Test Laboratory: Sporton International Inc. SAR Testing Lab Date: 2007/7/6

Body WCDMA Ch9400 Keypad Down with 1.5cm Gap 20070706 RMC144K

DUT: 761327

Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

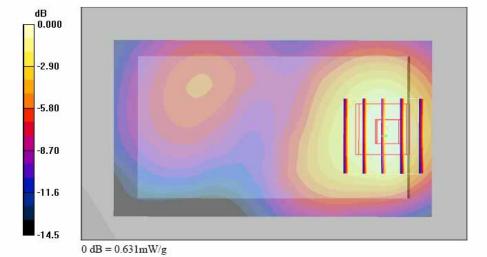
Medium: MSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.48$ mho/m; $\epsilon_r = 52.6$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.7 °C; Liquid Temperature : 21.3 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.67, 4.67, 4.67); Calibrated: 2006/9/19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Ch9400/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.656 mW/g

Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.9 V/m; Power Drift = 0.011 dB

Peak SAR (extrapolated) = 0.840 W/kg

SAR(1 g) = 0.580 mW/g; SAR(10 g) = 0.367 mW/gMaximum value of SAR (measured) = 0.631 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date: 2007/7/6

Body WCDMA Ch9400 Keypad Down with 1.5cm Gap 20070706 RMC384K

DUT: 761327

Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

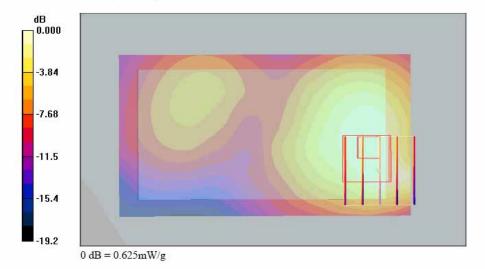
Medium: MSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.48$ mho/m; $\epsilon_r = 52.6$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.8 °C; Liquid Temperature : 21.3 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.67, 4.67, 4.67); Calibrated: 2006/9/19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Ch9400/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.644 mW/g

Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.0 V/m; Power Drift = 0.048 dB

Peak SAR (extrapolated) = 0.869 W/kg

SAR(1 g) = 0.578 mW/g; SAR(10 g) = 0.328 mW/gMaximum value of SAR (measured) = 0.625 mW/g

C SAR Test Report Test Report No : FA761327-1-2-01

Test Laboratory: Sporton International Inc. SAR Testing Lab Date: 2007/7/6

Body WCDMA Ch9262 Keypad Down with 1.5cm Gap 20070706 RMC12.2K+HSDPA

DUT: 761327

Communication System: WCDMA; Frequency: 1852.4 MHz; Duty Cycle: 1:1

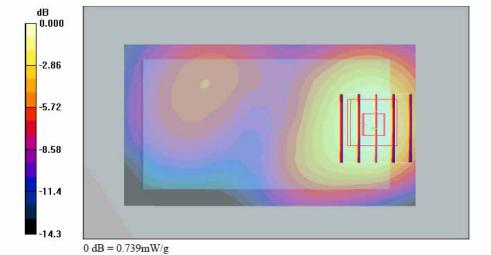
Medium: MSL_1900 Medium parameters used: f = 1852.4 MHz; $\sigma = 1.45$ mho/m; $\varepsilon_r = 52.7$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.7 °C; Liquid Temperature : 21.3 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.67, 4.67, 4.67); Calibrated: 2006/9/19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Ch9262/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.772 mW/g

Ch9262/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.4 V/m; Power Drift = -0.014 dB

Peak SAR (extrapolated) = 0.980 W/kg

SAR(1 g) = 0.685 mW/g; SAR(10 g) = 0.439 mW/gMaximum value of SAR (measured) = 0.739 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date: 2007/7/6

Body WCDMA Ch9262 Keypad Down with 1.5cm Gap_20070706_RMC12.2K+HSDPA_Bluetooth On

DUT: 761327

Communication System: WCDMA; Frequency: 1852.4 MHz; Duty Cycle: 1:1

Medium: MSL_1900 Medium parameters used : f = 1852.4 MHz; $\sigma = 1.45$ mho/m; $\epsilon_r = 52.7$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.7 °C; Liquid Temperature : 21.3 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.67, 4.67, 4.67); Calibrated: 2006/9/19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Ch9262/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.757 mW/g

Ch9262/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.0 V/m; Power Drift = 0.004 dB

Peak SAR (extrapolated) = 0.963 W/kgSAR(1 g) = 0.673 mW/g; SAR(10 g) = 0.432 mW/gMaximum value of SAR (measured) = 0.727 mW/g

C SAR Test Report Test Report No : FA761327-1-2-01

Test Laboratory; Sporton International Inc. SAR Testing Lab Date: 2007/7/10

Body_802.11b Ch6_Keypad Up with 1.5cm Gap_20070710

DUT: 761327

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.92$ mho/m; $\epsilon_r = 51.1$; $\rho = 1000$ kg/m³

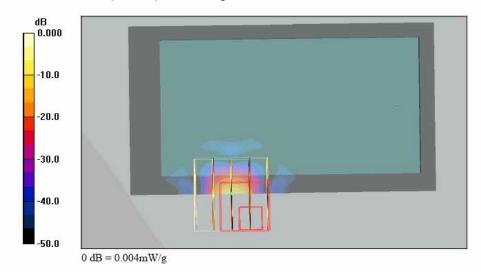
Ambient Temperature: 23.0 °C; Liquid Temperature: 21.5 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.11, 4.11, 4.11); Calibrated: 2006/9/19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Ch6/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.002 mW/g


Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.577 V/m; Power Drift = -0.117 dB

Peak SAR (extrapolated) = 0.004 W/kg

SAR(1 g) = 4.71e-005 mW/g; SAR(10 g) = 7.28e-006 mW/g

Maximum value of SAR (measured) = 0.004 mW/g

Test Laboratory; Sporton International Inc. SAR Testing Lab Date: 2007/7/11

Body_802.11b Ch1_Keypad Down with 1.5cm Gap_20070710

DUT: 761327

Communication System: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2412 MHz; $\sigma = 1.9$ mho/m; $\varepsilon_r = 51.1$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.0 °C; Liquid Temperature: 21.5 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.11, 4.11, 4.11); Calibrated: 2006/9/19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Ch1/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.009 mW/g

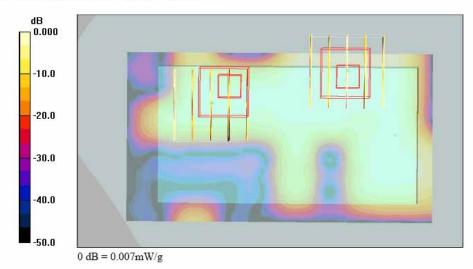
Ch1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.37 V/m; Power Drift = 0.175 dB

Peak SAR (extrapolated) = 0.046 W/kg

SAR(1 g) = 0.011 mW/g; SAR(10 g) = 0.00432 mW/g

Maximum value of SAR (measured) = 0.009 mW/g


Ch1/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.37 V/m; Power Drift = 0.175 dB

Peak SAR (extrapolated) = 0.007 W/kg

SAR(1 g) = 0.000182 mW/g; SAR(10 g) = 5.43e-005 mW/g

Maximum value of SAR (measured) = 0.007 mW/g

C SAR Test Report Test Report No : FA761327-1-2-01

Test Laboratory: Sporton International Inc. SAR Testing Lab Date: 2007/7/11

Body 802.11b Ch1 Keypad Down with 1.5cm Gap 20070710 Bluetooth

DUT: 761327

Communication System: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2412 MHz; $\sigma = 1.9$ mho/m; $\varepsilon_r = 51.1$; $\rho = 1000$ kg/m³

