

FCC RF EXPOSURE REPORT

FCC ID: TE7M5V32

The test data of 2.4G WiFi and 5G WiFi were reissue from the FCC ID: TE7M5V3, Model name: Deco M5.

Product changes are as follows:

- a. The original Bluetooth chip CSR8811 (package is QFN40) is replaced by AC6368A/B (package is SOP8);
- b. The crystal of the original chip is 26MHz, while the crystal of the new chip is 24MHz;
- c. The Bluetooth antenna will not be changed;
- d. The software functions remain unchanged, and they are all used as on-boarding. In the new chip, the new driver is used.
- e. Change the circuit of Bluetooth part of PCB.

Project No.	:	1907C037C
Equipment	:	AC1300 Whole Home Mesh Wi-Fi System
Brand Name	:	tp-link
Test Model	:	Deco M5
Series Model	:	N/A
Applicant	:	TP-Link Technologies Co., Ltd.
Address	:	Building 24 (floors 1,3,4,5) and 28 (floors1-4), Central Science and Technology Park,Nanshan Shenzhen, 518057 China
Manufacturer	:	TP-Link Technologies Co., Ltd.
Address	:	Building 24 (floors 1,3,4,5) and 28 (floors1-4), Central Science and Technology Park,Nanshan Shenzhen, 518057 China
Date of Receipt	:	Jul. 03, 2019 Apr. 29, 2021
Date of Test	:	Jul. 05, 2019 ~ Sep. 24, 2019 Apr. 29, 2021 ~ May 26, 2021
Issued Date	:	Jul. 28, 2021
Report Version	:	R00
Test Sample	:	Engineering Sample No.: DG190703114, DG2021051218
Standard(s)	:	FCC Guidelines for Human Exposure IEEE C95.1 FCC Title 47 Part 2.1091, OET Bulletin 65 Supplement C

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Prepared by : Antony Liang

Approved by : Ethan Ma

Add: No. 3 Jinshagang 1st Rd. Shixia, Dalang Town, Dongguan City, Guangdong, People's Republic of China.

Tel: +86-769-8318-3000

Web: www.newbtl.com

REPORT ISSUED HISTORY

Report Version	Description	Issued Date
R00	Original Issued.	Jul. 28, 2021

1. MPE CALCULATION METHOD

Calculation Method of RF Safety Distance:

$$S = \frac{PG}{4\pi r^2} = \frac{EIRP}{4\pi r^2}$$

where:

S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Antenna Specification:

For BT LE:

Ant.	Brand	P/N	Antenna Type	Connector	Gain (dBi)
1	TP-LINK	N/A	Internal	N/A	1.40

Note: The antenna gain is provided by the manufacturer.

For 2.4GHz:

Ant.	Brand	P/N	Antenna Type	Connector	Gain (dBi)
1	TP-LINK	3101502591	Internal	Weld	1.30
2	TP-LINK	3101502592	Internal	Weld	1.30

Note:

- (1) This EUT supports CDD, and all antennas have the same gain.
So, the directional gain = G_{ANT} +Array Gain.
For power Directional gain=1.30.
For power spectral density measurements, Array Gain=10log (N_{ANT}/N_{ss}) dB, that is Directional gain = $1.30+10\log(2/1)\text{dBi}=4.31$
- (2) For Beamforming Gain: 3.00 dB. So the Directional gain = $3.0+1.30=4.30$.
- (3) The antenna gain and beamforming gain are provided by the manufacturer.

For 5GHz:

Ant.	Brand	P/N	Antenna Type	Connector	Gain (dBi)
1	TP-LINK	3101502593	Internal	I-PEX	0.64
2	TP-LINK	3101502594	Internal	I-PEX	0.64

Note:

- (1) This EUT supports CDD, and all antennas have the same gain, Directional gain = G_{ANT} +Array Gain, where Array Gain is as follows: For power Directional gain=0.64. For power spectral density measurements, $N_{ANT} = 2$, $N_{ss} = 1$. So Directional gain = $G_{ANT} + \text{Array Gain} = 10 \log (N_{ANT}/N_{ss}) \text{ dB} = 0.64+10\log(2/1)\text{dBi}=3.65 \text{ dB}$.
- (2) Beamforming Gain: 3.00 dB. So the Directional gain = $3.00+0.64=3.64$.
- (3) The antenna gain and beamforming gain are provided by the manufacturer.

2. TEST RESULTS

For BT LE:

Antenna Gain (dBi)	Antenna Gain (numeric)	Max. Average Output Power (dBm)	Max. Average Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
1.40	1.3804	7.15	5.1880	0.00143	1	Complies

For 2.4GHz Non Beamforming:

Directional Gain (dBi)	Directional Gain (numeric)	Max. Average Output Power (dBm)	Max. Average Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
1.30	1.3490	26.06	403.6454	0.10838	1	Complies

For 2.4GHz Beamforming:

Directional Gain (dBi)	Directional Gain (numeric)	Max. Average Output Power (dBm)	Max. Average Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
4.30	2.6915	25.54	358.0964	0.19184	1	Complies

For 5GHz UNII-1 Non Beamforming:

Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
0.64	1.1588	27.32	539.5106	0.12444	1	Complies

For 5GHz UNII-3 Non Beamforming:

Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
0.64	1.1588	26.07	404.5759	0.09331	1	Complies

For 5GHz UNII-1 Beamforming:

Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
3.64	2.3121	25.48	353.1832	0.16254	1	Complies

For 5GHz UNII-3 Beamforming:

Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
3.64	2.3121	25.07	321.3661	0.14789	1	Complies

For the max simultaneous transmission MPE:

Power Density (S) (mW/cm ²)	Power Density (S) (mW/cm ²)	Power Density (S) (mW/cm ²)	Total	Limit of Power Density (S) (mW/cm ²)	Test Result
BT LE	2.4GHz	5GHz			
0.00143	0.19184	0.16254	0.35581	1	Complies

Note: The calculated distance is 20 cm.
Output power including tune up tolerance.

End of Test Report