

Page 1 of 13

TEST REPORT

Test Report No.:	SKTTRT-090512-005				
KOLAS No.:	KT191				
Applicant:	G.I.T Co., Ltd.				
Applicant Address:	GIT BLDG., 38-5 Garakbon-	Dong, Songpa-Gu, Seou	l, 138-801 Korea		
Manufacturer:	G.I.T Co., Ltd.				
Manufacturer Address:	GIT BLDG., 38-5 Garakbon-	Dong, Songpa-Gu, Seou	l, 138-801 Korea		
Device Under Test:	Scan Tool				
FCC ID:	TMGG1PZFMN001	Model Name:	G-scan		
Brand/Trade Name:	G it				
Receipt No.:	SKTEU09-0206	Date of receipt:	March 5, 2009		
Date of Issue:	May 12, 2009	TATION			
Location of Testing:	SK TECH CO., LTD. #820-2, Wolmoon-ri, Wabu-u	ıp, Namyangju <mark>-</mark> si, Kyung	ggi-do, 472-905 South Korea		
Test Procedure:	ANSI C63.4 / 2003	**			
Test Specification:	47CFR, Part 15 Rules	0. 191			
FCC Equipment Class:	DCD - Part 15 Low Power	Fransmitter Below 1705	5kHz		
Test Result:	The above-mentioned device l	nas been tested and passe	d.		
Tested & Reported by: Seu	ngtaek, Shim	Approved by: Jongsoo,	Yoon		
M	2009-05-12		2009-05-12		
Signature	Date Date	Signa			
Other Aspects:	-	· · · · · · · · · · · · · · · · · · ·			
Abbreviations:	·OK, Pass = passed · Fail = fail	ed · N/A = not applicable	•		

- > This test report is not permitted to copy partly and entirely without our permission.
 - > This test result is dependent on only equipment to be used.
 - This test result is based on a single evaluation of submitted samples of the above mentioned.
 - The above test report is the accredited test results by Korea Laboratory Accreditation Scheme, which signed the ILAC-MRA.

Page 2 of 13

>> CONTENTS <<

1. GENERAL	3
2. TEST SITE	3
2.1 Location	3
2.2 List of Test and Measurement Instruments	4
2.3 Test Date	4
2.4 Test Environment	4
3. DESCRIPTION OF The EQUIPMENT UNDER TEST	5
3.1 Rating and Physical Characteristics	5
3.2 Equipment Modifications	5
3.3 Submitted Documents	5
4. MEASUREMENT CONDITIONS	6
4.1 Description of test configuration	
4.2 List of Peripherals	6
4.3 Type of Used Cables	6
4.4 Uncertainty	6
5. TEST AND MEASUREMENTS	
5.1 ANTENNA REQUIREMENT	7
5.1.1 Regulation TESTING NO. 191	7
5.1.2 Result	7
5.2 RADIATED EMISSIONS	8
5.2.1 Regulation	8
5.2.2 Measurement Procedure	8
5.2.3 Calculation of the filed strength limits	9
5.2.4 Test Results	9
Table 1: Measured values of the Field strength (below 30MHz)	10
Table 2: Measured values of the Field strength (above 30MHz)	10
5.3 CONDUCTED EMISSIONS	11
5.3.1 Regulation ·····	
5.3.2 Test Procedure	11
5.3.3 Test Results	12
Table 3: Measured values of the Conducted Emissions	12
Figure 1: Plot of the Conducted Emissions	13

Page 3 of 13

1. GENERAL

These tests were performed using the test procedure outlined in ANSI C63.4, 2003 for intentional radiators, and accordance with the limits set forth in FCC Part 15.209, 15.207. The EUT (Equipment Under Test) has been shown to be capable of compliance with the applicable technical standards.

We attest to the accuracy of data. All measurements reported herein were performed by SK TECH CO., LTD. and were made under Chief Engineer's supervision.

We assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

2. TEST SITE

SK TECH CO., LTD.

2.1 Location

#820-2, Wolmoon-ri, Wabu-up, Namyangju-si, Kyunggi-do, 472-905 South Korea (FCC Registered Test Site Number: 90752)

(OPEN AREA TEST SITE INDUSTRY CANADA NUMBER: IC 5429)

This laboratory is recognized as a Conformity Assessment Body (CAB) for CAB's Designation Number: KR0007 by FCC, is accredited by NVLAP for NVLAP Lab. Code: 200220-0, and KOLAS for Accreditation No.: KT191.

Page 4 of 13

2.2 List of Test and Measurement Instruments

No.	Description	Manufacturer	Model No.	Serial No.	Calibrated until	Used
1	Spectrum Analyzer	Agilent	E4405B	US40520856	2009.07	
2	EMC Spectrum Analyzer	Agilent	E7405A	US40240203	2010.03	\boxtimes
3	EMI Test Receiver	Rohde&Schwarz	ESIB40	100277	2010.02	
4	EMI Test Receiver	Rohde&Schwarz	ESVS10	825120/008	2009.07	
5	EMI Test Receiver	Rohde&Schwarz	ESHS10	862970/019	2009.07	\boxtimes
6	Artificial Mains Network	Rohde&Schwarz	ESH3-Z5	836679/018	2009.07	
7	Pre-amplifier	HP	8447F	3113A05153	2009.07	
8	Pre-amplifier	MITEQ	AFS44	1116321	2009.10	
9	Pre-amplifier	MITEQ	AFS44	1116322	2009.07	
10	Power Meter	Agilent	E4417A	MY45100426	2009.07	
11	Power Meter	Agilent	E4418B	US39402176	2009.10	
12	Power Sensor	Agilent	E9327A	MY44420696	2009.07	
13	Power Sensor	Agilent	8482A	MY41094094	2009.07	
14	Attenuator (10dB)	HP	8491B	38067	2009.07	
15	High Pass Filter	Wainwright	WHKX3.0/18G	8	2009.07	
16	VHF Precision Dipole Antenna (TX/RX)	Schwarzbeck	VHAP	1014 / 1015	2009.12	
17	UHF Precision Dipole Antenna (TX/RX)	Schwarzbeck	UHAP	989 / 990	2009.12	
18	Loop Antenna	Schwarzbeck	HFH2-Z2	863048/019	2009.11	
19	TRILOG Broadband Antenna	Schwarzbeck	VULB9160	3141	2009.05	
20	Horn Antenna	AH Systems	SAS-200/571	304	N/A	
21	Horn Antenna	EMCO ESTINO N	3115	00040723	2010.03	
22	Horn Antenna	EMCO	3115	00056768	2009.06	
23	Horn Antenna	Schwarzbeck	BBHA9170	BBHA9170318	2010.08	
24	Vector Signal Generator	Agilent	E4438C	MY42080359	2009.07	
25	PSG analog signal generator	Agilent	E8257D-520	MY45141255	2009.07	
26	DC Power Supply	HP	6622A	3448A032223	2009.11	
27	DC Power Supply	HP	6268B	2542A-07856	2009.07	
28	PCS Interface	HP	83236B	3711J00881	2010.03	
29	CDMA Mobile Test Set	HP	8924C	US35360253	2010.03	
30	Hygro/Thermo Graph	SATO	PC-5000TRH-II	-	2009.07	
31	Temperature/Humidity Chamber	All Three	ATM-50M	20030425	2010.03	
32	Temperature/Humidity Chamber	DAEJIN	DJ-THC02	06071	2010.03	

2.3 Test Date

Date of Test: April 10, 2009 ~ April 22, 2009

2.4 Test Environment

See each test item's description.

Page 5 of 13

3. DESCRIPTION OF THE EQUIPMENT UNDER TEST

The product specification described herein was obtained from the product data sheet or user's manual.