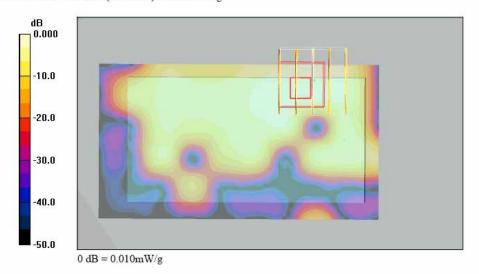
Ambient Temperature: 23.0 °C; Liquid Temperature: 21.5 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.11, 4.11, 4.11); Calibrated: 2006/9/19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Ch1/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.013 mW/g


Ch1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.41 V/m; Power Drift = -0.181 dB

Peak SAR (extrapolated) = 0.052 W/kg

SAR(1 g) = 0.011 mW/g; SAR(10 g) = 0.00412 mW/g

Maximum value of SAR (measured) = 0.010 mW/g

C SAR Test Report Test Report No : FA761327-1-2-01

Test Laboratory: Sporton International Inc. SAR Testing Lab Date: 2007/7/11

Body_802.11g Ch6_Keypad Down with 1.5cm Gap_20070710

DUT: 761327

Communication System: 802.11g; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.92$ mho/m; $\epsilon_r = 51.1$; $\rho = 1000$ kg/m³

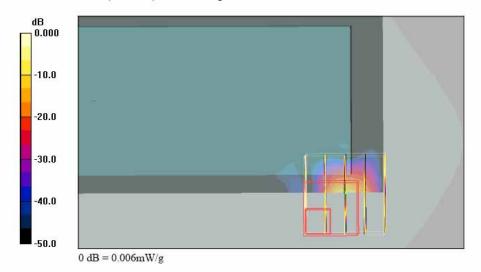
Ambient Temperature: 23.0 °C; Liquid Temperature: 21.5 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.11, 4.11, 4.11); Calibrated: 2006/9/19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Ch6/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.001 mW/g


Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.463 V/m; Power Drift = 0.192 dB

Peak SAR (extrapolated) = 0.006 W/kg

SAR(1 g) = 2.02e-005 mW/g; SAR(10 g) = 4.2e-006 mW/g

Maximum value of SAR (measured) = 0.006 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date: 2007/7/5

Right Tilted GSM850 Ch251 20070705 2D

DUT: 761327

Communication System: GSM850; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

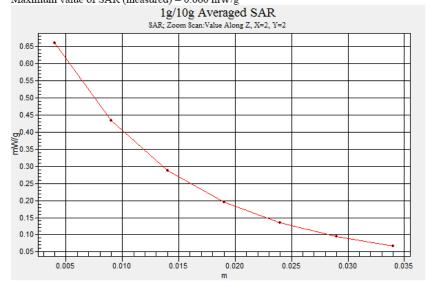
Medium: HSL_850 Medium parameters used: f = 849 MHz; $\sigma = 0.917$ mho/m; $\varepsilon_r = 40.2$; $\rho = 1000$ kg/m³

Ambient Temperature : 23.5 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.6, 6.6, 6.6); Calibrated: 2006/9/19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Ch251/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.712 mW/g

Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.1 V/m; Power Drift = 0.015 dB

Peak SAR (extrapolated) = 1.06 W/kg

SAR(1 g) = 0.626 mW/g; SAR(10 g) = 0.417 mW/gMaximum value of SAR (measured) = 0.660 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date: 2007/7/5

Right Tilted PCS Ch512 20070705 Bluetooth On 2D

DUT: 761327

Communication System: PCS; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

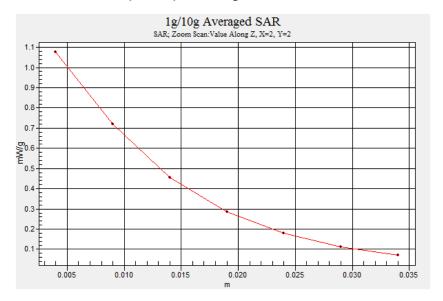
Medium: HSL_1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.34$ mho/m; $\varepsilon_r = 39.4$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.5 °C; Liquid Temperature : 21.5 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(5.3, 5.3, 5.3); Calibrated: 2006/9/19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Ch512/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 1.15 mW/g

Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.9 V/m; Power Drift = -0.099 dB

Peak SAR (extrapolated) = 1.50 W/kg

SAR(1 g) = 0.989 mW/g; SAR(10 g) = 0.623 mW/gMaximum value of SAR (measured) = 1.08 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date: 2007/7/5

Right Cheek WCDMA Ch4182 20070705 2D

DUT: 761327

Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: HSL_850 Medium parameters used : f = 836.4 MHz; $\sigma = 0.904$ mho/m; $\epsilon_r = 40.3$; $\rho = 1000$ kg/m³

Ambient Temperature : 23.6 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.6, 6.6, 6.6); Calibrated: 2006/9/19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Ch4182/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.808 mW/g

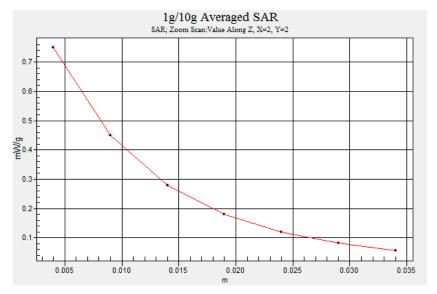
Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.7 V/m; Power Drift = 0.018 dB

Peak SAR (extrapolated) = 1.23 W/kg

SAR(1 g) = 0.701 mW/g; SAR(10 g) = 0.444 mW/g

Maximum value of SAR (measured) = 0.749 mW/g


Ch4182/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.7 V/m; Power Drift = 0.018 dB

Peak SAR (extrapolated) = 1.04 W/kg

SAR(1 g) = 0.646 mW/g; SAR(10 g) = 0.449 mW/g

Maximum value of SAR (measured) = 0.724 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date: 2007/7/6

Right Tilted WCDMA Ch9262 20070706 2D

DUT: 761327

Communication System: WCDMA; Frequency: 1852.4 MHz; Duty Cycle: 1:1

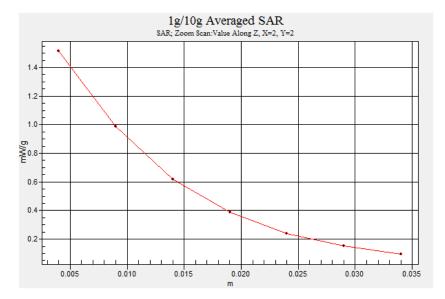
Medium: HSL_1900 Medium parameters used: f = 1852.4 MHz; $\sigma = 1.38$ mho/m; $\epsilon_r = 39.3$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.9 °C; Liquid Temperature : 21.4 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(5.3, 5.3, 5.3); Calibrated: 2006/9/19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Ch9262/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 1.58 mW/g

Ch9262/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 32.4 V/m; Power Drift = -0.041 dB

Peak SAR (extrapolated) = 2.13 W/kg

SAR(1 g) = 1.39 mW/g; SAR(10 g) = 0.872 mW/gMaximum value of SAR (measured) = 1.51 mW/g

C SAR Test Report Test Report No : FA761327-1-2-01

Test Laboratory: Sporton International Inc. SAR Testing Lab Date: 2007/7/10

Left Tilted_802.11b Ch1_20070710_2D

DUT: 761327

Communication System: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1

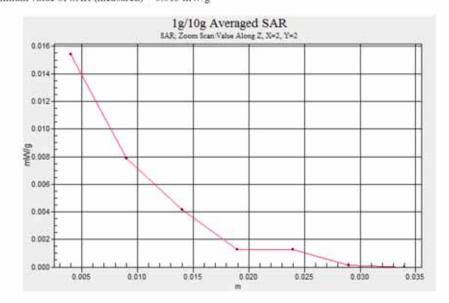
Medium: HSL_2450 Medium parameters used: f = 2412 MHz; $\sigma = 1.73$ mho/m; $\varepsilon_r = 38.6$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.7 °C; Liquid Temperature: 21.7 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.66, 4.66, 4.66); Calibrated: 2006/9/19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Ch1/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.015 mW/g

