

Choose Scandinavian trust

Radio Test report – AIR 1641 B2/25a B66a

Project number:

391738-2TRFWL-R1

Applicant:

Ericsson Canada Inc.

Product:

AIR 1641

Model:

AIR 1641 B2/25a B66a

Part number:

KRD 901 800/1

FCC ID:

TA8AKRD901800-1

ISED Reg. Number

287AB-AS9018001

HVIN:

AS9018001

Requirements/Summary:

Standard	Environmental phenomenon	Compliance
FCC 47 CFR Part 27	Miscellaneous wireless communications services	Yes
FCC 47 CFR Part 24, Subpart E	Broadband Personal Communications Services (PCS)	Yes
RSS-133 Issue 6 A1, Jan 18, 2018	2 GHz Personal Communications Services	Yes
RSS-139 Issue 3, July 16, 2015	Advanced Wireless Services (AWS) Equipment Operating in the Bands 1710–1780 MHz and 2110–2180 MHz	Yes
RSS-170 Issue 3, July 9, 2015	Ancillary Terrestrial Component (ATC) Equipment Operating in the Mobile-Satellite Service (MSS) Bands	Yes

Date of issue: April 2, 2020

David Duchesne, Senior EMC/Wireless Specialist

Tested by

Signature

Signature

Predrag Golic, EMC Specialist

Tested by

Signature

Andrey Adelberg, Senior Wireless/EMC Specialist

Reviewed by

Two test locations

Company name	Nemko Canada Inc.	
Address	303 River Road	349 Terry Fox
City	Ottawa	Ottawa
Province	Ontario	Ontario
Postal code	K1V 1H2	K2K 2V6
Country	Canada	Canada
Telephone	+1 613 737 9680	+1 613 963 8000
Facsimile	+1 613 737 9691	
Toll free	+1 800 563 6336	
Website	www.nemko.com	
Site number	FCC test site registration number: CA2040, IC: 2040A-4 (3 m semi anechoic chamber)	

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contained in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

© Nemko Canada Inc.

Table of contents

Table of contents	3
Section 1. Report summary	4
1.1 Applicant and manufacturer	4
1.2 Test specifications	4
1.3 Test method	4
1.4 Statement of compliance	4
1.5 Test report revision history	4
Section 2. Summary of test results.....	5
2.1 Testing location	5
2.2 Testing period	5
2.3 Sample information.....	5
2.4 FCC Part 27/24 test results	6
2.5 RSS-133/139/170 test results	6
Section 3. Equipment under test (EUT) details	7
3.1 EUT information	7
3.2 Product description and theory of operation	8
3.3 EUT test details.....	9
3.4 EUT test details, continued.....	10
3.5 EUT test details, continued.....	11
3.6 EUT setup diagram	11
3.7 Setup photographs	12
3.8 Setup photographs, continued	13
Section 4. Engineering considerations.....	14
4.1 Modifications incorporated in the EUT.....	14
4.2 Technical judgment	14
4.3 Deviations from laboratory tests procedures	14
Section 5. Test conditions.....	15
5.1 Atmospheric conditions	15
5.2 Power supply range	15
Section 6. Measurement uncertainty.....	16
6.1 Uncertainty of measurement	16
Section 7. Test equipment	17
7.1 Test equipment list.....	17
Section 8. Testing data	18
8.1 FCC 27.50(d) and RSS-139, 4.1, RSS-170, 5.3 Maximum output power at RF antenna connector (Band 66).....	18
8.2 FCC 24.232(a)(2) and RSS-133, 6.4 Transmitter output power (EIRP) and antenna height (Band 2/25a)	26
8.3 FCC 27.53 and RSS-139, 4.2, RSS-170, 5.4 Spurious emissions at RF antenna connector (Band 66)	31
8.4 FCC 27.53 and RSS-139, 4.2, RSS-170, 5.4 Radiated spurious emissions (Band 66 & 2/25a)	37
8.5 FCC 24.238(a) and RSS-133, 6.5.1 Spurious out-of-band emissions (Band 2/25a).....	41
8.6 FCC Part 2.1049 and RSS-Gen, 6.7 Occupied bandwidth (Band 66).....	49
8.7 FCC Part 2.1049 and RSS-Gen, 6.7 Occupied bandwidth (Band 2/25a)	51
Section 9. Block diagrams of test setups	53
9.1 Radiated emissions set-up for frequencies below 1 GHz.....	53
9.2 Radiated emissions set-up for frequencies above 1 GHz.....	53
9.3 Conducted emissions set-up	54

Section 1. Report summary

1.1 Applicant and manufacturer

Company name	Ericsson Canada Inc.
Address	349 Terry Fox Drive, Ottawa, ON, Canada, K2K 2V6

1.2 Test specifications

FCC 47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
FCC 47 CFR Part 24, Subpart E	Broadband Personal Communications Services (PCS)
FCC 47 CFR Part 27	Miscellaneous wireless communications services (2110–2200 MHz)
RSS-133 Issue 6 A1, Jan. 18, 2018	2 GHz Personal Communications Services
RSS-139 Issue 3, July 16, 2015	Advanced Wireless Services (AWS) equipment operating in the bands 1710–1780 MHz and 2110–2180 MHz
SRSP-510, Issue 5, Feb. 2009	Technical Requirements for Personal Communications Services (PCS) in the Bands 1850–1915 MHz and 1930–1995 MHz
RSS-170 Issue 3, July 9, 2015*	Ancillary Terrestrial Component (ATC) Equipment Operating in the Mobile-Satellite Service (MSS) Bands
RSS-Gen, Issue 5, April 2018	General Requirements for Compliance of Radio Apparatus

*Equipment operating in the ancillary terrestrial component (ATC) of the frequency bands 2000–2020 MHz and 2180–2200 MHz is certified under RSS-170.

1.3 Test method

ANSI C63.26-2015	American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services
KDB 662911 D01	Multiple Transmitter Output v02r01
KDB 662911 D02	MIMO with Cross-Polarized Antennas v01

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant. Testing was completed against customer test plan. Results obtained indicate that the product under test complies in full with the requirements tested.

This test report (391738-2TRFWL-R1) applies to the *AIR 1641 B2/25a and B66* with part number *KRD 901 800/1*. See "Summary of test results" for full details.

EUT Configuration(s):

LTE: 5 MHz (1-2 Carriers), LTE 5 MHz + NB IoT (IB)

1.5 Test report revision history

Table 1.5-1: Test report revision history

Revision #	Date of issue	Details of changes made to test report
TRF	April 2, 2020	Original report issued

Section 2. Summary of test results

2.1 Testing location

Test location (s)	Ottawa
-------------------	--------

2.2 Testing period

Test start date	January 30, 2020	Test end date	March 30, 2020
-----------------	------------------	---------------	----------------

2.3 Sample information

Radiated sample

Receipt date	January 29, 2020	Nemko sample ID number	1
--------------	------------------	------------------------	---

Conducted sample

Receipt date	March 16, 2020	Nemko sample ID number	6
--------------	----------------	------------------------	---

2.4 FCC Part 27/24 test results

Table 2.4-1: FCC results summary

Part	Test description	Verdict
§27.50(b)	Maximum output power at RF antenna connector	Pass
§27.53	Spurious emissions at RF antenna connector	Pass
§27.53	Radiated spurious emissions (conducted and radiated)	Pass
§24.229	Frequencies	Pass ¹
§24.232(a)(2)	Power and antenna height limits for base stations with BW greater than 1 MHz	Pass
§24.238(a)	Emission limitations for Broadband PCS equipment – out of band emissions (conducted and radiated)	Pass
§2.1049	Occupied bandwidth	Pass

Notes: Only tests requested by the client have been performed

¹EUT transmits within 1930–1995 MHz frequency range

2.5 RSS-133/139/170 test results

Table 2.5-1: RSS results summary

Part	Test description	Verdict
RSS-133, 6.1	Frequency Plan	Pass ¹
RSS-133, 6.2	Types of Modulation	Pass ²
RSS-133, 6.4	Transmitter Output Power and Equivalent Isotropically Radiated Power	Pass
RSS-133, 6.5	Transmitter Unwanted Emissions (conducted and radiated)	Pass
RSS-139, 4.1	Transmitter output power and Equivalent Isotropic Radiated Power (e.i.r.p.)	Pass
RSS-139, 4.2	Spurious emissions at RF antenna connector	Pass
RSS-139, 4.2	Radiated spurious emissions (conducted and radiated)	Pass
RSS-170, 5.3	Transmitter output power and Equivalent Isotropic Radiated Power (e.i.r.p.)	Pass
RSS-170, 5.4	Spurious emissions at RF antenna connector	Pass
RSS-170, 5.4	Radiated spurious emissions (conducted and radiated)	Pass
RSS-Gen, 6.7	Occupied bandwidth	Pass

Notes: Only tests requested by the client have been performed

¹EUT transmits within 1930–1995 MHz frequency range

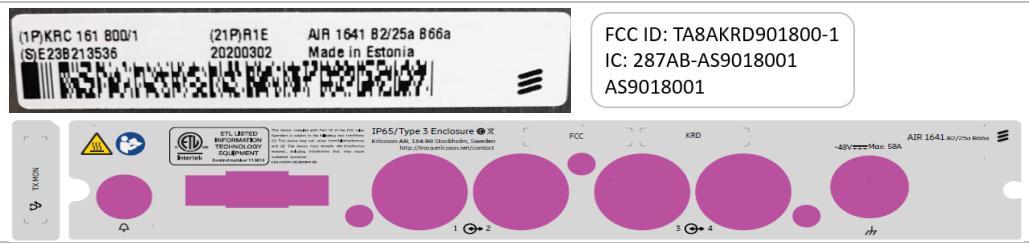
²EUT employs digital modulation (QPSK to 256-QAM)

ATC Base Station Equipment operating in bands 2000–2020 MHz and 2180–2200 MHz

The unwanted emissions of ATC base station equipment transmitting in the bands 2000–2020 MHz and 2180–2200 MHz shall comply with the following:

- (1) The power of any unwanted emissions at frequencies outside the equipment's operating frequency block shall be attenuated below the transmitter power P (dBW), by $43 + 10 \log p$ (watts), dB.
- (2) For equipment operating in the band 2180–2200 MHz, in addition to (1), the power of any emissions on all frequencies between 2200 MHz and 2290 MHz shall not exceed an e.i.r.p. of $-100.6 \text{ dBW}/4 \text{ kHz}$ ($-70.6 \text{ dBm}/4 \text{ kHz}$).

*** This requirement is for implementation and is enforced at the time of licensing. Therefore, results are not included in this report.**


Section 3. Equipment under test (EUT) details

3.1 EUT information

Product name	AIR 1641
Model	AIR 1641 B2/25a B66a
Part number	KRD 901 800/1
Revision	R1D
Serial number	E23B014781
Antenna ports	16 TX/RX Ports
RF BW / IBW	B25 IBW DL: 65 MHz B25 IBW UL: 65 MHz B66 IBW DL: 90 MHz B66 IBW UL: 70 MHz
FDD	B2/25: 80 MHz B66: 400 MHz
Frequency	B25 TX (DL): 1930–1995 MHz B25 RX (UL): 1850–1915 MHz B66 TX (DL): 2110–2200 MHz B66 RX (UL): 1710–1780 MHz
Nominal O/P per Antenna port	20 W (43 dBm): 10 W (40 dBm) per Band
Nominal O/P per Band	Single Carrier: 1 × 10 W (40 dBm) 2 Carrier: 2 × 5 W (40 dBm total)
Accuracy (nominal)	±0.1 ppm
Nominal voltage	–48 V _{DC} @ 40 A
RAT	LTE: SC, MC, IoT (GB, IB)
Modulation	LTE: QPSK, 16 QAM, 64 QAM, 256 QAM
Channel bandwidth	LTE: 5, 10, 15, 20 MHz
Channel bandwidth LTE + NB IoT	LTE + NB IoT: GB, IB (200 kHz) LTE BW: 5, 10, 15, 20 MHz (IB, GB)
Maximum combined OBW per port	B2/25: 65 MHz B66: 90 MHz
CPRI	10 Gbps
Channel raster	LTE: 100 kHz
Regulatory requirements	Radio: FCC Part 2, 24, 27, RSS-Gen, RSS-133, RSS-139, RSS-170 EMC: FCC Part 15, ICES-003 Safety: IEC/EN 62368-1, UL/CSA 62368-1 IEC/EN 60950-22, UL 50E /CAN/CSA, IEC/EN 60529
Emission Designator	LTE: 5M00W7D, 10M0W7D, 15M0W7D, 20M0W7D
Supported Configurations	Single Antenna, TX Diversity, MIMO, Carrier Aggregation
Operating temperature	–40 °C to +55 °C
Total Power based on IBW	160 W/band; Total (Radio) 320 W (16 × 20 W)
Supported carrier / port	LTE: (1-2) LTE + IoT: GB (1-2), IB (1-2)

3.2 Product description and theory of operation

EUT description of the methods used to exercise the EUT and all relevant ports:

Description/theory of operation	<p>The AIR 1641 B2/25a B66a (KRD 901 800/1) is a multi-standard remote Dual Band radio forming part of the Ericsson RBS (Radio Base Station) equipment. The AIR (Antenna Integrated Radio) 1641 provides radio access for mobile and fixed devices and is designed for the outdoor environment. The AIR 1641 operates over 2 bands (Band 2/25 and Band 66) via 16 TX/RX ports connected directly into an integrated antenna. Radio unit installation is designed for pole, wall or mast mount options. A fiber optic interface (4) provides the RRU/RBS control and digital interface between the Radio and the RBS. The AIR 1641 product is convection cooled and shall be mounted vertically.</p> <p>Output RF Power is rated at 16×10 W (per Band).</p> <p>Altitude during operation: Below 4000 m</p> <p>The AIR 1641 is a synthesized Transceiver designed for use in the 3GPP (Third Generation Partnership Project) for LTE (Long Term Evolution) - E-UTRA Base Station. AIR 1641 B2/25a B66a is a 16TX/16RX remote radio unit (RRU). This RRU operates in Band 2/25 as defined by 3GPP. TX (DL): 1930–1995 MHz, RX (UL): 1850–1915 MHz and Band 66 TX (DL): 2110–2200 MHz, RX (UL): 1710–1780 MHz. For LTE, the AIR 1641 B2/25a B66a supports modulations QPSK, 16QAM, 64QAM and 256QAM. Channel Bandwidth is configurable for 10, 15 or 20 MHz. The Radio transmits in single carrier mode and multi carrier mode within the Band Specific IBW (Instantaneous Band Width). NB IoT is supported for IB and GB.</p> <p>The AIR 1641 supports single and multi-beam FD MIMO (Multiple Input Multiple Output) and Carrier Aggregation for LTE.</p> <p>Test Configuration:</p> <p>KRC 161 800/1: The radio functionality and performance is evaluated without the antenna attached. This configuration replaces the antenna with the Ericsson RDNB (Radio Distribution Network Board) providing access to the RF Ports for compliance measurements. The RDNB is an ODM supplied assembly (KRE 105 341/1R) designed to plug into and support the radio equipment assessment, test and compliance verification.</p>																																																								
Ant Description	<table border="1"> <thead> <tr> <th>Port</th><th>Description</th></tr> </thead> <tbody> <tr> <td>ANT 1–16</td><td>RF Output ports from 1 to 16</td></tr> <tr> <td>Alarm</td><td>Alarm</td></tr> <tr> <td>Data 1</td><td>Optical Interface Data 1</td></tr> <tr> <td>Data 2</td><td>Optical Interface Data 2</td></tr> <tr> <td>Data 3</td><td>Optical Interface Data 3</td></tr> <tr> <td>Data 4</td><td>Optical Interface Data 4</td></tr> <tr> <td>DC Input</td><td>–48 V_{dc}</td></tr> <tr> <td>MMI</td><td>Display - Radio Status</td></tr> <tr> <td>GND</td><td>Ground</td></tr> </tbody> </table>		Port	Description	ANT 1–16	RF Output ports from 1 to 16	Alarm	Alarm	Data 1	Optical Interface Data 1	Data 2	Optical Interface Data 2	Data 3	Optical Interface Data 3	Data 4	Optical Interface Data 4	DC Input	–48 V _{dc}	MMI	Display - Radio Status	GND	Ground																																			
Port	Description																																																								
ANT 1–16	RF Output ports from 1 to 16																																																								
Alarm	Alarm																																																								
Data 1	Optical Interface Data 1																																																								
Data 2	Optical Interface Data 2																																																								
Data 3	Optical Interface Data 3																																																								
Data 4	Optical Interface Data 4																																																								
DC Input	–48 V _{dc}																																																								
MMI	Display - Radio Status																																																								
GND	Ground																																																								
Physical	<table border="1"> <tbody> <tr> <td>Dimensions</td><td>1555 mm × 635 mm × 320 mm (H × W × D)</td></tr> <tr> <td>Weight</td><td>101 kg</td></tr> <tr> <td>Operating Temperature</td><td>–40 to +55 °C</td></tr> <tr> <td>Mounting</td><td>Pole, Wall, Mast Mount</td></tr> <tr> <td>Cooling</td><td>Convection (forced air)</td></tr> </tbody> </table>		Dimensions	1555 mm × 635 mm × 320 mm (H × W × D)	Weight	101 kg	Operating Temperature	–40 to +55 °C	Mounting	Pole, Wall, Mast Mount	Cooling	Convection (forced air)																																													
Dimensions	1555 mm × 635 mm × 320 mm (H × W × D)																																																								
Weight	101 kg																																																								
Operating Temperature	–40 to +55 °C																																																								
Mounting	Pole, Wall, Mast Mount																																																								
Cooling	Convection (forced air)																																																								
Software details	CXP9017316%12-R81JC																																																								
Radio Hardware Configuration	<table border="1"> <thead> <tr> <th>Product: KRD 901 800/1</th><th>R1D</th><th>KRC 161 800/1</th><th>R1D</th><th>Description</th></tr> </thead> <tbody> <tr> <td>KRY 901 800/1</td><td>R1C</td><td>KRY 901 800/1</td><td>R1C</td><td>Radio Unit</td></tr> <tr> <td>ROA 128 6840/625</td><td>R1C</td><td>ROA 128 6840/625</td><td>R1C</td><td>Radio PCP (4)</td></tr> <tr> <td>ROA 128 6850/625</td><td>R1B</td><td>ROA 128 6850/625</td><td>R1B</td><td>FIB PCP</td></tr> <tr> <td>ROA 128 6860/625</td><td>R1B</td><td>ROA 128 6860/625</td><td>R1B</td><td>PCB PCP</td></tr> <tr> <td>KRF 901 800</td><td>R1A</td><td>KRF 901 800</td><td>R1A</td><td>Filter Unit (4)</td></tr> <tr> <td>NTB 101 0679/1</td><td>R1B</td><td>NTB 101 0679/1</td><td>R1B</td><td>Parts</td></tr> <tr> <td>KRY 901 850/1</td><td>R1B</td><td>KRY 901 850/1</td><td>R1B</td><td>I/O Assembly</td></tr> <tr> <td>ROA 128 6850/99</td><td>R1B</td><td>ROA 128 6850/99</td><td>R1B</td><td>PCB SFP Daughter Card</td></tr> <tr> <td>KRE 105 322</td><td>R1B</td><td>KRE 105 341/1R</td><td>R1B</td><td>Antenna / RDNB</td></tr> <tr> <td>NTB 101 0678/1</td><td>R1B</td><td>NTB 101 0678/1</td><td>R1B</td><td>Parts</td></tr> </tbody> </table>		Product: KRD 901 800/1	R1D	KRC 161 800/1	R1D	Description	KRY 901 800/1	R1C	KRY 901 800/1	R1C	Radio Unit	ROA 128 6840/625	R1C	ROA 128 6840/625	R1C	Radio PCP (4)	ROA 128 6850/625	R1B	ROA 128 6850/625	R1B	FIB PCP	ROA 128 6860/625	R1B	ROA 128 6860/625	R1B	PCB PCP	KRF 901 800	R1A	KRF 901 800	R1A	Filter Unit (4)	NTB 101 0679/1	R1B	NTB 101 0679/1	R1B	Parts	KRY 901 850/1	R1B	KRY 901 850/1	R1B	I/O Assembly	ROA 128 6850/99	R1B	ROA 128 6850/99	R1B	PCB SFP Daughter Card	KRE 105 322	R1B	KRE 105 341/1R	R1B	Antenna / RDNB	NTB 101 0678/1	R1B	NTB 101 0678/1	R1B	Parts
Product: KRD 901 800/1	R1D	KRC 161 800/1	R1D	Description																																																					
KRY 901 800/1	R1C	KRY 901 800/1	R1C	Radio Unit																																																					
ROA 128 6840/625	R1C	ROA 128 6840/625	R1C	Radio PCP (4)																																																					
ROA 128 6850/625	R1B	ROA 128 6850/625	R1B	FIB PCP																																																					
ROA 128 6860/625	R1B	ROA 128 6860/625	R1B	PCB PCP																																																					
KRF 901 800	R1A	KRF 901 800	R1A	Filter Unit (4)																																																					
NTB 101 0679/1	R1B	NTB 101 0679/1	R1B	Parts																																																					
KRY 901 850/1	R1B	KRY 901 850/1	R1B	I/O Assembly																																																					
ROA 128 6850/99	R1B	ROA 128 6850/99	R1B	PCB SFP Daughter Card																																																					
KRE 105 322	R1B	KRE 105 341/1R	R1B	Antenna / RDNB																																																					
NTB 101 0678/1	R1B	NTB 101 0678/1	R1B	Parts																																																					
Product Identification Label																																																									

