

your
Science
Part

REPORT

issued by an FCC listed Laboratory Reg. no. 93866.
The test site complies with RSS-Gen, IC file no: 3482A

SWEDAC
ACCREDITING
1002
ISO/IEC 17025

Date
2011-04-12

Reference
FX104348-F27

Page
1 (2)

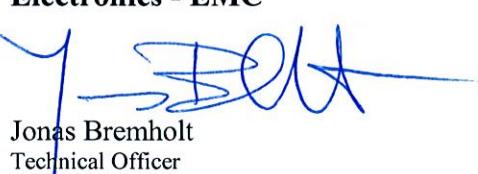
Handled by, department
Jonas Bremholt
Electronics
+46 (0)10 516 5438, jonas.bremholt@sp.se

Ericsson AB
Anders Johansson
PDU Radio Base Station
164 80 Stockholm

Class II permissive change measurements on RRUS 11 B4 1700/ 2100 MHz with FCC ID: TA8AKRC161254-1 and IC: 287AB-AS1612541 (8 appendices)

Test object

RRUS 11 B4, KRC 161 254/1 Rev. R1D


Summary

Standard	Compliant	Appendix
FCC CFR 47 / IC RSS-139		
2.1046 / RSS-139 6.4 RF power output	Yes	2
2.1049 / RSS-Gen 4.6.1 Occupied bandwidth	Yes	3
2.1051 / RSS-139 6.5 Band edge	Yes	4
2.1051 / RSS-139 6.5 Spurious emission at antenna terminals	Yes	5
2.1053 / RSS-139 6.5 Field strength of spurious radiation	Yes	6
2.1055 / RSS-139 6.3 Frequency stability	Yes	7
Industry Canada RSS-139		
RSS-139 6.6 Receiver spurious emissions	N.A.	Note 1

Note 1: The client declared that the test object has no stand-by mode. Both TX are always active. RX measurements are claimed not applicable

Note 2: Above RSS-139 items are given as cross-reference only. Measurements were performed according to ANSI procedures referenced by FCC and covered by SP's accreditation.

SP Technical Research Institute of Sweden
Electronics - EMC

Jonas Bremholt
Technical Officer

Christer Karlsson
Technical Manager

SP Technical Research Institute of Sweden

Postal address
SP
Box 857
SE-501 15 Borås
SWEDEN

Office location
Västeråsen
Brinellgatan 4
Borås

Phone / Fax / E-mail
+46 105 16 50 00
+46 33 13 55 02
info@sp.se

Laboratories are accredited by the Swedish Board for Accreditation and Conformity Assessment (SWEDAC) under the terms of Swedish legislation. This report may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

your
Science Partner

REPORT

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

Date 2011-04-12 Reference FX104348-F27 Page 2 (2)

Table of contents

Description of the test object	Appendix 1
Operation mode during measurements	Appendix 1
Test setups	Appendix 1
Purpose of test	Appendix 1
RF power output	Appendix 2
Occupied bandwidth	Appendix 3
Band edge	Appendix 4
Spurious emission at antenna terminals	Appendix 5
Field strength of spurious radiation	Appendix 6
Frequency stability	Appendix 7
Receiver spurious emissions	Appendix 8
External photos	Appendix 9

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

Appendix 1

Description – Test object

Equipment:	Radio equipment RRUS 11 B4 running in WCDMA mode supporting single and multi carrier.
Antenna ports:	2 TX/RX ports
Frequency bands:	TX: 2110 – 2155 MHz RX: 1710 – 1755 MHz
Modulations:	QPSK, 16QAM and 64QAM
Nominal output power: (Maximum)	Single carrier: 1x 44.8 dBm (1x 30W) on each antenna port Multi carrier: 2x 41.8 dBm (2x 15W) on each antenna port 4x 38.8 dBm (4x 7.5W) on each antenna port
Channel bandwidth:	4.2 to 5 MHz (configurable in steps of 100/200 kHz)
Channel spacing:	4.4 to 5 MHz (configurable in steps of 100/200 kHz)
Nominal power voltage:	-48 VDC

Tested channels

Channel	Downlink		Uplink	
	Frequency*	UARFCN	Frequency*	UARFCN
B	2112.4	1537	1712.4	1312
B+5	2117.4	1562	1717.4	1337
B+10	2122.4	1587	1722.4	1362
B+15	2127.4	1612	1727.4	1387
M	2132.5	1987	1732.5	1762
T-15	2137.6	1663	1737.6	1438
T-10	2142.6	1688	1742.6	1463
T-5	2147.6	1713	1747.6	1488
T	2152.6	1738	1752.6	1513

* Frequency in MHz

Operation mode during measurements

Measurements were performed with the test object transmitting the Test models which are defined in 3GPP TS 25.141. Test model 1 (TM1) uses the QPSK modulation only, Test model 5 (TM5) includes the 16QAM modulation and Test model 6 (TM6) includes the 64QAM modulation.

The settings below were found to be representative for all traffic scenarios when several settings with the different modulations, channel bandwidths and the number of carriers were tested to find the worst case setting. These settings were used for all measurements if not otherwise noted.

Single carrier

TM1: 64 DPCH:s at 30 ksps (SF=128)

Multi carrier

TM1: 32 DPCH:s at 30 ksps (SF=128) in each carrier (Two carriers activated)

Channel bandwidth 5 MHz

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

Appendix 1

Conducted measurements

Complete TX measurements were done at port RF A. Limited complementary TX measurements were done at port RF B to verify identical performance for both transmitter chains. RX measurements were considered not applicable, as the client claims the test object can not provide a stand-by mode. Both TX are always active.

Radiated measurements

The test object was powered with -48 VDC. All measurements were performed with the test object configured for maximum transmit power. The configuration represents worst case for radiated spurious emission measurements.

The RF output power port was via a RF attenuator connected to functional test equipment for supervision.

The RRUS unit was allocated to the following UARFCN:

Single Carrier: (One carrier configuration)

Cell	1	1	1
Channel	B	M	T

Multi Carrier: (Two carrier configuration)

Cell	1	2
Channel	B	B+10
Channel	T-10	T

Multi Carrier: (Four carrier configuration)

Cell	1	2	3	4
Channel	B	B+5	B+10	B+15
Channel	T	T-5	T-10	T-15

Purpose of test

The purpose of the tests is a class II permissive change verification of maintained compliance to the performance characteristics specified in applicable parts of FCC CFR 47 and IC RSS-139. The changes comprise addition of a new RAT, WCDMA mode, and a product revision update to version R1D due to minor HW changes as described in the client documentation. The preceding hardware revision has been filed with RAT LTE earlier. Additional to the results presented in this report for WCDMA mode, limited complementary verification measurements in LTE mode were performed and showed maintained compliance with hardware version R1D. Thus it was deemed sufficient to present only the results for the new WCDMA mode in this report.

your
Science Partner

REPORT

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

Date 2011-04-12 Reference FX104348-F27 Page 3 (6)

Appendix 1

References

Measurements were done according to relevant parts of the following standards:
ANSI 63.4-2003
ANSI/TIA/EIA-603-C-2004
CFR 47 part 2, October 1st, 2010
CFR 47 part 27, October 1st, 2010
3GPP TS 25.141, version 8.9.0
RSS-Gen Issue 3
RSS-139 Issue 2

FCC ID: TA8AKRC161254-1
 IC: 287AB-AS1612541

Appendix 1

Measurement equipment

Measurement equipment	Calibration Due	SP number
Test site Tesla	2012-10	503 881
R&S FSIQ 40	2011-07	503 738
R&S FSQ 40	2011-07	504 143
R&S ESI 26	2011-08	503 292
High pass filter	2011-07	504 199
High pass filter	2011-07	503 739
High pass filter	2011-07	503 740
RF attenuator	2011-07	504 159
RF attenuator	2011-08	900 233
RF step attenuator	2012-07	503 096
Boonton RF Peak power meter/analyizer	2011-10	503 144
Boonton Power sensor 56518-S/4	2012-10	503 145
Chase Bilog Antenna CBL 6111A	2011-10	503 182
EMCO Horn Antenna 3115	2014-01	502 175
Std.gain horn FLANN model 16240-25	-	503 939
Std.gain horn FLANN model 20240-20	-	503 674
μComp Nordic, Low Noise Amplifier	2011-07	504 160
MITEQ Low Noise Amplifier	2011-06	503 285
Temperature chamber 2	2013-11	501 031
Multimeter Fluke 87	2011-04	502 190
Testo 625, Temperature and humidity meter	2011-08	504 188
Testo 635 Temperature and humidity meter	2011-04	504 203

Uncertainties

Measurement and test instrument uncertainties are described in the quality assurance documentation "SP-QD 10885". The measurement uncertainties can be found in the table below. The uncertainties are calculated with a coverage factor $k=2$ (95% level of confidence).

Reservation

The test results in this report apply only to the particular test object as declared in the report.

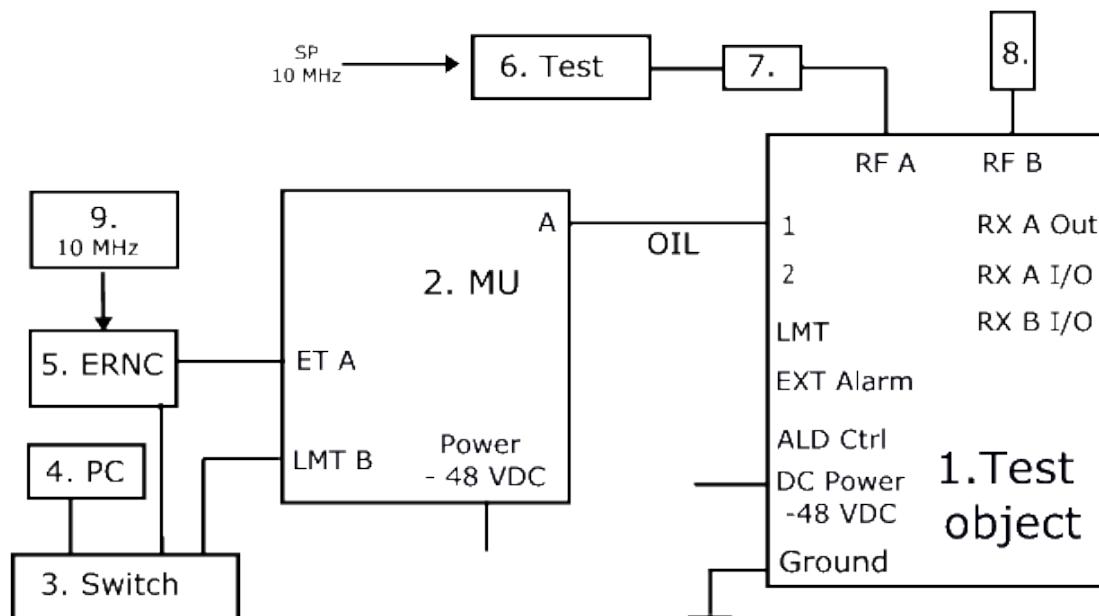
Delivery of test object

The test object was delivered 2011-03-18.

