

RF TEST REPORT

Applicant TP-LINK TECHNOLOGIES CO., LTD.

FCC ID TE7C5MAXV1

Brand TP-LINK

Product NEFFOS C5 MAX FDD-LTE SMART PHONE

Model TP702C

Report No. RXA1602-0019RF01R1

Issue Date May 18, 2016

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC CFR47 Part 2(2015)/ FCC CFR 47 Part 22H(2015)**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Reviewed by: Lingling Kang

Approved by: Kai Xu

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

TEL: +86-021-50791141/2/3

FAX: +86-021-50791141/2/3-8000

TABLE OF CONTENT

1. Test Laboratory	4
1.1. Notes of the Test Report	4
1.2. Test facility.....	4
1.3. Testing Location	5
2. General Description of Equipment under Test.....	6
3. Applied Standards.....	7
4. Test Configuration.....	8
5. Test Case Results.....	9
5.1. RF Power Output.....	9
5.2. Effective Radiated Power	11
5.3. Occupied Bandwidth	13
5.4. Band Edge Compliance.....	17
5.5. Peak-to-Average Power Ratio (PAPR)	20
5.6. Frequency Stability	22
5.7. Spurious Emissions at Antenna Terminals	24
5.8. Radiates Spurious Emission	26
6. Main Test Instruments	31
ANNEX A: EUT Appearance and Test Setup.....	32
A.1 EUT Appearance	32
A.2 Test Setup.....	33

Summary of measurement results

No.	Test Type	Clause in FCC rules	Verdict
1	RF power output	2.1046	PASS
2	Effective Radiated Power	22.913(a)(2)	PASS
3	Occupied Bandwidth	2.1049	PASS
4	Band Edge Compliance	2.1051 / 22.917(a)	PASS
5	Peak-to-Average Power Ratio	KDB 971168 D01(5.7)	PASS
6	Frequency Stability	2.1055 / 22.355	PASS
7	Spurious Emissions at Antenna Terminals	2.1051 / 22.917(a)	PASS
8	Radiates Spurious Emission	2.1053 / 22.917 (a)	PASS
Date of Testing:February '15, 2016~ March 20, 2016			

1. Test Laboratory

1.1. Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **TA technology (shanghai) co., Ltd**. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein .Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above. This report must not be used by the client to claim product certification, approval, or endorsement by CNAS or any government agencies.

1.2. Test facility

CNAS (accreditation number:L2264)

TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS).

FCC (recognition number is 428261)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

IC (recognition number is 8510A)

TA Technology (Shanghai) Co., Ltd. has been listed by industry Canada to perform electromagnetic emission measurement.

VCCI (recognition number is C-4595, T-2154, R-4113, G-766)

TA Technology (Shanghai) Co., Ltd. has been listed by industry Japan to perform electromagnetic emission measurement.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

1.3. Testing Location

Company: TA Technology (Shanghai) Co., Ltd.
Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong
City: Shanghai
Post code: 201201
Country: P. R. China
Contact: Xu Kai
Telephone: +86-021-50791141/2/3
Fax: +86-021-50791141/2/3-8000
Website: <http://www.ta-shanghai.com>
E-mail: xukai@ta-shanghai.com

2. General Description of Equipment under Test

Client Information

Applicant	TP-LINK TECHNOLOGIES CO., LTD.
Applicant address	Building 24 (floors 1,3,4,5) and 28 (floors1-4) Central Science and Technology Park,Shennan Rd, Nanshan, Shenzhen,China
Manufacturer	TP-LINK TECHNOLOGIES CO., LTD.
Manufacturer address	Building 24 (floors 1,3,4,5) and 28 (floors1-4) Central Science and Technology Park,Shennan Rd, Nanshan, Shenzhen,China

General Information

Model:	TP702C		
Product IMEI:	SIM 1: 868983020043343 SIM 2: 868983020044358		
Hardware Version:	AL1520_MB_PCB_V2.0		
Software Version:	H10S100D03B20160128R1004		
Power Supply:	Battery/AC adapter		
Antenna Type:	Internal Antenna		
Test Mode(s):	GSM 850; WCDMA Band V;		
Test Modulation:	(GSM)GMSK,8PSK; (WCDMA)QPSK; (LTE)QPSK, 16QAM		
GRPS/ EGPRS Multislot Class:	12		
HSDPA UE Category:	14		
HSUPA UE Category:	6		
DC-HSDPA UE Category:	24		
Maximum E.R.P.	GSM 850: 22.02 dBm WCDMA Band V: 18.06 dBm		
Rated Power Supply Voltage:	3.8V		
Extreme Voltage:	Minimum: 3.6V Maximum: 4.35V		
Extreme Temperature:	Lowest: -10°C Highest: +55°C		
Operating Frequency Range(s)	Band	Tx (MHz)	Rx (MHz)
	GSM850	824 ~ 849	869 ~ 894
	WCDMA Band V	824 ~ 849	869 ~ 894
EUT Accessory			
Battery	Manufacturer: DongGuan Amperex Technology Co., Ltd Model: NBL-44A3045 Power Rating: DC 3.8V, 3045mAh, Li-ion		
Note: The information of the EUT is declared by the manufacturer. Please refer to the specifications or user manual for details.			

3. Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC CFR47 Part 2 (2015)

FCC CFR 47 Part 22H (2015)

ANSI/TIA 603-D (2010)

KDB 971168 D01 Power Meas License Digital Systems v02r02

4. Test Configuration

There is more than one SIM card slot, each one should be applied throughout the compliance test respectively, and however, only the worst case (SIM 1) will be recorded in this report.

Radiated measurements are performed by rotating the EUT in three different orthogonal test planes. EUT stand-up position (Z axis), lie-down position (X, Y axis). Receiver antenna polarization (horizontal and vertical), the worst emission was found in position (Z axis, vertical polarization) and the worst case was recorded.

All mode and data rates and positions were investigated.

The following testing in GSM/WCDMA/LTE is set based on the maximum RF Output Power.

Test modes are chosen to be reported as the worst case configuration below:

	Test items	Modes/ Modulation	
		GSM 850	WCDMA Band V
Conducted Test cases	RF power output	GSM /GPRS /EGPRS	RMC /HSDPA/HSUPA /DC-HSDPA
	Occupied Bandwidth	GSM /GPRS /EGPRS	RMC
	Band Edge Compliance	GSM /GPRS /EGPRS	RMC
	Peak-to-Average Power Ratio	GSM /GPRS /EGPRS	RMC
	Frequency Stability	GSM /GPRS /EGPRS	RMC
	Spurious Emissions at Antenna Terminals	GSM	RMC
Radiated Test cases	Effective Radiated Power	GSM /GPRS /EGPRS	RMC
	Radiates Spurious Emission	GSM	RMC

5. Test Case Results

5.1. RF Power Output


Ambient condition

Temperature	Relative humidity
21°C ~25°C	40%~60%

Methods of Measurement

During the process of the testing, The EUT is controlled by the Base Station Simulator to ensure max power transmission and proper modulation.