3.3 EUT test details

EUT setup/configuration rationale:

Down link		RAT	Modulation	Performance Requirement	Test Model / Configuration
		LTE	QPSK	N/A	E-TM1.1
		LTE	16QAM	N/A	E-TM3.2
		LTE	64QAM	N/A	E-TM3.1
		LTE	256QAM	N/A	E-TM3.1a
Up link		RAT	Modulation	Performance Requirement	Test Model / Configuration
		LTE	QPSK	N/A	E-UTRA-UL

Single carrier B25

Bandwidth, MHz	LTE Transmit / DL, MHz					
	B	EARFCN	M	EARFCN	T	EARFCN
5	1932.5	66461	1962.5	66761	1992.5	67061
10	1935.0	66486	1962.5	66761	1990.0	67036
15	1937.5	66511	1962.5	66761	1987.5	67011
20	1940.0	66536	1962.5	66761	1985.0	66986

Bandwidth, MHz	LTE Receive / UL, MHz					
	B	EARFCN	M	EARFCN	T	EARFCN
5	1852.5	131997	1882.5	132297	1912.5	132597
10	1855.0	132022	1882.5	132297	1910.0	132572
15	1857.5	132047	1882.5	132297	1907.5	132547
20	1860.0	132072	1882.5	132297	1905.0	132522

Single carrier B66

Bandwidth, MHz	LTE Transmit / DL, MHz					
	B	EARFCN	M	EARFCN	T	EARFCN
5	2112.5	66461	2155.0	66886	2197.5	67311
10	2115.0	66486	2155.0	66886	2195.0	67286
15	2117.5	66511	2155.0	66886	2192.5	67261
20	2120.0	66536	2155.0	66886	2190.0	67236

Bandwidth, MHz	LTE Receive / UL, MHz					
	B	EARFCN	M	EARFCN	T	EARFCN
5	1712.5	131997	1745.0	132322	1777.5	132647
10	1715.0	132022	1745.0	132322	1775.0	132622
15	1717.5	132047	1745.0	132322	1772.5	132597
20	1720.0	132072	1745.0	132322	1770.0	132572

3.4 EUT test details, continued

B25 LTE Multi-Carrier for Band Edge Emissions:

Bandwidth, MHz	Transmit / DL, MHz								
	B1	EARFCN	B2	EARFCN		T2	EARFCN	T1	EARFCN
5	1932.5	66461	1937.5	66511		1987.5	67011	1992.5	67061
10	1935.0	66486	1945.0	66586		1980.0	66936	1990.0	67036
15	1937.5	66511	1952.5	66661		1972.5	66861	1987.5	67011
20	1940.0	66536	1960.0	66736		1965.0	66786	1985.0	66986

Bandwidth, MHz	Receive / UL, MHz								
	B1	EARFCN	B2	EARFCN		T2	EARFCN	T1	EARFCN
5	1852.5	131997	1857.5	132047		1907.5	132547	1912.5	132597
10	1855.0	132022	1865.0	132122		1900.0	132472	1910.0	132572
15	1857.5	132047	1872.5	132197		1892.5	132397	1907.5	132547
20	1860.0	132072	1880.0	132272		1885.0	132322	1905.0	132522

B66 LTE Multi-Carrier for Band Edge Emissions:

Bandwidth, MHz	Transmit / DL, MHz								
	B1	EARFCN	B2	EARFCN		T2	EARFCN	T1	EARFCN
5	2112.5	66461	2117.5	66511		2192.5	67261	2197.5	67311
10	2115.0	66486	2125.0	66586		2185.0	67186	2195.0	67286
15	2117.5	66511	2132.5	66661		2177.5	67111	2192.5	67261
20	2120.0	66536	2140.0	66736		2170.0	67036	2190.0	67236

Bandwidth, MHz	Receive / UL, MHz								
	B1	EARFCN	B2	EARFCN		T2	EARFCN	T1	EARFCN
5	1712.5	131997	1717.5	132047		1772.5	132597	1777.5	132647
10	1715.0	132022	1725.0	132122		1765.0	132522	1775.0	132622
15	1717.5	132047	1732.5	132197		1757.5	132447	1772.5	132597
20	1720.0	132072	1740.0	132272		1750.0	132372	1770.0	132572

B25 LTE Multiple-Carriers for spurious emissions (IBW = 65 MHz):

Bandwidth (MHz)	Transmit / DL (MHz)			
	C1	EARFCN	C2	EARFCN
5	1932.5	66461	1992.5	67061
10	1935.0	66486	1990.0	67036
15	1937.5	66511	1987.5	67011
20	1940.0	66536	1985.0	66986

Bandwidth (MHz)	Receive / UL (MHz)			
	C1	EARFCN	C2	EARFCN
5	1852.5	131997	1912.5	132597
10	1855.0	132022	1910.0	132622
15	1857.5	132047	1907.5	132547
20	1860.0	132072	1905.0	132572

B66 LTE Multiple-Carriers for spurious emissions (IBW = 70 MHz):

Bandwidth (MHz)	Transmit / DL (MHz)			
	C1	EARFCN	C2	EARFCN
5	2112.5	66461	2177.5	67111
10	2115.0	66486	2175.0	67086
15	2117.5	66511	2172.5	67061
20	2120.0	66536	2170.0	67036

Bandwidth (MHz)	Receive / UL (MHz)			
	C1	EARFCN	C2	EARFCN
5	1712.5	131997	1777.5	132647
10	1715.0	132022	1775.0	132622
15	1717.5	132047	1772.5	132597
20	1720.0	132072	1770.0	132572

3.3 EUT test details, continued

EUT Monitoring Method / Equipment:

Support equipment	Node EMC Test System
	<ul style="list-style-type: none"> - Anritsu MS 2691 VSA/Sig Gen - HP Laptop - Timing and Synchronization box (GPS) - Ethernet Switch - Isolation Transformer
	RBS 6601, BFM 901 009/1: <ul style="list-style-type: none"> - DUS 4101 KDU 137 624/ 11, R4G, S/N: T48X68357 - DUS SW: CXP102051/27-R18A179 - Input Voltage: -48 V_{DC}

3.4 EUT setup diagram

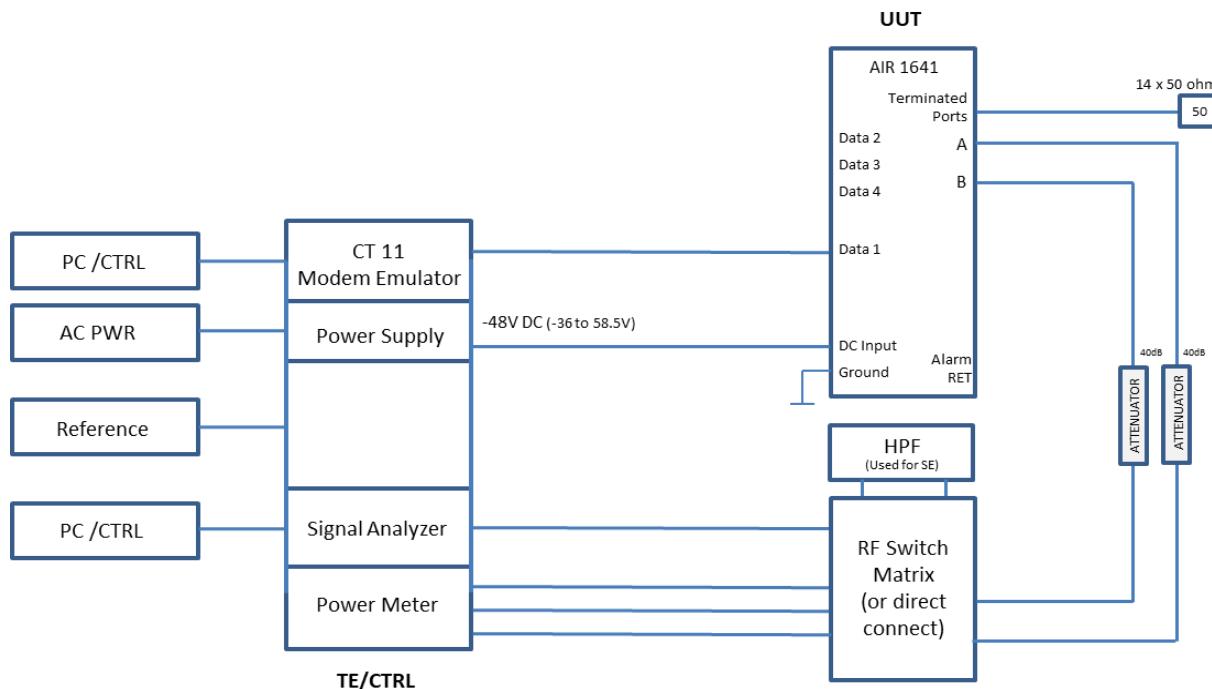
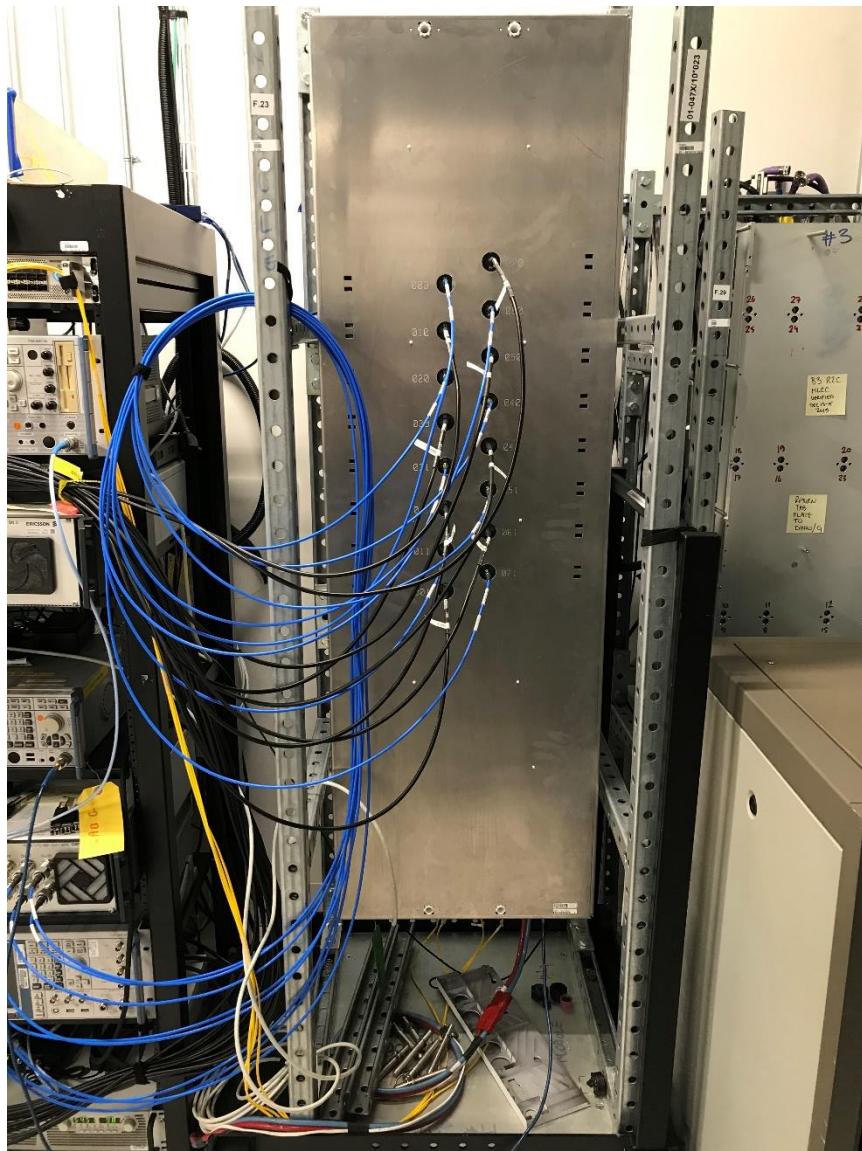



Figure 3.4-1: Setup diagram – Radio Compliance

3.5 Setup photographs

Figure 3.5-1: Set up photo for Radio Compliance Testing

3.6 Setup photographs, continued

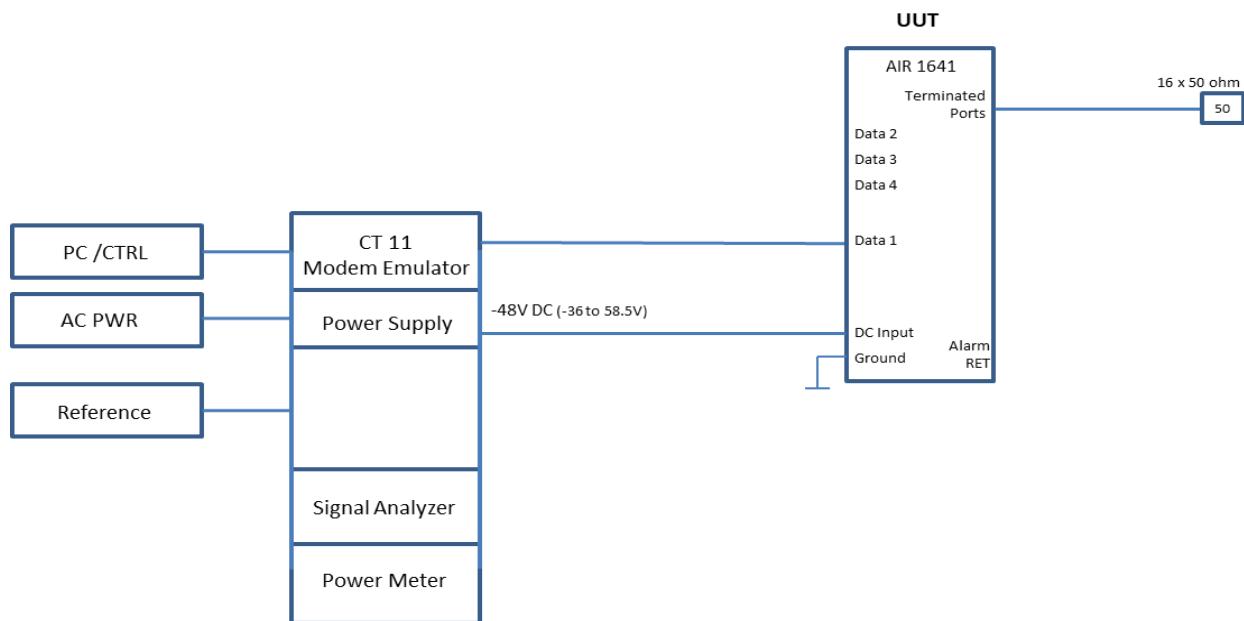


Figure 3.6-1: EUT Set-up diagram for Radiated Compliance Testing

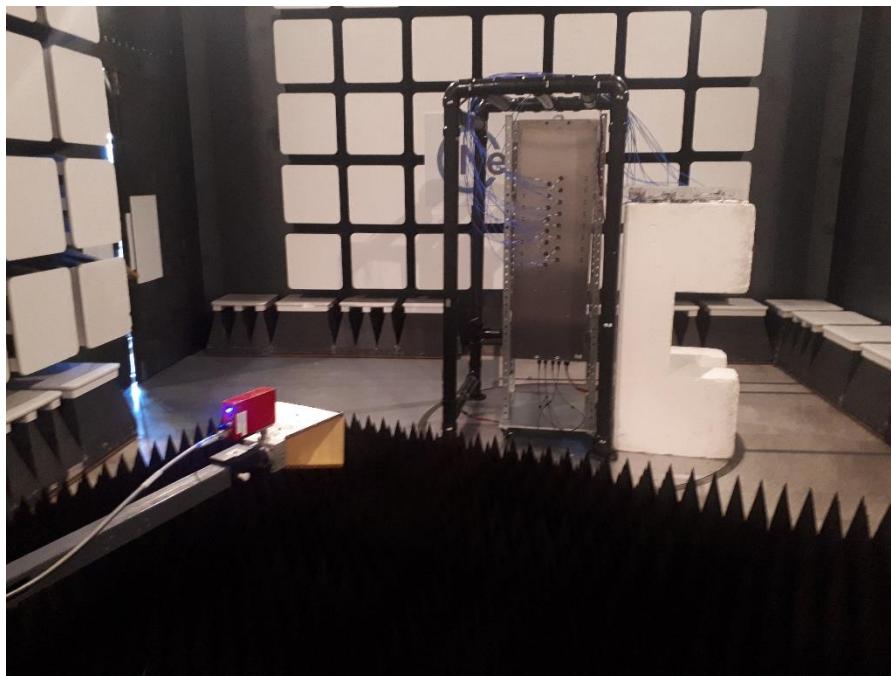


Figure 3.6-2: EUT Set-up photo for Radiated Compliance Testing

Section 4. Engineering considerations

4.1 Modifications incorporated in the EUT

There were no modifications performed to the EUT during this assessment.

