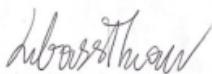


FCC PART 15, SUBPART C

ISED RSS-247, ISSUE 3, AUGUST 2023


TEST REPORT

For

Roku, Inc.

1173 Coleman Ave
San Jose, CA 95110, USA

FCC ID: TC2-R1056
IC: 5959A-R1054

Report Type: Original Report	Product Type: Streaming Player
Prepared By: Libass Thiaw RF Test Engineer	
Report Number: R2411112-DSS	
Report Date: 2025-03-06	
Reviewed By: Christian McCaig RF Lead Engineer	
<p>Bay Area Compliance Laboratories Corp. 1274 Anvilwood Avenue, Sunnyvale, CA 94089, USA Tel: (408) 732-9162 Fax: (408) 732-9164</p>	

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by A2LA*, NIST, or any agency of the Federal Government.

* This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk ** (Rev.2)

TABLE OF CONTENTS

1 General Description.....	5
1.1 Product Description for Equipment Under Test (EUT)	5
1.2 Mechanical Description of EUT	5
1.3 Objective.....	5
1.4 Related Submittal(s)/Grant(s)	5
1.5 Test Methodology	5
1.6 Measurement Uncertainty	6
1.7 Test Facility Registrations	6
1.8 Test Facility Accreditations	6
2 System Test Configuration.....	9
2.1 Justification.....	9
2.2 EUT Exercise Software.....	9
2.3 Duty Cycle Correction Factor.....	9
2.4 Equipment Modifications.....	12
2.5 Local Support Equipment	12
2.6 Support Equipment	12
2.7 Interface Ports and Cabling.....	12
3 Summary of Test Results	13
4 FCC §15.203 & ISEDC RSS-Gen §6.8 - Antenna Requirements	14
4.1 Applicable Standards	14
4.2 Antenna Description	15
5 FCC §2.1091, §15.247(i) & ISEDC RSS-102 - RF Exposure.....	16
5.1 Applicable Standards	16
5.2 MPE Prediction.....	17
5.3 RF exposure evaluation for FCC	18
5.4 RF exposure evaluation exemption for IC	18
4 FCC §15.207 & ISEDC RSS-Gen §8.8 - AC Line Conducted Emissions.....	19
4.1 Applicable Standards	19
4.2 Test Setup	19
4.3 Test Procedure	19
4.4 Corrected Amplitude & Margin Calculation.....	20
4.5 Test Setup Block Diagram	20
4.6 Test Equipment List and Details	21
4.7 Test Environmental Conditions	21
4.8 Summary of Test Results	21
4.9 Conducted Emissions Test Plots and Data.....	22
6 FCC §15.209, §15.247(d) & ISEDC RSS-247 §5.5, RSS-Gen §8.9, §8.10 - Spurious Radiated Emissions.....	24
6.1 Applicable Standards	24
6.2 Test Setup	26
6.3 Test Procedure	26
6.4 Corrected Amplitude and Margin Calculation	26
6.5 Test Setup and Block Diagram	27
6.6 Test Equipment List and Details	29
6.7 Test Environmental Conditions	30
6.8 Summary of Test Results	30
6.9 Radiated Emissions Test Results	31
7 FCC §15.247(a) (1) & ISEDC RSS-247 §5.1, RSS-Gen §6.6 - Emission Bandwidth.....	42
7.1 Applicable Standards	42
7.2 Measurement Procedure.....	42
7.3 Test Setup Block Diagram.....	43
7.4 Test Equipment List and Details	43
7.5 Test Environmental Conditions	43
7.6 Test Results.....	44
8 FCC §15.247(b) (1) & ISEDC RSS-247 §5.4 - Output Power	45

8.1	Applicable Standards	45
8.2	Measurement Procedure.....	45
8.3	Test Setup Block Diagram.....	46
8.4	Test Equipment List and Details	46
8.5	Test Environmental Conditions	46
8.6	Test Results.....	47
9	FCC §15.247(d) & ISEDC RSS-247 §5.5 – Spurious Emissions at Antenna Terminals 100 kHz Bandwidth of Band Edges.....	48
9.1	Applicable Standards	48
9.2	Measurement Procedure.....	48
9.3	Test Setup Block Diagram	49
9.4	Test Equipment List and Details	49
9.5	Test Environmental Conditions	49
9.6	Test Results.....	49
10	FCC §15.247(a) (1) (iii) & ISEDC RSS-247 §5.1 (4) - Dwell Time	50
10.1	Applicable Standards	50
10.2	Measurement Procedure.....	50
10.3	Test Setup Block Diagram.....	51
10.4	Test Equipment List and Details	52
10.5	Test Environmental Conditions	52
10.6	Test Results.....	52
11	FCC §15.247(a)(1)(iii) & ISEDC RSS-247 §5.1(4) - Number of Hopping Channels.....	53
11.1	Applicable Standards	53
11.2	Test Procedure	53
11.3	Test Setup Block Diagram	53
11.4	Test Equipment List and Details	54
11.5	Test Environmental Conditions	54
11.6	Test Results.....	54
12	FCC §15.247(a) (1) & ISEDC RSS-247 §5.1(2) - Hopping Channel Separation	55
12.1	Applicable Standards	55
12.2	Test Procedure	55
12.3	Test Setup Block Diagram.....	55
12.4	Test Equipment List and Details	56
12.5	Test Environmental Conditions	56
12.6	Test Results.....	56
13	Appendix A (Normative) - EUT Test Setup Photographs.....	57
14	Appendix B (Normative) - EUT External Photographs	58
15	Appendix C (Normative) - EUT Internal Photographs.....	59
16	Appendix D (Normative) - A2LA Electrical Testing Certificate	60

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	R2411112-DSS	Original Report	2025-03-06

1 General Description

1.1 Product Description for Equipment Under Test (EUT)

This test report is prepared on behalf of *Roku, Inc.*, and their product model: 3840X, FCC ID: TC2-R1056 IC: 5959A-R1054, the “EUT” as referred to in this report. The EUT has 2.4 GHz/ 5 GHz Wi-Fi and 2.4 GHz BLE/BT Classic capabilities.

Model Number	3840X
FCC ID	TC2-R1056
IC	5959A-R1054
Radio Type	BT Classic
Operating Frequency	2400-2483.5 MHz
Modulation	BDR: GFSK EDR: $\pi/4$ -DQPSK, 8DPSK

1.2 Mechanical Description of EUT

The UUT measures approximately 9.6 cm (L) x 2.0 cm (W) x 1.0 cm (H) and weighs approximately < 0.05 kg.

The data gathered was from a production sample provided by Roku, Inc. with S/N: SIGK34A15CAX

1.3 Objective

This report was prepared on behalf of *Roku, Inc.*, in accordance with Part 2, Subpart J, and Part 15, Subparts B and C of the Federal Communication Commission’s rules and ISED RSS-247 Issue 3, August 2023.

The objective was to determine compliance with FCC Part 15.247 and ISED RSS-247 rules for Output Power, Antenna Requirements, 20 dB Bandwidth, 100 kHz Bandwidth of Band Edges Measurement, Conducted and Radiated Spurious Emissions, Number of Hopping Channels, Dwell Time, and Hopping Channel Separation.

1.4 Related Submittal(s)/Grant(s)

FCC Part 15, Subpart C, Equipment DTS with FCC ID: TC2-R1056 IC: 5959A-R1054

FCC Part 15, Subpart E, Equipment NII with FCC ID: TC2-R1056 IC: 5959A-R1054

1.5 Test Methodology

All measurements contained in this report were conducted in accordance with ANSI C63.10-2020 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

1.6 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Parameter	Measurement uncertainty
Occupied Channel Bandwidth	$\pm 5\%$
RF output power, conducted	± 0.57 dB
Power Spectral Density, conducted	± 1.48 dB
Unwanted Emissions, conducted	± 1.57 dB
All emissions, radiated	± 4.0 dB
AC power line Conducted Emission	± 2.0 dB
Temperature	$\pm 2^\circ\text{C}$
Humidity	$\pm 5\%$
DC and low frequency voltages	$\pm 1.0\%$
Time	$\pm 2\%$
Duty Cycle	$\pm 3\%$

1.7 Test Facility Registrations

BACL's test facilities that are used to perform Radiated and Conducted Emissions tests are currently recognized by the Federal Communications Commission as Accredited with NIST Designation Number US1129.

BACL's test facilities that are used to perform Radiated and Conducted Emissions tests are currently registered with Industry Canada under Registration Numbers: 3062A.

BACL is a Chinese Taipei Bureau of Standards Metrology and Inspection (BSMI) validated Conformity Assessment Body (CAB), under Appendix B, Phase I Procedures of the APEC Mutual Recognition Arrangement (MRA). BACL's BSMI Lab Code Number is: SL2-IN-E-1002R

BACL's test facilities that are used to perform AC Line Conducted Emissions, Telecommunications Line Conducted Emissions, Radiated Emissions from 30 MHz to 1 GHz, and Radiated Emissions from 1 GHz to 6 GHz are currently recognized as Accredited in accordance with the Voluntary Control Council for Interference [VCCI] Article 15 procedures under Registration Number A-428.

1.8 Test Facility Accreditations

Bay Area Compliance Laboratories Corp. (BACL) is:

A- An independent, 3rd-Party, Commercial Test Laboratory accredited to ISO/IEC 17025:2017 by A2LA (Test Laboratory Accreditation Certificate Number 3297.02), in the fields of: Electromagnetic Compatibility and Telecommunications. Unless noted by an Asterisk (*) in the Compliance Matrix (See Section 3 of this Test Report), BACL's ISO/IEC 17025:2017 Scope of Accreditation includes all of the Test Method Standards and/or the Product Family Standards detailed in this Test Report..

BACL's ISO/IEC 17025:2017 Scope of Accreditation includes a comprehensive suite of EMC Emissions, EMC Immunity, Radio, RF Exposure, Safety and wireline Telecommunications test methods applicable to a wide range of product categories. These product categories include Central Office Telecommunications Equipment [including NEBS - Network Equipment Building Systems], Unlicensed and Licensed Wireless and RF devices,

Information Technology Equipment (ITE); Telecommunications Terminal Equipment (TTE); Medical Electrical Equipment; Industrial, Scientific and Medical Test Equipment; Professional Audio and Video Equipment; Industrial and Scientific Instruments and Laboratory Apparatus; Cable Distribution Systems, and Energy Efficient Lighting.

B- A Product Certification Body accredited to ISO/IEC 17065:2012 by A2LA (Product Certification Body Accreditation Certificate Number 3297.03) to certify

- For the USA (Federal Communications Commission):

- 1- All Unlicensed radio frequency devices within FCC Scopes A1, A2, A3, and A4;
- 2- All Licensed radio frequency devices within FCC Scopes B1, B2, B3, and B4;
- 3- All Telephone Terminal Equipment within FCC Scope C.

- For the Canada (Industry Canada):

- 1 All Scope 1-Licence-Exempt Radio Frequency Devices;
- 2 All Scope 2-Licensed Personal Mobile Radio Services;
- 3 All Scope 3-Licensed General Mobile & Fixed Radio Services;
- 4 All Scope 4-Licensed Maritime & Aviation Radio Services;
- 5 All Scope 5-Licensed Fixed Microwave Radio Services
- 6 All Broadcasting Technical Standards (BETS) in the Category I Equipment Standards List.

- For Singapore (Info-Communications Development Authority (IDA)):

- 1 All Line Terminal Equipment: All Technical Specifications for Line Terminal Equipment – Table 1 of IDA MRA Recognition Scheme: 2011, Annex 2
2. All Radio-Communication Equipment: All Technical Specifications for Radio-Communication Equipment – Table 2 of IDA MRA Recognition Scheme: 2011, Annex 2

- For the Hong Kong Special Administrative Region:

- 1 All Radio Equipment, per KHCA 10XX-series Specifications;
- 2 All GMDSS Marine Radio Equipment, per HKCA 12XX-series Specifications;
- 3 All Fixed Network Equipment, per HKCA 20XX-series Specifications.