Test Setup

The loss between RF output port of the EUT and the input port of the tester has been taken into consideration.

Limits

No specific RF power output requirements in part 2.1046.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor $k = 2$, $U = 0.4$ dB.

Test Results

GSM 850		Conducted Power(dBm)		
		Channel 128	Channel 190	Channel 251
		824.2 (MHz)	836.6 (MHz)	848.8 (MHz)
GSM	Results	31.88	31.87	31.79
GPRS (GMSK)	1TXslot	31.88	31.86	31.79
	2TXslots	31.14	31.11	31.02
	3TXslots	29.33	29.30	29.23
	4TXslots	28.26	28.22	28.13
EGPRS (8PSK)	1TXslot	25.54	25.68	25.78
	2TXslots	24.57	24.71	24.83
	3TXslots	22.80	22.78	22.81
	4TXslots	21.41	21.54	21.63

Note:

- 1) The maximum RF Output Power numbers are marks in bold.
- 2) The following testing in GPRS/EGPRS is set to 1TXslot based on the maximum RF Output Power.

WCDMA Band V		Conducted Power(dBm)		
		Channel 4132	Channel 4183	Channel 4233
		826.4(MHz)	836.6(MHz)	846.6(MHz)
RMC		22.26	22.40	22.58
HSDPA	Sub - Test 1	22.18	22.32	22.50
	Sub - Test 2	22.17	22.31	22.49
	Sub - Test 3	21.66	21.80	21.98
	Sub - Test 4	21.65	21.79	21.97
HSUPA	Sub - Test 1	22.14	22.28	22.46
	Sub - Test 2	20.13	20.27	20.45
	Sub - Test 3	21.11	21.26	21.44
	Sub - Test 4	20.10	20.25	20.43
	Sub - Test 5	22.09	22.24	22.42
DC-HSDPA	Sub - Test 1	22.10	22.26	22.42
	Sub - Test 2	22.09	22.25	22.41
	Sub - Test 3	21.67	21.74	21.92
	Sub - Test 4	21.66	21.73	21.91

Note:

- 1) The maximum RF Output Power numbers are marks in bold.
- 2) The following testing in RMC based on the maximum RF Output Power.

5.2. Effective Radiated Power

Ambient condition

Temperature	Relative humidity
21°C ~25°C	40%~60%

Methods of Measurement

The measurement procedures in ANSI/TIA 603-D are used.

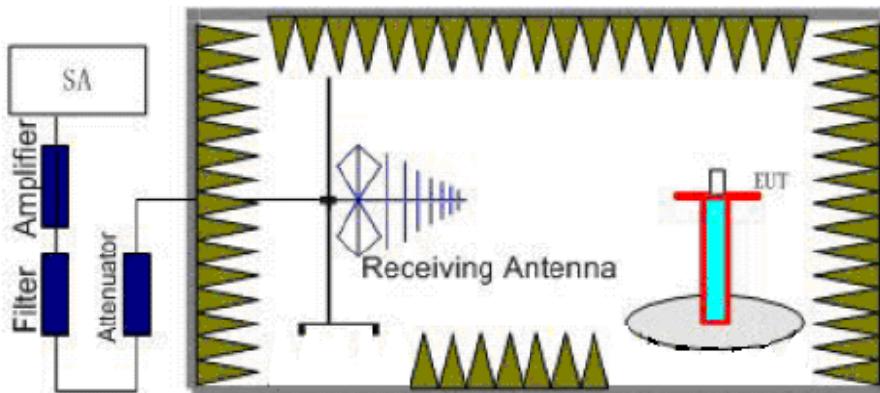
1. The EUT was placed on a turntable with 1.5 meter height in a fully anechoic chamber.
2. The EUT was set at 3 meters from the receiving antenna, which was mounted on the antenna tower.
3. GSM operating modes: Set RBW= 1MHz, VBW= 3MHz, RMS detector over burst;
UMTS operating modes: Set RBW= 100 KHz, VBW= 300 KHz, RMS detector over frame, and use channel power option with bandwidth=5MHz, per section 4.0 of KDB 971168 D01.
4. The table was rotated 360 degrees to determine the position of the highest radiated power.
5. The height of the receiving antenna is adjusted to look for the maximum ERP/EIRP.
6. Taking the record of maximum ERP/EIRP.
7. A dipole antenna was substituted in place of the EUT and was driven by a signal generator.
8. The conducted power at the terminal of the dipole antenna is measured.
9. Repeat step 3 to step 5 to get the maximum ERP/EIRP of the substitution antenna.
10. $ERP/EIRP = Ps + Et - Es + Gs = Ps + Rt - Rs + Gs$

Ps (dBm) : Input power to substitution antenna.

Gs (dBi or dBd) : Substitution antenna Gain.

Et = Rt + AF

Es = Rs + AF


EIRP= ERP + 2.15

AF (dB/m) : Receive antenna factor

Rt : The highest received signal in spectrum analyzer for EUT.

Rs : The highest received signal in spectrum analyzer for substitution antenna.

Test Setup

Limits

Rule Part 22.913(a) specifies that "Mobile/portable stations are limited to 7 watts ERP".

Limit	$\leq 7 \text{ W (38.45 dBm)}$
-------	--------------------------------

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor $k = 2$, $U = 1.19 \text{ dB}$

Test Results:

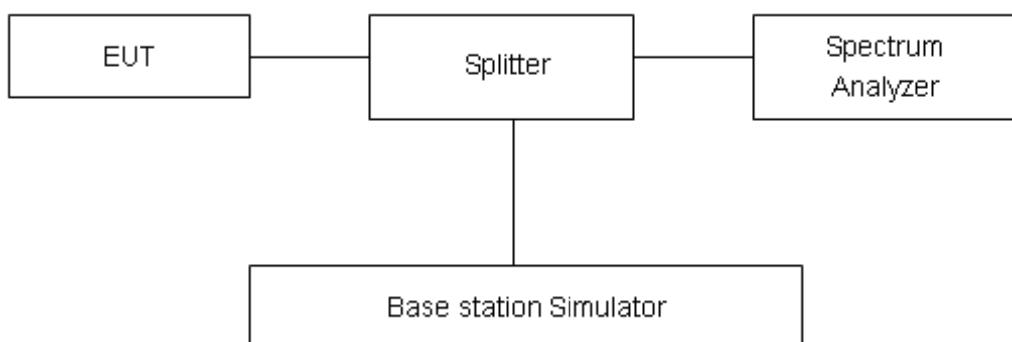
Mode	Polarization	Frequency (MHz)	Rt (dBm)	Rs (dBm)	Ps (dBm)	Gs (dBd)	ERP (dBm)	Limit (dBm)	Conclusion
GSM 850	H	824.2	-26.45	-47.10	0	1.06	21.71	38.45	Pass
	H	836.6	-26.56	-47.13	0	1.24	21.81	38.45	Pass
	H	848.8	-27.03	-47.29	0	1.38	21.64	38.45	Pass
	V	824.2	-35.84	-46.91	0	1.06	12.13	38.45	Pass
	V	836.6	-35.36	-46.82	0	1.24	12.70	38.45	Pass
	V	848.8	-35.70	-47.04	0	1.38	12.72	38.45	Pass
GPRS 850	H	824.2	-26.14	-47.10	0	1.06	22.02	38.45	Pass
	H	836.6	-27.01	-47.13	0	1.24	21.36	38.45	Pass
	H	848.8	-27.36	-47.29	0	1.38	21.31	38.45	Pass
	V	824.2	-31.70	-46.91	0	1.06	16.27	38.45	Pass
	V	836.6	-31.96	-46.82	0	1.24	16.10	38.45	Pass
	V	848.8	-32.22	-47.04	0	1.38	16.20	38.45	Pass
EGPRS 850	H	824.2	-31.45	-47.10	0	1.06	16.71	38.45	Pass
	H	836.6	-30.89	-47.13	0	1.24	17.48	38.45	Pass
	H	848.8	-31.60	-47.29	0	1.38	17.07	38.45	Pass
	V	824.2	-36.67	-46.91	0	1.06	11.30	38.45	Pass
	V	836.6	-36.26	-46.82	0	1.24	11.80	38.45	Pass
	V	848.8	-36.96	-47.04	0	1.38	11.46	38.45	Pass
WCDMA Band V	H	826.4	-30.24	-47.17	0	1.13	18.06	38.45	Pass
	H	836.6	-30.87	-47.13	0	1.24	17.50	38.45	Pass
	H	846.6	-32.66	-47.21	0	1.35	15.90	38.45	Pass
	V	826.4	-33.78	-46.87	0	1.13	14.22	38.45	Pass
	V	836.6	-35.94	-46.82	0	1.24	12.12	38.45	Pass
	V	846.6	-38.53	-46.97	0	1.35	9.79	38.45	Pass