Manufacturer's representative

Christer Hjorth, Ericsson AB

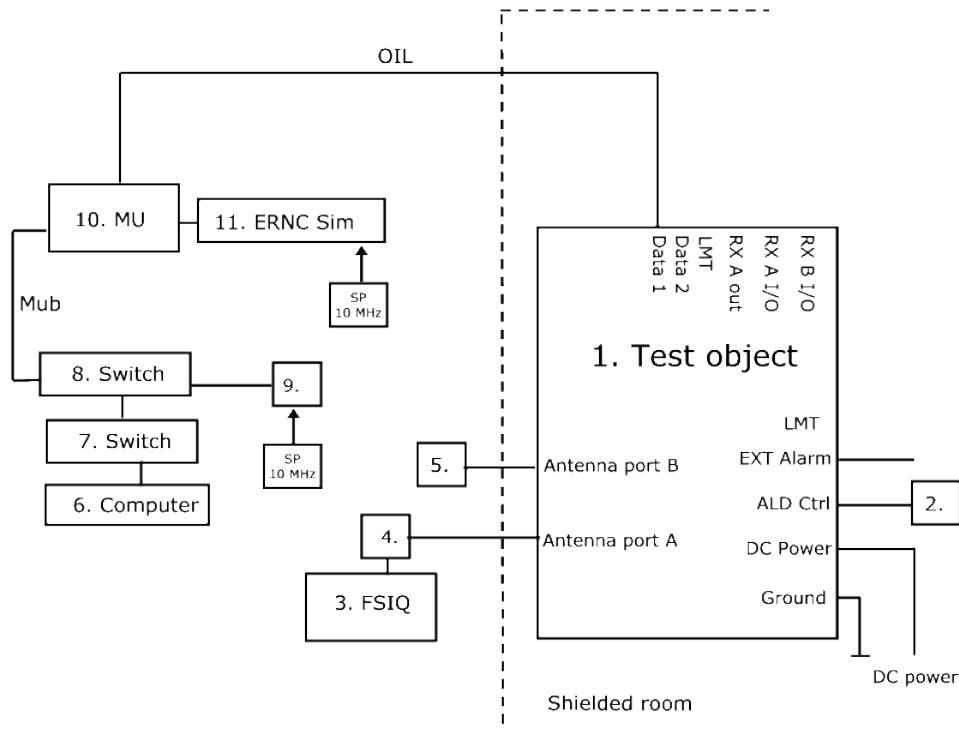
Test engineers


Jörgen Wassholm, Reinhold Reul and Jonas Bremholt

Test participant

Christer Hjorth, Ericsson AB (Partly present)

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541


Appendix 1

Test setup: Conducted measurements**Test object**

1.	RRUS 11 B4, KRC 161 254/1, R1D, CB4G735981 FCC ID: TA8AKRC161254-1 and IC: 287AB-AS1612541
----	---

Functional test equipment

2.	Main unit, see details in appendix 1.1
3.	Fast Ethernet switch, Netgear GSM 7212, BAMS - 1000517292
4.	Computer, Sunblade Ultra 45, BAMS – 1000517298
5.	ERNC SIM 145, BAMS – 1000707989
6.	SP test instrument according measurement equipment list
7.	RF attenuator, SP 504 159 and SP 900 233
8.	Attenuator, Weinschel model 48-30-33, Terminator Weinschel model 1433-4-LIM
9.	Symmetriom model 8040, BAMS - 1000838408

Test setup: Radiated measurements**Test object**

1.	RRUS 11 B4, KRC 161 254/1, R1D, CB4G735981 FCC ID: TA8AKRC161254-1 and IC: 287AB-AS1612541
----	---

Functional test equipment

2.	RET – Remote Electrical Tilt unit
3.	Signal Analyzer, Rhode & Schwartz FSIQ 40 SP 503 738
4.	Attenuator, Weinschel model 57-40-34 S/N ML394
5.	Attenuator, Weinschel model 1433-4-LIM S/N NC023
6.	Computer, Sunblade Ultra 45, BAMS – 1000517298
7.	Fast Ethernet switch, Netgear GSM 7212, BAMS - 1000517292
8.	Fast Ethernet switch, Netgear GSM 7212, BAMS - 1000517298
9.	NTP server, Symmetricom Syncserver, BAMS - 1000562216
10.	Main unit, see details in Appendix 1.1
11.	ERNC SIM 145, BAMS - 1000707989

Interfaces:**Type of port:**

Power configuration: -48 VDC	DC Power
Antenna port A, 7/16 connector	Antenna
Antenna port B, terminated	Antenna
LMT, only for maintenance, no cable attached	Signal
RX A I/O, not supported	Signal
RX A out, not supported	Signal
RX B I/O, not supported	Signal
ALD Ctrl, shielded multi-wire	Signal
Data 1, Optical Interface Link, Single mode opto fibre	Signal
Data 2, not supported	Signal
EXT Alarm, shielded multi-wire	Signal
Ground wire	Ground

your
Science Partner

REPORT

Date 2011-04-12 Reference FX104348-F27 Page 1 (1)

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

Appendix 1.1

RBS 6601 Main unit (Primary)

Product name	Product number	R-state	Serial number
DUW 30 01	KDU 127 161/3	R3A	C823680745
SUP 6601	1/BFL 901 009/1	R3B	BR80901303

RBS 6601 Main unit (Secondary)

Product name	Product number	R-state	Serial number
DUW 30 01	KDU 127 161/3	R3A	C823486741
SUP 6601	1/BFL 901 009/1	R3B	BR80983119

Software

Software	Revision
CXP 901 8319/1	R1A23

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

Appendix 2

RF power output measurements according to CFR 47 §27.50 / IC RSS-139 6.4

Date	Temperature	Humidity
2011-03-29	25 °C ± 3 °C	17 % ± 5 %
2011-03-30	24 °C ± 3 °C	16 % ± 5 %

Test set-up and procedure

The test object was connected to a power analyzer measuring peak and RMS output power in CDF mode.

Measurement equipment	SP number
Boonton RF Peak power meter/analyzer	503 144
Boonton Power sensor 56518-S/4	503 146
RF attenuator	900 233
Testo 635, temperature and humidity meter	504 203

Measurement uncertainty: 0.7 dB**Results**

Single carrier: Rated output power level at RF A connector (maximum): 1x 44.8 dBm

Transmitter power (dBm / dB) RMS / PAR		
B	M	T
44.2 / 6.8	44.0 / 6.7	44.0 / 6.7

Multi carrier: Rated output power level at RF A connector (maximum): 2x 41.8 dBm/ carrier

Transmitter power (dBm / dB) RMS / PAR		
B	M	T
41.4 / 9.5	41.2 / 9.5	41.2 / 9.5

Multi carrier: Rated output power level at RF A connector (maximum): 4x 38.8 dBm/ carrier

Transmitter power (dBm / dB) RMS / PAR		
B	M	T
38.5 / 10.7	38.3 / 10.7	38.4 / 10.6

your
Science Partner

REPORT

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

Date 2011-04-12 Reference FX104348-F27 Page 2 (2)

Appendix 2

Limits

§27.50 The maximum output power may not exceed 1640 W/MHz (EIRP).
The Peak to Average Ratio (PAR) may not exceed 13 dB.

RSS-139: Consult SRSP-513 for e.i.r.p. limits on fixed and base stations operating in the 2110-2155 MHz band.

In addition, when the transmitter power is measured in terms of average value, the peak-to-average ratio of the power shall not exceed 13 dB.

Complies?	Yes
-----------	-----

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

Appendix 3

Occupied bandwidth measurements according to 47 CFR 2.1049 / RSS-Gen 4.6.1

Date	Temperature	Humidity
2011-03-29	25 °C ± 3 °C	17 % ± 5 %
2011-03-30	24 °C ± 3 °C	16 % ± 5 %

Test set-up and procedure

The measurements were made per definition in §2.1049. The output was connected to a signal analyzer with the RMS detector activated. The signal analyzer was connected to an external 10 MHz reference standard during the measurements.

Measurement equipment	SP number
Rohde & Schwarz signal analyzer FSQ40	504 143
RF attenuator	900 233
Testo 615 temperature and humidity meter	503 498

