

Report No.: FR132339-09AC

RADIO TEST REPORT

FCC ID : TLZ-XM9098

Equipment: IEEE 802.112X2 WiFi 6 SU and MU-MIMO DBC

Wireless LAN + Bluetooth 5.1 Combo Module

Brand Name : AzureWave

Model Name : AW-XM458, AW-XM369, AW-XM458MA-XXX,

AW-XM369MA-XXX

Applicant : AzureWave Technologies, Inc.

8F., No.94, Baozhong Rd., Xindian Dist., New

Taipei City, Taiwan 231

Manufacturer : AzureWave Technologies (Shanghai) Inc.

No. 1355, Jiaxin Road, Malu Twon, Jiading District

Shanghai, P.R. China

Standard: 47 CFR FCC Part 15.247

The product was received on Jun. 21, 2024, and testing was started from Jul. 11, 2024 and completed on Jul. 31, 2024. We, Sporton International Inc. Hsinchu Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

The test results in this variant report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. Hsinchu Laboratory, the test report shall not be reproduced except in full.

Approved by: Sam Chen

Sporton International Inc. Hsinchu Laboratory

No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.)

TEL: 886-3-656-9065 FAX: 886-3-656-9085

Report Template No.: CB-A10_5 Ver1.3

Page Number

: 1 of 22

Issued Date

: Aug. 15, 2024

Report Version : 01

Table of Contents

Histo	listory of this test report3					
Sum	mary of Test Result	4				
1	General Description	5				
1.1	Information	5				
1.2	Applicable Standards	10				
1.3	Testing Location Information	10				
1.4	Measurement Uncertainty	10				
2	Test Configuration of EUT	11				
2.1	The Worst Case Measurement Configuration	11				
2.2	EUT Operation during Test	12				
2.3	Accessories	12				
2.4	Support Equipment	12				
2.5	Test Setup Diagram	13				
3	Transmitter Test Result	16				
3.1	AC Power-line Conducted Emissions	16				
3.2	Emissions in Restricted Frequency Bands	18				
4	Test Equipment and Calibration Data	21				
Appe	endix A. Test Results of AC Power-line Conducted Emissions					
Appe	endix B. Test Results of Emissions in Restricted Frequency Bands					
Appe	endix C. Test Photos					
Phot	ographs of EUT v01					

TEL: 886-3-656-9065 FAX: 886-3-656-9085

Report Template No.: CB-A10_5 Ver1.3

Page Number : 2 of 22

Report No. : FR132339-09AC

Issued Date : Aug. 15, 2024

Report Version : 01

History of this test report

Report No. : FR132339-09AC

Report No.	Version	Description	Issued Date
FR132339-09AC	01	Initial issue of report	Aug. 15, 2024

TEL: 886-3-656-9065 Page Number : 3 of 22
FAX: 886-3-656-9085 Issued Date : Aug. 15, 2024

Summary of Test Result

Report No.: FR132339-09AC

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
1.1.2	15.203	Antenna Requirement	PASS	-
3.1	15.207	AC Power-line Conducted Emissions	PASS	-
3.2	15.247(d)	Emissions in Restricted Frequency Bands	PASS	-

Conformity Assessment Condition:

- 1. The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.
- 2. The measurement uncertainty please refer to each test result in the chapter "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Sam Chen Report Producer: Vicky Huang

TEL: 886-3-656-9065 Page Number : 4 of 22
FAX: 886-3-656-9085 Issued Date : Aug. 15, 2024

1 General Description

1.1 Information

1.1.1 RF General Information

Frequency Range (MHz)	Bluetooth Version	Ch. Frequency (MHz)	Channel Number
2400-2483.5	BR / EDR	2402-2480	0-78 [79]

Report No.: FR132339-09AC

Band	Mode	BWch (MHz)	Nant
2400-2483.5	BT-BR	1	1
2400-2483.5	BT-EDR	1	1

Note:

- Bluetooth BR uses a GFSK (1Mbps).
- Bluetooth EDR uses a combination of $\pi/4$ -DQPSK (2Mbps) and 8DPSK (3Mbps).
- Bluetooth BR/EDR uses as a system using FHSS modulation.
- BWch is the nominal channel bandwidth.

TEL: 886-3-656-9065 Page Number : 5 of 22
FAX: 886-3-656-9085 Issued Date : Aug. 15, 2024

1.1.2 Antenna Information\

			Port				Antenna		Gain
Set	Ant.	WLAN 2.4GHz	WLAN 5GHz	Bluetooth	Brand	Model Name	Type	Connector	(dBi)
	1	1	1	-	MAG. LAYERS	MSA-4008-25GC1-A2	PIFA	I-PEX	
1	2	2	2	-	MAG. LAYERS	MSA-4008-25GC1-A2	PIFA	I-PEX	
	3	-	ı	1	MAG. LAYERS	MSA-4008-25GC1-A2	PIFA	I-PEX	
2	4	1/2	1/2	1	Inpaq	WA-P-LB-02-587	PCB	I-PEX	
3	5	1/2	1/2	1	Inpaq	WA-P-LB-03-129	PCB	I-PEX	
4	6	-	-	-	Inpaq	WA-P-LB-03-130	PCB	I-PEX	Note 1
5	7	-	-	-	Inpaq	WA-F-LB-03-110	PCB	I-PEX	
6	8	-	-	-	Inpaq	WA-F-LB-02-187	PCB	I-PEX	
7	9	-	-	-	Inpaq	WA-F-LA-01-015	PCB	I-PEX	
8	10	-	-	-	TE Connectivity	2195501-2	PCB	I-PEX	
9	11	-	-	-	TE Connectivity	2195505-2	PCB	I-PEX	
40	12	-	-	-	LUXSHARE-ICT	SA37A47021	Dipole	I-PEX	Nictor
10	13	-	-	-	LUXSHARE-ICT	SA37A47021	Dipole	I-PEX	Note 2
11	14	-		-	LUXSHARE-ICT	SA37A47025	PIFA	I-PEX	Note 1
12	15	1/2	1/2	1	TAOGLAS	WLA.10	Chip	N/A	Note 1

Report No. : FR132339-09AC

Note1:

2 1			Port		А	ntenna Gain (dE	Bi)
Set	Ant.	WLAN 2.4GHz	WLAN 5GHz	Bluetooth	WLAN 2.4GHz	WLAN 5GHz	Bluetooth
	1	1	1	-	2.98	5.16	-
1	2	2	2	-	2.98	5.16	-
	3	-	-	1	-	-	2.98
2	4	1/2	1/2	1	4.43	7.52	4.43
3	5	1/2	1/2	1	6.51	3.2	6.51
4	6	-	-	-	4.91	5.84	4.91
5	7	-	-	1	-0.27	2.74	-0.27
6	8	-	-	-	0.07	2.39	0.07
7	9	-	-	1	5.66	-	5.66
8	10	-	-	-	0.47	1.88	0.47
9	11	-	-	-	0.77	0.96	0.77
11	14	_	-	-	-	_	-1.1
12	15	1/2	1/2	1	1.25	2.17	1.25

TEL: 886-3-656-9065 Page Number : 6 of 22
FAX: 886-3-656-9085 Issued Date : Aug. 15, 2024

Note2:

		Po	ort	Cable	Antenna (Gain (dBi)	Cable Lo	oss (dB)	True Ga	in (dBi)
Set	Ant.	WLAN 2.4GHz	WLAN 5GHz	Length	WLAN 2.4GHz	WLAN 5GHz	WLAN 2.4GHz	WLAN 5GHz	WLAN 2.4GHz	WLAN 5GHz
40	12	-	-	450mm	2.8	2.6	1.1	1.9	1.7	0.7
10	13	-	-	470mm	2.8	2.6	1.2	2	1.6	0.6

Note3: The above information was declared by manufacturer.

Note4: There are 15 antenna sets listed on the antenna table. The antenna sets 1~9 and 12 have three antennas for each set. The antenna set 10 has two antennas. The antenna set 11 has one antenna. The EUT has four types of antenna.

Note5: Directional gain information.

For ant. 1~ant. 2

Type	Maximum Output Power	Power Spectral Density
Non-BF	Directional gain = Max.gain + array gain. For power measurements on IEEE 802.11 devices Array Gain = 0 dB (i.e., no array gain) for N ANT ≤ 4	DirectionalGain = $10 \cdot \log \frac{\sum_{j=1}^{N_{av}} \left\{\sum_{k=1}^{N_{av}} g_{j,k}\right\}^{2}}{N_{ANT}}$
BF	Directional Gain = $10 \cdot \log \left[\sum_{j=1}^{N_{ar}} \left\{ \sum_{k=1}^{N_{arc}} \mathbf{S}_{j,k} \right\}^{2} \right]$	$Directional Gain = 10 \cdot log \frac{\sum_{j=1}^{N_B} \left(\sum_{k=1}^{N_{ant}} \mathbf{g}_{j,k}\right)^2}{N_{ANT}}$

Ex.

