FCC RF TEST REPORT

Test Laboratory:

SK Tech Co., Ltd.

820-2, Wolmoon-ri, Wabu-up, Namyangju-si, Kyunggi-do 472-905 South Korea TEL: +82-31-576-2204

FAX: +82-31-576-2205

Applicant:

G.I.T Co., Ltd.

GIT BLDG., 38-5 Garakbon-Dong, Songpa-Gu, Seoul, 138-801 Korea

Test Report Number: SKT-RFC-140004

Date of issue: March 31, 2014

Manufacturer:

G.I.T Co., Ltd.

GIT BLDG., 38-5 Garakbon-Dong, Songpa-Gu, Seoul, 138-801 Korea

Product:

Scan Tool

Model:

VCI II

(please see P5 for all the model numbers)

FCC ID:

TMGG1XDDMN001

File number:

SKTEU14-0179

EUT received:

February 20, 2014

Applied standards:

ANSI C63.10-2009 and ANSI C63.4-2009

558074 D01 DTS Meas Guidance v03r01

Rule parts:

FCC Part 15 Subpart C - Intentional radiators

Equipment Class:

DTS - Part 15 Digital Transmission System

DSS - Part 15 Spread Spectrum Transmitter

Remarks to the standards:

None

The above equipment has been tested by SK Tech Co., Ltd., and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product or system, which was tested.

Jungtae Kim / Testing Engineer

Jongsoo Yoon / Technical Manager

This report shall not be reproduced except in full, without the written approval of SK Tech Co., Ltd. The client should not use it to claim product endorsement by any government agencies.

Report No.: SKT-RFC-140004

Revision History of Report

Re	v. Revisions	Effect page	Reviewed by	Date
-	Initial issue	All	Jongsoo Yoon	March 31, 2014

Report No.: SKT-RFC-140004 Page 2 of 48

TABLE OF CONTENTS

1	Summary of test results	4
2	Description of equipment under test (EUT)	5
3	Test and measurement conditions	6
	3.1. Test configuration (arrangement of EUT)	
	3.2. Description of support units (accessory equipment)	
	3.3. Interconnection and I/O cables	
	3.4. Measurement Uncertainty (<i>U</i>)	
	3.5. Test date	
4	Facilities and accreditations	7
	4.1. Facilities	
	4.2. Accreditations	7
	4.3. List of test and measurement instruments	7
5	Test and measurements (WLAN)	8
	5.1. Antenna requirement	
	5.2. Test Configuration of Equipment Under Test	<u>.</u>
	5.3. 6 dB bandwidth	10
	5.4. Maximum peak output power	13
	5.5. Spurious emissions, Band edge, and Restricted bands	16
	5.6. Peak power spectral density	29
6	Test and measurements (Bluetooth)	32
	6.1. Antenna requirement	
	6.2. Maximum peak output power	33
	6.3. Carrier frequency separations and 20 dB bandwidth	35
	6.4. Number of Hopping channels	38
	6.5. Time of occupancy (Dwell time)	40
	6.6. Spurious emissions, Band edge, and Restricted bands	42

1 Summary of test results

(WLAN)

Requirement	CFR 47 Section	Result
Antenna Requirement	15.203, 15.247(b)(4)	Meets the requirements
6dB Bandwidth	15.247(a)(2)	Meets the requirements
Maximum Peak Output Power	15.247(b)(3), (4)	Meets the requirements
Spurious Emission, Band Edge, and Restricted bands	15.247(d), 15.205(a), 15.209(a)	Meets the requirements
Peak Power Spectral Density	15.247(e)	Meets the requirements
AC power line Conducted emissions	15.207(a)	N/A

^{**} The product is powered from a DC 12 V or 24 V lead-acid battery in a vehicle

(Bluetooth)

Requirement	CFR 47 Section	Result
Antenna Requirement	15.203, 15.247(b)(4)	Meets the requirements
Maximum Peak Output Power	15.247(b)(1), (4)	Meets the requirements
Carrier Frequency Separation	15.247(a)(1)	Meets the requirements
20dB Channel Bandwidth	15.247(a)(1)	Meets the requirements
Number of Hopping Channels	15.247(a)(iii), 15.247(b)(1)	Meets the requirements
Time of Occupancy (Dwell Time)	15.247(a)(iii)	Meets the requirements
Spurious Emission, Band Edge, and Restricted bands	15.247(d), 15.205(a), 15.209(a)	Meets the requirements
AC power line Conducted emissions	15.207(a)	N/A

^{**} The product is powered from a DC 12 V or 24 V lead-acid battery in a vehicle

Report No.: SKT-RFC-140004 Page 4 of 48

2 Description of equipment under test (EUT)

Product: Scan Tool Model: VCI II

Serial number: None (prototype)

Model differences:

Model name	Difference	Tested (checked)
VCI II	Original (basic model that was fully tested)	\boxtimes

Note: All the differences were compared with the tested sample.

Technical data:

Power source	12 V/ 24 V lead-acid battery installed in vehicles
Local Oscillator or X-Tal	32.768 kHz, 4 MHz, 12 MHz, 25 MHz, 38.4 MHz
	IEEE 802.11a/n(HT20): 5180 MHz ~ 5240 MHz (4 channels),
Transmit Frequency	IEEE 802.11b/g/n(HT20): 2412 MHz ~ 2462 MHz (11 channels),
	Bluetooth: 2402 MHz ~ 2480 MHz (79 channels)
Antenna Type	WLAN and Bluetooth (integral PCB antenna, peak gain: 4.864 dBi)
	IEEE 802.11a/g/n(HT20): OFDM(64QAM, 16QAM, QPSK, BPSK),
Type of Modulation	IEEE 802.11b: DSSS (DBPSK, DQPSK, CCK),
	Bluetooth: GFSK
DE Output power	WLAN: 18.56 dBm PEAK (measured),
RF Output power	Bluetooth: 5.48 dBm PEAK(measured)

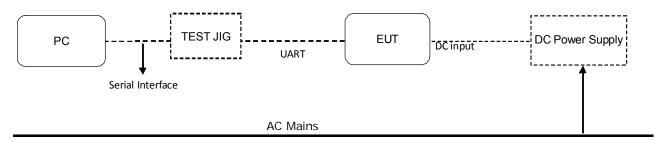
Note: 1) The test report for the compliance with FCC Part 15B as a digital device was issued with other test report number

2) The test report for U-NII(5 GHz, WLAN) was issued with other test report number

I/O port	Туре	Q'ty	Remark
OBD Ⅱ (DC Input)	OBD Ⅱ (16 pin)	1	
USB	USB (30 pin)	1	

Equipment Modifications

none


Report No.: SKT-RFC-140004 Page 5 of 48

3 Test and measurement conditions

3.1. Test configuration (arrangement of EUT)

The measurements were taken in continuous transmitting/receiving mode using the TEST MODE. For controlling the EUT as TEST MODE, the test program and the cable assembly were provided by the applicant.

The measurements were taken in TEST MODE provided by the applicant for controlling the EUT.

- Software version (driver version): 1.0.6.21
- Software manufacturer: Taiyo Yuden Co., Ltd.
- Power setting
- IEEE 802.11b(target power: 15 dBm)
- IEEE 802.11g(target power: 13 dBm)
- IEEE 802.11n(HT20)(target power: 12 dBm)
- Bluetooth : Power setting could not be adjusted

3.2. Description of support units (accessory equipment)

The following support units or accessories were used to form a representative test configuration during the tests.

#	Equipment	Manufacturer	Model No.	Serial No.
1	PC	DELL INC.	7XH86BX	17261795085
2	TEST JIG	-	-	-

Note: 1) For control of the RF module via Serial interface at the Debug port(UART) in the EUT.

3.3. Interconnection and I/O cables

The following support units or accessories were used to form a representative test configuration during the tests.

	Start		Ei	Cable		
#	Name	I/O port	Name	I/O port	length (m)	shielded (Y/N)
1	EUT	8 PIN(Debug)	TEST JIG	RS232	0.3	N
2	TEST JIG	RS232	PC	RS232	2.0	N

3.4. Measurement Uncertainty (U)

Measurement Item	Combined Standard Uncertainty Uc	Expanded Uncertainty $U = k \times Uc \ (k = 2)$
Conducted RF power	±1.49 dB	±2.98 dB
Radiated disturbance	±2.30 dB	±4.60 dB
Conducted disturbance	±1.96 dB	±3.92 dB

3.5. Test date

Report No.: SKT-RFC-140004 Page 6 of 48

²⁾ For radiated spurious emission measurements, the measurements were performed without PC after setting the radio module to TEST MODE.

4 Facilities and accreditations

4.1. Facilities

All of the measurements described in this report were performed at SK Tech Co., Ltd

Site I: 820-2, Wolmoon-ri, Wabu-up, Namyangju-si, Kyunggi-do, Korea Site II: 688-8, Wolmoon-ri, Wabu-up, Namyangju-si, Kyunggi-do, Korea

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-4. The sites comply with the Normalized Site Attenuation requirements given in ANSI C63.4, and site VSWR requirements specified in CISPR 16-1-4. The measuring apparatus and ancillary equipment conform to CISPR 16-1 series.

4.2. Accreditations

The laboratory has been also notified to FCC by RRA as a Conformity Assessment Body, and designated to perform compliance testing on equipment subject to Declaration of Conformity (DOC) and Certification under Parts 15 and 18 of the FCC Rules.

Designation No. KR0007

4.3. List of test and measurement instruments

No	Description	Manufacturer	Model	Serial No.	Cal. due	Use
1	Spectrum Analyzer	Agilent	E4405B	US40520856	2015.03.06	
2	Spectrum Analyzer	Agilent	E4440A	MY46186322	2015.03.07	\boxtimes
3	EMC Spectrum Analyzer	Agilent	E7405A	US40240203	2014.07.08	
4	EMI Test Receiver	Rohde&Schwarz	ESPI7	101206	2014.07.08	\boxtimes
5	EMI Test Receiver	Rohde&Schwarz	ESHS10	835871/002	2014.07.08	
6	Artificial Mains Network	Rohde&Schwarz	ESH2-Z5	834549/011	2014.07.08	
7	Pre-amplifier	HP	8447F	3113A05153	2014.07.08	\boxtimes
8	Pre-amplifier	MITEQ	AFS44	1116321	2014.12.06	
9	Pre-amplifier	MITEQ	AFS44	1116322	2015.03.06	\boxtimes
10	Power Meter	Agilent	E4417A	MY45100426	2014.07.09	
11	Power Meter	Agilent	E4418B	US39402176	2014.07.09	
12	Power Sensor	Agilent	E9327A	MY44420696	2014.07.09	
13	Power Sensor	Agilent	8485A	3318A13916	2014.07.09	
14	Attenuator (10dB)	HP	8491B	38072	2014.07.08	\boxtimes
15	High Pass Filter	Wainwright	WHKX3.0/18G	8	2014.07.08	\boxtimes
16	VHF Precision Dipole Antenna (TX/RX)	Schwarzbeck	VHAP	1014 / 1015	2014.10.25	
17	UHF Precision Dipole Antenna (TX/RX)	Schwarzbeck	UHAP	989 / 990	2014.10.25	
18	Loop Antenna	Schwarzbeck	HFH2-Z2	863048/019	2015.12.04	\boxtimes
19	TRILOG Broadband Antenna	Schwarzbeck	VULB9168	189	2014.05.21	\boxtimes
20	Horn Antenna	AH Systems	SAS-200/571	304	N/A	
21	Horn Antenna	EMCO	3115	00040723	2014.03.26	\boxtimes
22	Horn Antenna	EMCO	3115	00056768	2014.09.05	
23	Horn Antenna	Schwarzbeck	BBHA9170	BBHA9170318	2015.09.06	\boxtimes
24	Vector Signal Generator	Agilent	E4438C	MY42080359	2014.07.09	
25	PSG analog signal generator	Agilent	E8257D-520	MY45141255	2014.07.09	
26	DC Power Supply	HP	6622A	3348A03223	2014.07.09	\boxtimes
27	DC Power Supply	TOYOTECH	DP30-05A	-	N/A	\boxtimes
28	Hygro/Thermo Graph	SATO	PC-5000TRH-II	-	2014.07.12	\boxtimes
29	Temperature/Humidity Chamber	All Three	ATM-50M	20030425	2015.03.06	

Report No.: SKT-RFC-140004 Page 7 of 48

5 Test and measurements (WLAN)

5.1. Antenna requirement

5.1.1 Regulation

According to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. And according to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.1.2 Result: PASS

The transmitter has the integral PCB antenna. The directional gain of the antenna is 4.864 dBi.