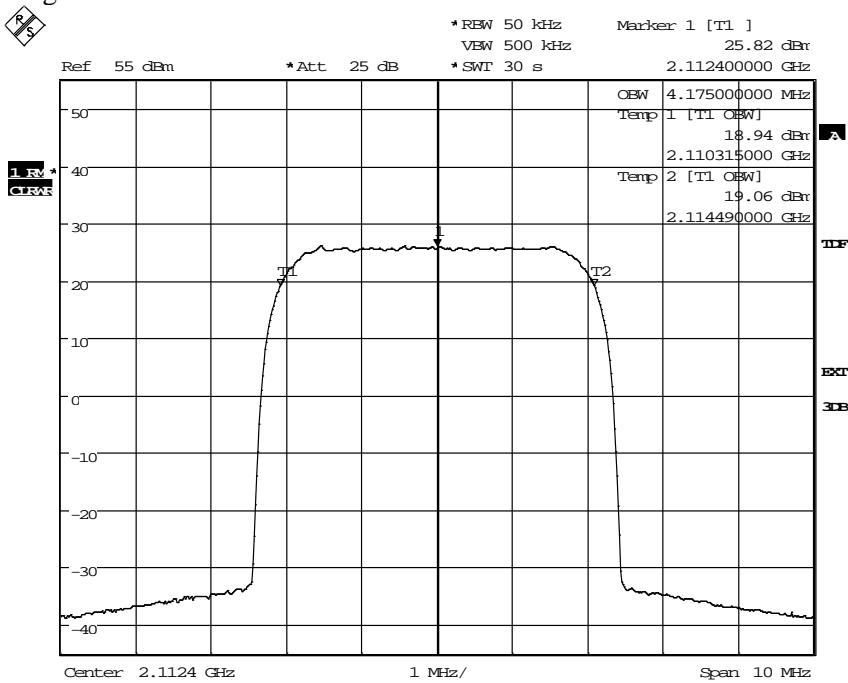
Measurement uncertainty: 3.7 dB

Results

The results are shown in appendix 3.1

Channel Bandwidth 5.0 MHz

	Channel	OBW
Diagram 1	B	4.18 MHz
Diagram 2	M	4.18 MHz
Diagram 3	T	4.18 MHz


Channel Bandwidth 4.2 MHz

	Channel	OBW
Diagram 4	B	3.85 MHz
Diagram 5	M	3.85 MHz
Diagram 6	T	3.85 MHz

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

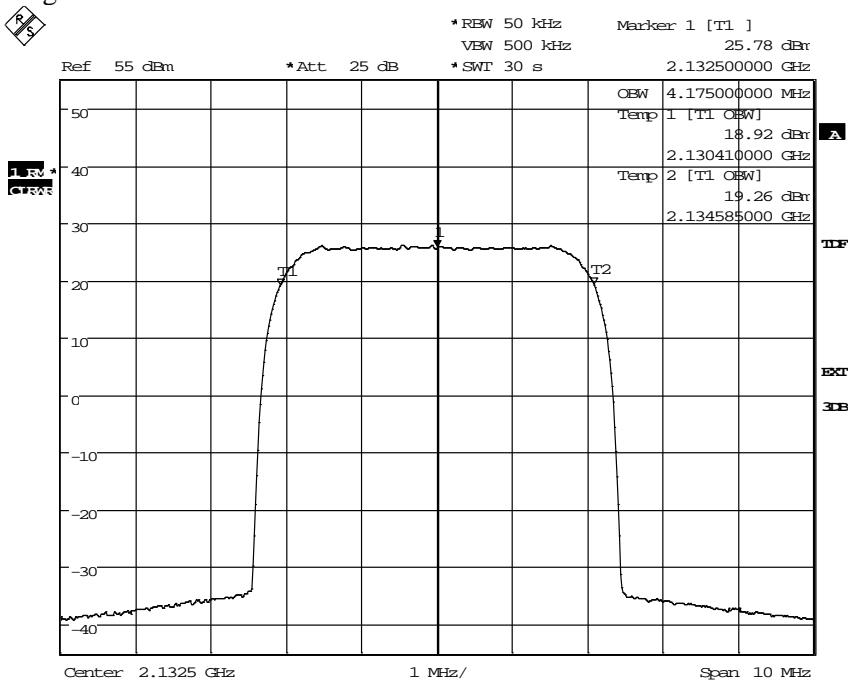
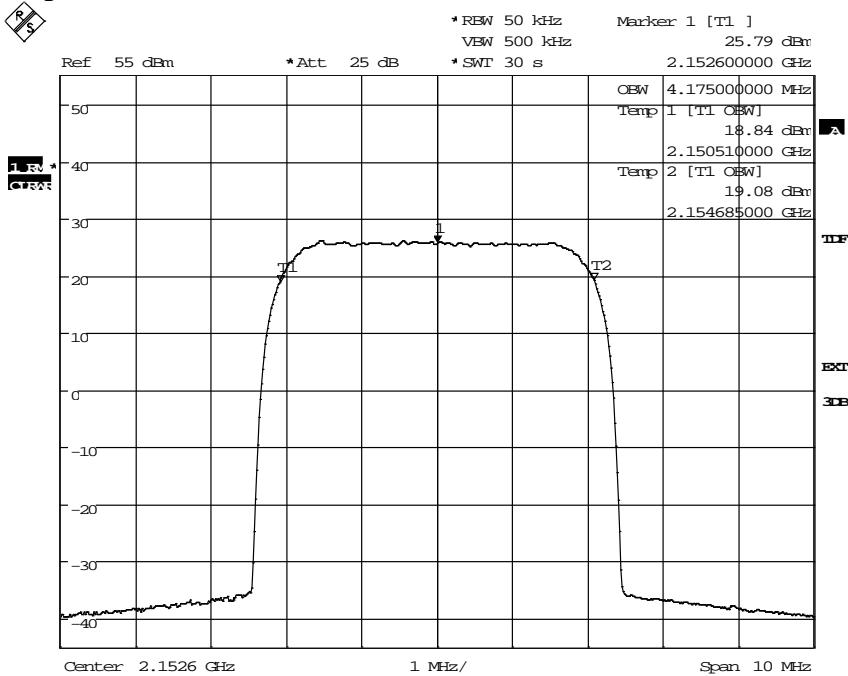

Appendix 3.1

Diagram 1

Date: 29.MAR.2011 09:19:27

Diagram 2



Date: 29.MAR.2011 07:06:34

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

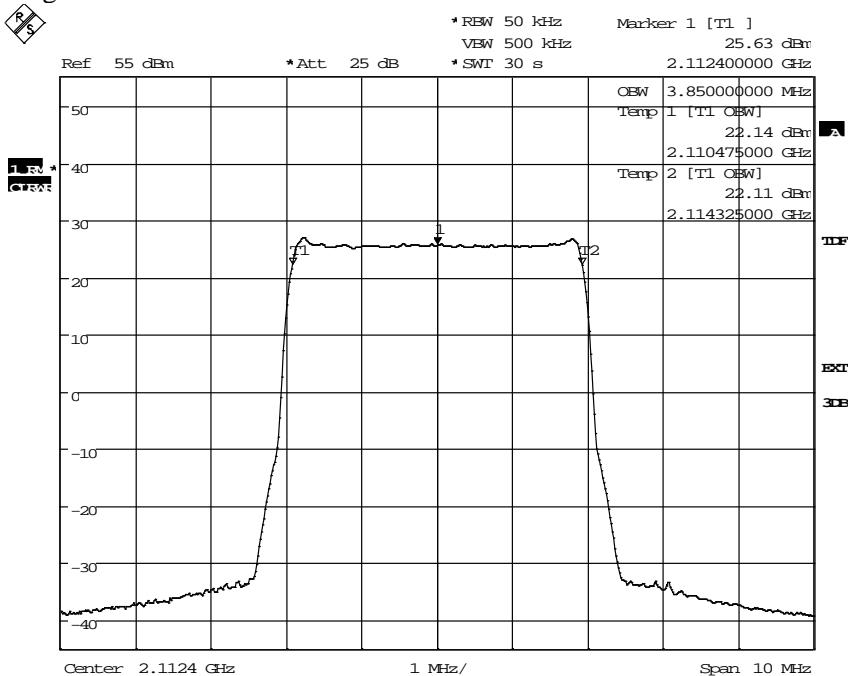
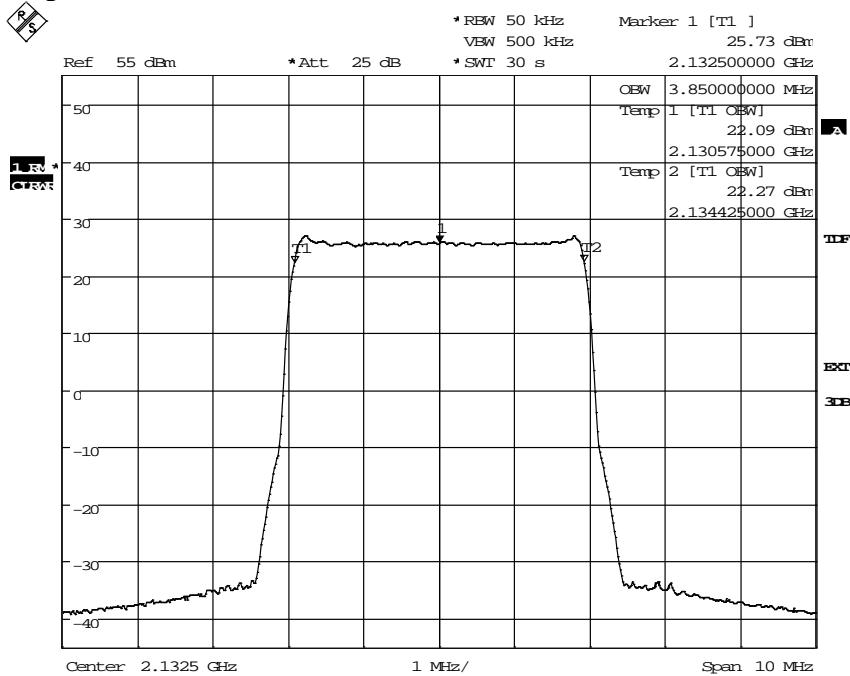

Appendix 3.1

Diagram 3

Date: 29.MAR.2011 10:03:49

Diagram 4



Date: 29.MAR.2011 11:05:29

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

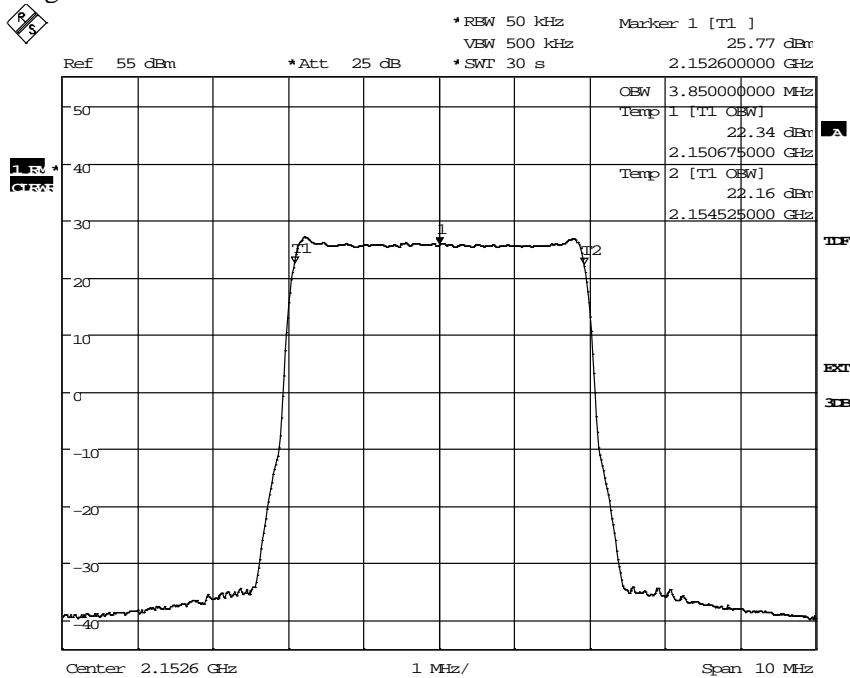

Appendix 3.1

Diagram 5

Date: 29.MAR.2011 10:43:57

Diagram 6

Date: 29.MAR.2011 11:12:27

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

Appendix 4

Band edge measurements according to CFR 47 §27.53(h) / IC RSS-139 6.5

Date	Temperature	Humidity
2011-03-29	25 °C ± 3 °C	17 % ± 5 %
2011-03-30	24 °C ± 3 °C	16 % ± 5 %

Test set-up and procedure

The measurements were made per definition in §27.53(h). The output was connected to a spectrum analyzer with the RMS detector activated. The spectrum analyzer was connected to an external 10 MHz reference standard during the measurements. A resolution bandwidth of 30 kHz was used up to 5 MHz away from the band edges. 30 kHz is <1% of the Emission BW (4.25 MHz between the 26 dB points for 5 MHz nominal BW setting). To compensate for the reduced measurement bandwidth, the limit was adjusted with 1.5 dB to -14.5 dBm up to 1 MHz away from the band edges and with 15.2 dB to -28.2 dBm from 1 MHz to 5 MHz away from the band edges.

