Applicant

: G.I.T Co., Ltd.

Address

: GIT BLDG., 38-5 Garakbon-Dong, Songpa-Gu, Seoul, 138-801 KOREA

Telephone

Contact Person : MIN KYU JEON : +82-2-2189-3353

Fax

: +82-2-2189-3333

1.2. Summary of test results

The EUT has been tested according to the following specifications;

Section in FCC part 15	Description	Result	
§15.205(a) §15.209(a) §15.407(b)(1)	Transmitter radiated spurious emissions, Conducted spurious emission	С	
§15.407(a)(1)	· Output power	С	
§15.407(a)(1)	Peak power spectral density	С	
§15.407(a)(1)	Peak excursion	С	
§15.407(g)	frequency stability		
§1.1307(b)(1)	RF exposure evaluation	С	

The sample was tested according to the following specification:

ANSI C63.4-2003

FCC Public Notice KDB789033 D01 v01r03.

TEST SITE REGISTRATION NUMBER:

FCC(670686)

X Abbreviation

Complied

N/A Not applicable

Fail

Approval Signatories

Test and Report Completed by :	Report Approval by :
him	Alle
Jungmoo Her Test Engineer MOVON CORPORATION	Issac Jin Technical Manager MOVON CORPORATION

Page: (4) of (49)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without the written approval of MOVON CORPORATION.

2. EUT Description

Kind of product	Scan tool		
Model Name	VCI II		
Serial Number	N/A		
Power supply	DC 7V ~ 35V		
Frequency range	5 180 MHz ~ 5 240 MHz		
Modulation technique	OFDM		
Number of channels	4		
Antenna gain	3.952 dB i (Max.)		
Test Site Registration Number	FCC(670686)		

2.1. Declarations by the manufacturer

None

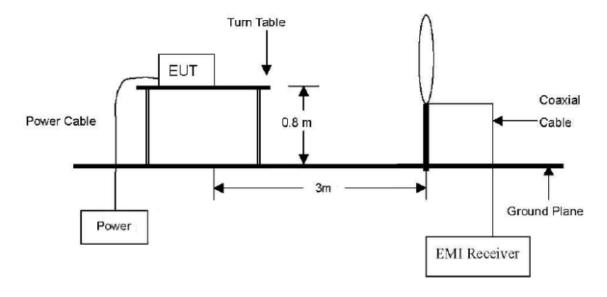
2.2. Details of modification

None

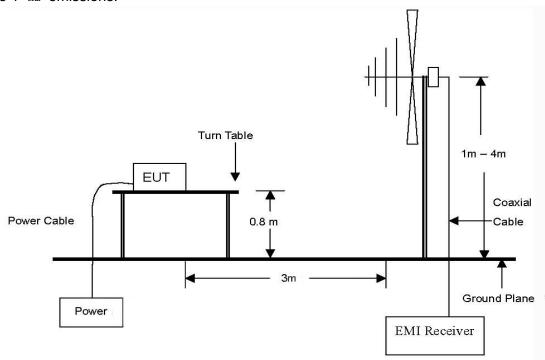
3. Measurement equipment

Equipment	Equipment Manufacturer		Serial number	Calibration Interval	Calibration due.
EMI Test Receiver	R&S	ESIB26	ESIB26 100196/026		2014-12-14
Signal Generator	R&S	SMR27	100089	1 year	2014-12-13
Spectrum Analyzer	R&S	FSV-40	100832	1 year	2014-10-04
Power Meter	Agilent	E4416A	GB41290645	1 year	2014-10-04
Power Sensor	Agilent	9327A	US40441490	1 year	2014-10-04
Double Ridge Horn Antenna	R&S	HF906	100236	2 year	2015-02-28
Horn Antenna	AH Systems	SAS-572	269	2 year	2015-09-06
Double Ridge Horn Antenna	ETS LINDGREN	3116B	133350	2 year	2016-02-26
Bi - Log Antenna	AH Systems	SAS-521-7	128	2 year	2015-10-04
Power Amplifier	MITEQ	AM-1431	1497315	1 year	2014-10-04
Power Amplifier	MITEQ	AFS43-01002600	1374382	1 year	2014-10-04
High Pass Filter	Wainwright	WHK3.0/18G-10SS	508	1 year	2014-10-04
DC Power Supply	HP	6674A	3637A01351	1 year	2014-10-04
Controller	INNCO	CO2000	co200/064/6961003/L	N/A	N/A
Antenna Master	INNCO	MA4000	MA4000/038/6961003/L	N/A	N/A
Loop Antenna	ETS LINDGREN	6502	00118166	2 year	2015-09-27

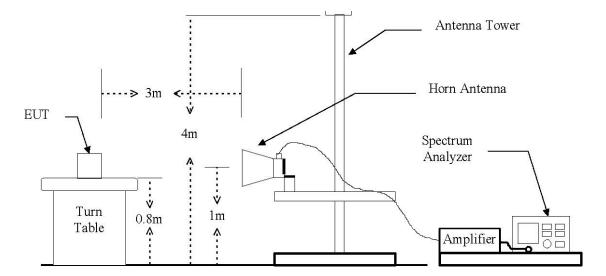
Remark;Support equipment


Description	Manufacturer	Model	Serial number	
Notebook computer	DELL	Lattitude D510	-	

4. Transmitter radiated spurious emissions and conducted spurious emissions


4.1. Test setup

4.1.1. Transmitter radiated spurious emissions


The diagram below shows the test setup that is utilized to make the measurements for emission from 9kHz to 30MHz Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 \oplus to 40 \oplus emissions.