- For Japan:

- 1 MIC Telecommunication Business Law (Terminal Equipment):
 - All Scope A1 - Terminal Equipment for the Purpose of Calls;
 - All Scope A2 - Other Terminal Equipment
- 2 Radio Law (Radio Equipment):
 - All Scope B1 - Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 1 of the Radio Law
 - All Scope B2 - Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 2 of the Radio Law
 - All Scope B3 - Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 3 of the Radio Law

C- A Product Certification Body accredited to ISO/IEC 17065:2012 by A2LA (Product Certification Body Accreditation Certificate Number 3297.01) to certify Products to USA's Environmental Protection Agency (EPA) ENERGY STAR Product Specifications for:

- 1 Electronics and Office Equipment:
 - for Telephony (ver. 3.0)
 - for Audio/Video (ver. 3.0)
 - for Battery Charging Systems (ver. 1.1)
 - for Set-top Boxes & Cable Boxes (ver. 4.1)
 - for Televisions (ver. 6.1)
 - for Computers (ver. 6.0)
 - for Displays (ver. 6.0)
 - for Imaging Equipment (ver. 2.0)
 - for Computer Servers (ver. 2.0)

- 2 Commercial Food Service Equipment
 - for Commercial Dishwashers (ver. 2.0)
 - for Commercial Ice Machines (ver. 2.0)
 - for Commercial Ovens (ver. 2.1)
 - for Commercial Refrigerators and Freezers
- 3 Lighting Products
 - For Decorative Light Strings (ver. 1.5)
 - For Luminaires (including sub-components) and Lamps (ver. 1.2)
 - For Compact Fluorescent Lamps (CFLs) (ver. 4.3)
 - For Integral LED Lamps (ver. 1.4)
- 4 Heating, Ventilation, and AC Products
 - for Residential Ceiling Fans (ver. 3.0)
 - for Residential Ventilating Fans (ver. 3.2)
- 5 Other
 - For Water Coolers (ver. 3.0)

D- A NIST Designated Phase-I and Phase-II Conformity Assessment Body (CAB) for the following economies and regulatory authorities under the terms of the stated MRAs/Treaties:

- Australia: ACMA (Australian Communication and Media Authority) – APEC Tel MRA -Phase I;
- Canada: (Innovation, Science and Economic development Canada - ISEDC) Foreign Certification Body – FCB – APEC Tel MRA -Phase I & Phase II;
- Chinese Taipei (Republic of China – Taiwan):
 - o BSMI (Bureau of Standards, Metrology and Inspection) APEC Tel MRA -Phase I;
 - o NCC (National Communications Commission) APEC Tel MRA -Phase I;
- European Union:
 - o EMC Directive 2014/30/EU US-EU EMC & Telecom MRA CAB (NB)
 - o Radio Equipment (RE) Directive 2014/53/EU US-EU EMC & Telecom MRA CAB (NB)
 - o Low Voltage Directive (LVD) 2014/35/EU
- Hong Kong Special Administrative Region: (Office of the Telecommunications Authority – OFTA) APEC Tel MRA -Phase I & Phase II
- Israel – US-Israel MRA Phase I
- Republic of Korea (Ministry of Communications - Radio Research Laboratory) APEC Tel MRA -Phase I
- Singapore: (Infocomm Media Development Authority - IMDA) APEC Tel MRA -Phase I & Phase II;
- Japan: VCCI - Voluntary Control Council for Interference US-Japan Telecom Treaty VCCI Side Letter-
- USA:
 - o ENERGY STAR Recognized Test Laboratory – US EPA
 - o Telecommunications Certification Body (TCB) – US FCC;
 - o Nationally Recognized Test Laboratory (NRTL) – US OSHA
- Vietnam: APEC Tel MRA -Phase I;

2 System Test Configuration

2.1 Justification

The EUT was configured for testing in accordance to ANSI C63.10-2020

The worst-case data rates are determined by measuring the peak power across all data rates.

2.2 EUT Exercise Software

The test software used was “TeraTerm”. The software is compliant with the standard requirements being tested against.

Mode	Frequency (MHz)	Power Setting
DH1	2402	default
	2441	default
	2480	default
2DH1	2402	default
	2441	default
	2480	default
3DH1	2402	default
	2441	default
	2480	default

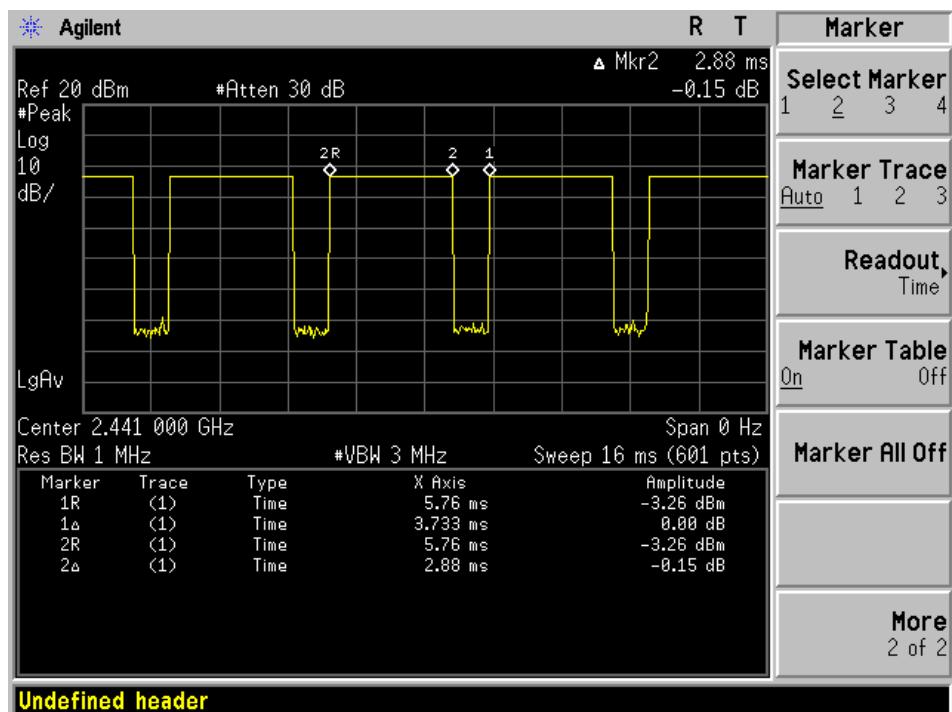
2.3 Duty Cycle Correction Factor

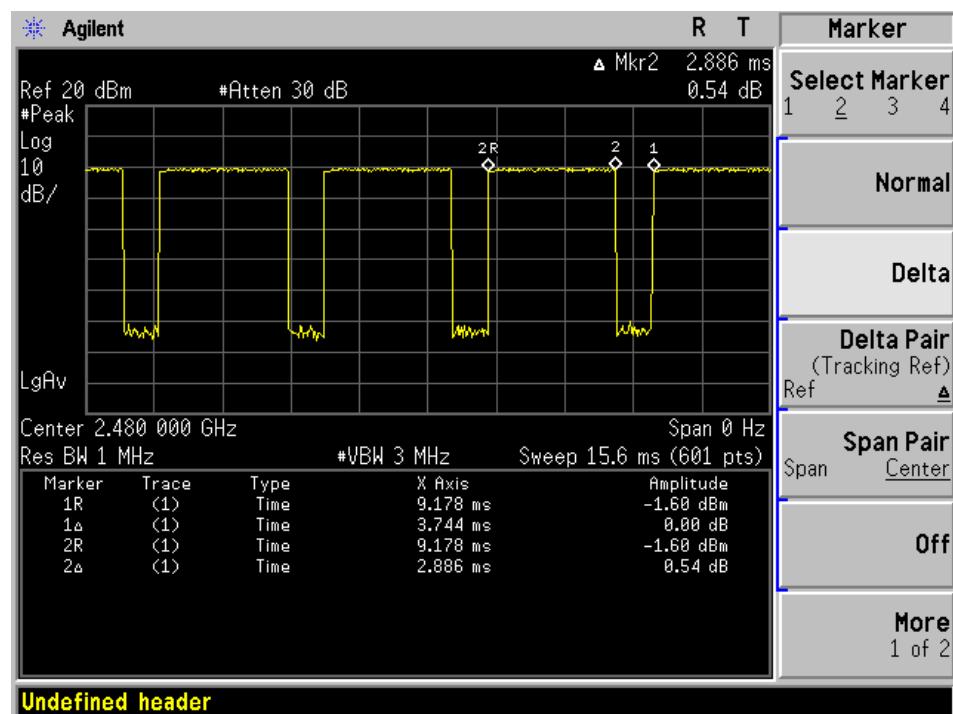
According to ANSI C63.10-2020 section 7.5:

Unless otherwise specified, when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 s (100 ms). In cases where the pulse train exceeds 0.1 s, the measured field strength shall be determined during a 0.1 s interval. The following procedure is an example of how the average value may be determined. The average field strength may be found by measuring the peak pulse amplitude (in log equivalent units) and determining the duty cycle correction factor (in dB) associated with the pulse modulation as shown in following equation:

$$\delta(\text{dB}) = 10\log(1/\Delta)$$

Where:


δ is the duty cycle correction factor (dB)


Δ is the duty cycle (dimensionless)

Radio Mode	On Time (ms)	Period (ms)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)
DH1	2.880	5.76	50	3.010
2DH1	2.872	3.741	76.771	1.148
3DH1	2.886	3.744	77.083	1.130

Duty Cycle = On Time (ms) / Period (ms)

DH1 Duty cycle

2DH1 Duty Cycle**3DH1 Duty Cycle**

2.4 Equipment Modifications

N/A

2.5 Local Support Equipment

Manufacturer	Description	Model
Dell	Laptop	Latitude E7440

2.6 Support Equipment

N/A

2.7 Interface Ports and Cabling

Cable Description	Length (m)	To	From
USB Cable	< 1 m	Laptop	EUT
RF Cable	< 1 m	EUT	PSA

3 Summary of Test Results

Results reported relate only to the product tested.

FCC and ISEDC Rules	Description of Test	Results
FCC §15.203 ISEDC RSS-Gen §6.8	Antenna Requirement	Compliant
FCC §2.1091, §15.247(i) ISEDC RSS-102	RF Exposure	Compliant
FCC §15.207 ISEDC RSS-Gen §8.8	AC Line Conducted Emissions	Compliant
FCC §2.1051, §15.247 (d) ISEDC RSS-247 §5.5	Spurious Emissions at Antenna Port	Compliant
	100 kHz Bandwidth of Frequency Band Edge	Compliant
FCC §2.1053, §15.205, §15.209, §15.247(d) ISEDC RSS-247 §5.5 ISEDC RSS-Gen §8.9, §8.10	Radiated Spurious Emissions	Compliant
FCC §15.247(a)(1) ISEDC RSS-247 §5.1 (1)	20 dB and 99% Emission Bandwidth	Compliant
FCC §15.247(b)(1) ISEDC RSS-247 §5.1(2)	Maximum Peak Output Power	Compliant
FCC §15.247(a)(1)(iii) ISEDC RSS-247 §5.1(4)	Number of Hopping Channels	Compliant
FCC §15.247(a)(1) ISEDC RSS-247 §5.1 (2)	Hopping Channel Separation	Compliant
FCC §15.247(a)(1)(iii) ISEDC RSS-247 §5.1 (4)	Dwell Time	Compliant

BACL is responsible for all the information provided in this report, except when information is provided by the customer as identified in this report. Information provided by the customer, e.g., antenna gain, can affect the validity of results.

4 FCC §15.203 & ISED RSS-Gen §6.8 - Antenna Requirements

4.1 Applicable Standards

According to FCC §15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

And according to FCC §15.247 (b) (4), if transmitting antennas of directional gain greater than 6 dBi are used the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

According to ISED RSS-Gen §6.8: Transmitter Antenna

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

For license-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location:

This radio transmitter [enter the device's ISED certification number] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device.

Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

4.2 Antenna Description

The antennas used by the EUT are permanent attached antennas.

External/Internal/ Integral	Antenna Usage	Antenna Type	Frequency Range (MHz)	Maximum Antenna Gain (dBi)
Integral	2.4 GHz BT	Chip	2402-2480	-0.1

Note: The antenna gain was provided by the customer.

5 FCC §2.1091, §15.247(i) & ISED RSS-102 - RF Exposure

5.1 Applicable Standards

According to FCC §15.247(i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

According to KDB 447 498 Section (7.2), "simultaneous transmission of MPE test exclusion applies when the sum of the MPE ratios for all simultaneous transmitting antennas incorporated in a host device, based on calculated or measured field strengths or power density, is ≤ 1.0 . The MPE ratio of each antenna is determined at the minimum *test separation distance* required by the operating configurations and exposure conditions of the host device, according to the ratio of field strengths or power density to MPE limit, at the test frequency.

Limits for General Population/Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)
Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	* (100)	30
1.34-30	824/f	2.19/f	* (180/f ²)	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	f/1500	30
1500-100,000	/	/	1.0	30

Where: f = frequency in MHz

* = Plane-wave equivalent power density

Before equipment certification is granted, the procedure of IC RSS-102 must be followed concerning the exposure of humans to RF field.

According to ISED RSS-102 Issue 6:

6.6 Field reference level exposure exemption limits

Field reference level (FRL) exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm (i.e. mobile devices), except when the device operates as follows:

- below 20 MHz and the source-based, time-averaged maximum EIRP of the device is equal to or less than 1 W (adjusted for tune-up tolerance)
- at or above 20 MHz and below 48 MHz and the source-based, time-averaged maximum EIRP of the device is equal to or less than $4.49/f^{0.5}W$ (adjusted for tune-up tolerance), where f is in MHz
- at or above 48 MHz and below 300 MHz and the source-based, time-averaged maximum EIRP of the device is equal to or less than 0.6 W (adjusted for tune-up tolerance)
- at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum EIRP of the device is equal to or less than $1.31 \times 10^{-2} f^{0.6834} W$ (adjusted for tune-up tolerance), where f is in MHz
- at or above 6 GHz and the source-based, time-averaged maximum EIRP of the device is equal to or less than 5 W (adjusted for tune-up tolerance)

In these cases, the information contained in the RF exposure technical brief may be limited to information that demonstrates how the EIRP was derived.

5.2 MPE Prediction

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2$$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

5.3 RF exposure evaluation for FCC

Worst Case: 3DH1, 2402 MHz

<u>Maximum output power at antenna input terminal (dBm):</u>	<u>10.28</u>
<u>Maximum output power at antenna input terminal (mW):</u>	<u>10.67</u>
<u>Prediction distance (cm):</u>	<u>20</u>
<u>Prediction frequency (MHz):</u>	<u>2402</u>
<u>Maximum Directional Antenna Gain, typical (dBi):</u>	<u>-0.1</u>
<u>Maximum Antenna Gain (numeric):</u>	<u>0.977</u>
<u>Power density of prediction frequency at 20.0 cm (mW/cm²):</u>	<u>0.00207</u>
<u>FCC MPE limit for uncontrolled exposure at prediction frequency (mW/cm²):</u>	<u>1.0</u>

The device is compliant with the requirement FCC MPE limit for uncontrolled exposure. The maximum power density at the distance of 20cm is 0.00207 mW/cm². Limit is 1.0 mW/cm².