Measurement equipment	SP number
R&S FSQ	504 143
RF attenuator	900 233
Testo 635, temperature and humidity meter	504 203

Measurement uncertainty: 3.7 dB

Results

The results are shown in appendix 4.1

Single carrier:

Diagram 1: B

Diagram 2: T

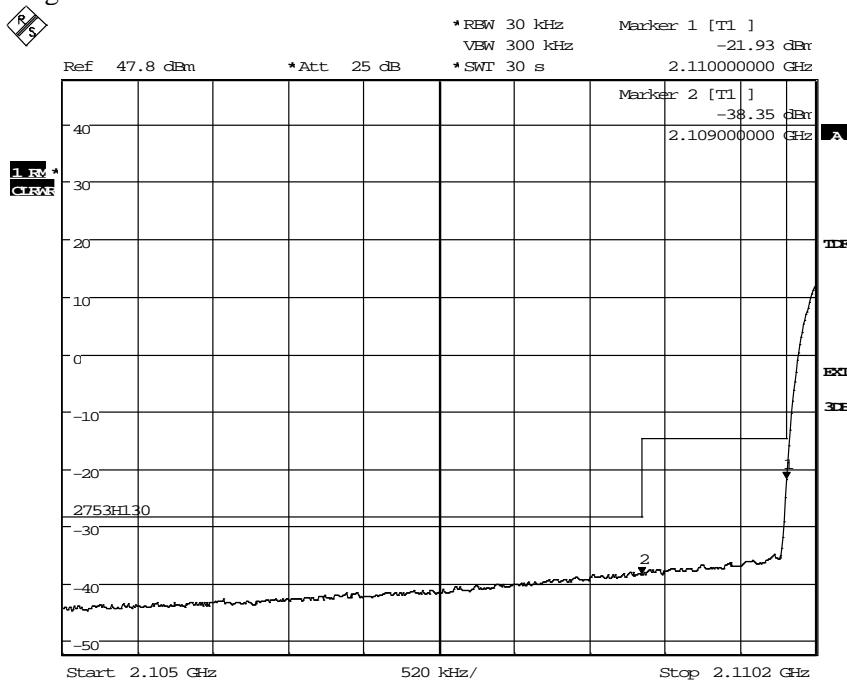
Multi carrier:

Diagram 3: B+(B+5)

Diagram 4: T+(T-5)

Limits

CFR 47 §27.53(h) and RSS-139 6.5


Outside a licensee's frequency band(s) of operation the power of any emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log (P)$ dB, resulting in a limit of -13 dBm.

Complies?	Yes
-----------	-----

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

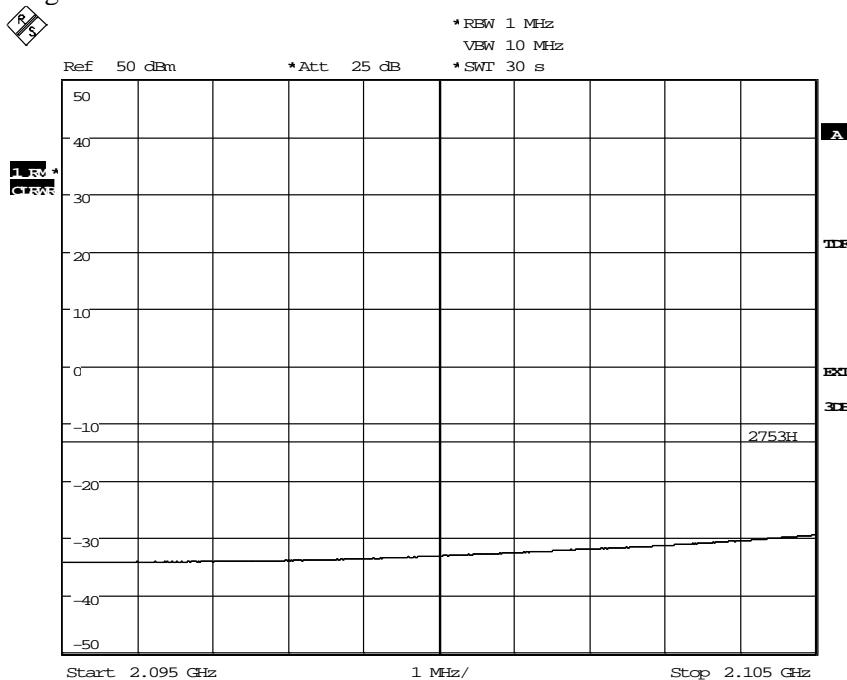
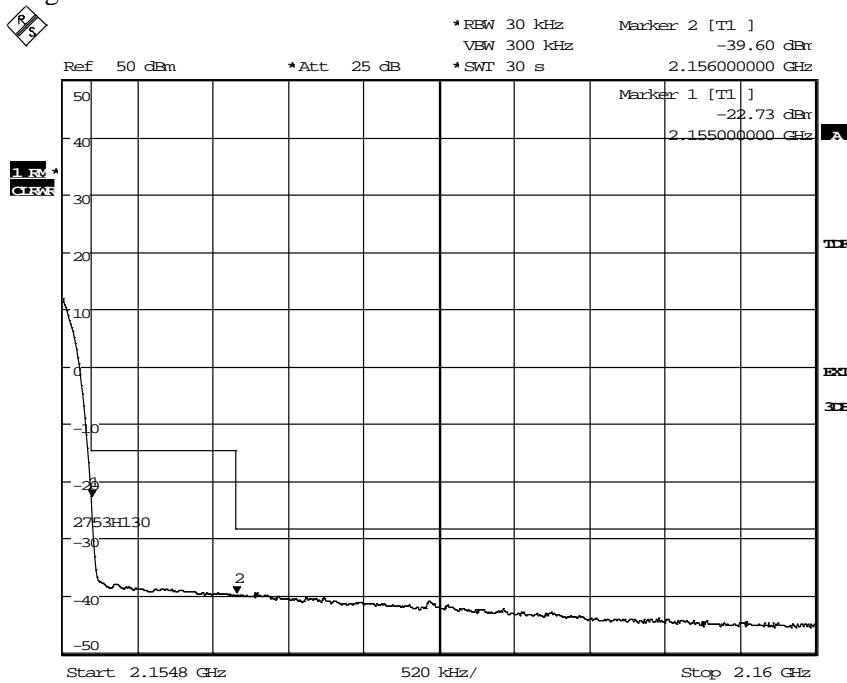

Appendix 4.1

Diagram 1a:

Date: 29.MAR.2011 09:26:58

Diagram 1b:



Date: 29.MAR.2011 09:29:27

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

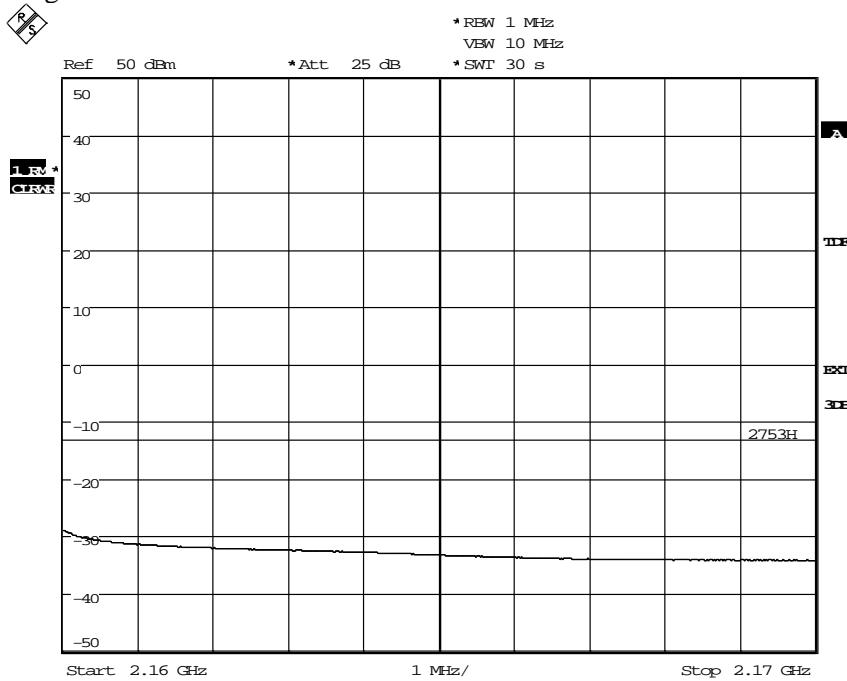
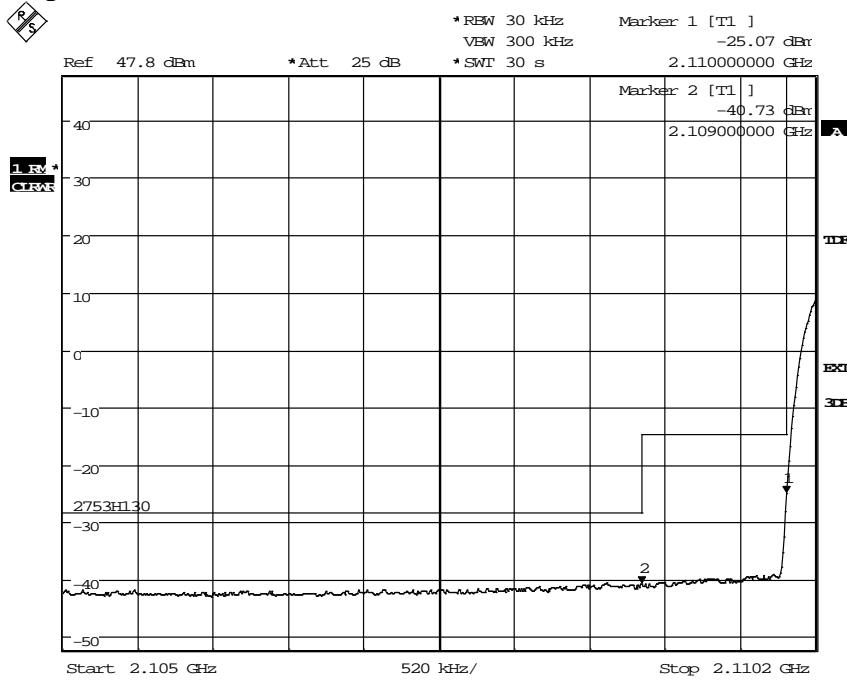

Appendix 4.1

Diagram 2a:

Date: 29.MAR.2011 09:54:42

Diagram 2b:



Date: 29.MAR.2011 09:58:24

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

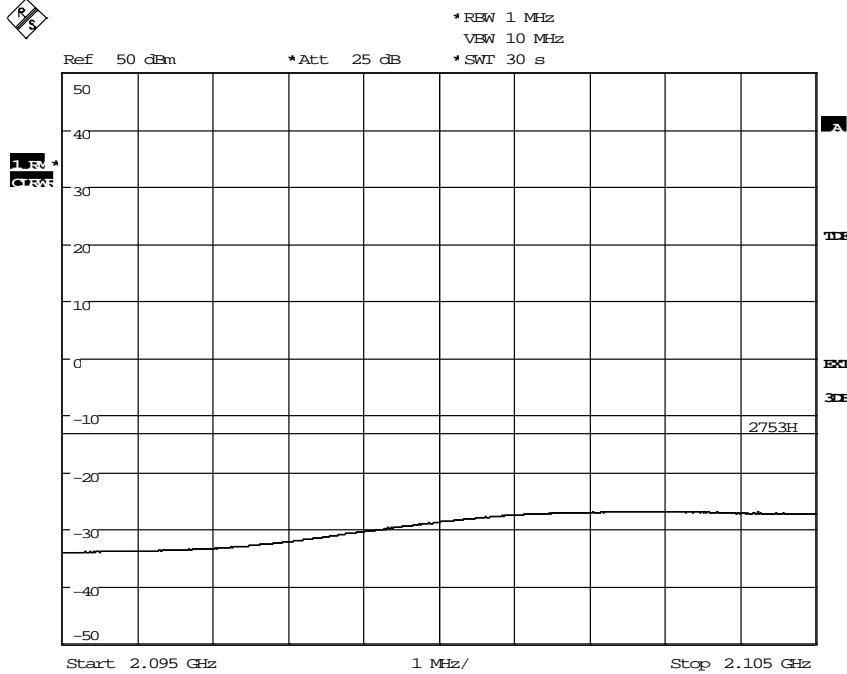
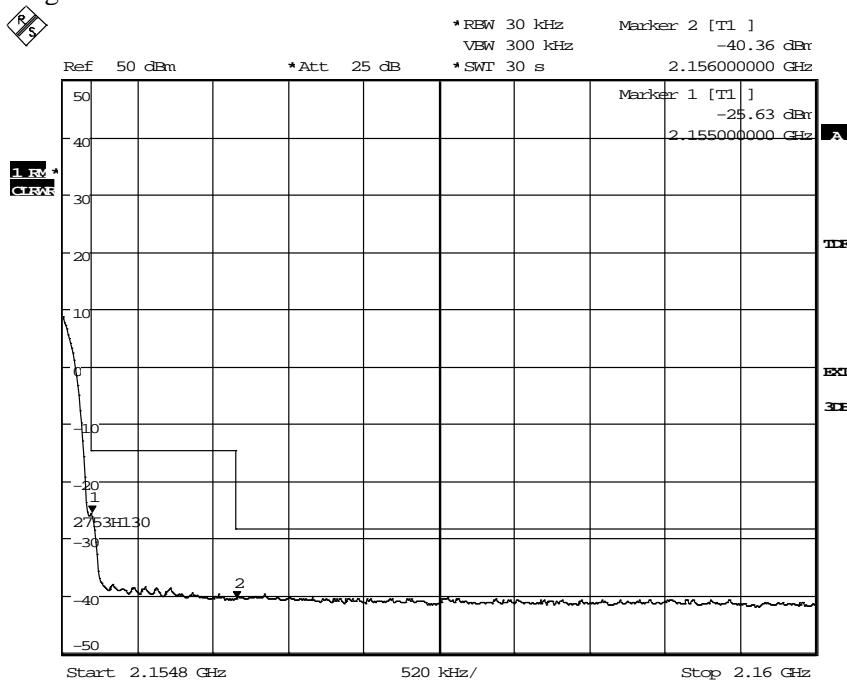

Appendix 4.1

Diagram 3a:

Date: 30.MAR.2011 08:47:52

Diagram 3b:



Date: 30.MAR.2011 09:06:02

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

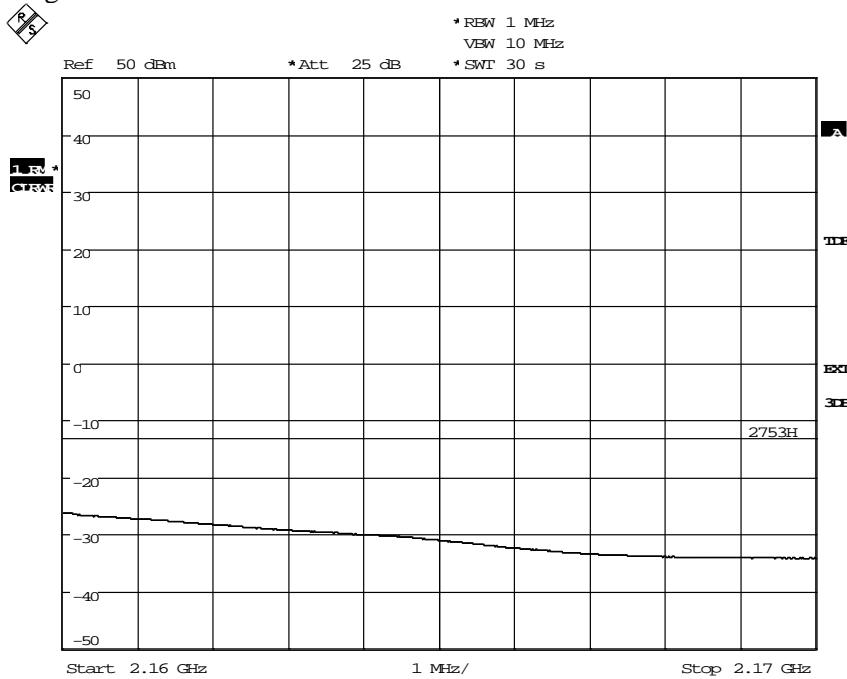

Appendix 4.1

Diagram 4a:

Date: 29.MAR.2011 15:28:42

Diagram 4b:

Date: 29.MAR.2011 15:32:11

FCC ID: TA8AKRC161254-1
 IC: 287AB-AS1612541

Appendix 5

**Conducted spurious emission measurements according to CFR 47 §27.53(h) /
IC RSS-139 6.5**

Date	Temperature	Humidity
2011-03-29	25 °C ± 3 °C	17 % ± 5 %
2011-03-30	24 °C ± 3 °C	16 % ± 5 %

Test set-up and procedure

The measurements were made per definition in §27.53(h). The output was connected to a spectrum analyzer. The spectrum analyzer was connected to an external 10 MHz reference standard during the measurements. A pre-measurement was performed with the PEAK detector activated. Emission close to or above the limit with the PEAK detector is measured with the RMS detector activated and the level of the emission is determined with the substitution method.

Measurement equipment	SP number
R&S FSQ	504 143
RF attenuator	900 233
High pass filter	504 200
RF attenuator	900 229
High pass filter	503 740
Testo 635 temperature and humidity meter	504 203

Measurement uncertainty: 3.7 dB

Results

The results are shown in appendix 5.1

Single carrier:

Diagram 1: B

Diagram 2: M

Diagram 3: T

Multi carrier:

Diagram 4: B+(B+10)

Diagram 5: T+(T-10)

Remark

The emission at 9 kHz on the plots was not generated by the test object. A complementary measurement with a smaller RBW showed that it was related to the LO feed-through.

The highest internal frequency as declared by the client was 2.4576 GHz, thus the choice of the upper frequency boundary was set to 10x2.5 GHz = 25 GHz for emission measurements.

your
Science Partner

REPORT

Date 2011-04-12 Reference FX104348-F27 Page 2 (2)

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

Appendix 5

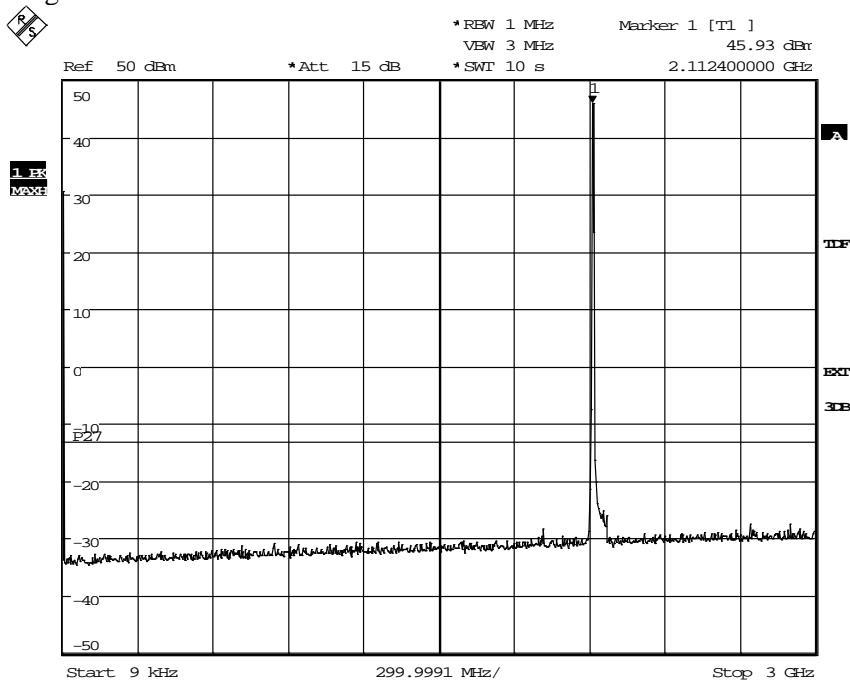
Limits

§27.53(h) and RSS-139 6.5

Outside a licensee's frequency band(s) of operation the power of any emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log (P)$ dB, resulting in a limit of -13 dBm per 1 MHz RBW.

Complies?	<input checked="" type="checkbox"/> Yes
-----------	---

your
Science Partner


REPORT

Date 2011-04-12 Reference FX104348-F27
Page 1 (10)