Directional Gain (NSS1) formula :
$$Directional Gain = 10 \cdot \log \left[\frac{\sum_{i=1}^{w_{i}} \left\{ \sum_{j=1}^{w_{i}} g_{j,k} \right\}^{2}}{N_{sN7}} \right]$$

 $NSS1(g1,1) = 10^{G1/20}$; $NSS1(g1,2) = 10^{G2/20}$

 $gj_k = (Nss1(g1,1) + Nss1(g1,2))^2$

 $\label{eq:definition} DG = 10 \, log[(Nss1(g1,1) \, + \, Nss1(g1,2) \,))^2 \, / \, N_{ANT}] => 10 \, log[(10^{G1/20} \, + \, 10^{G2/20} \,)^2 \, / \, N_{ANT}]$

Where;

2.4G G1 = 2.98 ; G2 = 2.98 ; DG=5.99 5G G1 = 5.16; G2 = 5.16; DG=8.17

For ant. 4~ant. 5

Type	Maximum Output Power	Power Spectral Density
Non-BF	Directional gain = Max.gain + array gain. For power measurements on IEEE 802.11 devices Array Gain = 0 dB (i.e., no array gain) for N ANT ≤ 4	DirectionalGain = $10 \cdot \log \frac{\sum_{j=1}^{N_{av}} \left(\sum_{k=1}^{N_{av}} \mathbf{g}_{j,k}\right)^{2}}{N_{av}}$
BF	$Directional Gain = 10 \cdot log \begin{bmatrix} \sum_{j=1}^{N_{eff}} \left\{ \sum_{k=1}^{N_{eff}} S_{j,k} \right\}^{2} \\ N_{MNP} \end{bmatrix}$	$Directional Gain = 10 \cdot \log \frac{\sum_{j=1}^{N_m} \left(\sum_{k=1}^{N_{acc}} \mathbf{g}_{j,k}\right)^2}{N_{ANT}}$

Directional Gain (NSS1) formula :
$$Directional Gain = 10 \cdot \log \left[\frac{\sum_{j=1}^{W_{ij}} \left\{ \sum_{k=1}^{W_{ij}} S_{j,k} \right\}^{2}}{N_{abst}} \right]$$

 $NSS1(g1,1) = 10^{G1/20}$; $NSS1(g1,2) = 10^{G2/20}$

 $gj_k = (Nss1(g1,1) + Nss1(g1,2))^2$

 $DG = 10 \log[(Nss1(g1,1) + Nss1(g1,2))]^2 / N_{ANT}] => 10 \log[(10^{G1/20} + 10^{G2/20})^2 / N_{ANT}]$

Where;

For ant. 5

2.4G G1 = 6.51 ; G2 = 6.51 ; DG=9.52

For ant. 4

5G G1 = 7.52; G2 = 7.52; DG=10.53

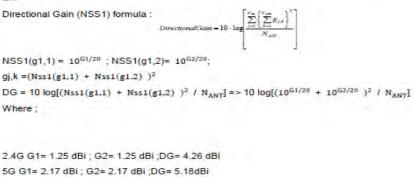
TEL: 886-3-656-9065 FAX: 886-3-656-9085

Report Template No.: CB-A10_5 Ver1.3

Page Number : 7 of 22

: Aug. 15, 2024 Issued Date

Report No.: FR132339-09AC


Report Version : 01

ADIO TEST REPORT Report No. : FR132339-09AC

For ant. 15

Type	Maximum Output Power	Power Spectral Density
Non-BF	Directional gain = Max.gain + array gain. For power measurements on IEEE 802.11 devices Array Gain = 0 dB (i.e., no array gain) for N ANT ≤ 4	DirectionalGain = $10 \cdot \log \left[\sum_{j=1}^{N_{BB}} \sum_{k=1}^{N_{BB}} g_{j,k} \right]^{2}$ $= \frac{10 \cdot \log \left[\sum_{j=1}^{N_{BB}} \sum_{k=1}^{N_{BB}} g_{j,k} \right]^{2}}{N_{BB}}$
BF	DirectionalGain = $10 \cdot \log \left[\sum_{j=1}^{N_{jet}} \left(\sum_{k=1}^{N_{jet}} g_{j,k} \right)^{2} \right]$	DirectionalGain = $10 \cdot \log \left[\frac{\sum_{j=1}^{N_{abs}} \left[\sum_{k=1}^{N_{abs}} g_{j,k} \right]^{\frac{k}{2}}}{N_{abs}} \right]$

Ex.

<WLAN 2.4GHz Function>

For IEEE 802.11b/g/n/ax (2TX/2RX):

Port 1 and Port 2 can be used as transmitting/receiving antenna.

Port 1 and Port 2 could transmit/receive simultaneously.

<WLAN 5GHz Function>

For IEEE 802.11a/n/ac/ax (2TX/2RX):

Port 1 and Port 2 can be used as transmitting/receiving antenna.

Port 1 and Port 2 could transmit/receive simultaneously.

<Bluetooth Function> (1TX/1RX)

Only Port 1 can be used as transmitting/receiving.

TEL: 886-3-656-9065 Page Number: 8 of 22
FAX: 886-3-656-9085 Issued Date: Aug. 15, 2024

1.1.3 EUT Operational Condition

EUT Power Type	From host system
Test Software Version	DutApiMimoApApp (Version : 2.0.0.80)

Report No.: FR132339-09AC

1.1.4 Table for Multiple Listing

EUT	Model No.	GPIO	Antenna	RF Connector Trace and Type	Description
1	AW-XM458, AW-XM369	Without GPIO		-	All the model names are identical, the difference model names served as marketing strategy.
2	AW-XM458MA	With	PIFA, PCB, Dipole	Type 1	
3	-XXX, AW-XM369MA			Type 2	All the model names are identical, the difference model names served as marketing strategy.
4	-XXX		Chip	Туре 3	3 3,

Note 1: From the above models, model: AW-XM458MA-XXX (EUT 4) was selected as representative model for the test and its data was recorded in this report.

Note 2: The above information was declared by manufacturer.

1.1.5 Table for Permissive Change

This product is an extension of original one reported under Sporton project number: FR132339-07AC. Below is the table for the change of the product with respect to the original one.

Modifications	Performance Checking
Sot 12)	 AC Power-line Conducted Emissions Emissions in Restricted Frequency Bands below 1GHz. Emissions in Restricted Frequency Bands above 1GHz.(Based on original output power to test.)

TEL: 886-3-656-9065 Page Number : 9 of 22
FAX: 886-3-656-9085 Issued Date : Aug. 15, 2024

1.2 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Report No.: FR132339-09AC

47 CFR FCC Part 15.247

The following reference test guidance is not within the scope of accreditation of TAF.

- FCC KDB 558074 D01 v05r02
- FCC KDB 414788 D01 v01r01

1.3 Testing Location Information

Testing Location Information

Test Lab.: Sporton International Inc. Hsinchu Laboratory

Hsinchu ADD: No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.)

(TAF: 3787) TEL: 886-3-656-9065 FAX: 886-3-656-9085

Test site Designation No. TW3787 with FCC.

Conformity Assessment Body Identifier (CABID) TW3787 with ISED.

Test Condition	Test Site No.	Test Engineer	Test Environment (°C / %)	Test Date
Radiated below 1GHz	03CH01-CB	Chris Li	21.9-22.4 / 55-58	Jul. 11, 2024~ Jul. 24, 2024
Radiated above 1GHz	03CH02-CB	Chris Li	21.8-22.9 / 55-58	Jul. 11, 2024~ Jul. 24, 2024
AC Conduction	CO01-CB	Ryan Huang	22~23 / 51~53	Jul. 31, 2024

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Test Items	Uncertainty	Remark
Conducted Emission (150kHz ~ 30MHz)	3.8 dB	Confidence levels of 95%
Radiated Emission (9kHz ~ 30MHz)	4.1 dB	Confidence levels of 95%
Radiated Emission (30MHz ~ 1,000MHz)	4.2 dB	Confidence levels of 95%
Radiated Emission (1GHz ~ 18GHz)	4.2 dB	Confidence levels of 95%
Radiated Emission (18GHz ~ 40GHz)	4.0 dB	Confidence levels of 95%

TEL: 886-3-656-9065 Page Number : 10 of 22 FAX: 886-3-656-9085 Issued Date : Aug. 15, 2024

2 Test Configuration of EUT

2.1 The Worst Case Measurement Configuration

The Worst Case Mode for Following Conformance Tests			
Tests Item	AC power-line conducted emissions		
Condition AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz			
Operating Mode CTX			
1 EUT 4 + WLAN 2.4GHz (Ant. Set 12)			
2	EUT 4 + WLAN 5GHz (Ant. Set 12)		
3 EUT 4 + Bluetooth (Ant. Set 12)			
For operating mode 3 is the worst case and it was record in this test report.			