Report No.: SKT-RFC-140004 Page 8 of 48

5.2. Test Configuration of Equipment Under Test

Pre-Scanned RF Power

Preliminary tests were performed in different data rate as below table and the highest power data rates (11b, 11g,11n(BW 20MHz), were chosen for full test in the following sections to demonstrate compliance to the limits.

The Gain control in the test software was set to the below table as the maximum power output.

	802.11b	802.11g	802.11n(20)
2412 MHz	15	13	12
2437 MHz	15	13	12
2462 MHz	15	13	12

Measured peak power (dBm) operating 802.11b mode

	1 Mbps	2 Mbps	5.5 Mbps	11 Mbps
2412 MHz	14.79	15.04	16.45	17.93
2437 MHz	15.39	15.63	17.06	18.56
2462 MHz	15.06	15.46	16.76	18.18

Measured peak power (dBm) operating 802.11g mode

 p p (,							
	6 Mbps	9 Mbps	12 Mbps	18 Mbps	24 Mbps	36 Mbps	48 Mbps	54 Mbps
2412 MHz	16.75	16.82	16.97	16.72	17.61	17.23	17.31	17.39
2437 MHz	17.08	17.14	17.30	17.00	17.96	17.51	17.63	17.68
2462 MHz	16.63	16.93	17.22	16.84	17.78	17.36	17.42	17.43

Measured peak power (dBm) operating 802.11n(HT20) mode

	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
2412 MHz	15.59	15.57	15.59	15.64	15.58	15.58	15.58	15.71
2437 MHz	15.97	15.98	15.96	15.96	15.95	15.95	15.96	15.99
2462 MHz	15.79	15.68	15.66	15.64	15.65	15.61	15.59	15.74

Report No.: SKT-RFC-140004 Page 9 of 48

5.3. 6 dB bandwidth

5.3.1 Regulation

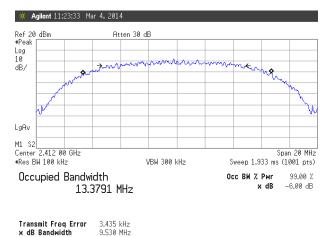
According to §15.247(a)(2), systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6dB bandwidth shall be at least 500 kHz.

5.3.2 Test Procedure

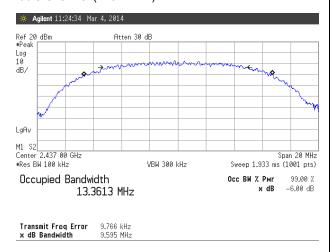
- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) $\geq 3 \times RBW$.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

5.3.3 Test Results:

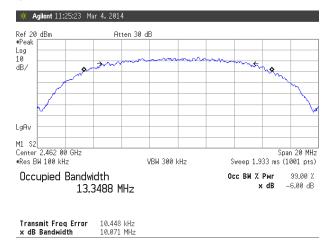
PASS


Table 1: Measured values of the 6 dB Bandwidth												
Modulation	Operating frequency	Transfer Rate	Occupied Bandwidth (99%)	6dB Bandwidth	Limit							
	2412 MHz	11 Mbps	13.3791 MHz	9.530 MHz	≥ 500 kHz							
802.11b	2437 MHz	11 Mbps	13.3613 MHz	9.595 MHz	≥ 500 kHz							
	2462 MHz	11 Mbps	13.3488 MHz	10.071 MHz	≥ 500 kHz							
	2412 MHz	54 Mbps	16.4047 MHz	16.365 MHz	≥ 500 kHz							
802.11g	2437 MHz	54 Mbps	16.4114 MHz	16.381 MHz	≥ 500 kHz							
	2462 MHz	54 Mbps	16.4044 MHz	16.421 MHz	≥ 500 kHz							
000 44	2412 MHz	MCS 7	17.6389 MHz	17.617 MHz	≥ 500 kHz							
802.11n HT20	2437 MHz	MCS 7	17.6205 MHz	17.602 MHz	≥ 500 kHz							
11120	2462 MHz	MCS 7	17.6138 MHz	17.590 MHz	≥ 500 kHz							

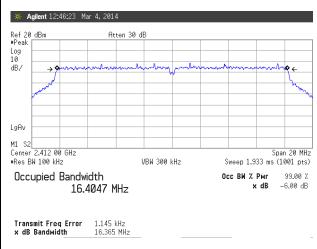
Report No.: SKT-RFC-140004 Page 10 of 48


Figure 1. Plot of the 6dB Bandwidth & Occupied Bandwidth (99%)

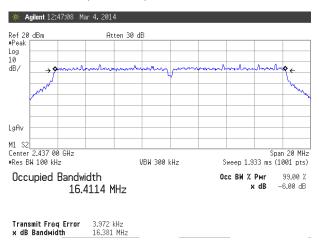
802.11b mode:


Lowest Channel (2412 MHz)

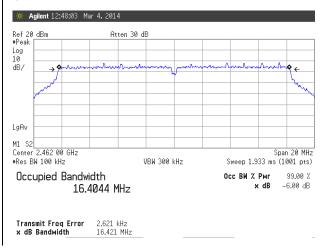
Middle Channel (2437 MHz)



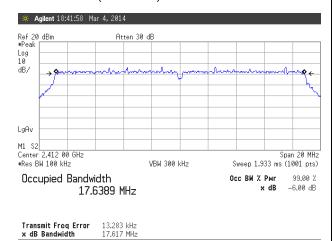
Highest Channel (2462 MHz)

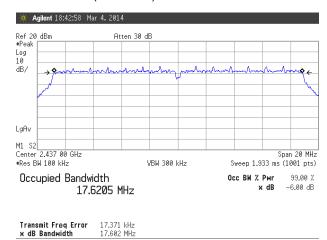


802.11g mode:

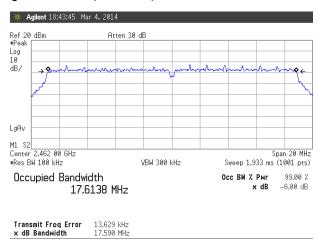

Lowest Channel (2412 MHz)

Middle Channel (2437 MHz)


Highest Channel (2462 MHz)


Plot of the 6dB Bandwidth & Occupied Bandwidth (99%) (continued)

802.11n HT20 mode:


Lowest Channel (2412 MHz)

Middle Channel (2437 MHz)

Highest Channel (2462 MHz)

Report No.: SKT-RFC-140004 Page 12 of 48

5.4. Maximum peak output power

5.4.1 Regulation

According to §15.247(b)(3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

According to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

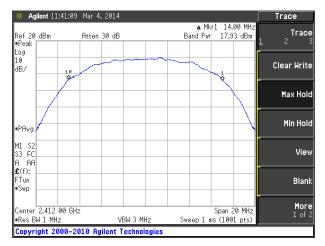
5.4.2 Test Procedure

- 1. Set the RBW = 1 MHz.
- 2. Set the VBW \geq 3 x RBW
- 3. Set the span \geq 1.5 x DTS bandwidth.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select peak detector). If the instrument does not have a band power function, 6 558074 D01 DTS Meas Guidance v03r01

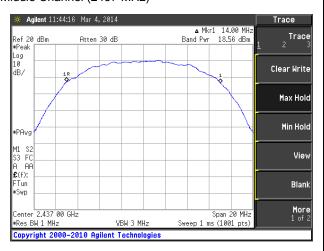
5.4.3 Test Results:

PASS

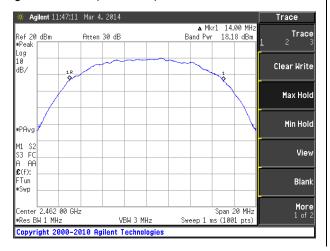
Table 2: Measu	red values of th	ne Maximum Pea	k Conducte	d Output Po	wer	
Modulation	Operating	Transfer Rate	Peak	Power	Average Power	Limit
Modulation	Frequency	Transier Rate	[dBm]	W	[dBm] (NOTE)	Limit
	2412 MHz		17.93	0.062	11.84	1 W
802.11b	2437 MHz	11 Mbps	18.56	0.072	12.43	1 W
	2462 MHz		18.18	0.066	12.09	1 W
	2412 MHz		17.39	0.055	8.98	1 W
802.11g	2437 MHz	54 Mbps	17.68	0.059	9.25	1 W
	2462 MHz		17.42	0.055	9.13	1 W
	2412 MHz		15.71	0.037	7.80	1 W
802.11n HT20	2437 MHz	MCS7	15.99	0.040	8.14	1 W
	2462 MHz		15.74	0.037	7.75	1 W


NOTE The Average power were measured using AVGSA- 1 method as the reference only.

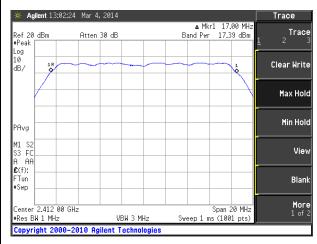
Report No.: SKT-RFC-140004 Page 13 of 48


Figure 2. Plot of the Maximum Peak Conducted Output Power

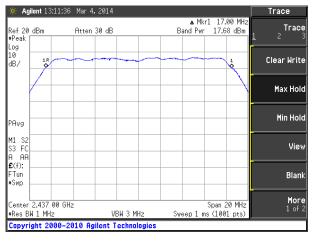
802.11b mode:


Lowest Channel (2412 MHz)

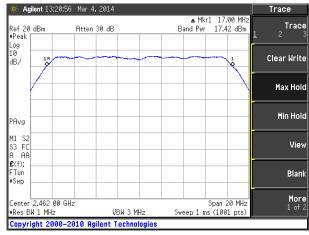
Middle Channel (2437 MHz)



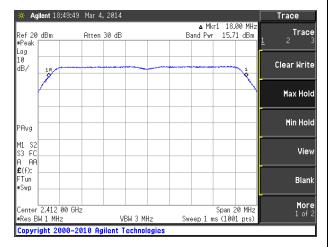
Highest Channel (2462 MHz)



802.11g mode:

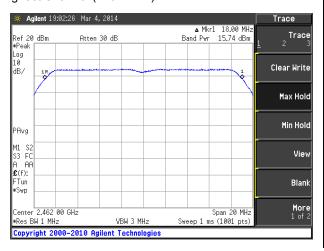

Lowest Channel (2412 MHz)

Middle Channel (2437 MHz)


Highest Channel (2462 MHz)

Plot of the Maximum Peak Conducted Output Power (continued)

802.11n HT20 mode:


Lowest Channel (2412 MHz)

Middle Channel (2437 MHz)

Highest Channel (2462 MHz)

Report No.: SKT-RFC-140004 Page 15 of 48

5.5. Spurious emissions, Band edge, and Restricted bands

5.5.1 Regulation

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

According to §15.209(a), for an intentional device, the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (MHz)	Field strength (μV/m @ 3m)	Field strength (dBµV/m @ 3m)
30–88	100	40.0
88–216	150	43.5
216–960	200	46.0
Above 960	500	54.0

According to §15.109(a), for an unintentional device, except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the above table.