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

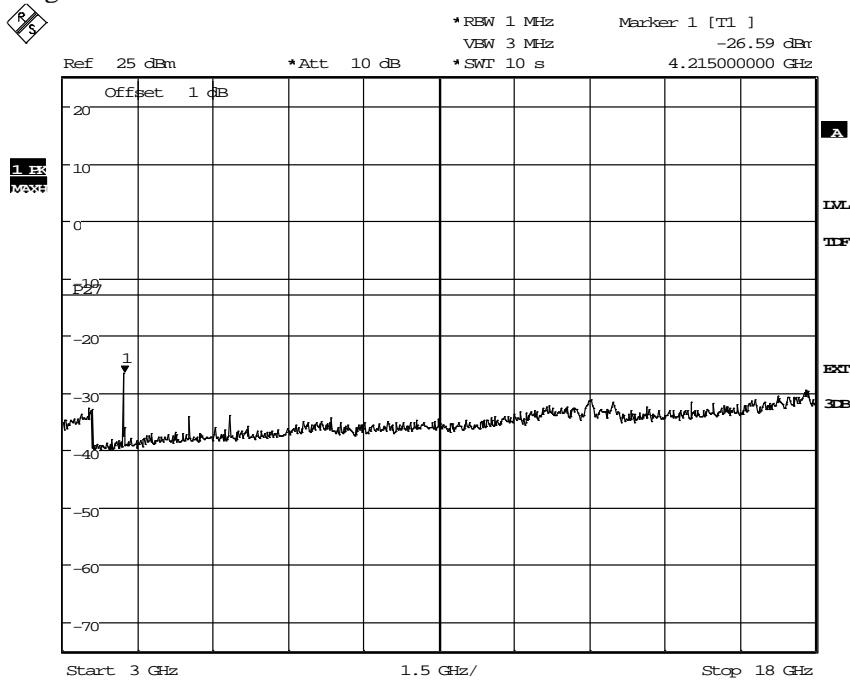

Appendix 5.1

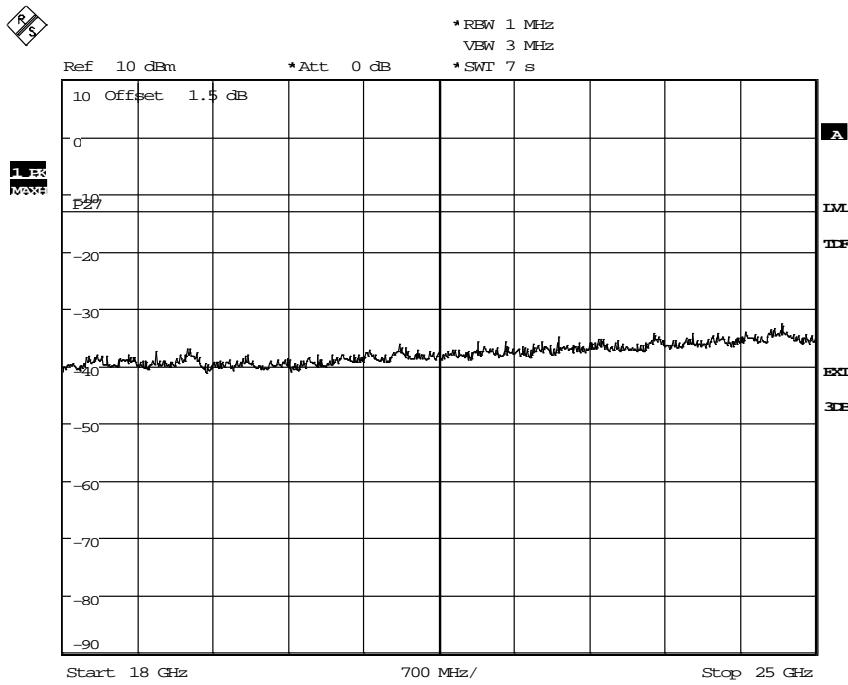
Diagram 1a

Date: 29.MAR.2011 09:12:33

Diagram 1b

Date: 29.MAR.2011 09:07:07

your
Science Partner

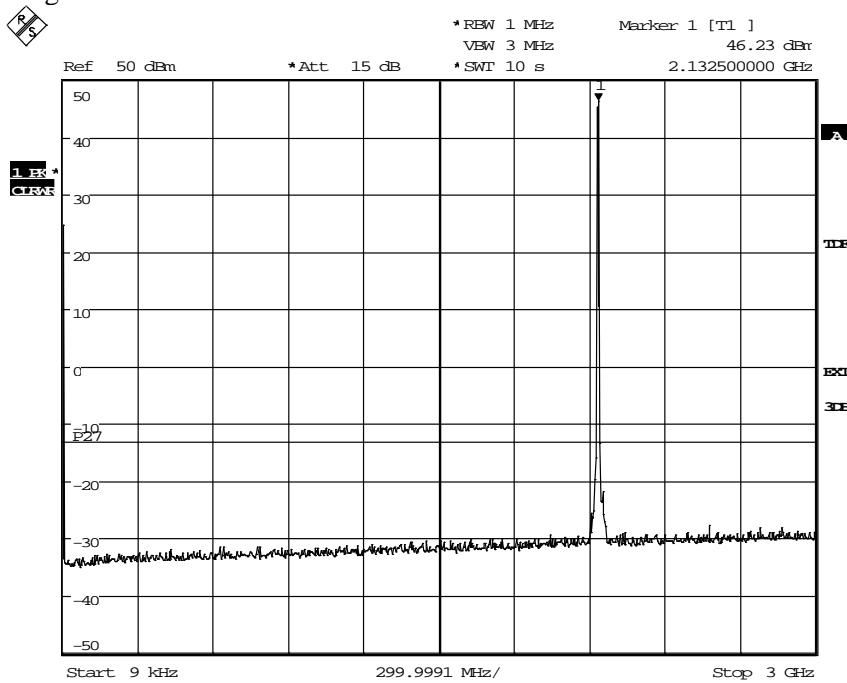

REPORT

Date 2011-04-12 Reference FX104348-F27 Page 2 (10)

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

Appendix 5.1

Diagram 1c



Date: 29.MAR.2011 08:57:30

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

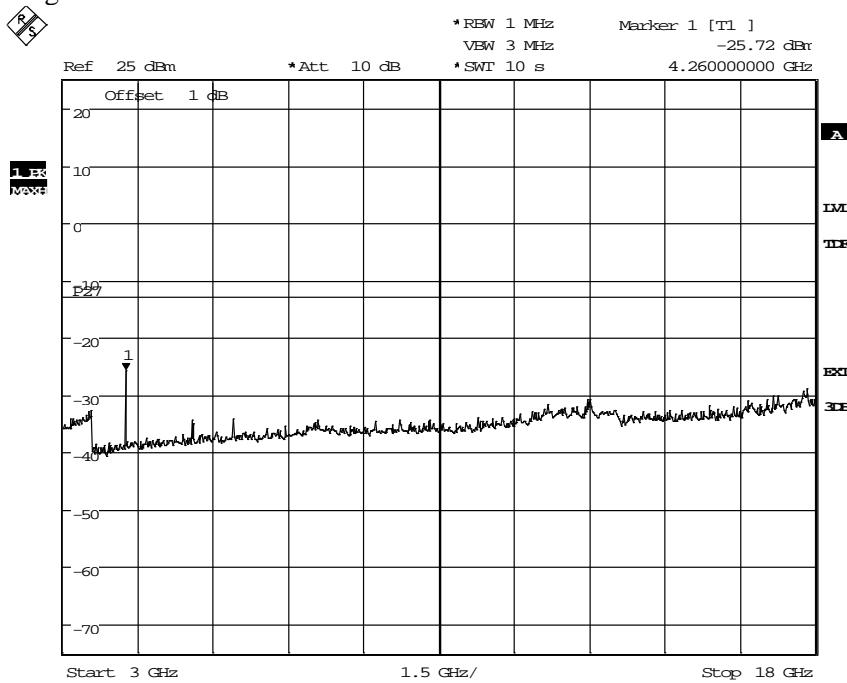

Appendix 5.1

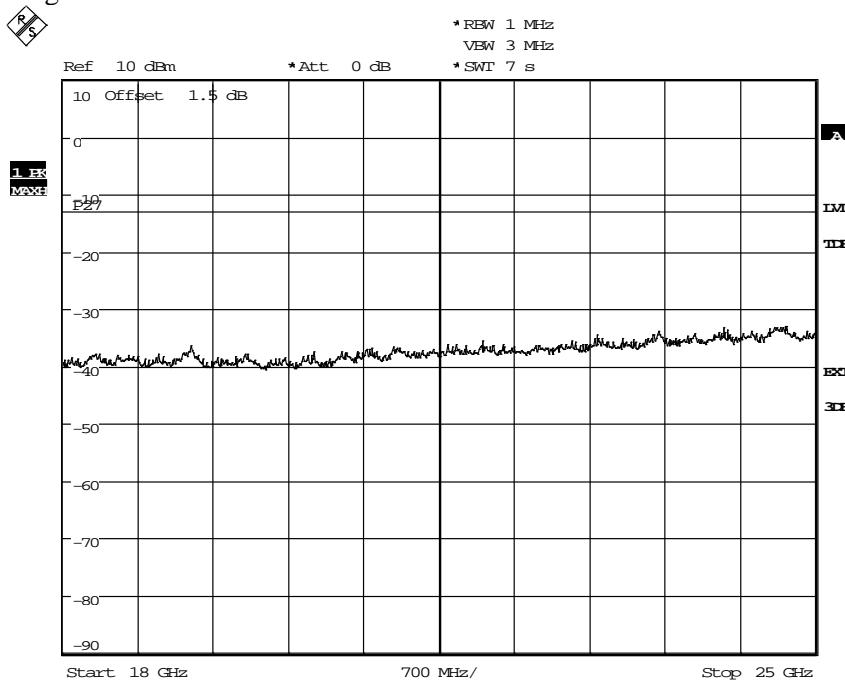
Diagram 2a

Date: 29.MAR.2011 07:15:05

Diagram 2b

Date: 29.MAR.2011 07:28:18

your
Science Partner

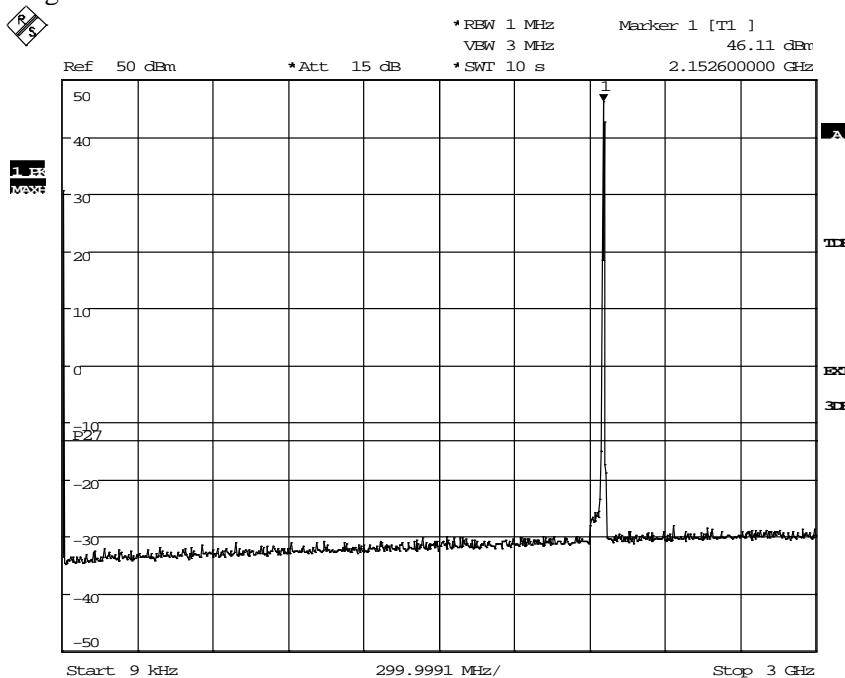

REPORT

Date 2011-04-12 Reference FX104348-F27 Page 4 (10)