Report No.: FR132339-09AC

Th	The Worst Case Mode for Following Conformance Tests			
Tests Item	Emissions in Restricted Frequency Bands			
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.			
	Normal Link			
Operating Mode < 1GHz	After evaluating, and the worst case was found at X axis, so it was selected to perform test and its test result was written in the report.			
1	EUT 4 in X axis + WLAN 2.4GHz (Ant. Set 12) + WLAN 5GHz (Ant. Set 12) + Bluetooth (Ant. Set 12)			
	СТХ			
Operating Mode > 1GHz	After evaluating, and the worst case was found as below. So the measurement will follow this same test configuration.			
1	EUT 4 in Z axis + Ant. Set 12			

The Worst Case Mode for Following Conformance Tests		
Tests Item Simultaneous Transmission Analysis - Co-location RF Exposure Evaluation		
Operating Mode		
1 WLAN 2.4GHz + WLAN 5GHz + Bluetooth		
Refer to Sporton Test Report No.: FA132339-09 for Co-location RF Exposure Evaluation.		

TEL: 886-3-656-9065 Page Number : 11 of 22
FAX: 886-3-656-9085 Issued Date : Aug. 15, 2024

2.2 EUT Operation during Test

For CTX Mode:

The EUT was programmed to be in continuously transmitting mode.

For Normal Link Mode:

During the test, the EUT operation to normal function.

2.3 Accessories

N/A

2.4 Support Equipment

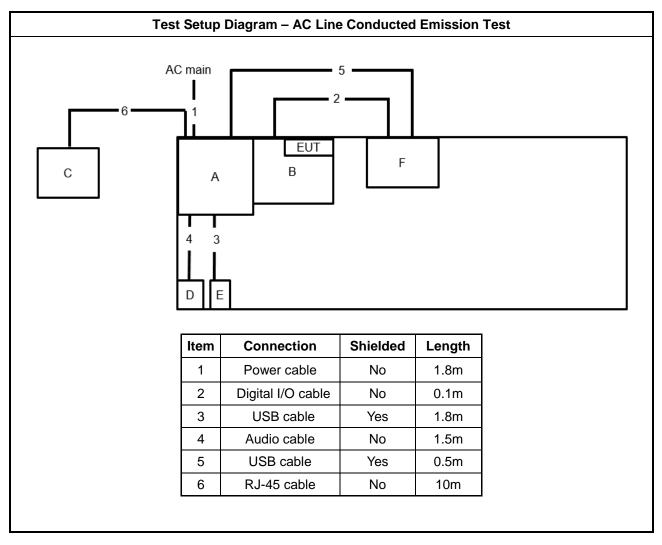
For AC Conduction:

	Support Equipment					
No.	Equipment	Brand Name	Model Name	FCC ID		
Α	NB2	DELL	E6430	N/A		
В	Fixture	Azurewave	2304NF-i1	N/A		
С	NB1	DELL	E6430	N/A		
D	Earphone	SHYARO CHI	MIC-04	N/A		
Е	Mouse	HP	FM100	N/A		
F	Fixture	Azurewave	2458-i6	N/A		

Report No.: FR132339-09AC

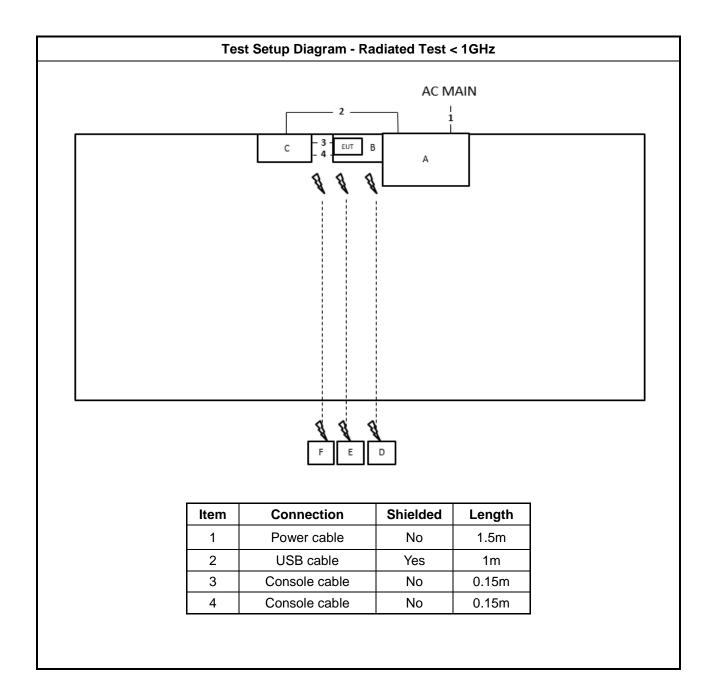
For Radiated (below 1GHz):

	Support Equipment				
No.	lo. Equipment Brand Name Model Name FCC ID				
Α	NB	DELL	E4300	N/A	
В	Test Fixture	Azurewave	2304NF-i1	N/A	
С	Test Fixture	Azurewave	2458-i6	N/A	
D	AP Router(2.4G)	ASUS	AX88U	N/A	
Е	AP Router(5G)	ASUS	AX88U	N/A	
F	Phone(BT)	PHILIPS	M20	N/A	

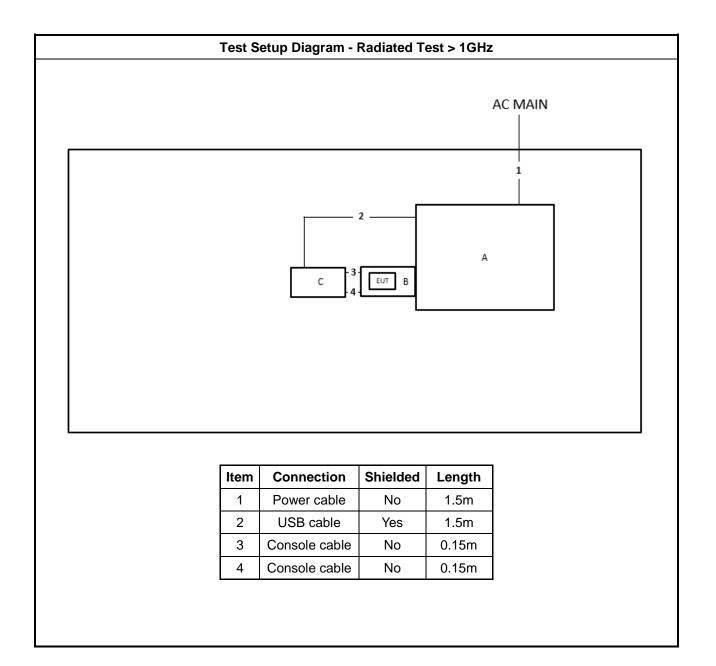

For Radiated (above 1GHz):

	Support Equipment				
No.	Equipment	Brand Name	Model Name	FCC ID	
Α	NB	DELL	E4300	N/A	
В	Test Fixture	Azurewave	2304NF-i1	N/A	
С	Test Fixture	Azurewave	2458-i6	N/A	

TEL: 886-3-656-9065 Page Number : 12 of 22
FAX: 886-3-656-9085 Issued Date : Aug. 15, 2024



2.5 Test Setup Diagram



TEL: 886-3-656-9065 Page Number : 13 of 22
FAX: 886-3-656-9085 Issued Date : Aug. 15, 2024

TEL: 886-3-656-9065 Page Number : 14 of 22
FAX: 886-3-656-9085 Issued Date : Aug. 15, 2024

TEL: 886-3-656-9065 Page Number : 15 of 22
FAX: 886-3-656-9085 Issued Date : Aug. 15, 2024

3 Transmitter Test Result

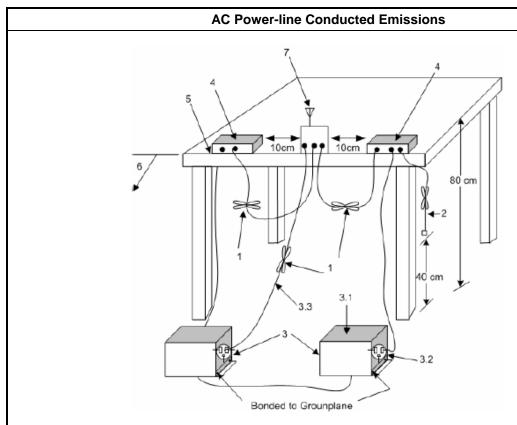
3.1 AC Power-line Conducted Emissions

3.1.1 AC Power-line Conducted Emissions Limit

AC Power-line Conducted Emissions Limit			
Frequency Emission (MHz) Quasi-Peak Average			
0.15-0.5	66 - 56 *	56 - 46 *	
0.5-5	56	46	
5-30	60	50	
Note 1: * Decreases with the logarithm of the frequency.			