4.2. Limit

For transmitters operating in the 5.15 \sim 5.25 \times band : all emissions outside of the 5.15 \sim 5.35 \times band shall not exceed an EIRP of -27 \times band : all emissions outside of the 5.15 \sim 5.35 \times band : a

$$E = \frac{1000000\sqrt{30P}}{3}$$

$$\mu \text{N/m, where P is the eirp (Watts)}$$

EIRP (dB m)	Field Strength at 3m (dBµV/m)
-27	68

According to §15.205(a), Except as provided elsewhere in this Subpart, the emissions from Restricted bands of operation shall not exceed the field strength levels specified in the following table:

MHz	MHz	MHz	GHz	
0.090 - 0.110	16.42 – 16.423	399.9 – 410	4.5 – 5.15	
0.495 - 0.505	16.694 75 – 16.695 25	608 – 614	5.35 – 5.46	
2.173 5 – 2.190 5	16.804 25 -16.804 75	960 – 1240	7.25 – 7.75	
4.125 – 4.128	25.5 – 25.67	1300 – 1427	8.025 – 8.5	
4.177 25 – 4.177 75	37.5 – 38.25	1435 – 1626.5	9.0 – 9.2	
4.207 25 – 4.207 75	73 – 74.6	1645.5 – 1646.5	9.3 – 9.5	
6.215 – 6.218	74.8 – 75.2	1660 – 1710	10.6 – 12.7	
6.267 75 – 6.268 25	108 – 121.94	1718.8 – 1722.2	13.25 – 13.4	
6.311 75 – 6.312 25	123 – 138	2200 – 2300	14.47 – 14.5	
8.291 – 8.294	149.9 – 150.05	2310 – 2390	15.35 – 16.2	
9.362 – 8.366	156.524 75 – 156.525 25	2483.5 – 2500	17.7 – 21.4	
8.376 25 – 8.386 75	156.7 – 156.9	2655 – 2900	22.01 – 23.12	
8.414 25 – 8.414 75	162.012 5 – 167.17	3260 – 3267	23.6 – 24.0	
12.29 – 12.293	167.72 – 173.2	3332 - 3339	31.2 – 31.8	
12.519 75 – 12.520 25	240 – 285	3345.8 – 3358	36.43 – 36.5	
12.576 75 – 12.577 25	322 -335.4	3600 – 4400		
13.36 – 13.41				

Page: (9) of (49)

4.3. Test procedures

Radiated emissions from the EUT were measured according to the dictates of ANSI C63.4:2003

4.3.1. Test procedures for radiated spurious emissions

- 1. The EUT is placed on a turntable, which is 0.8 m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

***** Remark:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 10 klb for Peak detection (PK) at frequency below 30 Mb
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 klb for Peak detection (PK) or Quasi-peak detection (QP) at frequency below 1 Gb.
- 3. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 Mb for Peak detection and frequency above 1 Gb.

4.3.2. Test procedures for conducted spurious emissions

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW = 1 Mb, VBW = 1 Mb.

4.4. Test result

Ambient temperature: $\underline{23~\%}$ Relative humidity: $\underline{43~\%}$ R.H.

4.4.1. Spurious radiated emission

The frequency spectrum from 9 kHz to 30 MHz was investigated. Emission levels are not reported much lower than the limits by over 20 dB. All reading values are peak values.

To get a maximum emission levels from the EUT, the EUT was moved throughout the XY, XZ, and YZ planes.

Operation mode: Normal mode

A. Low channel (5 180 脏)

Radiated emissions			Ant.	Correction	n factors	Total	Lir	nit
Frequency (MHz)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
No other emissions were detected at a level greater than 20dB below limit.								

B. Middle channel (5 220 脏)

Radi	Radiated emissions		Ant.	Correction factors		Total	Lir	nit		
Frequency (MHz)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)		
No other emissions were detected at a level greater than 20dB below limit.										

C. High channel (5 240 脏)

Radi	ated emission	ons	Ant.	Correction	Correction factors		Lir	nit	
Frequency (Mb)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
No other emissions were detected at a level greater than 20dB below limit.									

***** Remark

- 1. Actual = Reading + Ant. factor + CL (Cable loss)
- 2. Distance extrapolation factor = 40 log (specific distance / test distance) (dB)
- 3. Limit line = specific Limits (dBuV) + Distance extrapolation factor
- 4. 15.31 Measurement standards.

The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

Page: (11) of (49)

Operation mode: N_20MHz mode

A. Low channel (5 180 Mb)

Radi	ated emissic	ons	Ant.	Correctio	n factors	Total	Lir	nit	
Frequency (MHz)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)	
No other emissions were detected at a level greater than 20dB below limit.									

B. Middle channel (5 220 账)

Radi	Radiated emissions		Ant.	Correction factors		Total	Lir	nit		
Frequency (MHz)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dΒμV/m)	Limit (dBµN/m)	Margin (dB)		
No other emissions were detected at a level greater than 20dB below limit.										

C. High channel (5 240 贮)

Radi	Radiated emissions		Ant.	Correction	n factors	Total	Lir	nit		
Frequency (MHz)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dΒμV/m)	Limit (dBµV/m)	Margin (dB)		
No other emissions were detected at a level greater than 20dB below limit.										

***** Remark

- 1. Actual = Reading + Ant. factor + CL (Cable loss)
- 2. Distance extrapolation factor = 40 log (specific distance / test distance) (dB)
- 3. Limit line = specific Limits (dBuV) + Distance extrapolation factor
- 4. 15.31 Measurement standards.

4.4.2. Spurious radiated emission

The frequency spectrum from 30 Mb to 1 000 Mb was investigated. Emission levels are not reported much lower than the limits by over 20 dB. All reading values are peak values.

To get a maximum emission levels from the EUT, the EUT was moved throughout the XY, XZ, and YZ planes.

Operation mode: Normal mode

A. Low channel (5 180 脏)

Radi	ated emission	ons	Ant.	Correctio	n factors	Total	Lir	nit
Frequency (Mb)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dBµV/m)	Limit (dBµN/m)	Margin (dB)
34.90	26.58	PK	V	7.85	1.50	35.93	40.00	4.07
159.80	24.21	PK	V	10.48	3.80	38.49	43.50	5.01
218.80	22.63	PK	Н	12.85	4.10	39.58	46.00	6.42
242.70	21.50	PK	V	14.60	4.10	40.20	46.00	5.80
387.30	18.98	PK	Н	16.26	5.80	41.04	46.00	4.96
Above 400	Not detected							

*** Remark**

- 1. Actual = Reading + Ant. factor + CL (Cable loss)
- 2. 15.31 Measurement standards.