5.3. Occupied Bandwidth

Ambient condition

Temperature	Relative humidity
21°C ~25°C	40%~60%

Method of Measurement


The EUT was connected to Spectrum Analyzer and Base Station Simulator via power Splitter. The occupied bandwidth is measured using spectrum analyzer.

RBW is set to 3kHz, VBW is set to 10kHz for GSM 850,

RBW is set to 51kHz, VBW is set to 160kHz for WCDMA Band V.

99% power and -26dBc occupied bandwidths are recorded. Spectrum analyzer plots are included on the following pages.

Test Setup

Limits

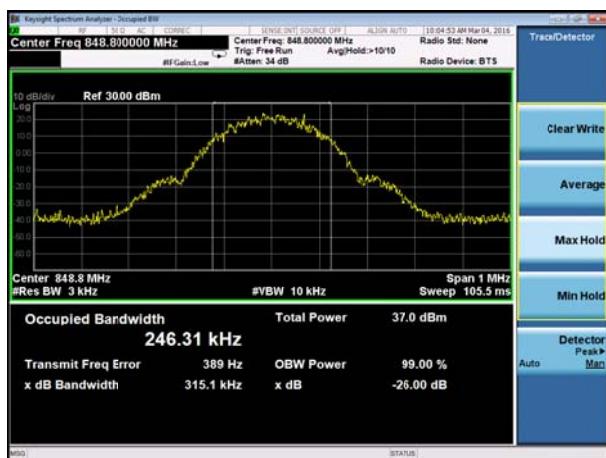
No specific occupied bandwidth requirements in part 2.1049.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor $k = 2$, $U = 624\text{Hz}$.


Test Result

Mode	Channel	Frequency (MHz)	99% Power Bandwidth (kHz)	-26dBc Bandwidth(kHz)
GSM 850 (GSM)	128	824.2	247.43	309.5
	190	836.6	248.87	306.0
	251	848.8	246.31	315.1
GPRS 850 (GMSK)	128	824.2	243.75	313.0
	190	836.6	244.71	311.7
	251	848.8	247.29	316.4
EGPRS 850 (8-PSK)	128	824.2	246.63	317.8
	190	836.6	249.30	317.4
	251	848.8	242.32	314.7
WCDMA Band V (RMC)	4132	826.4	4211.2	4874
	4183	836.6	4204.1	4867
	4233	846.6	4225.7	4856


GSM 850 CH128

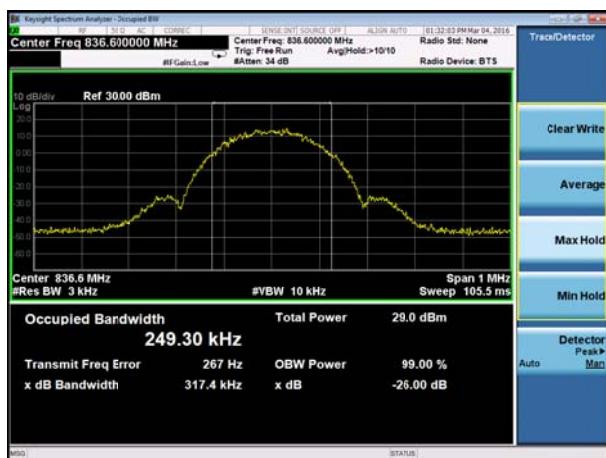
GSM 850 CH190

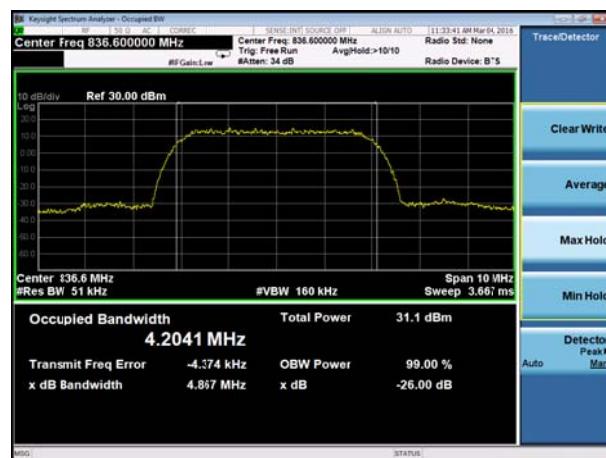
GSM 850 CH251

GSM 850 GPRS CH128

GSM 850 GPRS CH190

GSM 850 GPRS CH251


GSM 850 EGPRS CH128


WCDMA Band V CH4132

GSM 850 EGPRS CH190


WCDMA Band V CH4183

GSM 850 EGPRS CH251

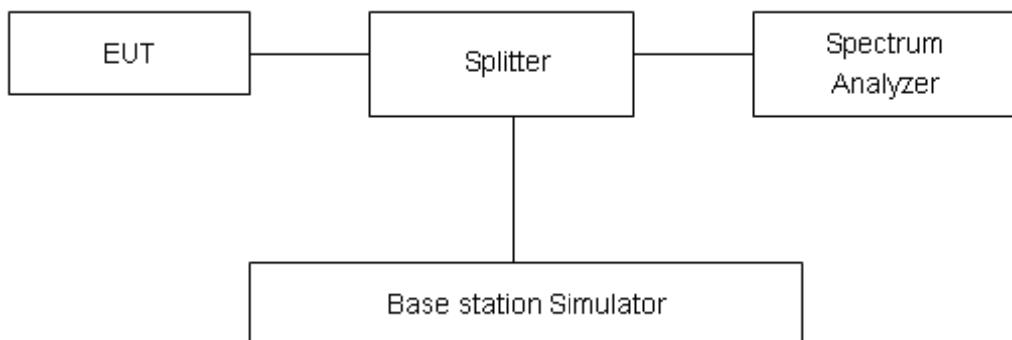
WCDMA Band V CH4233

5.4. Band Edge Compliance

Ambient condition

Temperature	Relative humidity
21°C ~25°C	40%~60%

Method of Measurement


The EUT was connected to Spectrum Analyzer and Base Station Simulator via power Splitter. The band edge of the lowest and highest channels were measured. The average detector is used.