3.1 Rating and Physical Characteristics

No. Of Unit	One (125 kHz Transmitter & 315/433.92 MHz Receivers**)				
Power source	Intentional Li-ion 3.7 V, and External AC/DC adaptor or 12 V/ 24 V lead-acid battery				
Local Oscillator or X-Tal	X-Tal: 4 MHz, 10.178	8125 MHz, 13.225625 MHz			
Tx / Rx Frequency	125 kHz (Tx), 315/ 43	33.92 MHz(Rx)			
Antenna Type	Loop Coil Antenna (Tx), PCB Pattern Antenna (Rx)				
Type of Modulation	ASK (Tx), ASK/FSK (Rx)				
External Ports	- USB ports for debuggi - DC Input port for batte Source 1. Adaptor - Manufacturer: - Model Name: - Input: - Output:				
	Voltage:	DC 12 V or 24 V			

^{**:} The equipment authorization for the two receivers was made under DoC process with separate the report.

3.2 Equipment Modifications

None

3.3 Submitted Documents

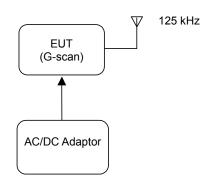
Block diagram

Operational description

Schematic diagram

Part List

User manual



Page 6 of 13

4. MEASUREMENT CONDITIONS

4.1 Description of test configuration

The measurements were taken in a test mode for RF transmitting continuously.

[System Block Diagram of Test Configuration]

4.2 List of Peripherals

Equipment Type	Manufacturer	Model =	S/N	
AC/DC Adaptor	Perfect Power Co., Ltd.	SYS1359-3612-T3	G081203000045	

4.3 Type of Used Cables

#	START		ENI)	CABLE		
#	NAME I/O PORT		NAME I/O PORT NAME I/O PORT		LENGTH(m)	SHIELDED	
1	EUT	DC IN	AC/DC Adaptor	DC OUT	1.8	NO	
2	AC/DC Adaptor	AC IN	AC mains AC mains		1.2	NO	

4.4 Uncertainty

Measurement Item	Combined Standard Uncertainty <i>Uc</i>	Expanded Uncertainty $U = kUc \ (k = 2)$
Radiated disturbance	± 2.30 dB	± 4.60 dB
Conducted disturbance	± 1.96 dB	± 3.92 dB

Page 7 of 13

5. TEST AND MEASUREMENTS

Summary of Test Results

Requirement	CFR 47 Section	Report Section	Test Result
Antenna Requirement	15.203	5.1	PASS
Radiated Spurious Emissions	15.209	5.2	PASS
Conducted Emissions	15.207	5.3	PASS

5.1 ANTENNA REQUIREMENT

5.1.1 Regulation

FCC section 15.203, An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of Part 15C. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31 (d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

5.1.2 Result: PASS

The EUT has an integral loop coil antenna (125 kHz transmitter), and meets the requirements.

Page 8 of 13

5.2 RADIATED EMISSIONS

5.2.1 Regulation

- Emissions below 30 MHz

According to §15.209, the field strength of emissions from intentional radiators operated under this frequency band shall not exceed the following:

Frequency (MHz)	Field strength	Calculation of Field Strength (uV/m)	Calculation of Field Strength (dBuv/m)		
0.009 - 0.490	2400/F(kHz)	266.7 – 4.9	48.5 – 13.8		
	(uV/m @ 300m)	(uV/m @ 300m)	(dBuV/m @ 300m)		
0.490 – 1.705	24000/F(kHz)	49.0 – 14.1	33.8 – 23.0		
	(uV/m @ 30m)	(uV/m @ 30m)	(dBuV/m @ 30m)		
1.705 – 30.0	30	30	29.5		
	(uV/m @ 30m)	(uV/m @ 30m)	(dBuV/m @ 30m)		

- Emissions above 30 MHz

The field strength of any emissions which appear outside of this band shall not exceed the general radiated emission limits in §15.209.