B. Middle channel (5 220 贮)

Radi	ated emissic	ons	Ant.	Correctio	n factors	Total	Lir	nit
Frequency (MHz)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
34.90	24.30	PK	V	7.85	1.50	33.65	40.00	6.35
159.80	24.52	PK	V	10.48	3.80	38.80	43.50	4.70
218.80	21.20	PK	Н	12.85	4.10	38.15	46.00	7.85
242.70	23.06	PK	V	14.60	4.10	41.76	46.00	4.24
387.30	19.22	PK	Н	16.26	5.80	41.28	46.00	4.72
Above 400	Not detected							

C. High channel (5 240 Mb)

Radi	ated emission	ons	Ant.	Correctio	n factors	Total	Lir	nit
Frequency (MHz)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dBµV/m)	Limit (dBµN/m)	Margin (dB)
34.90	25.83	PK	V	7.85	1.50	35.18	40.00	4.82
159.80	25.02	PK	V	10.48	3.80	39.30	43.50	4.20
218.80	21.22	PK	Н	12.85	4.10	38.17	46.00	7.83
242.70	23.96	PK	V	14.60	4.10	42.66	46.00	3.34
387.30	20.26	PK	Н	16.26	5.80	42.32	46.00	3.68
Above 400	Not detected							

***** Remark

- 1. Actual = Reading + Ant. factor + CL (Cable loss)
- 2. 15.31 Measurement standards.

Operation mode: N_20MHz mode

A. Low channel (5 180 脏)

Radi	ated emission	ons	Ant.	Correctio	n factors	Total	Lir	nit
Frequency (MHz)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dBµV/m)	Limit (dBµN/m)	Margin (dB)
54.60	24.47	PK	V	7.85	1.30	33.62	40.00	6.38
102.30	24.40	PK	Н	10.23	3.50	38.13	43.50	5.37
329.70	19.85	PK	Н	14.87	5.30	40.02	46.00	5.98
517.80	18.75	PK	Н	17.51	6.50	42.76	46.00	3.24
-	-	-	-	-	-	-	-	-
Above 600	Not detected							

***** Remark

- 1. Actual = Reading + Ant. factor + CL (Cable loss)
- 2. 15.31 Measurement standards.

B. Middle channel (5 220 贮)

Radi	ated emissic	ons	Ant.	Correctio	n factors	Total	Lir	nit
Frequency (MHz)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
54.60	22.11	PK	V	7.85	1.30	31.26	40.00	8.74
102.30	23.56	PK	Н	10.23	3.50	37.29	43.50	6.21
329.70	20.30	PK	Н	14.87	5.30	40.47	46.00	5.53
517.80	17.22	PK	Н	17.51	6.50	41.23	46.00	4.77
-	-	-	-	-	-	-	-	-
Above 600	Not detected							

C. High channel (5 240 Mb)

Radi	ated emission	ons	Ant.	Correction	n factors	Total	Lir	nit
Frequency (Mb)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	CL (dB)	Actual (dBµV/m)	Limit (dBµN/m)	Margin (dB)
54.60	23.58	PK	V	7.85	1.30	32.73	40.00	7.27
102.30	25.25	PK	Н	10.23	3.50	38.98	43.50	4.52
329.70	19.92	PK	Н	14.87	5.30	40.09	46.00	5.91
517.80	18.39	PK	Н	17.51	6.50	42.40	46.00	3.60
-	-	-	-	-	-	-	-	-
Above 600	Not detected							

***** Remark

- 1. Actual = Reading + Ant. factor + CL (Cable loss)
- 2. 15.31 Measurement standards.

4.4.3. Spurious radiated emission

The frequency spectrum above 1 000 $\, \text{Mb} \,$ was investigated. Emission levels are not reported much lower than the limits by over 20 $\, \text{dB} .$

To get a maximum emission levels from the EUT, the EUT was moved throughout the XY, XZ, and YZ planes.

Operation mode: Normal mode

A. Low channel (5 180 脏)

Radiated emissions		Ant.	Correction factors			Total	Lim	Limit	
Frequency (雕)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	D.C.F (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)

No other emissions were detected at a level greater than 20dB below limit.

B. Middle channel (5 220 Mb)

Radia	ted emissi	ons	Ant. Correction factors		Total	Lin	nit		
Frequency (Mt/z)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	D.C.F (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)

No other emissions were detected at a level greater than 20dB below limit.

C. High channel (5 240 Mb)

Radi	ated emissi	ons	Ant.	Correction factors		Total	Limit		
Frequency (Mb)	Reading (dBµN)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	D.C.F (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)

No other emissions were detected at a level greater than 20dB below limit.

*** Remark**

- 2. Radiated emissions measured in frequency above 1 000 Mb were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Actual = Reading + Ant. factor + Amp + CL (Cable loss)
- 5. 15.31 Measurement standards.

Operation mode: N_20MHz mode

A. Low channel (5 180 N地)

Radia	ted emissi	ons	Ant.	Correction factors		Total	Lin	nit	
Frequency (Mb)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	D.C.F (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)

No other emissions were detected at a level greater than 20dB below limit.

B. Middle channel (5 220 Mb)

Radia	Radiated emissions Ant.		t. Correction factors			Total	Limit		
Frequency (雕)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	D.C.F (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)

No other emissions were detected at a level greater than 20dB below limit.

C. High channel (5 240 账)

Radia	Radiated emissions		Ant.	Correction factors			Total	Limit	
Frequency (MHz)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m) Amp + CL (dB) D.C.F		Actual (dΒμV/m)	Limit (dBµN/m)	Margin (dB)	
	No other emissions were detected at a level greater than 20dB below limit.								

***** Remark

- 2. Radiated emissions measured in frequency above 1 000 Mb were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Actual = Reading + Ant. factor + Amp + CL (Cable loss)
- 5. 15.31 Measurement standards.

4.4.4. Restricted Band

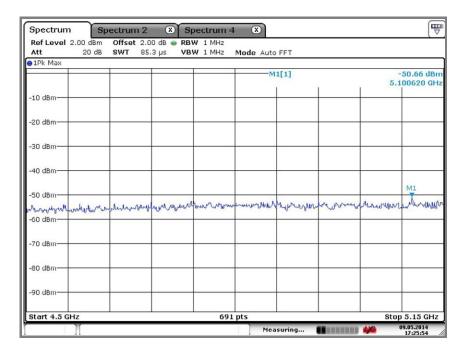
A. 4.5 - 5.15 (measurement

Operation mode: Normal mode

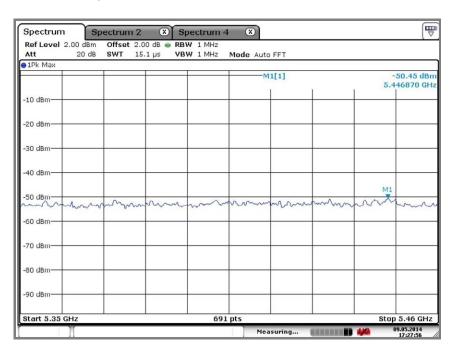
* Low channel (5 180 Mb)