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

Appendix 5.1

Diagram 2c



Date: 29.MAR.2011 07:36:57

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

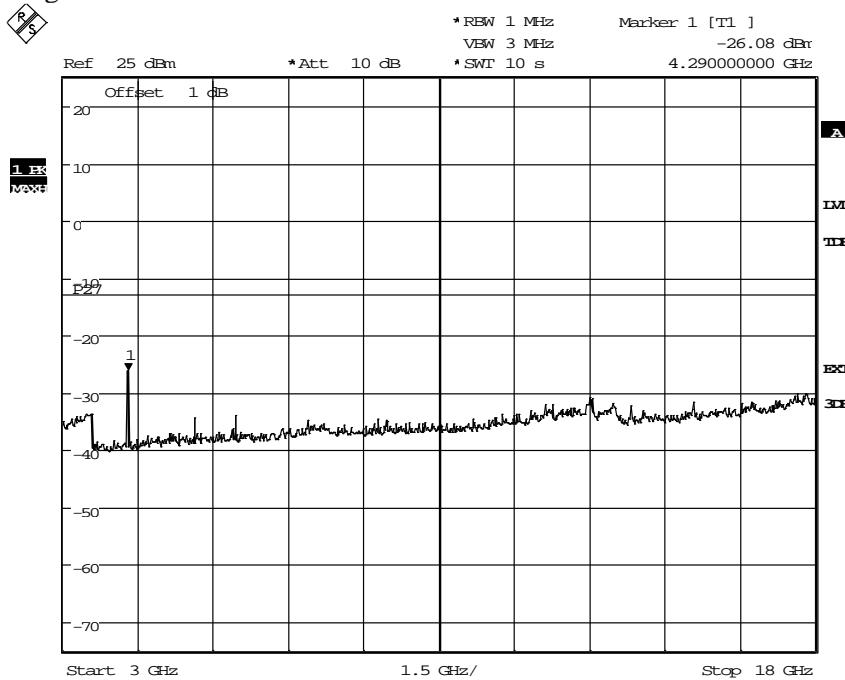

Appendix 5.1

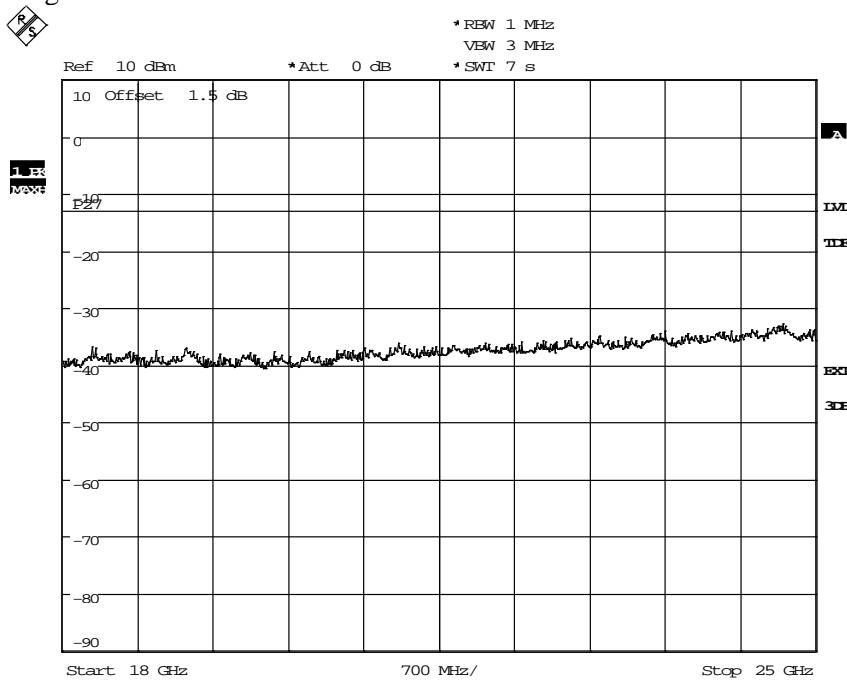
Diagram 3a

Date: 29.MAR.2011 10:05:48

Diagram 3b

Date: 29.MAR.2011 10:19:14

your
Science Partner

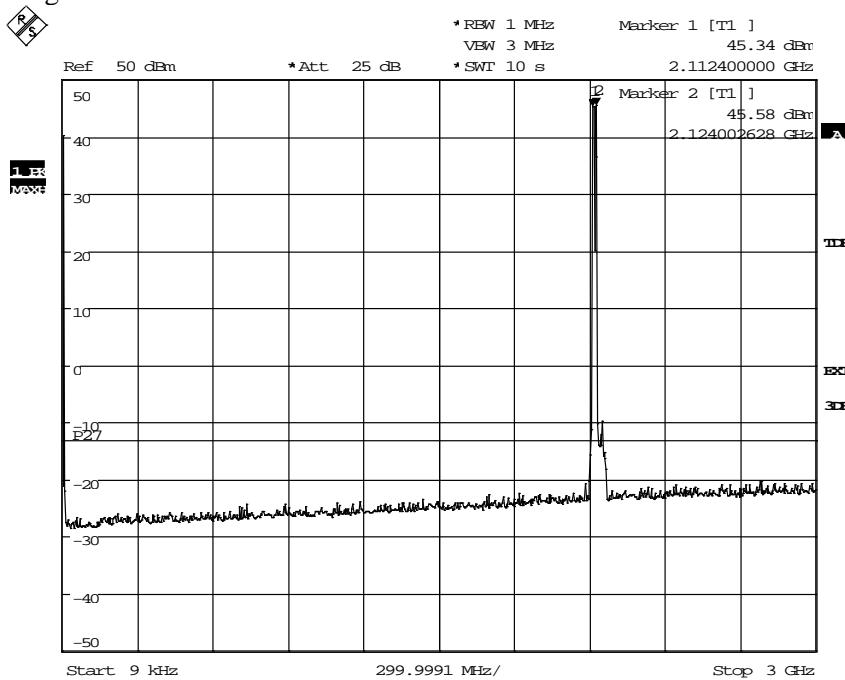

REPORT

Date 2011-04-12 Reference FX104348-F27
Page 6 (10)

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

Appendix 5.1

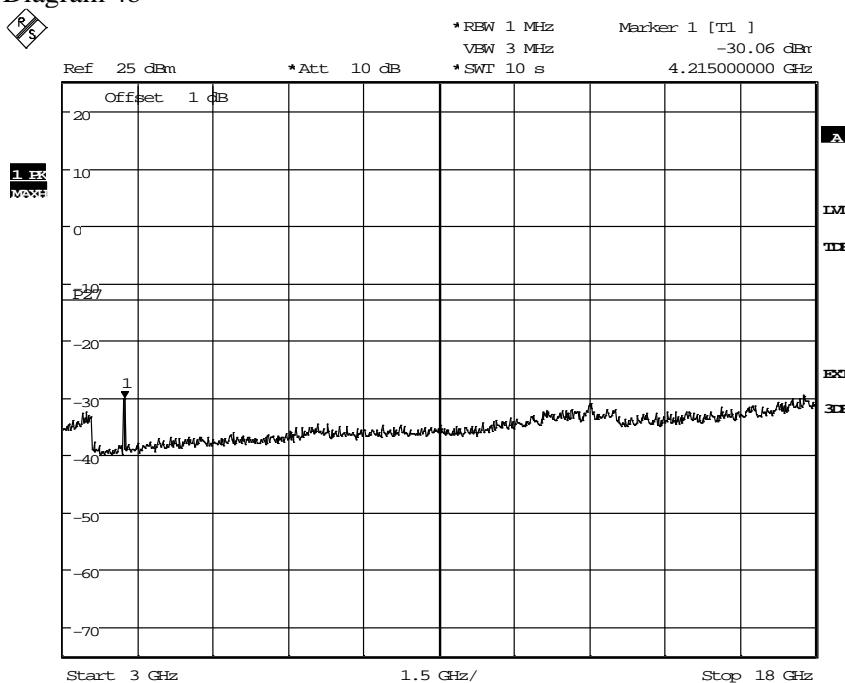
Diagram 3c


Date: 29.MAR.2011 10:23:00

REPORT

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

Appendix 5.1


Diagram 4a

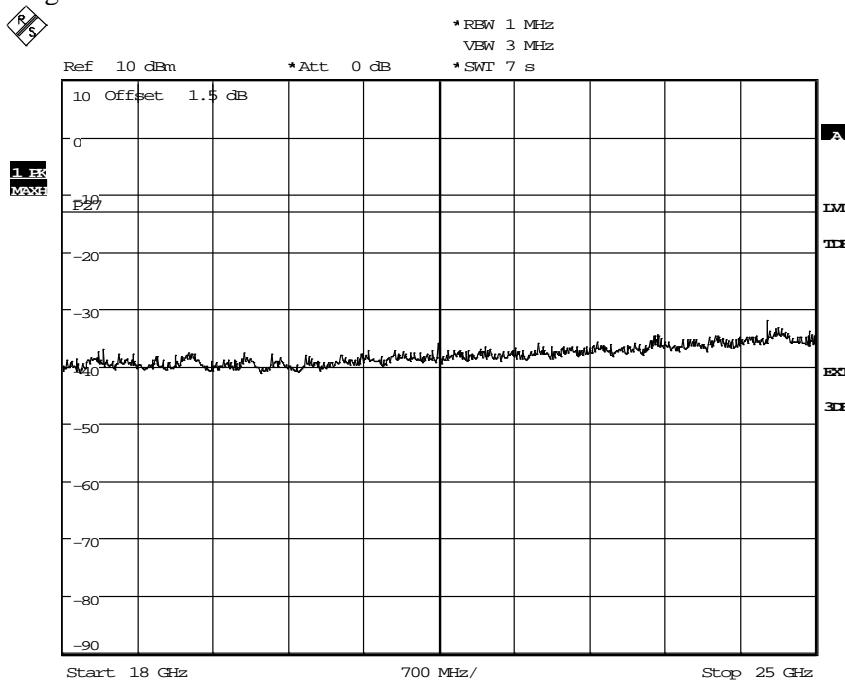
Date: 30.MAR.2011 07:54:36

The emissions around the carrier are within the operating frequency band

Diagram 4b

Date: 30.MAR.2011 07:36:34

your
Science Partner

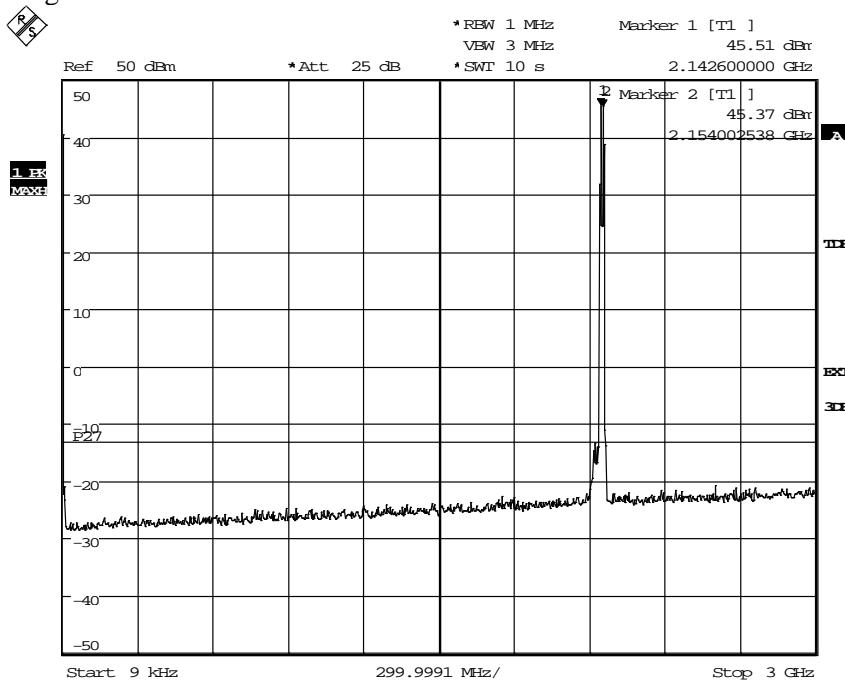

REPORT

Date 2011-04-12 Reference FX104348-F27 Page 8 (10)