RBW is set to 3kHz, VBW is set to 10kHz for GSM 850

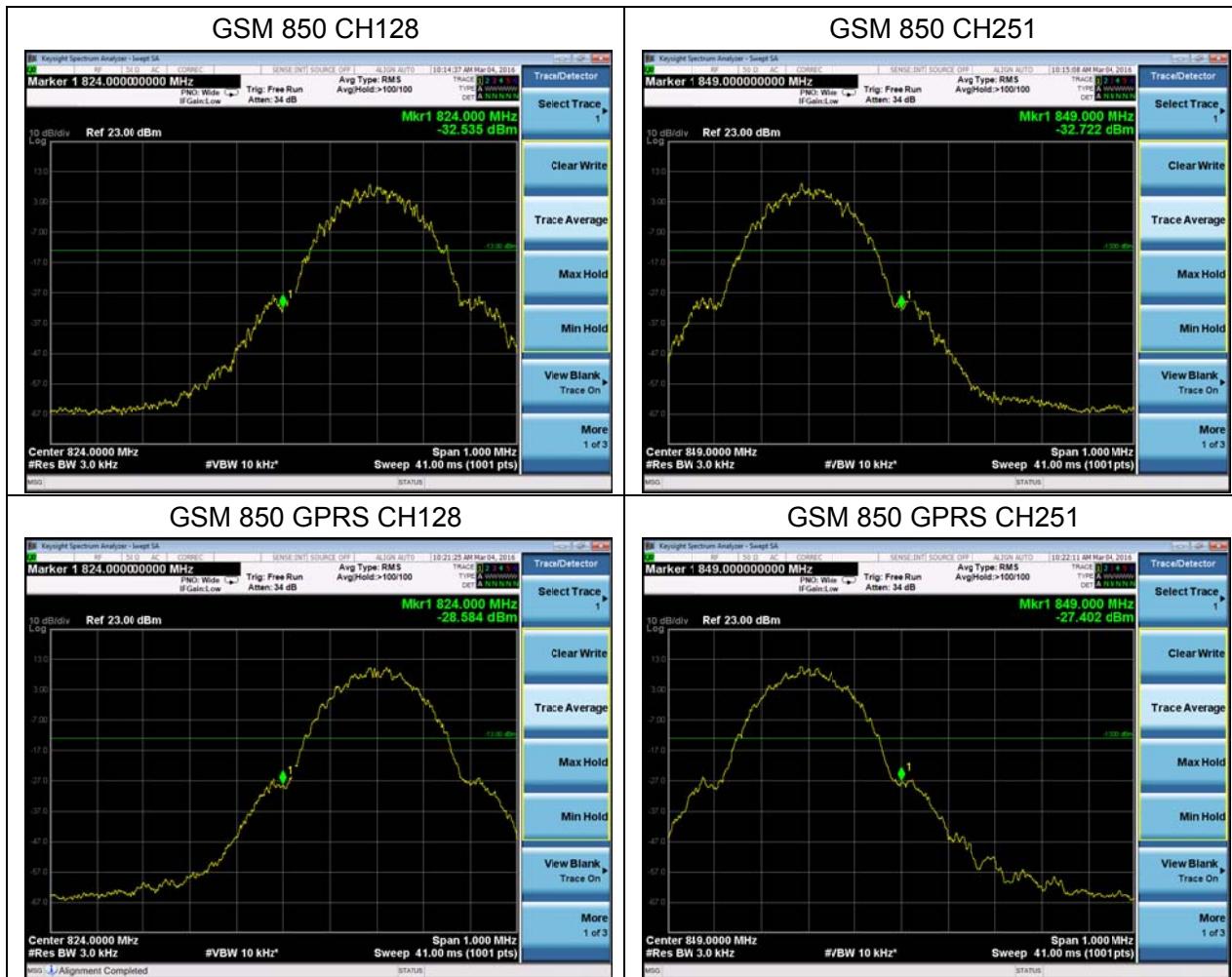
RBW is set to 51kHz, VBW is set to 160kHz for WCDMA Band V,

Spectrum analyzer plots are included on the following pages.

Test Setup

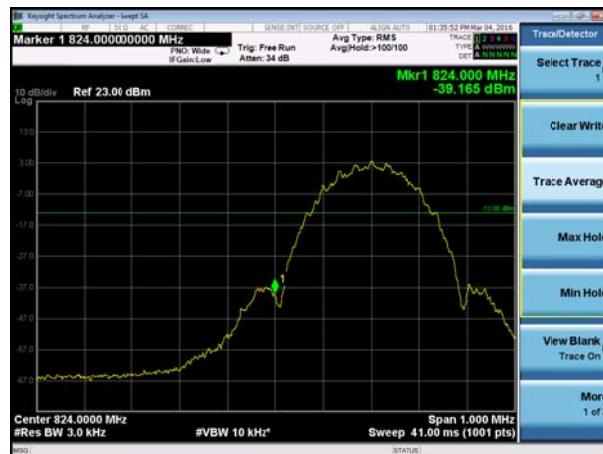
Limits

Rule Part 22.917(a) specifies that "The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB."


Limit	-13 dBm

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor $k = 1.96$, $U=0.684\text{dB}$.


Test Result:

Mode	Carrier frequency (MHz)	Reference value (dBm)	Limit (dBm)	Conclusion
GSM 850 (GSM)	824.0	-32.535	-13	PASS
	849.0	-32.722	-13	PASS
GPRS 850 (GMSK)	824.0	-28.584	-13	PASS
	849.0	-27.402	-13	PASS
EGPRS 850 (8-PSK)	824.0	-39.165	-13	PASS
	849.0	-38.882	-13	PASS
WCDMA Band V RMC	824.0	-19.004	-13	PASS
	849.0	-18.783	-13	PASS