Worst case colocation: BT Classic ratio + 5Wifi ratio. $0.00223/1 + 0.056/1 = 0.05823 < 1$

Worst case colocation: BT Classic ratio + 2.4Wifi ratio $0.00223/1 + 0.0181/1 = 0.02033 < 1$

5.4 RF exposure evaluation exemption for IC

Worst Case: 2402MHz frequency used for formula

Maximum EIRP power = $10.28 \text{ dBm} - 0.1 \text{ dBi} = 10.18 \text{ dBm}$ which is less than $1.31 \times 10^{-2} \times f^{0.6834} = 2.706 \text{ W} = 34.32 \text{ dBm}$

Therefore the RF exposure Evaluation is not required.

4 FCC §15.207 & ISED RSS-Gen §8.8 - AC Line Conducted Emissions

4.1 Applicable Standards

As per FCC §15.207 and ISED RSS-Gen §8.8 Conducted limits:

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Frequency of Emission (MHz)	Conducted Limit (dBuV)	
	Quasi-Peak	Average
0.15-0.5	66 to 56 ^{Note1}	56 to 46 ^{Note2}
0.5-5	56	46
5-30	60	50

Note1: Decreases with the logarithm of the frequency.

Note2: A linear average detector is required

4.2 Test Setup

The measurement was performed at shield room, using the setup per ANSI C63.10-2020 measurement procedure. The specification used were FCC §15.207 and ISED RSS-Gen §8.8 limits.

External I/O cables were draped along the edge of the test table and bundle when necessary.

The AC/DC power adapter of the EUT was connected with LISN-1 which provided 120 V / 60 Hz AC power.

4.3 Test Procedure

During the conducted emissions test, the power cord of the EUT host system was connected to the mains outlet of the LISN-1 and the power cords of support equipment were connected to LISN-2.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data were recorded in the peak, quasi-peak, and average detection mode. Quasi-Peak readings are distinguished with a “QP.” Average readings are distinguished with an “Ave”.

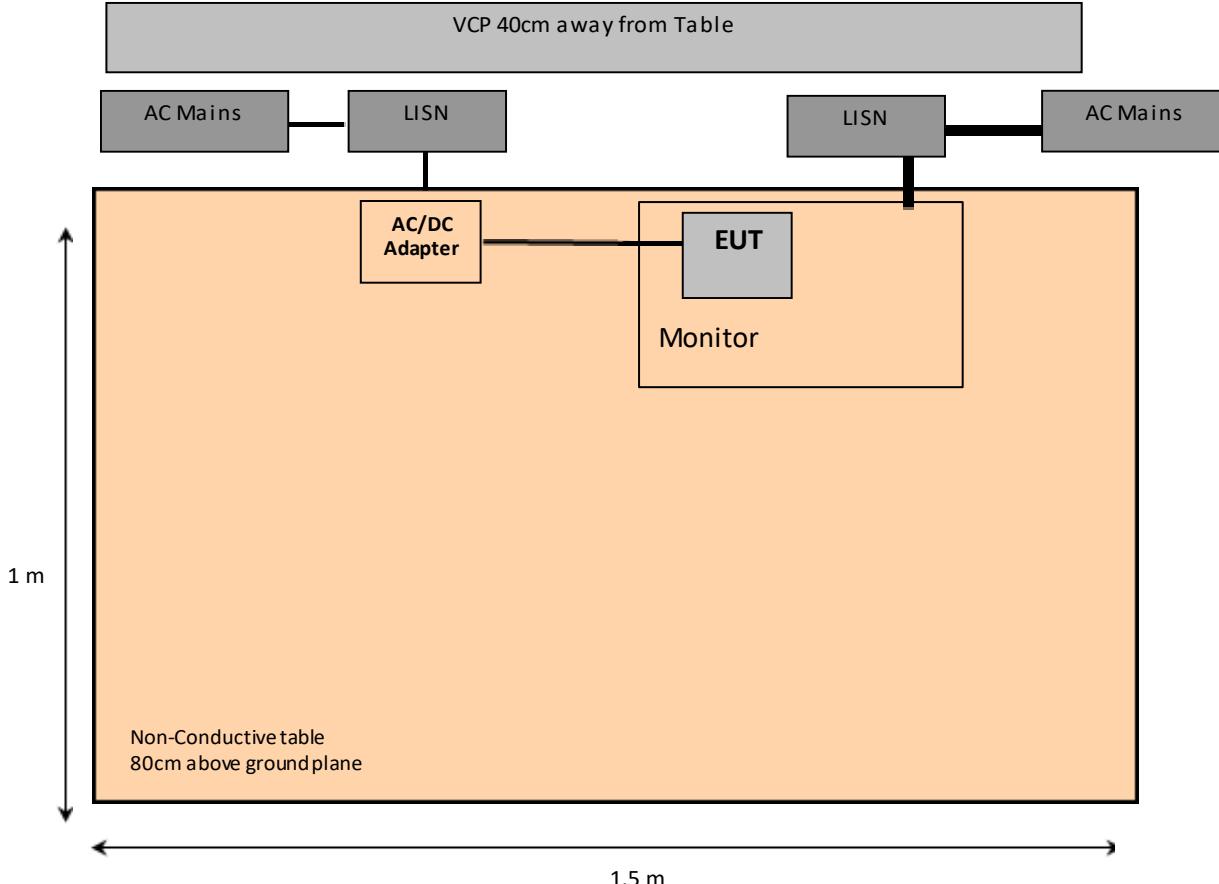
4.4 Corrected Amplitude & Margin Calculation

The Corrected Amplitude (CA) is calculated by adding the Correction Factor (CF) to indicated Amplitude (Ai) reading. The basic equation is as follows:

$$CA = Ai + CF$$

For example, a corrected amplitude of 46.2 dBuV = Indicated Reading (32.5 dBuV) + Correction Factor (13.7 dB)

The Correction Factor is calculated by adding Cable loss (CL) and attenuation of the impulse limiter and the high pass filter. The basic equation is as follows:


$$CF = CL + Attenuator$$

For example, a corrected amplitude of 13.7 dB = Cable Loss (3.7 dB) + Attenuation (10 dB)

The “Margin” column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Corrected Amplitude} - \text{Limit}$$

4.5 Test Setup Block Diagram

4.6 Test Equipment List and Details

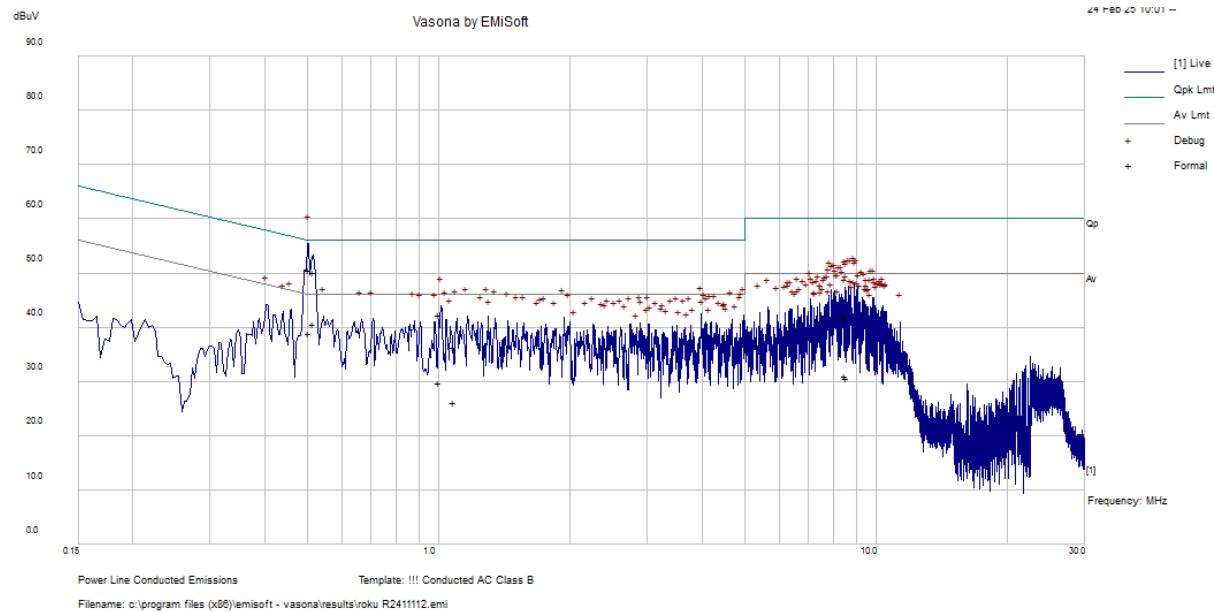
BACL No.	Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
124	Rohde & Schwarz	EMI Test Receiver	ESCI 1166.5950K03	100044	2024-06-19	1 year
681	Rohde & Schwarz	Impulse Limiter	ESH3-Z2	101962	2024-09-17	6 months
732	FCC	LISN	FCC-LISN-50-25-2-10-CISPR16	160129	2024-09-13	1 year
732	FCC	LISN	FCC-LISN-50-25-2-10-CISPR16	160129	2024-03-05	1 year
1425	Pasternack	Ground Plane RG58 Coaxial Cable	PE3441-500CM	NA	2025-01-07	6 months

Statement of Traceability: **BACL Corp.** attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with the latest version of A2LA policy P102 “A2LA Policy on Metrological Traceability”.

4.7 Test Environmental Conditions

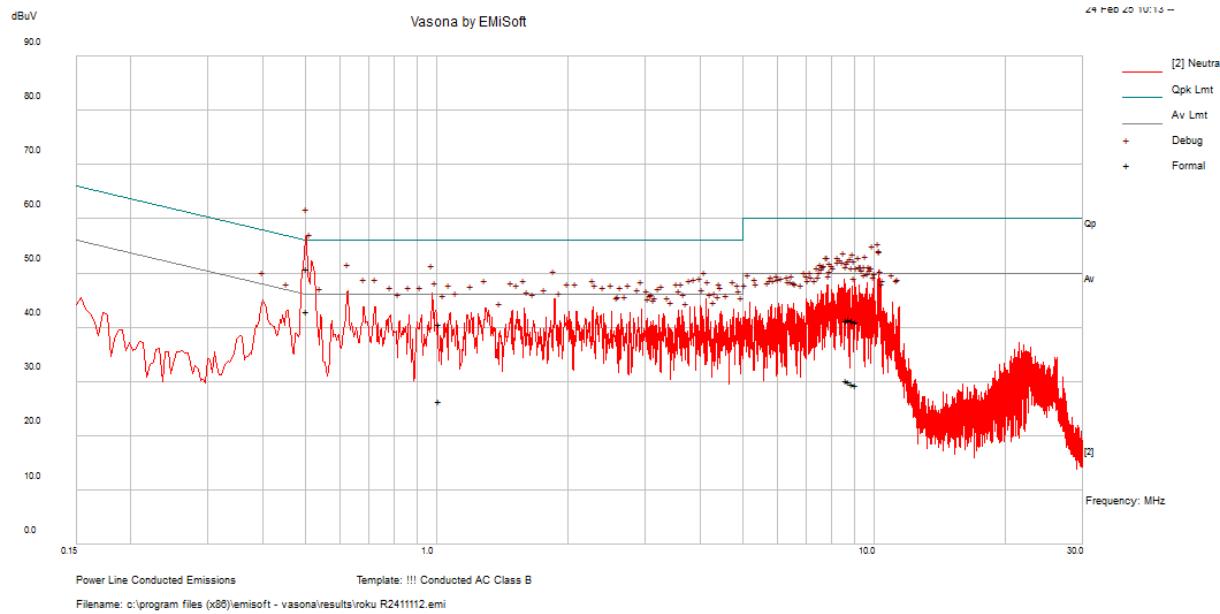
Temperature:	21 to 23 °C
Relative Humidity:	59 to 60.34 %
ATM Pressure:	101.6 kPa

The testing was performed by Shankar Pangeni on 2025-02-24 to 2025-02-27 in the 5 meter chamber 3.


4.8 Summary of Test Results

According to the recorded data in following table, the EUT complied with the FCC 15C and ISEDC RSS-Gen standard's conducted emissions limits, with the margin reading of:

Worst Case – AC Line (via AC/DC Adapter): 120V, 60Hz			
Margin (dB)	Frequency (MHz)	Conductor Mode (Live/Neutral)	Range (MHz)
-3.02	0.505303	Live	0.15 to 30


4.9 Conducted Emissions Test Plots and Data

AC Line (via AC/DC Adapter): 120V, 60Hz – Live Conductor

Frequency (MHz)	Ai. Reading (dBuV)	Correction Factor (dB)	Corrected Amplitude (dB μ V)	Limit (dB μ V)	Margin (dB)	Detector
0.505303	40.38	10.53	50.91	56	-5.09	QP
1.016729	30.4	10.27	40.68	56	-15.32	QP
8.935268	30.94	10.24	41.18	60	-18.82	QP
8.640349	31.12	10.24	41.36	60	-18.64	QP
9.066437	30.78	10.24	41.02	60	-18.98	QP
8.765303	31.31	10.24	41.55	60	-18.45	QP
0.505303	32.44	10.53	42.98	46	-3.02	Ave
1.016729	16.11	10.27	26.38	46	-19.62	Ave
8.935268	19.36	10.24	29.6	50	-20.4	Ave
8.640349	20.06	10.24	30.29	50	-19.71	Ave
9.066437	19.07	10.24	29.31	50	-20.69	Ave
8.765303	19.71	10.24	29.94	50	-20.06	Ave

AC Line (via AC/DC Adapter): 120V, 60Hz – Neutral Conductor

Frequency (MHz)	Ai. Reading (dBuV)	Correction Factor (dB)	Corrected Amplitude (dB μ V)	Limit (dB μ V)	Margin (dB)	Detector
0.502585	41.53	10.53	52.07	56	-3.93	QP
0.503123	41.2	10.53	51.74	56	-4.26	QP
0.622322	28.63	10.43	39.06	56	-16.94	QP
10.22158	30.04	10.25	40.3	60	-19.7	QP
0.979707	32.48	10.29	42.77	56	-13.23	QP
9.972915	30.22	10.25	40.47	60	-19.53	QP
0.502585	31.78	10.53	42.31	46	-3.69	Ave
0.503123	31.72	10.53	42.26	46	-3.74	Ave
0.622322	19.16	10.43	29.59	46	-16.41	Ave
10.22158	17.7	10.25	27.96	50	-22.04	Ave
0.979707	24.09	10.29	34.38	46	-11.62	Ave
9.972915	17.99	10.25	28.25	50	-21.75	Ave

6 FCC §15.209, §15.247(d) & ISEDC RSS-247 §5.5, RSS-Gen §8.9, §8.10 - Spurious Radiated Emissions

6.1 Applicable Standards

As per FCC §15.35(d): Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1 MHz.