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

Appendix 5.1

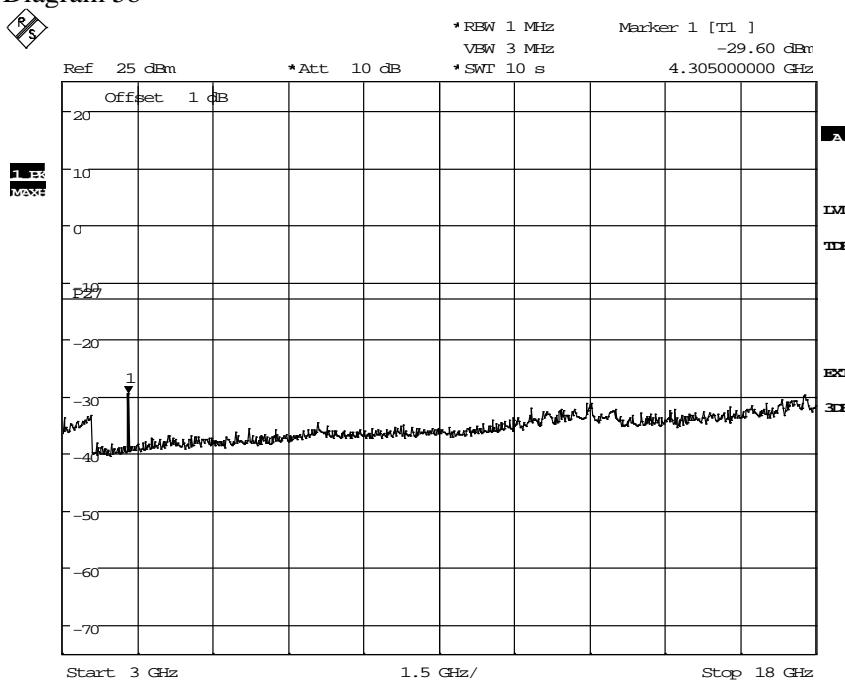
Diagram 4c


Date: 30.MAR.2011 07:32:55

REPORT

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

Appendix 5.1


Diagram 5a

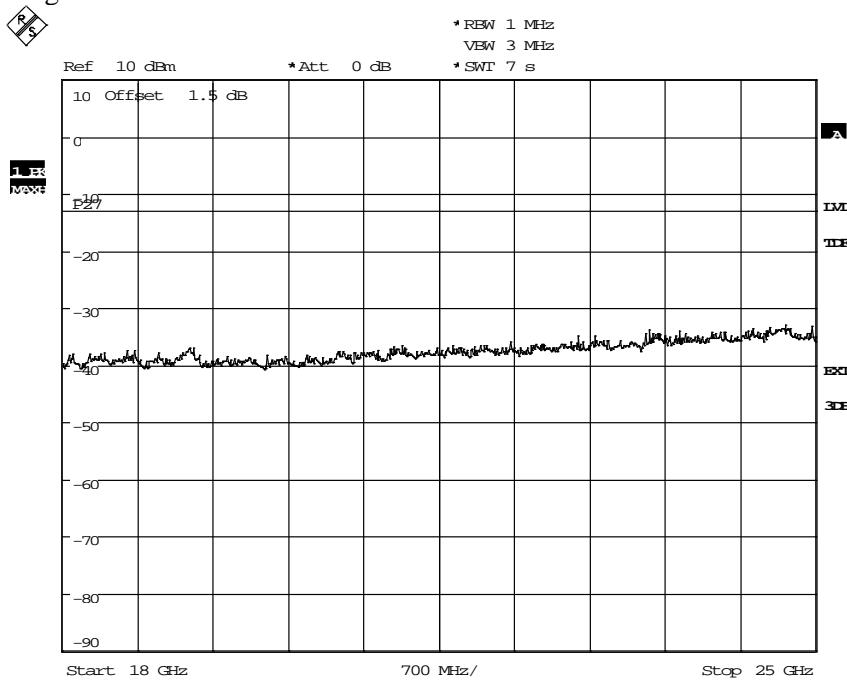
Date: 29.MAR.2011 15:41:14

The emissions around the carriers are within the operating frequency band

Diagram 5b

Date: 29.MAR.2011 15:51:21

your
Science Partner


REPORT

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

Date 2011-04-12 Reference FX104348-F27 Page 10 (10)

Appendix 5.1

Diagram 5c

Date: 29.MAR.2011 15:56:15

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

Appendix 6

**Field strength of spurious radiation measurements according to CFR 47 §27.53(h)
/ IC RSS-139 6.5**

Date	Temperature	Humidity
2011-03-21 to 2011-03-24	23-24 °C ± 3 °C	22% to 25 % ± 5 %

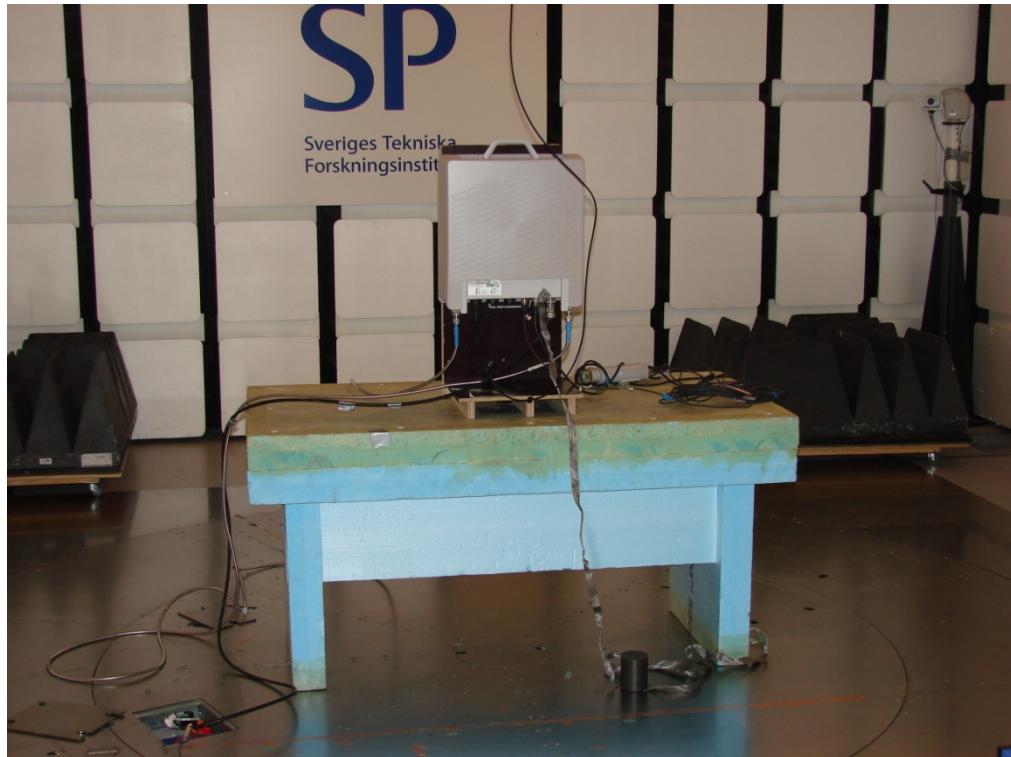
Test set-up and procedure

The test sites are listed at FCC, Columbia with registration number: 93866. The test site complies with RSS-Gen, Industry Canada file no. 3482A-1.

The measurements were performed with both horizontal and vertical polarization of the antenna. The antenna distance was 3 m in the frequency range 30 MHz – 18 GHz and 1m in the frequency range 18 - 25 GHz.

In the frequency range 30 MHz - 25 GHz the measurement was performed in power with a RBW of 1 MHz. A propagation loss in free space was calculated. The used formula was

$$\gamma = 20 \log \left(\frac{4\pi D}{\lambda} \right), \quad \gamma \text{ is the propagation loss and } D \text{ is the antenna distance.}$$


The measurement procedure was as the following:

1. The pre-measurement was first performed with peak detector. The EUT was measured in eight directions and with the antenna at three heights, 1.0 m, 1.5 m and 2.0 m.
2. Spurious radiation on frequencies closer than 20 dB to the limit in the pre-measurement is scanned 0-360 degrees and the antenna is scanned 1- 4 m for maximum response. The emission is then measured with the RMS detector and the RMS value is reported. Frequencies closer than 10 dB to the limit when measured with the RMS detector were measured with the substitution method according to the standard.

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

Appendix 6

The test set-up during the spurious radiation measurements.

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

Appendix 6

Measurement equipment

Measurement equipment	SP number
Test site Tesla	503 881
R&S ESI 26	503 292
Control computer	503 479
Software: R&S EMC32, ver. 8.20.1	503 745
Chase Bilog antenna CBL 6111A	503 182
µCorp Nordic, Low Noise Amplifier	504 160
Miteq, Low Noise Amplifier	503 285
EMCO Horn Antenna 3115	502 175
Standard gain antenna 20240-20	503 674
High pass filter, Wainright	504 200
Testo 625 temperature and humidity meter	504 188

The RRUS unit was allocated to the following UARFCN:

Single Carrier: (One carrier configuration)

Cell	1	1	1
Channel	B	M	T

Multi Carrier: (Two carrier configuration)

Cell	1	2
Channel	B	B+10
Channel	T-10	T

Multi Carrier: (Four carrier configuration)

Cell	1	2	3	4
Channel	B	B+5	B+10	B+15
Channel	T	T-5	T-10	T-15

Results

Frequency (MHz)	Spurious emission level (dBm)	
	Vertical	Horizontal
30-25 000	All emission > 20 dB below limit	All emission > 20 dB below limit

Measurement uncertainty:

3.2 dB up to 18 GHz, 3.6 dB above 18 GHz

your
Science Partner

REPORT

Date 2011-04-12 Reference FX104348-F27 Page 4 (4)

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

Appendix 6

Limits

§27.53(h) and RSS-139 6.5

Outside a licensee's frequency band(s) of operation the power of any emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log (P)$ dB, resulting in a limit of -13 dBm per 1 MHz RBW.

Complies?	Yes
-----------	-----

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

Appendix 7

Frequency stability measurements according to CFR 47 §27.54 / IC RSS 139 6.3

Date 2011-03-30 to 2011-03-31	Temperature (test equipment) 23-24°C ± 3 °C	Humidity (test equipment) 16-19% ± 5 %
----------------------------------	--	---

Test set-up and procedure

The measurement was made per 3GPP TS 25.141. The output was connected to a spectrum analyzer. The spectrum analyzer was connected to an external 10 MHz reference standard during the measurements.

Measurement equipment	SP number
Climate chamber 2	501 031
Rohde & Schwarz signal analyzer FSQ40	504 143
RF attenuator	504 159
Testo 635, Temperature and humidity meter	504 203
Rotronic temperature and humidity meter	502 946
Multimeter Fluke 87	502 190

Results

Nominal Voltage -48 V DC

Maximum output power at mid channel (M)

Test conditions		Frequency error (Hz)
Supply voltage DC (V)	T (°C)	
-48.0	+20	+6
-55.2	+20	-5
-40.8	+20	-4
-48.0	+30	+7
-48.0	+40	+9
-48.0	+50	-10
-48.0	+10	-4
-48.0	0	-5
-48.0	-10	+6
-48.0	-20	+4
-48.0	-30	-4
Maximum freq. error (Hz)		10
Measurement uncertainty		< ± 1 x 10 ⁻⁷

your
Science Partner

REPORT

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

Date 2011-04-12 Reference FX104348-F27 Page 2 (2)

Appendix 7

Limits

Limit according to 3GPP TS 25.141:

The frequency error shall be within ± 0.05 PPM ± 12 Hz (± 118.63).

§27.54

The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

RSS-139 6.3 Frequency:

The frequency stability shall be sufficient to ensure that the emission bandwidth stays within the operating frequency block when tested to the temperature and supply voltage variations specified in RSS-Gen.

Complies?	Yes
-----------	-----

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

Appendix 8

Photos of test object

Front side

your
Science Partner

REPORT

Date 2011-04-12 Reference FX104348-F27 Page 2 (4)

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

Appendix 8

Back side

your
Science Partner

REPORT

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

Date 2011-04-12 Reference FX104348-F27 Page 3 (4)

Appendix 8

Left side

Right side

FCC ID: TA8AKRC161254-1
IC: 287AB-AS1612541

Appendix 8

Top side

Bottom side