Ch1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.50 V/m; Power Drift = -0.048 dB

Peak SAR (extrapolated) = 0.033 W/kg

SAR(1|g) = 0.014 mW/g; SAR(10|g) = 0.00573 mW/gMaximum value of SAR (measured) = 0.015 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date: 2007/7/11

Body GSM850 Ch251 Keypad Down with 1.5cm Gap 20070711 GPRS10 2D

DUT: 761327

Communication System: GSM850; Frequency: 848.8 MHz; Duty Cycle: 1:4

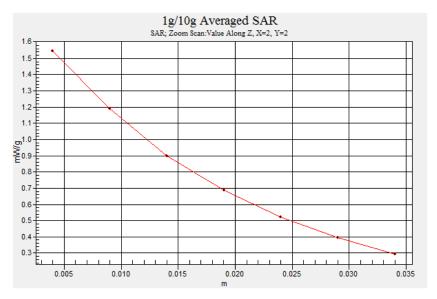
Medium: MSL_850 Medium parameters used: f = 849 MHz; $\sigma = 0.983$ mho/m; $\varepsilon_r = 54.1$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.8 °C; Liquid Temperature : 21.4 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.33, 6.33, 6.33); Calibrated: 2006/9/19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Ch251/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 1.52 mW/g

Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 34.1 V/m; Power Drift = -0.107 dB

Peak SAR (extrapolated) = 1.85 W/kg

SAR(1 g) = 1.45 mW/g; SAR(10 g) = 1.07 mW/gMaximum value of SAR (measured) = 1.54 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date: 2007/7/11

Body_PCS Ch512_Keypad Down with 1.5cm Gap_20070711_GPRS10_2D

DUT: 761327

Communication System: PCS; Frequency: 1850.2 MHz; Duty Cycle: 1:4

Medium: MSL_1900 Medium parameters used : f = 1850.2 MHz; $\sigma = 1.45$ mho/m; $\epsilon_r = 53.7$; $\rho = 1000$ kg/m³

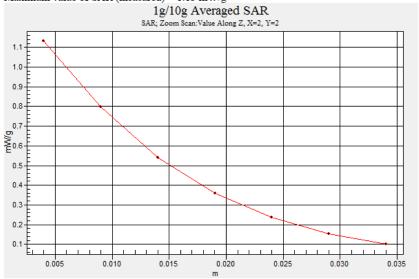
Ambient Temperature : 22.9 °C; Liquid Temperature : 21.4 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.67, 4.67, 4.67); Calibrated: 2006/9/19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Ch512/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.18 mW/g


Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 30.7 V/m; Power Drift = -0.157 dB

Peak SAR (extrapolated) = 1.45 W/kg

SAR(1 g) = 1.04 mW/g; SAR(10 g) = 0.670 mW/g

Maximum value of SAR (measured) = 1.13 mW/g

SAR Test Report Test Report No : FA761327-1-2-01

Test Laboratory: Sporton International Inc. SAR Testing Lab Date: 2007/7/11

Body_WCDMA Ch4182_Keypad Down with 1.5cm Gap_20070711_RMC384K_Bluetooth On 2D

DUT: 761327

Communication System: WCDMA; Frequency: 836.4 MHz;Duty Cycle: 1:1

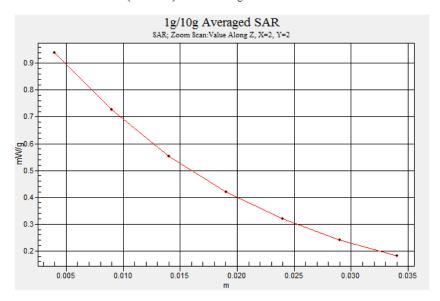
Medium: MSL_850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.969$ mho/m; $\epsilon_r = 54.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.8 °C; Liquid Temperature: 21.4 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(6.33, 6.33, 6.33); Calibrated: 2006/9/19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Ch4182/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.936 mW/g

Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.0 V/m; Power Drift = -0.076 dB

Peak SAR (extrapolated) = 1.13 W/kg

SAR(1 g) = 0.892 mW/g; SAR(10 g) = 0.661 mW/gMaximum value of SAR (measured) = 0.939 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date: 2007/7/6

Body WCDMA Ch9262 Keypad Down with 1.5cm Gap 20070706 RMC12.2K+HSDPA 2D

DUT: 761327

Communication System: WCDMA; Frequency: 1852.4 MHz; Duty Cycle: 1:1

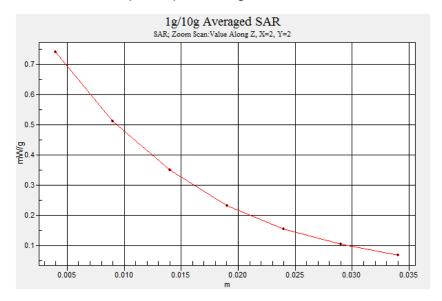
Medium: MSL_1900 Medium parameters used: f = 1852.4 MHz; $\sigma = 1.45$ mho/m; $\varepsilon_r = 52.7$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.7 °C; Liquid Temperature : 21.3 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.67, 4.67, 4.67); Calibrated: 2006/9/19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Ch9262/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.772 mW/g

Ch9262/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.4 V/m; Power Drift = -0.014 dB

Peak SAR (extrapolated) = 0.980 W/kg

SAR(1 g) = 0.685 mW/g; SAR(10 g) = 0.439 mW/gMaximum value of SAR (measured) = 0.739 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date: 2007/7/11

Body 802.11b Ch1 Keypad Down with 1.5cm Gap 20070710 2D

DUT: 761327

Communication System: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2412 MHz; $\sigma = 1.9$ mho/m; $\varepsilon_r = 51.1$; $\rho = 1000$ kg/m³

Ambient Temperature : 23.0 °C; Liquid Temperature : 21.5 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.11, 4.11, 4.11); Calibrated: 2006/9/19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2006/11/21
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Ch1/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.009 mW/g

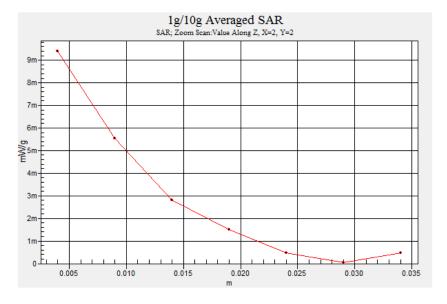
Ch1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.37 V/m; Power Drift = 0.175 dB

Peak SAR (extrapolated) = 0.046 W/kg

SAR(1 g) = 0.011 mW/g; SAR(10 g) = 0.00432 mW/g

Maximum value of SAR (measured) = 0.009 mW/g


Ch1/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.37 V/m; Power Drift = 0.175 dB

Peak SAR (extrapolated) = 0.007 W/kg

SAR(1 g) = 0.000182 mW/g; SAR(10 g) = 5.43e-005 mW/g

Maximum value of SAR (measured) = 0.007 mW/g

Appendix C – Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

C

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton (Auden)