4.2 Technical judgment

The testing was performed in accordance with the test plan, which suggested to measure output power on all 16 antenna ports, to find the port with the highest output power and perform the rest of the testing on that one representing antenna port.

4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 5. Test conditions

5.1 Atmospheric conditions

Temperature	15–30 °C
Relative humidity	20–75 %
Air pressure	860–1060 mbar

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages $\pm 5\%$, for which the equipment was designed.

Section 6. Measurement uncertainty

6.1 Uncertainty of measurement

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of $K = 2$ with 95% certainty.

Test name	Measurement uncertainty, dB
All antenna port measurements	0.55
Conducted spurious emissions	1.13
Radiated spurious emissions	3.78

Section 7. Test equipment

7.1 Test equipment list

Table 7.1-1: Equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
3 m EMI test chamber	TDK	SAC-3	FA002047	1 year	January 24, 2021
Receiver/spectrum analyzer	Rohde & Schwarz	ESU 26	FA002043	1 year	May 8, 2020
Preamp (1–18 GHz)	ETS Lindgren	124334	FA002877	1 year	November 4, 2020
Spectrum analyzer	Rohde & Schwarz	FSU	FA001877	1 year	October 31, 2020
Bilog antenna (20–2000 MHz)	Sun AR	JB1	FA003009	1 year	December 18, 2020
Horn antenna (1–18 GHz)	EMCO	3115	FA000825	1 year	October 31, 2020
Preamp (1–18 GHz)	ETS Lindgren	124334	FA002877	1 year	November 4, 2020
Horn antenna (18–40 GHz)	EMCO	3116	FA001847	1 year	November 7, 2020
Pre-amplifier (18–26 GHz)	Narda	BBS-1826N612	FA001550	—	VOU
Power meter	Agilent	E4418B	FA001678	1 year	June 10, 2020
Power sensor	HP	8482A	FA001944	1 year	June 11, 2020
50 Ω coax cable	Huber + Suhner	None	FA003099	1 year	May 10, 2020
High pass filter (3–18 GHz)	Thilithic Inc.	6HC3000/18000-1.3-KK	FA002231	—	VOU
Testing Equipment*	Ericsson	CT11	T01G495060	—	NCR

Notes: NCR - no calibration required, VOU - verify on use.

* Testing equipment (CT11) is the test equipment that drives the radios traffic.

Section 8	Testing data
Test name	FCC 27.50(d) and RSS-139, 4.1, RSS-170, 5.3 Maximum output power at RF antenna connector (Band 66)
Specification	FCC Part 27 and RSS-139 Issue 3, RSS-170 Issue 3

Section 8. Testing data

8.1 FCC 27.50(d) and RSS-139, 4.1, RSS-170, 5.3 Maximum output power at RF antenna connector (Band 66)

8.1.1 Definitions and limits

§ 27.50(d) Operation within the bands: 2110–2155 MHz and 2155–2180 MHz.

(1) The power of each fixed or base station transmitting in the 1995–2000 MHz, 2110–2155 MHz, 2155–2180 MHz or 2180–2200 MHz band and located in any county with population density of 100 or fewer persons per square mile, based upon the most recently available population statistics from the Bureau of the Census, is limited to:

- (i) An equivalent isotropically radiated power (EIRP) of 3280 watts when transmitting with an emission bandwidth of 1 MHz or less;
- (ii) An EIRP of 3280 watts/MHz when transmitting with an emission bandwidth greater than 1 MHz.

(2) The power of each fixed or base station transmitting in the 1995–2000 MHz, the 2110–2155 MHz 2155–2180 MHz band, or 2180–2200 MHz band and situated in any geographic location other than that described in paragraph (d)(1) of this section is limited to:

- (i) An equivalent isotropically radiated power (EIRP) of 1640 watts when transmitting with an emission bandwidth of 1 MHz or less;
- (ii) An EIRP of 1640 watts/MHz when transmitting with an emission bandwidth greater than 1 MHz.

(3) A licensee operating a base or fixed station in the 2110–2155 MHz band utilizing a power greater than 1640 watts EIRP and greater than 1640 watts/MHz EIRP must coordinate such operations in advance with all Government and non-Government satellite entities in the 2025–2110 MHz band. A licensee operating a base or fixed station in the 2110–2180 MHz band utilizing power greater than 1640 watts EIRP and greater than 1640 watts/MHz EIRP must be coordinated in advance with the following licensees authorized to operate within 120 kilometers (75 miles) of the base or fixed station operating in this band: All Broadband Radio Service (BRS) licensees authorized under this part in the 2155–2160 MHz band and all advanced wireless services (AWS) licensees authorized to operate on adjacent frequency blocks in the 2110–2180 MHz band.

(5) Equipment employed must be authorized in accordance with the provisions of §24.51. Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (d)(6) of this section. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

(6) Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage. The measurement results shall be properly adjusted for any instrument limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, etc., so as to obtain a true peak measurement for the emission in question over the full bandwidth of the channel.

8.1.1 Definitions and limits, continued

RSS-139, Section 4.1

The transmitter power shall be measured in terms of a root-mean-square (RMS) average value.

RSS-139, Section 6.5

Consult SRSP-513 for e.i.r.p. limits on fixed and base stations operating in the band 2110–2180 MHz.

In addition, the peak to average power ratio (PAPR) of the equipment shall not exceed 13 dB for more than 0.1% of the time, using a signal that corresponds to the highest PAPR during periods of continuous transmission.

RSS-170, Section 5.3.1

Consult SRSP-519 for e.i.r.p. limits on ATC base stations operating in the bands 2000–2020 MHz and 2180–2200 MHz.

SRSP-513, Section 5.1

5.1.1 Fixed and base stations

5.1.1.1 For fixed and base stations operating within the frequency range 2110–2180 MHz with a channel bandwidth equal to or less than 1 MHz, the maximum permissible equivalent isotropically radiated power (e.i.r.p.) is 1640 watts with an antenna height above average terrain (HAAT) up to 300 metres.

5.1.1.2 For fixed and base stations operating within the frequency range 2110–2180 MHz with a channel bandwidth greater than 1 MHz, the maximum permissible e.i.r.p. is 1640 watts/MHz e.i.r.p. (i.e. no more than 1640 watts e.i.r.p. in any 1 MHz band segment) with an antenna height above average terrain (HAAT) up to 300 metres.

5.1.1.3 Fixed and base stations located in geographic areas at a distance greater than 26 km from large or medium population centres, and transmitting within the frequency range 2110–2180 MHz, may increase their e.i.r.p. up to a maximum of 3280 watts/MHz (i.e. no more than 3280 watts e.i.r.p. in any 1 MHz band segment), with an antenna HAAT up to 300 metres.

Within 26 km of any large or medium population centre, fixed and base stations may operate at increased e.i.r.p. if more than 50% of the population within a particular sector's coverage is located outside these large and medium population centres.

Fixed and base stations with increased e.i.r.p. must not be used to provide coverage to large and medium population centres. However, some incidental coverage of these large and medium population centres by stations with increased e.i.r.p. is permitted.

This provision also applies for fixed and base stations with a channel bandwidth equal to or less than 1 MHz (i.e. the e.i.r.p. may be increased up to a maximum of 3280 watts).

5.1.1.4 Fixed and base station antenna heights above average terrain may exceed 300 metres with a reduction in e.i.r.p. The maximum permissible e.i.r.p. for installations with antenna HAAT in excess of 300 metres is given in the following table:

Table 8.1-1: Reduction to Maximum Allowable E.I.R.P. for HAAT > 300 m

HAAT (m)	Maximum EIRP, W/MHz
HAAT ≤ 300	1640 (or 3280 ¹)
300 < HAAT ≤ 500	1070
500 < HAAT ≤ 1000	490
1000 < HAAT ≤ 1500	270
1500 < HAAT ≤ 2000	160

Note: ¹for fixed and base stations with a channel bandwidth equal to or less than 1 MHz

Section 8	Testing data
Test name	FCC 27.50(d) and RSS-139, 4.1, RSS-170, 5.3 Maximum output power at RF antenna connector (Band 66)
Specification	FCC Part 27 and RSS-139 Issue 3, RSS-170 Issue 3

8.1.1 Definitions and limits, continued

SRSP-519, Section 5.1

The equivalent isotropically radiated power (e.i.r.p.) of base stations shall not exceed 1640 W when transmitting with an emission bandwidth of 1 MHz or less, and 1640 W/MHz when transmitting with an emission bandwidth greater than 1 MHz.

Base stations located outside of large or medium population may increase their e.i.r.p. to a maximum of 3280 W when transmitting with an emission bandwidth of 1 MHz or less, and to 3280 W/MHz when transmitting with an emission bandwidth greater than 1 MHz.

A licensee operating a base station utilizing an e.i.r.p greater than 1640 W/MHz must coordinate in advance with all AWS-4 licensees authorized to operate on adjacent frequency blocks within the same band.

Base station antenna heights above average terrain may exceed 300 m with a corresponding reduction in e.i.r.p. in accordance with Table above

8.1.2 Test summary

Test date	March 26, 2020
Test engineer	David Duchesne

8.1.3 Observations, settings and special notes

- Output power was measured with RMS power meter per ANSI C63.26 Paragraph 5.2.4.2 method. PSD was measured using method described in paragraph 5.2.4.4.
- Antenna sub-array gain is 14.5 dBi with uncorrelated signals.

Spectrum analyzer settings for PSD:

Detector mode	RMS
Resolution bandwidth	1 MHz
Video bandwidth	>RBW
Measurement mode	Power over emission bandwidth
Trace mode	Averaging
Measurement time	Auto

8.1.4 Test data

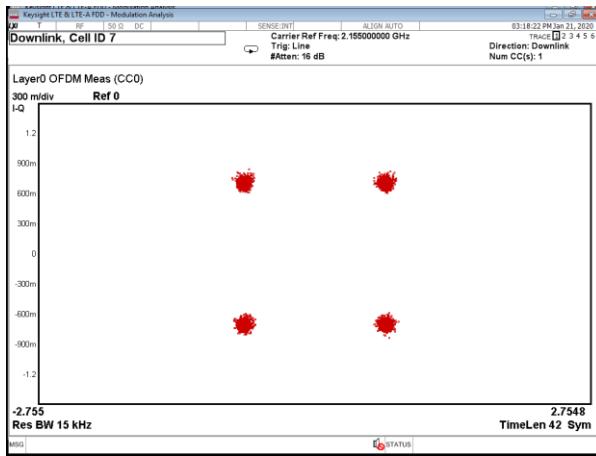


Figure 8.1-1: Modulation characteristics, QPSK

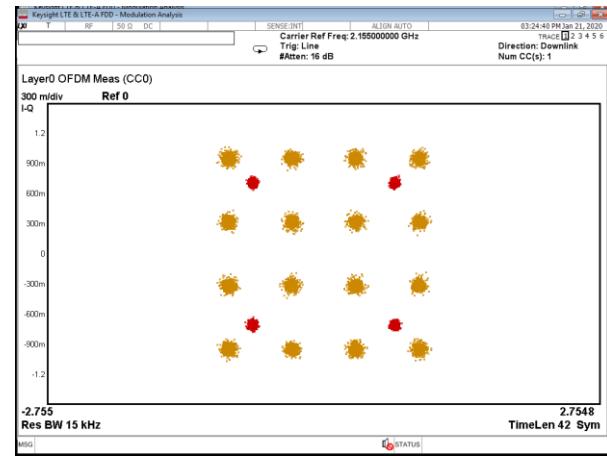


Figure 8.1-2: Modulation characteristics, 16QAM

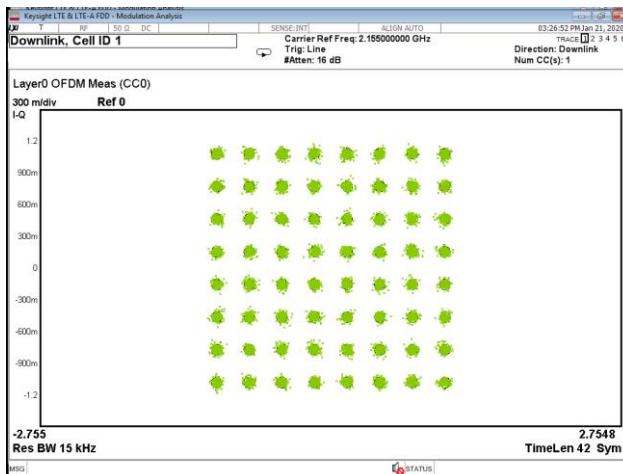


Figure 8.1-3: Modulation characteristics, 64QAM

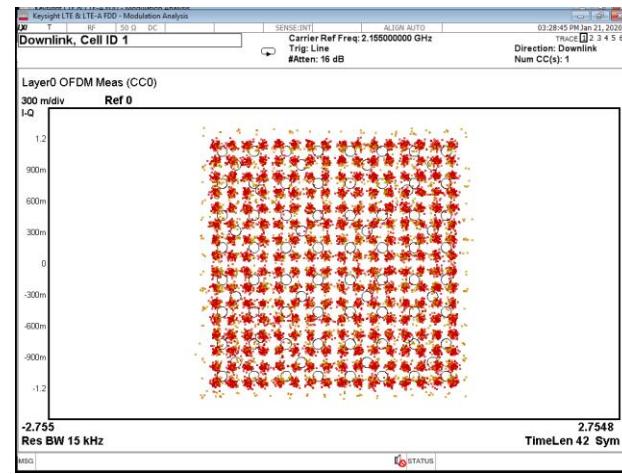


Figure 8.1-4: Modulation characteristics, 256QAM

8.1.4 Test data, continued

Table 8.1-2: Output power measurement results

Port	RF output power, dBm	RF output power, W	Dual band combined power, dBm	Dual band combined power, W
000	39.44	8.790	42.45	17.579
010	39.48	8.872	42.42	17.458
020	39.44	8.790	42.48	17.701
030	39.54	8.995	42.54	17.947
031	39.20	8.318	42.45	17.579
021	39.45	8.810	42.52	17.865
011	39.40	8.710	42.40	17.378
001	39.31	8.531	42.35	17.179
070	39.36	8.630	42.50	17.783
060	39.58	9.078	42.55	17.989
050	39.44	8.790	42.50	17.783
040	39.51	8.933	42.54	17.947
041	39.21	8.337	42.43	17.498
051	39.33	8.570	42.51	17.824
061	39.33	8.570	42.43	17.498
071	39.37	8.650	42.33	17.100

Notes: The measurement results in the table above were obtained during single band and multi band operation. Frequency of carriers were 2155.0 MHz and 1962.5 MHz for dual band config.

It was determined that the highest level of output power is at antenna port **060**. This port was considered as a representative one and all the rest of the measurements were performed on it.