GSM 850 EGPRS CH128

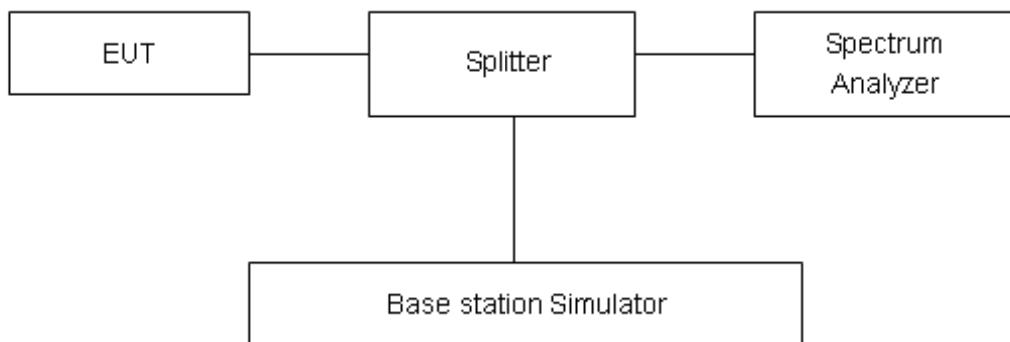

GSM 850 EGPRS CH251

WCDMA Band V CH4132

WCDMA Band V CH4233

5.5. Peak-to-Average Power Ratio (PAPR)

Ambient condition


Temperature	Relative humidity
21°C ~25°C	40%~60%

Methods of Measurement

Measure the total peak power and record as P_{PK} . And measure the total average power and record as P_{Avg} . Both the peak and average power levels must be expressed in the same logarithmic units (e.g., dBm). Determine the PAPR from:

$$\text{PAPR (dB)} = P_{PK} (\text{dBm}) - P_{Avg} (\text{dBm}).$$

Test Setup

Limits

No specific Peak-to-Average Ratio requirements in KDB 971168.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor $k = 2$, $U = 0.4$ dB.

Test Results

Mode	Channel	Frequency (MHz)	Peak (dBm)	Avg (dBm)	PAPR (dB)
GSM 850 (GSM)	128	824.2	31.92	31.88	0.039
	190	836.6	31.89	31.87	0.019
	251	848.8	31.81	31.79	0.019
GPRS 850 (GMSK)	128	824.2	28.28	28.26	0.019
	190	836.6	28.26	28.22	0.039
	251	848.8	28.14	28.13	0.010
EGPRS 850 (8-PSK)	128	824.2	21.47	21.41	0.060
	190	836.6	21.59	21.54	0.050
	251	848.8	21.83	21.63	0.200
WCDMA Band V (RMC)	4132	826.4	25.10	22.26	2.840
	4183	836.6	25.23	22.40	2.830
	4233	846.6	25.42	22.58	2.840

5.6. Frequency Stability

Ambient condition

Temperature	Relative humidity
21°C ~25°C	40%~60%

Method of Measurement

1. Frequency Stability (Temperature Variation)

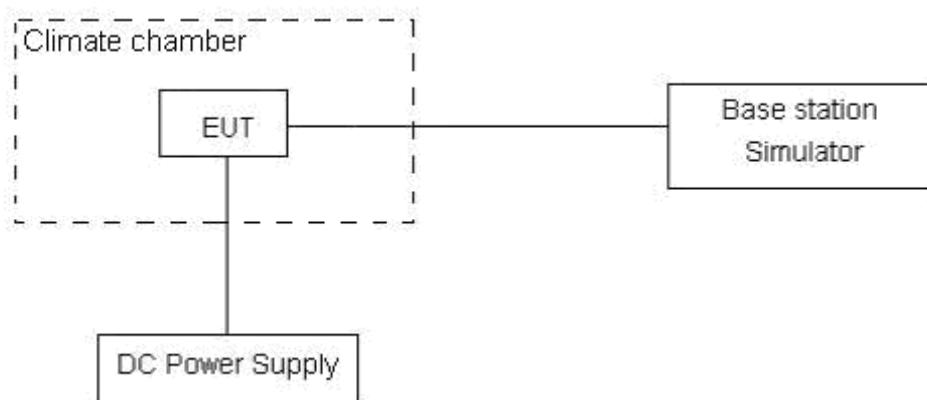
The temperature inside the climate chamber is varied from -10°C to +55°C in 10°C step size,

(1) With all power removed, the temperature was decreased to 0°C and permitted to stabilize for three hours.

(2) Measure the carrier frequency with the test equipment in a "call mode". These measurements should be made within 1 minute of powering up the mobile station, to prevent significant self warming.

(3) Repeat the above measurements at 10°C increments from -10°C to +55°C. Allow at least 1.5 hours at each temperature, un-powered, before making measurements.

2. Frequency Stability (Voltage Variation)


The frequency stability shall be measured with variation of primary supply voltage as follows:

(1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

(2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery-operating end point which shall be specified by the manufacturer.

This transceiver is specified to operate with an input voltage of between 3.6 V and 4.35 V, with a nominal voltage of 3.8V.

Test setup

Limits

According to the Sec. 22.355, the frequency stability of the carrier shall be accurate to within 2.5 ppm of the received frequency for mobile stations.

Limits	≤ 2.5 ppm
--------	-----------

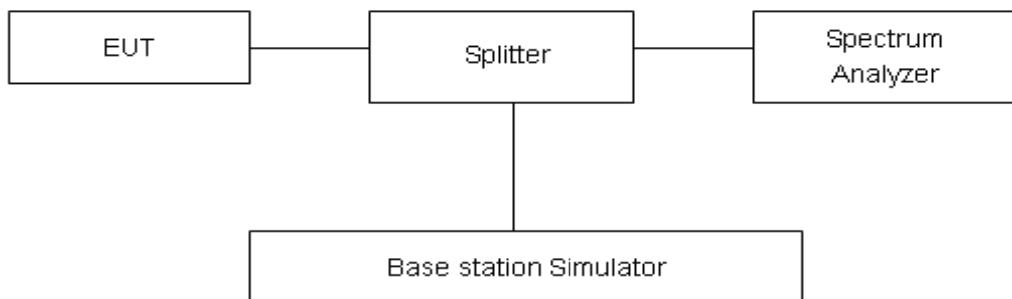
Measurement Uncertainty

The assessed measurement uncertainty to ensure 99.75% confidence level for the normal distribution is with the coverage factor $k = 3, U = 0.01\text{ppm}$.

Test Result

Mode	Test status	Test Results (ppm)			Conclusion
		GSM(GMSK)	GPRS(GMSK)	EGPRS(8PSK)	
GSM 850	-30°C/3.8 V	0.0076	0.0280	0.0153	PASS
	-20°C/3.8 V	0.0081	0.0065	0.0151	PASS
	-10°C/3.8 V	0.0077	0.0070	0.0153	PASS
	0°C/3.8 V	0.0110	0.0187	0.0167	PASS
	10°C/3.8 V	0.0070	-0.0182	0.0135	PASS
	20°C/3.8 V	0.0056	0.0139	0.0158	PASS
	30°C/3.8 V	0.0099	0.0087	0.0127	PASS
	40°C/3.8 V	0.0062	0.0149	0.0147	PASS
	50°C/3.8 V	0.0090	0.0149	0.0154	PASS
	20°C/4.35 V	0.0139	0.0070	0.0177	PASS
	20°C/3.6 V	0.0135	0.0134	0.0139	PASS
/	/	RMC			/
WCDMA Band V	-30°C/3.8 V	0.000582			PASS
	-20°C/3.8 V	-0.001017			PASS
	-10°C/3.8 V	-0.001290			PASS
	0°C/3.8 V	-0.001169			PASS
	10°C/3.8 V	-0.002601			PASS
	20°C/3.8 V	-0.002038			PASS
	30°C/3.8 V	-0.001023			PASS
	40°C/3.8 V	-0.002322			PASS
	50°C/3.8 V	-0.002328			PASS
	20°C/4.35 V	-0.001305			PASS
	20°C/3.6 V	-0.000282			PASS