5.5.2 Test Procedure

- 1) Band-edge measurements for RF conducted emissions
- 1. Set the spectrum analyzer as follows:
 - Span = wide enough to capture the peak level of the emission operating on the channel closest to the band-edge, as well as any modulation products which fall outside of the authorized band of operation

RBW ≥ 1 % of spectrum analyzer display span

 $VBW \ge 3 \times RBW$

Sweep = auto

Detector function = peak

Trace = max hold

- 2. Allow the trace to stabilize. Set the marker on the emission at the band-edge, or on the highest modulation product outside of the band, if this level is greater than that at the band-edge. Enable the marker-delta function, and then use the marker-to-peak function to move the marker to the peak of the in-band emission.
- 3. Now, using the same instrument settings, enable the hopping function of the EUT. Allow the trace to stabilize. Follow the same procedure listed above to determine if any spurious emissions caused by the hopping function also comply with the specified limit.

Report No.: SKT-RFC-140004 Page 16 of 48

^{**} The emission limits shown in the above table are based on measurement instrumentation employing a CISPR quasi-peak detector and above 1000 MHz are based on the average value of measured emissions.

2) Spurious RF Conducted Emissions:

1. Set the spectrum analyzer as follows:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.

RBW = 100 kHz VBW ≥ 3 x RBW Sweep = auto Detector function = peak

Trace = max hold

2. Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded.

3) Spurious Radiated Emissions:

- 1. The preliminary radiated measurements were performed to determine the frequency producing the maximum emissions in an anechoic chamber at a distance of 3 meters for above 30 MHz, and at 1 meter / 3 meter distance for below 30 MHz.
- 2. The EUT was placed on the top of the 0.8-meter height, 1 × 1.5 meter non-metallic table. To find the maximum emission levels, the height of a measuring antenna was changed and the turntable was rotated 360°.
- 3. The antenna polarization was also changed from vertical to horizontal. The spectrum was scanned from 9 kHz to 30 MHz using the loop antenna, from 30 to 1000 MHz using the Trilog broadband antenna, and from 1 GHz to tenth harmonic of the highest fundamental frequency using the horn antenna.
- 4. To obtain the final measurement data, the EUT was arranged on a turntable situated on a 4 × 4 meter at the Open Area Test Site. The EUT was tested at a distance 3 meters.
- 5. Each frequency found during preliminary measurements was re-examined and investigated. The test-receiver system was set up to average, peak, and quasi-peak detector function with specified bandwidth.
- 6. The EUT is situated in three orthogonal planes (if appropriate)
- 7. The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT.
- 8. If the emission on which a radiated measurement must be made is located at the edge of the authorized band of operation, then the alternative "marker-delta" method may be employed.

4) Marker-Delta Method at the edge of the authorized band of operation:

- 1. Perform an in-band field strength measurement of the fundamental emission using the RBW and detector function specified in 6.3 and 6.4, 6.5, or 6.6, as applicable, and the appropriate regulatory requirements for the frequency being measured.43
- 2. Choose a spectrum analyzer span that encompasses both the peak of the fundamental emission and the band-edge emission under investigation. Set the analyzer RBW to approximately 1 % to 5 % of the total span, unless otherwise specified, with a video bandwidth equal to or greater than the RBW. Record the peak levels of the fundamental emission and the relevant band-edge emission (i.e., run several sweeps in peak hold mode). Observe the stored trace and measure the amplitude delta between the peak of the fundamental and the peak of the band-edge emission. This is not an absolute field strength measurement; it is only a relative measurement to determine the amount by which the emission drops at the band edge relative to the highest fundamental emission level.
- 3. Subtract the delta measured in b) from the field strengths measured in a). The resultant field strengths (CISPR QP, average, or peak, as appropriate) are then used to determine band-edge compliance of the restricted bands, described in 5.9.
- 4. The above "delta" measurement technique may be used for measuring emissions that are up to two "standard" bandwidths away from the band edge, where a "standard" bandwidth is the bandwidth specified by 4.2.3.2 for the frequency being measured. For example, band-edge measurements in the restricted band that begins at 2483.5 MHz require a measurement bandwidth of at least 1 MHz. Therefore the "delta" technique for measuring emissions up to 2 MHz removed from the band edge may be used. Radiated emissions that are removed by more than two "standard" bandwidths shall be measured in the conventional manner.

Report No.: SKT-RFC-140004 Page 17 of 48

5.5.3 Test Results: PASS

Band-edge compliance of RF conducted/radiated emissions was shown in the Figure 3 and 4. Spurious RF conducted emissions were shown in the Figure 5.

NOTE: for conducted measurement, we took the insertion loss of the cable loss into consideration within the measuring instrument. And for radiated measurement, the results were calibrated to the field strength within the measuring instrument; Table 3 contains the correction factors at the operating frequencies such as antenna factor, cable loss, etc.

Table 3: Meas	sured val	ues o	f the Fie	ld stre	ngth of s	puriou	s emis	ssion (Radia	ted)		
BELOW 1 GF	łz											
Frequency	Receiver Bandwidth	Pol.	Antenna Height	Turn Table	Reading	Amp Gain	ATT	AF	CL	Actual	Limit	Margin
[MHz]	[kHz]	[V/H]	[m]	[degree]	[dB(µV)]	[dB]	[dB]	dB(1/m)	[dB]	[dB(µV/m)]	[dB(µV/m)]	[dB]
Average/Peak	k/Quasi-pe	eak da	ata, emis	sions b	elow 30 M	lHz						
				No Rad	diated Sp	urious	Emis	sions F	ound	'		
					-							
Quasi-peak da	ata, emiss	ions l	pelow 10	00 MH	z(802.11 k	/g/n H	T20 m	ode)				
840.01	120	Н	1.86	30	40.1	28.8	-	23.1	3.7	38.1	46.0	7.9
840.01	120	V	1.77	47	39.5	28.8	-	23.1	3.7	37.5	46.0	8.5

Margin (dB) = Limit - Actual

[Actual = Reading - Amp Gain + Attenuator + AF + CL]

Report No.: SKT-RFC-140004 Page 18 of 48

^{1.} H = Horizontal, V = Vertical Polarization

^{2.} ATT = Attenuation (10dB pad and/or Insertion Loss of HPF), AF/CL = Antenna Factor and Cable Loss NOTE: All emissions not reported were more than 20 dB below the specified limit or in the noise floor.

Meas	sured valu	ues o	f the Fie	ld stre	ngth of s	puriou	s emis	sion (Radia	ted) (cont	inued)	
ABOVE 1 GH										, ,	,	
Frequency	Receiver Bandwidth	Pol.	Antenna Height	Turn Table	Reading	Amp Gain	ATT	AF	CL	Actual	Limit	Margin
[MHz]	[kHz]	[V/H]		[degree]	[dB(µV)]	[dB]	[dB]	dB(1/m)	[dB]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]
PEAK data, er	missions a	bove	1000 MI	1z <mark>(802</mark>	.11b mod	le)	T	1		1		
2413.20	1000	Н	1.22	260	104.59	48.46	10.23	28.19	6.52	101.07	Not App	alicable
2413.20	1000	V	1.18	331	107.30	48.46	10.23	28.19	6.52	103.78	Νοι Αρ	Jiicabie
2366.40	1000	Н	1.22	260	55.96	48.44	10.23	28.04	6.45	52.24	74.00	21.76
2338.00	1000	V	1.18	331	54.44	48.44	10.24	27.95	6.40	50.59	74.00	23.41
4824.00	1000	H/V	1.00	0		49.00	0.42	33.14	9.70		74.00	
7236.00	1000	H/V	1.00	0		49.22	0.31	35.91	9.61		74.00	
2438.00	1000	Н	1.29	228	103.54	48.48		28.27	6.55	100.11	Not App	olicable
2438.12	1000	V	1.24	347	106.30	48.48	10.23		6.55	102.87		
4874.00	1000	H/V	1.00	0		49.02	0.39	33.17	9.75		74.00	
7311.00	1000	H/V	1.00	0		49.26	0.31	36.00	9.63		74.00	
2463.20	1000	Н	1.30	271	105.94	48.49		28.35	6.59	102.62	Not App	olicable
2463.20	1000	V	1.25	324	107.46	48.49	10.23		6.59	104.14		
2483.60	1000	Н	1.30	271	51.10	48.50	10.23		6.62	47.86	74.00	26.14
2483.60	1000	V	1.25	324	51.59	48.50	10.23		6.62	48.35	74.00	25.65
4924.00	1000	H/V	1.00	0		49.03	0.36	33.20	9.80		74.00	
7386.00	1000	H/V	1.00	0		49.31	0.32	36.09	9.64		74.00	
AVERAGE da	ta, emissi				•			1		T		
2413.20	1000	Н	1.22	260	95.86	48.46		28.19	6.52	92.34	Not App	olicable
2413.20	1000	V	1.18	331	99.12	48.46	10.23		6.52	95.60		
2366.40	1000	Н	1.22	260	38.72	48.44	10.23	28.04	6.45	35.00	54.00	19.00
2338.00	1000	V	1.18	331	40.05	48.44	10.24		6.40	36.20	54.00	17.80
4824.00	1000	H/V	1.00	0		49.00	0.42	33.14	9.70		54.00	
7236.00	1000	H/V	1.00	0		49.22	0.31	35.91	9.61		54.00	
2438.00	1000	Н	1.29	228	95.46	48.48		28.27	6.55	92.03	Not Apr	olicable
2438.12	1000	V	1.24	347	98.29	48.48	10.23	_	6.55	94.86		-
4874.00	1000	H/V	1.00	0		49.02	0.39	33.17	9.75		54.00	
7311.00	1000	H/V	1.00	0		49.26	0.31	36.00	9.63		54.00	
0400.00	4000		4.00	074	07.74	40.40	40.00	00.05	0.50	04.00		
2463.20	1000	Н	1.30	271	97.71	48.49		28.35	6.59	94.39	Not App	olicable
2463.20	1000	V	1.25	324	99.22	48.49		28.35	6.59	95.90		
2483.60	1000	Н	1.30	271	39.42	48.50		28.41	6.62	36.18	54.00	17.82
2483.60	1000	V	1.25	324	39.94	48.50	10.23		6.62	36.70	54.00	17.30
4924.00	1000	H/V	1.00	0		49.03	0.36	33.20	9.80		54.00	
7386.00	1000	H/V	1.00	0		49.31	0.32	36.09	9.64		54.00	

Margin (dB) = Limit - Actual

[Actual = Reading - Amp Gain + Attenuator + AF + CL]

Report No.: SKT-RFC-140004 Page 19 of 48

^{1.} H = Horizontal, V = Vertical Polarization

^{2.} ATT = Attenuation (10dB pad and/or Insertion Loss of HPF), AF/CL = Antenna Factor and Cable Loss NOTE: "---" means the emission level was too low to be measured or in the noise floor.