Table 8.1-3: Output power density measurement results of a single-carrier operation for Port 060

Remarks	Frequency, MHz	RF power density, dBm/MHz	Antenna gain, dBi	EIRP, dBm/MHz	EIRP limit, dBm/MHz	Margin, dB
QPSK, 5 MHz, Low channel	2112.5	33.13	14.50	47.63	62.15	14.52
16QAM, 5 MHz, Low channel	2112.5	33.14	14.50	47.64	62.15	14.51
64QAM, 5 MHz, Low channel	2112.5	33.53	14.50	48.03	62.15	14.12
256QAM, 5 MHz, Low channel	2112.5	33.12	14.50	47.62	62.15	14.53
16QAM, 5 MHz, Mid channel	2155.0	33.65	14.50	48.15	62.15	14.00
16QAM, 5 MHz, High channel	2197.5	33.00	14.50	47.50	62.15	14.65

Notes: Linear sum of 8 ports of each polarization was based on the worst-case scenario, then all ports transmit at the maximum found power density of 33.65 dBm/MHz. Maximum PSD sum = $33.65 \text{ dBm/MHz} + 10 \times \log_{10}(8) = 42.68 \text{ dBm/MHz}$

Table 8.1-4: Total EIRP calculation for a single-carrier operation

Maximum PSD sum, dBm/MHz	Antenna Gain, dBi	Antenna Array Column Gain ¹ , dB	EIRP per polarization ² , dBm/MHz	EIRP per polarization, W/MHz
42.68	14.50	9.00	66.18	4149.54

Notes: ¹ Antenna Array Column Gain = $10 \times \log_{10}(8)$

² EIRP = PSD Sum + Antenna Gain + Antenna Array Column Gain

Table 8.1-5: Total EIRP calculation for a single Macro Narrow traffic beam operation

Maximum PSD sum, dBm/MHz	Directional beam gain, dBi	Total EIRP, dBm/MHz	Total EIRP, W/MHz
42.68	25.00	67.68	5861.38

8.1.4 Test data, continued

Table 8.1-6: Output power density measurement results of a two-carrier operation for Port o6o

Frequency, MHz	RF power density, dBm/MHz	Antenna gain, dBi	EIRP, dBm/MHz	EIRP limit, dBm/MHz	Margin, dB
2112.5 + 2117.5	30.22	14.50	44.72	62.15	17.43
2152.5 + 2157.5	30.70	14.50	45.20	62.15	16.95
2192.5 + 2197.5	30.16	14.50	44.66	62.15	17.49

Notes: Linear sum of 8 ports of each polarization was based on the worst-case scenario, then all ports transmit at the maximum found power density of 30.70 dBm/MHz. Maximum PSD sum = $30.70 \text{ dBm/MHz} + 10 \times \log_{10}(8) = 39.73 \text{ dBm/MHz}$

Table 8.1-7: Total EIRP calculation for a two-carrier operation

Maximum PSD sum, dBm/MHz	Antenna Gain, dBi	Antenna Array Column Gain ¹ , dB	EIRP per polarization ² , dBm/MHz	EIRP per polarization, W/MHz
39.73	14.50	9.00	63.23	2103.78

Notes: ¹ Antenna Array Column Gain = $10 \times \log_{10}(8)$; ²EIRP = PSD Sum + Antenna Gain + Antenna Array Column Gain

Table 8.1-8: Output power density measurement results of LTE and IoT operation for Port o6o

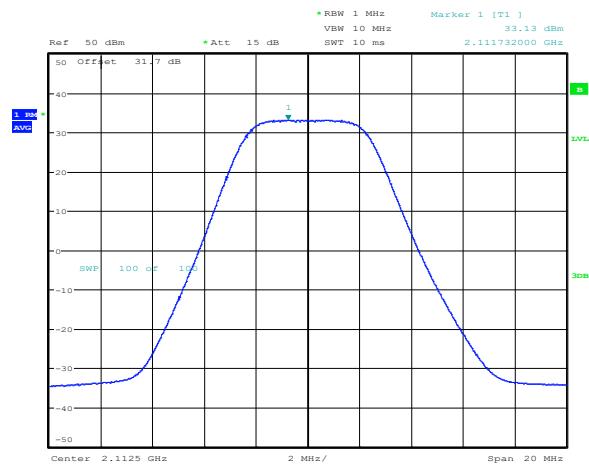
Remarks	Frequency, MHz	RF power density, dBm/MHz	Antenna gain, dBi	EIRP, dBm/MHz	EIRP limit, dBm/MHz	Margin, dB
5 MHz low channel with 2 × GB IoT	2112.5	33.80	14.50	48.30	62.15	13.85
5 MHz mid channel with 2 × GB IoT	2155.0	34.33	14.50	48.83	62.15	13.32
5 MHz high channel with 2 × GB IoT	2197.5	33.81	14.50	48.31	62.15	13.84

Notes: Linear sum of 8 ports of each polarization was based on the worst-case scenario, then all ports transmit at the maximum found power density of 34.33 dBm/MHz. Maximum PSD sum = $34.33 \text{ dBm/MHz} + 10 \times \log_{10}(8) = 43.36 \text{ dBm/MHz}$

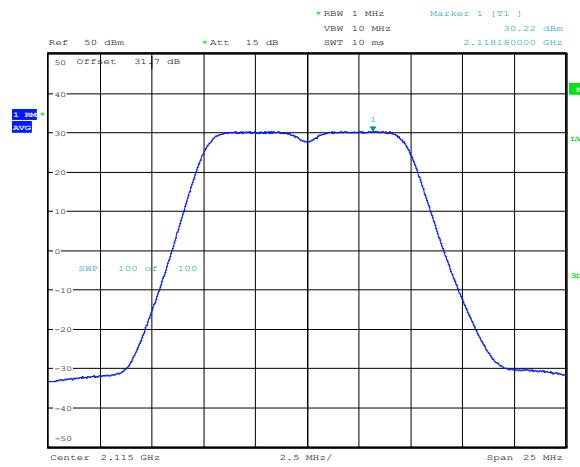
Table 8.1-9: Total EIRP calculation for LTE + IoT operation

Maximum PSD sum, dBm/MHz	Antenna Gain, dBi	Antenna Array Column Gain ¹ , dB	EIRP per polarization ² , dBm/MHz	EIRP per polarization, W/MHz
43.36	14.50	9.00	66.86	4852.89

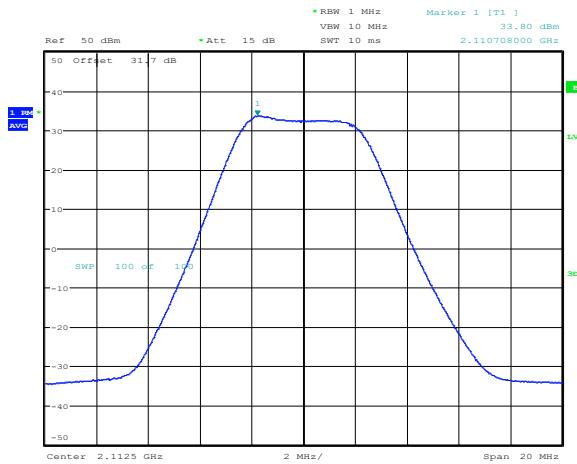
Notes: ¹ Antenna Array Column Gain = $10 \log(8)$


²EIRP = PSD Sum + Antenna Gain + Antenna Array Column Gain

Section 8**Testing data**


FCC 27.50(d) and RSS-139, 4.1, RSS-170, 5.3 Maximum output power at RF antenna connector
(Band 66)

Test name


FCC Part 27 and RSS-139 Issue 3, RSS-170 Issue 3

8.1.4 Test data, continued

Figure 8.1-5: PSD of 5 MHz channel bandwidth, single carrier operation, sample plot

Figure 8.1-6: PSD of 5 MHz channel bandwidth, two-carrier operation, sample plot

Figure 8.1-7: PSD of 5 MHz channel bandwidth, LTE and IoT operation, sample plot

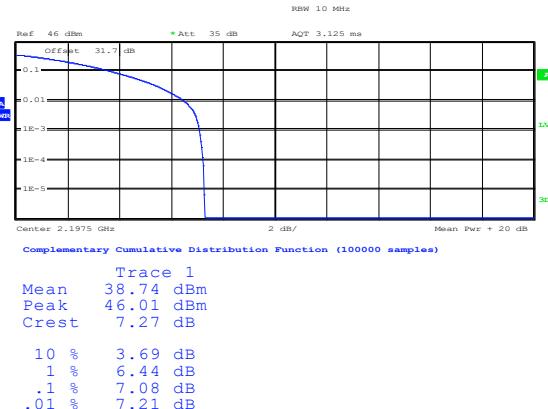
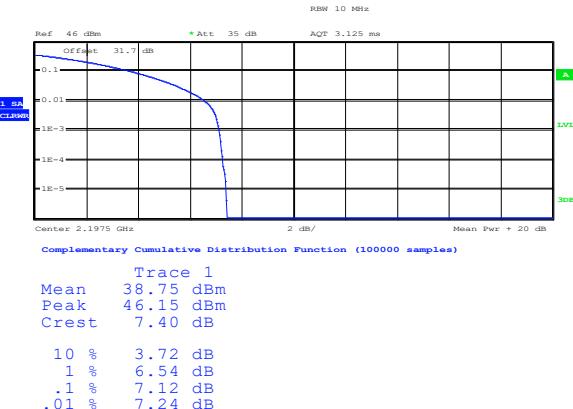


8.1.4 Test data, continued

Table 8.1-10: Complementary Cumulative Distribution Function (CCDF) of the PAPR reduction measurement results for single carrier operation

Remarks	Frequency, MHz	0.1% CCDF, dB	PAPR reduction limit, dB	Margin, dB
QPSK, 5 MHz, Low channel	2112.5	7.05	13.00	5.95
16QAM, 5 MHz, Low channel	2112.5	7.12	13.00	5.88
64QAM, 5 MHz, Low channel	2112.5	7.08	13.00	5.92
256QAM, 5 MHz, Low channel	2112.5	7.12	13.00	5.88
16QAM, 5 MHz, Mid channel	2155.0	7.05	13.00	5.95
16QAM, 5 MHz, High channel	2197.5	7.12	13.00	5.88

Table 8.1-11: Complementary Cumulative Distribution Function (CCDF) of the PAPR reduction measurement results for LTE + IoT operation

Remarks	Frequency, MHz	RF power density, dBm/MHz	PAPR reduction limit, dB	EIRP, dBm/MHz
5 MHz low channel with 2 × GB IoT	2112.5	7.02	13.00	5.98
5 MHz mid channel with 2 × GB IoT	2155.0	7.12	13.00	5.88
5 MHz high channel with 2 × GB IoT	2197.5	7.08	13.00	5.92

8.2 FCC 24.232(a)(2) and RSS-133, 6.4 Transmitter output power (EIRP) and antenna height (Band 2/25a)

8.2.1 Definitions and limits

§24.232(a)(2)

Base stations with an emission bandwidth greater than 1 MHz are limited to 1640 watts/MHz equivalent isotropically radiated power (EIRP) with an antenna height up to 300 meters HAAT, except as described in paragraph (b) below.

(2) Base station antenna heights may exceed 300 meters HAAT with a corresponding reduction in power; see table below.

(b)(1) Base stations that are located in counties with population densities of 100 persons or fewer per square mile, based upon the most recently available population statistics from the Bureau of the Census, with an emission bandwidth of 1 MHz or less are limited to 3280 watts equivalent isotropically radiated power (EIRP) with an antenna height up to 300 meters HAAT.

(d) Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of §24.51. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

RSS-133, Section 6.4

The equivalent isotropically radiated power (e.i.r.p.) for transmitters shall not exceed the limits given in SRSP-510.

In addition, the transmitter's peak-to-average power ratio (PAPR) shall not exceed 13 dB for more than 0.1% of the time using a signal corresponding to the highest PAPR during periods of continuous transmission.

SRSP-510, Section 5.1

5.1.1 Base stations

For base stations with a channel bandwidth greater than 1 MHz, the maximum e.i.r.p. is limited to 3280 watts/MHz e.i.r.p. (i.e., no more than 3280 watts e.i.r.p. in any 1 MHz band segment) with an antenna height above average terrain (HAAT) up to 300 metres. Fixed or base stations operating in urban areas are limited to a maximum allowable e.i.r.p. of 1640 watts/MHz e.i.r.p. Base station antenna heights above average terrain may exceed 300 metres with a corresponding reduction in e.i.r.p. according to the following table.

Table 8.2-1: Reduction to Maximum Allowable E.I.R.P. for HAAT > 300 m

HAAT (m)	Maximum EIRP, W/MHz
HAAT ≤ 300	1640
300 < HAAT ≤ 500	1070
500 < HAAT ≤ 1000	490
1000 < HAAT ≤ 1500	270
1500 < HAAT ≤ 2000	160

8.2.2 Test summary

Test date	March 26, 2020
Test engineer	David Duchesne

8.2.3 Observations, settings and special notes

- Output power was measured with RMS power meter per ANSI C63.26 Paragraph 5.2.4.2 method. PSD was measured using method described in paragraph 5.2.4.4.
- Antenna sub-array gain is 14.5 dBi with uncorrelated signals.

Spectrum analyzer settings for PSD:

Detector mode	RMS
Resolution bandwidth	1 MHz
Video bandwidth	>RBW
Measurement mode	Power over emission bandwidth
Trace mode	Averaging
Measurement time	Auto

8.2.4 Test data

Table 8.2-2: Output power measurement results

Port	RF output power, dBm	RF output power, W	Dual band combined power, dBm	Dual band combined power, W
000	39.56	9.036	42.45	17.579
010	39.48	8.872	42.42	17.458
020	39.58	9.078	42.48	17.701
030	39.53	8.974	42.54	17.947
031	39.74	9.419	42.45	17.579
021	39.67	9.268	42.52	17.865
011	39.45	8.810	42.40	17.378
001	39.27	8.453	42.35	17.179
070	39.65	9.226	42.50	17.783
060	39.53	8.974	42.55	17.989
050	39.56	9.036	42.50	17.783
040	39.63	9.183	42.54	17.947
041	39.64	9.204	42.43	17.498
051	39.65	9.226	42.51	17.824
061	39.52	8.954	42.43	17.498

Notes: The measurement results in the table above were obtained during single band and multi band operation.
 Frequency of carriers were 2155.0 MHz and 1962.5 MHz for dual band config.

Note: it was determined that the highest level of output power is at antenna port **060**, while tested together with Band 66, despite the fact, that the single band 2/25a the port **060** is not the highest. Since the difference between the highest measured level (at port **031**) and port **060** is only 0.2 dB, which was considered negligible and for testing time concerns it was decided to use port **060** as a representative one and all the rest of the measurements were performed on it.

Table 8.2-3: Output power density measurement results for single-carrier configuration for Port **060**

Remarks	Frequency, MHz	RF power density, dBm/MHz	Antenna gain, dBi	EIRP, dBm/MHz	EIRP limit, dBm/MHz	Margin, dB
QPSK, 5 MHz, Low channel	1932.5	32.65	14.50	47.15	62.15	15.00
16QAM, 5 MHz, Low channel	1932.5	32.77	14.50	47.27	62.15	14.88
64QAM, 5 MHz, Low channel	1932.5	32.91	14.50	47.41	62.15	14.74
256QAM, 5 MHz, Low channel	1932.5	32.70	14.50	47.20	62.15	14.95
QPSK, 5 MHz, Mid channel	1962.5	33.59	14.50	48.09	62.15	14.06
QPSK, 5 MHz, High channel	1992.5	32.95	14.50	47.45	62.15	14.70

Notes: Linear sum of 8 ports of each polarization was based on the worst-case scenario, then all ports transmit at the maximum found power density of 33.59 dBm/MHz. Maximum PSD sum = $33.59 \text{ dBm/MHz} + 10 \times \log_{10}(8) = 42.62 \text{ dBm/MHz}$

Section 8	Testing data
Test name	FCC 24.232(a)(2) and RSS-133, 6.4 Transmitter output power (EIRP) and antenna height (Band 2/25a)
Specification	FCC Part 24 and RSS-133 Issue 6

8.2.4 Test data, continued

Table 8.2-4: Total EIRP calculation for a single-carrier operation

Maximum PSD sum, dBm/MHz	Antenna Gain, dBi	Antenna Array Column Gain ¹ , dB	EIRP per polarization ² , dBm/MHz	EIRP per polarization, W/MHz
42.62	14.50	9.00	66.12	4092.61

Notes:

¹ Antenna Array Column Gain = $10 \times \log_{10}(8)$

² EIRP = PSD Sum + Antenna Gain + Antenna Array Column Gain

Table 8.2-5: Total EIRP calculation for a single Macro Narrow traffic beam operation

Maximum PSD sum, dBm/MHz	Directional beam gain, dBi	Total EIRP, dBm/MHz	Total EIRP, W/MHz
42.62	25.00	67.62	5780.96

Table 8.2-6: Output power density measurement results for two-carrier operation for Port 060

Frequency, MHz	RF power density, dBm/MHz	Antenna gain, dBi	EIRP, dBm/MHz	EIRP limit, dBm/MHz	Margin, dB
1932.5 + 1937.5	30.19	14.50	44.69	62.15	17.46
1960.0 + 1965.0	30.61	14.50	45.11	62.15	17.04
1987.5 + 1992.5	30.11	14.50	44.61	62.15	17.54

Notes:

Linear sum of 8 ports of each polarization was based on the worst-case scenario, then all ports transmit at the maximum found power density of 30.61 dBm/MHz. Maximum PSD sum = $30.61 \text{ dBm/MHz} + 10 \times \log_{10}(8) = 39.64 \text{ dBm/MHz}$

Table 8.2-7: Total EIRP calculation for a two-carrier operation

Maximum PSD sum, dBm/MHz	Antenna Gain, dBi	Antenna Array Column Gain ¹ , dB	EIRP per polarization ² , dBm/MHz	EIRP per polarization, W/MHz
39.64	14.50	9.00	63.14	2060.63

Notes:

¹ Antenna Array Column Gain = $10 \times \log_{10}(8)$

² EIRP = PSD Sum + Antenna Gain + Antenna Array Column Gain

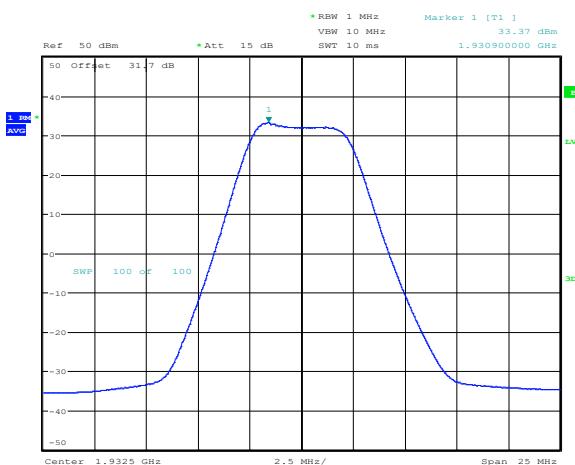
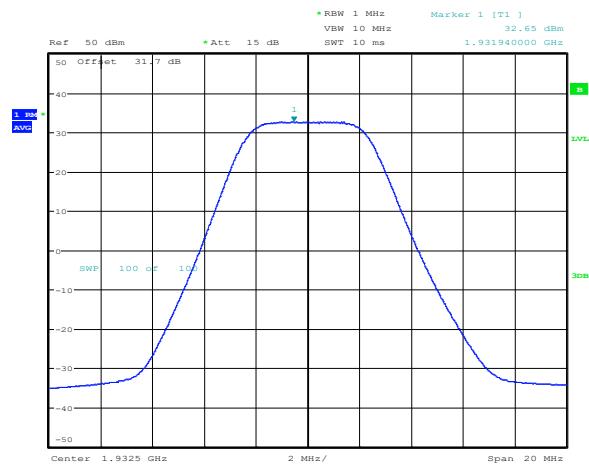
Table 8.2-8: Output power density measurement results for LTE with IoT operation

