

Report No.: RZA2010-0807

OET 65

TEST REPORT

Product Name 802.11b/g/n Wireless USB Mini Card

Model AW-NU706, AW-NU706H

FCC ID TLZ-NU706

Client AzureWave Technologies, Inc.

TA Technology (Shanghai) Co., Ltd.

GENERAL SUMMARY

Product Name	802.11b/g/n Wireless USB Mini Card	Model	AW-NU706, AW-NU706H
FCC ID	TLZ-NU706	Report No.	RZA2010-0807
Client	AzureWave Technologies, Inc.		
Manufacturer	AzureWave Technologies, Inc.		
Standard(s)	<p>IEEE Std C95.1, 1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz.</p> <p>OET Bulletin 65 supplement C, published June 2001 including DA 02-1438, published June 2002: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits. Transition Period for the Phantom Requirements of Supplement C to OET Bulletin 65.</p> <p>KDB 248227: SAR Measurement Procedures for 802.11a/b/g Transmitters May 2007</p> <p>KDB 616217 D03: SAR Evaluation Considerations for Laptop/Notebook/Netbook and Tablet Computers - supplement to KDB 616217.</p> <p>KDB 447498 D01: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies</p>		
Conclusion	<p>Localized Specific Absorption Rate (SAR) of this portable wireless equipment has been measured in all cases requested by the relevant standards cited in Clause 5.2 of this test report. Maximum localized SAR is below exposure limits specified in the relevant standards cited in Clause 5.1 of this test report.</p> <p>General Judgment: Pass</p> <p style="text-align: center;">(Stamp)</p> <p style="text-align: center;">Date of issue: May 27th, 2010</p>		
Comment	The test result only responds to the measured sample.		

Approved by 杨伟中

Yang Weizhong

Revised by 凌敏宝

Ling Minbao

Performed by 李金昌

Li Jinchang

TA Technology (Shanghai) Co., Ltd.
Test Report

TABLE OF CONTENT

1. General Information	5
1.1. Notes of the test report	5
1.2. Testing laboratory	5
1.1. Applicant Information	6
1.2. Manufacturer Information.....	6
1.3. Information of EUT.....	7
1.4. Test Date	8
2. Operational Conditions during Test	9
2.1. General description of test procedures	9
2.2. Position of module in Portable devices	10
3. SAR Measurements System Configuration.....	11
3.1. SAR Measurement Set-up	11
3.2. DASY4 E-field Probe System	12
3.2.1. EX3DV4 Probe Specification	12
3.2.2. E-field Probe Calibration.....	13
3.3. Other Test Equipment	13
3.3.1. Device Holder for Transmitters	13
3.3.2. Phantom	14
3.4. Scanning procedure.....	14
3.5. Data Storage and Evaluation	16
3.5.1. Data Storage.....	16
3.5.2. Data Evaluation by SEMCAD	16
3.6. System check.....	19
3.7. Equivalent Tissues	20
4. Laboratory Environment.....	20
5. Characteristics of the Test.....	21
5.1. Applicable Limit Regulations.....	21
5.2. Applicable Measurement Standards	21
6. Conducted Output Power Measurement.....	22
6.1. Summary	22
6.2. Conducted Power Results	22
7. Test Results	23
7.1. Dielectric Performance.....	23
7.2. System Check.....	23
7.3. Summary of Measurement Results	24
7.3.1. 802.11b.....	25
8. Measurement Uncertainty	26
9. Main Test Instruments	27
ANNEX A: Test Layout	28
ANNEX B: System Check Results	29

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA2010-0807

Page 4 of 63

ANNEX C: Graph Results	30
ANNEX D: Probe Calibration Certificate	36
ANNEX E: D2450V2 Dipole Calibration Certificate	45
ANNEX F: DAE4 Calibration Certificate	54
ANNEX G: The EUT Appearances	59
ANNEX H: ANTENNA-TO-ANTENNA/USER SEPARATION DISTANCES	63

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA2010-0807

Page 5 of 63

1. General Information

1.1. Notes of the test report

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. This report only refers to the item that has undergone the test.

This report standalone dose not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

1.2. Testing laboratory

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Yang Weizhong

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: <http://www.ta-shanghai.com>

E-mail: yangweizhong@ta-shanghai.com

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA2010-0807

Page 6 of 63

1.1. Applicant Information

Company: AzureWave Technologies, Inc.
Address: 8F, No. 94, Baozhong Rd., Xindian, 231 Taiwan
City: Taiwan
Postal Code: /
Country: /
Telephone: /
Fax: /

1.2. Manufacturer Information

Company: AzureWave Technologies, Inc.
Address: 8F, No. 94, Baozhong Rd., Xindian, 231 Taiwan
City: Taiwan
Postal Code: /
Country: /
Telephone: /
Fax: /

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA2010-0807

Page 7 of 63

1.3. Information of EUT

General information

Device type :	portable device	
Exposure category:	uncontrolled environment / general population	
Product Name:	802.11b/g/n Wireless USB Mini Card	
S/N or IMEI:	/	
Device operating configurations :		
Supporting mode(s):	802.11b/g; 802.11n;	
Maximum localized SAR _{1g} :	0.688 W/kg	
Operating frequency range(s)	Band	Tx (MHz)
	802.11b/g/n	2412~2462MHz
Test channel (Low –Middle –High)	1-6-11 (802.11b/g) 1-6-11 [802.11n (HT20)] 3-6-9 [802.11n (HT40)]	
Antenna type:	Internal antenna	

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA2010-0807

Page 8 of 63

Auxiliary equipment details

AE1: Battery

Model:	MLP385085-2S
Manufacturer:	/
IMEI or SN:	100513006609

Equipment Under Test (EUT) is a model of 802.11b/g/n Wireless USB Mini Card. During SAR test of the EUT. SAR is only tested for 802.11b in this report

The sample under test was selected by the Client.

Components list please refer to documents of the manufacturer.

1.4. Test Date

The test is performed on May 27, 2010.

2. Operational Conditions during Test

2.1. General description of test procedures

For the 802.11b/g SAR body tests, a communication link is set up with the test mode software for WIFI mode test. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 1, 6 and 11 respectively in the case of 2450 MHz. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode.

802.11b/g operating modes are tested independently according to the service requirements in each frequency band. 802.11b/g modes are tested on channels 1, 6, 11; however, if output power reduction is necessary for channels 1 and /or 11 to meet restricted band requirements the highest output channels closest to each of these channels must be tested instead.

SAR is not required for 802.11g channels when the maximum average output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels. When the maximum average output channel in each frequency band is not included in the “default test channels”, the maximum channel should be tested instead of an adjacent “default test channels”, these are referred to as the “required test channels” and are illustrated in table 1.

And according to the "3 dB rule" FCC Public Notice, DA 02-1948, June 19.2002 " **If the SAR measured at the middle channel for each test configuration is at least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s)**".

Then The Absolute Radio Frequency Channel Number (ARFCN) is firstly allocated to 2437 respectively in the case of 802.11b/g.

Table 1: “Default Test Channels”

Mode	GHz	Channel	Turbo Channel	“Default Test Channels”		
				15.247		UNII
				802.11b	802.11g	
802.11b/g	2.412	1 [#]		√	*	
	2.437	6	6	√	*	
	2.462	11 [#]		√	*	

Note: [#]=when output power is reduced for channel 1 and /or 11 to meet restricted band requirements the highest output channels closest to each of these channels should be tested.

√= “ default test channels”

* =possible 802.11g channels with maximum average output 0.25dB>=the “default test channels”

2.2. Position of module in Portable devices

According to KDB 447498 D01 SAR is required for both back and edge with the most conservative exposure conditions, the EUT is tested at the following 5 test positions:

- Test Position 1: The back side of the EUT towards the bottom of the flat phantom. (ANNEX G Picture 4)
- Test Position 2: The right side of the EUT towards the bottom of the flat phantom. (ANNEX G Picture 5)
- Test Position 3: The left side of the EUT towards the bottom of the flat phantom.
(This is not the most conservative antenna - to - user distance at edge mode. According to KDB 447498 4) ii) (2) –SAR is required only the edge with the most conservative exposure conditions, ANNEX G Picture 6, No SAR)
- Test Position 4: The top side of the EUT towards the bottom of the flat phantom. (ANNEX G Picture 7)
- Test Position 5: The bottom side of the EUT towards the bottom of the flat phantom.
(This is not the most conservative antenna - to - user distance at edge mode. According to KDB 447498 4) ii) (2) –SAR is required only the edge with the most conservative exposure conditions, ANNEX G Picture 8, No SAR)

3. SAR Measurements System Configuration

3.1. SAR Measurement Set-up

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY4 measurement server.
- The DASY4 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003
- DASY4 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

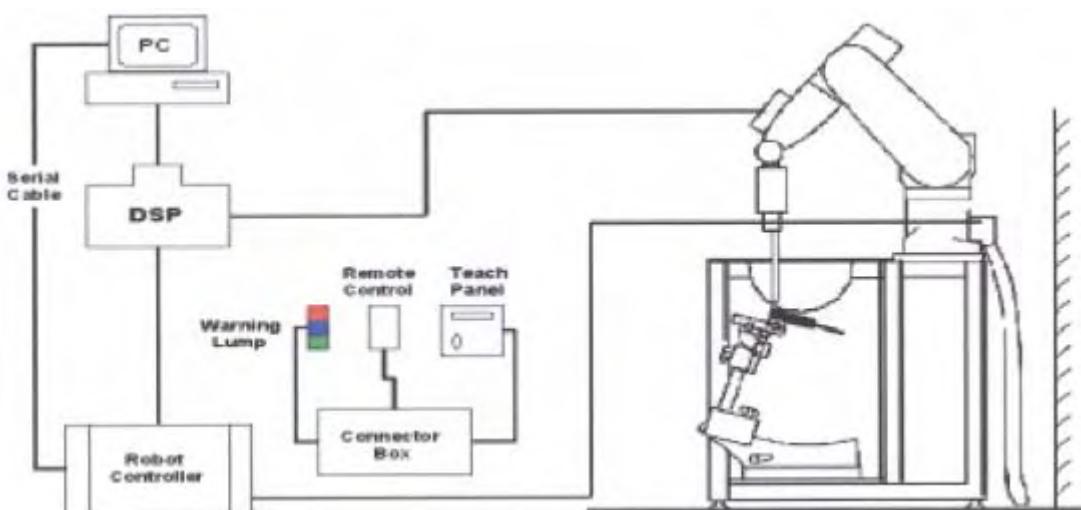


Figure 1 SAR Lab Test Measurement Set-up

3.2. DASY4 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

3.2.1. EX3DV4 Probe Specification

Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	Basic Broad Band Calibration in air Conversion Factors (CF) for HSL 900 and HSL 1750 Additional CF for other liquids and frequencies upon request
Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	10 μ W/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μ W/g)
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

Figure 2. EX3DV4 E-field Probe

Figure 3. EX3DV4 E-field probe

3.2.2. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\text{SAR} = C \frac{\Delta T}{\Delta t}$$

Where: Δt = Exposure time (30 seconds),
C = Heat capacity of tissue (brain or muscle),
 ΔT = Temperature increase due to RF exposure.
Or

$$\text{SAR} = \frac{|E|^2 \sigma}{\rho}$$

Where:
 σ = Simulated tissue conductivity,
 ρ = Tissue density (kg/m³).