Report No.: FR132339-09AC

3.1.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

	Test Method
•	Refer as ANSI C63.10-2013, clause 6.2 for AC power-line conducted emissions.

TEL: 886-3-656-9065 Page Number : 16 of 22
FAX: 886-3-656-9085 Issued Date : Aug. 15, 2024

3.1.4 **Test Setup**

-Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long.

Report No.: FR132339-09AC

- 2—The I/O cables that are not connected to an accessory shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 3—EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω loads. LISN may be placed on top of, or immediately beneath, reference ground plane.
- 3.1—All other equipment powered from additional LISN(s).
- 3.2—A multiple-outlet strip may be used for multiple power cords of non-EUT equipment.
 3.3—LISN at least 80 cm from nearest part of EUT chassis.
 4—Non-EUT components of EUT system being tested.

- –Rear of EUT, including peripheráls, shall all be aligned and flush with edge of tabletop.
- 6—Edge of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground
- 7—Antenna can be integral or detachable. If detachable, then the antenna shall be attached for this test.

1.1.1. Measurement Results Calculation

The measured Level is calculated using:

- Corrected Reading: LISN Factor (LISN) + Attenuator (AT/AUX) + Cable Loss (CL) + Read Level (Raw) = Level
- Margin = -Limit + Level

Test Result of AC Power-line Conducted Emissions 3.1.5

Refer as Appendix A

Page Number TEL: 886-3-656-9065 : 17 of 22 FAX: 886-3-656-9085 : Aug. 15, 2024 Issued Date

3.2 Emissions in Restricted Frequency Bands

3.2.1 Emissions in Restricted Frequency Bands Limit

Restricted Band Emissions Limit									
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)						
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300						
0.490~1.705	24000/F(kHz)	33.8 - 23	30						
1.705~30.0	30	29	30						
30~88	100	40	3						
88~216	150	43.5	3						
216~960	200	46	3						
Above 960	500	54	3						

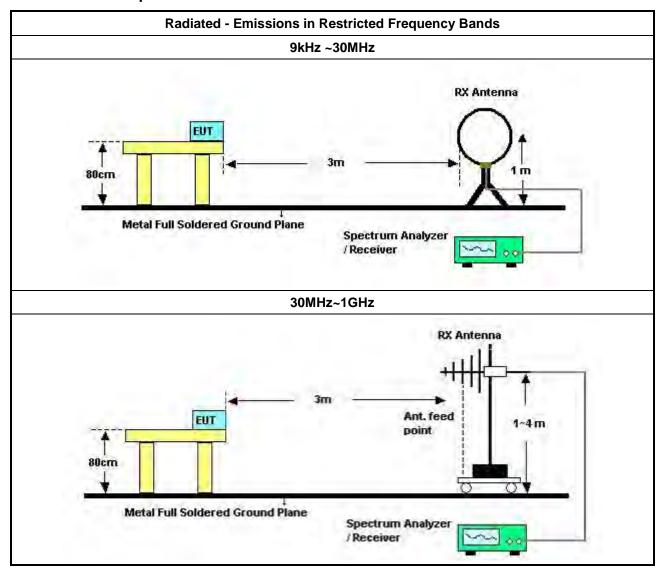
Report No.: FR132339-09AC

- Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).
- Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB / decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.
- Note 3: Using the distance of 1m during the test for above 18 GHz, and the test value to correct for the distance factor at 3m.

3.2.2 Measuring Instruments

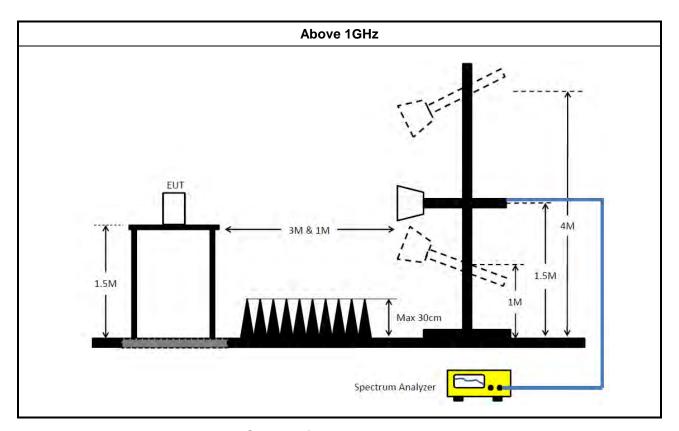
Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures


Test Method

- The average emission levels shall be measured in [hopping duty factor].
- Refer as ANSI C63.10; clause 6.10.3 band-edge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.
- For the transmitter unwanted emissions shall be measured using following options below:
 - Refer as ANSI C63.10, clause 4.1.4.2.1 QP value.
 - Refer as ANSI C63.10, clause 4.1.4.2.2 measurement procedure peak.
 - Refer as ANSI C63.10, clause 4.1.4.2.4 average value of hopping pulsed emissions.

TEL: 886-3-656-9065 Page Number : 18 of 22
FAX: 886-3-656-9085 Issued Date : Aug. 15, 2024



3.2.4 Test Setup

TEL: 886-3-656-9065 Page Number : 19 of 22
FAX: 886-3-656-9085 Issued Date : Aug. 15, 2024

Report No.: FR132339-09AC

3.2.5 Measurement Results Calculation

The measured Level is calculated using:

Corrected Reading: Antenna factor (AF) + Cable loss (CL) + Read level (Raw) - Preamp factor (PA)(if applicable) = Level.

3.2.6 Emissions in Restricted Frequency Bands (Below 30MHz)

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to KDB414788 Radiated Test Site, and the result came out very similar.

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

The radiated emissions were investigated from 9 kHz or the lowest frequency generated within the device, up to the 10th harmonic or 40 GHz, whichever is appropriate.

3.2.7 Test Result of Emissions in Restricted Frequency Bands

Refer as Appendix B

TEL: 886-3-656-9065 Page Number : 20 of 22 FAX: 886-3-656-9085 Issued Date : Aug. 15, 2024

4 Test Equipment and Calibration Data

Instrument	Brand	Model No.	Serial No.	Serial No. Characteristics		Calibration Due Date	Remark
EMI Receiver	Agilent	N9038A	My52260123	9kHz ~ 8.4GHz	Mar. 01, 2024	Feb. 28, 2025	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50-16-2	04083	04083 150kHz ~ 100MHz		Feb. 18, 2025	Conduction (CO01-CB)
LISN	Schwarzbeck	NSLK 8127	8127647	9kHz ~ 30MHz	Apr. 24, 2024	Apr. 23, 2025	Conduction (CO01-CB)
Pulse Limiter	Rohde& Schwarz	ESH3-Z2	100430	9kHz ~ 30MHz	Feb. 08, 2024	Feb. 07, 2025	Conduction (CO01-CB)
COND Cable	Woken	Cable	Low cable-CO01	9kHz ~ 30MHz	Oct. 17, 2023	Oct. 16, 2024	Conduction (CO01-CB)
Test Software	SPORTON	SENSE-EMI	V5.11	150kHz-30MHz	N.C.R.	N.C.R.	Conduction (CO01-CB)
3m Semi Anechoic Chamber NSA	TDK	SAC-3M	03CH01-CB	30 MHz ~ 1 GHz	Jan. 18, 2024	Jan. 17, 2025	Radiation (03CH01-CB)
BILOG ANTENNA with 6dB Attenuator	TESEQ & EMCI	CBL6112D N-6-06	37880 & AT-N0609	20MHz ~ 2GHz	Feb. 18, 2024	Feb. 17, 2025	Radiation (03CH01-CB)
Loop Antenna	Teseq	HLA 6121	65417	9kHz - 30 MHz	Oct. 13, 2023	Oct. 12, 2024	Radiation (03CH01-CB)
Pre-Amplifier	SGH	SGH0301	20230109-2	10M~1GHz	Jun. 22, 2024	Jun. 21, 2025	Radiation (03CH01-CB)
Signal Analyzer	R&S	FSV3044	101437	10kHz ~ 44GHz	Nov. 28, 2023	Nov. 27, 2024	Radiation (03CH01-CB)
EMI Test Receiver	R&S	ESR7	102172	9kHz ~ 7GHz	Oct. 20, 2023	Oct. 19, 2024	Radiation (03CH01-CB)
RF Cable-low	Woken	RG402	Low Cable-31+32	30 MHz ~ 1 GHz	Nov. 06, 2023	Nov. 05, 2024	Radiation (03CH01-CB)
Test Software	SPORTON	SENSE	V5.10	-	N.C.R.	N.C.R.	Radiation (03CH01-CB)
3m Semi Anechoic Chamber VSWR	RIKEN	SAC-3M	03CH02-CB	1GHz ~18GHz	Mar. 24, 2024	Mar. 23, 2025	Radiation (03CH02-CB)
Horn Antenna	EMCO	3115	9610-4976	1GHz ~ 18GHz	Apr. 12, 2024	Apr. 11, 2025	Radiation (03CH02-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	BBHA9170252 15GHz ~ 40GHz		Sep. 03, 2024	Radiation (03CH02-CB)
Pre-Amplifier	Agilent	83017A	MY39501305	1GHz ~ 26.5GHz	Jun. 29, 2024	Jun. 28, 2025	Radiation (03CH02-CB)
Pre-Amplifier	SGH	SGH184	20221107-3	18GHz ~ 40GHz	Nov. 24, 2023	Nov. 23, 2024	Radiation (03CH02-CB)
Signal Analyzer	R&S	FSV3044	101536	10kHz ~ 44GHz	Jul. 24, 2023	Jul. 23, 2024	Radiation (03CH02-CB)
RF Cable-high	Woken	RG402	High Cable-18	1GHz ~ 18GHz	Jun. 20, 2024	Jun. 19, 2025	Radiation (03CH02-CB)