Frequency (MHz)	Field strength (uV/m @ 3m)	Field strength (dBuV/m @ 3m)
30–88	100	40.0
88–216	150	43.5
216–960	200	46.0
Above 960	500	54.0

The emission limits shown in the above table are based on measurement instrumentation employing a CISPR quasi-peak detector. For the frequency bands 9 - 90 kHz, 110 - 490 kHz and above 1000 MHz, the radiated emission limits are based on measurements employing an average detector.

5.2.2 Measurement Procedure

- 1. The preliminary radiated measurements were performed to determine the frequency producing the maximum emissions in an anechoic chamber at a distance of 3 meters.
- 2. The EUT was placed on the top of the 0.8-meter height, 1×1.5 meter non-metallic table. To find the maximum emission levels, the height of a measuring antenna was changed and the turntable was rotated 360° .
- 3. The antenna polarization was also changed from vertical to horizontal. The spectrum was scanned from 9 kHz to 30 MHz using the loop antenna, and from 30 MHz to 1000 MHz or to tenth harmonic of the highest fundamental frequency, whichever is higher, using the TRILOG broadband antenna.

Page 9 of 13

- 4. To obtain the final measurement data, the EUT was arranged on a turntable situated on a 4×4 meter at the Open Area Test Site. The EUT was tested at a distance 3 meters.
- 5. Each frequency found during preliminary measurements was re-examined and investigated. The test-receiver system was set up to average, peak, and quasi-peak detector function with specified bandwidth.
- 6. The EUT is situated in three orthogonal planes (if appropriate)
- 7. The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT.

5.2.3 Calculation of the field strength limits COREDITA

- Emissions below 30 MHz

No special calculation for obtaining the field strength in dBuV/m is necessary, because the EMI receiver and the active loop antenna operate as a system, where the reading gives directly the field strength result (dBuV/m). The gain, antenna factors and cable losses are already taken into consideration.

For test distance other than what is specified, but fulfilling the requirements of section 15.31 (f) (2) the field strength is calculated by adding additionally an extrapolation factor of 40dB/decade (inverse linear distance for field strength measurements).

All following emission measurements were performed using the test receiver's average detector and peak detector function.

The basic equation is as follow;

FS = RA + DF

Where

FS = Field strength in dBuV/m

RA = Receiver Amplitude in dBuV/m

DF = Distance Extrapolation Factor in dB

Where DF = 20log(Dtest/Dspec) where Dtest = Test Distance and Dspec = Specified Distance

DF = $40\log(3\text{m}/300\text{m})$ = - 80 dB (Frequency: $0.009 \sim 0.490 \text{ MHz}$)

DF = $40\log(3\text{m}/30\text{m}) = -40 \text{ dB}$ (Frequency: $0.490 \sim 30 \text{ MHz}$)

Page 10 of 13

5.2.4 Test Results:

PASS

Table 1: Measur	Table 1: Measured values of the Field strength (below 30 MHz)								
Frequency (MHz)	Bandwidth (kHz)	Reading (dBuV)	Limit (dBuV/m)	Margin (dB)					
	Emis	sions (Average De	tector)						
0.125	0.2	64.50	105.7	41.20					
0.250	9	44.15	99.6	55.45					
0.375	9	50.04	96.1	46.06					
	Em	issions (Peak Dete	ector)						
0.125	0.2	66.45	125.7	59.25					
0.250	9	54.38	119.6	65.22					
0.375	9	53.27	116.1	62.83					
	Emissi	ons (Quasi-peak I	Detector)						
0.500	9	42.65	73.6	30.92					
0.625	9	43.20	71.7	28.50					
0.750	9	TOR 35.78 CREE	70.1	34.32					
0.875	9 BORF	39.95	68.8	28.85					
1.000	9	33.82	67.6	33.78					
1.125	9	35.45	66.6	31.15					
1.250	90	32.69	65.7	33.01					
1.375	9	34.13	64.8	30.67					