5.7. Spurious Emissions at Antenna Terminals


Ambient condition

Temperature	Relative humidity
21°C ~25°C	40%~60%

Method of Measurement

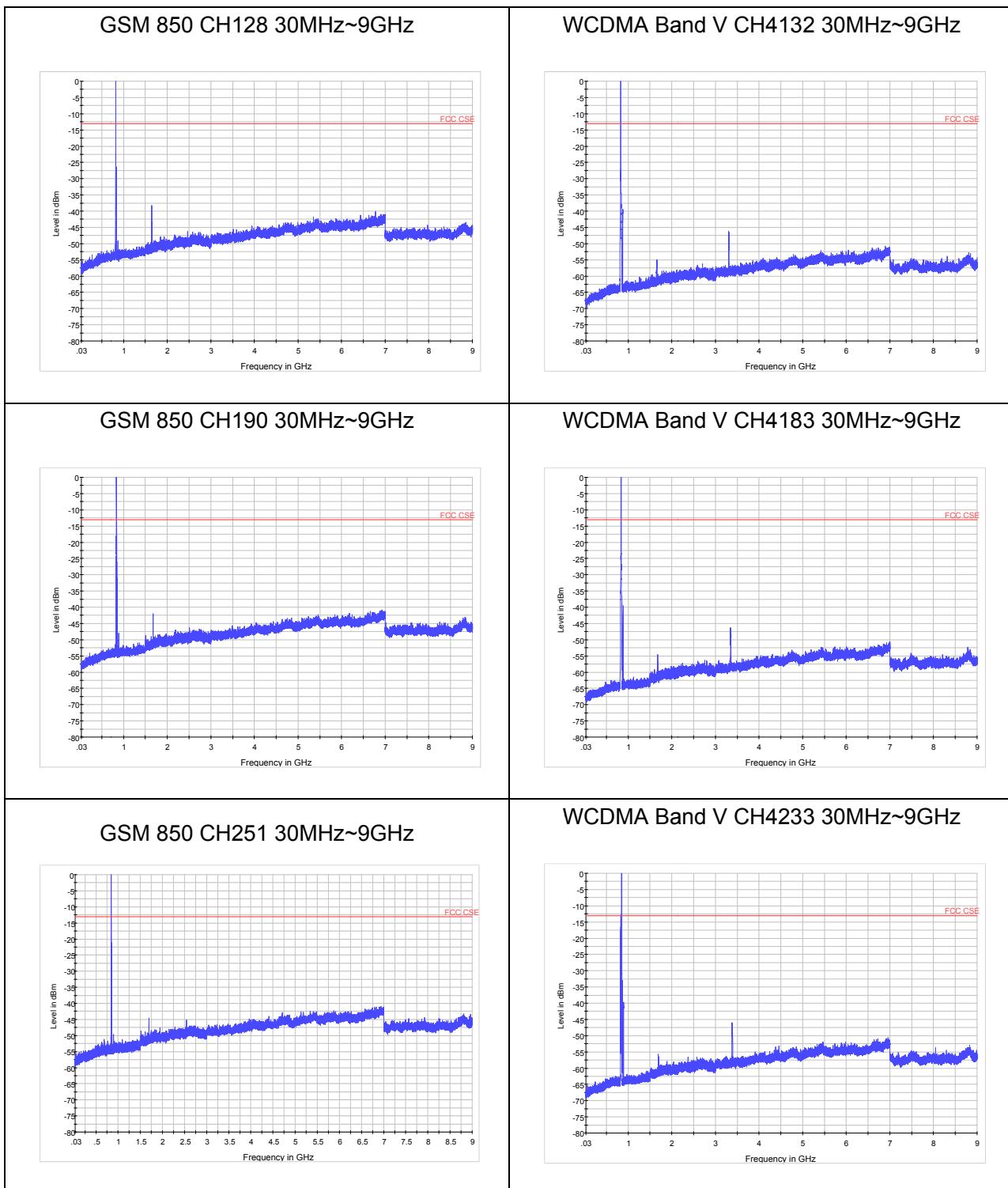
The EUT was connected to Spectrum Analyzer and Base Station Simulator via power Splitter. The measurement is carried out using a spectrum analyzer. The spectrum analyzer scans from 30MHz to the 10th harmonic of the carrier. The peak detector is used. For GSM 850, RBW and VBW are set to 100 kHz, Sweep is set to ATUO. For WCDMA Band V, RBW and VBW are set to 100 kHz for the carrier frequency, or RBW and VBW are set to 1MHz (other frequency), Sweep is set to ATUO.

Test setup

Limits

Rule Part 22.917(a) specifies that "The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log (P)$ dB."

Limit	-13 dBm


Measurement Uncertainty

The assessed measurement uncertainty to ensure 99.75% confidence level for the normal distribution is with the coverage factor $k = 1.96$.

Frequency	Uncertainty
100kHz-2GHz	0.684 dB
2GHz-12.75GHz	1.407 dB

Test Result

If disturbances were found more than 20dB below limit line, the mark is not required for the EUT.