Radiated emissions		Ant.	Correction factors		Total	Total Limi		
Frequency (MHz)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
4 942	30.34	Peak	Н	33.91	-40.50	23.75	74.00	50.25
4 942	19.69	Average	Н	33.91	-40.50	13.10	54.00	40.90
4 942	30.77	Peak	V	33.91	-40.50	24.18	74.00	49.82
4 942	20.12	Average	V	33.91	-40.50	13.53	54.00	40.47

Operation mode: N_20MHz mode


* Low channel (5 180 **Mb**)

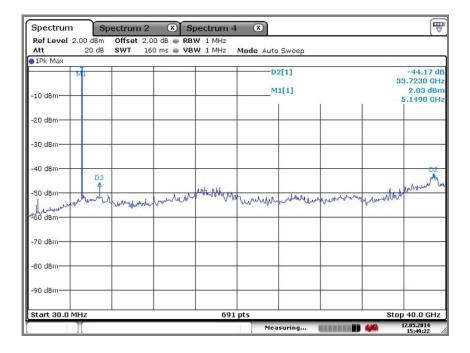
Radi	ated emissi	missions Ant. Correction factors		Total	Lin	Limit		
Frequency (M地)	Reading (dBμV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBµV/m)	Limit (dBµN/m)	Margin (dB)
4 889	33.37	Peak	Н	33.91	-40.50	26.78	74	47.22
4 889	23.50	Average	Н	33.91	-40.50	16.91	54	37.09
4 889	31.14	Peak	V	33.91	-40.50	24.55	74	49.45
4 889	22.09	Average	V	33.91	-40.50	15.50	54	38.50


***** Remark

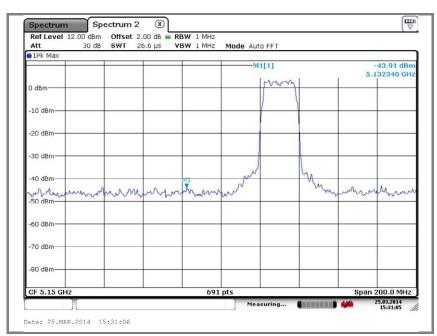
Actual = Reading + Ant. Factor + Amp + CL (Cable loss)

Restrict band (4 500 - 5 150 Nb)

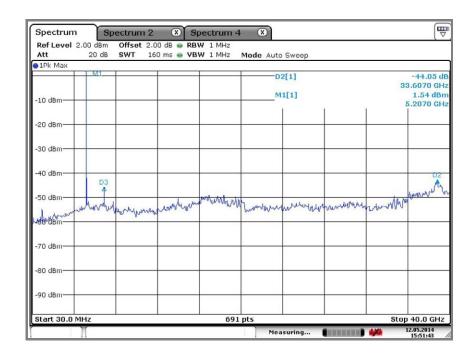
Restrict band (5 350 - 5 460 Mb)

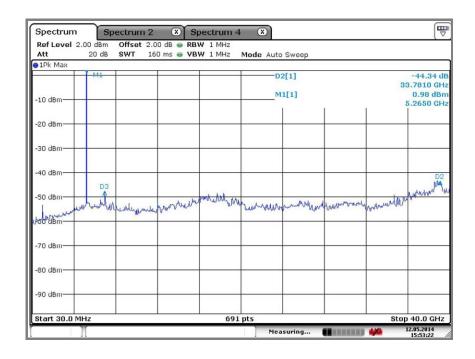


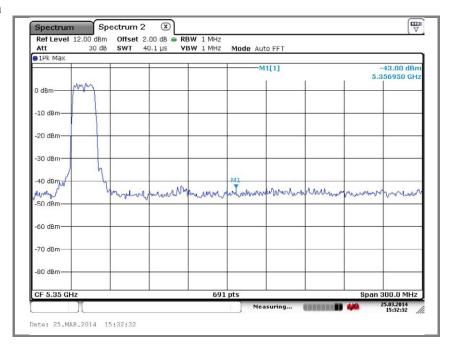
4.4.5. Spurious RF conducted emissions: Plot of spurious RF conducted emission


Operation mode: Normal mode

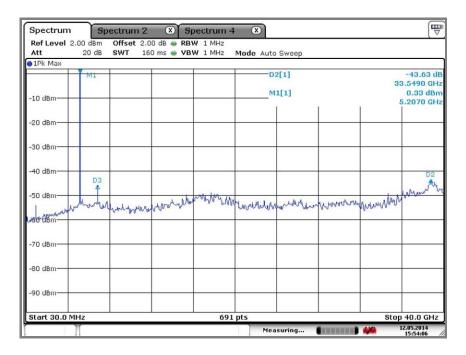
A. Low channel (5 180 脏)

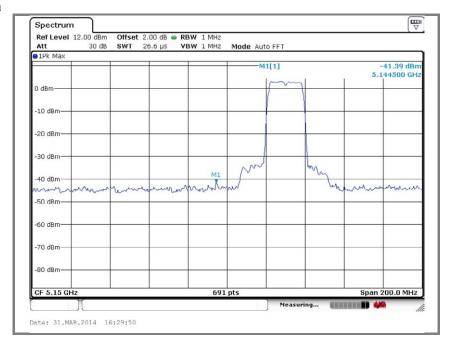

Unwanted Emission data


Band-edge data

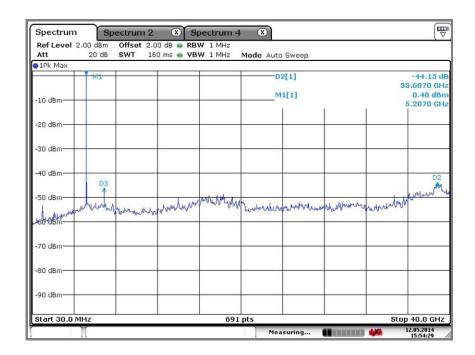

B. Middle channel (5 220 贮)

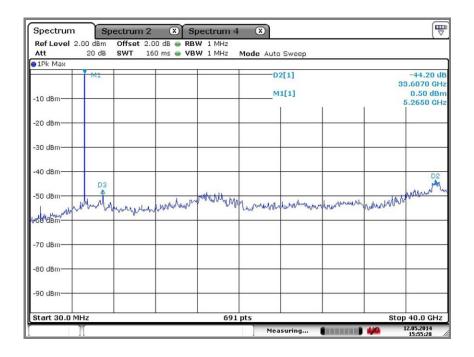
C. High channel (5 240 账)