TEL: 886-3-656-9065 FAX: 886-3-656-9085

Report Template No.: CB-A10_5 Ver1.3

Page Number : 21 of 22
Issued Date : Aug. 15, 2024

Report No.: FR132339-09AC

Report Version : 01

Instrument	Brand	Model No.	Serial No.	Serial No. Characteristics		Calibration Due Date	Remark
RF Cable-high	Woken	RG402	High Cable-18+19	1GHz ~ 18GHz	Jun. 20, 2024	Jun. 19, 2025	Radiation (03CH02-CB)
High Cable	Woken	WCA0929M	40G#5+6	1GHz ~ 40 GHz	Jan. 11, 2024	Jan. 10, 2025	Radiation (03CH02-CB)
Test Software	SPORTON	SENSE	V5.10	-	N.C.R.	N.C.R.	Radiation (03CH02-CB)

Report No.: FR132339-09AC

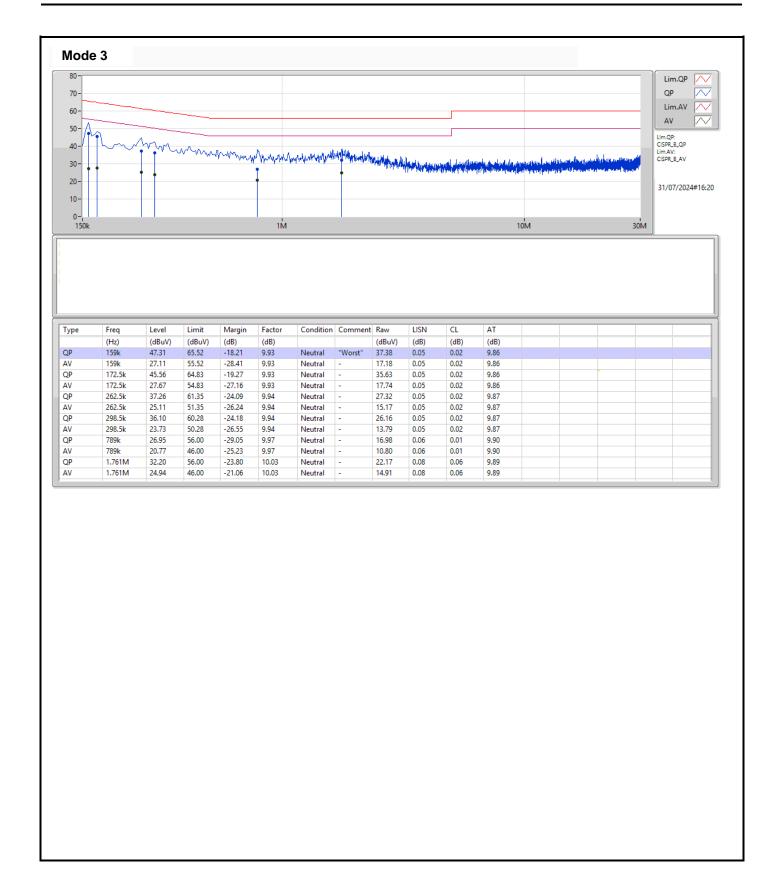
Note: Calibration Interval of instruments listed above is one year. N.C.R. means Non-Calibration required.

TEL: 886-3-656-9065 Page Number : 22 of 22 FAX: 886-3-656-9085 Issued Date : Aug. 15, 2024

Conducted Emissions at Powerline


Appendix A

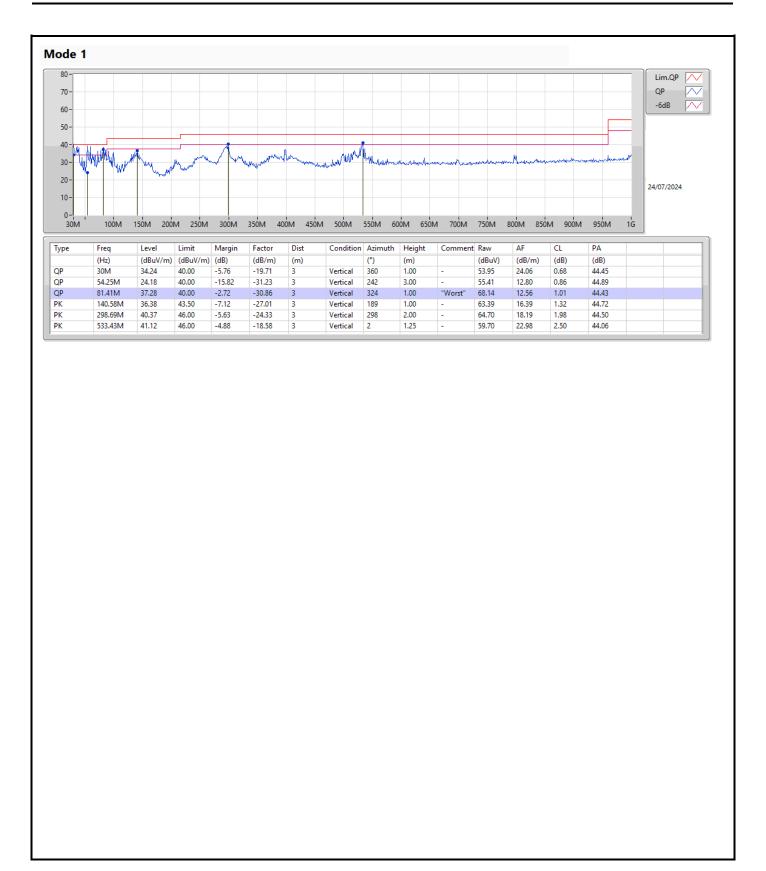
Summary


Mode	Result	Туре	Freq (Hz)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Condition
Mode 3	Pass	QP	159k	47.31	65.52	-18.21	Neutral

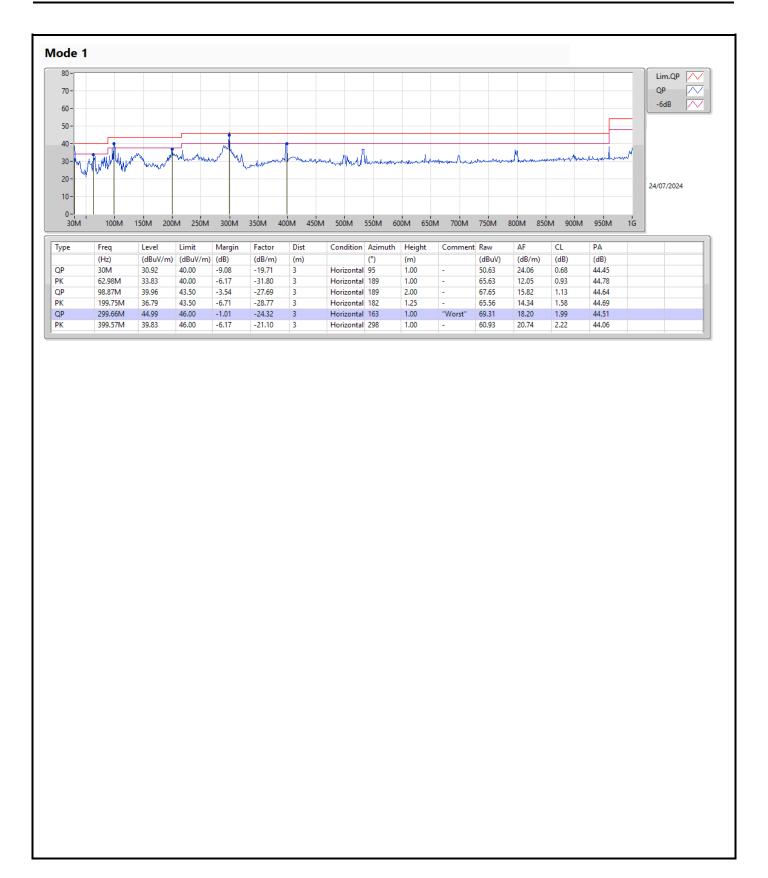
Sporton International Inc. Hsinchu Laboratory Page No. : 1 of 3