3.3. Other Test Equipment

3.3.1. Device Holder for Transmitters

Construction: Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.) It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin SAM, ELI4 and SAM v6.0 Phantoms.

Material: POM, Acrylic glass, Foam

3.3.2. Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden Figure. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness	2±0.1 mm
Filling Volume	Approx. 20 liters
Dimensions	810 x 1000 x 500 mm (H x L x W)
Available	Special

Figure 4 Generic Twin Phantom

3.4. Scanning procedure

The DASY4 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. $\pm 5\%$.
- The "surface check" measurement tests the optical surface detection system of the DASY4 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above $\pm 0.1\text{mm}$). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^\circ$.)
- Area Scan
The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot. Before starting the area scan a grid

TA Technology (Shanghai) Co., Ltd.

Test Report

spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

- **Zoom Scan**

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

- **Spatial Peak Detection**

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY4 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

- A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

3.5. Data Storage and Evaluation

3.5.1. Data Storage

The DASY4 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

3.5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Norm _i , a_{i0} , a_{i1} , a_{i2}
	- Conversion factor	Conv _{F_i}
	- Diode compression point	Dcp _i

Device parameters:	- Frequency	f
	- Crest factor	cf

Media parameters:	- Conductivity	
	- Density	

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY4 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

TA Technology (Shanghai) Co., Ltd.
Test Report

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c_f / d_c p_i$$

With V_i = compensated signal of channel i (i = x, y, z)

U_i = input signal of channel i (i = x, y, z)

c_f = crest factor of exciting field (DASY parameter)

$d_c p_i$ = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1} f + a_{i2} f^2) / f$

With V_i = compensated signal of channel i (i = x, y, z)

$Norm_i$ = sensor sensitivity of channel i (i = x, y, z)
 [mV/(V/m)²] for E-field Probes

$ConvF$ = sensitivity enhancement in solution

a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i = electric field strength of channel i in V/m

H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot}^2 \cdot .) / (\cdot 1000)$$

TA Technology (Shanghai) Co., Ltd.
Test Report

with **SAR** = local specific absorption rate in mW/g

E_{tot} = total field strength in V/m

σ = conductivity in [mho/m] or [Siemens/m]

ρ = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770 \quad \text{or} \quad P_{pwe} = H_{tot}^2 \cdot 37.7$$

with **P_{pwe}** = equivalent power density of a plane wave in mW/cm²

E_{tot} = total electric field strength in V/m

H_{tot} = total magnetic field strength in A/m

3.6. System check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulates were measured every day using the dielectric probe kit and the network analyzer. A system check measurement was made following the determination of the dielectric parameters of the simulates, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the Table 6.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system ($\pm 10\%$).

System check is performed regularly on all frequency bands where tests are performed with the DASY4 system.

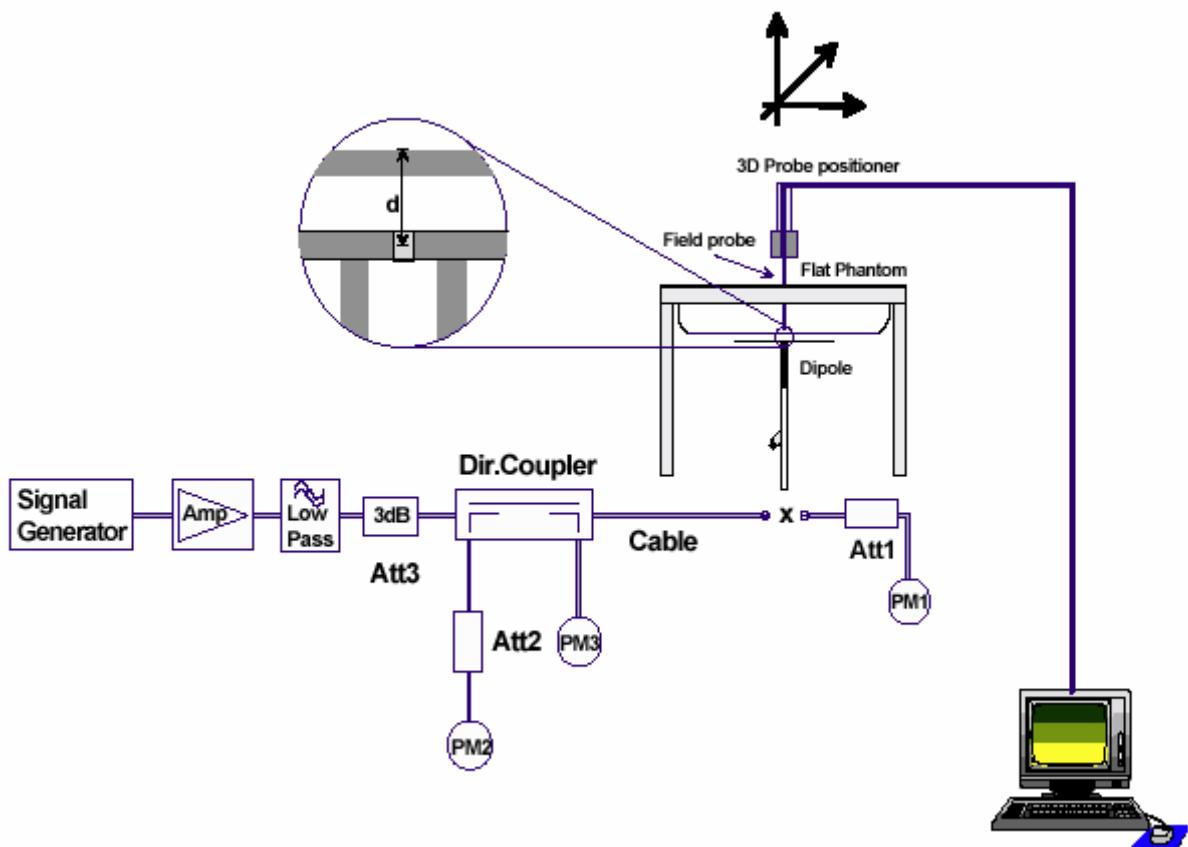


Figure 5 System Check Set-up

TA Technology (Shanghai) Co., Ltd.

Test Report

3.7. Equivalent Tissues

The liquid is consisted of water, salt and Glycol. The liquid has previously been proven to be suited for worst-case. The Table 2 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the OET 65.

Table 2: Composition of the Body Tissue Equivalent Matter

MIXTURE%	FREQUENCY 2450MHz
Water	73.2
Glycol	26.7
Salt	0.1
Dielectric Parameters Target Value	f=2450MHz $\epsilon=52.70$ $\sigma=1.95$

4. Laboratory Environment

Table 3: The Ambient Conditions during Test

Temperature	Min. = 20°C, Max. = 25 °C
Relative humidity	Min. = 30%, Max. = 70%
Ground system resistance	< 0.5 Ω
Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.	

5. Characteristics of the Test

5.1. Applicable Limit Regulations

IEEE Std C95.1, 1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz.

5.2. Applicable Measurement Standards

OET Bulletin 65 supplement C, published June 2001 including DA 02-1438, published June 2002: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits. Transition Period for the Phantom Requirements of Supplement C to OET Bulletin 65.

KDB 248227: SAR Measurement Procedures for 802.11a/b/g Transmitters May 2007

KDB 616217 D03: SAR Evaluation Considerations for Laptop/Notebook/Netbook and Tablet Computers – Supplement to KDB 616217

KDB 447498 D01: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

6. Conducted Output Power Measurement

6.1. Summary

The following procedures had been used to prepare the EUT for the SAR test. The client provided a special driver and program, which enable engineer to control the frequency and output power of the module.

6.2. Conducted Power Results

Table 4: Conducted Power Measurement Results

802.11b	Average Power(dBm)		
	Channel 1	Channel 6	Channel 11
	(2412MHz)	(2437MHz)	(2462MHz)
Before Test (dBm)	14.12	14.11	13.87
After Test (dBm)	14.11	14.10	13.86
802.11g	Average Power(dBm)		
	Channel 1	Channel 6	Channel 11
	(2412MHz)	(2437MHz)	(2462MHz)
Before Test (dBm)	13.78	13.80	13.42
After Test (dBm)	/	/	/
802.11n (HT20)	Average Power(dBm)		
	Channel 1	Channel 6	Channel 11
	(2412MHz)	(2437MHz)	(2462MHz)
Before Test (dBm)	13.00	13.26	12.45
After Test (dBm)	/	/	/
802.11n (HT40)	Average Power(dBm)		
	Channel 3	Channel 6	Channel 9
	(2422MHz)	(2437MHz)	(2452MHz)
Before Test (dBm)	10.90	10.63	10.12
After Test (dBm)	/	/	/

Note: 1. KDB 248227-SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than $\frac{1}{4}$ dB higher than measured on the corresponding 802.11b channels.

TA Technology (Shanghai) Co., Ltd.
Test Report

7. Test Results

7.1. Dielectric Performance

Table 5: Dielectric Performance of Body Tissue Simulating Liquid

Frequency	Description	Dielectric Parameters		Temp °C
		ϵ_r	$\sigma(\text{s/m})$	
2450MHz (body)	Target value $\pm 10\%$ window	52.70 50.07 — 55.34	1.95 1.85 — 2.05	/
	Measurement value 2010-5-27	51.83	1.92	

7.2. System Check

Table 6: System Check for Body tissue simulating liquid

Frequency	Description	SAR(W/kg)		Dielectric Parameters		Temp °C
		10g	1g	ϵ_r	$\sigma(\text{s/m})$	
2450MHz	Recommended value $\pm 10\%$ window	6.17 5.55—6.79	13.20 11.88 — 14.52	53.2	2.00	/
	Measurement value 2010-5-27	6.46	14.00	51.83	1.92	

Note: 1. The graph results see ANNEX B.

2. Recommended Values used derive from the calibration certificate and 250 mW is used as feeding power to the calibrated dipole.

7.3. Summary of Measurement Results

RF Exposure Assessments

According to KDB 447498 D01 SAR is required for both back and edge with the most conservative exposure conditions, the EUT is tested at the following 3 test positions:

(Please see ANNEX H)

Tablet – Back face

0 cm from WiFi antenna-to-user

Tablet – Edges with the following configurations

Right side :

0.5 cm from WiFi antenna-to-user

Left side :

11.5 cm from WiFi antenna-to-user (No SAR)

(This is not the most conservative antenna – to – user distance at edge mode. According to KDB 447498 4) ii) (2) –SAR is required only the edge with the most conservative exposure conditions, No SAR)

Top Side:

1.95 cm from WiFi antenna-to-user

Bottom Side:

13.0 cm from WiFi antenna-to-user (No SAR)

(This is not the most conservative antenna – to – user distance at edge mode. According to KDB 447498 4) ii) (2) –SAR is required only the edge with the most conservative exposure conditions, No SAR)

TA Technology (Shanghai) Co., Ltd.
Test Report

7.3.1. 802.11b

Table 7: SAR Values (802.11b)

Limit of SAR (W/kg)		10 g Average	1 g Average	Power Drift (dB)	Graph Results
		2.0	1.6	± 0.21	
Test Case Of Body		Measurement Result(W/kg)		Power Drift(dB)	
Different Test Position	Channel	10 g Average	1 g Average		
Test Position 1	High	0.315	0.649	0.060	Figure 7
	Middle	0.312	0.630	0.090	Figure 8
	Low	0.339	0.688	0.080	Figure 9
Test Position 2	Middle	0.148(max.cube)	0.377(max.cube)	0.152	Figure 10
Test Position 4	Middle	0.038	0.072	-0.077	Figure 11

Note: 1. The value with blue color is the maximum SAR Value of each test band.