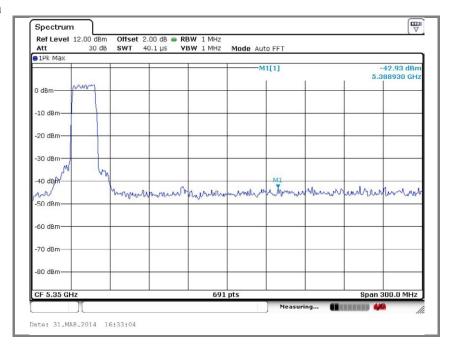

Band-edge data


Operation mode: N_20MHz mode

A. Low channel (5 180 脏)


Unwanted Emission data


Band-edge data


B. Middle channel (5 220 贮)

C. High channel (5 240 账)

Band-edge data

5. 26 dB bandwidth

5.1. Test setup

5.2. Limit

Not applicable

5.3. Test procedure (KDB 789033 v01r03 – Section C)

- 1. The signal analyzer's automatic bandwidth measurement capability was used to per Form the 26dB bandwidth measurement. The "X" dB dandwidth parameter was set to X = 26. The automatic bandwidth measurement function also has the capability of Stimultaneously measuring the 99% occupied bandwidth. The bandwidth measurement Was not influenced by any intermediate power nulls in the fundamental emission.
- 2. Set the spectrum analyzer as,

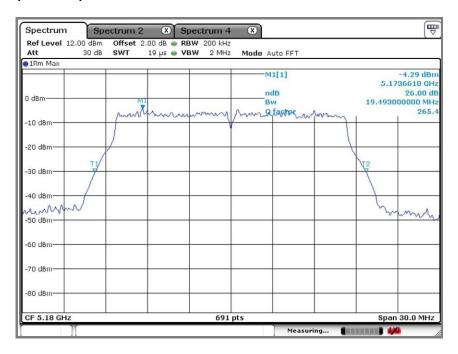
RBW = approximately 1% of the emission bandwidth

VBW > RBW

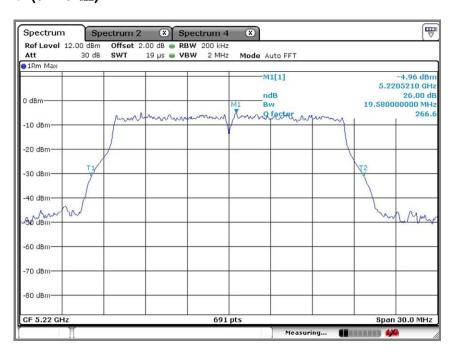
Detector = Peak

Trace mode = max hold

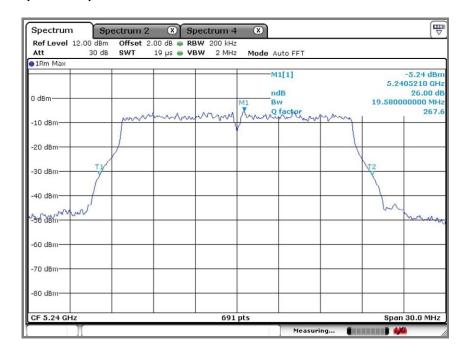
3. Repeat until all the rest channels are investigated.


5.4. Test results

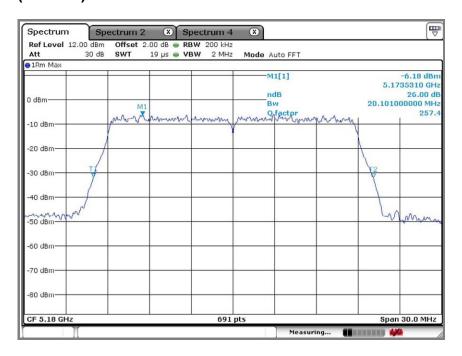
Ambient temperature: 23 °C Relative humidity: 43 % R.H.


Mode	Frequency(酏)	26 dB bandwidth(账)		
	5 180	19.49		
Normal	5 220	19.58		
	5 240	19.58		
	5 180	20.10		
N_20MHz	5 220	20.19		
	5 240	20.23		

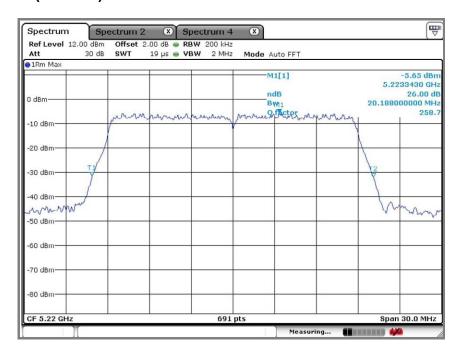
Operation mode: Normal mode


A. Low channel (5 180 脏)

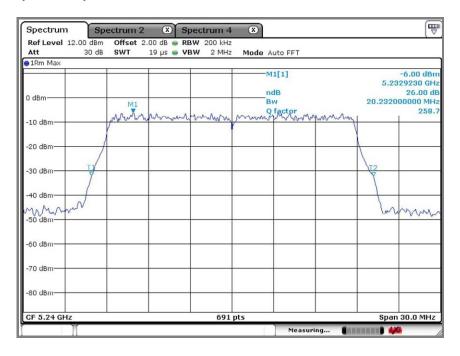
B. Middle channel (5 220 账)



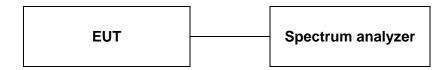
C. High channel (5 240 脏)