Page No. : 2 of 3

Page No. : 3 of 3


Radiated Emissions below 1GHz

Appendix B.1


Summary

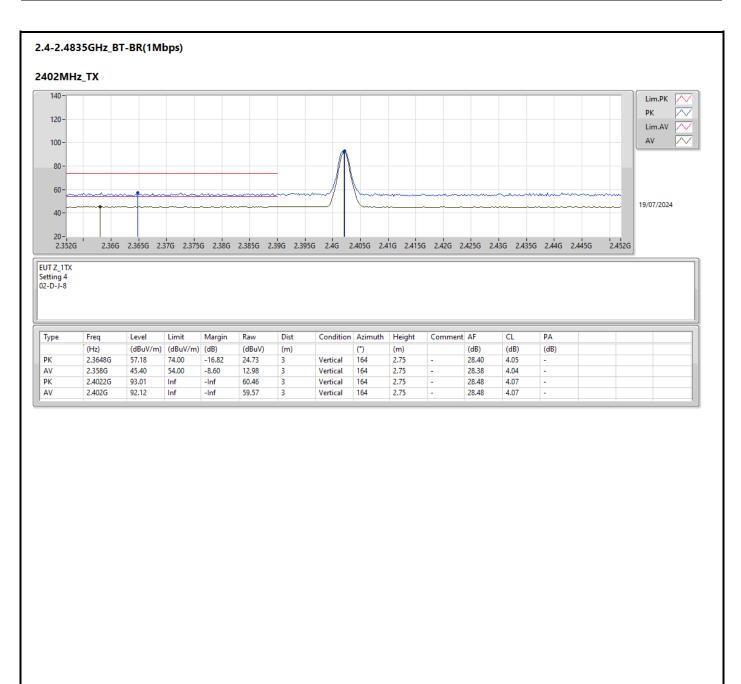
Mode	Result	Туре	Freq (Hz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Condition
Mode 1	Pass	QP	299.66M	44.99	46.00	-1.01	Horizontal

Sporton International Inc. Hsinchu Laboratory Page No. : 1 of 3

Page No. : 2 of 3

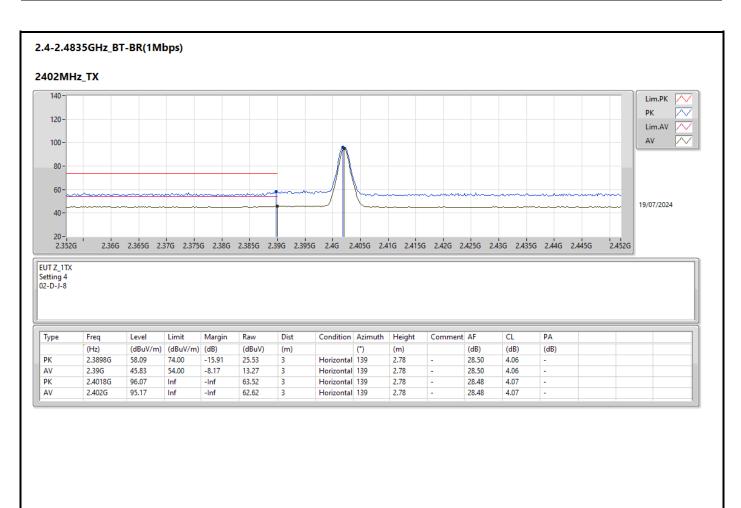
Page No. : 3 of 3

RSE TX above 1GHz


Appendix B.2

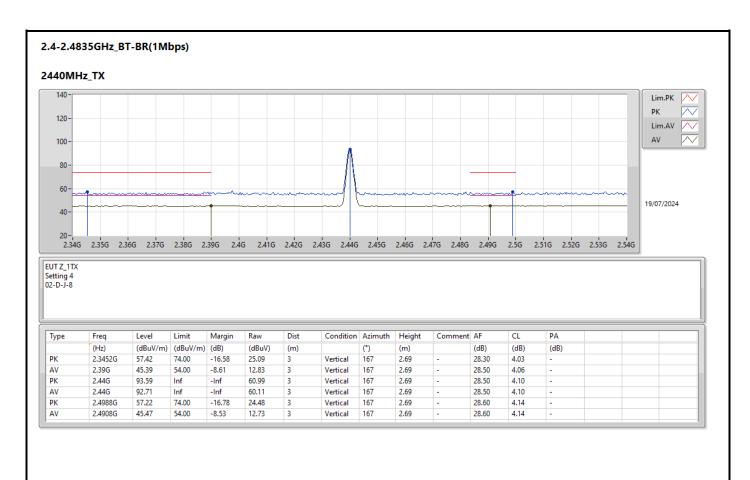
Summary

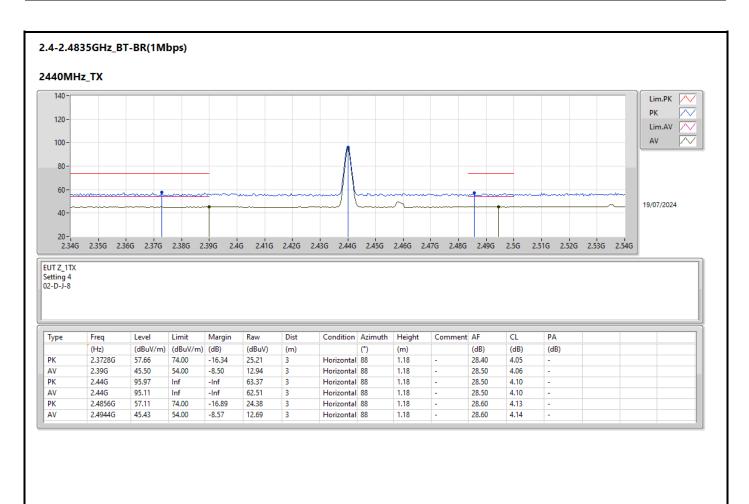
Mode	Result	Туре	Freq (Hz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Dist (m)	Condition	Azimuth (°)	Height (m)	Comments
2.4-2.4835GHz	-	-	-	-	-	-	-	-	-	-	-
BT-BR(1Mbps)	Pass	AV	4.804G	48.32	54.00	-5.68	3	Horizontal	136	1.03	-