Remarks	Frequency, MHz	RF power density, dBm/MHz	Antenna gain, dBi	EIRP, dBm/MHz	EIRP limit, dBm/MHz	Margin, dB
5 MHz low channel with 2 × GB IoT	1932.5	33.37	14.50	47.87	62.15	14.28
5 MHz mid channel with 2 × GB IoT	1962.5	34.19	14.50	48.69	62.15	13.46
5 MHz high channel with 2 × GB IoT	1992.5	33.69	14.50	48.19	62.15	13.96

Notes:

Linear sum of 8 ports of each polarization was based on the worst-case scenario, then all ports transmit at the maximum found power density of 34.19 dBm/MHz. Maximum PSD sum = $34.19 \text{ dBm/MHz} + 10 \times \log_{10}(8) = 43.22 \text{ dBm/MHz}$

Table 8.2-9: Total EIRP calculation for an LTE + IoT operation



Maximum PSD sum, dBm/MHz	Antenna Gain, dBi	Antenna Array Column Gain ¹ , dB	EIRP per polarization ² , dBm/MHz	EIRP per polarization, W/MHz
43.22	14.50	9.00	66.72	2259.436

Notes:

¹ Antenna Array Column Gain = $10 \times \log_{10}(8)$

² EIRP = PSD Sum + Antenna Gain + Antenna Array Column Gain

8.2.4 Test data, continued

8.2.4 Test data, continued

Table 8.2-10: Complementary Cumulative Distribution Function (CCDF) of the PAPR reduction measurement results for single-carrier operation

Remarks	Frequency, MHz	0.1% CCDF, dB	PAPR reduction limit, dB	Margin, dB
QPSK, 5 MHz, Low channel	1932.5	7.08	13.00	5.92
16QAM, 5 MHz, Low channel	1932.5	7.08	13.00	5.92
64QAM, 5 MHz, Low channel	1932.5	7.12	13.00	5.88
256QAM, 5 MHz, Low channel	1932.5	7.08	13.00	5.92
QPSK, 5 MHz, Mid channel	1962.5	7.05	13.00	5.95
QPSK, 5 MHz, High channel	1992.5	7.12	13.00	5.88

Table 8.2-11: Complementary Cumulative Distribution Function (CCDF) of the PAPR reduction measurement results for single-carrier operation with IoT

Remarks	Frequency, MHz	0.1% CCDF, dB	PAPR reduction limit, dB	Margin, dB
5 MHz low channel with 2 x GB IoT	1932.5	7.12	13.00	5.88
5 MHz mid channel with 2 x GB IoT	1962.5	7.08	13.00	5.92
5 MHz high channel with 2 x GB IoT	1992.5	7.12	13.00	5.88

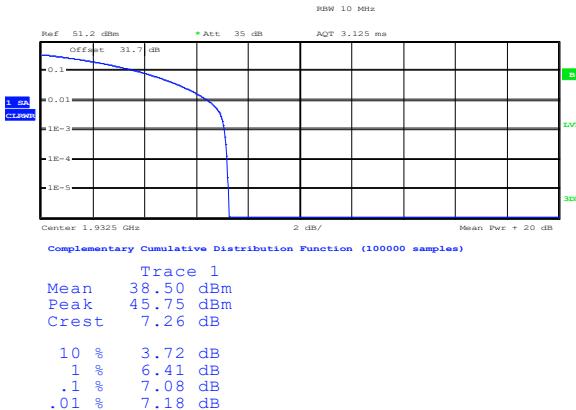


Figure 8.2-4: CCDF sample plot, 5 MHz channel

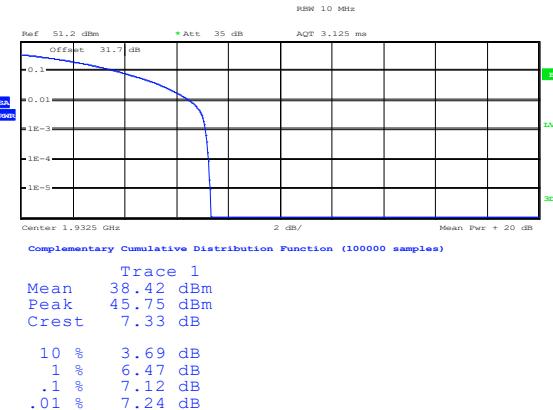


Figure 8.2-5: CCDF sample plot, 5 MHz channel LTE + IoT

8.3 FCC 27.53 and RSS-139, 4.2, RSS-170, 5.4 Spurious emissions at RF antenna connector (Band 66)

8.3.1 Definitions and limits

FCC:

(h) AWS emission limits

(1) General protection levels. Except as otherwise specified below, for operations in the 1695–1710 MHz, 1710–1755 MHz, 1755–1780 MHz, 1915–1920 MHz, 1995–2000 MHz, 2000–2020 MHz, 2110–2155 MHz, 2155–2180 MHz, and 2180–2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least $43 + 10 \log_{10} (P)$ dB.

(3) Measurement procedure.

- (i) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1-megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
- (ii) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.
- (iii) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

RSS-139, Section 6.6:

- i. In the first 1.0 MHz bands immediately outside and adjacent to the equipment's smallest operating frequency block, which can contain the equipment's occupied bandwidth, the emission power per any 1% of the emission bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least $43 + 10 \log_{10} p$ (watts) dB.
- ii. After the first 1.0 MHz outside the equipment's smallest operating frequency block, which can contain the equipment's occupied bandwidth, the emission power in any 1 MHz bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least $43 + 10 \log_{10} p$ (watts) dB.

RSS-170, Section 5.4:

The transmitter unwanted emissions shall be measured for all channel bandwidths with the carrier frequency set at both the highest and lowest channels in which the equipment is designed to operate.

The e.i.r.p. density of unwanted and carrier-off state emissions outlined in this section (Section 5.4) shall be averaged over any 2-ms active transmission using an RMS detector with a resolution bandwidth of 1 MHz for broadband emissions and a resolution bandwidth of 1 kHz for discrete emissions, unless stated otherwise.

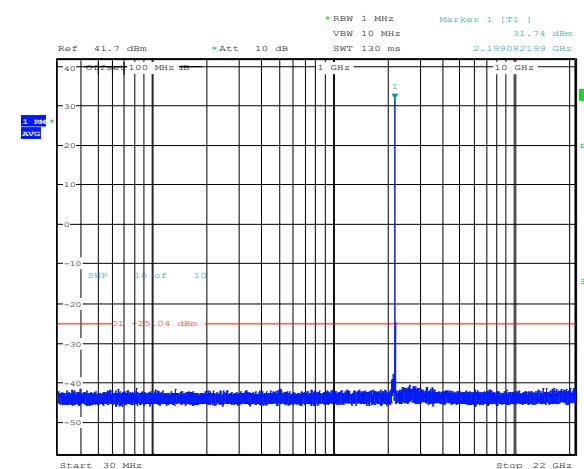
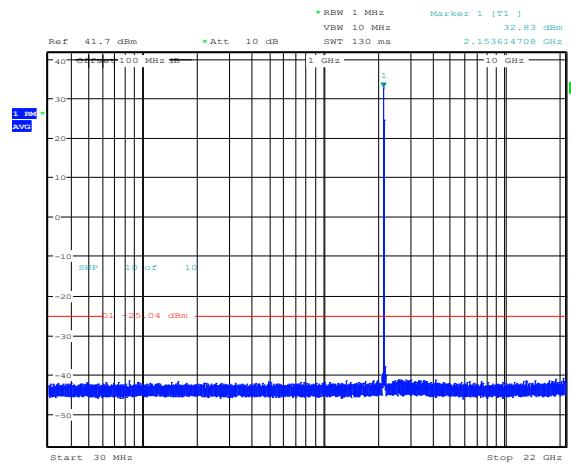
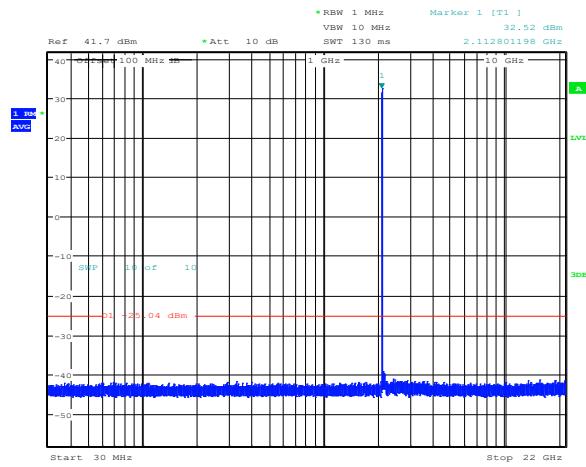
For ATC equipment operating in the bands 2000–2020 MHz and 2180–2200 MHz, the unwanted emission limits shall be determined using a measurement bandwidth of 1 MHz or greater. However, in the 1 MHz band immediately outside and adjacent to the equipment's operating frequency block, a resolution bandwidth of at least 1% of the occupied bandwidth may be employed.

5.4.1.2 ATC Base Station Equipment operating in bands 2000–2020 MHz and 2180–2200 MHz

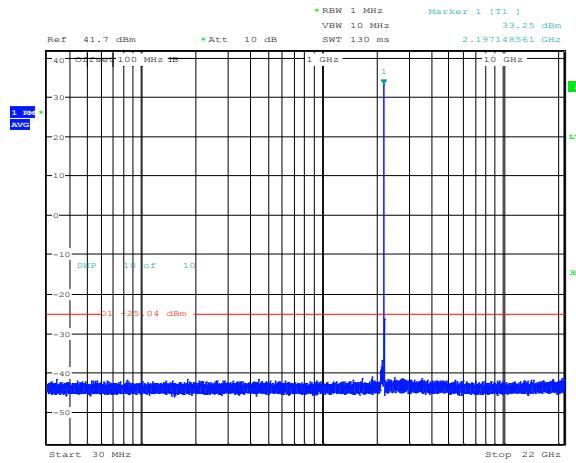
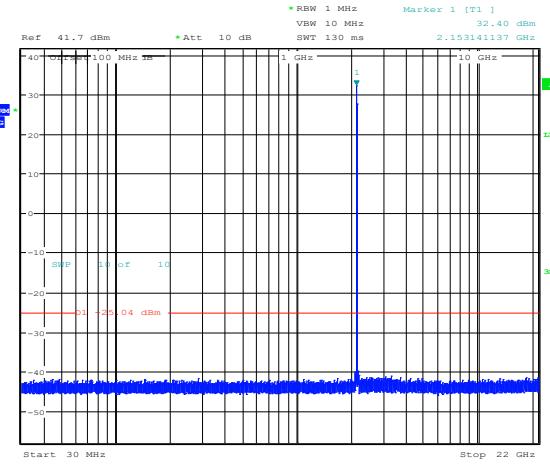
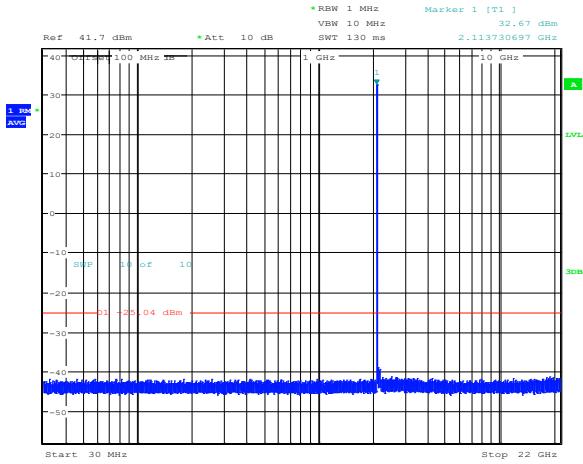
The unwanted emissions of ATC base station equipment transmitting in the bands 2000–2020 MHz and 2180–2200 MHz shall comply with the following:

- (1) The power of any unwanted emissions at frequencies outside the equipment's operating frequency block shall be attenuated below the transmitter power P (dBW), by $43 + 10 \log p$ (watts), dB.
- (2) *For equipment operating in the band 2180–2200 MHz, in addition to (1), the power of any emissions on all frequencies between 2200 MHz and 2290 MHz shall not exceed an e.i.r.p. of $-100.6 \text{ dBW}/4 \text{ kHz}$ ($-70.6 \text{ dBm}/4 \text{ kHz}$).

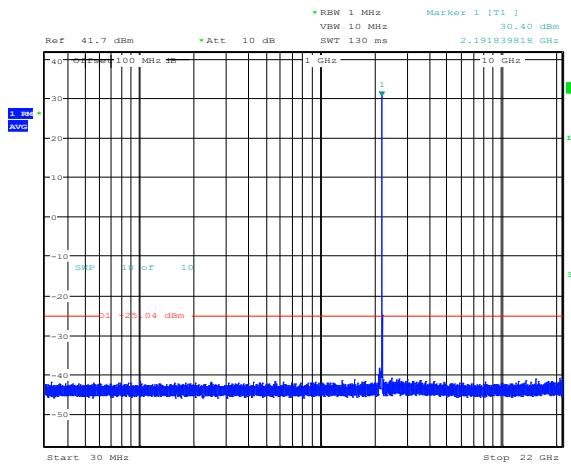
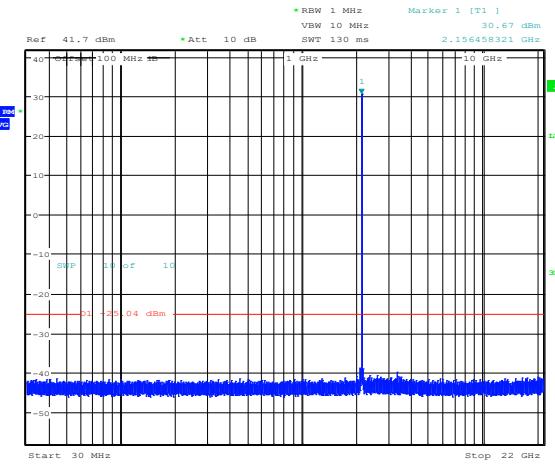
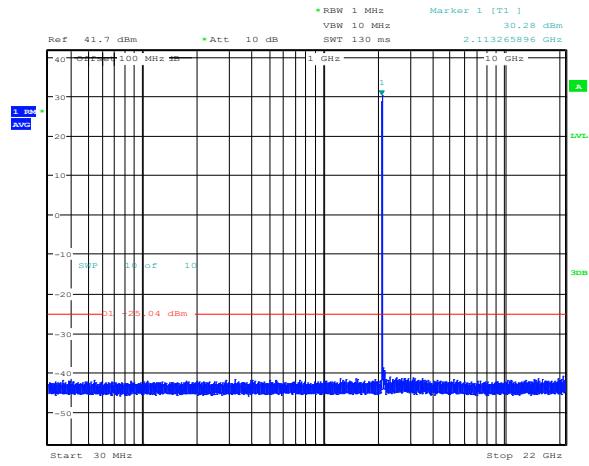
*** This requirement is for implementation and is enforced at the time of licensing. Therefore, results are not included in this report.**




8.3.2 Test summary

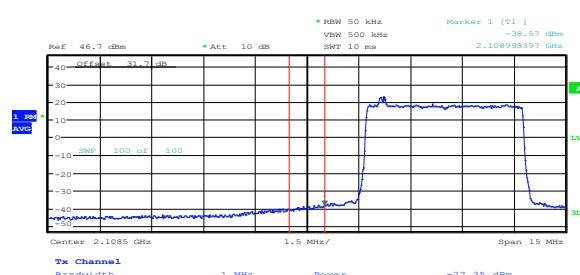
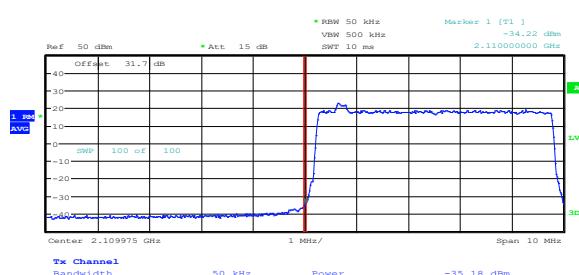
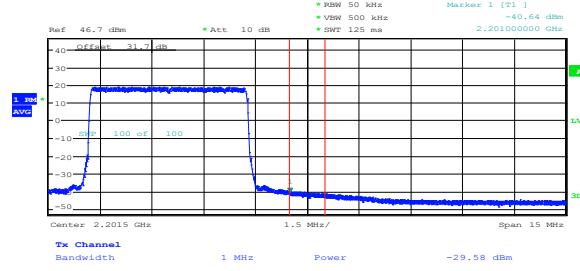
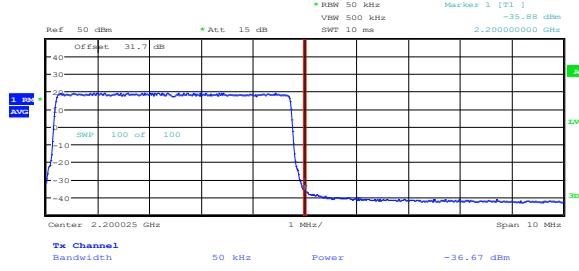
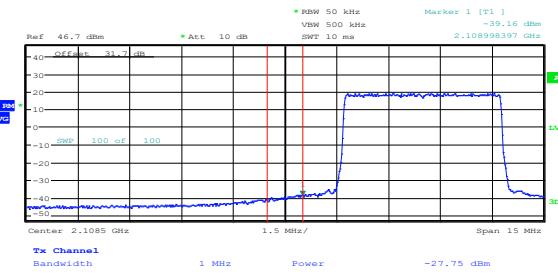
Test date	March 26, 2020
Test engineer	David Duchesne