As Per FCC §15.205(a) and RSS-Gen except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 – 0.110	16.42 – 16.423	960 – 1240	4.5 – 5.15
0.495 – 0.505	16.69475 – 16.69525	1300 – 1427	5.35 – 5.46
2.1735 – 2.1905	25.5 – 25.67	1435 – 1626.5	7.25 – 7.75
4.125 – 4.128	37.5 – 38.25	1645.5 – 1646.5	8.025 – 8.5
4.17725 – 4.17775	73 – 74.6	1660 – 1710	9.0 – 9.2
4.20725 – 4.20775	74.8 – 75.2	1718.8 – 1722.2	9.3 – 9.5
6.215 – 6.218	108 – 121.94	2200 – 2300	10.6 – 12.7
6.26775 – 6.26825	123 – 138	2310 – 2390	13.25 – 13.4
6.31175 – 6.31225	149.9 – 150.05	2483.5 – 2500	14.47 – 14.5
8.291 – 8.294	156.52475 – 156.52525	2690 – 2900	15.35 – 16.2
8.362 – 8.366	156.7 – 156.9	3260 – 3267	17.7 – 21.4
8.37625 – 8.38675	162.0125 – 167.17	3.332 – 3.339	22.01 – 23.12
8.41425 – 8.41475	167.72 – 173.2	3.3458 – 3.358	23.6 – 24.0
12.29 – 12.293	240 – 285	3.600 – 4.400	31.2 – 31.8
12.51975 – 12.52025	322 – 335.4		36.43 – 36.5
12.57675 – 12.57725	399.9 – 410		Above 38.6
13.36 – 13.41	608 – 614		

As per FCC §15.209(a): Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

As per FCC §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

As per ISED RSS-Gen 8.9,

Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in Table 4 or Table 5 below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission.

Table 4 – General Field Strength Limits for Licence-Exempt Transmitters at Frequencies Above 30 MHz

Frequency (MHz)	Field Strength (μv/m at 3 metres)
30-88	100
88-216	150
216-960	200
Above 960*	500

* Unless otherwise specified, for all frequencies greater than 1 GHz, the radiated emission limits for licence-exempt radio apparatus stated in applicable RSSs (including RSS-Gen) are based on measurements using a linear average detector function having a minimum resolution bandwidth of 1 MHz. If an average limit is specified for the EUT, then the peak emission shall also be measured with instrumentation properly adjusted for such factors as pulse desensitization to ensure the peak emission is less than 20 dB above the average limit.

Note: Transmitting devices are not permitted in restricted frequency bands unless stated otherwise in the specific RSS.

As per ISED RSS-247 §5.5, in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

6.2 Test Setup

The radiated emissions tests were performed in the 5-meter Chamber, using the setup in accordance with ANSI C63.10-2020. The specification used was the FCC 15 Subpart C and ISED RSS-247 limits.

The spacing between the peripherals was 10 centimeters.

External I/O cables were draped along the edge of the test table and bundle when necessary.

6.3 Test Procedure

For the radiated emissions test, the EUT host, and all support equipment power cords was connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

The EUT was set 3 meter away from the testing antenna, which was varied from 1-4 meter, and the EUT was placed on a turntable, which was 0.8 meter and 1.5 meter above the ground plane for below and above 1000 MHz measurements, the table shall be rotated for 360 degrees to find out the highest emission. The receiving antenna should be changed the polarization both of horizontal and vertical.

The spectrum analyzer or receiver is set as:

Below 1000 MHz:

$$\text{RBW} = 100 \text{ kHz} / \text{VBW} = 300 \text{ kHz} / \text{Sweep} = \text{Auto}$$

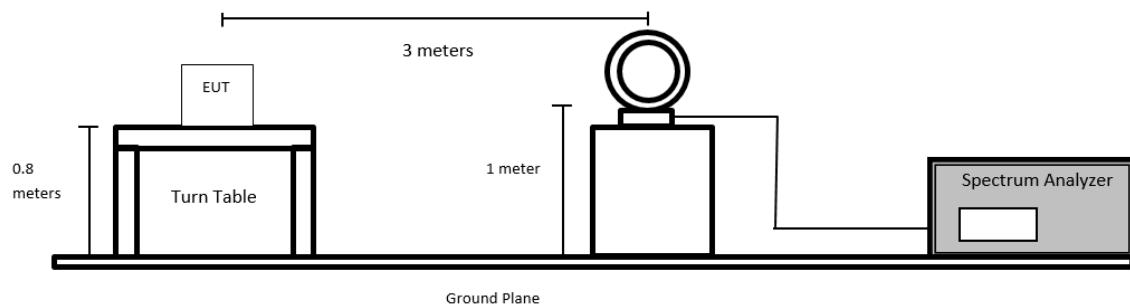
Above 1000 MHz:

- (1) Peak: $\text{RBW} = 1\text{MHz} / \text{VBW} = 1\text{MHz} / \text{Sweep} = \text{Auto}$
- (2) Average: $\text{RBW} = 1\text{MHz} / \text{VBW} = 10\text{kHz} / \text{Sweep} = \text{Auto}$

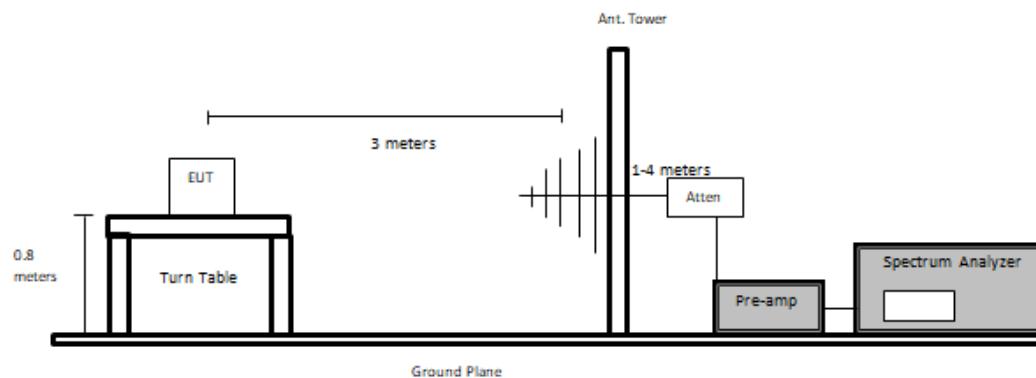
6.4 Corrected Amplitude and Margin Calculation

The Corrected Amplitude (CA) is calculated by adding the Antenna Factor (AF), the Cable Loss (CL), the Attenuator Factor (Atten) and subtracting the Amplifier Gain (Ga) to indicated Amplitude (Ai) reading. The basic equation is as follows:

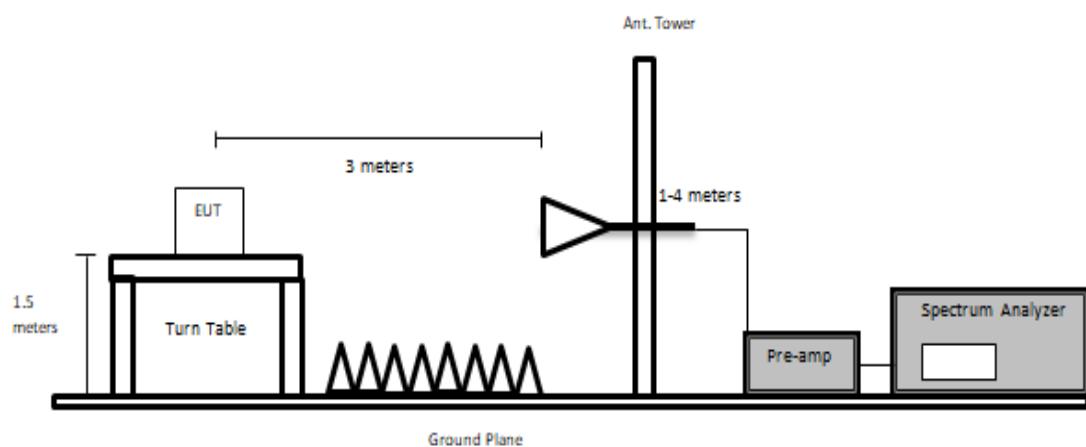
$$\text{CA} = \text{Ai} + \text{AF} + \text{CL} + \text{Atten} - \text{Ga}$$

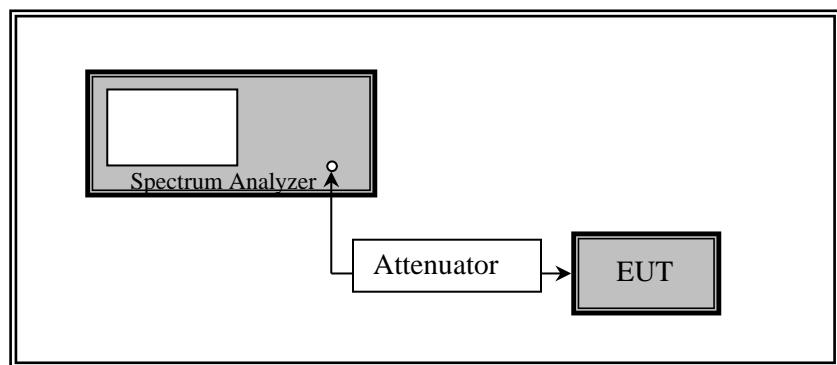

For example, a corrected amplitude of 40.3 dBuV/m = Indicated Reading (32.5 dBuV) + Antenna Factor (+23.5dB) + Cable Loss (3.7 dB) + Attenuator (10 dB) - Amplifier Gain (29.4 dB)

The “Margin” column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:


$$\text{Margin} = \text{Corrected Amplitude} - \text{Limit}$$

6.5 Test Setup and Block Diagram


9 kHz to 30 MHz


30 MHz to 1 GHz

Above 1 GHz

Conducted Set-up:

6.6 Test Equipment List and Details

Equipment list for Radiated Tests

BACL No.	Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
327	Sunol Sciences	System Controller	SC110V	122303-1	N/R	N/R
1075	Sunol Sciences	Boresight Tower	TLT3	050119-7	N/R	N/R
1388	Sunol Sciences	Flush Mount Turntable	FM	112005-2	N/R	N/R
1432	Keysight Technologies	MXE EMI Receiver, Multi-touch	N9038B	MY60180008	2025-01-03	1 year
316	Sonoma Instruments	Preamplifier 10 kHz - 2.5 GHz	317	260406	2024-08-30	6 months
321	Sunol Sciences	Biconilog Antenna	JB3	A020106-2, 1504	2023-12-18	2 years
1245	-	6dB Attenuator	PE7390-6	01182018A	2023-12-18	2 years
1246	Hewlet Packard	RF Limiter	11867A	1734	2024-04-09	1 year
1248	Pasternack	RG214 COAX Cable	PE3062	-	2024-10-01	6 months
1249	Time microwave	LMR-400 Cable Dc-3 GHz	AE13684	2k80612-5 6fts	2024-04-09	1 year
1456	Pasternack	11m LMR-400 RF Cable	PE3C0033-1100CM	NA	2025-01-27	6 months ¹
1192	ETS Lindgren	Horn Antenna	3117	218973	2024-10-23	2 years
1397	Mini Circuit	CBL ASSY 2.92MM PLUG TO PLUG 12"	FL086-12KM+	QN2318110-2318	2024-08-16	6 months
1449	BACL	Preamplifier	BACL1313-A100M18G	4052472	2024-08-19	6 months
90	Wisewave	Horn Antenna	ARH-4223-02	10555-01	2023-05-02	2 years
1394	Mini Circuit	CBL ASSY 2.92MM PLUG TO PLUG 12"	FL086-12KM+	QN2318110-2318	2024-08-16	6 months
1451	BACL	Preamplifier	BACL-1313-A1840	4052432	2024-08-16	6 months
393	Com-Power	Loop Antenna, Active	AL-130	17043	2023-05-26	2 years
1334	Micro-Tronics	Notch Filter	BRM50702	G361	2024-12-31	1 year

Note¹: The equipment with BACL number 1456 was used for testing in the 30MHz to 1 GHz frequency range on 2025-01-27.

Statement of Traceability: **BACL Corp.** attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with the latest version of A2LA policy P102 "A2LA Policy on Metrological Traceability".

Equipment list for Conducted in lieu of Radiated Bandedge Tests:

BACL No.	Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
624	Agilent	Spectrum Analyzer	E4446A	MY48250238	2024-06-14	1 year
-	-	10dB Attenuator	-	-	-	-
-	-	RF Cable	-	-	-	-

Note¹: cables, attenuators and notch filters included in the test set-up were checked each time before testing.

Statement of Traceability: *BACL Corp.* attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with the latest version of A2LA policy P102 “A2LA Policy on Metrological Traceability”.