Meas	sured valu	ues o	f the Fie	ld stre	ngth of s	ouriou	s emis	sion (Radia	ted) (cont	inued)	
ABOVE 1 GH										, ,	,	
Frequency	Receiver Bandwidth	Pol.	Antenna Height	Turn Table	Reading	Amp Gain	ATT	AF	CL	Actual	Limit	Margin
[MHz]	[kHz]	[V/H]		[degree]	[dB(µV)]	[dB]	[dB]	dB(1/m)	[dB]	[dB(µV/m)]	[dB(µV/m)]	[dB]
PEAK data, er	nissions a	bove		Iz (802	.11g mod			1		1		
2414.00	1000	Η	1.22	260	102.27	48.46	10.23	28.19	6.52	98.75	Not App	olicable
2414.00	1000	V	1.18	331	103.28	48.46	10.23		6.52	99.76	Νοι Αργ	Jiicabic
2439.00	1000	Н	1.22	260	60.25	48.48	10.23	28.27	6.55	56.82	74.00	17.18
2439.00	1000	٧	1.18	331	60.19	48.48	10.23	28.27	6.55	56.76	74.00	17.24
4824.00	1000	H/V	1.00	0		49.00	0.42	33.14	9.70		74.00	
7236.00	1000	H/V	1.00	0		49.22	0.31	35.91	9.61		74.00	
0.400.50	1000		4.00		101.10	10.10	10.00	00.07	0.55	00.00		
2438.50	1000	Н	1.29	228	101.46	48.48	10.23		6.55	98.03	Not App	olicable
2438.30	1000	V	1.24	347	102.59	48.48	10.23	_	6.55	99.16		
4874.00	1000	H/V	1.00	0		49.02	0.39	33.17	9.75		74.00	
7311.00	1000	H/V	1.00	0		49.26	0.31	36.00	9.63		74.00	
2456.40	1000	Н	1.30	271	103.37	48.48		28.33	6.58	100.03	Not App	olicable
2468.00	1000	V	1.25	324	103.99	48.49	10.23		6.60	100.69		ī
2483.60	1000	Н	1.30	271	64.20	48.50	10.23		6.62	60.96	74.00	13.04
2483.60	1000	V	1.25	324	63.20	48.50	10.23		6.62	59.96	74.00	14.04
4924.00	1000	H/V	1.00	0		49.03	0.36	33.20	9.80		74.00	
7386.00	1000	H/V	1.00	0		49.31	0.32	36.09	9.64		74.00	
AVERAGE da	1				•			1		1		
2414.00	1000	Н	1.22	260	92.02	48.46		28.19	6.52	88.50	Not App	olicable
2414.00	1000	V	1.18	331	93.57	48.46	10.23		6.52	90.05		
2439.00	1000	Н	1.22	260	45.80	48.48	10.23	28.27	6.55	42.37	54.00	11.63
2439.00	1000	V	1.18	331	44.79	48.48	10.23		6.55	41.36	54.00	12.64
4824.00	1000	H/V	1.00	0		49.00	0.42	33.14	9.70		54.00	
7236.00	1000	H/V	1.00	0		49.22	0.31	35.91	9.61		54.00	
2438.50	1000	Н	1.29	228	91.30	48.48	10.22	28.27	6.55	87.87		
2438.30	1000	V	1.29	347	92.36	48.48	10.23		6.55	88.93	Not App	olicable
4874.00	1000	H/V	1.00	0		49.02	0.39	33.17	9.75		54.00	
7311.00	1000	H/V	1.00	0		49.02	0.39	36.00	9.63		54.00	
7311.00	1000	1 1/ V	1.00	0		49.20	0.51	30.00	9.03		34.00	
2456.40	1000	Н	1.30	271	93.47	48.48	10.23	28.33	6.58	90.13		
2468.00	1000	V	1.25	324	94.64	48.49		28.36	6.60	91.34	Not App	olicable
2483.60	1000	Н	1.30	271	49.45	48.50	10.23		6.62	46.21	54.00	7.79
2483.60	1000	V	1.25	324	48.05	48.50	10.23		6.62	44.81	54.00	9.19
4924.00	1000	H/V	1.00	0		49.03	0.36	33.20	9.80		54.00	
7386.00	1000	H/V	1.00	0		49.31	0.32	36.09	9.64		54.00	

Margin (dB) = Limit – Actual

[Actual = Reading - Amp Gain + Attenuator + AF + CL]

NOTE: "---" means the emission level was too low to be measured or in the noise floor.

Report No.: SKT-RFC-140004 Page 20 of 48

^{1.} H = Horizontal, V = Vertical Polarization

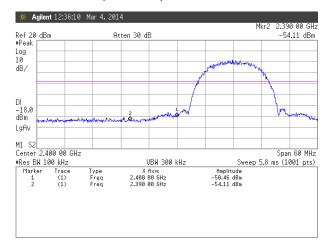
^{2.} ATT = Attenuation (10dB pad and/or Insertion Loss of HPF), AF/CL = Antenna Factor and Cable Loss

Meas	sured valu	ues o	f the Fie	ld stre	ngth of s	ouriou	s emis	sion (Radia	ted) (cont	inued)	
ABOVE 1 GH										, ,	,	
Frequency	Receiver Bandwidth	Pol.	Antenna Height	Turn Table	Reading	Amp Gain	ATT	AF	CL	Actual	Limit	Margin
[MHz]	[kHz]	[V/H]		[degree]	[dB(µV)]	[dB]		dB(1/m)	[dB]	[dB(µV/m)]	[dB(µV/m)]	[dB]
PEAK data, er	missions a	bove		Iz (802	.11n HT2	0 mod		1		1	T	
2410.08	1000	Н	1.22	260	100.13	48.46		28.18	6.51	96.59	Not App	nlicable
2420.00	1000	V	1.18	331	101.01	48.47	10.23	28.21	6.53	97.51	Νοι Αργ	Jiicabic
2439.00	1000	Н	1.22	260	66.57	48.48	10.23	28.27	6.55	63.14	74.00	10.86
2439.00	1000	V	1.18	331	65.50	48.48	10.23	28.27	6.55	62.07	74.00	11.93
4824.00	1000	H/V	1.00	0		49.00	0.42	33.14	9.70		74.00	
7236.00	1000	H/V	1.00	0		49.22	0.31	35.91	9.61		74.00	
						_						
2430.24	1000	Н	1.29	228	99.48	48.47		28.24	6.54	96.02	Not App	olicable
2434.77	1000	V	1.24	347	100.65	48.47	10.23	_	6.55	97.22		
4874.00	1000	H/V	1.00	0		49.02	0.39	33.17	9.75		74.00	
7311.00	1000	H/V	1.00	0		49.26	0.31	36.00	9.63		74.00	
2455.20	1000	Н	1.30	271	101.19	48.48		28.32	6.58	97.84	Not App	olicable
2465.20	1000	V	1.25	324	101.83	48.49	10.23		6.59	98.51		
2483.60	1000	Н	1.30	271	66.62	48.50	10.23		6.62	63.38	74.00	10.62
2483.60	1000	V	1.25	324	64.77	48.50	10.23		6.62	61.53	74.00	12.47
4924.00	1000	H/V	1.00	0		49.03	0.36	33.20	9.80		74.00	
7386.00	1000	H/V	1.00	0		49.31	0.32	36.09	9.64		74.00	
AVERAGE da	ta, emissi				•			1		T	Т	
2410.08	1000	Н	1.22	260	91.56	48.46		28.18	6.51	88.02	Not App	olicable
2420.00	1000	V	1.18	331	92.86	48.47	10.23		6.53	89.36	ποιπρ	
2439.00	1000	Н	1.22	260	46.72	48.48	10.23	28.27	6.55	43.29	54.00	10.71
2439.00	1000	V	1.18	331	45.56	48.48	10.23		6.55	42.13	54.00	11.87
4824.00	1000	H/V	1.00	0		49.00	0.42	33.14	9.70		54.00	
7236.00	1000	H/V	1.00	0		49.22	0.31	35.91	9.61		54.00	
	1000											
2430.24	1000	Н	1.29	228	90.87	48.47		28.24	6.54	87.41	Not App	olicable
2434.77	1000	V	1.24	347	92.05	48.47	10.23	_	6.55	88.62	54.00	
4874.00	1000	H/V	1.00	0		49.02	0.39	33.17	9.75		54.00	
7311.00	1000	H/V	1.00	0		49.26	0.31	36.00	9.63		54.00	
2455 20	1000	LI	1 20	274	02.69	10 10	10.22	28.32	6 50	90.22		
2455.20	1000	H	1.30	271	92.68	48.48		28.32	6.58	89.33	Not App	olicable
2465.20 2483.60	1000	V H	1.25 1.30	324 271	93.12 50.93	48.49 48.50		28.35	6.59 6.62	89.80 47.69	54.00	6.31
2483.60	1000	V	1.25		48.37		10.23		6.62		54.00	8.87
4924.00	1000	V H/V	1.25	324 0		48.50 49.03	0.36	33.20	9.80	45.13	54.00	
7386.00	1000	H/V	1.00	0		49.31	0.32	36.09	9.64		54.00	

Margin (dB) = Limit – Actual

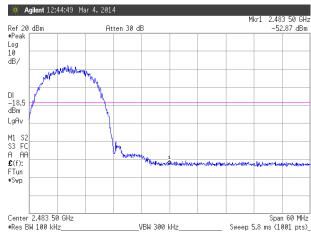
[Actual = Reading - Amp Gain + Attenuator + AF + CL]

NOTE: "---" means the emission level was too low to be measured or in the noise floor.