Certificate No: D835V2-499_Mar06

Object	D835V2 - SN: 49	9	
Calibration procedure(s)	QA CAL-05.v6 Calibration proce	dure for dipole validation kits	
Calibration date:	March 15, 2006		
Condition of the calibrated item	In Tolerance		Sensitiva Accounts
The measurements and the unce	maintios mich somiconoc p		
	cted in the closed laborator	y facility: environment temperature (22 ± 3)°C and	d humidity < 70%.
All calibrations have been condu-	cted in the closed laborator	4	d humidity < 70%. Scheduled Calibration
All calibrations have been conductal calibration Equipment used (M& Primary Standards	cted in the closed laborator TE critical for calibration)	y facility: environment temperature (22 ± 3)°C and Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516)	
All calibrations have been conductable. Calibration Equipment used (M& Primary Standards Power meter EPM-442A	cted in the closed laborator TE critical for calibration)	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
All calibrations have been conductable. Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A	TE critical for calibration) ID # GB37480704	Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516)	Scheduled Calibration Oct-06
All calibrations have been condu	TE oritical for calibration) ID # GB37480704 US37292783	Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516)	Scheduled Calibration Oct-06 Oct-08
All calibrations have been conducted. Calibration Equipment used (M& Primary Standards. Power meter EPM-442A. Power sensor HP 8481A. Reference 20 dB Attenuator. Reference 10 dB Attenuator.	TE oritical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g)	Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No. 251-00498)	Scheduled Calibration Oct-06 Oct-08 Aug-06
All calibrations have been conducted. Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	Coted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r)	Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00498) 11-Aug-05 (METAS, No 251-00498)	Scheduled Calibration Oct-06 Oct-06 Aug-06 Aug-06
All calibrations have been conducted. Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4	Cited in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507	Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00498) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05)	Scheduled Calibration Oct-06 Oct-08 Aug-06 Aug-06 Oct-08
All calibrations have been conducted. Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601	Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00498) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house)	Scheduled Calibration Oct-06 Oct-08 Aug-06 Aug-06 Oct-08 Dec-06
All calibrations have been conductable. Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards	Cited in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601 ID #	Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00498) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05)	Scheduled Calibration Oct-06 Oct-08 Aug-06 Aug-06 Oct-08 Dec-06 Scheduled Check
All calibrations have been conductable. Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A	Cited in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601 ID # MY41092317	Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00498) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05)	Scheduled Calibration Oct-06 Oct-08 Aug-06 Aug-06 Oct-08 Dec-06 Scheduled Check In house check: Oct-07
All calibrations have been condu- Calibration Equipment used (M&- Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B	Cited in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601 ID # MY41092317 MY41090575	Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No. 251-00498) 11-Aug-05 (METAS, No. 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05)	Scheduled Calibration Oct-06 Oct-08 Aug-06 Aug-06 Oct-08 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07
All calibrations have been conducted. Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B Network Analyzer HP 8753E	Cited in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601 ID # MY41092317 MY41090575 US37390585 S4206	Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00498) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05)	Scheduled Calibration Oct-06 Oct-08 Aug-06 Aug-06 Oct-08 Dec-06 Scheduled Check In house check: Nov-07 In house check: Nov-06 Signature
All calibrations have been condu- Calibration Equipment used (M&- Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B	Cited in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5047.2 (10r) SN 1507 SN 601 ID # MY41092317 MY41090675 US37390585 S4206 Name	Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 11-Aug-05 (METAS, No 251-00498) 11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) Function	Scheduled Calibration Oct-06 Oct-08 Aug-06 Aug-06 Oct-08 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07 In house check: Nov-06

Certificate No: D835V2-499_Mar06

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No
 uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-499 Mar06

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Area Scan resolution	dx, dy = 15 mm	
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.1 ± 6 %	0.94mho/m ± 6 %
Head TSL temperature during test	(22.2 ± 0.2) °C		_

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	2.35 mW/g
SAR normalized	normalized to 1W	9.40 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	9.24 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.53 mW/g
SAR normalized	normalized to 1W	6.12 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	6.07 mW/g ± 16.5 % (k=2)

Certificate No: D835V2-499_Mar06

Page 3 of 9

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	56.8 ± 6 %	0.98 mho/m ± 6 %
Body TSL temperature during test	(21.4 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	250 mW input power	2.45 mW/g
SAR normalized	normalized to 1W	9.80 mW/g
SAR for nominal Body TSL parameters 2	normalized to 1W	9.91 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.62 mW/g
SAR normalized	normalized to 1W	6.48 mW/g
SAR for nominal Body TSL parameters 2	normalized to 1W	6.55 mW / g ± 16.5 % (k=2)

Certificate No: D835V2-499_Mar06

Page 4 of 9

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.1 Ω - 2.9 Ω
Return Loss	- 29.1 dB
Return Loss	- 29.1 QB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.9 Ω - 5.1 jΩ	
Return Loss	- 24.9 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.391ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 10, 2003

Certificate No: D835V2-499_Mar06

Page 5 of 9

DASY4 Validation Report for Head TSL

Date/Time: 15.03.2006 12:51:44

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:499

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB;

Medium parameters used: f = 835 MHz; $\sigma = 0.942$ mho/m; $\epsilon_r = 42.1$; $\rho = 1000$ kg/m³

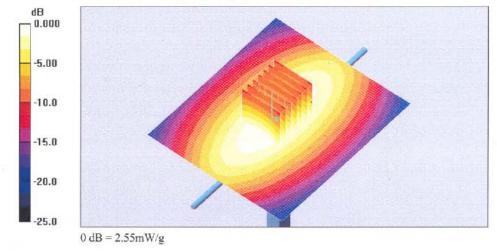
Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1507 (HF); ConvF(6.09, 6.09, 6.09); Calibrated: 28.10.2005
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn601; Calibrated: 15.12.2005
- · Phantom: Flat Phantom 4.9L; Type: QD000P49AA; ;
- Measurement SW: DASY4, V4.7 Build 14; Postprocessing SW: SEMCAD, V1.8 Build 165

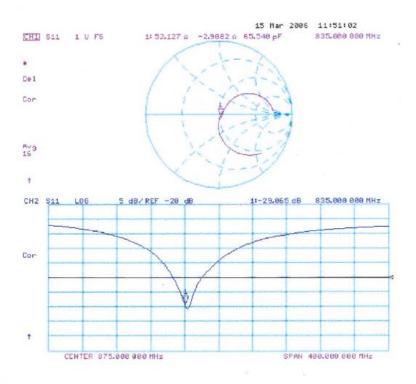
Pin = 250 mW; d = 10 mm/Area Scan (71x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.54 mW/g


Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm

Reference Value = 53.7 V/m; Power Drift = -0.008 dB

Peak SAR (extrapolated) = 3.53 W/kg

SAR(1 g) = 2.35 mW/g; SAR(10 g) = 1.53 mW/g


Maximum value of SAR (measured) = 2.55 mW/g

Certificate No: D835V2-499_Mar06

Page 6 of 9

Impedance Measurement Plot for Head TSL

Certificate No: D835V2-499_Mar06

Page 7 of 9

DASY4 Validation Report for Body TSL

Date/Time: 14.03.2006 12:37:15

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:499

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL U10;

Medium parameters used: f = 835 MHz; $\sigma = 0.972$ mho/m; $\varepsilon_r = 56.9$; $\rho = 1000$ kg/m³

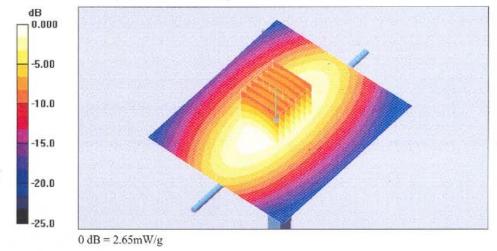
Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