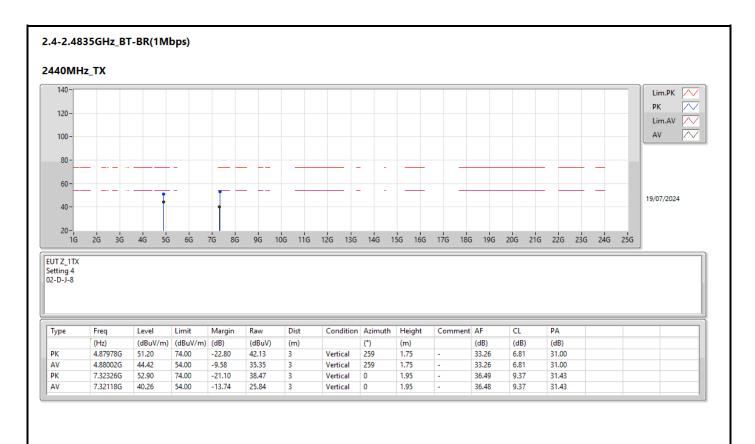

Sporton International Inc. Hsinchu Laboratory Page No. : 1 of 25

Page No. : 2 of 25

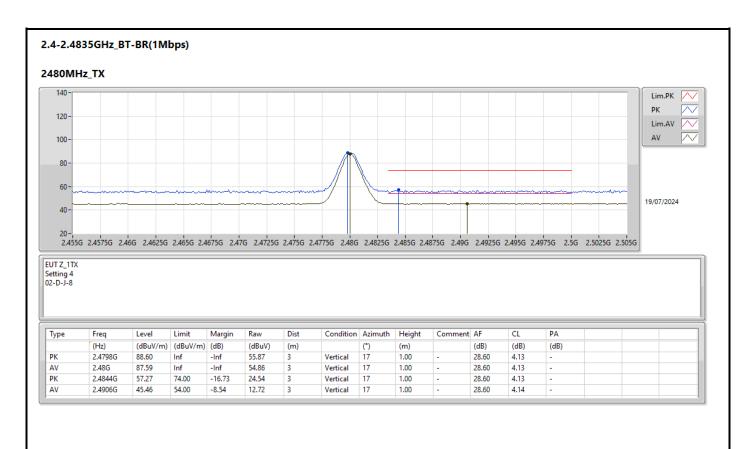
Page No. : 3 of 25

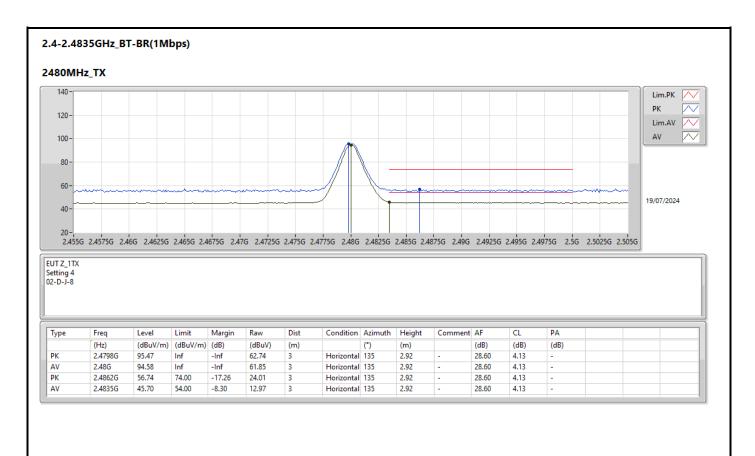

Page No. : 4 of 25

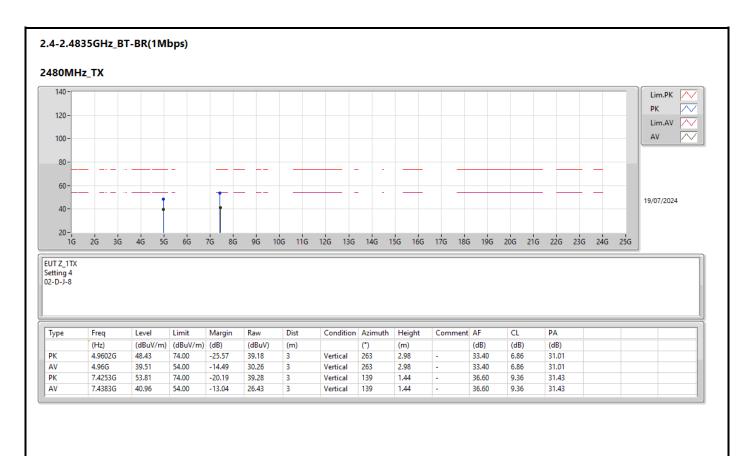

Page No. : 5 of 25


Page No. : 6 of 25

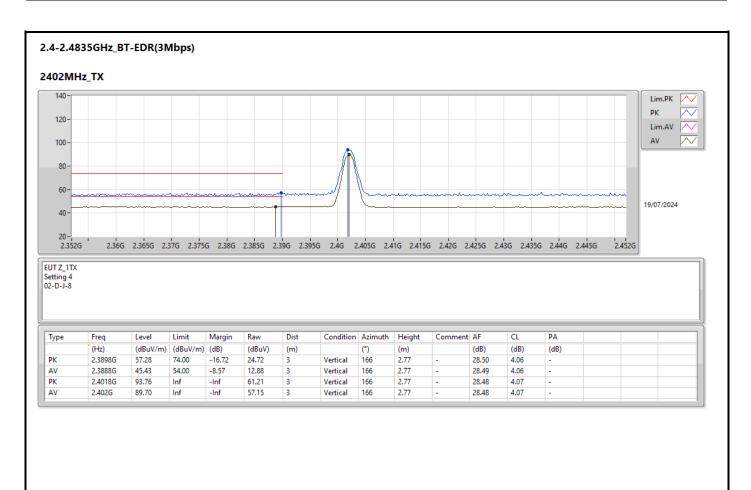
Page No. : 7 of 25

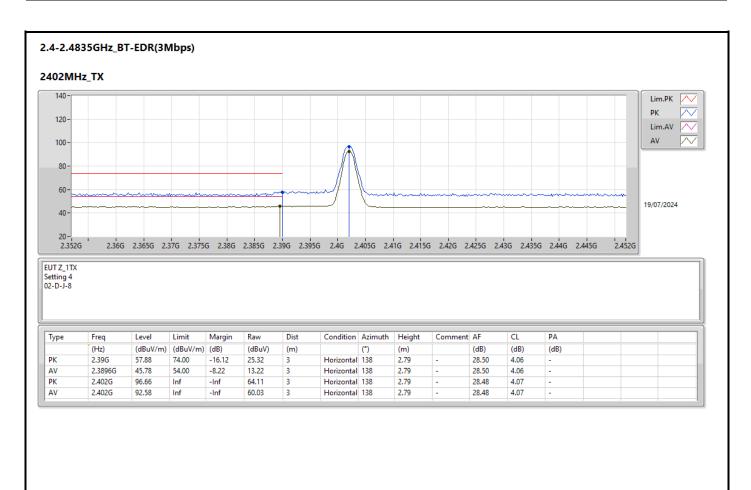

Page No. : 8 of 25

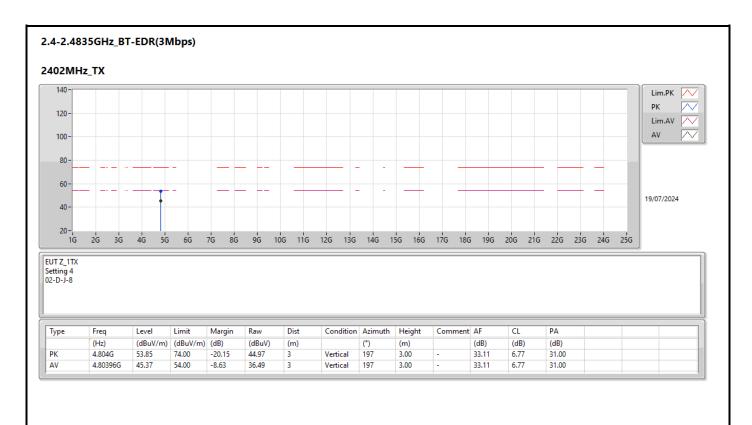

Page No. : 9 of 25

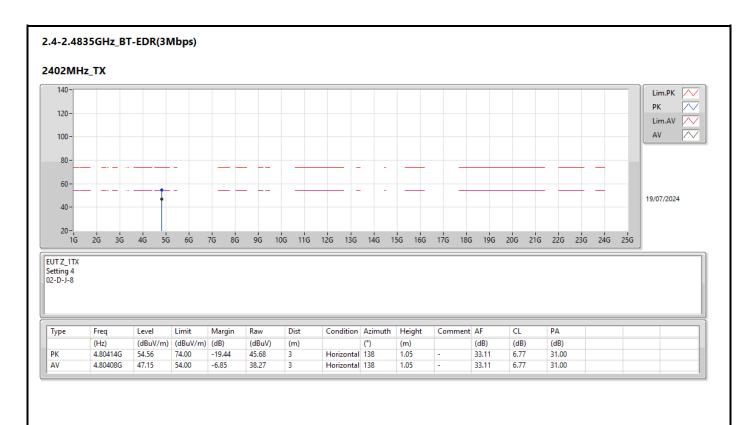

Page No. : 10 of 25

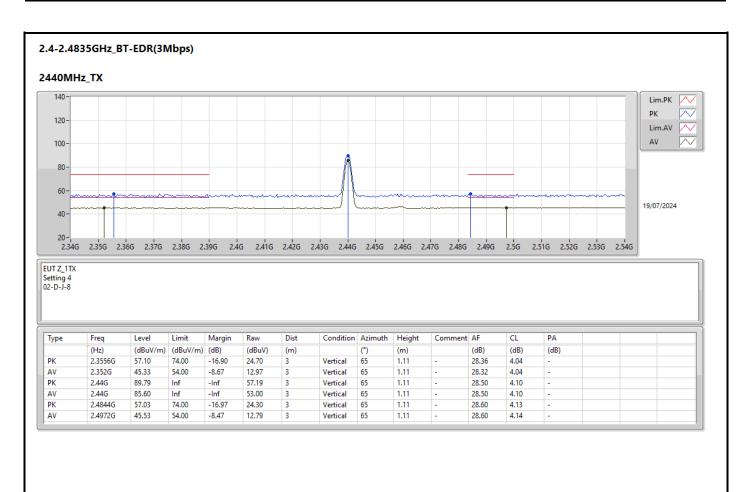