6.7 Test Environmental Conditions

Temperature:	20– 22.5°C
Relative Humidity:	55%
ATM Pressure:	101.85 kPa

The testing was performed by Arturo Reyes and Michael Papa from 2025-01-22 to 2025-01-27 in 5m chamber 3.

Conducted testing was performed by Shankar Pangeni from 2024-02-10 at RF site

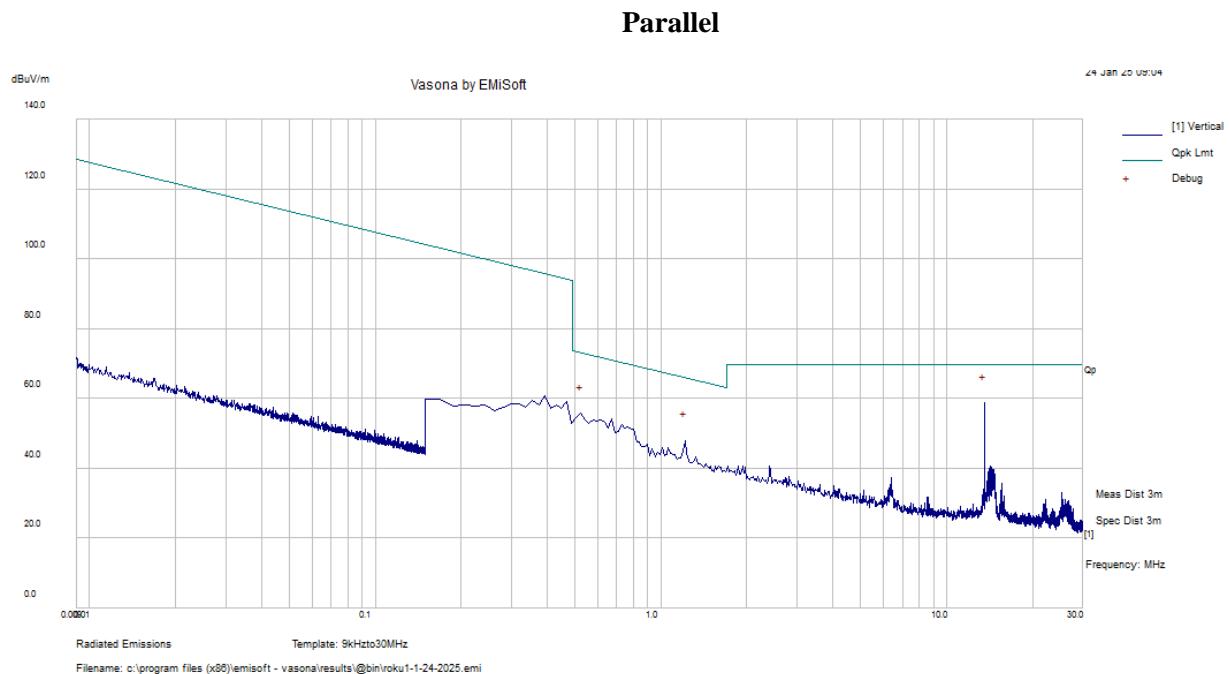
6.8 Summary of Test Results

According to the data hereinafter, the EUT complied with FCC Title 47, Part 15C and ISEDC RSS-247 standard's radiated emissions limits, and had the worst margin of:

Mode: Transmitting			
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Mode, Channel
-4.97	4804.39	Horizontal	3DH5, 2402 MHz

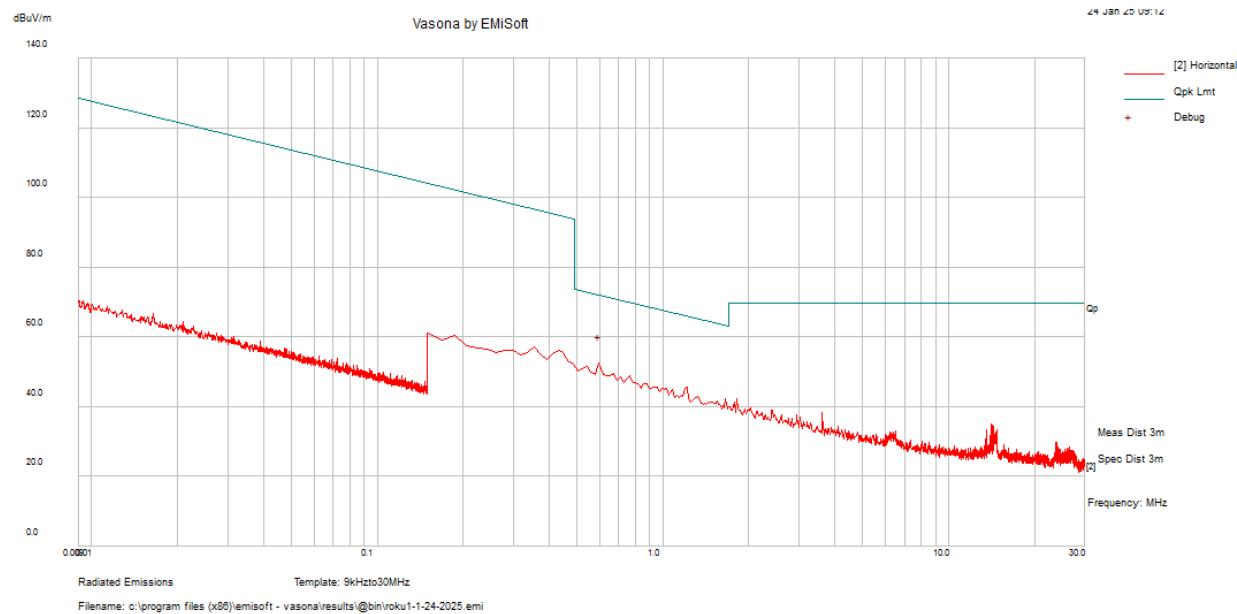
Please refer to the following table and plots for specific test result details.

6.9 Radiated Emissions Test Results


Note: Below test data are the radiated measurements. For conducted band edge measurements at the antenna port please refer to ANNEX C.

Note: Pre-scan was performed in order to determine worst-case orientation of device with respect to measurement antenna in the X/Y/Z axis. Plots/data shown represent measurements made in worst-case orientation.

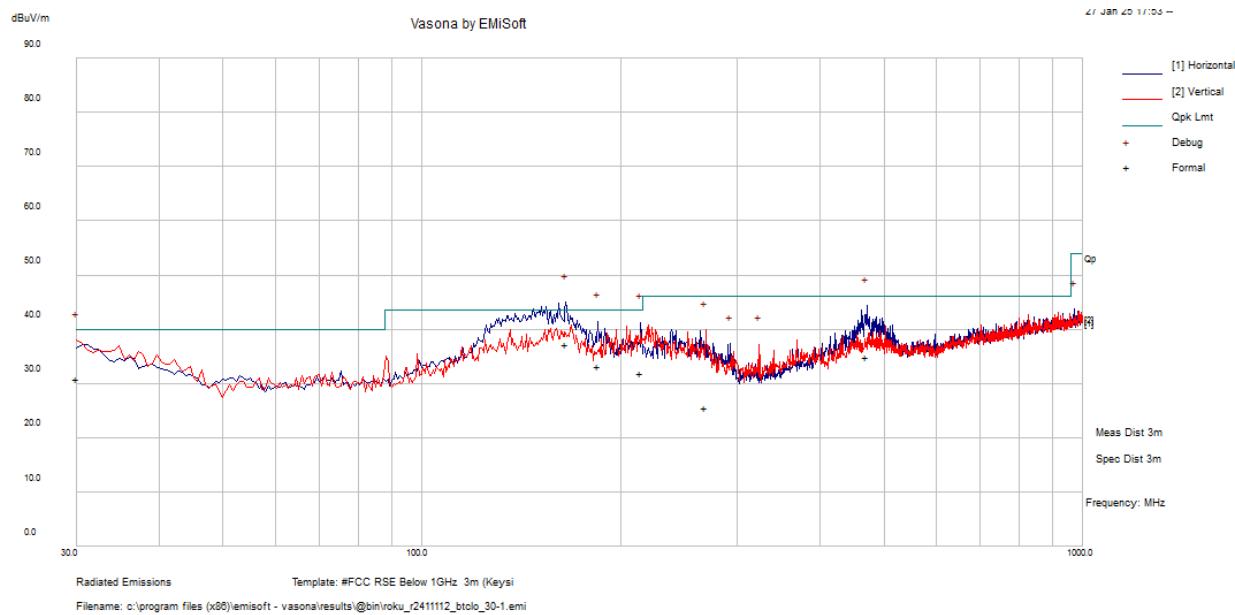
Note: worst-case scans performed on worst configs per modulation family(i.e. DH1).


Note: See DTS and NII reports for colocation RSE test results

1) 9 kHz – 30 MHz Worst Case, Measured at 3 meters

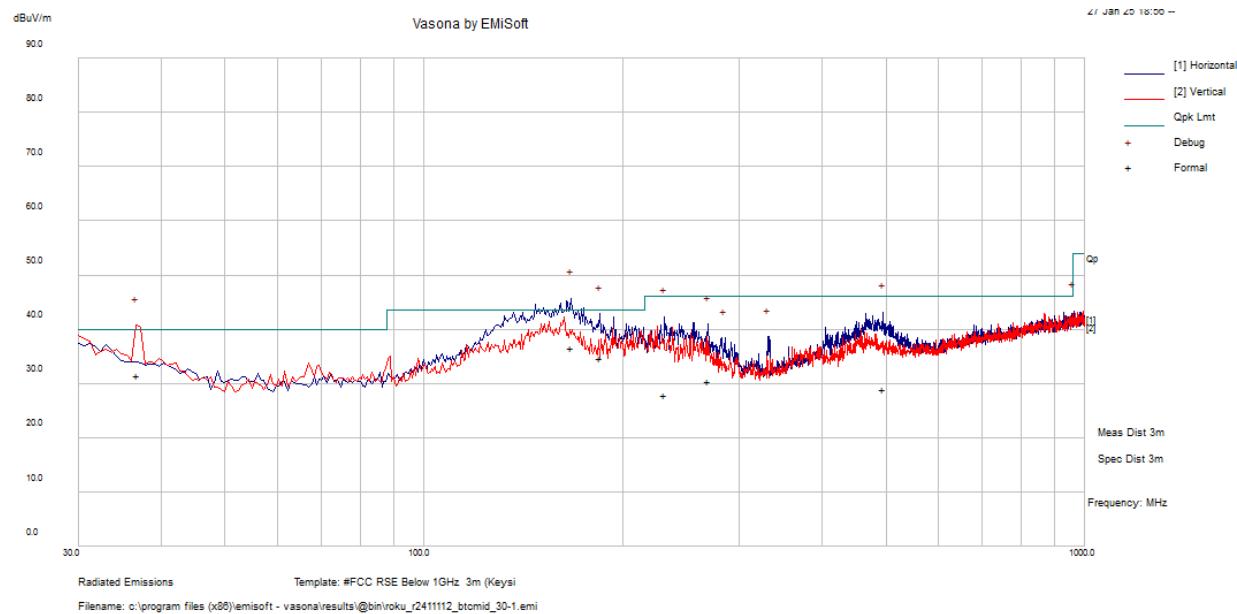
Frequency (MHz)	S.A. Reading (dBuV)	Correction Factor (dB/m)	Corrected Amplitude (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
13.56384	48.19	10.46	58.65	69.54	-10.89	Peak
0.523125	45.54	10.13	55.67	73.23	-17.57	Peak
1.213406	37.77	10.08	47.85	65.92	-18.08	Peak

Note: Peak emissions are compared to QP limits to show worst-case compliance.

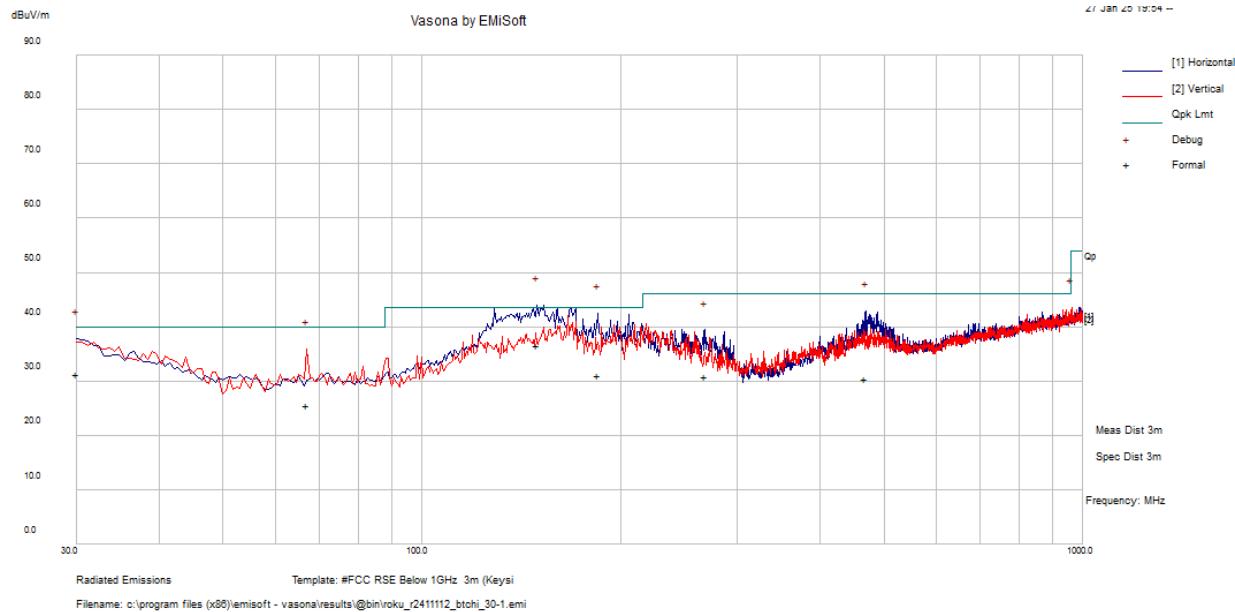

Perpendicular

Frequency (MHz)	S.A. Reading (dB μ V)	Correction Factor (dB/m)	Corrected Amplitude (dB μ V/m)	Antenna Polarity (H/V)	Limit (dB μ V/m)	Margin (dB)	Detector
0.59775	42.24	10.11	52.35	H	72.08	-19.72	Peak

Note: Peak emissions are compared to QP limits to show worst-case compliance.