2. The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB (< 0.8W/kg) lower than the SAR limit, testing at the high and low channels is optional.
3. Upper and lower frequencies were measured at the worst case.
4. The (max.cube) labeling indicates that during the grid scanning an additional peak was found which was within 2.0dB of the highest peak. The value of the highest cube is given in the table above; the value from the second assessed cube is given in the SAR distribution plots (See ANNEX C).
5. KDB 248227-SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than ¼ dB higher than measured on the corresponding 802.11b channels.

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA2010-0807

Page 26 of 63

8. Measurement Uncertainty

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA2010-0807

Page 27 of 63

20	-phantom	B	4.0	R	$\sqrt{3}$	1	2.3	∞
21	-liquid conductivity (deviation from target)	B	5.0	R	$\sqrt{3}$	0.6 4	1.8	∞
22	-liquid conductivity (measurement uncertainty)	B	5.0	N	1	0.6 4	3.2	∞
23	-liquid permittivity (deviation from target)	B	5.0	R	$\sqrt{3}$	0.6	1.7	∞
24	-liquid permittivity (measurement uncertainty)	B	5.0	N	1	0.6	3.0	∞
Combined standard uncertainty		$u_c = \sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					12.0	
Expanded uncertainty (confidence interval of 95 %)		$u_e = 2u_c$		N	k=2		24.0	

9. Main Test Instruments

Table 8: List of Main Instruments

No.	Name	Type	Serial Number	Calibration Date	Valid Period
01	Network analyzer	Agilent 8753E	US37390326	September 13, 2009	One year
02	Dielectric Probe Kit	Agilent 85070E	US44020115	No Calibration Requested	
03	Power meter	Agilent E4417A	GB41291714	March 13, 2010	One year
04	Power sensor	Agilent 8481H	MY41091316	March 26, 2010	One year
05	Signal Generator	HP 8341B	2730A00804	September 13, 2009	One year
06	Amplifier	IXA-020	0401	No Calibration Requested	
09	E-field Probe	EX3DV4	3677	September 23, 2009	One year
10	DAE	DAE4	871	November 11, 2009	One year
11	Validation Kit 2450MHz	D2450V2	735	June 19, 2009	One year

*****END OF REPORT BODY*****

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No. RZA2010-0807

Page 28 of 63

ANNEX A: Test Layout

Picture 1: Specific Absorption Rate Test Layout

Picture 2: Liquid depth in the flat Phantom (2450 MHz)
(15.2cm deep)

ANNEX B: System Check Results

System Performance Check at 2450 MHz

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:786

Date/Time: 5/27/2010 4:10:36 AM

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.92$ mho/m; $\epsilon_r = 51.83$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 – SN3677; ConvF(7.28, 7.28, 7.28); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (71x71x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 21.5 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 71.0 V/m; Power Drift = 0.011 dB

Peak SAR (extrapolated) = 28.2 W/kg

SAR(1 g) = 14.0 mW/g; SAR(10 g) = 6.46 mW/g

Maximum value of SAR (measured) = 19.8 mW/g

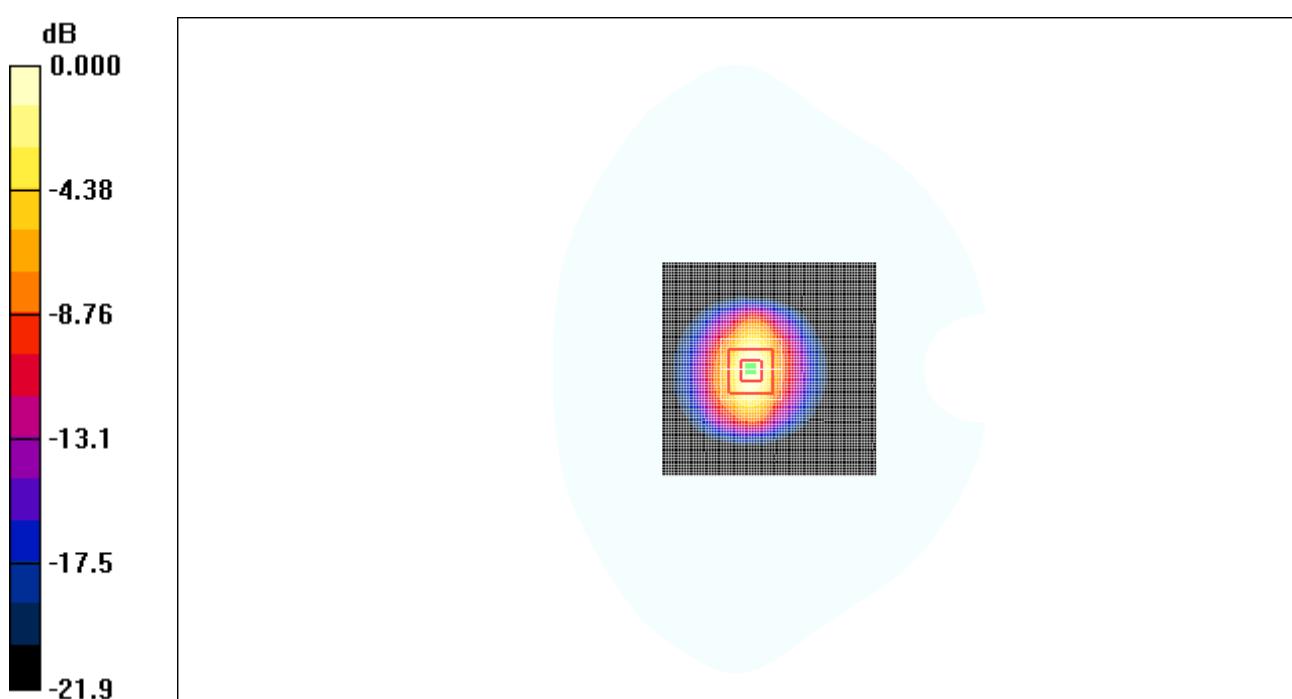


Figure 6 System Performance Check 2450MHz 250mW

ANNEX C: Graph Results

802.11b Test Position 1 High

Date/Time: 5/27/2010 10:01:29 AM

Communication System: 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2462$ MHz; $\sigma = 1.94$ mho/m; $\epsilon_r = 51.8$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 – SN3677; ConvF(7.28, 7.28, 7.28); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Test Position 1 High/Area Scan (111x151x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.730 mW/g

Test Position 1 High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.779 V/m; Power Drift = 0.060 dB

Peak SAR (extrapolated) = 1.37 W/kg

SAR(1 g) = 0.649 mW/g; SAR(10 g) = 0.315 mW/g

Maximum value of SAR (measured) = 0.712 mW/g

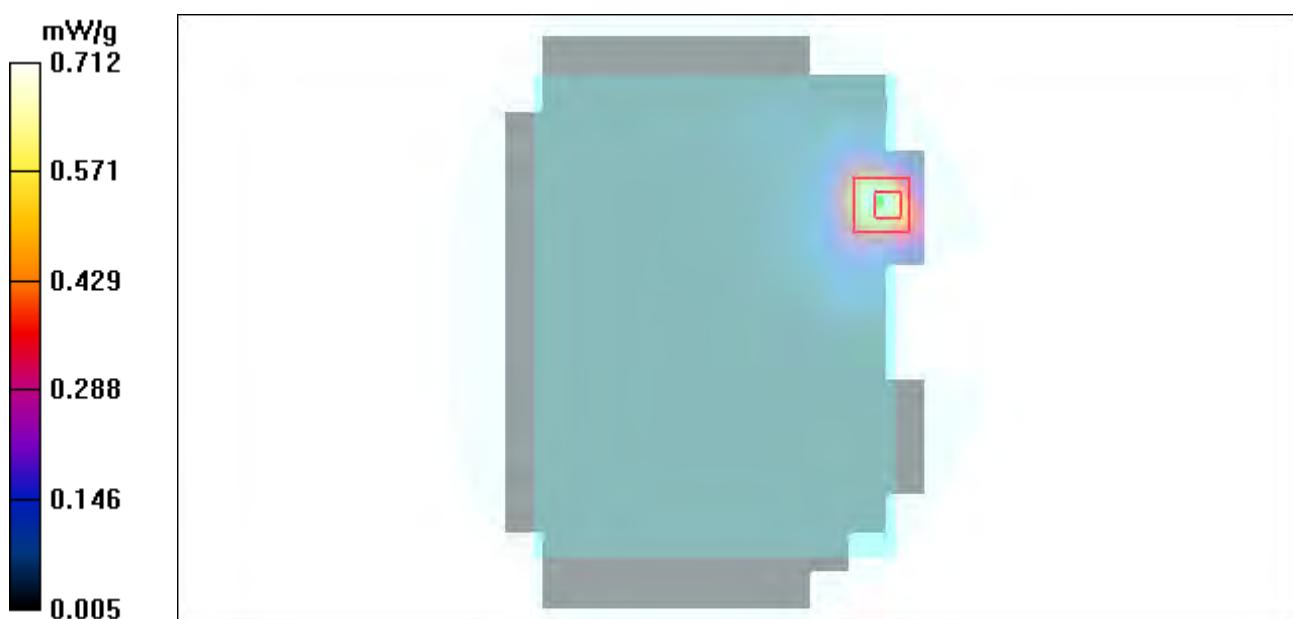


Figure 7 802.11b Test Position 1 Channel 11

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA2010-0807

Page 31 of 63

802.11b Test Position 1 Middle

Date/Time: 5/27/2010 5:54:51 AM

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 2437$ MHz; $\sigma = 1.91$ mho/m; $\epsilon_r = 51.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 – SN3677; ConvF(7.28, 7.28, 7.28); Calibrated: 9/23/2009