Operation mode: N_20MHz mode


A. Low channel (5 180 脏)

B. Middle channel (5 220 Mb)



C. High channel (5 240 Mb)

6. Output power

6.1. Test setup.

6.2. Limit

For the 5.15-5.25 $\mbox{ }\mbox{ }\m$

6.3. Test procedure (KDB 789033 v01r03 – Section E-b)

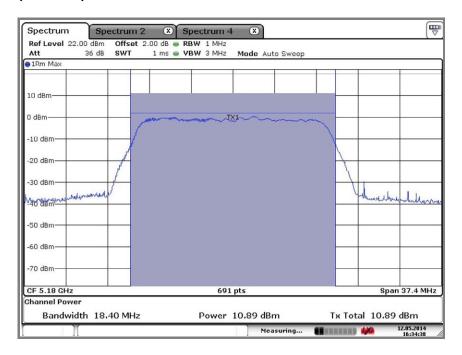
- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the Spectrum analyzer as RBW = 1 Mb, VBW ≥ 3 Mb, Span = Auto, Channel BW = 26 dB bandwidth, Number of points in sweep ≥ 2 span / RBW, Detector = RMS(power averaging)

6.4. Test results

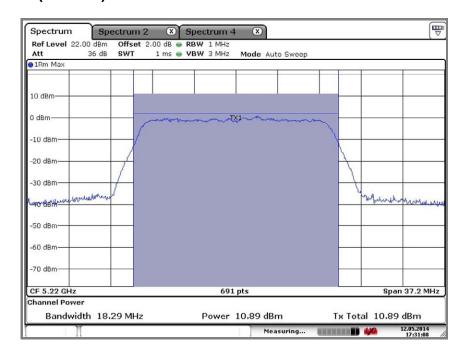
Ambient temperature: $23 \degree C$ Relative humidity: 43 % R.H.

Limit

Mode	Frequency (쌘)	Fixed Limit (dB m)	B (M½)	4+10LogB (dB m)	Antenna gain (dB i)	Limit (dB)
	5 180	17	19.49	16.90		
Normal	5 220	17	19.58	16.92		17
	5 240	17	19.58	16.92	3.952	
	5 180	17	20.10	17.03	3.932	
N_20MHz	5 220	17	20.19	17.05		17
	5 240	17	20.23	17.06		

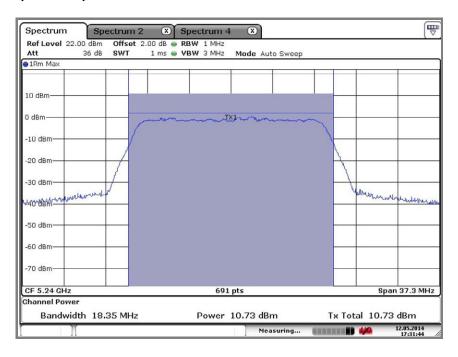

Result

Mode	Frequency (∰z)	Output power (dB m)	Limit (dBm)
	5 180	10.89	
Normal	5 220	10.89	
	5 240	10.73	17
	5 180	10.03	17
N_20MHz	5 220	10.28	
	5 240	10.08	

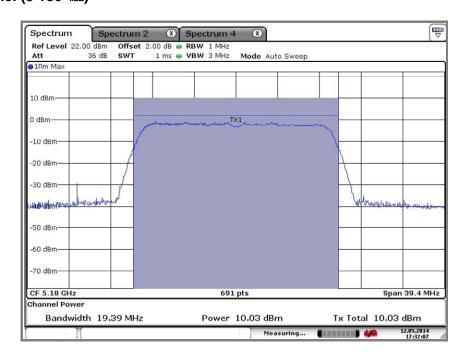

Page: (31) of (49)

Operation mode: Normal mode

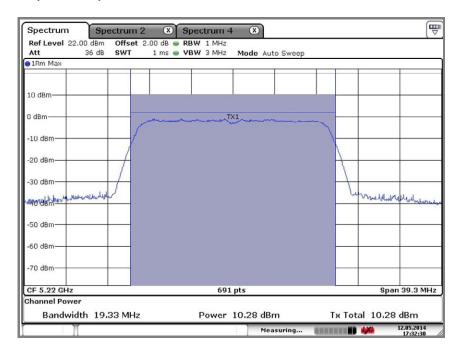
A. Low channel (5 180 脏)



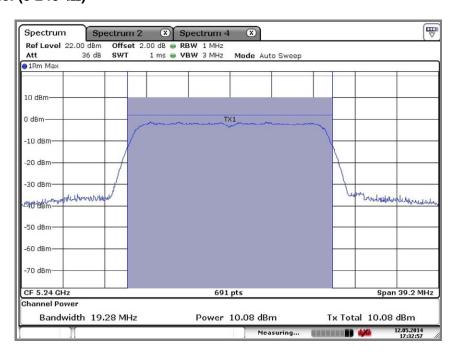
B. Middle channel (5 220 雕)


Page: (32) of (49)

C. High channel (5 240 脏)



Operation mode: N_20MHz mode


A. Low channel (5 180 脏)

B. Middle channel (5 220 贮)

C. High channel (5 240 Mb)

7. Peak power spectral density

7.1. Test setup

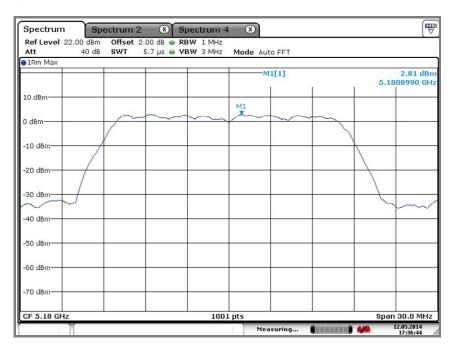
7.2. Test Overview and Limit

The spectrum analyzer was connected to the antenna terminal whilw the EUT was operation at its maximum duty cycle (>98%), at its maximum power control level, as defined in KDB 789033 v01r03, and at the appropriate frequencies, Method SA-1, as defined in KDB 789033 v01r03, was used to measure the power spectral density.