8.3.3 Observations, settings and special notes

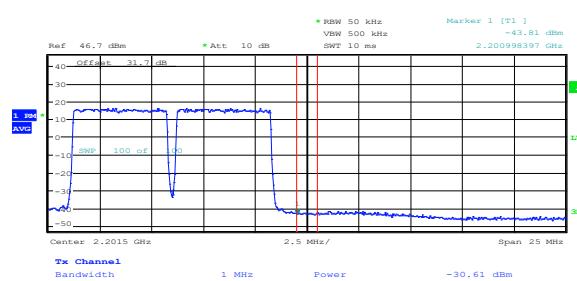
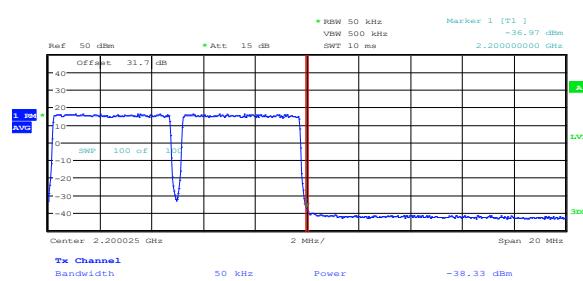
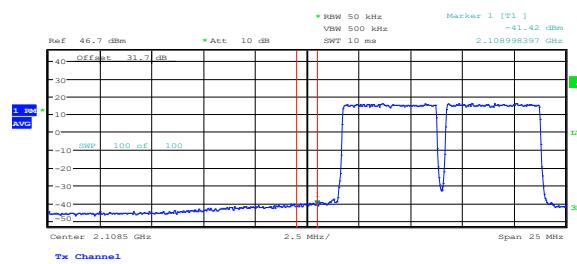
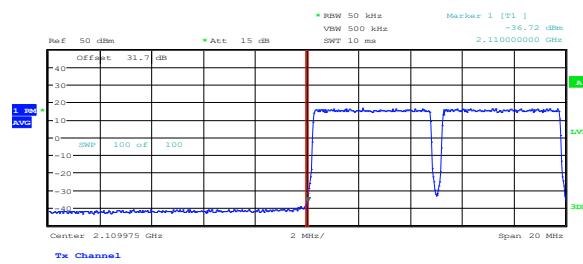
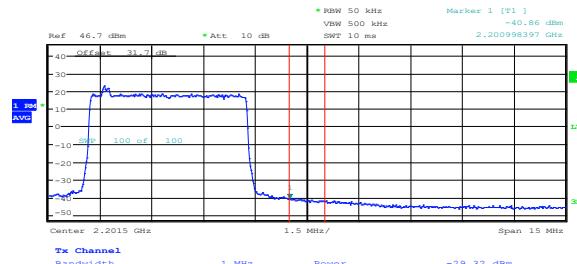
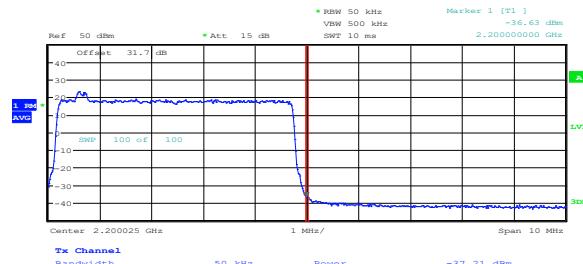
- The spectrum was searched from 30 MHz to the 10th harmonic.
- All measurements were performed using an average (RMS) detector per ANSI C63.26 Paragraph 5.7.2 method.
- Limit line (43 + 10 log₁₀ (P) or -13 dBm) was adjusted for MIMO operation by 12.04 dB*: -13 dBm - 12.04 dB = -25.04 dBm
*MIMO correction factor for 16 antenna ports: 10 × Log₁₀(16) = 12.04 dB
- RBW 1 MHz, VBW was wider than RBW.




8.3.4 Test data

8.3.4 Test data, continued

8.3.4 Test data, continued

8.3.4 Test data, continued

On the plots below the measured “Tx Channel Power” value must be lower than **-25.04 dBm**

8.3.4 Test data, continued

8.4 FCC 27.53 and RSS-139, 4.2, RSS-170, 5.4 Radiated spurious emissions (Band 66 & 2/25a)

8.4.1 Definitions and limits

FCC:

(h) AWS emission limits

(1) General protection levels. Except as otherwise specified below, for operations in the 1695–1710 MHz, 1710–1755 MHz, 1755–1780 MHz, 1915–1920 MHz, 1995–2000 MHz, 2000–2020 MHz, 2110–2155 MHz, 2155–2180 MHz, and 2180–2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least $43 + 10 \log_{10} (P)$ dB.

(3) Measurement procedure.

(i) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1-megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

(ii) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.

(iii) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

RSS-139, Section 6.6:

i. In the first 1.0 MHz bands immediately outside and adjacent to the equipment's smallest operating frequency block, which can contain the equipment's occupied bandwidth, the emission power per any 1% of the emission bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least $43 + 10 \log_{10} p$ (watts) dB.

ii. After the first 1.0 MHz outside the equipment's smallest operating frequency block, which can contain the equipment's occupied bandwidth, the emission power in any 1 MHz bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least $43 + 10 \log_{10} p$ (watts) dB.

RSS-170, Section 5.4:

The transmitter unwanted emissions shall be measured for all channel bandwidths with the carrier frequency set at both the highest and lowest channels in which the equipment is designed to operate.

The e.i.r.p. density of unwanted and carrier-off state emissions outlined in this section (Section 5.4) shall be averaged over any 2-ms active transmission using an RMS detector with a resolution bandwidth of 1 MHz for broadband emissions and a resolution bandwidth of 1 kHz for discrete emissions, unless stated otherwise.

For ATC equipment operating in the bands 2000–2020 MHz and 2180–2200 MHz, the unwanted emission limits shall be determined using a measurement bandwidth of 1 MHz or greater. However, in the 1 MHz band immediately outside and adjacent to the equipment's operating frequency block, a resolution bandwidth of at least 1% of the occupied bandwidth may be employed.

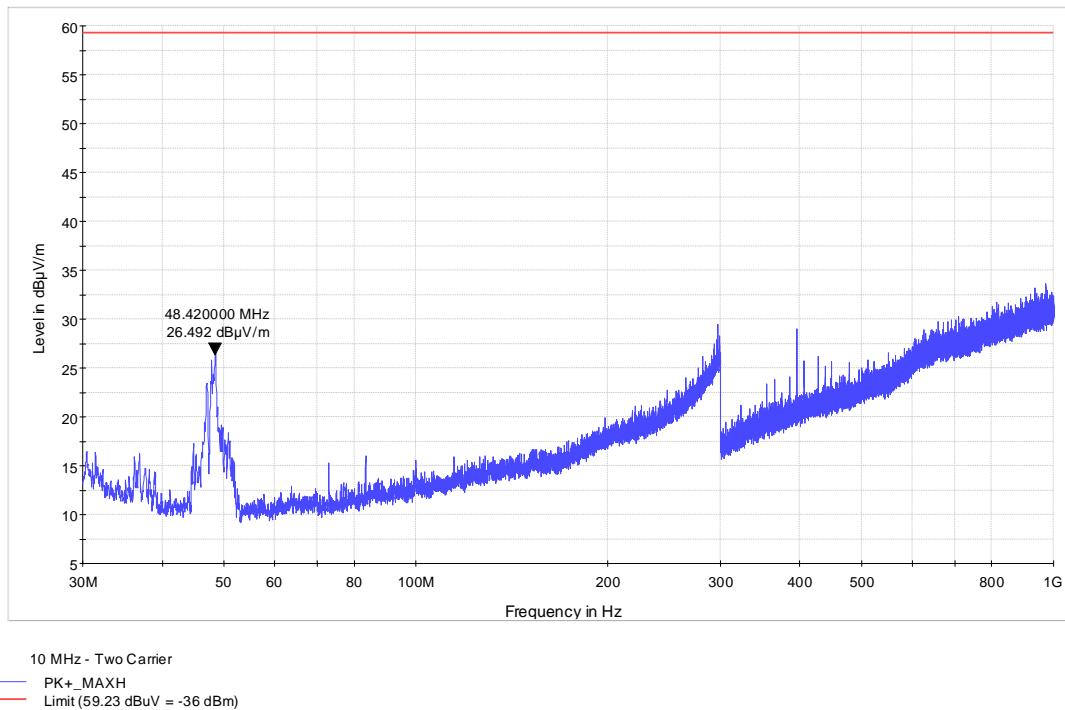
5.4.1.2 ATC Base Station Equipment operating in bands 2000–2020 MHz and 2180–2200 MHz

The unwanted emissions of ATC base station equipment transmitting in the bands 2000–2020 MHz and 2180–2200 MHz shall comply with the following:

(1) The power of any unwanted emissions at frequencies outside the equipment's operating frequency block shall be attenuated below the transmitter power P (dBW), by $43 + 10 \log p$ (watts), dB.

(2) *For equipment operating in the band 2180–2200 MHz, in addition to (1), the power of any emissions on all frequencies between 2200 MHz and 2290 MHz shall not exceed an e.i.r.p. of $-100.6 \text{ dBW}/4 \text{ kHz}$ ($-70.6 \text{ dBm}/4 \text{ kHz}$).

*** This requirement is for implementation and is enforced at the time of licensing. Therefore, results are not included in this report.**


8.4.2 Test summary

Test date	July 18, 2018
Test engineer	Predrag Golic

8.4.3 Observations, settings and special notes

- The spectrum was searched from 30 MHz to the 10th harmonic per ANSI C63.26 Paragraph 5.5.3.2 method.
- RBW within 30–1000 MHz was 100 kHz and 1 MHz above 1 GHz. VBW was wider than RBW.
- Testing was performed with RF ports terminated with 50 Ohm load.
- **Testing was performed with dual band (Band 2/25a and Band 66a) simultaneous transmission.**

8.4.4 Test data

Figure 8.4-1: Radiated spurious emissions below 1 GHz (5 MHz – Single carrier)

8.4.4 Test data, continued

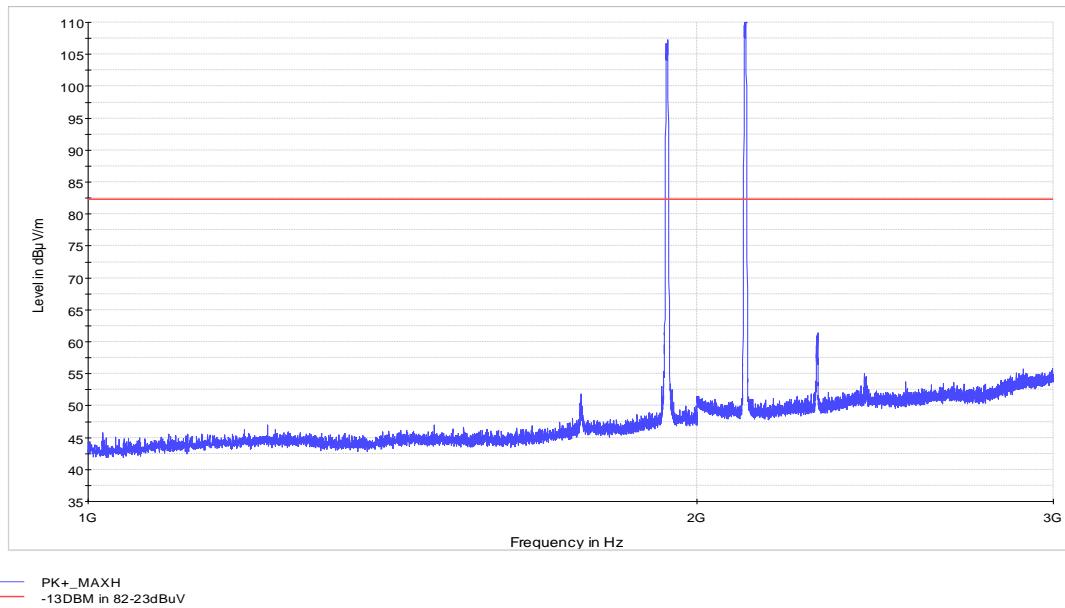


Figure 8.4-2: Radiated spurious emissions within 1–3 GHz (5 MHz – Single carrier)

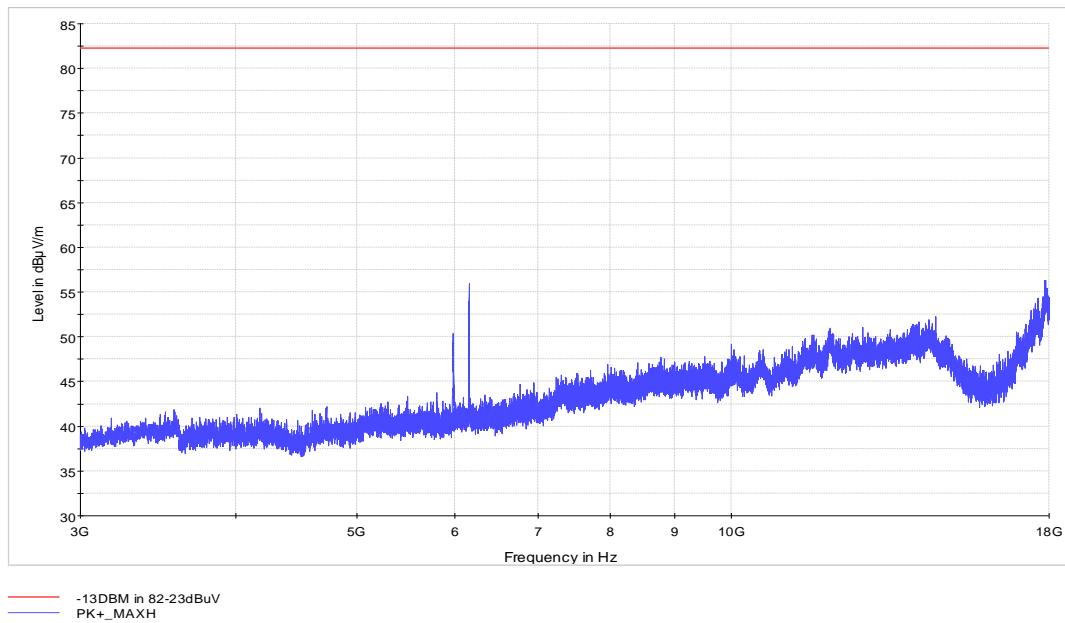
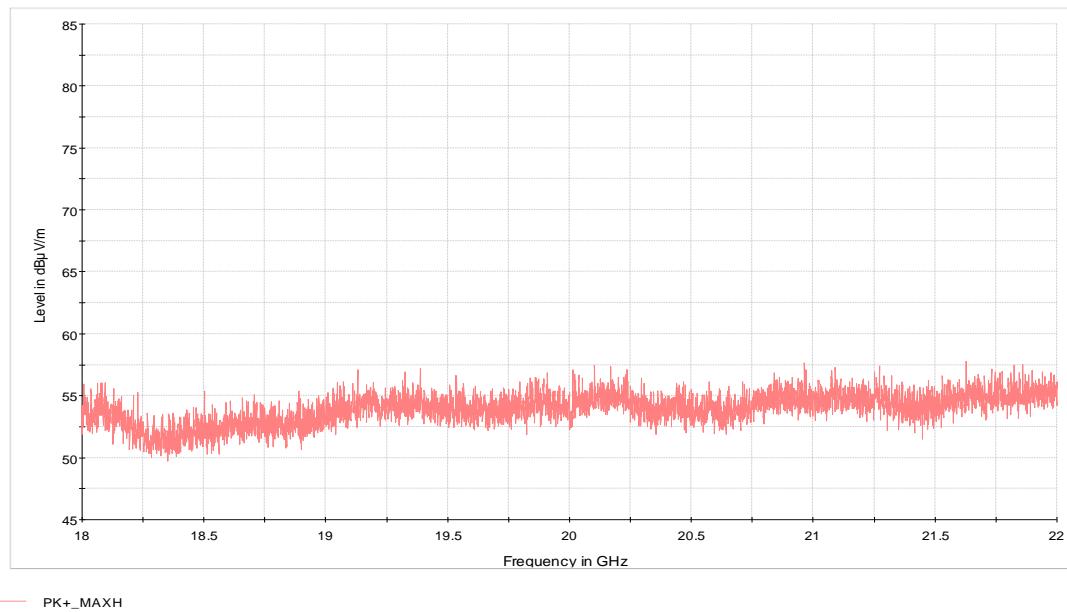



Figure 8.4-3: Radiated spurious emissions within 3–18 GHz (5 MHz – Single carrier)

Figure 8.4-4: Radiated spurious emissions within 18–22 GHz (5 MHz – Single carrier)

8.5 FCC 24.238(a) and RSS-133, 6.5.1 Spurious out-of-band emissions (Band 2/25a)

8.5.1 Definitions and limits

FCC:

Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log_{10} p$ dB.

(b) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

RSS-133, Section 6.5.1:

- i. In the first 1.0 MHz bands immediately outside and adjacent to the equipment's operating frequency block, the emission power per any 1% of the emission bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least $43 + 10 \log_{10} p$ (watts) dB.
- ii. After the first 1.0 MHz, the emission power in any 1 MHz bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least $43 + 10 \log_{10} p$ (watts) dB. If the measurement is performed using 1% of the emission bandwidth, power integration over 1.0 MHz is required.

8.5.2 Test summary

Test date	March 27, 2020
Test engineer	David Duchesne

8.5.3 Observations, settings and special notes

- The spectrum was searched from 30 MHz to the 10th harmonic.
- All measurements were performed using an average (RMS) detector per ANSI C63.26 Paragraph 5.7.2 method.
- Limit line ($43 + 10 \log_{10} (P)$ or -13 dBm) was adjusted for MIMO operation by 12.04 dB*: -13 dBm $- 12.04$ dB $= -25.04$ dB
*MIMO correction factor for 16 antenna ports: $10 \times \log_{10}(16) = 12.04$ dB
- RBW 1 MHz, VBW was wider than RBW.