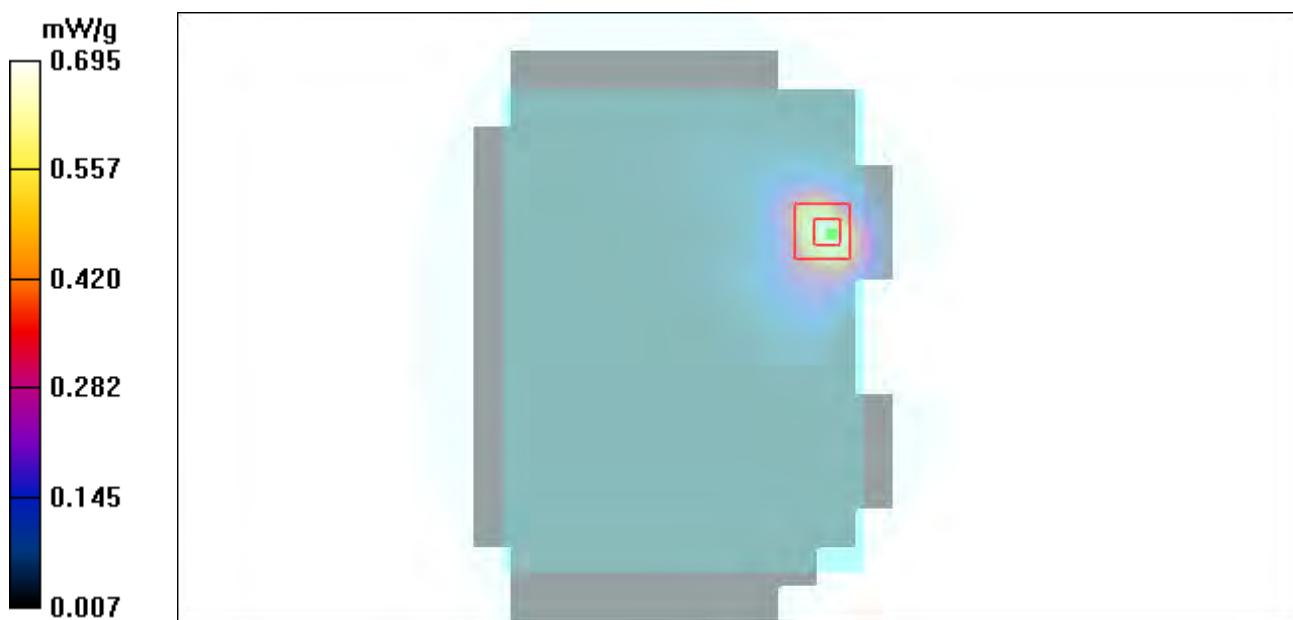
Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Test Position 1 Middle/Area Scan (111x151x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.644 mW/g


Test Position 1 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.69 V/m; Power Drift = 0.090 dB

Peak SAR (extrapolated) = 1.31 W/kg

SAR(1 g) = 0.630 mW/g; SAR(10 g) = 0.312 mW/g

Maximum value of SAR (measured) = 0.695 mW/g

Figure 8 802.11b Test Position 1 Channel 6

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA2010-0807

Page 32 of 63

802.11b Test Position 1 Low

Date/Time: 5/27/2010 10:33:26 AM

Communication System: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2412$ MHz; $\sigma = 1.88$ mho/m; $\epsilon_r = 51.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 – SN3677; ConvF(7.28, 7.28, 7.28); Calibrated: 9/23/2009

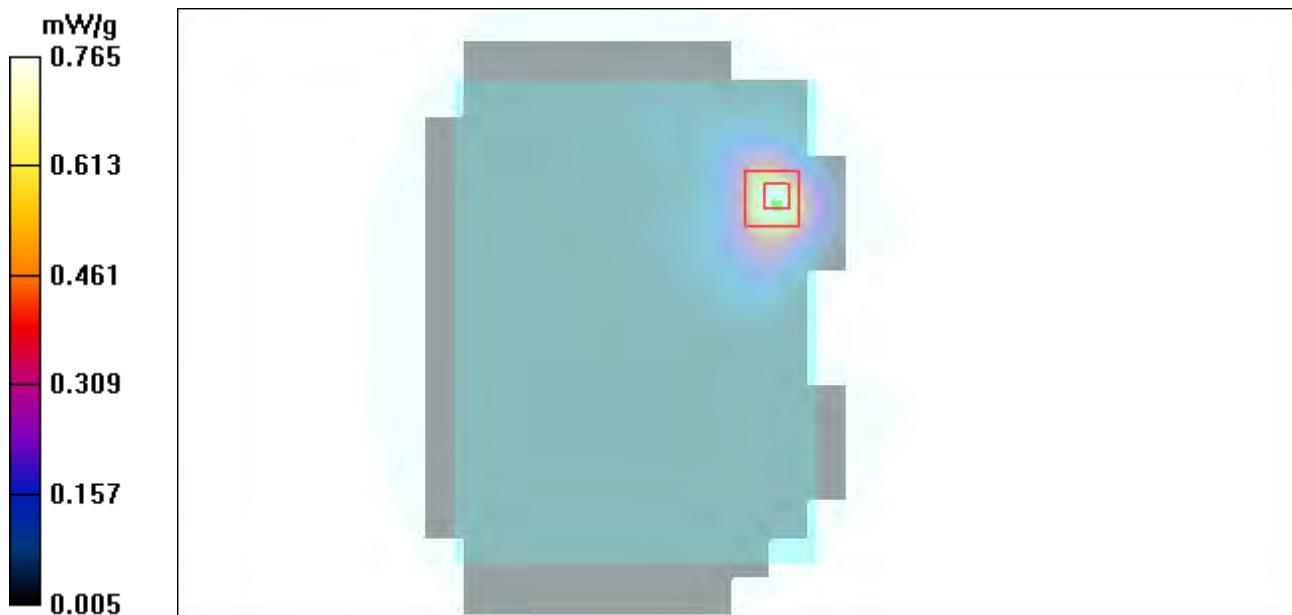
Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Test Position 1 Low/Area Scan (111x151x1): Measurement grid: dx=15mm, dy=15mm

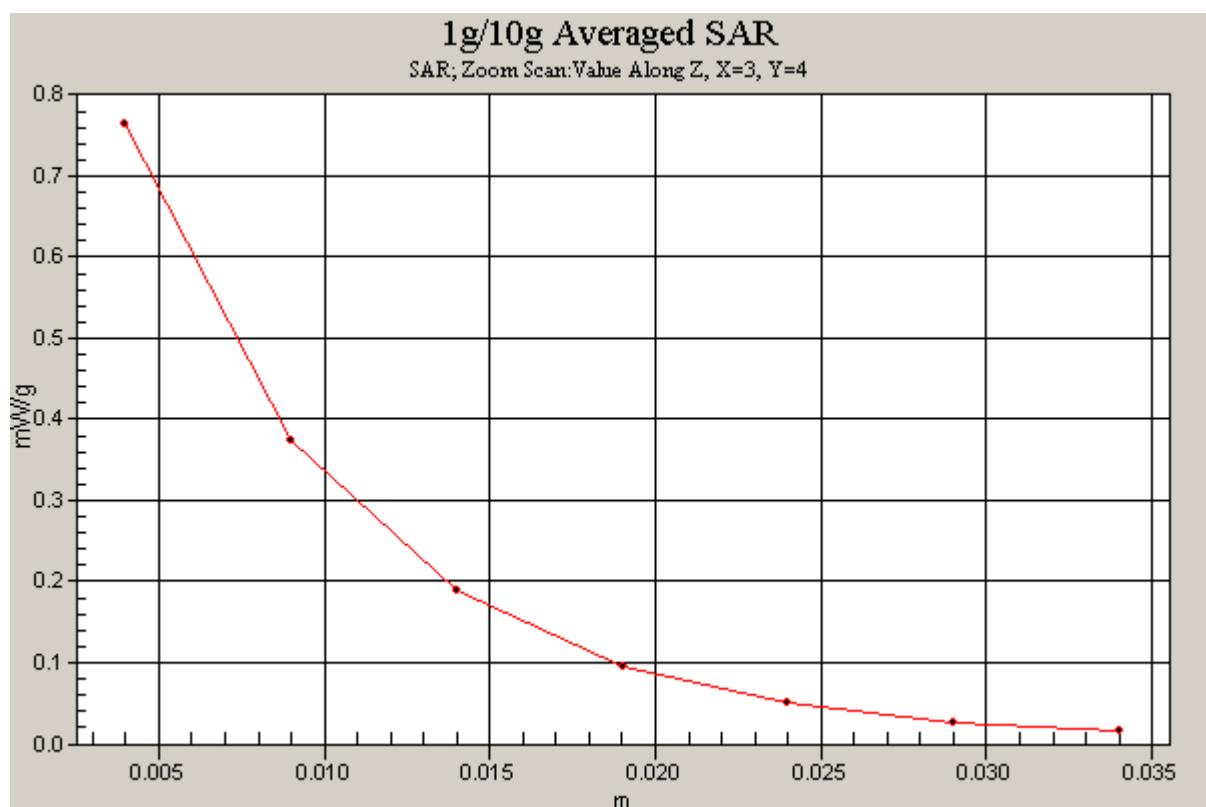
Maximum value of SAR (interpolated) = 0.769 mW/g


Test Position 1 Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.73 V/m; Power Drift = 0.080 dB

Peak SAR (extrapolated) = 1.42 W/kg

SAR(1 g) = 0.688 mW/g; SAR(10 g) = 0.339 mW/g


Maximum value of SAR (measured) = 0.765 mW/g

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA2010-0807

Page 33 of 63

Figure 9 802.11b Test Position 1 Channel 1

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA2010-0807

Page 34 of 63

802.11b Test Position 2 Middle

Date/Time: 5/27/2010 7:17:37 AM

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 2437$ MHz; $\sigma = 1.91$ mho/m; $\epsilon_r = 51.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 – SN3677; ConvF(7.28, 7.28, 7.28); Calibrated: 9/23/2009

Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Test Position 2 Middle /Area Scan (61x151x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.340 mW/g

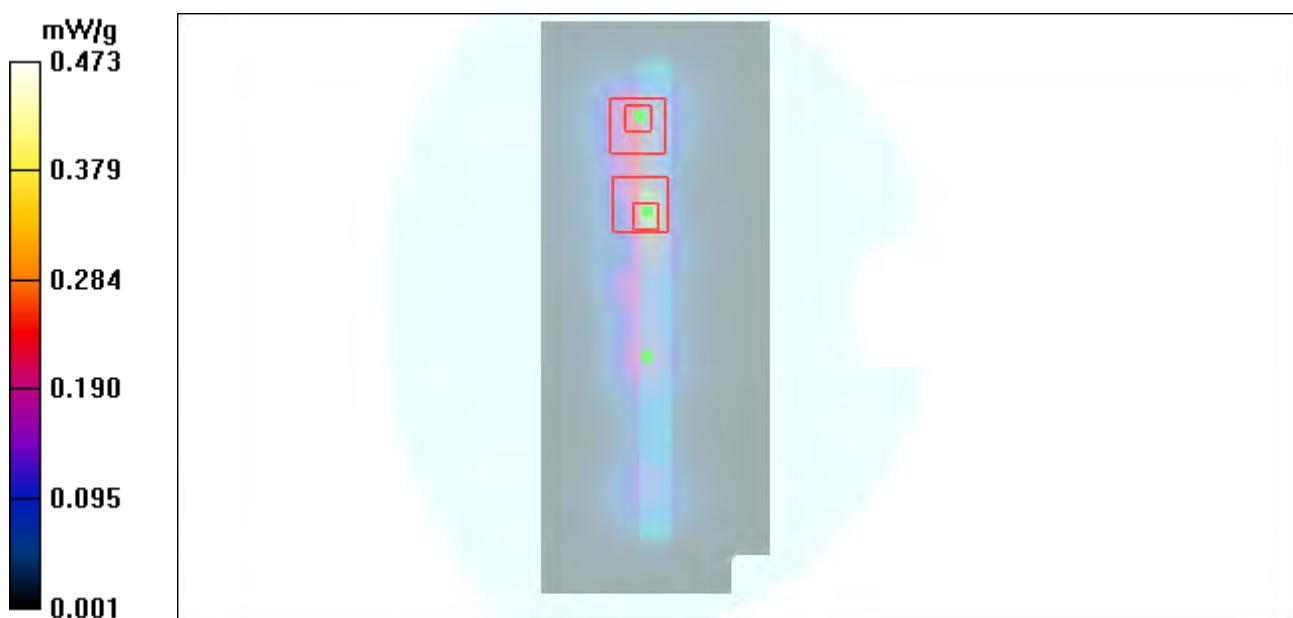
Test Position 2 Middle /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.37 V/m; Power Drift = 0.152 dB