2) 30 MHz – 1 GHz Worst Case, Measured at 3 meters

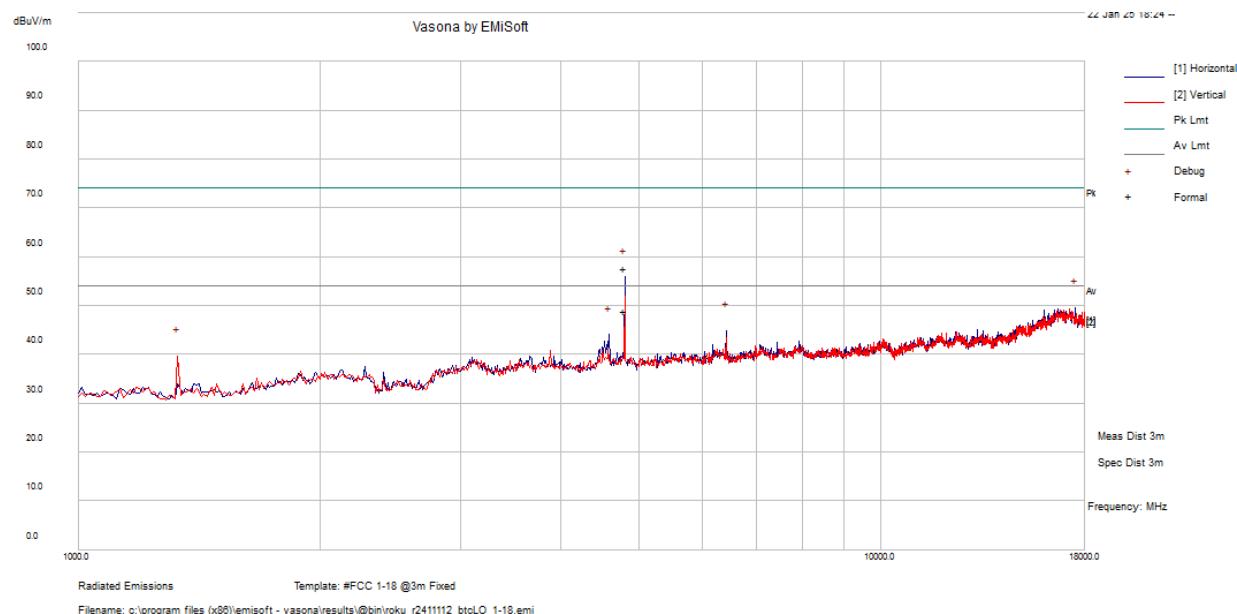
3DH1, 2402 MHz


Frequency (MHz)	S.A. Reading (dBuV)	Correction Factor (dB/m)	Corrected Amplitude (dB μ V/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dB μ V/m)	Margin (dB)	Detector
165.3197	45.72	-8.43	37.29	133	H	207	43.5	-6.21	QP
470.9791	36.44	-1.54	34.9	162	H	129	46	-11.1	QP
30	31.48	-0.58	30.9	289	V	259	40	-9.11	QP
184.4984	42.43	-9.21	33.22	260	H	339	43.5	-10.28	QP
214.2738	41.72	-9.82	31.9	301	H	217	43.5	-11.6	QP
268.8525	32.65	-7.16	25.49	147	V	318	46	-20.51	QP

3DH1, 2441 MHz

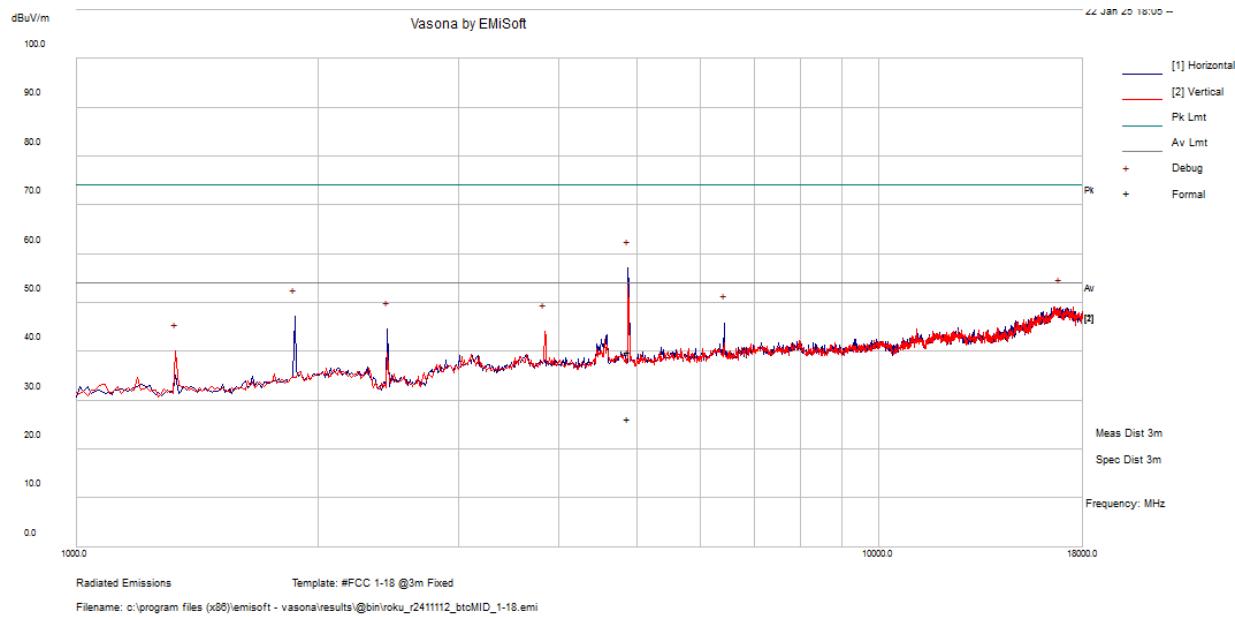
Frequency (MHz)	S.A. Reading (dB μ V)	Correction Factor (dB/m)	Corrected Amplitude (dB μ V/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dB μ V/m)	Margin (dB)	Detector
167.1334	45.04	-8.55	36.49	127	H	203	43.5	-7.01	QP
36.81313	36.69	-5.25	31.44	103	V	138	40	-8.56	QP
184.7647	43.79	-9.21	34.58	250	H	352	43.5	-8.92	QP
495.7334	30.5	-1.48	29.02	211	H	216	46	-16.98	QP
231.2969	37.08	-9.16	27.92	258	H	309	46	-18.08	QP
269.7047	37.45	-7.10	30.35	203	H	245	46	-15.65	QP

3DH1, 2480 MHz

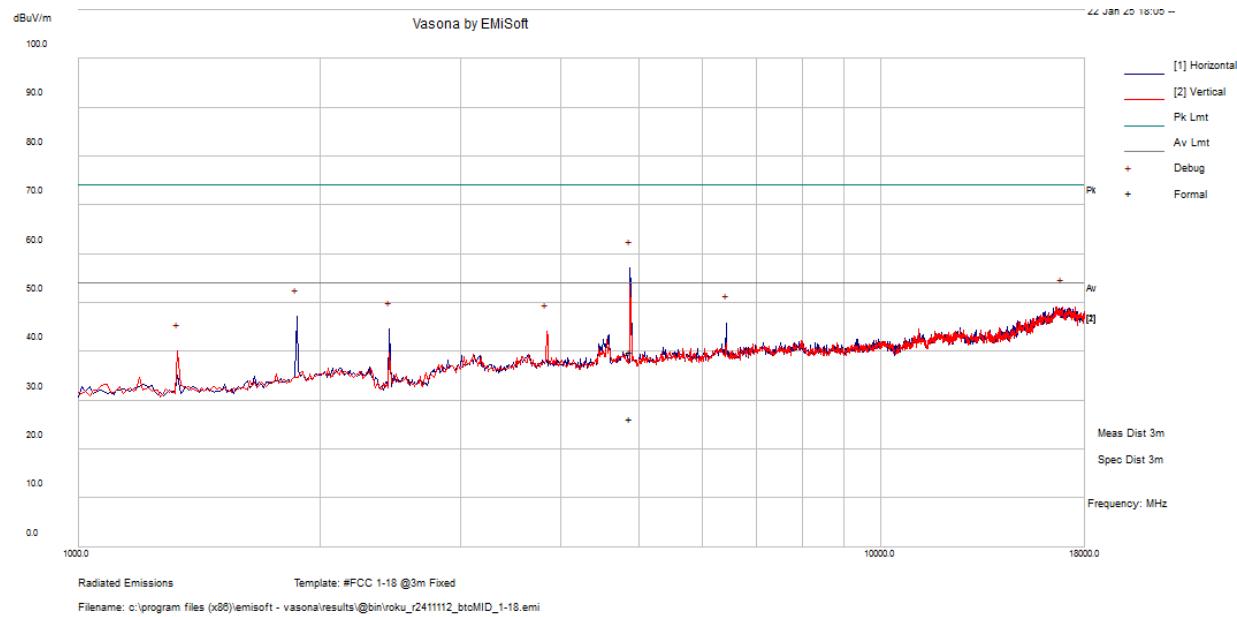

Frequency (MHz)	S.A. Reading (dBuV)	Correction Factor (dB/m)	Corrected Amplitude (dB μ V/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dB μ V/m)	Margin (dB)	Detector
149.6144	44.49	-7.95	36.54	172	H	267	43.5	-6.96	QP
184.5866	40.26	-9.21	31.05	232	H	188	43.5	-12.45	QP
30.01532	31.96	-0.6	31.36	284	H	78	40	-8.64	QP
469.3775	32.06	-1.61	30.45	176	H	149	46	-15.55	QP
67.06344	38.65	-13.02	25.63	284	V	152	40	-14.37	QP
268.4203	37.97	-7.19	30.78	271	H	66	46	-15.22	QP

FCC/IC Limits for 1 GHz to 26.5 GHz			
Applicability	(dBm)	(uV/m at 3meters)	(dBuV/m at 3meters)
Restricted Band Average Limit	-	500	54
Restricted Band Peak Limit ¹	-	-	74

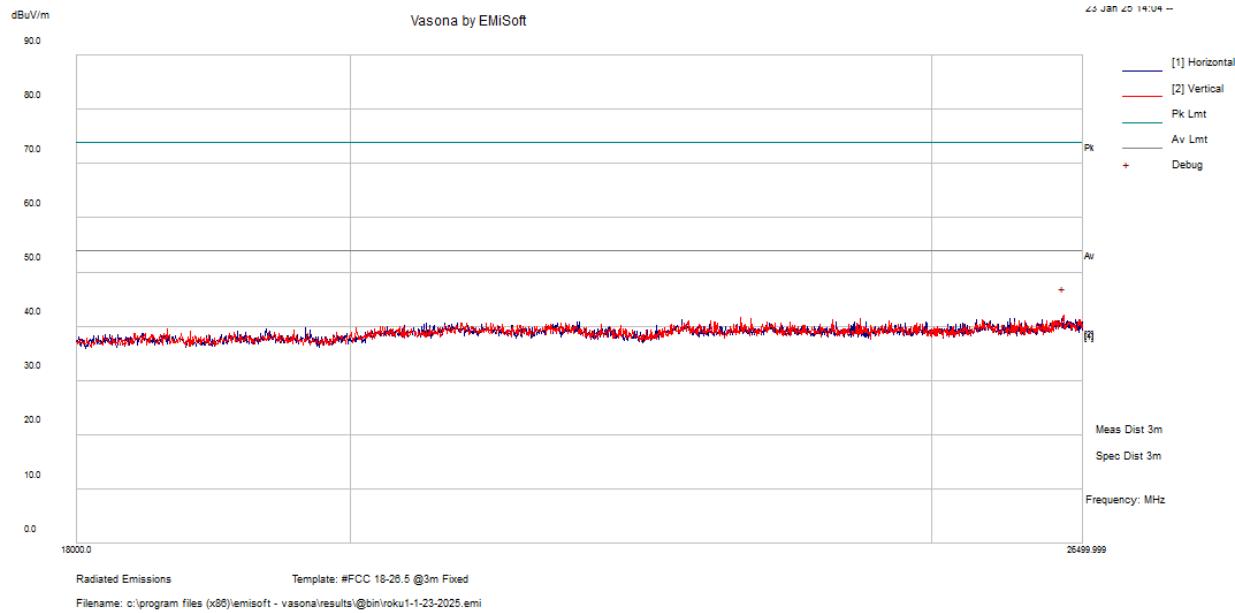
Note¹: Restricted Band Peak Limit is defined to be 20dB higher than Average Limit.