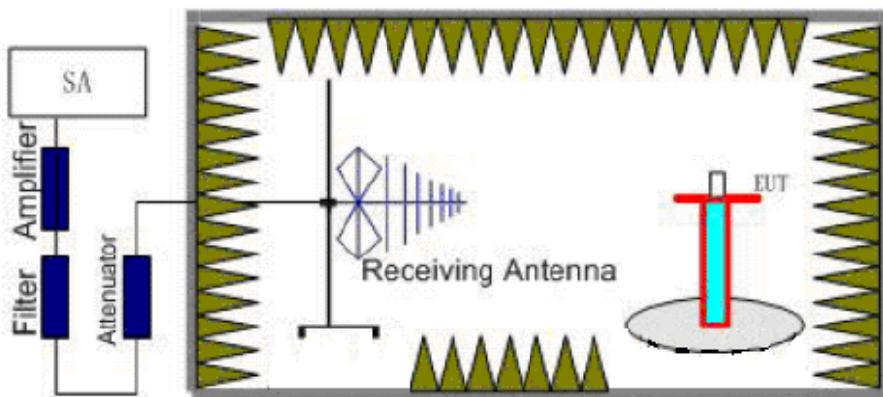
5.8. Radiates Spurious Emission

Ambient condition

Temperature	Relative humidity
21°C ~25°C	40%~60%

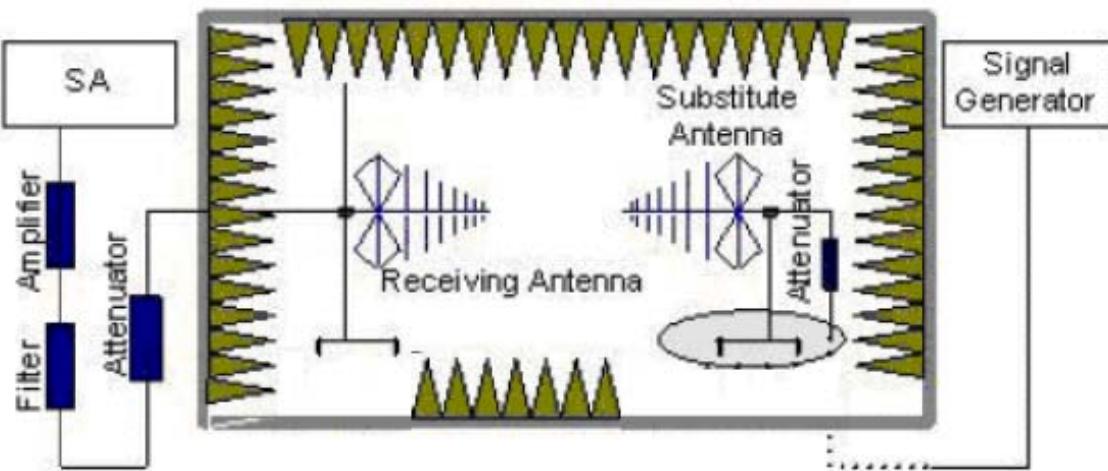
Method of Measurement

The measurements procedures in ANSI/TIA 603-D are used.


The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment.

The emissions less than 20 dB below the permissible value are reported.

The procedure of Radiates Spurious Emission is as follows:


Step 1:

The measurement is carried out in the semi-anechoic chamber. EUT was placed on a 1.5 meters high non-conductive table at a 3 meters test distance from the test receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT. A radio link shall be established between EUT and Tester. The output power of the cell signal of the tester will be decreased until the output power of the EUT reach a maximum value. A peak detector is used while RBW and VBW are both set to 3MHz. During the measurement, the highest emission was recorded from analyzer power level (LVL) from the 360 degrees rotation of the turntable and the test antenna moved up and down over a range from 1 to 4 meters in both horizontally and vertically polarized orientations. The test setup refers to figure below.

Step 2:

A dipole antenna shall be substituted in place of the EUT. The antenna will be driven by a signal generator with a adjustable S.G. applied through a Tx cable. Adjust the level of the signal generator output until the value of the receiver reach the previously recorded analyzer power level (LVL). Then The E.R.P. /E.I.R.P. of the EUT can be calculated through the level of the signal generator, Tx cable loss and the gain of the substitution antenna. The test setup refers to figure below.

E.R.P (peak power) = S.G. - Tx Cable loss + Substitution antenna gain - 2.15.

EIRP = E.R.P + 2.15

Limits

Rule Part 22.917(a) specifies that "The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB."

Limit	-13 dBm
-------	---------

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor $k = 1.96$, $U = 3.55$ dB.

Test Result

Receiver antenna polarization (horizontal and vertical), the worst emission was found in vertical polarization, and the worst case in vertical polarization was recorded.

GSM 850 CH128

Harmonic	Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Antenna Polarization	ERP Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
2	1648.1	-57.50	2	10.15	Vertical	-49.35	-13.00	36.35	270
3	2472.4	-55.29	2.51	11.35	Vertical	-46.45	-13.00	33.45	135
4	3296.8	-64.85	4.2	10.85	Vertical	-58.20	-13.00	45.20	180
5	4121.0	-63.95	5.2	11.35	Vertical	-57.80	-13.00	44.80	270
6	4945.2	-63.75	5.5	11.95	Vertical	-57.30	-13.00	44.30	0
7	5769.4	-65.05	5.7	13.55	Vertical	-57.20	-13.00	44.20	45
8	6593.6	-63.95	6.3	13.75	Vertical	-56.50	-13.00	43.50	180
9	7417.8	-62.75	6.8	13.85	Vertical	-55.70	-13.00	42.70	225
10	8242.0	-64.05	6.9	14.25	Vertical	-56.70	-13.00	43.70	45

Note: 1.The other Spurious RF Radiated emissions level is no more than noise floor.

GSM 850 CH190

Harmonic	Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Antenna Polarization	ERP Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
2	1672.9	-63.04	2	10.75	Vertical	-54.29	-13.00	41.29	270
3	2509.9	-52.48	2.51	11.05	Vertical	-43.94	-13.00	30.94	315
4	3346.4	-64.25	4.2	11.15	Vertical	-57.30	-13.00	44.30	0
5	4183.0	-63.45	5.2	11.15	Vertical	-57.50	-13.00	44.50	45
6	5019.6	-63.75	5.5	11.95	Vertical	-57.30	-13.00	44.30	180
7	5856.2	-64.65	5.7	13.55	Vertical	-56.80	-13.00	43.80	225
8	6692.8	-63.95	6.3	13.75	Vertical	-56.50	-13.00	43.50	45
9	7529.4	-62.25	6.8	13.85	Vertical	-55.20	-13.00	42.20	45
10	8366.0	-63.25	6.9	14.25	Vertical	-55.90	-13.00	42.90	90

Note: 1.The other Spurious RF Radiated emissions level is no more than noise floor.

GSM 850 CH251

Harmonic	Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Antenna Polarization	ERP Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
2	1697.3	-63.00	2	10.15	Vertical	-54.85	-13.00	41.85	0
3	2546.6	-50.84	2.51	11.05	Vertical	-42.30	-13.00	29.30	90
4	3395.2	-65.55	4.2	11.15	Vertical	-58.60	-13.00	45.60	270
5	4244.0	-64.45	5.2	11.15	Vertical	-58.50	-13.00	45.50	135
6	5092.8	-64.85	5.5	11.95	Vertical	-58.40	-13.00	45.40	270
7	5941.6	-66.15	5.7	13.55	Vertical	-58.30	-13.00	45.30	315
8	6790.4	-65.55	6.3	13.75	Vertical	-58.10	-13.00	45.10	0
9	7639.2	-63.05	6.8	13.85	Vertical	-56.00	-13.00	43.00	45
10	8488.0	-64.05	6.9	14.25	Vertical	-56.70	-13.00	43.70	180

Note: 1.The other Spurious RF Radiated emissions level is no more than noise floor.

WCDMA Band V CH4132

Harmonic	Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Antenna Polarization	ERP Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
2	1652.8	-69.35	2	10.15	Vertical	-61.20	-13.00	48.20	270
3	2479.2	-61.30	2.51	11.35	Vertical	-52.46	-13.00	39.46	270
4	3305.6	-63.35	4.2	10.85	Vertical	-56.70	-13.00	43.70	0
5	4132.0	-63.75	5.2	11.35	Vertical	-57.60	-13.00	44.60	45
6	4958.4	-63.25	5.5	11.95	Vertical	-56.80	-13.00	43.80	180
7	5784.8	-62.95	5.7	13.55	Vertical	-55.10	-13.00	42.10	225
8	6611.2	-63.85	6.3	13.75	Vertical	-56.40	-13.00	43.40	45
9	7437.6	-64.15	6.8	13.85	Vertical	-57.10	-13.00	44.10	45
10	8264.0	-63.65	6.9	14.25	Vertical	-56.30	-13.00	43.30	90

Note: 1.The other Spurious RF Radiated emissions level is no more than noise floor.