8.5.4 Test data

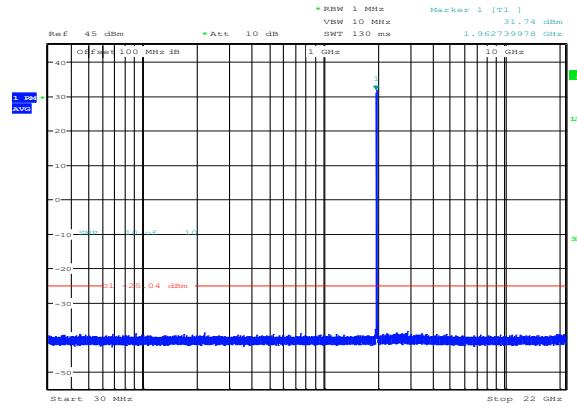
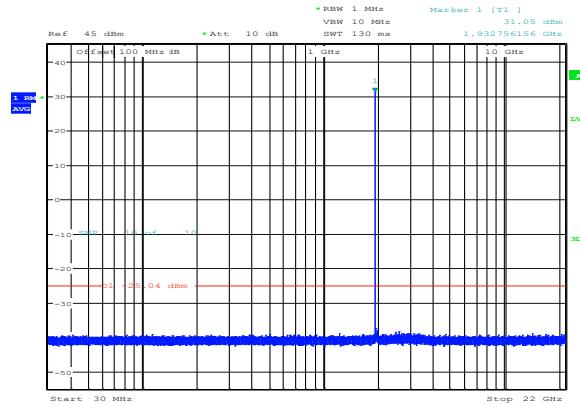
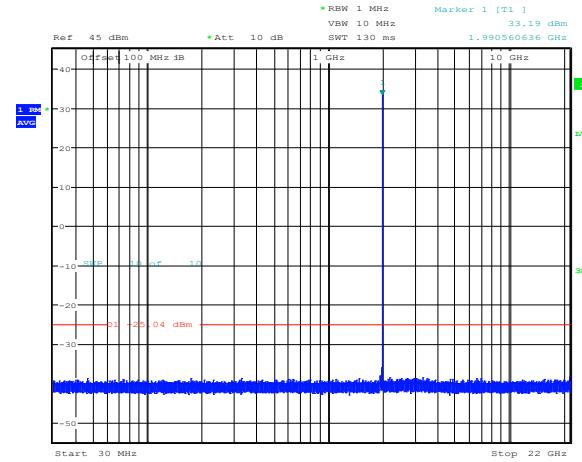
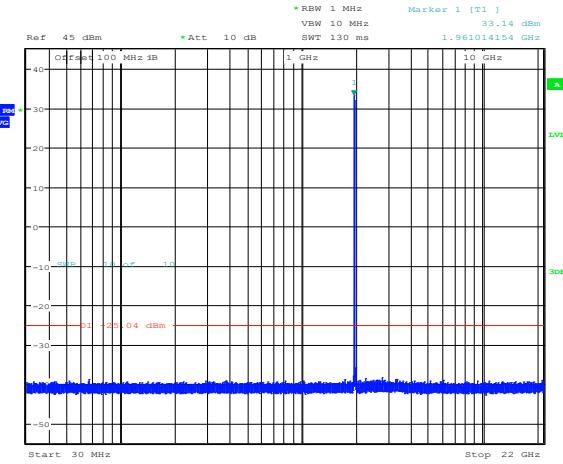
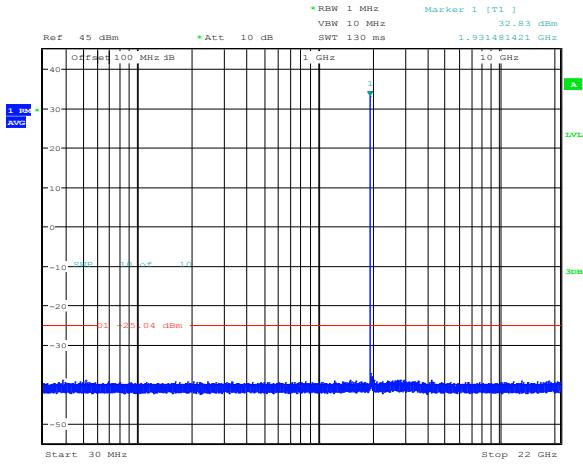
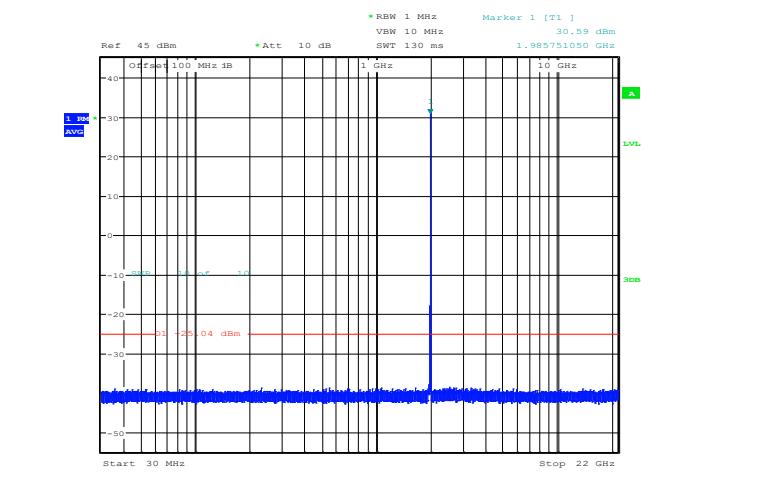
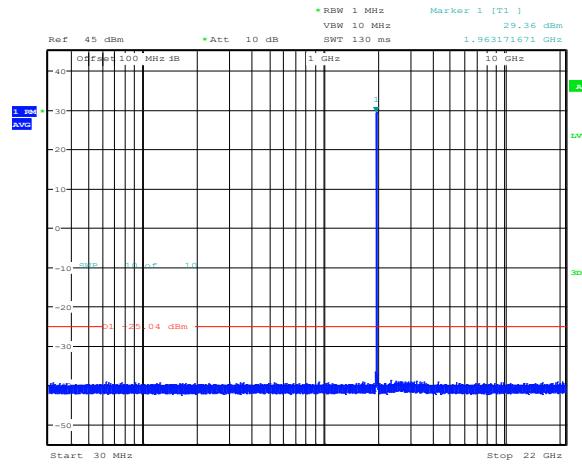
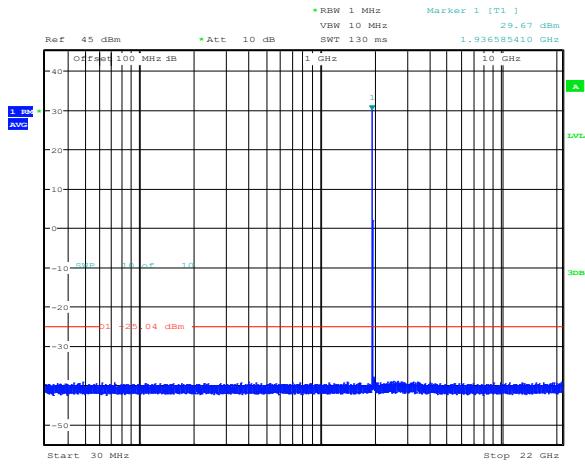
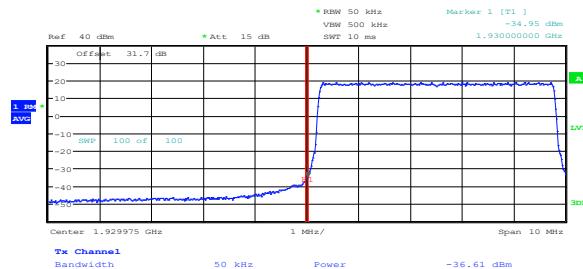
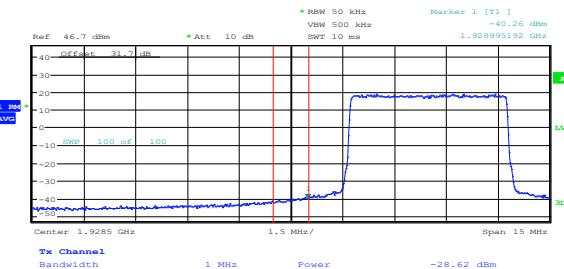









Figure 8.5-3: Conducted spurious emissions of 5MHz high channel, single-carrier operation

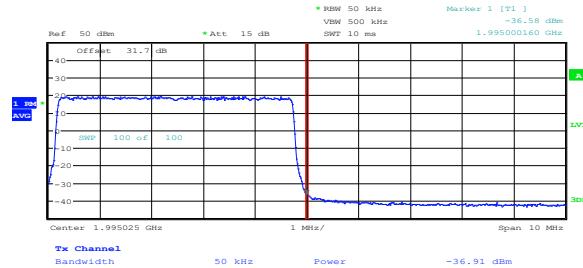
8.5.4 Test data, continued

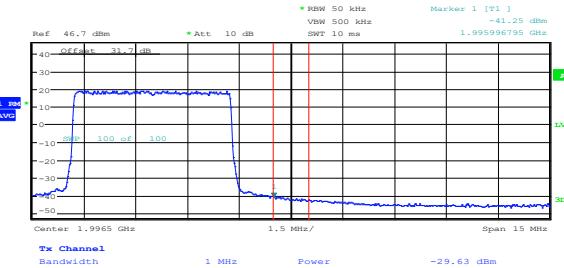


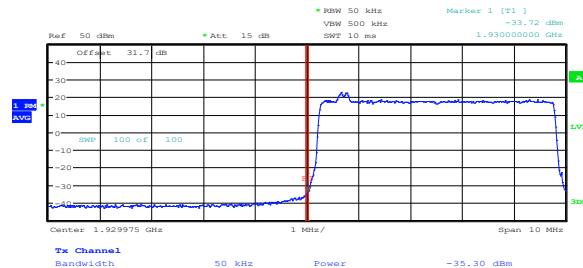
8.5.4 Test data, continued



8.5.4 Test data, continued


On the plots below the measured “Tx Channel Power” value must be lower than **-25.04 dBm**


Figure 8.5-10: Conducted band edge emission at 1930 MHz, 5 MHz single carrier operation (RBW = 1% of EBW)


Figure 8.5-11: Conducted band edge emission at 1929 MHz, 5 MHz single carrier operation (RBW = 1 MHz)

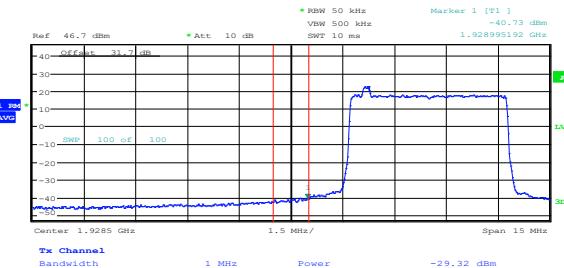

Figure 8.5-12: Conducted band edge emission at 1995 MHz, 5 MHz single carrier operation (RBW = 1% of EBW)

Figure 8.5-13: Conducted band edge emission at 1996 MHz, 5 MHz single carrier operation (RBW = 1 MHz)

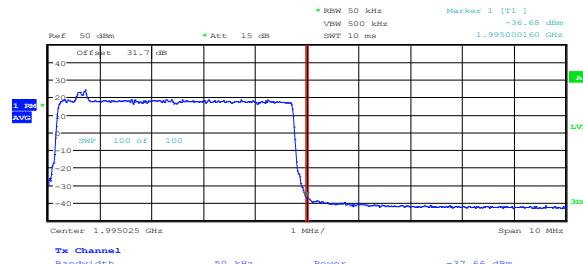


Figure 8.5-14: Conducted band edge emission at 1930 MHz, 5 MHz single carrier operation with IoT (RBW = 1% of EBW)

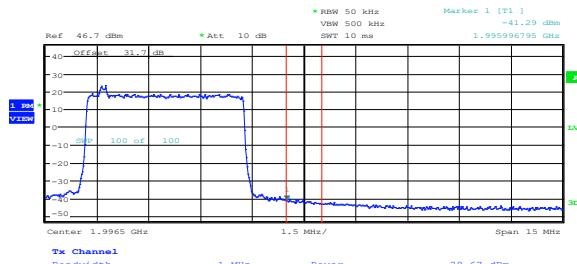


Figure 8.5-15: Conducted band edge emission at 1929 MHz, 5 MHz single carrier operation with IoT (RBW = 1 MHz)


8.5.4 Test data, continued

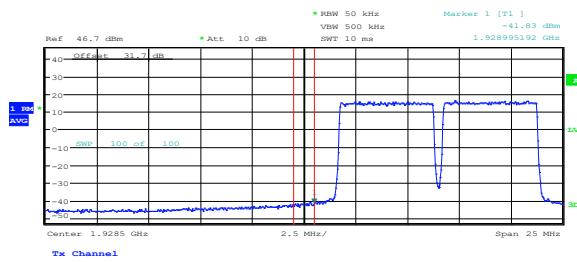

Figure 8.5-16: Conducted band edge emission at 1995 MHz, 5 MHz single carrier operation with IoT (RBW = 1% of EBW)

Figure 8.5-17: Conducted band edge emission at 1996 MHz, 5 MHz single carrier operation with IoT (RBW = 1 MHz)

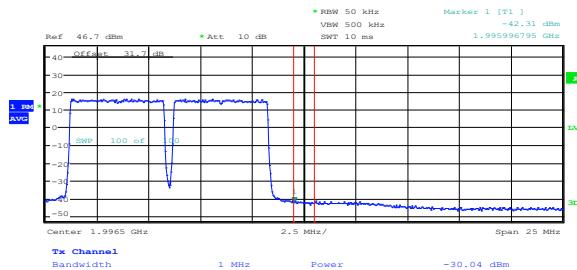

Figure 8.5-18: Conducted band edge emission at 1930 MHz, 5 MHz two-carrier operation (RBW = 1% of EBW)

Figure 8.5-19: Conducted band edge emission at 1929 MHz, 5 MHz two-carrier operation (RBW = 1 MHz)

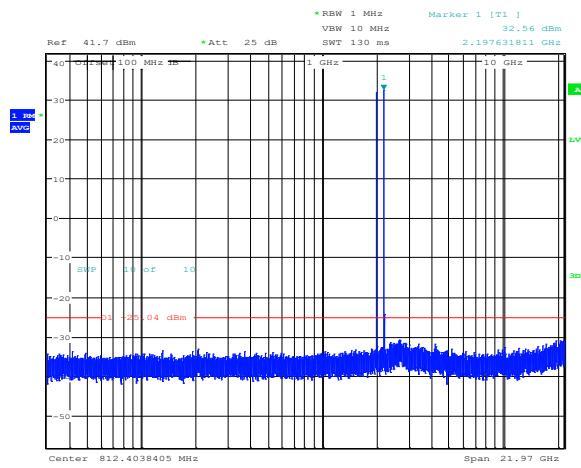
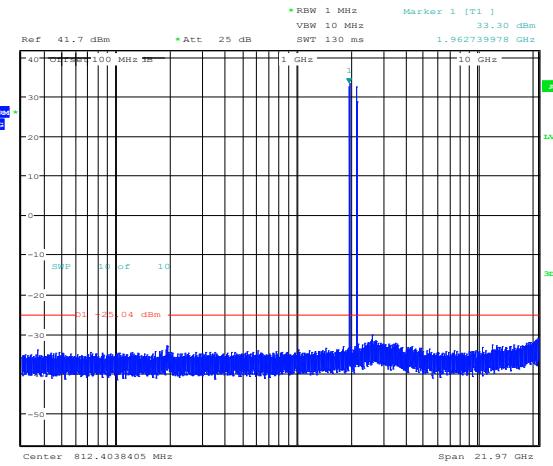
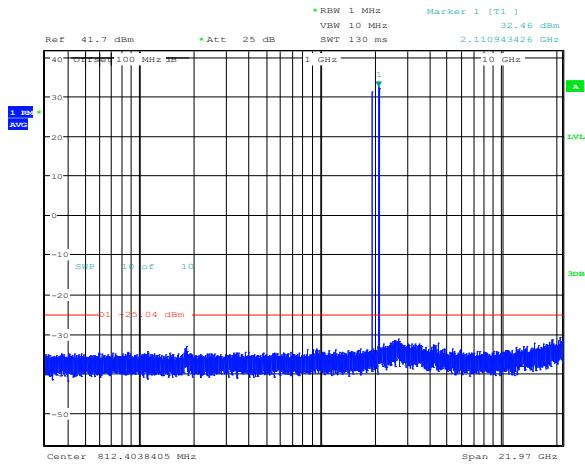




Figure 8.5-20: Conducted band edge emission at 1995 MHz, 5 MHz two-carrier operation (RBW = 1% of EBW)

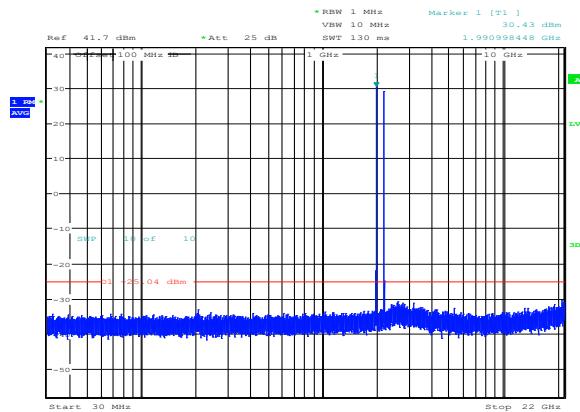
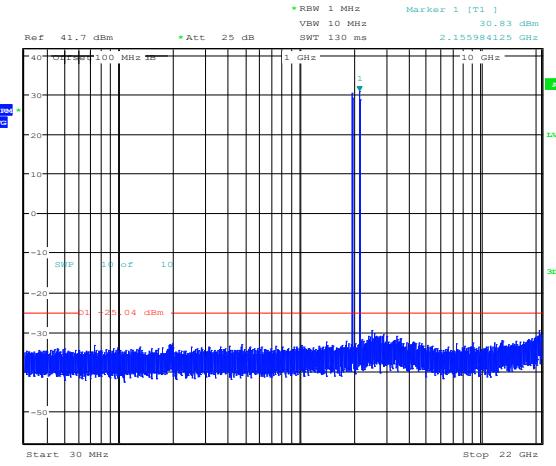
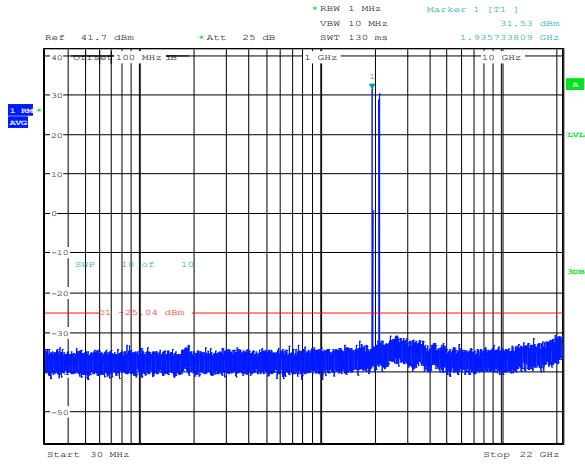




Figure 8.5-21: Conducted band edge emission at 1996 MHz, 5 MHz two-carrier operation (RBW = 1 MHz)

8.5.4 Test data, continued

8.5.4 Test data, continued

8.6 FCC Part 2.1049 and RSS-Gen, 6.7 Occupied bandwidth (Band 66)

8.6.1 Definitions and limits

FCC:

The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

RSS-Gen, 6.7

The occupied bandwidth or the “99% emission bandwidth” is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

8.6.2 Test summary

Test date	March 27, 2020
Test engineer	David Duchesne

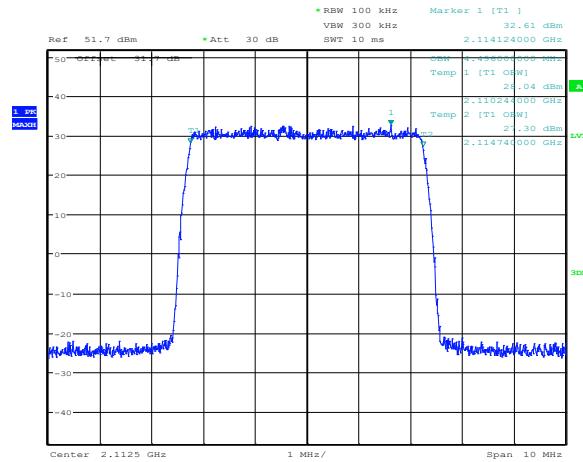
8.6.3 Observations, settings and special notes

Testing was performed per ANSI C63.26 Paragraphs 5.4.3 and 5.4.4 methods.