Peak SAR (extrapolated) = 1.02 W/kg

SAR(1 g) = 0.377 mW/g; SAR(10 g) = 0.148 mW/g

Maximum value of SAR (measured) = 0.473 mW/g


Test Position 2 Middle /Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.37 V/m; Power Drift = 0.152 dB

Peak SAR (extrapolated) = 0.468 W/kg

SAR(1 g) = 0.245 mW/g; SAR(10 g) = 0.123 mW/g

Maximum value of SAR (measured) = 0.280 mW/g

Figure 10 802.11b Test Position 2 Channel 6

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA2010-0807

Page 35 of 63

802.11b Test Position 4 Middle

Date/Time: 5/27/2010 6:27:44 AM

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 2437$ MHz; $\sigma = 1.91$ mho/m; $\epsilon_r = 51.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Probe: EX3DV4 – SN3677; ConvF(7.28, 7.28, 7.28); Calibrated: 9/23/2009

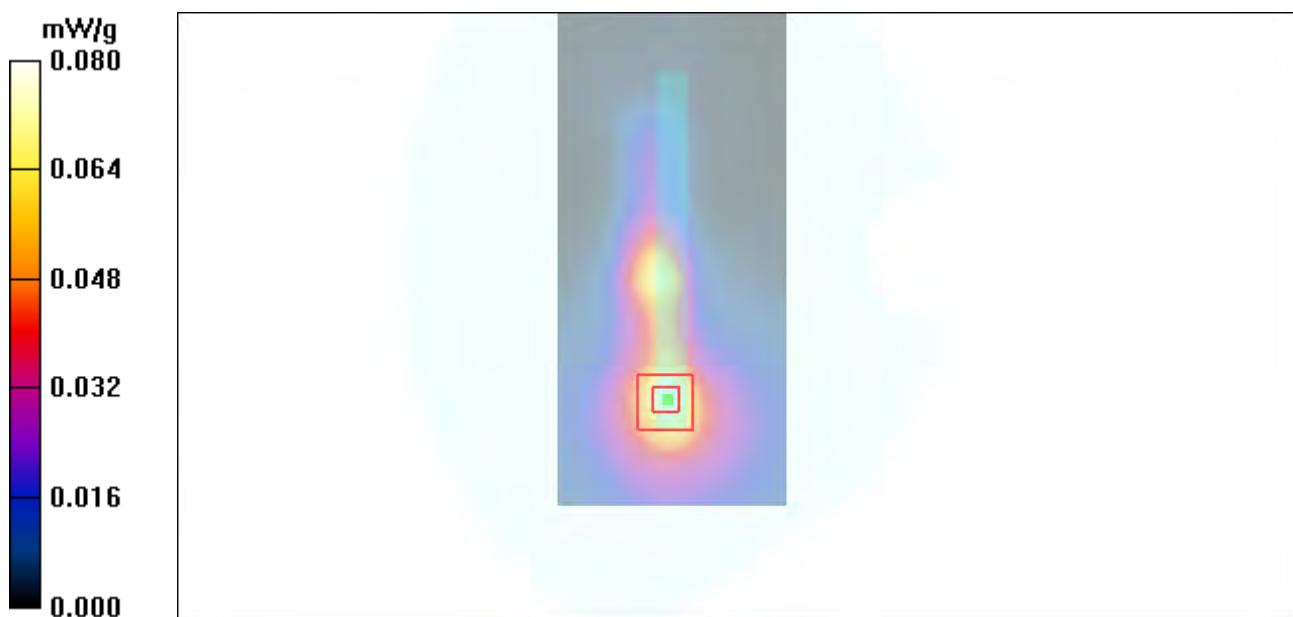
Electronics: DAE4 Sn871; Calibrated: 11/11/2009

Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Test Position 4 Middle/Area Scan (61x131x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.079 mW/g


Test Position 4 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.04 V/m; Power Drift = -0.077 dB

Peak SAR (extrapolated) = 0.136 W/kg

SAR(1 g) = 0.072 mW/g; SAR(10 g) = 0.038 mW/g

Maximum value of SAR (measured) = 0.080 mW/g

Figure 11 802.11b Test Position 4 Channel 6

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA2010-0807

Page 36 of 63

ANNEX D: Probe Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Client **TA (Auden)**

Certificate No: **EX3-3677_Sep09**

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN 3677					
Calibration procedure(s)	QA CAL-01.v6, QA CAL-12.v5, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure for dosimetric E-field probes					
Calibration date:	September 23, 2009					
Condition of the calibrated item	In Tolerance					
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.						
All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.						
Calibration Equipment used (M&TE critical for calibration)						
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration			
Power meter E4419B	GB41293874	1-Apr-09 (No. 217-01030)	Apr-10			
Power sensor E4412A	MY41495277	1-Apr-09 (No. 217-01030)	Apr-10			
Power sensor E4412A	MY41498087	1-Apr-09 (No. 217-01030)	Apr-10			
Reference 3 dB Attenuator	SN: S5054 (3c)	31-Mar-09 (No. 217-01026)	Mar-10			
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-09 (No. 217-01028)	Mar-10			
Reference 30 dB Attenuator	SN: S5129 (30b)	31-Mar-09 (No. 217-01027)	Mar-10			
Reference Probe ES3DV2	SN: 3013	2-Jan-09 (No. ES3-3013_Jan09)	Jan-10			
DAE4	SN: 660	9-Sep-08 (No. DAE4-660_Sep08)	Sep-09			
Secondary Standards	ID #	Check Date (in house)	Scheduled Check			
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-07)	In house check: Oct-09			
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-08)	In house check: Oct-09			
Calibrated by:	Name Claudio Leubler	Function Laboratory Technician	Signature 			
Approved by:	Name Katja Pokovic	Function Technical Manager	Signature 			
Issued: September 23, 2009						
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.						

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA2010-0807

Page 37 of 63

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
NORM x,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORM x,y,z
DCP	diode compression point
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- $NORMx,y,z$: Assessed for E-field polarization $\vartheta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). $NORMx,y,z$ are only intermediate values, i.e., the uncertainties of $NORMx,y,z$ does not effect the E^2 -field uncertainty inside TSL (see below *ConvF*).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- $DCPx,y,z$: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORMx,y,z * ConvF$ whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA2010-0807

Page 38 of 63

EX3DV4 SN:3677

September 23, 2009

Probe EX3DV4

SN:3677

Manufactured:	September 9, 2008
Last calibrated:	November 7, 2008
Recalibrated:	September 23, 2009

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA2010-0807

Page 39 of 63

EX3DV4 SN:3677

September 23, 2009

DASY - Parameters of Probe: EX3DV4 SN:3677

Sensitivity in Free Space^A

NormX	0.42 \pm 10.1%
NormY	0.47 \pm 10.1%
NormZ	0.40 \pm 10.1%

Diode Compression^B

DCP X	91 mV
DCP Y	92 mV
DCP Z	93 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 900 MHz Typical SAR gradient: 5 % per mm

Sensor Center to Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%]	Without Correction Algorithm	8.2 4.4
SAR _{be} [%]	With Correction Algorithm	0.8 0.5

TSL 1750 MHz Typical SAR gradient: 10 % per mm

Sensor Center to Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%]	Without Correction Algorithm	7.5 3.9
SAR _{be} [%]	With Correction Algorithm	0.8 0.4

Sensor Offset

Probe Tip to Sensor Center **1.0** mm

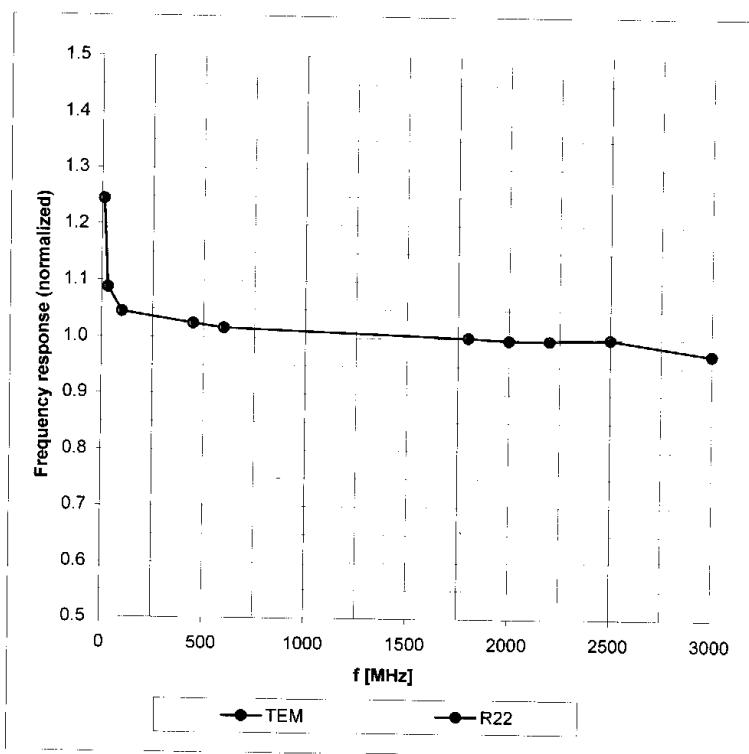
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA2010-0807