WCDMA Band V CH4183

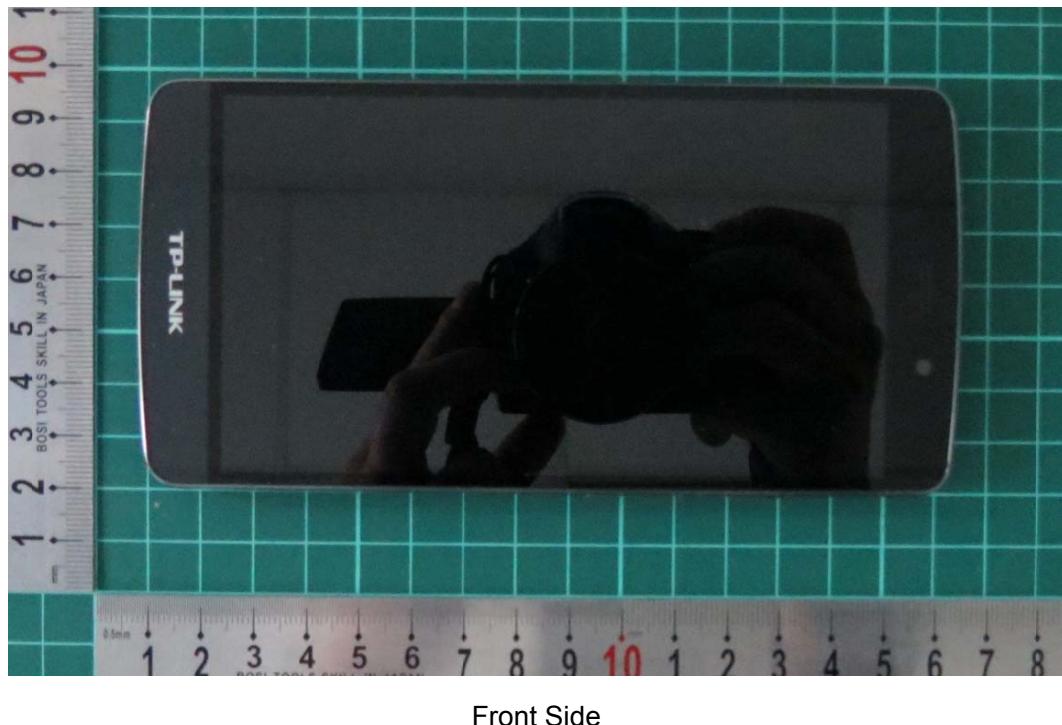
Harmonic	Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Antenna Polarization	ERP Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
2	1673.2	-70.55	2	10.75	Vertical	-61.80	-13.00	48.80	270
3	2509.8	-57.46	2.51	11.05	Vertical	-48.92	-13.00	35.92	135
4	3346.4	-58.19	4.2	11.15	Vertical	-51.24	-13.00	38.24	270
5	4183.0	-63.85	5.2	11.15	Vertical	-57.90	-13.00	44.90	270
6	5019.6	-63.95	5.5	11.95	Vertical	-57.50	-13.00	44.50	0
7	5856.2	-63.55	5.7	13.55	Vertical	-55.70	-13.00	42.70	45
8	6692.8	-64.35	6.3	13.75	Vertical	-56.90	-13.00	43.90	180
9	7529.4	-65.05	6.8	13.85	Vertical	-58.00	-13.00	45.00	225
10	8366.0	-64.55	6.9	14.25	Vertical	-57.20	-13.00	44.20	45

Note: 1.The other Spurious RF Radiated emissions level is no more than noise floor.

WCDMA Band V CH4233

Harmonic	Frequency (MHz)	SG (dBm)	Cable Loss (dB)	Gain (dBi)	Antenna Polarization	ERP Level (dBm)	Limit (dBm)	Margin (dB)	Azimuth (deg)
2	1693.2	-70.65	2	10.15	Vertical	-62.50	-13.00	49.50	45
3	2539.8	-56.53	2.51	11.05	Vertical	-47.99	-13.00	34.99	90
4	3386.4	-61.05	4.2	11.15	Vertical	-54.10	-13.00	41.10	270
5	4233.0	-64.45	5.2	11.15	Vertical	-58.50	-13.00	45.50	135
6	5079.6	-63.85	5.5	11.95	Vertical	-57.40	-13.00	44.40	270
7	5926.2	-63.95	5.7	13.55	Vertical	-56.10	-13.00	43.10	270
8	6772.8	-65.45	6.3	13.75	Vertical	-58.00	-13.00	45.00	0
9	7619.4	-64.95	6.8	13.85	Vertical	-57.90	-13.00	44.90	45
10	8466.0	-64.95	6.9	14.25	Vertical	-57.60	-13.00	44.60	180

Note: 1.The other Spurious RF Radiated emissions level is no more than noise floor.


6. Main Test Instruments

Name	Type	Manufacturer	Serial Number	Calibration Date	Expiration Time
Base Station Simulator	CMU200	R&S	118133	2015-05-22	2016-05-21
Power Splitter	SHX-GF2-2-13	Hua Xiang	10120101	NA	NA
Spectrum Analyzer	E4445A	Agilent	MY46181146	2015-05-22	2016-05-21
Spectrum Analyzer	N9010A	Agilent	MY47191109	2015-05-22	2016-05-21
Universal Radio Communication Tester	E5515C	Agilent	MY48367192	2015-12-17	2016-12-16
Signal Analyzer	FSV30	R&S	100815	2015-12-17	2016-12-16
Signal generator	SMB 100A	R&S	102594	2015-05-22	2016-05-21
Signal generator	SMR27	R&S	100365	2015-05-22	2016-05-21
EMI Test Receiver	ESCI	R&S	100948	2015-05-22	2016-05-21
Trilog Antenna	VUBL 9163	SCHWARZBECK	9163-201	2014-12-06	2017-12-05
Trilog Antenna	VUBL 9163	SCHWARZBECK	9163-391	2014-12-06	2017-12-05
Horn Antenna	HF907	R&S	100126	2014-12-06	2017-12-05
Horn Antenna	HF907	R&S	100125	2014-12-06	2017-12-05
Climatic Chamber	PT-30B	Re Ce	20101891	2015-07-18	2018-07-17
RF Cable	SMA 15cm	Agilent	0001	2016-02-08	2016-04-07

*****END OF REPORT*****

ANNEX A: EUT Appearance and Test Setup

A.1 EUT Appearance

a: EUT

Picture 1 EUT and Auxiliary

A.2 Test Setup

Picture 2: Radiated Spurious Emissions Test setup