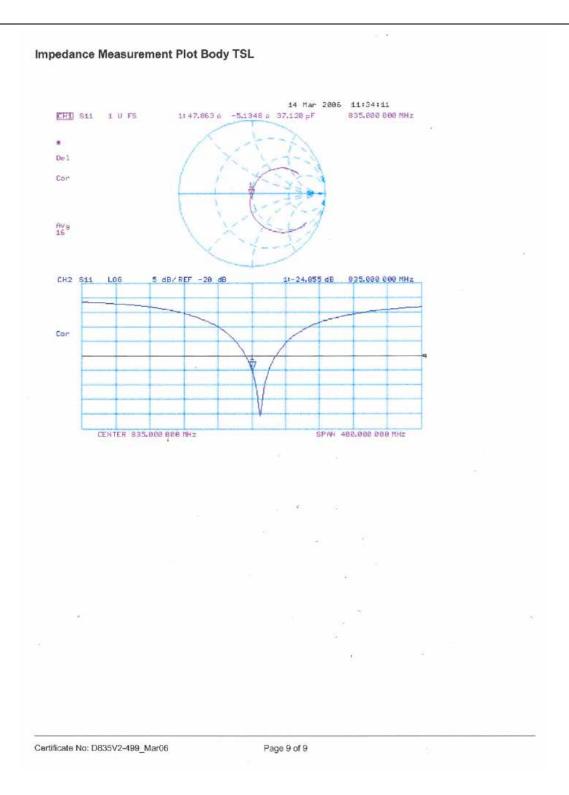
- Probe: ET3DV6 SN1507 (HF); ConvF(5.84, 5.84, 5.84); Calibrated: 28.10.2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 15.12.2005
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA;;
- Measurement SW: DASY4, V4.7 Build 14; Postprocessing SW: SEMCAD, V1.8 Build 165

Pin = 250 mW; d = 10 mm/Area Scan (71x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.63 mW/g


Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.3 V/m; Power Drift = 0.026 dB

Peak SAR (extrapolated) = 3:51 W/kg


SAR(1 g) = 2.45 mW/g; SAR(10 g) = 1.62 mW/g

Maximum value of SAR (measured) = 2.65 mW/g

Certificate No: D835V2-499_Mar06

Page 8 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

CALIBRATION (CERTIFICATE		
Object	D1900V2 - SN: 5	d041	W
Calibration procedure(s)	QA CAL-05.v6 Calibration proce	dure for dipole validation kits	
Calibration date:	March 21, 2006		
Condition of the calibrated item	In Tolerance		
The measurements and the unce	ertainties with confidence p	onal standards, which realize the physical units of robability are given on the following pages and are ry facility: environment temperature (22 ± 3)°C and	e part of the certificate.
Calibration Equipment used (M&	TE critical for calibration)		
Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	04-Oct-05 (METAS, No. 251-00516)	Oct-06
Power sensor HP 8481A	US37292783	04-Oct-05 (METAS, No. 251-00516)	Oct-06
	SN: 5086 (20g)	11-Aug-05 (METAS, No 251-00498)	
		2 : [2] 과 [2] 김 자리 (1) 이 경기 (2) 그리고 있는 그리고 그	Aug-06
Reference 10 dB Attenuator	SN: 5047.2 (10r)	11-Aug-05 (METAS, No 251-00498)	Aug-06
Reference 10 dB Attenuator Reference Probe ET3DV6		2 : [2] 과 [2] 김 자리 (1) 이 경기 (2) 그리고 있는 그리고 그	
Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4	SN: 5047.2 (10r) SN: 1507	11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05)	Aug-06 Oct-06
Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A	SN: 5047.2 (10r) SN: 1507 SN: 601 ID # MY41092317	11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05)	Aug-06 Oct-06 Dec-06
Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B	SN: 5047.2 (10r) SN: 1507 SN: 601 ID # MY41092317 MY41000675	11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (In house)	Aug-06 Oct-06 Dec-06 Scheduled Check
Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 6481A RF generator Aglient E4421B Network Analyzer HP 8753E	SN: 5047.2 (10r) SN: 1507 SN: 601 ID # MY41092317	11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct/05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05)	Aug-06 Oct-08 Dec-06 Scheduled Check In house check: Oct-07
Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 6481A RF generator Agilent E4421B	SN: 5047.2 (10r) SN: 1507 SN: 601 ID# MY41092317 MY41000675 US37390585 S4206	11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05)	Aug-06 Oct-08 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07 In house check: Nov-06
Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B Network Analyzer HP 8753E	SN: 5047.2 (10r) SN: 1507 SN: 601 ID# MY41092317 MY41000675 US37390585 S4206 Name	11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct/05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05)	Aug-06 Oct-08 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07 In house check: Nov-06 Signature
Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agillent E4421B Network Analyzer HP 8753E	SN: 5047.2 (10r) SN: 1507 SN: 601 ID# MY41092317 MY41000675 US37390585 S4206	11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05)	Aug-06 Oct-08 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07 In house check: Nov-06 Signature
Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 6481A RF generator Agilent E4421B	SN: 5047.2 (10r) SN: 1507 SN: 601 ID# MY41092317 MY41000675 US37390585 S4206 Name	11-Aug-05 (METAS, No 251-00498) 28-Oct-05 (SPEAG, No. ET3-1507_Oct/05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05)	Aug-06 Oct-08 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07 In house check: Nov-06

Certificate No: D1900V2-5d041_Mar06

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-5d041_Mar06

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Area Scan resolution	dx, dy = 15 mm	720
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.4 ± 6 %	1.42 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C	Mana	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	9.75 mW / g
SAR normalized	normalized to 1W	39.0 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	38.4 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.17 mW / g
SAR normalized	normalized to 1W	20.7 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	20.5 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-5d041_Mar06

Page 3 of 9

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.7 ± 6 %	1.54 mho/m ± 6 %
Body TSL temperature during test	(21.6 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.2 mW / g
SAR normalized	normalized to 1W	40.8 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	41.1 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.40 mW / g
SAR normalized	normalized to 1W	21.6 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	21.8 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-5d041_Mar06

Page 4 of

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.5 Ω + 5.1 $j\Omega$	
Return Loss	- 24.8 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.9 Ω + 6.3 JΩ	
Return Loss	- 23.4 dB	

General Antenna Parameters and Design

Electrical Delay (one direction) 1.200 ns	Electrical Delay (one direction)	1.200 ns
---	----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the

second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 4, 2003

Certificate No: D1900V2-5d041_Mar06

Page 5 of 9

DASY4 Validation Report for Head TSL

Date/Time: 14.03.2006 16:18:53

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d041

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB;

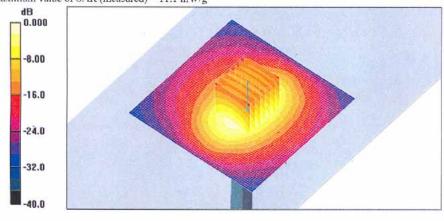
Medium parameters used: f = 1900 MHz; $\sigma = 1.42$ mho/m; $\epsilon_r = 39.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

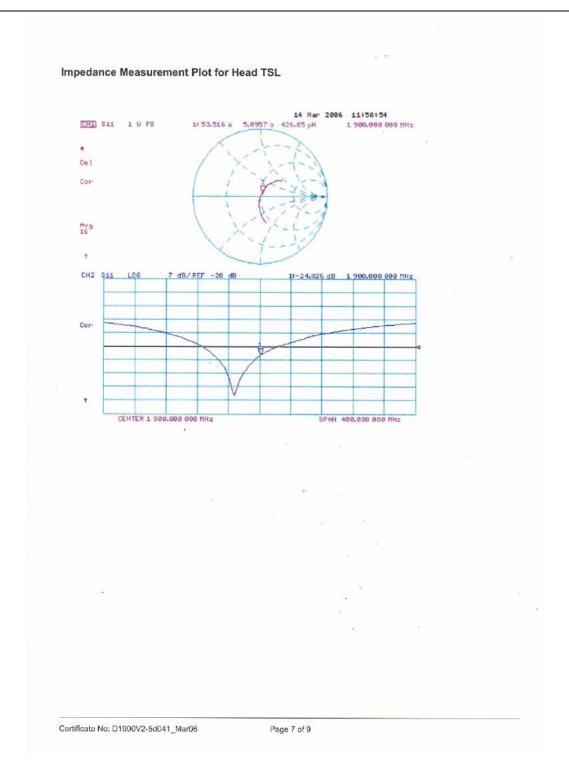
- Probe: ET3DV6 SN1507 (HF); ConvF(4.74, 4.74, 4.74); Calibrated: 28.10.2005
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 15.12.2005
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA;;
- Measurement SW: DASY4, V4.7 Build 14; Postprocessing SW: SEMCAD, V1.8 Build 165