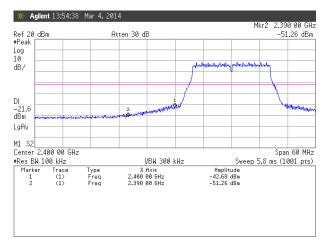

Report No.: SKT-RFC-140004 Page 21 of 48

^{1.} H = Horizontal, V = Vertical Polarization

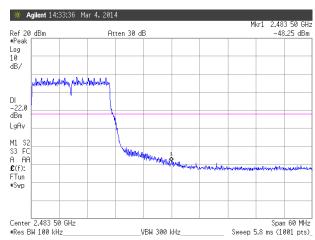
^{2.} ATT = Attenuation (10dB pad and/or Insertion Loss of HPF), AF/CL = Antenna Factor and Cable Loss


Figure 3. Plot of the Band Edge (Conducted) 802.11b mode:

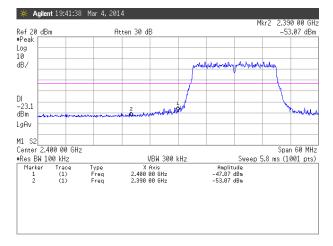
Lowest Channel (2412 MHz)


802.11b mode:

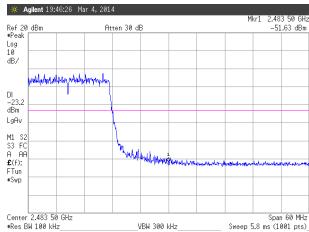
Highest Channel (2462 MHz)


802.11g mode:

Lowest Channel (2412 MHz)


802.11g mode:

Highest Channel (2462 MHz)


802.11n HT20 mode:

Lowest Channel (2412 MHz)

802.11n HT20 mode:

Highest Channel (2462 MHz)

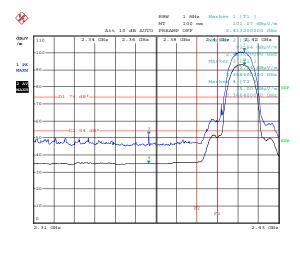
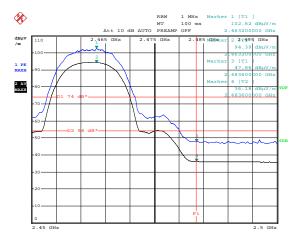


Figure 4. Plot of the Band Edge (Radiated)

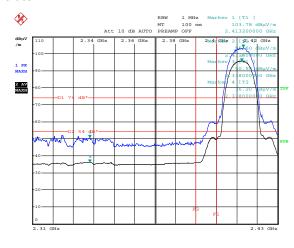
802.11b mode:

Lowest Channel (2412 MHz)


Horizontal

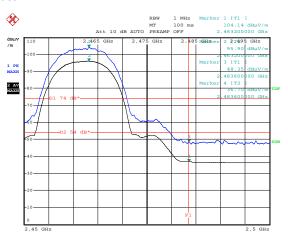
Date: 17.MAR.2014 19:01:47

Highest Channel (2462 MHz)


Horizontal

Date: 17.MAR.2014 19:45:34

Lowest Channel (2412 MHz)


Vertical

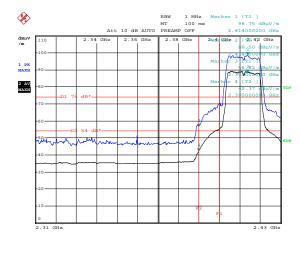
Date: 17.MAR.2014 17:53:30

Highest Channel (2462 MHz)

Vertical

Date: 17.MAR.2014 18:30:55

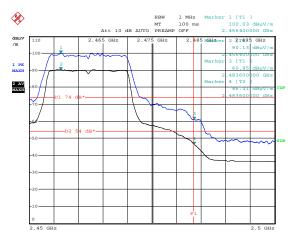
Report No.: SKT-RFC-140004 Page 23 of 48



Plot of the Band Edge (Radiated) (continued)

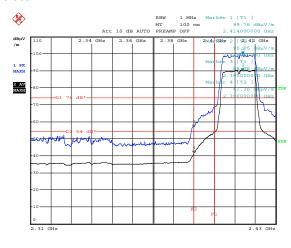
802.11g mode:

Lowest Channel (2412 MHz)


Horizontal

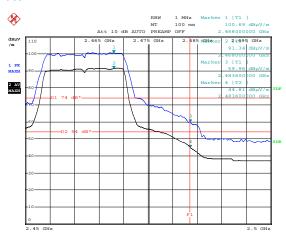
Date: 17.MAR.2014 19:06:13

Highest Channel (2462 MHz)


Horizontal

Date: 17.MAR.2014 19:53:12

Lowest Channel (2412 MHz)

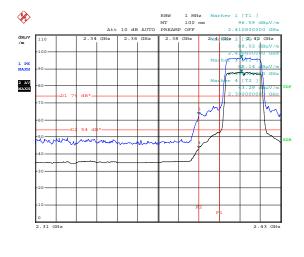

Vertical

Date: 17.MAR.2014 18:40:05

Highest Channel (2462 MHz)

Vertical

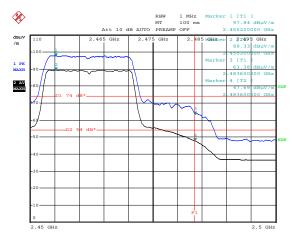
Date: 17.MAR.2014 18:25:51


Report No.: SKT-RFC-140004 Page 24 of 48

Plot of the Band Edge (Radiated) (continued)

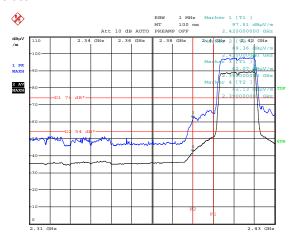
802.11n HT20 mode:

Lowest Channel (2412 MHz)


Horizontal

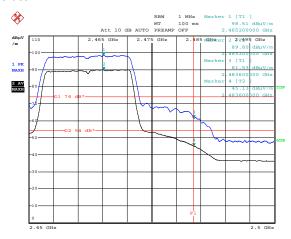
Date: 17.MAR.2014 19:13:02

Highest Channel (2462 MHz)


Horizontal

Date: 17.MAR.2014 20:00:21

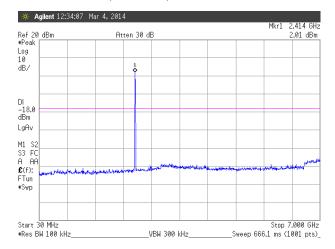
Lowest Channel (2412 MHz)


Vertical

Date: 17.MAR.2014 18:47:33

Highest Channel (2462 MHz)

Vertical



Date: 17.MAR.2014 18:18:10

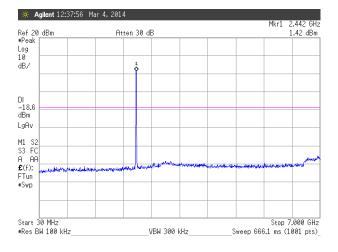
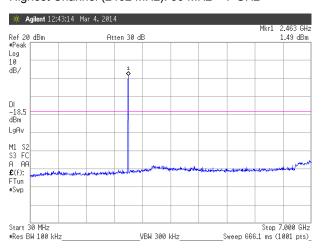
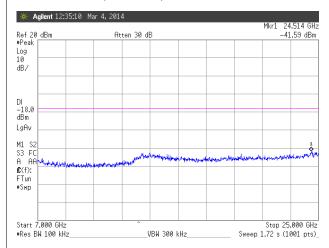
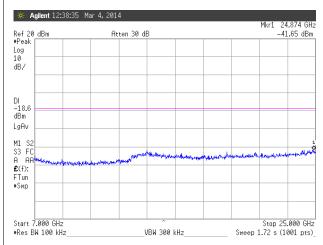
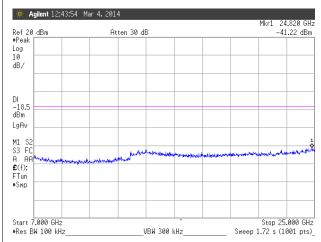

Report No.: SKT-RFC-140004 Page 25 of 48

Figure 5. Spurious RF conducted emissions 802.11b mode:


Lowest Channel (2412 MHz): 30 MHz ~ 7 GHz

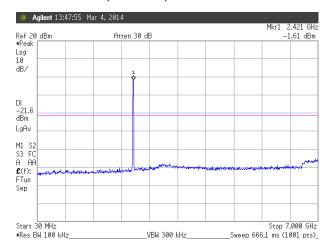

Middle Channel (2437 MHz): 30 MHz ~ 7 GHz


Highest Channel (2462 MHz): 30 MHz ~ 7 GHz

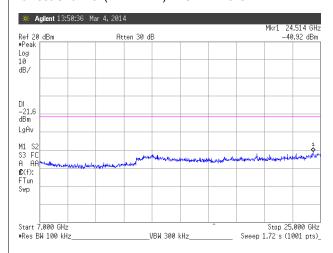

Lowest Channel (2412 MHz): 7 GHz ~ 25 GHz

Middle Channel (2437 MHz): 7 GHz ~ 25 GHz

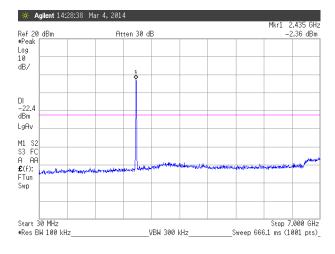
Highest Channel (2462 MHz): 7 GHz ~ 25 GHz

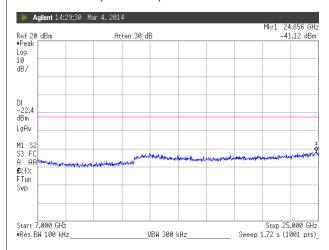


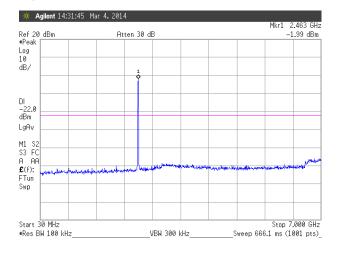
Report No.: SKT-RFC-140004 Page 26 of 48

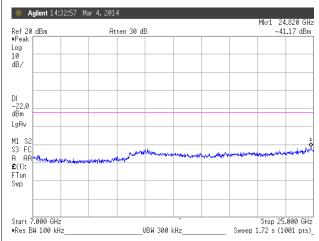

Spurious RF conducted emissions (continued)

802.11g mode:


Lowest Channel (2412 MHz): 30 MHz ~ 7 GHz

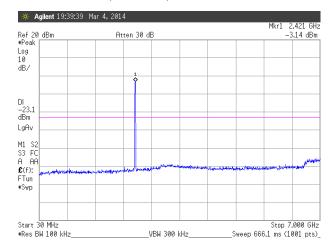

Lowest Channel (2412 MHz): 7 GHz ~ 25 GHz


Middle Channel (2437 MHz): 30 MHz ~ 7 GHz

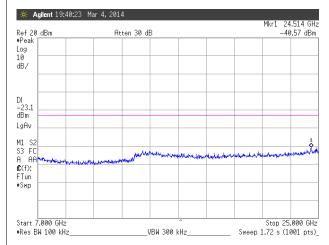

Middle Channel (2437 MHz): 7 GHz ~ 25 GHz

Highest Channel (2462 MHz): 30 MHz ~ 7 GHz

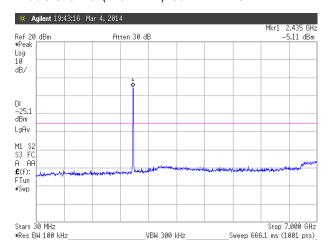
Highest Channel (2462 MHz): 7 GHz ~ 25 GHz

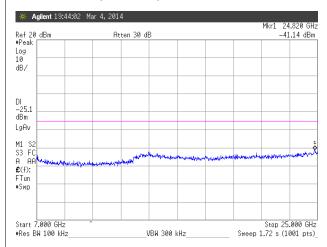


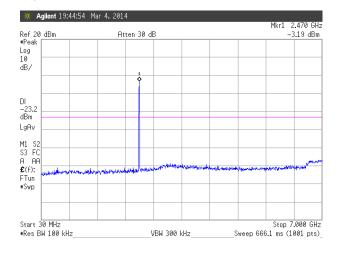
Report No.: SKT-RFC-140004 Page 27 of 48