3) 1 –18 GHz Scan at 3 Meters

3DH1, 2402 MHz

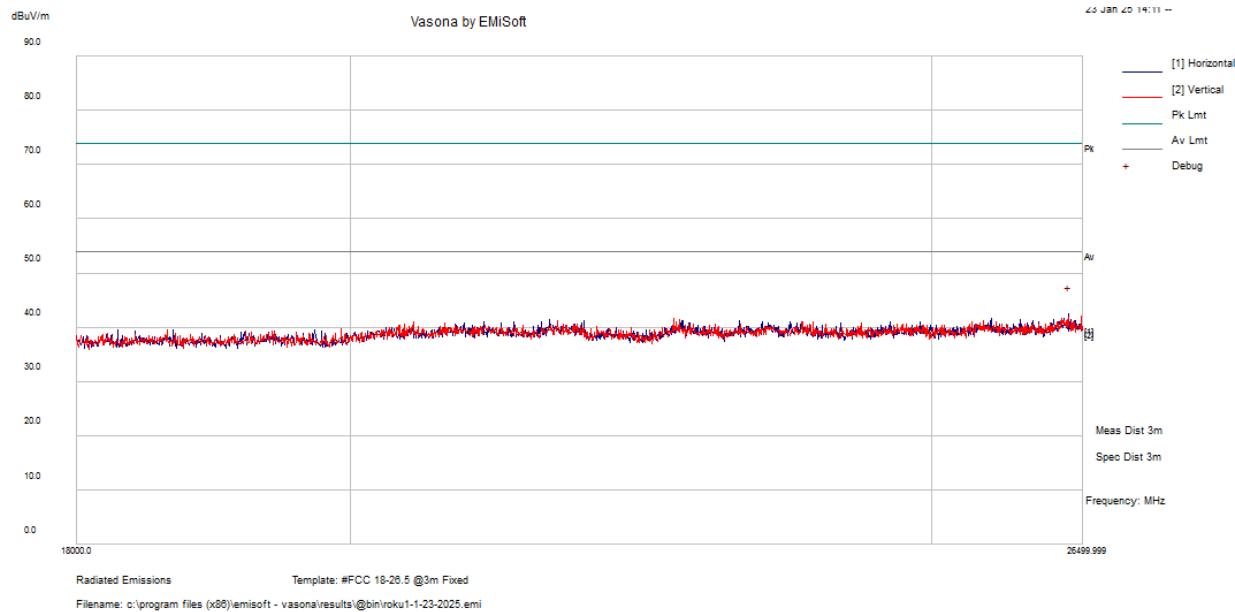

Frequency (MHz)	S.A. Reading (dBuV)	Correction Factor (dB/m)	Corrected Amplitude (dB μ V/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dB μ V/m)	Margin (dB)	Detector
4804.39	57.88	-0.27	57.61	189	H	102	74	-16.39	Peak
4804.39	49.3	-0.27	49.03	189	H	102	54	-4.97	Average

3DH1, 2441 MHz



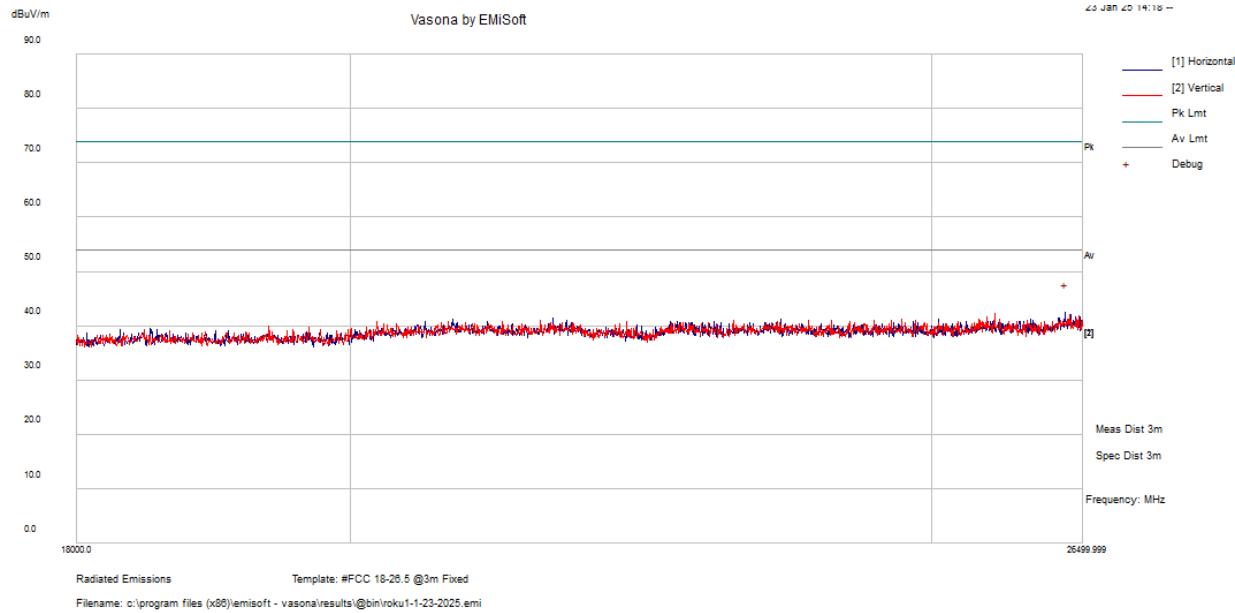
Frequency (MHz)	S.A. Reading (dB μ V)	Correction Factor (dB/m)	Corrected Amplitude (dB μ V/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dB μ V/m)	Margin (dB)	Detector
4877.72	40.86	-0.8	40.06	192	H	217	74	-33.94	Peak
4877.72	27.02	-0.81	26.21	192	H	217	54	-27.79	Average

3DH1, 2480 MHz


Frequency (MHz)	S.A. Reading (dBuV)	Correction Factor (dB/m)	Corrected Amplitude (dB μ V/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dB μ V/m)	Margin (dB)	Detector
4961.235	51.81	-0.77	51.04	203	H	87	74	-22.96	Peak
4961.235	37.96	-0.77	37.19	203	H	87	54	-16.81	Average

4) 18 GHz – 26.5 GHz Worst Case Scan at 3 Meters**3DH1, 2402 MHz**

Frequency (MHz)	S.A. Reading (dB μ V)	Correction Factor (dB/m)	Corrected Amplitude (dB μ V/m)	Antenna Polarity (H/V)	Limit (dB μ V/m)	Margin (dB)	Detector
26303.44	38.84	3.10	41.94	V	54	-12.06	Peak


Note: Peak measurement is used to compare to the average limit to show compliance.

3DH1, 2441 MHz

Frequency (MHz)	S.A. Reading (dB μ V)	Correction Factor (dB/m)	Corrected Amplitude (dB μ V/m)	Antenna Polarity (H/V)	Limit (dB μ V/m)	Margin (dB)	Detector
26356.56	39.23	3.18	42.41	H	54	-11.59	Peak

Note: Peak measurement is used to compare to the average limit to show compliance.

3DH1, 2480 MHz

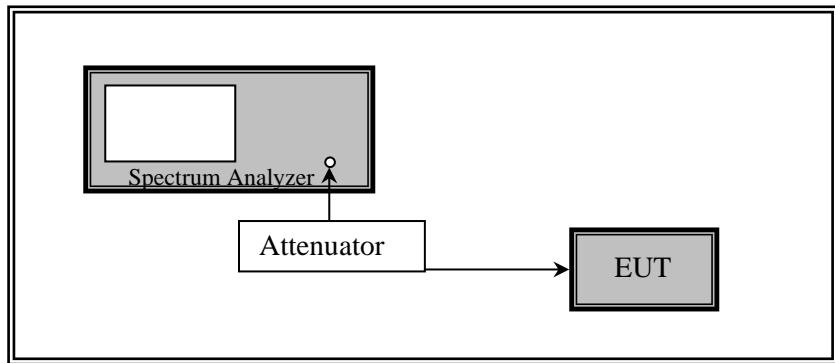
Frequency (MHz)	S.A. Reading (dB μ V)	Correction Factor (dB/m)	Corrected Amplitude (dB μ V/m)	Antenna Polarity (H/V)	Limit (dB μ V/m)	Margin (dB)	Detector
26319.37	39.37	3.12	42.49	H	54	-11.51	Peak

Note: Peak measurement is used to compare to the average limit to show compliance.

7 FCC §15.247(a) (1) & ISEDC RSS-247 §5.1, RSS-Gen §6.6 - Emission Bandwidth

7.1 Applicable Standards

According to FCC §15.247(a) (1) and ISEDC RSS-247 §5.1: the maximum 20 dB bandwidth of the hopping channel shall be presented.


7.2 Measurement Procedure

As per ANSI C63.10-2020 Clause 6.9.3

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be at least three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than $[10 \log (\text{OBW}/\text{RBW})]$ below the reference level. Specific guidance is given in 4.1.6.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max-hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing spectral plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s)

7.3 Test Setup Block Diagram

7.4 Test Equipment List and Details

BACL No.	Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
624	Agilent	Spectrum Analyzer	E4446A	MY48250238	2024-06-14	1 year
-	-	10dB Attenuator	-	-	-	-

Note¹: cable and attenuator included in the test set-up will be checked each time before testing.

Statement of Traceability: **BACL Corp.** attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with the latest version of A2LA policy P102 “A2LA Policy on Metrological Traceability”.

7.5 Test Environmental Conditions

Temperature:	22°C
Relative Humidity:	53%
ATM Pressure:	101.5 kPa

The testing was performed by Shankar Pangeni on 2025-02-06 at RF test site.

7.6 Test Results

Channel	Frequency (MHz)	20 dB OBW (kHz)	99% OBW (kHz)
DH1			
Low	2402	988.877	903.384
Middle	2441	987.331	904.552
High	2480	986.066	910.907
2DH1			
Low	2402	1289	1185.6
Middle	2441	1292	1183.6
High	2480	1290	1183.0
3DH1			
Low	2402	1290	1173.0
Middle	2441	1294	1168.8
High	2480	1293	1175.1

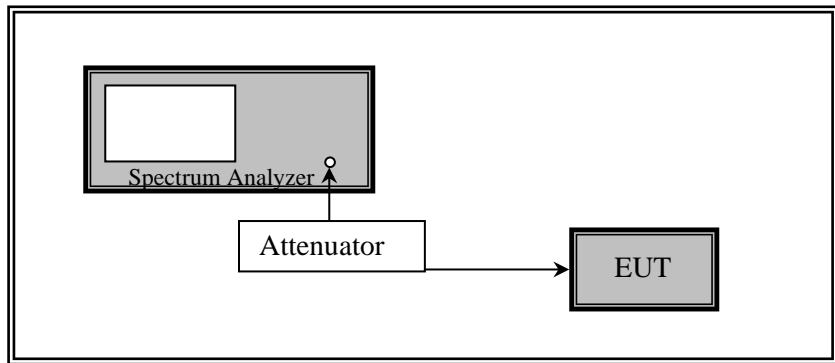
Please refer to Annex A for detailed test results.

8 FCC §15.247(b) (1) & ISEDC RSS-247 §5.4 - Output Power

8.1 Applicable Standards

According to FCC §15.247(b) (1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

According to RSS-247 §5.4: For frequency hopping systems operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W and the e.i.r.p. shall not exceed 4 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W and the e.i.r.p. shall not exceed 0.5 W if the hopset uses less than 75 hopping channels.


8.2 Measurement Procedure

As per ANSI C63.10-2020 Clause 7.8.5

This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. Frequency hopping shall be disabled for this test. Use the following spectrum analyzer settings:

- a) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
- b) RBW > 20 dB bandwidth of the emission being measured.
- c) VBW \geq RBW.
- d) Sweep: No faster than coupled (auto) time.
- e) Detector function: Peak.
- f) Trace: Max-hold.
- g) Allow trace to stabilize.
- h) Use the marker-to-peak function to set the marker to the peak of the emission.
- i) The indicated level is the peak output power, after any corrections for external attenuators and cables.
- j) A spectral plot of the test results and setup description shall be included in the test report.

8.3 Test Setup Block Diagram

8.4 Test Equipment List and Details

BACL No.	Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
624	Agilent	Spectrum Analyzer	E4446A	MY48250238	2024-06-14	1 year
-	-	10dB Attenuator	-	-	-	-

Note¹: cable and attenuator included in the test set-up will be checked each time before testing.

Statement of Traceability: **BACL Corp.** attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

8.5 Test Environmental Conditions

Temperature:	22°C
Relative Humidity:	53%
ATM Pressure:	101.5 kPa

The testing was performed by Shankar Pangeni on 2025-02-06 at RF test site.

8.6 Test Results

Channel	Frequency (MHz)	Conducted Output Power (dBm)	EIRP (dBm)	Conducted Power Limit (dBm)	EIRP Limit (dBm)
DH1					
Low	2402	7.68	7.58	30	36
Middle	2441	7.82	7.72	30	36
High	2480	8.00	7.9	30	36
2DH1					
Low	2402	9.89	9.79	30	36
Middle	2441	9.94	9.84	30	36
High	2480	10.20	10.1	30	36
3DH1					
Low	2402	10.28	10.18	30	36
Middle	2441	10.06	9.96	30	36
High	2480	10.66	10.56	30	36

Note: Antenna Gain is -0.1 dBi

Please refer to Annex B for detailed test results.

9 FCC §15.247(d) & ISEDC RSS-247 §5.5 – Spurious Emissions at Antenna Terminals 100 kHz Bandwidth of Band Edges

9.1 Applicable Standards

According to FCC §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emissions limits specified in §15.209(a) see §15.205(c).