Pin = 250 mW; d = 10 mm/Area Scan (71x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.7 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.9 V/m; Power Drift = -0.093 dB

Peak SAR (extrapolated) = 16.6 W/kg


SAR(1 g) = 9.75 mW/g; SAR(10 g) = 5.17 mW/g Maximum value of SAR (measured) = 11.1 mW/g

0 dB = 11.1 mW/g

Certificate No: D1900V2-5d041_Mar06

Page 6 of 9

DASY4 Validation Report for Body TSL

Date/Time: 21.03.2006 13:59:55

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d041

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U10;

Medium parameters used: f = 1900 MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 54.7$; $\rho = 1000$ kg/m³

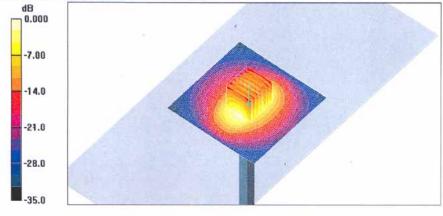
Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1507 (HF); ConvF(4.3, 4.3, 4.3); Calibrated: 28.10.2005
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 15.12.2005
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA;;
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

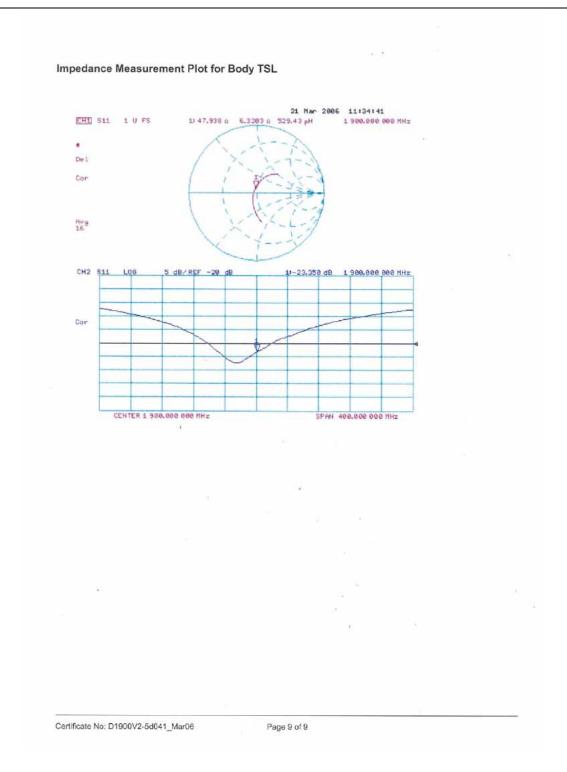
Pin = 250 mW; d = 10 mm/Area Scan (71x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.8 mW/g

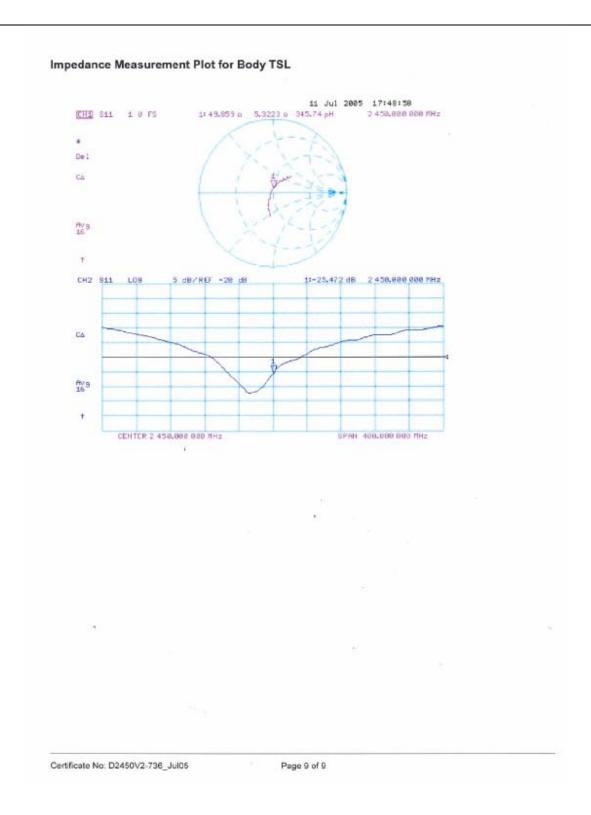

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.3 V/m; Power Drift = 0.045 dB

Peak SAR (extrapolated) = 17.4 W/kg

SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.4 mW/g


Maximum value of SAR (measured) = 11.6 mW/g



 $0~dB=11.6\mathrm{mW/g}$

Certificate No: D1900V2-5d041_Mar06

Page 8 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

C

Accreditation No.: SCS 108

S Schweizerischer Kalibrisrdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA. Multilateral Agreement for the recognition of calibration certificates

Cartificate Nov D2450V2-735 Apr07

AND REAL PROPERTY AND INCOME.	CERTIFICATE		
Otijest	D2450V2 - SN: 7	35	
Calibration procedure(s)	QA CAL-05.v6 Calibration proce	dure for dipole validation kits	
Call bration date:	April 24, 2007		
Condition of the calibrated item	In Tolerance		10 - 10 120
All calibrations have been conducted (Mail Calibration Equipment used (Mail Primary Standards Power mater EPM-442A Power sensor HP 8481A	cted in the closed laborator	robability are given on the following pages and arry facility: environment temperature (22 ± 3)°C an Cal Date (Calibrated by, Certificate No.) 03-Oct-06 (METAS, No. 217-00608) 03-Oct-06 (METAS, No. 217-00608)	
Reference 20 dB Attenuator Reference 10 dB Attenuator Perference Probe ES30478	SN: 5547.2 (10r)	10-Aug-06 (METAS, No 217-00591) 10-Aug-06 (METAS, No 217-00591) 10-Oct 05 (505-00, No. 257-00591)	Aug-07 Aug-07
Reference 10 dB Attenuator Reference Probe ES3OV3	SN: 5047.2 (10r) SN 3025	10-Aug-06 (METAS, No 217-00591) 19-Oct-06 (SPEAG, No. ES3-3025_Oct06)	Aug-07 Get-07
Reference 10 dB Attenuator Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator Aglient E4421B	SN: 5547.2 (10r) SN 3025 SN 501 ID # MY41092317 MY41000675	10-Aug-06 (METAS, No 217-00591) 19-Oct-06 (SPEAG, No. ES3-3025_Oct06) 30-Jan-07 (SPEAG, No. DAE4-801_Jan07) Check Date (In house) 18-Oct-02 (SPEAG, in house check Dct-06) 11-May-05 (SPEAG, in house check Nov-05)	Aug-07 Cet-07 Jan-08 Scheduled Check In house check: Dct-07 In house check: Nov-07

Certificate No: D2450V2-735_Apr07

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweiterischer Kalibrierdienat
C Service suisse d'étalonnage
Servizio svizzero di farature
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation.

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates.