Margin (dB) = Limit - Reading

Table 2: Measured values of the Field strength (above 30 MHz)										
Frequency [MHz]	RBW [kHz]	POL [V/H]	ANT [m]	Reading [dBuV]	AMP [dB]	AF [dB/m]	CL [dB]	Actual [dBuV/m]	Limit [dBuV/m]	Margin [dB]
104.67	120	V	1.10	48.41	27.40	9.79	1.13	31.93	43.50	11.57
104.67	120	Н	1.62	52.94	27.40	9.79	1.13	36.46	43.50	7.04
303.50	120	V	1.22	45.76	26.43	12.98	1.78	34.09	46.00	11.91
303.50	120	Н	2.09	47.19	26.43	12.98	1.78	35.52	46.00	10.48
399.67	120	V	1.16	43.95	26.93	15.18	2.04	34.24	46.00	11.76
399.67	120	Н	1.62	40.90	26.93	15.18	2.04	31.19	46.00	14.81
666.12	120	V	1.32	40.70	27.49	20.20	2.64	36.05	46.00	9.95
666.12	120	Н	1.75	36.22	27.49	20.20	2.64	31.57	46.00	14.43
932.56	120	V	1.59	34.62	26.83	23.89	2.99	34.67	46.00	11.33
932.56	120	Н	1.07	33.43	26.83	23.89	2.99	33.48	46.00	12.52

Margin (dB) = Limit - Actual

[Actual = Reading - Amp Gain + AF + CL]

- 1. H = Horizontal, V = Vertical Polarization
- 2. AF/CL = Antenna Factor and Cable Loss

NOTE: 1. All emissions not reported were more than 20 dB below the specified limit or in the noise floor.

2. These test results of Table 1 and Table 2 were measured at the 3 m distance.

Page 11 of 13

5.3 CONDUCTED EMISSIONS

5.3.1 Regulation

According to $\S15.207(a)$, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a $50\mu\text{H}/50\Omega$ line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Eraquanay of amission (MHz)	Conducted limit (dBµV)			
Frequency of emission (MHz)	Qausi-peak	Average		
0.15 – 0.5	66 to 56 *	56 to 46 *		
0.5 – 5	56	46		
5 – 30	TORY ACCR60	50		

^{*} Decreases with the logarithm of the frequency.

5.3.2 Test Procedure

- 1. The EUT was placed on a wooden table of size, 1 m by 1.5 m, raised 80 cm in which is located 40 cm away from the vertical wall and 1.5m away from the side wall of the shielded room.
- 2. Each current-carrying conductor of the EUT power cord was individually connected through a $50\Omega/50\mu H$ LISN, which is an input transducer to a Spectrum Analyzer or an EMI/Field Intensity Meter, to the input power source.
- 3. Exploratory measurements were made to identify the frequency of the emission that had the highest amplitude relative to the limit by operating the EUT in a range of typical modes of operation, cable position, and with a typical system equipment configuration and arrangement. Based on the exploratory tests of the EUT, the one EUT cable configuration and arrangement and mode of operation that had produced the emission with the highest amplitude relative to the limit was selected for the final measurement.
- 4. The final test on all current-carrying conductors of all of the power cords to the equipment that comprises the EUT (but not the cords associated with other non-EUT equipment is the system) was then performed over the frequency range of 0.15 MHz to 30 MHz.
- 5. The measurements were made with the detector set to PEAK amplitude within a bandwidth of 10 kHz or to QUASI-PEAK and AVERAGE within a bandwidth of 9 kHz. The EUT was in transmitting mode during the measurements.