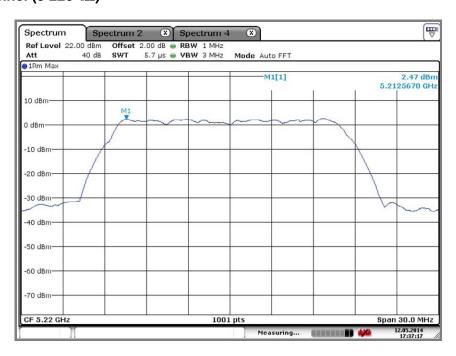
In the 5 150- 5 250 Mb band, the maximum permissible power spectral density is 4 dBm / Mb

7.3. Test procedure (KDB 789033 v01r03 – Section F)

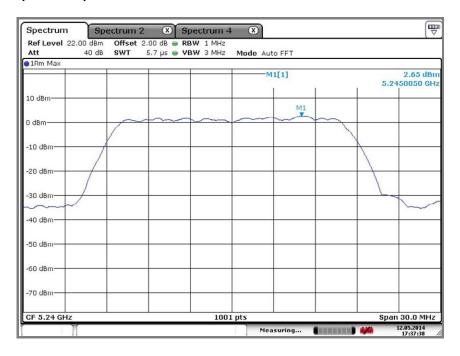
- 1. Analyzer was set to the center frequency of the UNII channel under investigation
- 2. Span was set to encompass the entire emission bandwidth of the signal
- 2. RBW = 1 MHz, VBW = 3 MHz
- 3. Number of sweep points > 2 x (span/RBW)
- 4. Sweep time = auto
- 5. Detector = power averaging (RMS)
- 6. Trigger was set to free run since the EUT was operating at a duty cycle > 98%
- 7. Trace was averaged over 100 sweeps
- 8. The peak search function of the spectrum analyzer was used to find the peak of the spectrum.


7.4. Test results

Ambient temperature: $23 \degree$ Relative humidity: 43 % R.H.

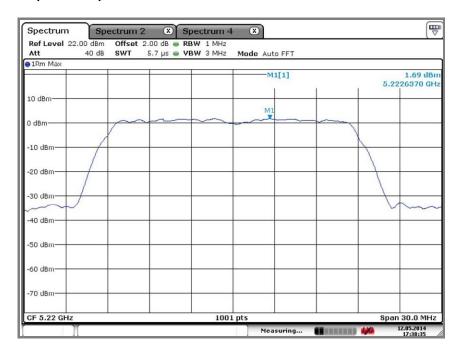

Mode	Frequency (∰)	PPSD (dBm)	Limit (dB m)
	5 180	2.81	
Normal	5 220	2.47	4
	5 240	2.65	
	5 180	1.56	
N_20MHz	5 220	1.69	4
	5 240	1.69	

Operation mode: Normal mode

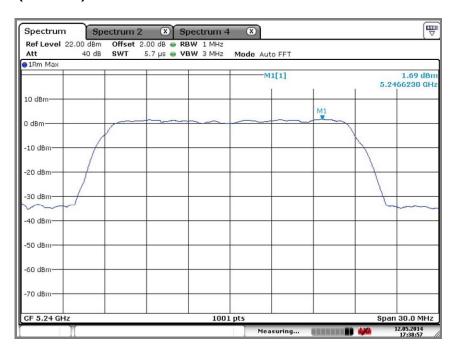

A. Low channel (5 180 脏)

B. Middle channel (5 220 Mb)

C. High channel (5 240 Mb)



Operation mode: N_20MHz mode


A. Low channel (5 180 脏)

B. Middle channel (5 220 贮)

C. High channel (5 240 账)

8. Peak excursion

8.1. Test setup

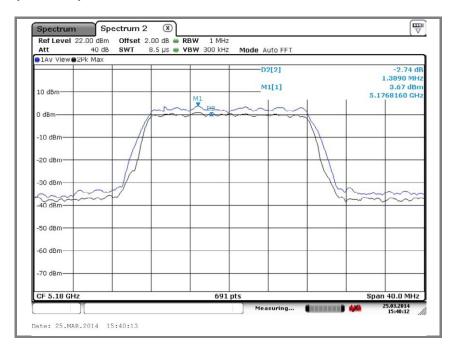
8.2. Limit

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 Mb bandwidth or the emission bandwidth whichever is less. The maximum antenna

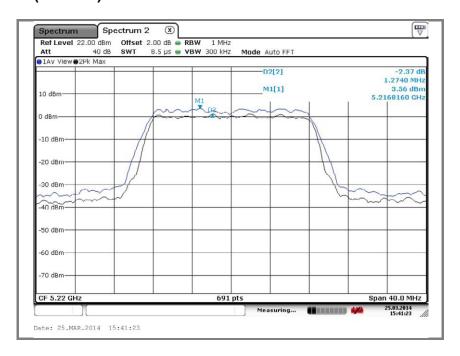
8.3. Test procedure

- Place the EUT on the table and set it in transmitting mode.
 Remove the antenna from the EUT and then connect a low loss RF cable from the antenna the port to the Spectrum analyzer
- 2. Set spectrum analyzer as;

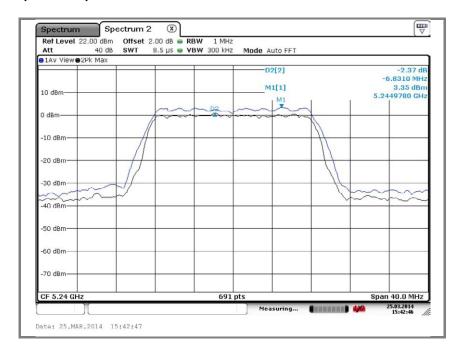
 RBW = 1 Mb, VBW = 3 Mb, Span = 30 Mb, Detector mode: average, Trace 1: Max hold & View
- 3. Set spectrum analyzer as ; RBW = 1 Mb, VBW = 300kb, Span = 30 Mb, Detector mode: peak, Trace 2: Max hold
- 4. Record the max reading.
- 5. Repeat the above procedure until the measurements for all frequencies are completed.


8.4. Test results

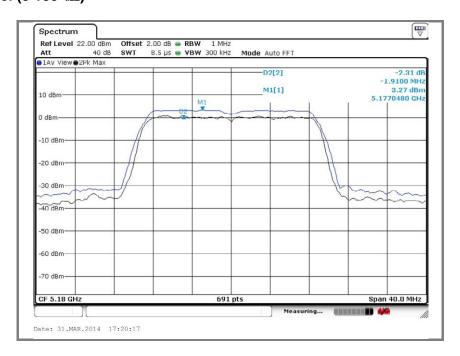
Ambient temperature: 23 $^{\circ}$ C Relative humidity: 43 $^{\circ}$ R.H.