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005.
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-735_Apr07

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	***************************************
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.79 mho/m ± 6 %
Head TSL temperature during test	(23.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	condition	
SAR measured	250 mW input power	13.2 mW / g
SAR normalized	normalized to 1W	52.8 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	52.7 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.13 mW / g
SAR normalized	normalized to 1W	24.5 mW / g
SAR for nominal Head TSL parameters 1	'normalized to 1W	24.5 mW / g ± 16.5 % (k=2)

Certificate No: D2450V2-735_Apr07

Page 3 of 9

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.6 ± 6 %	1.91 mho/m ± 6 %
Body TSL temperature during test	(21.4 ± 0.2) °C	Name of the last o	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.9 mW / g
SAR normalized	normalized to 1W	51.6 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	50.9 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.95 mW / g
SAR normalized	normalized to 1W	23.8 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	23.5 mW / g ± 16.5 % (k=2)

Certificate No: D2450V2-735_Apr07

Page 4 of 9

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω + 3.6 jΩ
Return Loss	- 26.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.0 Ω + 5.9 jΩ	
Return Loss	- 24.0 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.153 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 7, 2003

Certificate No: D2450V2-735_Apr07

Page 5 of 9

DASY4 Validation Report for Head TSL

Date/Time: 24.04.2007 10:04:10

Test Laboratory: SPEAG, Zurieh, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN735

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB;

Medium parameters used: f = 2450 MHz; $\sigma = 1.8 \text{ mho/m}$; $\varepsilon_f = 38.8$; $\rho = 1000 \text{ kg/m}^3$

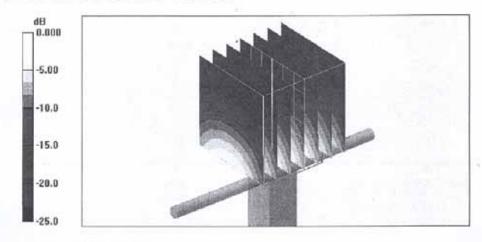
Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ES3DV2 SN3025 (HF); ConvF[4.5, 4.5, 4.5); Calibrated: 19.10.2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.01.2007
- · Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

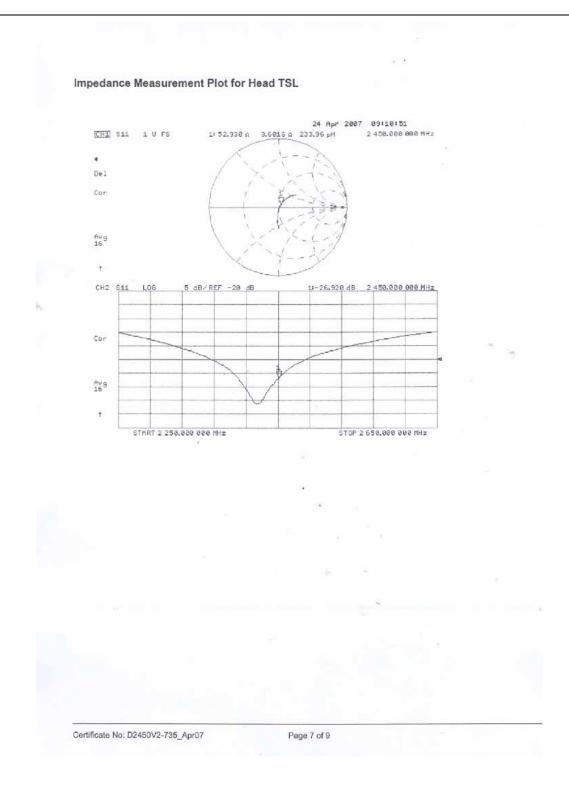
Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.2 V/m; Power Drift = -0.009 dB

Peak SAR (extrapolated) = 27.5 W/kg

SAR(1 g) = 13.2 mW/g; SAR(10 g) = 6.13 mW/g


Maximum value of SAR (measured) = 14.8 mW/g

0~dB=14.8mW/g

Certificate No: D2450V2-735_Apr07

Page 6 of 9

DASY4 Validation Report for Body TSL

Date/Time: 24.04.2007 13:54:20

Test Laboratory: SPEAG, Zurich, Switzerland

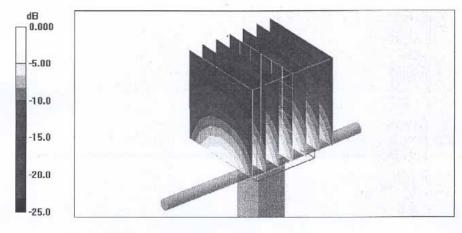
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN735

Communication System; CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL U10;

Medium parameters used: f = 2450 MHz; $\sigma = 1.92$ mho/m; $\epsilon_r = 50.7$; $\rho = 1000$ kg/m³

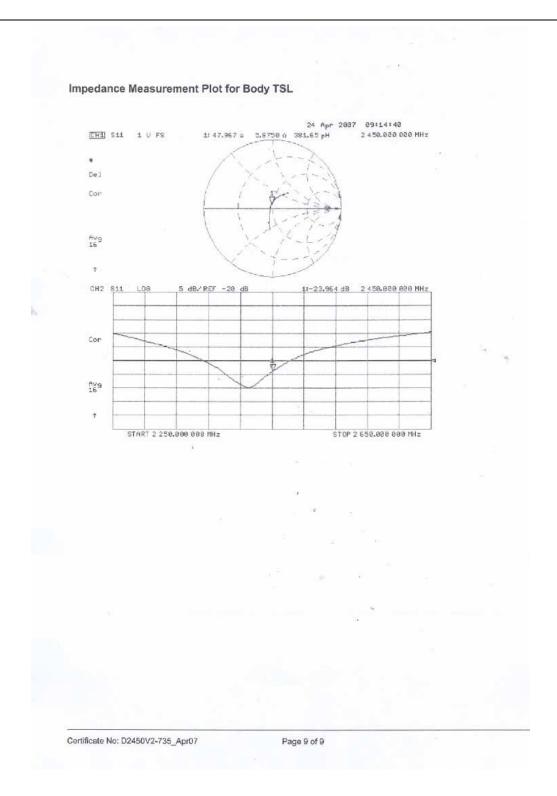
Phantom section: Flat Section


Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ES3DV2 SN3025 (HF); ConvF(4.16, 4.16, 4.16); Calibrated: 19.10.2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.01.2007
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 88.8 V/m; Power Drift = -0.060 dB Peak SAR (extrapolated) = 26.8 W/kg SAR(1 g) = 12.9 mW/g; SAR(10 g) = 5.95 mW/g Maximum value of SAR (measured) = 14.7 mW/g

0 dB = 14.7 mW/g

Certificate No: D2450V2-735_Apr07

Page 8 of 9

C SAR Test Report Test Report No : FA761327-1-2-01

Calibration Laboratory of Schmid & Partner Englineering AG Zeughausstrase 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdiensi Gervice suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton (Auden)