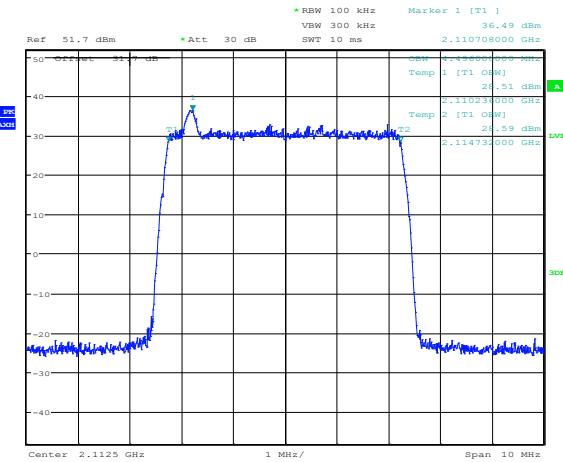
Spectrum analyzer settings:

Detector mode	Peak
Resolution bandwidth	≥1 % of EBW
Video bandwidth	RBW × 3
Trace mode	Max Hold

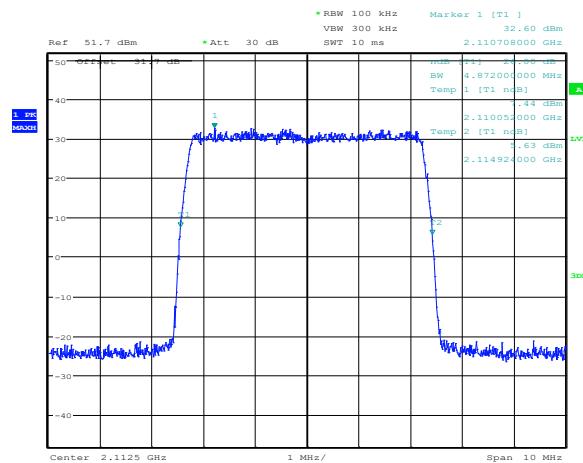
8.6.4 Test data


Table 8.6-1: Occupied bandwidth results for Port 060

Remarks	Frequency, MHz	99% OBW, MHz	26 dB BW, MHz
QPSK, 5 MHz, Low channel	2112.5	4.50	4.87
16QAM, 5 MHz, Low channel	2112.5	4.52	4.87
64QAM, 5 MHz, Low channel	2112.5	4.49	4.48
256QAM, 5 MHz, Low channel	2112.5	4.50	4.85
16QAM, 5 MHz, Mid channel	2155.0	4.49	4.84
16QAM, 5 MHz, High channel	2197.5	4.50	4.86


Table 8.6-2: Occupied bandwidth LTE + IoT results for Port 060

Remarks	Frequency, MHz	99% OBW, MHz	26 dB BW, MHz
5 MHz low channel with 2 × GB IoT	2112.5	4.49	4.82
5 MHz mid channel with 2 × GB IoT	2155.0	4.49	4.79
5 MHz high channel with 2 × GB IoT	2197.5	4.49	4.79


8.6.4 Test data, continued

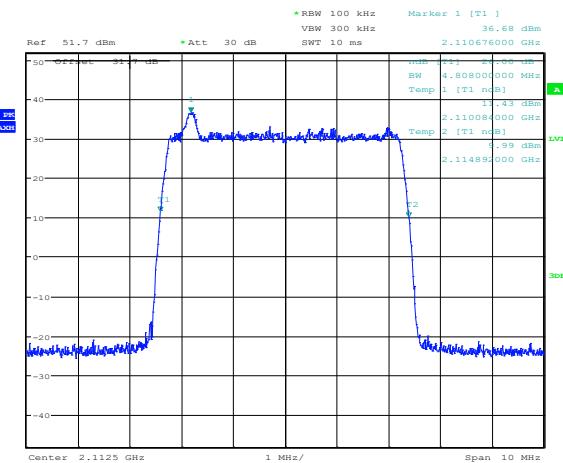

Figure 8.6-1: 99% Occupied bandwidth for 5 MHz channel, sample plot

Figure 8.6-2: 99% Occupied bandwidth for 5 MHz channel LTE + IoT, sample plot

Figure 8.6-3: -26 dB bandwidth for 5 MHz channel, sample plot

Figure 8.6-4: -26 dB bandwidth for 5 MHz channel LTE + IoT, sample plot

8.7 FCC Part 2.1049 and RSS-Gen, 6.7 Occupied bandwidth (Band 2/25a)

8.7.1 Definitions and limits

FCC:

The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

RSS-Gen, 6.7

The occupied bandwidth or the “99% emission bandwidth” is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

8.7.2 Test summary

Test date	March 27, 2020
Test engineer	David Duchesne

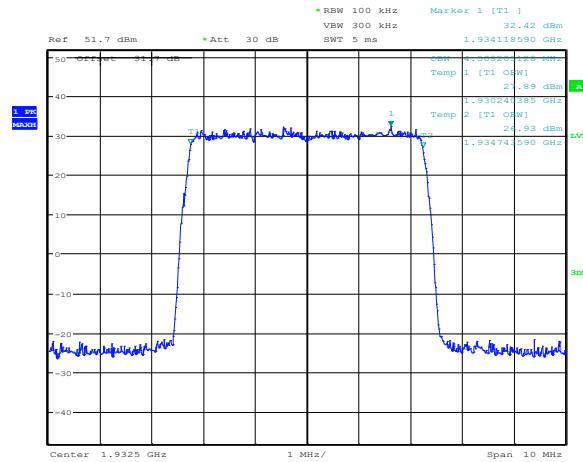
8.7.3 Observations, settings and special notes

Testing was performed per ANSI C63.26 Paragraphs 5.4.3 and 5.4.4 methods.

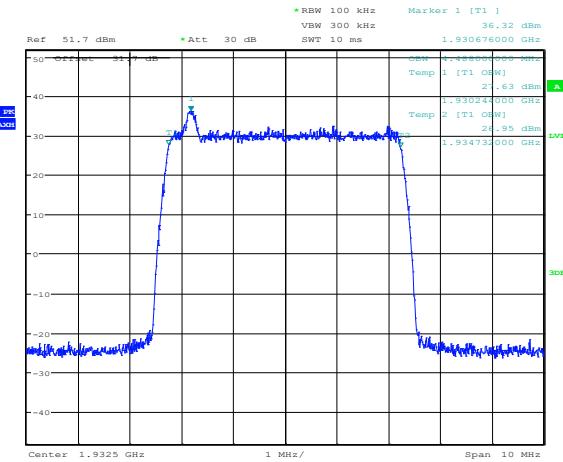
Spectrum analyzer settings:

Detector mode	Peak
Resolution bandwidth	≥1 % of EBW
Video bandwidth	RBW × 3
Trace mode	Max Hold

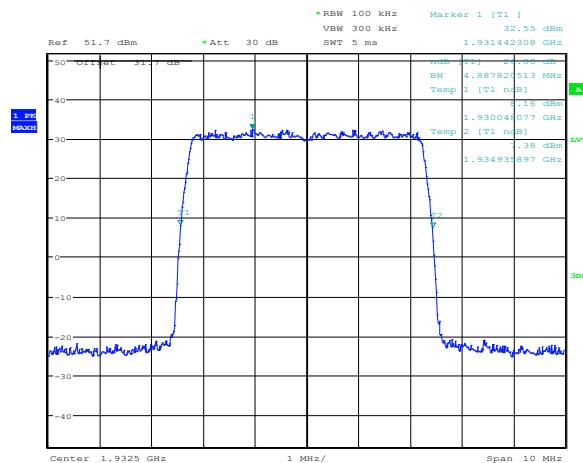
8.7.4 Test data


Table 8.7-1: Occupied bandwidth results for Port 060

Remarks	Frequency, MHz	99% OBW, MHz	26 dB BW, MHz
5 MHz, QPSK, low channel	1932.5	4.50	4.88
5 MHz, 16QAM, low channel	1932.5	4.52	4.86
5 MHz, 64QAM, low channel	1932.5	4.49	4.84
5 MHz, 256QAM, low channel	1932.5	4.50	4.87
5 MHz, QPSK, mid channel	1962.5	4.50	4.86
5 MHz, QPSK, high channel	1992.5	4.50	4.86


Table 8.7-2: Occupied bandwidth results for single carrier operation with IoT Port 060

Remarks	Frequency, MHz	99% OBW, MHz	26 dB BW, MHz
5 MHz low channel with 2 × GB IoT	1932.5	4.49	4.79
5 MHz mid channel with 2 × GB IoT	1962.5	4.49	4.79
5 MHz high channel with 2 × GB IoT	1992.5	4.48	4.79


8.7.4 Test data, continued

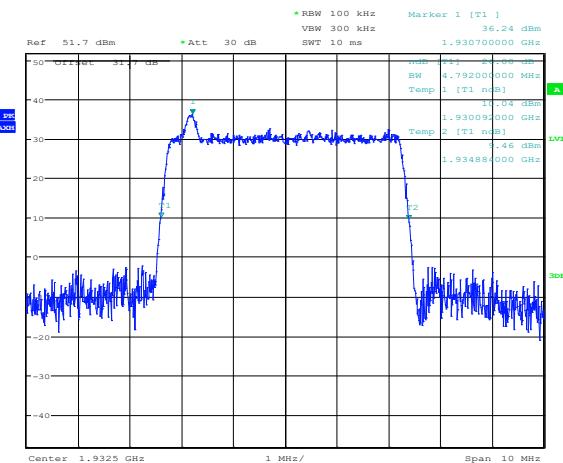
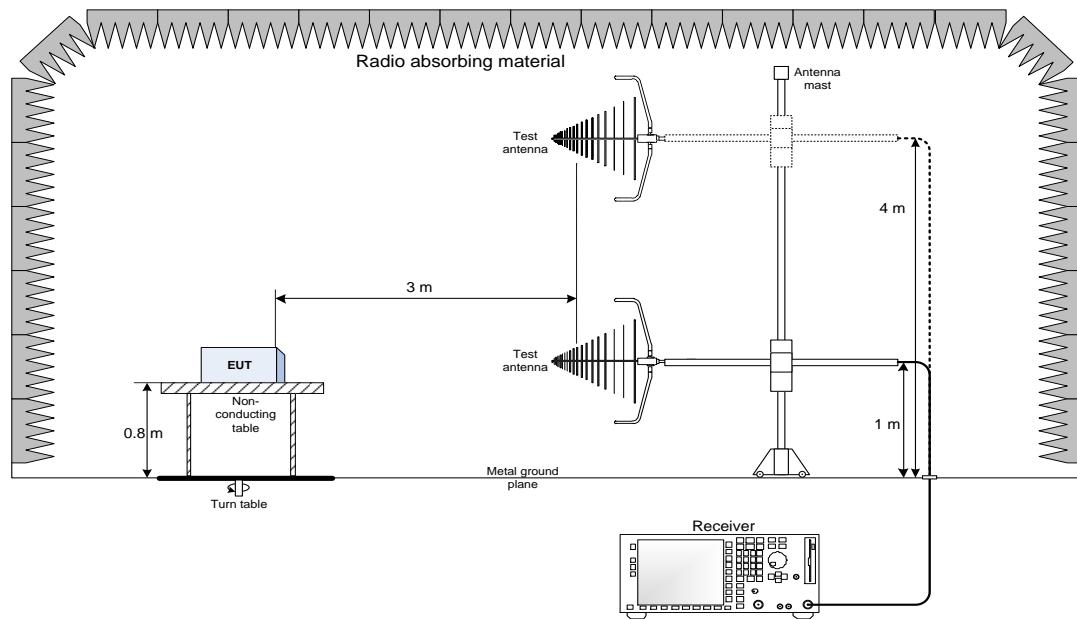
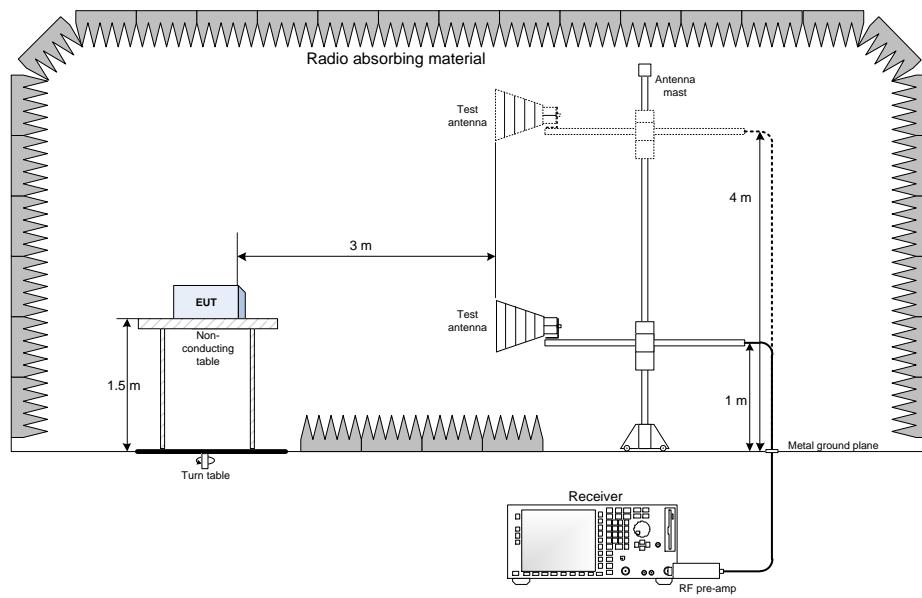

Figure 8.7-1: 99% Occupied bandwidth for 5 MHz channel, sample plot

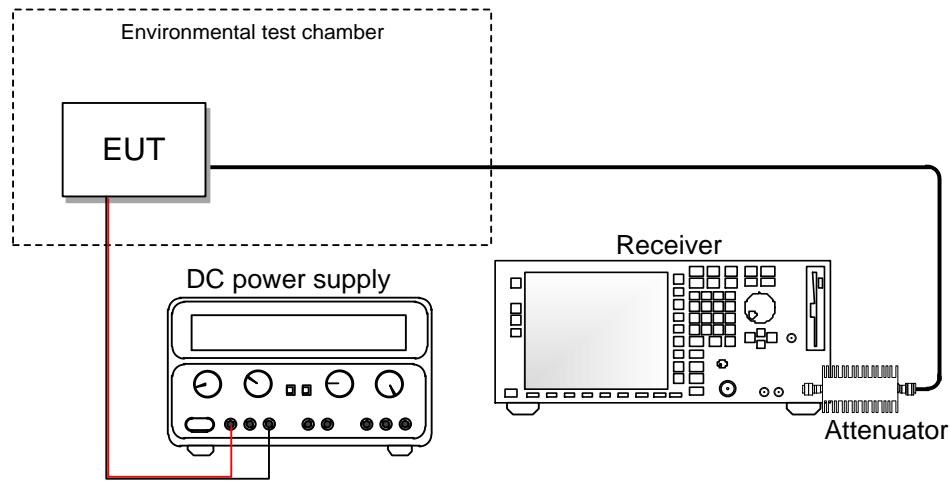
Figure 8.7-2: 99% Occupied bandwidth for 5 MHz channel LTE + IoT, sample plot


Figure 8.7-3: -26 dB bandwidth for 5 MHz channel, sample plot


Figure 8.7-4: -26 dB bandwidth for 5 MHz channel LTE + IoT, sample plot

Section 9. Block diagrams of test setups

9.1 Radiated emissions set-up for frequencies below 1 GHz



9.2 Radiated emissions set-up for frequencies above 1 GHz

9.3 Conducted emissions set-up