Page 12 of 13

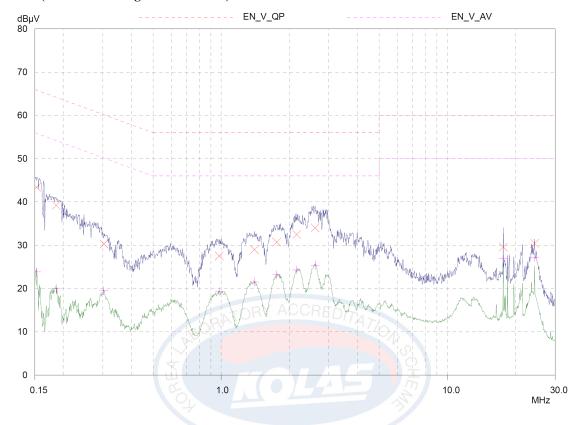
5.3.3 Test Results: PASS

Table 3: Measured values of the Conducted Emissions								
Frequency [MHz]	Reading [dBµV]	L/N	CF [dB]	CL [dB]	Actual [dΒμV]	Limit [dBµV]	Margin [dB]	
QUASI-PEAK DATA								
0.15241	43.38	L	0.35	0.05	43.78	65.87	22.09	
0.18608	39.20	L	0.35	0.05	39.60	64.21	24.61	
0.29924	30.75	N	0.29	0.05	31.09	60.26	29.17	
1.0233	28.48	N	0.49	0.09	29.06	56.00	26.94	
1.41961	29.43	N	0.49	0.09	30.01	56.00	25.99	
1.76113	30.70	L	0.26	0.09	31.05	56.00	24.95	
2.15879	32.49	L	0.28	0.12	32.89	56.00	23.11	
2.60432	34.01	L	0.28	0.12	34.41	56.00	21.59	
17.69612	29.58	L	0.75	0.29	30.62	60.00	29.38	
24.35426	28.19	N	0.96	0.33	29.48	60.00	30.52	
AVERAGE DATA								
0.1506	25.25	N	0.34	0.05	25.64	55.97	30.33	
0.1824	21.49	N	0.34	0.05	21.88	54.38	32.50	
0.29924	20.55	N	0.29	0.05	20.89	50.26	29.37	
1.0233	20.92	N	0.49 TE	ST 0.09 NO	19 21.50	46.00	24.50	
1.41961	22.38	N	0.49	0.09	22.96	46.00	23.04	
1.81104	23.37	N	0.49	0.09	23.95	46.00	22.05	
2.15879	24.28	L	0.28	0.12	24.68	46.00	21.32	
2.60432	25.39	L	0.28	0.12	25.79	46.00	20.21	
17.69612	26.85	L	0.75	0.29	27.89	50.00	22.11	
24.35426	27.19	L	0.82	0.33	28.34	50.00	21.66	

Margin (dB) = Limit – Actual [Actual = Reading + CF + CL]

L/N = LINE / NEUTRAL

CF/CL = Correction Factor and Cable Loss


NOTE: All emissions not reported were more than 20 dB below the specified limit.

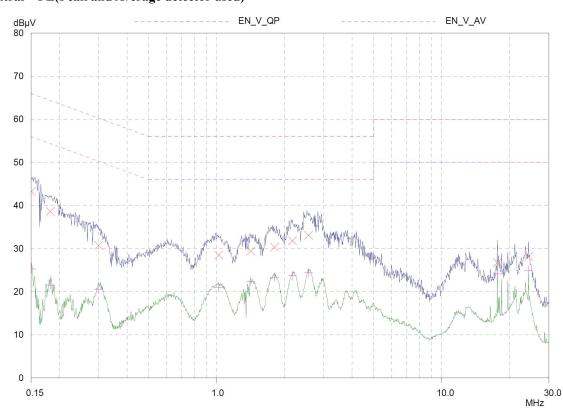

Page 13 of 13

Figure 1. Plot of the Conducted Emissions

Line - PE(Peak and Average detector used)

Neutral – PE(Peak and Average detector used)