Mode	Frequency (쌘)	Peak excursion (dB)	Limit (dB)
Normal	5 180	2.74	
	5 220	2.37	13
	5 240	2.37	
N_20MHz	5 180	2.31	
	5 220	2.51	13
	5 240	2.09	

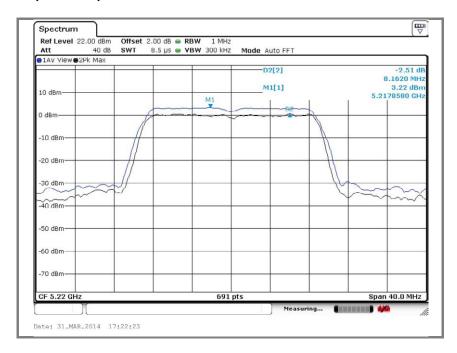
Operation mode: Normal mode


A. Low channel (5 180 脏)

B. Middle channel (5 220 贮)



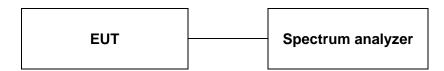
C. High channel (5 240 账)



Operation mode: N_20MHz mode


A. Low channel (5 180 脏)

B. Middle channel (5 220 贮)



C. High channel (5 240 账)

9. Frequency stability

9.1. Test setup

9.2. Limit

Not applicable

9.3. Test procedure

The frequency stability of the transmitter is measured by:

- a) Temperature: The temperature is varied from -20°C to +60°C using an environmental c hamber.
- b) Primary Supply Voltage: The primary supply voltage is varied from 85% to 115% of the voltage normally at the input to the device or at the power supply terminals if cable s are not normally supplied.
- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the Spectrum analyzer as RBW = 10kHz, VBW = 10kHz, Sweep time = Auto

9.4. Test results

Operation mode: Normal mode

Operation Frequency: 5 240 № (Worst case)

VOLTAGE (%)	POWER (VDC)	TEMP (dB)	FREQ (Hz)	Deviation (%)
100%		+20(Ref)	5 240 010 857	0.000207
100%		-20	5 240 011 519	0.000220
100%		-10	5 240 012 883	0.000246
100%		0	5 240 010 694	0.000204
100%		+10	5 240 012 711	0.000243
100%	24.00	+20	5 240 010 303	0.000197
100%		+25	5 240 009 548	0.000182
100%		+30	5 240 011 398	0.000218
100%		+40	5 240 010 642	0.000203
100%		+50	5 240 010 895	0.000208
100%		+60	5 240 011 667	0.000223
85%	20.40	+20	5 240 011 454	0.000219
115%	27.60	+20	5 240 012 026	0.000230

Operation mode: N_20MHz mode

Operation Frequency: 5 240 № (Worst case)

VOLTAGE (%)	POWER (VDC)	TEMP (dB)	FREQ (Hz)	Deviation (%)
100%		+20(Ref)	5 240 011 428	0.000218
100%		-20	5 240 011 366	0.000217
100%	24.00	-10	5 240 011 184	0.000213
100%		0	5 240 011 152	0.000213
100%		+10	5 240 012 596	0.000240
100%		+20	5 240 012 453	0.000238
100%		+25	5 240 012 096	0.000231
100%		+30	5 240 012 772	0.000244
100%		+40	5 240 012 348	0.000236
100%		+50	5 240 011 692	0.000223
100%		+60	5 240 012 353	0.000236
85%	20.40	+20	5 240 012 786	0.000244
115%	27.60	+20	5 240 012 597	0.000240

Page: (44) of (49)

10. Antenna requirement

10.1. Standard Applicable

For intentional device, according to FCC 47 CFR Section §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

10.2. Antenna Connected Construction

Antenna used in this product is Internal antenna (PCB Antenna) gain of 3.952 dBi.

11. RF exposure evaluation

11.1. Environmental evaluation and exposure limit according to FCC CFR 47 part 1, 1.1307(b), 1.1310

According to §15.247(e)(i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines. According to KDB 447498 (2)(a)(i)

Limits for maximum permissible exposure (MPE)

Frequency range (脈)	Electric field strength(V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Average time	
(A) Limits for Occupational / Control exposures					
300 – 1 500			F/300		
1 500 – 100 000			5	6	
(B) Limits for General Population / Uncontrol Exposures					
300 – 1 500		F/1 500		6	
1 500 – 100 000		<u>1</u>		<u>30</u>	

11.2. Friis transmission formula : Pd=(Pout*G)\(4*pi*R2)

Where

Pd= Power density in mW/cm2

Pout=output power to antenna in mW

G= Numeric gain of the antenna relative to isotropic antenna

Pi=3.1416

R= distance between observation point and center of the radiator in cm

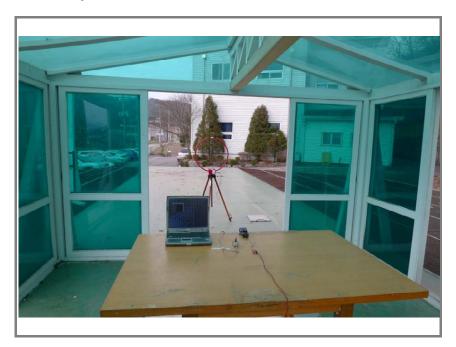
Pd the limit of MPE, 1 mW/cm². If we know the maximum gain of the antenna and total power input to the antenna, through the calculation, we will know the distance where the MPE limit is reached.

11.2. Test result of RF exposure evaluation

Test Item : RF Exposure evaluation data

Test Mode : Normal operation

11.3. Output power into antenna & RF exposure evaluation distance


Mode	Frequency (쌘)	Output Peak power to antenna (dBm)	Antenna gain (dBi)	Antenna Gain (dBi) Numeric	Power density at 20 cm (ﷺ	Power density Limits (\pi\)(\pi\)(\pi')
	5 180	10.89	3.952	2.48	0.006 1	
Normal	5 220	10.89	3.952	2.48	0.006 1	1
	5 240	10.73	3.952	2.48	0.005 8	
	5 180	10.03	3.952	2.48	0.005 0	
N_20MHz	5 220	10.28	3.952	2.48	0.005 3	1
	5 240	10.08	3.952	2.48	0.005 0	

***** Remark

The power density Pd (5th column) at a distance of 20 $\,\mathrm{cm}\,$ calculated from the friis transmission formula is far below the limit of 1 $\,\mathrm{mW/cm^2}\,$.

12. Test setup photo of EUT

Photo of radiated spurious emission at below 30 wb

Photo of radiated spurious emission at 30 № ~ 1 000 №

Photo of radiated spurious emission at above 1 000 ₩