Page 40 of 63

EX3DV4 SN:3677

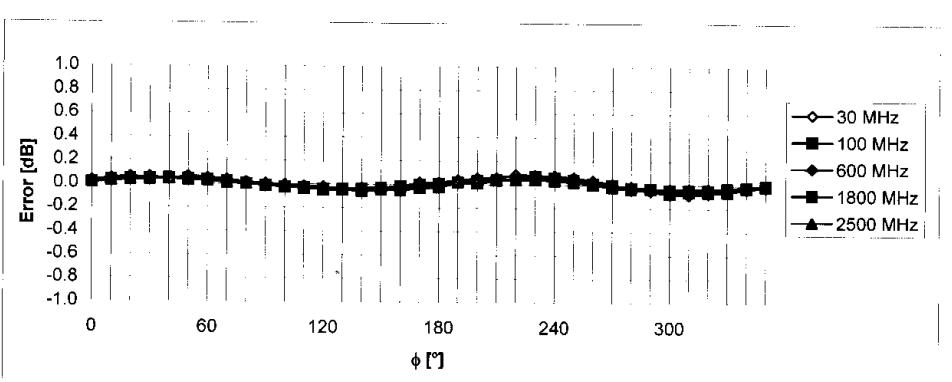
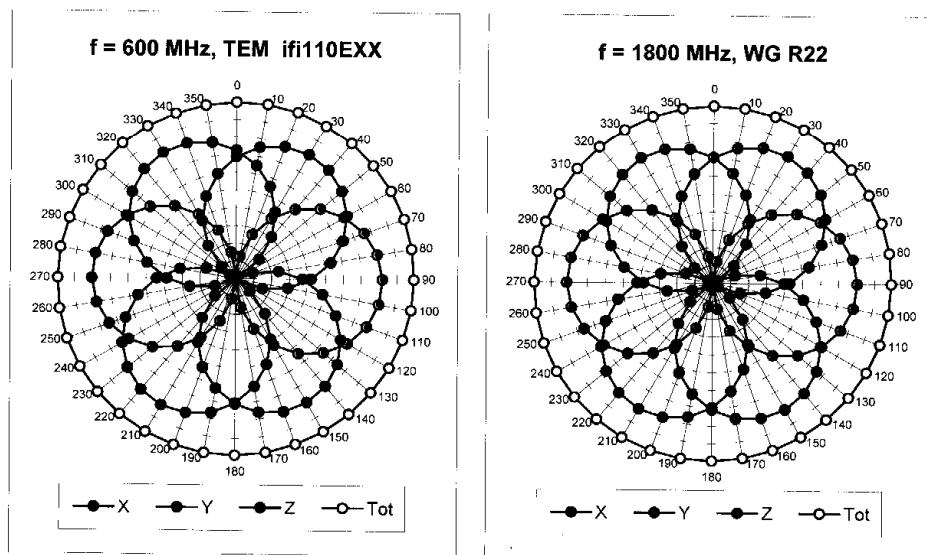
September 23, 2009

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: $\pm 6.3\% (k=2)$

TA Technology (Shanghai) Co., Ltd.
Test Report



Report No. RZA2010-0807

Page 41 of 63

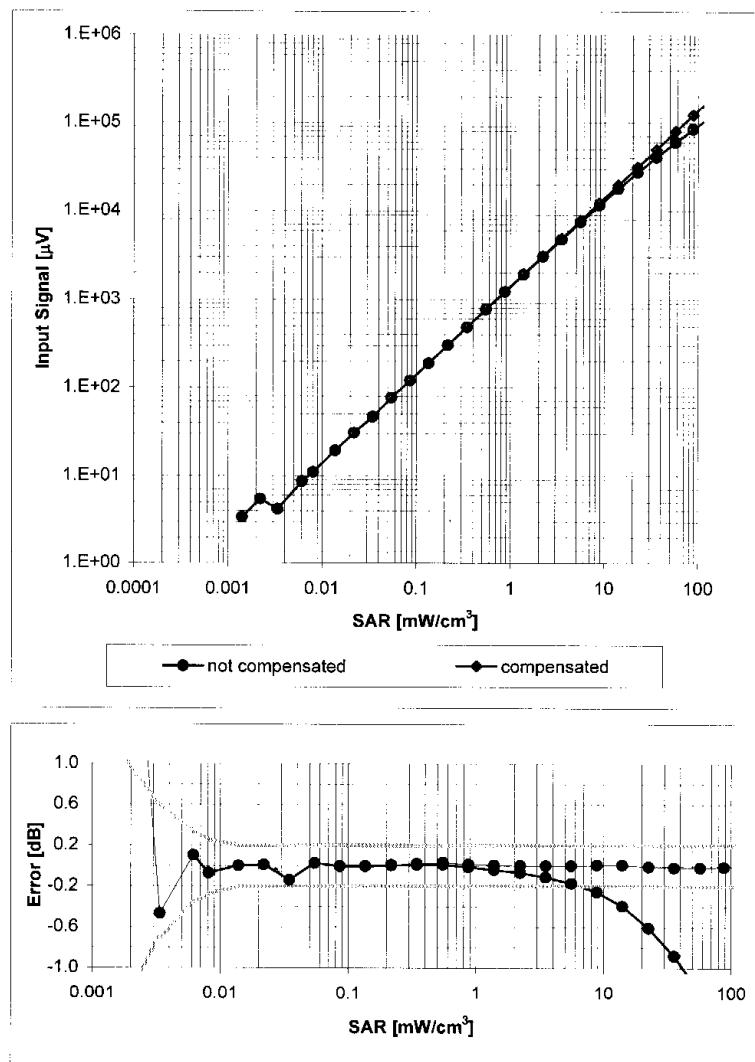
EX3DV4 SN:3677

September 23, 2009

Receiving Pattern (ϕ), $\theta = 0^\circ$

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)

TA Technology (Shanghai) Co., Ltd.
Test Report


Report No. RZA2010-0807

Page 42 of 63

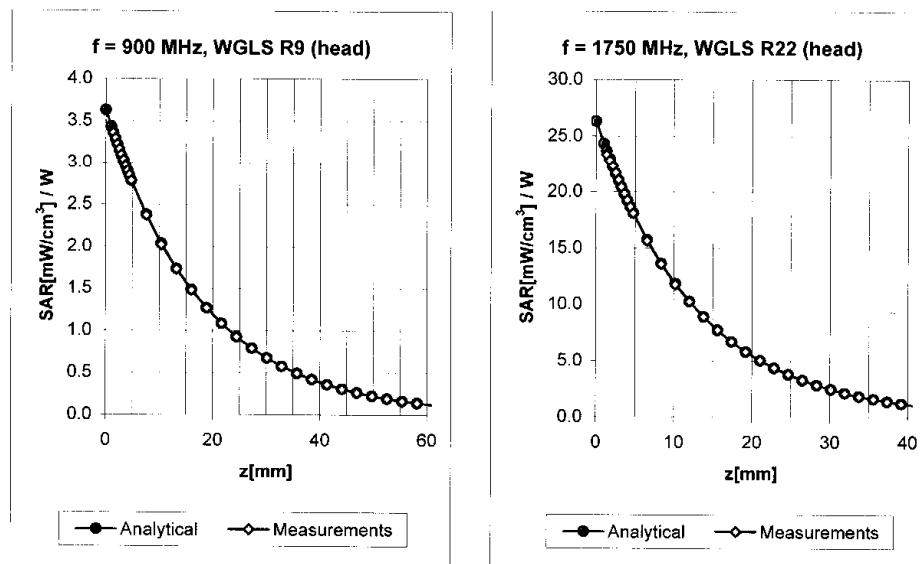
EX3DV4 SN:3677

September 23, 2009

Dynamic Range f(SAR_{head})
(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)

TA Technology (Shanghai) Co., Ltd.
Test Report


Report No. RZA2010-0807

Page 43 of 63

EX3DV4 SN:3677

September 23, 2009

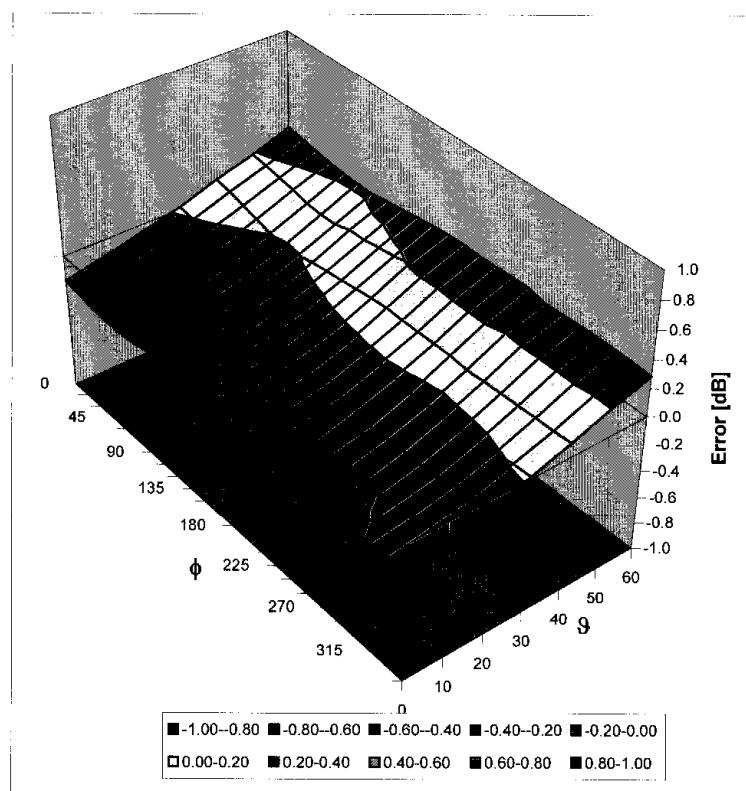
Conversion Factor Assessment

f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
835	$\pm 50 / \pm 100$	Head	$41.5 \pm 5\%$	$0.90 \pm 5\%$	0.68	0.64	9.20	$\pm 11.0\%$ ($k=2$)
900	$\pm 50 / \pm 100$	Head	$41.5 \pm 5\%$	$0.97 \pm 5\%$	0.71	0.62	8.91	$\pm 11.0\%$ ($k=2$)
1750	$\pm 50 / \pm 100$	Head	$40.1 \pm 5\%$	$1.37 \pm 5\%$	0.68	0.62	8.04	$\pm 11.0\%$ ($k=2$)
1950	$\pm 50 / \pm 100$	Head	$40.0 \pm 5\%$	$1.40 \pm 5\%$	0.70	0.60	7.53	$\pm 11.0\%$ ($k=2$)

450	$\pm 50 / \pm 100$	Body	$56.7 \pm 5\%$	$0.94 \pm 5\%$	0.32	0.49	10.43	$\pm 13.3\%$ ($k=2$)
835	$\pm 50 / \pm 100$	Body	$55.2 \pm 5\%$	$0.97 \pm 5\%$	0.54	0.73	9.11	$\pm 11.0\%$ ($k=2$)
900	$\pm 50 / \pm 100$	Body	$55.0 \pm 5\%$	$1.05 \pm 5\%$	0.63	0.71	8.89	$\pm 11.0\%$ ($k=2$)
1750	$\pm 50 / \pm 100$	Body	$53.4 \pm 5\%$	$1.49 \pm 5\%$	0.55	0.74	7.70	$\pm 11.0\%$ ($k=2$)
1950	$\pm 50 / \pm 100$	Body	$53.3 \pm 5\%$	$1.52 \pm 5\%$	0.30	1.01	7.62	$\pm 11.0\%$ ($k=2$)
2450	$\pm 50 / \pm 100$	Body	$52.7 \pm 5\%$	$1.95 \pm 5\%$	0.56	0.68	7.28	$\pm 11.0\%$ ($k=2$)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

TA Technology (Shanghai) Co., Ltd.
Test Report


Report No. RZA2010-0807

Page 44 of 63

EX3DV4 SN:3677

September 23, 2009

Deviation from Isotropy in HSL
Error (ϕ, θ), $f = 900$ MHz

Uncertainty of Spherical Isotropy Assessment: $\pm 2.6\%$ ($k=2$)

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA2010-0807

Page 45 of 63

ANNEX E: D2450V2 Dipole Calibration Certificate

**Calibration Laboratory of
Schmid & Partner
Engineering AG**
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client: **Audien**

Certificate No: D2450V2-735 Jun09

CALIBRATION CERTIFICATE

Object D2450V2 - SN: 735

Calibration procedure(s) QA CAL-05.v7
Calibration procedure for dipole validation kits