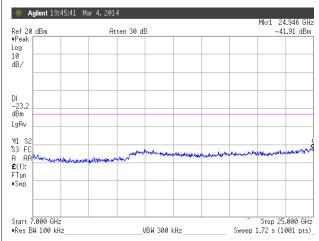

Spurious RF conducted emissions (continued)

802.11n HT20 mode:


Lowest Channel (2412 MHz): 30 MHz ~ 7 GHz


Lowest Channel (2412 MHz): 7 GHz ~ 25 GHz


Middle Channel (2437 MHz): 30 MHz ~ 7 GHz


Middle Channel (2437 MHz): 7 GHz ~ 25 GHz

Highest Channel (2462 MHz): 30 MHz ~ 7 GHz

Highest Channel (2462 MHz): 7 GHz ~ 25 GHz

Report No.: SKT-RFC-140004 Page 28 of 48

5.6. Peak power spectral density

5.6.1 Regulation

According to §15.247(e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

5.6.2 Test Procedure(peak PSD)

Set the spectrum analyzer as follows:

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the 3 kHz \leq RBW \leq 100 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

5.6.3 Test Results:

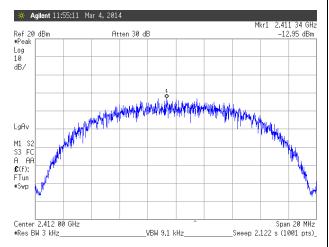
Table 4: Measured	values of the Peak	Power Spectral Den	sity (Conducted)	
Modulation	Operating frequency	Transfer Rate	PSD/3 kHz (dBm)	Limit (dBm)
	2412 MHz	11 Mbps	-12.95	8
802.11b	2437 MHz	11 Mbps	-12.54	8
	2462 MHz	11 Mbps	-12.75	8
	2412 MHz	54 Mbps	-16.42	8
802.11g	2437 MHz	54 Mbps	-16.11	8
	2462 MHz	54 Mbps	-15.70	8
	2412 MHz	MCS7	-17.57	8
802.11n HT20	2437 MHz	MCS7	-14.95	8

MCS7

-19.44

8

PASS


NOTE: We took the insertion loss of the cable loss into consideration within the measuring instrument.

2462 MHz

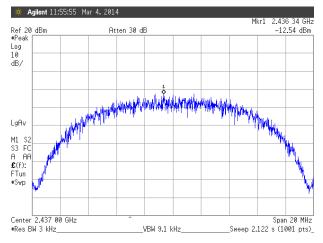
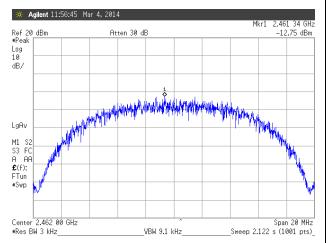
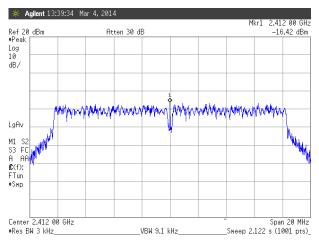

Report No.: SKT-RFC-140004 Page 29 of 48

Figure 6. Plot of the Peak Power Spectral Density 802.11b mode:

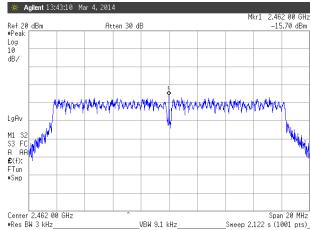

Lowest Channel (2412 MHz)

Middle Channel (2437 MHz)



Highest Channel (2462 MHz)

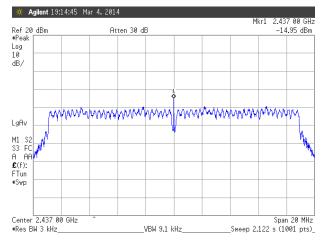
802.11g mode:


Lowest Channel (2412 MHz)

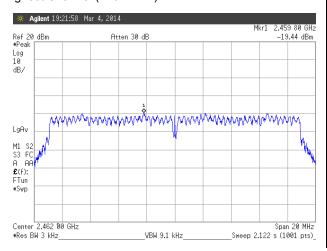
Middle Channel (2437 MHz)

Highest Channel (2462 MHz)

Report No.: SKT-RFC-140004 Page 30 of 48


Plot of the Peak Power Spectral Density (continued)

802.11n HT20 mode:


Lowest Channel (2412 MHz)

Middle Channel (2437 MHz)

Highest Channel (2462 MHz)

Report No.: SKT-RFC-140004 Page 31 of 48

6 Test and measurements (Bluetooth)

6.1. Antenna requirement

6.1.1 Regulation

According to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. And according to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

6.1.2 Result: PASS

The transmitter has the integral PCB antenna. The directional gain of the antenna is 4.864 dBi.

Report No.: SKT-RFC-140004 Page 32 of 48

6.2. Maximum peak output power

6.2.1 Regulation

According to §15.247(b)(1), for frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

According to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

6.2.2 Test Procedure

- 1. Connect the antenna port of the EUT to RF input on the spectrum analyzer via a low loss cable and attenuator.
- 2. The measurements were taken in TEST MODE provided by the applicant for controlling the EUT.
- 3. Set the spectrum analyzer as follows:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW > the 20 dB bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold

- 4. Measure the highest amplitude appearing on spectral display and record the level to calculate results.
- 5. Repeat above procedures until all frequencies measured were complete.

5.2.3 Test Results:

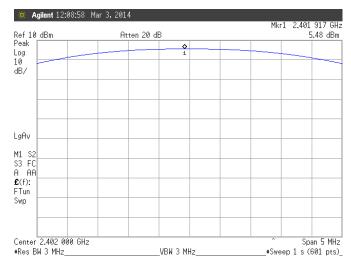

PASS

Table 5: Measured values of the Maximum Peak Conducted Output Power									
Modulation	Operating	Resolution	Measured value		Limit				
Modulation	Frequency	Bandwidth	dBm	W	LIIIIL				
Basic	2402 MHz	3 MHz	5.48	0.003 53	1 W				
(GFSK)	2441 MHz	3 MHz	4.51	0.002 82	(the number of the non-overlapping hopping				
	2480 MHz	3 MHz	4.10	0.002 57	channels is equal to or greater than 75)				

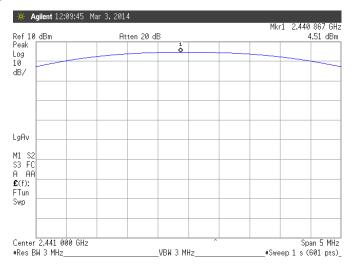
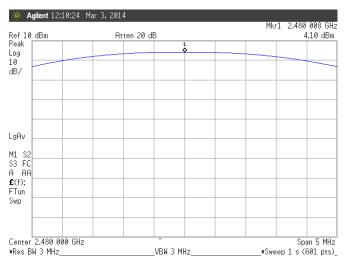

Report No.: SKT-RFC-140004 Page 33 of 48

Figure 7. Plot of the Maximum Peak Conducted Output Power (Conducted)


Lowest Channel (2402 MHz)

Middle Channel (2441 MHz)

Highest Channel (2480 MHz)

Report No.: SKT-RFC-140004 Page 34 of 48

6.3. Carrier frequency separations and 20 dB bandwidth

5.3.1 Regulation

According to §15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

6.3.2 Test Procedure

- 1. Connect the antenna port of the EUT to RF input on the spectrum analyzer via a low loss cable and attenuator.
- 2. The measurements were taken in TEST MODE provided by the applicant for controlling the EUT.
- 3. Set the spectrum analyzer as follows:

For measurements of Carrier Frequency Separation

Span = wide enough to capture the peaks of two adjacent channels

Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span

Video (or Average) Bandwidth (VBW) ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

For measurements of 20 dB Bandwidth

Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel

RBW \geq 1% of the 20 dB bandwidth

 $VBW \geq RBW$

Sweep = auto

Detector function = peak

Trace = max hold

- 4. Measure the separation between the peaks of the adjacent channels using the marker-delta function.
- 5. Repeat above procedures until all frequencies measured were complete.

6.3.3 Test Results:

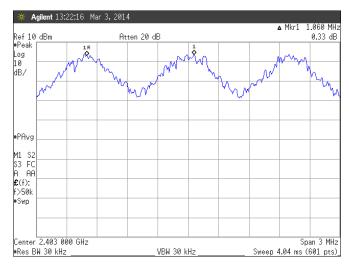

PASS

Table 6: Measured values of the Carrier Frequency Separation and 20 dB Bandwidth									
Modulation	Operating	Frequency	20 dB	LIMIT (Frequency Separation)					
Modulation	Frequency	Frequency Separation Bandwidth		Liwit (Frequency Separation)					
Basis	2402 MHz	1060 kHz	942 kHz	≥ 25 kHz or 20 dB bandwidth,					
Basic (GFSK)	2441 MHz	1000 kHz	933 kHz	whichever is greater					
(GFSK)	2480 MHz	1000 kHz	942 kHz						

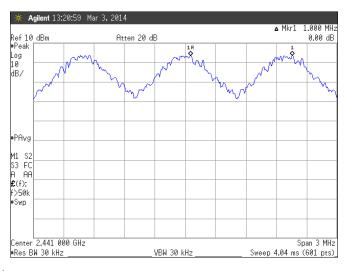
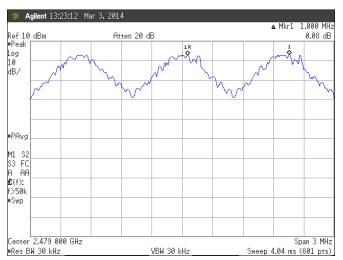
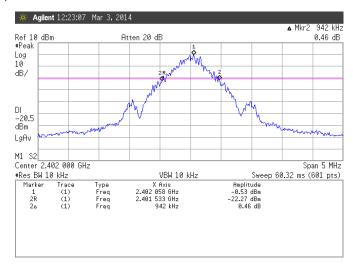

Report No.: SKT-RFC-140004 Page 35 of 48

Figure 8. Plot of the Carrier Frequency Separation


Lowest Channel (2402 MHz)

Middle Channel (2441 MHz)


Highest Channel (2480 MHz)

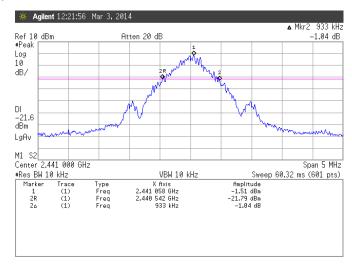
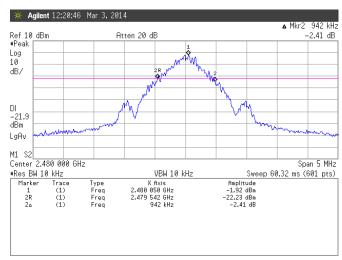

Report No.: SKT-RFC-140004 Page 36 of 48

Figure 9. Plot of the 20 dB Channel Bandwidth


Lowest Channel (2402 MHz)

Middle Channel (2441 MHz)

Highest Channel (2480 MHz)