Page No. : 11 of 25

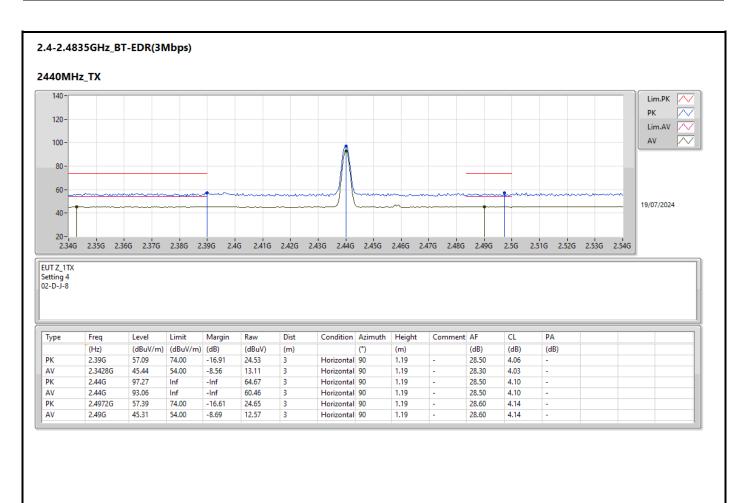

Page No. : 12 of 25

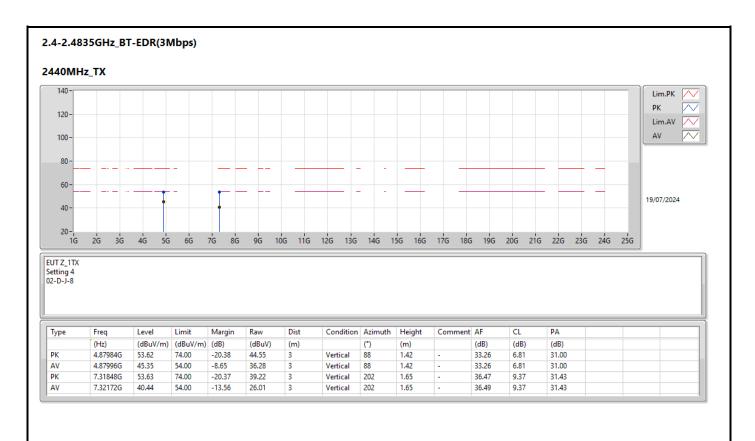

Page No. : 13 of 25

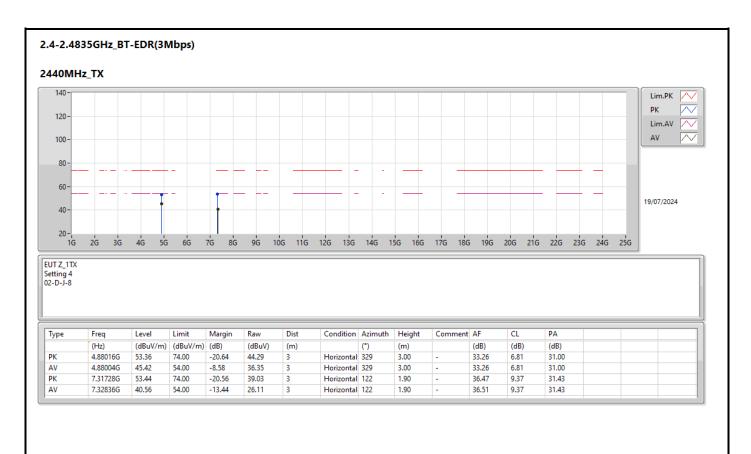

Page No. : 14 of 25

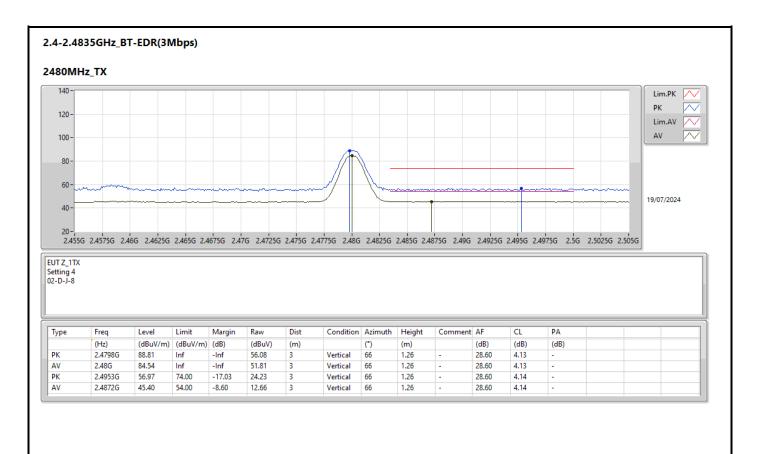

Page No. : 15 of 25

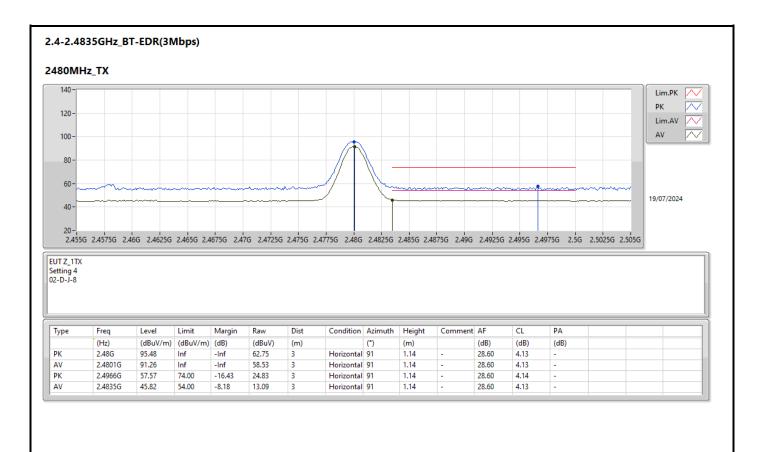

Page No. : 16 of 25

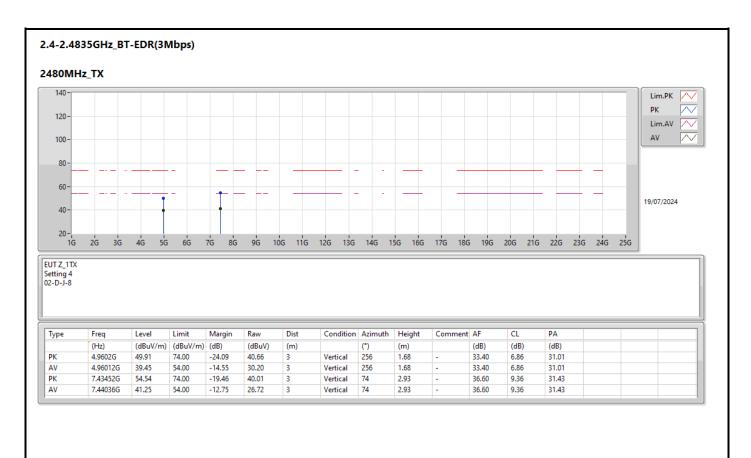

Page No. : 17 of 25

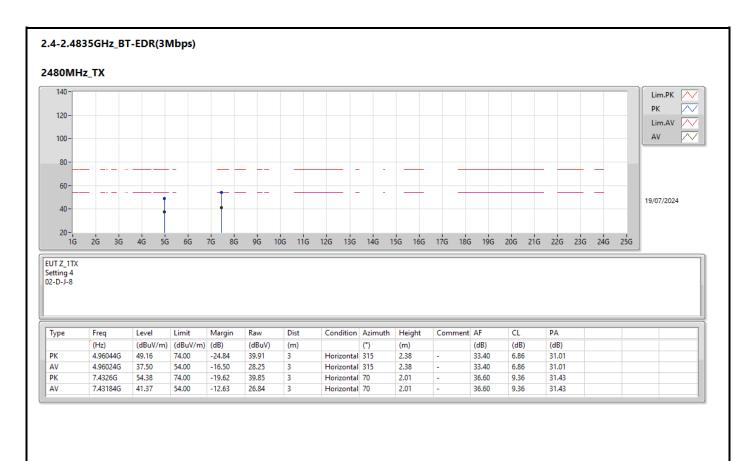

Page No. : 18 of 25


Page No. : 19 of 25


Page No. : 20 of 25


Page No. : 21 of 25


Page No. : 22 of 25


Page No. : 23 of 25

Page No. : 24 of 25

Page No. : 25 of 25