According to ISEDC RSS-247 §5.5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

9.2 Measurement Procedure

As per ANSI C63.10-2020 Clause 11.11.3

Establish an emission level by using the following procedure:

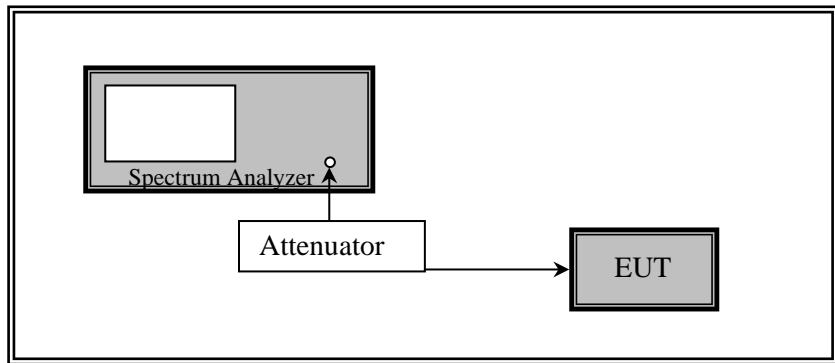
a) Set the center frequency and span to encompass frequency range to be measured. Note that the frequency range might need to be divided into multiple frequency ranges to retain frequency resolution.

NOTE—the number of points can also be increased for large spans to retain frequency resolution

b) Set the RBW = 100 kHz.

c) Set the VBW $\geq [3 \times \text{RBW}]$.

d) Detector = peak.


e) Sweep time = No faster than coupled (auto) time.

f) Trace mode = max-hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

9.3 Test Setup Block Diagram

9.4 Test Equipment List and Details

BACL No.	Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
624	Agilent	Spectrum Analyzer	E4446A	MY48250238	2024-06-14	1 year
-	-	10dB Attenuator	-	-	-	-

Note¹: cable and attenuator included in the test set-up will be checked each time before testing.

Statement of Traceability: **BACL Corp.** attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with the latest version of A2LA policy P102 “A2LA Policy on Metrological Traceability”.

9.5 Test Environmental Conditions

Temperature:	22°C
Relative Humidity:	53%
ATM Pressure:	101.5 kPa

The testing was performed by Shankar Pangeni on 2025-02-10 at RF test site.

9.6 Test Results

Please refer to Annex D for detailed test results.

10 FCC §15.247(a) (1) (iii) & ISEDC RSS-247 §5.1 (4) - Dwell Time

10.1 Applicable Standards

According to FCC §15.247(a) (1) (iii) and RSS-247 §5.1(4), Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

10.2 Measurement Procedure

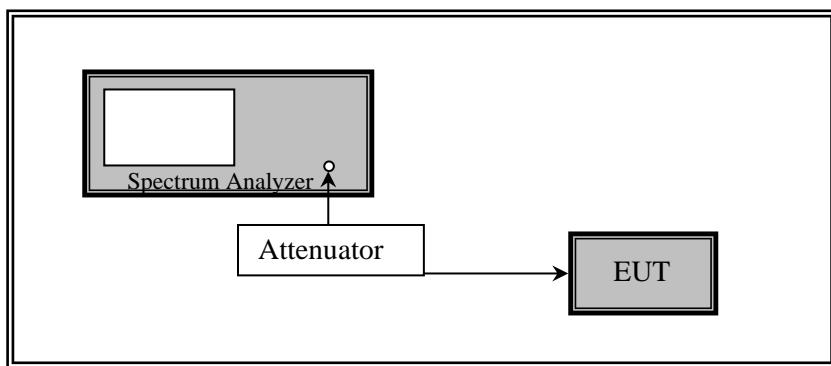
As per ANSI C63.10-2020 Clause 7.8.4

The dwell time per hop on a channel is the time from the start of the first transmission to the end of the last transmission for that hop. If the device has a single transmission per hop then the dwell time is the duration of that transmission. If the device has a multiple transmissions per hop then the dwell time is measured from the start of the first transmission to the end of the last transmission.

The time of occupancy is the total time that the device dwells on a channel over an observation period specified in the regulatory requirement. To determine the time of occupancy the spectrum analyzer will be configured to measure both the dwell time per hop and the number of times the device transmits on a specific channel in a given period.

The EUT shall have its hopping function enabled. Compliance with the requirements shall be made with the minimum and with the maximum number of channels enabled. If the dwell time per channel does not vary with the number of channels than compliance with the requirements may be based on the minimum number of channels. If the device supports different dwell times per channel (example Bluetooth devices can dwell on a channel for 1, 3 or 5 time slots) then measurements can be limited to the longest dwell time with the minimum number of channels.

Use the following spectrum analyzer settings to determine the dwell time per hop:


- a) Span: Zero span, centered on a hopping channel.
- b) RBW shall be \leq channel spacing and where possible RBW should be set $\gg 1 / T$, where T is the expected transmission time per hop.
- c) Sweep time: Set so that the start of the first transmission and end of the last transmission for the hop are clearly captured. Setting the sweep time to be slightly longer than the hopping period per channel (hopping period = 1/hopping rate) should achieve this.
- d) Use a video trigger, where possible with a trigger delay, so that the start of the transmission is clearly observed. The trigger level might need adjustment to reduce the chance of triggering when the system hops on an adjacent channel.
- e) Detector function: Peak.
- f) Trace: Clear-write, single sweep.
- g) Place markers at the start of the first transmission on the channel and at the end of the last transmission. The dwell time per hop is the time between these two markers.

To determine the number of hops on a channel in the regulatory observation period repeat the measurement using a longer sweep time. When the device uses a single hopping sequence the period of measurement should be sufficient to capture at least 2 hops. When the device uses a dynamic hopping sequence, or the sequence varies, the period of measurement may need to capture multiple hops to better determine the average time of occupancy. Count the number of hops on the channel across the sweep time.

The average number of hops on the same channel within the regulatory observation period is calculated from the number of hops on the channel divided by the spectrum analyzer sweep time multiplied by the regulatory observation period. For example, if three hops are counted with an analyzer sweep time of 500 ms and the regulatory observation period is 10 s, then the number of hops in that ten seconds is $3 / 0.5 \times 10$, or 60 hops.

The average time of occupancy is calculated by multiplying the dwell time per hop by the number of hops in the observation period.

10.3 Test Setup Block Diagram

10.4 Test Equipment List and Details

BACL No.	Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
624	Agilent	Spectrum Analyzer	E4446A	MY48250238	2024-06-14	1 year
-	-	10dB Attenuator	-	-	-	-

Note¹: cable and attenuator included in the test set-up will be checked each time before testing.

Statement of Traceability: *BACL Corp.* attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with the latest version of A2LA policy P102 “A2LA Policy on Metrological Traceability”.

10.5 Test Environmental Conditions

Temperature:	22°C
Relative Humidity:	53%
ATM Pressure:	101.5 kPa

The testing was performed by Shankar Pangeni on 2025-01-30 at RF test site.

10.6 Test Results

Mode	Number of Hops	Pulse Width (ms)	Dwell Time (Sec.)	Limit (Sec.)	Result
DH5	130	2.873	0.373	< 0.4	Pass
	Note: Dwell time(sec) = 130*0.002873 (ms)				
2DH5	120	2.883	0.346	< 0.4	Pass
	Note: Dwell time (sec) = 120*0.002883 (ms)				
3DH5	90	2.871	0.258	< 0.4	Pass
	Note: Dwell time (sec) = 90*0.002871 (ms)				

Note: (Number of hops in the period specified in the requirements) =

(Number of hops on spectrum analyzer) x (period specified in the requirements / analyzer sweep time)

Note: Dwell Time (sec) = (Number of Hops x 10) x (Pulse Width(sec))

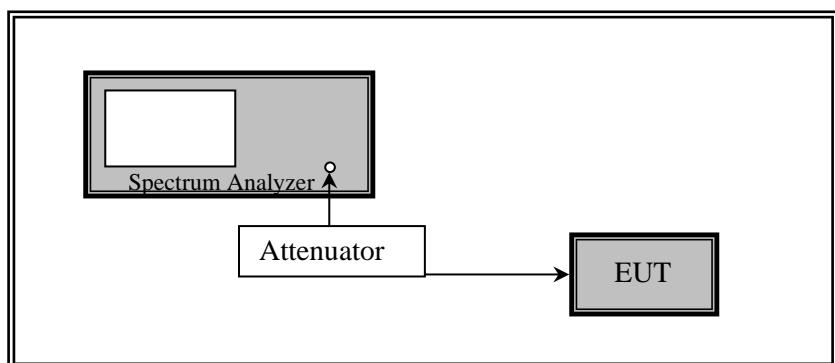
Note: DH5, 2DH5, 3DH5 are the worst case for this testing as they have longer pulse times in comparison to other configurations,

Please refer to Annex E for detailed test results.

11 FCC §15.247(a)(1)(iii) & ISEDC RSS-247 §5.1(4) - Number of Hopping Channels

11.1 Applicable Standards

According to FCC §15.247(a) (1) (iii) and RSS-247 §5.1(4): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.


11.2 Test Procedure

As per ANSI C63.10-2020 Clause 7.8.3

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- a) Span: The frequency band of operation. Depending on the number of channels the device supports, it could be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- c) VBW \geq RBW.
- d) Sweep: No faster than coupled (auto) time.
- e) Detector function: Peak.
- f) Trace: Max-hold.
- g) Allow the trace to stabilize.

11.3 Test Setup Block Diagram

11.4 Test Equipment List and Details

BACL No.	Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
624	Agilent	Spectrum Analyzer	E4446A	MY48250238	2024-06-14	1 year
-	-	10dB Attenuator	-	-	-	-

Note¹: cable and attenuator included in the test set-up will be checked each time before testing.

Statement of Traceability: *BACL Corp.* attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with the latest version of A2LA policy P102 “A2LA Policy on Metrological Traceability”.

11.5 Test Environmental Conditions

Temperature:	22°C
Relative Humidity:	53%
ATM Pressure:	101.5 kPa

The testing was performed by Shankar Pangeni on 2025-01-30 at RF test site.

11.6 Test Results

Please refer to Annex G for detailed test results.

Mode	Number of Hopping Channels	Limit	Results
DH1	79	≥15	Pass
2DH1	79	≥15	Pass
3DH!	79	≥15	Pass

Test Result: Pass

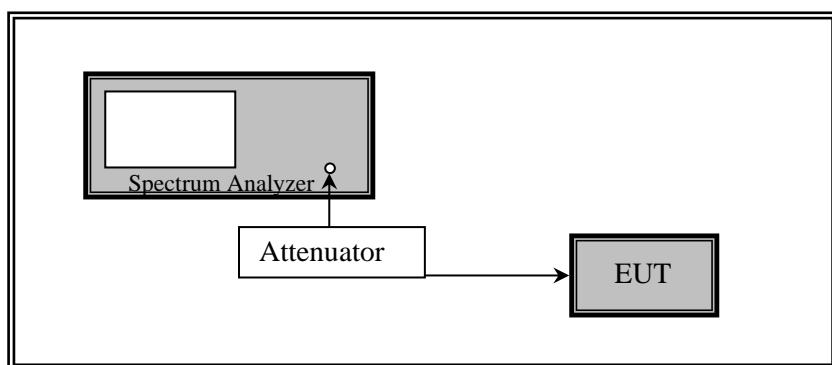
12 FCC §15.247(a) (1) & ISEDC RSS-247 §5.1(2) - Hopping Channel Separation

12.1 Applicable Standards

According to FCC §15.247(a) (1) and RSS-247 §5.1(2): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

12.2 Test Procedure

As per ANSI C63.10-2020 Clause 7.8.2


The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- a) Span: Wide enough to capture the peaks of two adjacent channels.
- b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- c) Video (or average) bandwidth (VBW) \geq RBW.
- d) Sweep: No faster than coupled (auto) time.
- e) Detector function: Peak.
- f) Trace: Max-hold.
- g) Allow the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Compliance of an EUT with the appropriate regulatory limit shall be determined. A spectral plot of the data shall be included in the test report.

12.3 Test Setup Block Diagram

12.4 Test Equipment List and Details

BACL No.	Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
624	Agilent	Spectrum Analyzer	E4446A	MY48250238	2024-06-14	1 year
-	-	10dB Attenuator	-	-	-	-

Note¹: cable and attenuator included in the test set-up will be checked each time before testing.

Statement of Traceability: *BACL Corp.* attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with the latest version of A2LA policy P102 “A2LA Policy on Metrological Traceability”.

12.5 Test Environmental Conditions

Temperature:	22°C
Relative Humidity:	53%
ATM Pressure:	101.5 kPa

The testing was performed by Shankar Pangeni on 2025-01-30 at RF test site.

12.6 Test Results

Channel	Frequency (MHz)	Channel Separation (kHz)	Limit > 2/3 20 dB OBW (kHz)
DH5			
Middle	2441	983	658.221
2DH5			
Middle	2441	983	861.333
3DH5			
Middle	2441	1000	862.667

Please refer to Annex F for detailed test results.

13 Appendix A (Normative) - EUT Test Setup Photographs

Please refer to the attachment.

14 Appendix B (Normative) - EUT External Photographs

Please refer to the attachment.

15 Appendix C (Normative) - EUT Internal Photographs

Please refer to the attachment.

16 Appendix D (Normative) - A2LA Electrical Testing Certificate

Accredited Laboratory

A2LA has accredited

BAY AREA COMPLIANCE LABORATORIES CORP.

Sunnyvale, CA

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017
General requirements for the competence of testing and calibration laboratories. This laboratory also meets A2LA R222

- Specific Requirements EPA ENERGY STAR Accreditation Program. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 13th day of September 2024.

A blue ink signature of Mr. Trace McInturff.

Mr. Trace McInturff, Vice President, Accreditation Services
For the Accreditation Council
Certificate Number 3297.02
Valid to September 30, 2026

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

Please follow the web link below for a full ISO 17025 scope.

<https://www.a2la.org/scopepdf/3297-02.pdf>

--- END OF REPORT ---