6.4. Number of Hopping channels

6.4.1 Regulation

According to §15.247(a)(1)(iii), frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

According to §15.247(b)(1), for frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

6.4.2 Test Procedure

- 1. Connect the antenna port of the EUT to RF input on the spectrum analyzer via a low loss cable and attenuator.
- 2. The measurements were taken in TEST MODE provided by the applicant for controlling the EUT.
- 3. Set the spectrum analyzer as follows:

Span = the frequency band of operation

RBW ≥ 1% of the span

 $VBW \geq RBW$

Sweep = auto

Detector function = peak

Trace = max hold

4. Record the number of hopping channels.

6.4.3 Test Results:

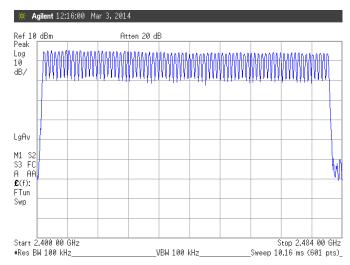

PASS

Table 7: Measured values of the Number of Hopping Channels									
Modulation	Operating Frequency	Number of hopping channels	LIMIT						
Basic (GFSK)	2402 - 2480 MHz	79	≥ 15						

Report No.: SKT-RFC-140004 Page 38 of 48

Figure 10. Plot of the Number of Hopping Channels Basic(GFSK)

6.5. Time of occupancy (Dwell time)

6.5.1 Regulation

According to §15.247(a)(1)(iii), frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

6.5.2 Test Procedure

- 1. Connect the antenna port of the EUT to RF input on the spectrum analyzer via a low loss cable.
- 2. The measurements were taken in TEST MODE provided by the applicant for controlling the EUT.
- 3. Set the spectrum analyzer as follows:

Span = zero span, centered on a hopping channel

RBW = 1 MHz

 $VBW \geq RBW$

Sweep = as necessary to capture the entire dwell time per hopping channel

Detector function = peak

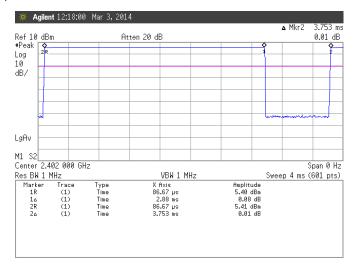
Trace = max hold

- 4. Measure the dwell time using the marker-delta function.
- 5. Repeat above procedures until all frequencies measured were complete.
- 6. Repeat this test for different modes of operation (e.g., data rate, modulation format, etc.), if applicable.

6.5.3 Test Results:

PASS

Table 9: Measured values of the Time of Occupancy											
Modulation	Operating	Reading	Hopping rate	Number of	Actual	LIMIT					
Modulation	Frequency	(ms)	(hops/s)	Channels	(seconds)	(seconds)					
Basic (GFSK)	2402 MHz	2.880	266.667	79	0.31	0.4					
	2441 MHz	2.880	266.667	79	0.31	0.4					
	2480 MHz	2.880	266.667	79	0.31	0.4					


Actual = Reading × (Hopping rate / Number of channels) × Test period Test period = 0.4 [seconds / channel] × 79 [channel] = 31.6 [seconds]

NOTE: The EUT makes worst case 1600 hops per second or 1 time slot has a length of 625µs with 79 channels. The DH5 Packet needs 5 time slot for transmitting and 1 time slot for receiving. Then the EUT makes worst case 266.667 hops per second with 79 channels.

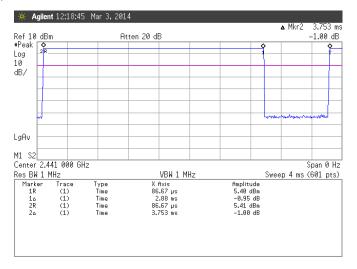
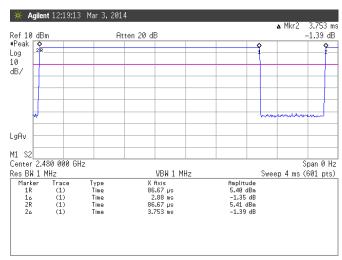

Report No.: SKT-RFC-140004 Page 40 of 48

Figure 11. Plot of the Time of Occupancy


Lowest Channel (2402 MHz)

Middle Channel (2441 MHz)

Highest Channel (2480 MHz)

6.6. Spurious emissions, Band edge, and Restricted bands

6.6.1 Regulation

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

According to §15.209(a), for an intentional device, the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (MHz)	Field strength (μV/m @ 3m)	Field strength (dBµV/m @ 3m)
30–88	100	40.0
88–216	150	43.5
216–960	200	46.0
Above 960	500	54.0

According to §15.109(a), for an unintentional device, except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the above table.

6.6.2 Test Procedure

- 1) Band-edge measurements for RF conducted emissions
- 1. Set the spectrum analyzer as follows:
 - Span = wide enough to capture the peak level of the emission operating on the channel closest to the band-edge, as well as any modulation products which fall outside of the authorized band of operation

RBW ≥ 1 % of spectrum analyzer display span

 $VBW \geq RBW$

Sweep = auto

Detector function = peak

Trace = max hold

- 2. Allow the trace to stabilize. Set the marker on the emission at the band-edge, or on the highest modulation product outside of the band, if this level is greater than that at the band-edge. Enable the marker-delta function, and then use the marker-to-peak function to move the marker to the peak of the in-band emission.
- 3. Now, using the same instrument settings, enable the hopping function of the EUT. Allow the trace to stabilize. Follow the same procedure listed above to determine if any spurious emissions caused by the hopping function also comply with the specified limit.

Report No.: SKT-RFC-140004 Page 42 of 48

^{**} The emission limits shown in the above table are based on measurement instrumentation employing a CISPR quasi-peak detector and above 1000 MHz are based on the average value of measured emissions.

2) Spurious RF Conducted Emissions:

1. Set the spectrum analyzer as follows:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.

RBW = 100 kHz VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold

2. Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded.

3) Spurious Radiated Emissions:

- 1. The preliminary radiated measurements were performed to determine the frequency producing the maximum emissions in an anechoic chamber at a distance of 3 meters for above 30 MHz, and at 1 meter / 3 meter distance for below 30 MHz.
- 2. The EUT was placed on the top of the 0.8-meter height, 1 × 1.5 meter non-metallic table. To find the maximum emission levels, the height of a measuring antenna was changed and the turntable was rotated 360°.
- 3. The antenna polarization was also changed from vertical to horizontal. The spectrum was scanned from 9 kHz to 30 MHz using the loop antenna, from 30 to 1000 MHz using the Trilog broadband antenna, and from 1 GHz to tenth harmonic of the highest fundamental frequency using the horn antenna.
- 4. To obtain the final measurement data, the EUT was arranged on a turntable situated on a 4 × 4 meter at the Open Area Test Site. The EUT was tested at a distance 3 meters.
- 5. Each frequency found during preliminary measurements was re-examined and investigated. The test-receiver system was set up to average, peak, and quasi-peak detector function with specified bandwidth.
- 6. The EUT is situated in three orthogonal planes (if appropriate)
- 7. The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT.
- 8. If the emission on which a radiated measurement must be made is located at the edge of the authorized band of operation, then the alternative "marker-delta" method may be employed.

4) Marker-Delta Method at the edge of the authorized band of operation:

- 1. Perform an in-band field strength measurement of the fundamental emission using the RBW and detector function specified in 6.3 and 6.4, 6.5, or 6.6, as applicable, and the appropriate regulatory requirements for the frequency being measured.43
- 2. Choose a spectrum analyzer span that encompasses both the peak of the fundamental emission and the band-edge emission under investigation. Set the analyzer RBW to approximately 1 % to 5 % of the total span, unless otherwise specified, with a video bandwidth equal to or greater than the RBW. Record the peak levels of the fundamental emission and the relevant band-edge emission (i.e., run several sweeps in peak hold mode). Observe the stored trace and measure the amplitude delta between the peak of the fundamental and the peak of the band-edge emission. This is not an absolute field strength measurement; it is only a relative measurement to determine the amount by which the emission drops at the band edge relative to the highest fundamental emission level.
- 3. Subtract the delta measured in b) from the field strengths measured in a). The resultant field strengths (CISPR QP, average, or peak, as appropriate) are then used to determine band-edge compliance of the restricted bands, described in 5.9.
- 4. The above "delta" measurement technique may be used for measuring emissions that are up to two "standard" bandwidths away from the band edge, where a "standard" bandwidth is the bandwidth specified by 4.2.3.2 for the frequency being measured. For example, band-edge measurements in the restricted band that begins at 2483.5 MHz require a measurement bandwidth of at least 1 MHz. Therefore the "delta" technique for measuring emissions up to 2 MHz removed from the band edge may be used. Radiated emissions that are removed by more than two "standard" bandwidths shall be measured in the conventional manner.

Report No.: SKT-RFC-140004 Page 43 of 48

6.6.3 Test Results: PASS

Band-edge compliance of RF conducted/radiated emissions was shown in the Figure 12 and 13. Spurious RF conducted emissions were shown in the Figure 14.

NOTE: for conducted measurement, we took the insertion loss of the cable loss into consideration within the measuring instrument. And for radiated measurement, the results were calibrated to the field strength within the measuring instrument; Table 10 contains the correction factors at the operating frequencies such as antenna factor, cable loss, etc.

asured va	lues	of the Fi	ield str	ength of	spurio	us em	ission	(Radi	ated)		
z											
Receiver Bandwidth	Pol.	Antenna Height	Turn Table	Reading	Amp Gain	ATT	AF	CL	Actual	Limit	Margin
[kHz]	[V/H]	[m]	[degree]	[dB(µV)]	[dB]	[dB]	dB(1/m)	[dB]	[dB(µV/m)]	[dB(µV/m)]	[dB]
/Quasi-pe	ak da	ata, emis	sions b	elow 30 M	lHz						
			No Rad	diated Sp	urious	Emis	sions F	ound	1	П	
	→										
ata, emiss	ions b	pelow 10	00 MH	Z	•						
120	Н	1.86	30	40.1	28.8	-	23.1	3.7	38.1	46.0	7.9
120	V	1.77	47	39.5	28.8	-	23.1	3.7	37.5	46.0	8.5
	Receiver Bandwidth [kHz] /Quasi-pe	Receiver Bandwidth [kHz] [V/H] /Quasi-peak da ata, emissions k	Receiver Bandwidth Pol. Antenna Height [kHz] [V/H] [m] /Quasi-peak data, emis ata, emissions below 10 120 H 1.86	Receiver Bandwidth Pol. Antenna Turn Height Table [kHz] [V/H] [m] [degree] /Quasi-peak data, emissions b No Raceiver Bandwidth Table No Raceiver Bandwidth Height He	Receiver Bandwidth Pol. Antenna Turn Height Table Reading [kHz] [V/H] [m] [degree] [dB(µV)] /Quasi-peak data, emissions below 30 N No Radiated Sp. ata, emissions below 1000 MHz 120 H 1.86 30 40.1	Receiver Bandwidth Pol. Antenna Turn Height Table Reading Gain [kHz] [V/H] [m] [degree] [dB(µV)] [dB] /Quasi-peak data, emissions below 30 MHz No Radiated Spurious ata, emissions below 1000 MHz 120 H 1.86 30 40.1 28.8	Receiver Bandwidth Pol. Antenna Turn Height Table Reading Gain ATT Gain ATT Gain Pol. [kHz] [V/H] [m] [degree] [dB(µV)] [dB] [dB] [dB] ATT Gain Pol. Pol. Pol. Pol. Pol. Pol. Pol. Pol.	Receiver Bandwidth Pol. Antenna Turn Height Table Reading Gain ATT AF Gain ATT AF GAIN ATT AF GA	Receiver Bandwidth Pol. Antenna Turn Height Table Reading Gain ATT AF CL [kHz] [V/H] [m] [degree] [dB(µV)] [dB] [dB] dB(1/m) [dB] ATT AF CL [Receiver Bandwidth Pol. Antenna Height Table Reading Gain ATT AF CL Actual [kHz] [V/H] [m] [degree] [dB(μV)] [dB] [dB] dB(1/m) [dB] [dB(μV/m)] (Quasi-peak data, emissions below 30 MHz No Radiated Spurious Emissions Found ata, emissions below 1000 MHz 120 H 1.86 30 40.1 28.8 - 23.1 3.7 38.1	Receiver Pol. Antenna Turn Reading Amp Gain ATT AF CL Actual Limit [kHz] [V/H] [m] [degree] [dB(μV)] [dB] [dB] dB(1/m) [dB] [dB(μV/m)] [dB(μV/m)] / Quasi-peak data, emissions below 30 MHz