Calibration date: **June 19, 2009**

Condition of the calibrated item: **In Tolerance**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) $^{\circ}\text{C}$ and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	08-Oct-08 (No. 217-00898)	Oct-09
Power sensor HP 8481A	US37292783	08-Oct-08 (No. 217-00898)	Oct-09
Reference 20 dB Attenuator	SN: 5086 (20g)	31-Mar-09 (No. 217-01025)	Mar-10
Type-N mismatch combination	SN: 5047.2 / 06327	31-Mar-09 (No. 217-01029)	Mar-10
Reference Probe ES3DV2	SN: 3025	28-Apr-08 (No. ES3-3025_Apr08)	Apr-09
Reference Probe ES3DV2	SN: 3025	30-Apr-09 (No. ES3-3025_Apr09)	Apr-10
DAE4	SN: 601	07-Mar-09 (No. DAE4-601_Mar09)	Mar-10

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-07)	In house check: Oct-09
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-08)	In house check: Oct-09

Calibrated by: **Mike Meili** Function: **Laboratory Technician**

Signature

Approved by: Katja Pokovic Technical Manager

Issued: June 19, 2009

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA2010-0807

Page 46 of 63

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Lirmits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA2010-0807

Page 47 of 63

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$dx, dy, dz = 5 \text{ mm}$	
Frequency	$2450 \text{ MHz} \pm 1 \text{ MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0 \text{ }^{\circ}\text{C}$	39.2	1.80 mho/m
Measured Head TSL parameters	$(22.0 \pm 0.2) \text{ }^{\circ}\text{C}$	$40.4 \pm 6 \text{ \%}$	$1.78 \text{ mho/m} \pm 6 \text{ \%}$
Head TSL temperature during test	$(21.8 \pm 0.2) \text{ }^{\circ}\text{C}$	—	—

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.4 mW / g
SAR normalized	normalized to 1W	53.6 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	$54.2 \text{ mW / g} \pm 17.0 \text{ \% (k=2)}$

SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.32 mW / g
SAR normalized	normalized to 1W	25.3 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	$25.4 \text{ mW / g} \pm 16.5 \text{ \% (k=2)}$

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA2010-0807

Page 48 of 63

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.2 ± 6 %	2.00 mho/m ± 6 %
Body TSL temperature during test	(21.7 ± 0.2) °C

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.2 mW / g
SAR normalized	normalized to 1W	52.8 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	52.2 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	6.17 mW / g
SAR normalized	normalized to 1W	24.7 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	24.6 mW / g ± 16.5 % (k=2)

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA2010-0807

Page 49 of 63

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$53.2 \Omega + 2.4 j\Omega$
Return Loss	-28.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$49.7 \Omega + 4.6 j\Omega$
Return Loss	-26.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.153 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 7, 2003

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA2010-0807

Page 50 of 63

DASY5 Validation Report for Head TSL

Date/Time: 19.06.2009 12:27:28

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN735

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.78$ mho/m; $\epsilon_r = 40.4$; $\rho = 1000$ kg/m³

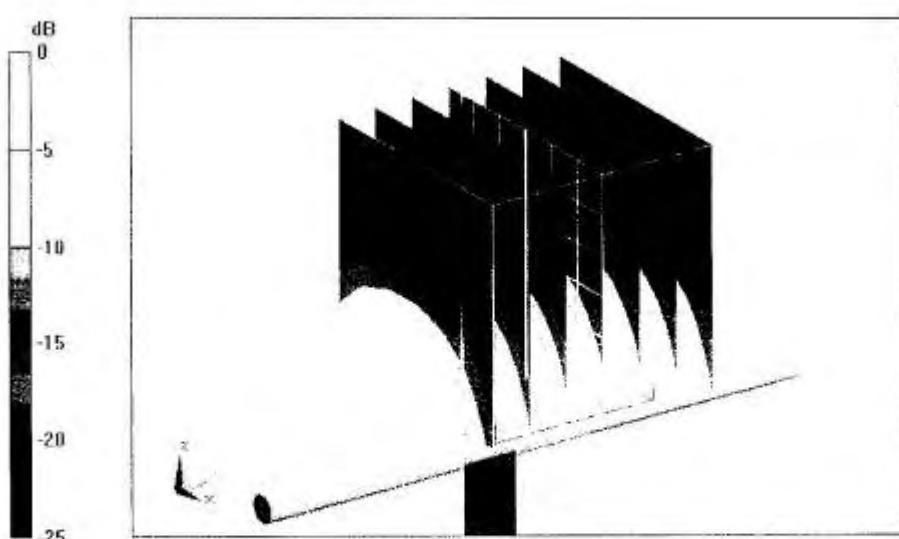
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

- Probe: ES3DV2 - SN3025; CopyF(4.35, 4.35, 4.35); Calibrated: 30.04.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4_Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 100.4 V/m; Power Drift = 0.034 dB

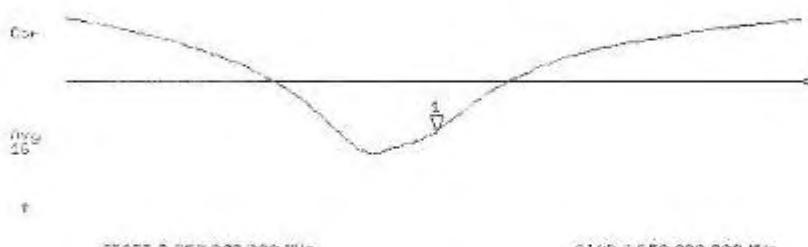
Peak SAR (extrapolated) = 27.2 W/kg

SAR(1 g) = 13.4 mW/g; SAR(10 g) = 6.32 mW/g

Maximum value of SAR (measured) = 16.8 mW/g

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA2010-0807


Page 51 of 63

Impedance Measurement Plot for Head TSL

19 Jun 2009 12:26:08
S11 1.025 1:53.229 a 2,4355 a 150.22 pF 2,450,000.000 MHz

CH2 S11 1.05 5 dB/REF -20 dB 1:28.137 dB 2,450,000.000 MHz

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA2010-0807

Page 52 of 63

DASY5 Validation Report for Body TSL

Date/Time: 19.06.2009 14:09:21

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:735

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB

Medium parameters used: $f = 2450$ MHz; $\sigma = 2$ mho/m; $\epsilon_r = 53.2$; $\rho = 1000$ kg/m³

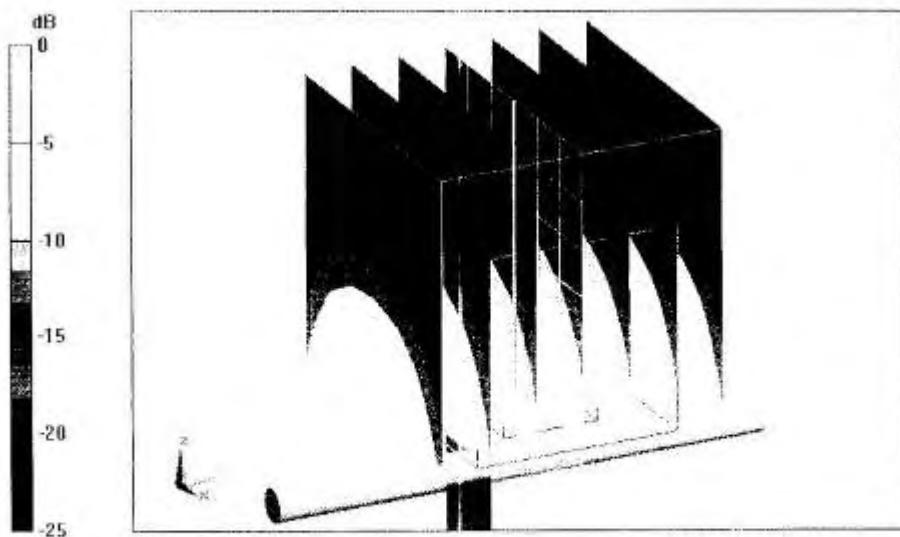
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

- Probe: ES3DV2 - SN3025; ConvP(4.06, 4.06, 4.06); Calibrated: 30.04.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sa601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96 V/m; Power Drift = 0.024 dB

Peak SAR (extrapolated) = 27.2 W/kg

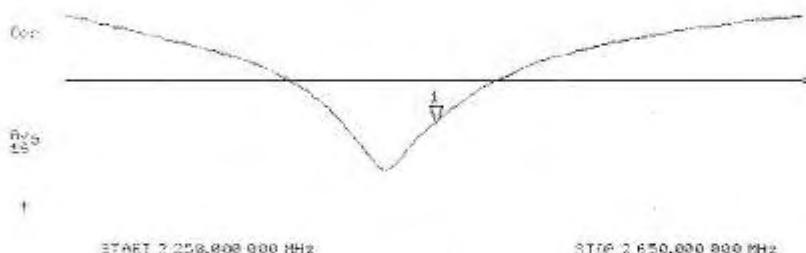
SAR(1 g) = 13.2 mW/g; SAR(10 g) = 6.17 mW/g

Maximum value of SAR (measured) = 17.2 mW/g

0 dB = 17.2 mW/g

TA Technology (Shanghai) Co., Ltd.
Test Report

Report No. RZA2010-0807


Page 53 of 63

Impedance Measurement Plot for Body TSL

19 Jun 2009 12:26:37
CH1 S11 1 U FS 13 43.668 ± 4.6074 ± 299.30 fH 2 450.000 000 MHz

CH2 S12 L00 5 dB/REF +20 dB 13-26.681 dB 2 450.000 000 MHz

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA2010-0807

Page 54 of 63

ANNEX F: DAE4 Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client TA - SH (Auden)

Certificate No: DAE4-871_Nov09

CALIBRATION CERTIFICATE

Object DAE4 - SD 000 D04 BJ - SN: 871

Calibration procedure(s) QA CAL-06.v12
Calibration procedure for the data acquisition electronics (DAE)

Calibration date: November 11, 2009

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	1-Oct-09 (No: 9055)	Oct-10
Secondary Standards	ID #	Check Date (in house)	Scheduled Check

Calibrator Box V1.1 SE UMS 006 AB 1004 05-Jun-09 (in house check) In house check: Jun-10

Calibrated by: Name Andrea Guntli Function Technician Signature

Approved by: Fin Bomholt R&D Director Signature

Issued: November 11, 2009
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA2010-0807

Page 55 of 63

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughaussstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary

DAE	data acquisition electronics
Connector angle	information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- *DC Voltage Measurement*: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - *DC Voltage Measurement Linearity*: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - *Common mode sensitivity*: Influence of a positive or negative common mode voltage on the differential measurement.
 - *Channel separation*: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - *AD Converter Values with inputs shorted*: Values on the internal AD converter corresponding to zero input voltage
 - *Input Offset Measurement*: Output voltage and statistical results over a large number of zero voltage measurements.
 - *Input Offset Current*: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - *Input resistance*: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - *Low Battery Alarm Voltage*: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - *Power consumption*: Typical value for information. Supply currents in various operating modes.