Margin (dB) = Limit - Actual

[Actual = Reading - Amp Gain + Attenuator + AF + CL]

1. H = Horizontal, V = Vertical Polarization

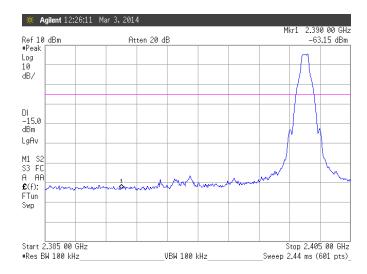
2. ATT = Attenuation (10dB pad and/or Insertion Loss of HPF), AF/CL = Antenna Factor and Cable Loss NOTE: All emissions not reported were more than 20 dB below the specified limit or in the noise floor.

Report No.: SKT-RFC-140004 Page 44 of 48

Meas	sured valu	ues o	f the Fie	ld stre	ngth of s	puriou	s emis	sion (Radia	ted) (cont	inued)		
ABOVE 1 GH					<u> </u>			`					
Frequency	Receiver Bandwidth	Pol.	Antenna Height	Turn Table	Reading	Amp Gain	ATT	AF	CL	Actual	Limit	Margin	
[MHz]	[kHz]	[V/H]	[m]	[degree]	[dB(µV)]	[dB]	[dB]	dB(1/m)	[dB]	[dB(µV/m)]	[dB(µV/m)]	[dB]	
PEAK data, ei	missions a	bove	1000 MI	Ηz		•	T	, ,		1	ı		
2402.0	1000	Н	1.20	262	101.37	48.46	10.23	28.15	6.50	97.79	Not Applicable		
2402.0	1000	V	1.16	330	102.55	48.46	10.23	28.15	6.50	98.97			
2324.0	1000	Н	1.20	262	58.23	48.44	10.24	27.90	6.38	54.31	74.00	19.69	
2326.0	1000	V	1.16	330	56.33	48.44	10.24	27.91	6.38	52.42	74.00	21.58	
4804.2	1000	Η	1.69	270	58.16	49.00	0.43	33.12	9.68	52.39	74.00	21.61	
4804.2	1000	>	1.00	283	59.50	49.00	0.43	33.12	9.68	53.73	74.00	20.27	
2441.0	1000	Н	1.24	230	99.63	48.48	10.23	28.28	6.56	96.22	Not Applicable		
2441.0	1000	V	1.20	330	100.94	48.48	10.23	28.28	6.56	97.53			
4882.3	1000	Н	1.23	264	57.33	49.02	0.38	33.17	9.76	51.62	74.00	22.38	
4882.3	1000	V	1.24	302	58.25	49.02	0.38	33.17	9.76	52.54	74.00	21.46	
2480.0	1000	Н	1.32	314	98.59	48.49	10.23	28.40	6.61	95.34	Not Applicable		
2480.0	1000	V	1.27	344	100.36	48.49	10.23	28.40	6.61	97.11			
2483.6	1000	Н	1.32	314	53.89	48.50	10.23	28.41	6.62	50.65	74.00	23.35	
2483.6	1000	V	1.27	344	55.11	48.50	10.23	28.41	6.62	51.87	74.00	22.13	
4960.2	1000	Н	1.34	247	57.69	49.04	0.34	33.22	9.83	52.04	74.00	21.96	
4960.2	1000	V	1.15	333	58.47	49.04	0.34	33.22	9.83	52.82	74.00	21.18	
AVERAGE da	ta, emissio	ons al	ove 100	00 MHz		•	ı			•			
2402.0	1000	Н	1.20	262	98.44	48.46	10.23	28.15	6.50	94.86			
2402.0	1000	V	1.16	330	99.64	48.46	10.23	28.15	6.50	96.06	Not Ap	plicable	
2324.0	1000	Н	1.20	262	41.26	48.44	10.24	27.90	6.38	37.34	54.00	16.66	
2326.0	1000	V	1.16	330	40.95	48.44	10.24	27.91	6.38	37.04	54.00	16.96	
4804.2	1000	Н	1.69	270	44.37	49.00	0.43	33.12	9.68	38.60	54.00	15.40	
4804.2	1000	V	1.00	283	45.83	49.00	0.43	33.12	9.68	40.06	54.00	13.94	
2441.0	1000	Н	1.24	230	96.88	48.48		28.28	6.56	93.47	000		
2441.0	1000	V	1.20	330	98.23	48.48		28.28	6.56	94.82	Not Ap	plicable	
4882.3	1000	Н	1.23	264	43.62	49.02	0.38	33.17	9.76	37.91	54.00	16.09	
4882.3	1000	V	1.24	302	44.56	49.02	0.38	33.17	9.76	38.85	54.00	15.15	
2480.0	1000	Н	1.32	314	95.65	48.49		28.40	6.61	92.40	Not Applicabl		
2480.0	1000	V	1.27	344	97.47	48.49		28.40	6.61	94.22			
2483.6	1000	Н	1.32	314	41.51	48.50		28.41	6.62	38.27	54.00	15.73	
2483.6	1000	V	1.27	344	42.21	48.50	10.23		6.62	38.97	54.00	15.03	
4960.2	1000	Н	1.34	247	44.00	49.04	0.34	33.22	9.83	38.35	54.00	15.65	
4960.2	1000	V	1.15	333	44.84	49.04	0.34	33.22	9.83	39.19	54.00	14.81	

Margin (dB) = Limit – Actual

[Actual = Reading - Amp Gain + Attenuator + AF + CL]


2. ATT = Attenuation (10dB pad and/or Insertion Loss of HPF), AF/CL = Antenna Factor and Cable Loss NOTE: All emissions not reported were more than 20 dB below the specified limit or in the noise floor.

Report No.: SKT-RFC-140004 Page 45 of 48

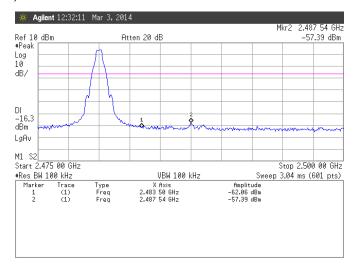
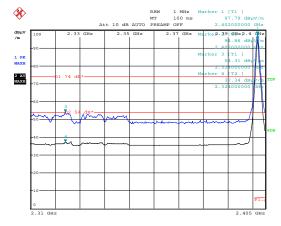
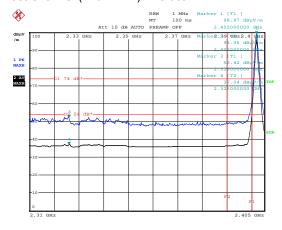

^{1.} H = Horizontal, V = Vertical Polarization

Figure 12. Plot of the Band Edge (Conducted)

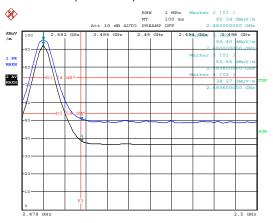
Lowest Channel (2402 MHz)


Highest Channel (2480 MHz)

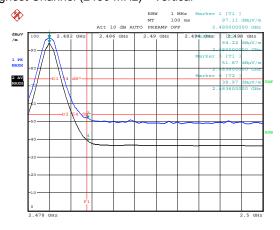
Report No.: SKT-RFC-140004 Page 46 of 48


Figure 13. Plot of the Band Edge (Radiated)

Lowest Channel (2402 MHz) - Horizontal

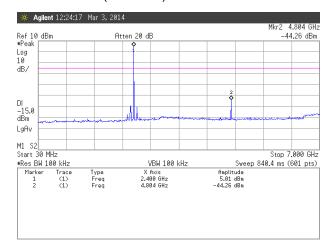

Date: 17.MAR.2014 17:09:39

Lowest Channel (2402 MHz) - Vertical


Date: 17.MAR.2014 16:31:58

Highest Channel (2480 MHz) - Horizontal

Date: 17.MAR.2014 16:49:02


Highest Channel (2480 MHz) - Vertical

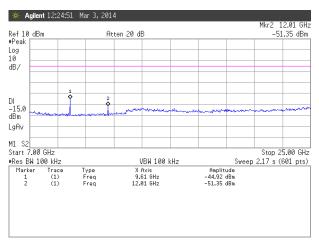
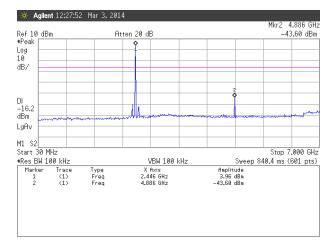
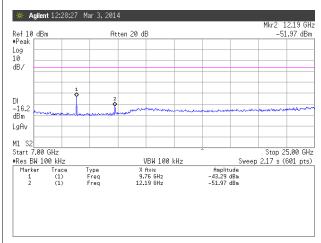
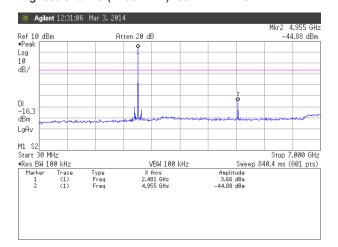
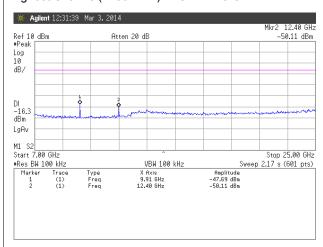

Date: 17.MAR.2014 16:59:54

Figure 14. Spurious RF conducted emissions


Lowest Channel(2402 MHz): 30 MHz ~ 7 GHz


Lowest Channel (2402 MHz): 7 GHz ~ 25 GHz


Middle Channel (2441 MHz): 30 MHz ~ 7 GHz


Middle Channel (2441 MHz): 7 GHz ~ 25 GHz

Highest Channel(2480 MHz): 30 MHz ~ 7 GHz

Highest Channel(2480 MHz): 7 GHz ~ 25 GHz

Report No.: SKT-RFC-140004 Page 48 of 48