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA2010-0807

Page 56 of 63

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 6.1 μ V, full range = -100...+300 mV

Low Range: 1LSB = 61nV, full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	404.813 \pm 0.1% (k=2)	404.794 \pm 0.1% (k=2)	405.237 \pm 0.1% (k=2)
Low Range	3.98191 \pm 0.7% (k=2)	3.98417 \pm 0.7% (k=2)	3.98912 \pm 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	90.0 $^{\circ}$ \pm 1 $^{\circ}$
---	------------------------------------

TA Technology (Shanghai) Co., Ltd.
Test Report

Appendix

1. DC Voltage Linearity

High Range		Reading (μV)	Difference (μV)	Error (%)
Channel X	+ Input	199994.0	1.84	0.00
Channel X	+ Input	19999.85	0.05	0.00
Channel X	- Input	-19997.97	1.83	-0.01
Channel Y	+ Input	200010.3	-3.71	-0.00
Channel Y	+ Input	19999.12	-0.48	-0.00
Channel Y	- Input	-20000.18	-0.78	0.00
Channel Z	+ Input	200010.2	-2.80	-0.00
Channel Z	+ Input	19998.54	-0.86	-0.00
Channel Z	- Input	-19999.82	0.00	0.00

Low Range		Reading (μV)	Difference (μV)	Error (%)
Channel X	+ Input	2000.3	0.22	0.01
Channel X	+ Input	200.20	0.30	0.15
Channel X	- Input	-199.89	0.21	-0.10
Channel Y	+ Input	1999.8	-0.13	-0.01
Channel Y	+ Input	200.06	-0.04	-0.02
Channel Y	- Input	-200.43	-0.73	0.36
Channel Z	+ Input	1999.5	-0.57	-0.03
Channel Z	+ Input	199.58	-0.72	-0.36
Channel Z	- Input	-201.11	-1.01	0.51

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	13.79	12.75
	-200	-12.26	-13.72
Channel Y	200	-11.82	-11.47
	-200	10.67	10.68
Channel Z	200	-1.08	-1.35
	-200	0.32	0.12

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	3.36	1.06
Channel Y	200	1.52	-	3.59
Channel Z	200	2.55	1.41	-

TA Technology (Shanghai) Co., Ltd.

Test Report

Report No. RZA2010-0807

Page 58 of 63

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15928	16288
Channel Y	16188	15745
Channel Z	15790	16219

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input $10M\Omega$

	Average (μ V)	min. Offset (μ V)	max. Offset (μ V)	Std. Deviation (μ V)
Channel X	0.06	-3.43	1.18	0.52
Channel Y	-0.71	-2.66	0.96	0.57
Channel Z	-0.95	-1.94	0.04	0.41

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

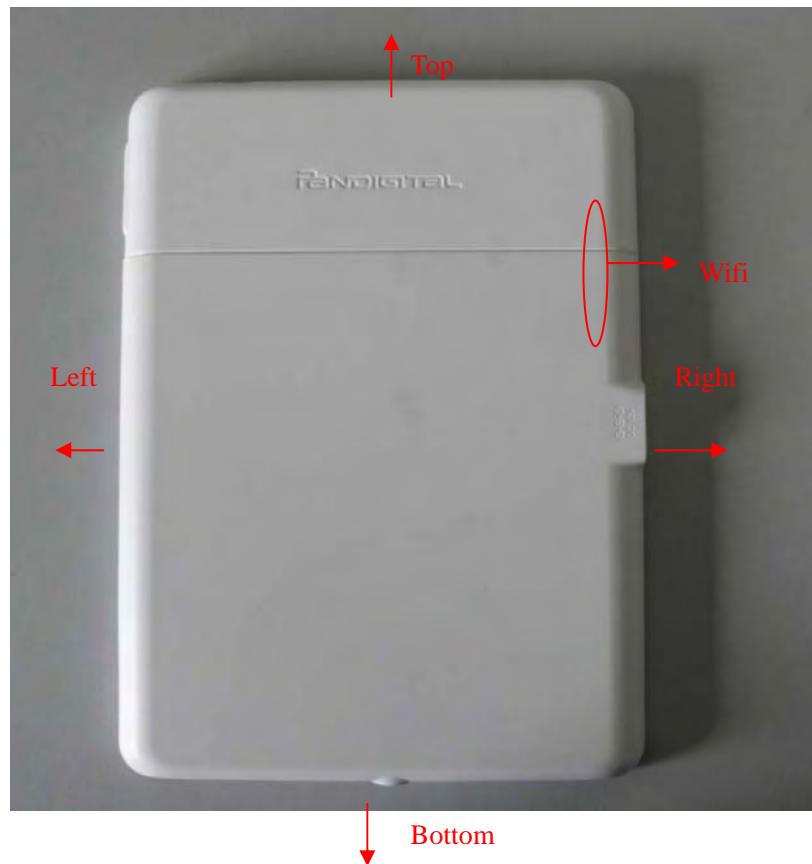
7. Input Resistance

	Zeroing (M Ω)	Measuring (M Ω)
Channel X	0.1999	204.4
Channel Y	0.1999	203.6
Channel Z	0.1999	203.8

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (verified during pre test)


Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No. RZA2010-0807

Page 59 of 63

ANNEX G: The EUT Appearances

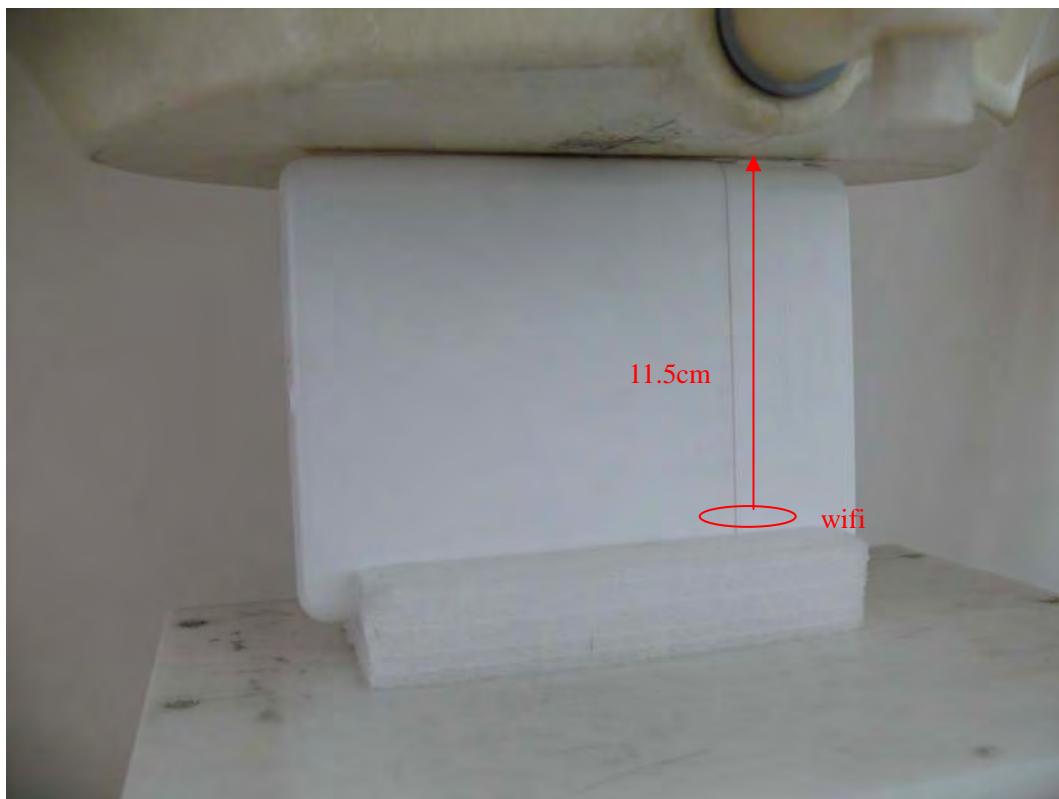
**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No. RZA2010-0807

Page 60 of 63

Picture 3: Constituents of the EUT

Picture 4: Test position 1

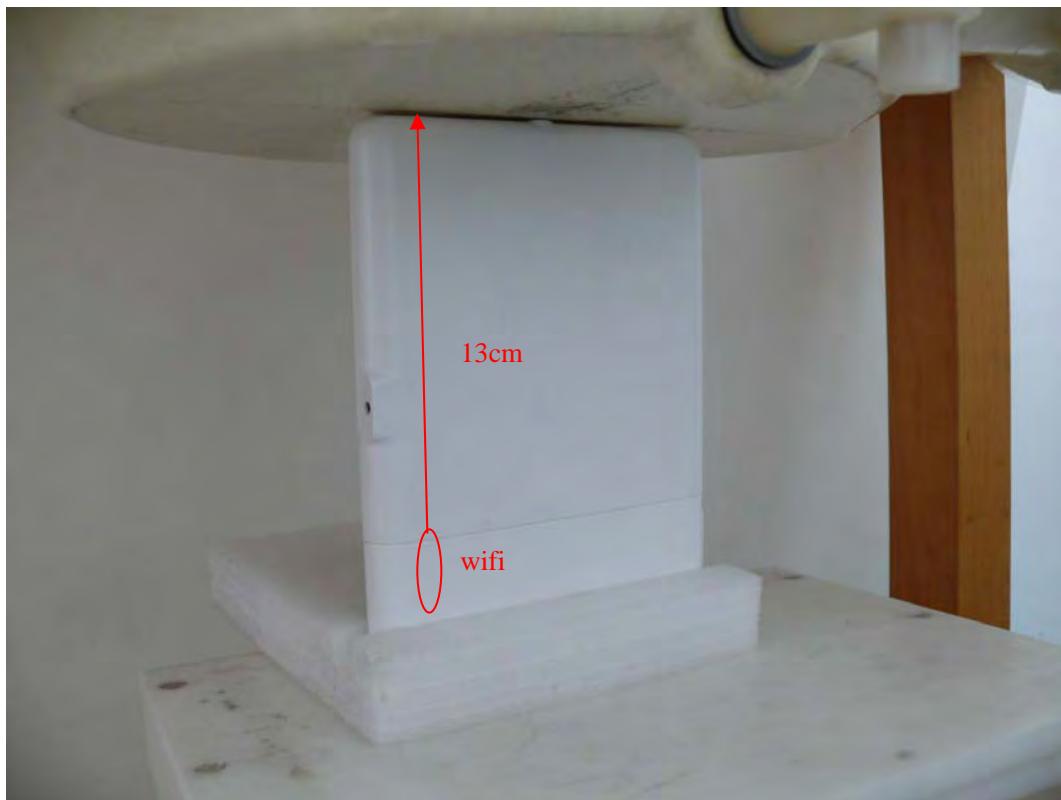


Picture 5: Test position 2

**TA Technology (Shanghai) Co., Ltd.
Test Report**

Report No. RZA2010-0807

Page 61 of 63


Picture 6: Test position 3

(This is not the most conservative antenna – to – user distance at edge mode. According to KDB 447498 4) ii) (2) –SAR is required only the edge with the most conservative exposure conditions, No SAR)

Picture 7: Test position 4

TA Technology (Shanghai) Co., Ltd.
Test Report

Picture 8: Test position 5

(This is not the most conservative antenna – to – user distance at edge mode. According to KDB 447498 4) ii) (2) –SAR is required only the edge with the most conservative exposure conditions, No SAR)