Certificate No: ET3-1788_Sep06

Accreditation No.: SCS 108

Object	ET3DV6 - SN:1	788	ESS, INCHAIN
Calibration procedure(s)	QA CAL-01.v5 Calibration proc	edure for dosimetric E-field probes	
Calibration date:	September 19,	2006	
Condition of the collaborated item	In Tolerance		
All calibrations have been condu	cted in the closed laborat	tory facility: environment temperature (22 ± 3)°C and	d humicity < 70%.
	Te-critical for calibration)		
Calibration Equipment used (M&	TE-critical for calibration)	Cai Date (Calibrated by, Cartificate No.)	Scheduled Calibration
Calibration Equipment used (M& Primary Standards Power motor E44198	TE-critical for calibration) ID # CB41203874	Cal Date (Calibrated by Cartificate No.) 5-Apr-06 (METAS, No. 251-00557)	Scheduled Calibration Apr-37
Calibration Ecuipment used (M& Primary Standards Power motor E44198 Power sensor E4412A	TE-critical for calibration) 10 # 0841203874 MY41486277	Call Date (Calibrated by, Cartificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557)	Scheduled Celibration Apr-37 Apr-37
Calibration Ecuipment used (M& Primary Standards Power motor E44198 Power sensor E4412A Power sensor E4412A	TE-critical for calibration) 10 # C841203874 MY41486277 MY41498087	Cal Date (Calibrated by Cartificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557)	Scheduled Calibration Apr-07 Apr-07 Apr-07
Calibration Ecuipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator	TE-critical for calibration) 10 # 0841203874 MY41496277 MY41496237 Sh: 55054 (3c)	Cal Date (Calibrated by Cartificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00502)	Scheduled Calibration Apr-37 Apr-37 Apr-37 Aug-07
Calibration Equipment used (M& Primary Standards Power motor E4419B Power sensor E4412A Power sensor E4412A Reference 3 ctl Attenuator Reference 20 ctll Attenuator	TEcritical for calibration) 10 # GB41203874 MY41486277 MY41486087 Sh: 55054 (3c) Sh: 55086 (20b)	Cui Date (Calibrated by Cartificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 251-00558)	Scheduled Calibration Apr-37 Apr-37 Apr-37 Aug-07 Apr-37
Calibration Equipment used (M& Primary Standards Power motor E4419B Power sensor E4412A Power sensor E4412A Reference 3 of E4112A Reference 30 dB Attenuator Reference 30 dB Attenuator	TE-critical for calibration) ID # GB41203874 MY41486277 MY41486387 Sh: 55054 (3c) Sh: 55086 (20b) Sh: S5129 (30b)	Call Date (Calibrated by, Cartificate No.) 5-Apr-06 (METAS, No. 261-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-05 (METAS, No. 217-00512) 4-Apr-06 (METAS, No. 251-00558) 10-Aug-05 (METAS, No. 217-00503)	Scheduled Calibration Apr-07 Apr-07 Apr-07 Aug 07 Apr-07 Aug 07
Calibration Ecuipment used (M& Primary Standards Power motor E4419B Power sensor E4412A Power sensor E4412A Reference 3 of B Attenuator Reference 30 of B Attenuator Reference 30 of B Attenuator Reference Probe ES30V2	TEcritical for calibration) 10 # GB41203874 MY41486277 MY41486087 Sh: 55054 (3c) Sh: 55086 (20b)	Cui Date (Calibrated by Cartificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 251-00558)	Scheduled Calibration Apr-37 Apr-37 Apr-37 Aug-07 Apr-37
Calibration Equipment used (MS Primary Standards Power motor E44198 Power sensor E4412A Power sensor E4412A Reference 3 of Attenuator Reference 30 off Attenuator Reference 30 off Attenuator Reference Probe E530V2' DAE4	TE-critical for calibration) ID # GB41203874 MY41486277 MY41486287 Sh: 55054 (3c) Sh: 55086 (20b) Sh: 55086 (20b) Sh: 3013 Sh: 654	Cair Date (Calibrated by, Cartificate No.) 5 Apr-06 (METAS, No. 251-00557) 5 Apr-06 (METAS, No. 251-00557) 5 Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00502) 4-Apr-06 (METAS, No. 217-00503) 2-Jan-06 (SPEAG, No. ESS-3013_Jan-06) 21-Jun-06 (SPEAG, No. DAE4-654_Jun-06) Check Date (in house)	Scheduled Calibration Apr-07 Apr-07 Apr-07 Apr-07 Apr-07 Apr-07 Apr-07 Jun-07 Jun-07 Scheduled Check
Calibration Equipment used (M& Primary Standards Power motor E44198 Power sensor E4412A Power sensor E4412A Reference 3 of B Attenuator Reference 30 off Attenuator Reference 30 off Attenuator Reference Probe E530V2 DAE4	TE-critical for calibration) ID # GB41203874 MY41496277 MY11468087 SN: 55006 (20b) SN: 55006 (20b) SN: 55129 (30b) SN: 3013 SN: 654 ID # US3642301700	Cai Date (Celibrated by, Cartificate No.) 5-Apr-D6 (METAS, No. 251-00557) 5-Apr-D6 (METAS, No. 251-00557) 5-Apr-D6 (METAS, No. 251-00557) 10-Aug-D6 (METAS, No. 251-00559) 10-Aug-D6 (METAS, No. 251-00558) 10-Aug-D6 (METAS, No. 251-00558) 10-Aug-D6 (METAS, No. 251-00593) 2-Jan-D6 (SPEAG, No. ES3-3013_Jian06) 21-Jun-D6 (SPEAG, No. DAE4-854_Jun)5) Chook Date (in house) 4-Aug-99 (SPEAG, in house check Nov-D5)	Scheduled Calibration Apr-07 Apr-07 Apr-07 Apr-07 Apr-07 Apr-07 Apr-07 Jun-07 Jun-07 Scheduled Check In house check: Nov-07
Calibration Equipment used (M6 Primary Standards Power motor E4419B Power sensor E4412A Power sensor E4412A Reference 3 of B Attenuator Reference 30 of B Attenuator Reference 30 of B Attenuator Reference Probe E530V2 DAC4 Secondary Standards RF generator MP 8648G	TE-critical for calibration) ID # GB41203874 MY41486277 MY41486287 Sh: 55054 (3c) Sh: 55086 (20b) Sh: 55086 (20b) Sh: 3013 Sh: 654	Cair Date (Calibrated by, Cartificate No.) 5 Apr-06 (METAS, No. 251-00557) 5 Apr-06 (METAS, No. 251-00557) 5 Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00502) 4-Apr-06 (METAS, No. 217-00503) 2-Jan-06 (SPEAG, No. ESS-3013_Jan-06) 21-Jun-06 (SPEAG, No. DAE4-654_Jun-06) Check Date (in house)	Scheduled Calibration Apr-07 Apr-07 Apr-07 Apr-07 Apr-07 Apr-07 Apr-07 Jun-07 Jun-07 Scheduled Check
Calibration Equipment used (M& Primary Standards Power motor E44198 Power sensor E4412A Power sensor E4412A Reference 3 of B Attenuator Reference 30 off Attenuator Reference 30 off Attenuator Reference Probe E530V2 DAE4	TE-critical for calibration) ID # GB41203874 MY41496277 MY11468087 SN: 55006 (20b) SN: 55006 (20b) SN: 55129 (30b) SN: 3013 SN: 654 ID # US3642301700	Cai Date (Celibrated by, Cartificate No.) 5-Apr-D6 (METAS, No. 251-00557) 5-Apr-D6 (METAS, No. 251-00557) 5-Apr-D6 (METAS, No. 251-00557) 10-Aug-D6 (METAS, No. 251-00559) 10-Aug-D6 (METAS, No. 251-00558) 10-Aug-D6 (METAS, No. 251-00558) 10-Aug-D6 (METAS, No. 251-00593) 2-Jan-D6 (SPEAG, No. ES3-3013_Jian06) 21-Jun-D6 (SPEAG, No. DAE4-854_Jun)5) Chook Date (in house) 4-Aug-99 (SPEAG, in house check Nov-D5)	Scheduled Calibration Apr-07 Apr-07 Apr-07 Apr-07 Apr-07 Apr-07 Apr-07 Jun-07 Jun-07 Scheduled Check In house check: Nov-07
Calibration Ecuipment used (M6 Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES30V2 DAE4	TErcitical for calibration) ID # GB41203874 MY41495277 MY41496277 MY41496087 SN: 55054 (3c) SN: 55059 (30b) SN: 55129 (30b) SN: 3013 SN: 654 ID # US3642J01700 US37390586	Cal Date (Calibrated by Cartificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 251-00558) 10-Aug-06 (METAS, No. 251-00558) 2-Jan-06 (SPEAS, No. 251-00593) 2-Jan-06 (SPEAG, No. DAE4-654_Jan-06) Check Date (in house) 4-Aug-95 (SPEAG, in house check Nov-05)	Scheduled Celtristion Apr-07 Apr-07 Apr-07 Aug-07 Aug-07 Jun-07 Jun-07 Scheduled Check In house check: Nov-07 In house check: Nov-08
Calibration Equipment used (M6 Primary Standards Power motor E4419B Power sensor E4412A Power sensor E4412A Reference 3 oB Attenuator Reference 30 oB Attenuator Reference 30 oB Attenuator Reference 30 oB Attenuator Reference 30 oB Attenuator Reference Probe ES30V2 DAE4 Secondary Standards RF generator MP 8648C Notwork Analyzer HP 8763E	TE-critical for calibration) ID # GB41203874 MY41486277 MY41486277 MY41486367 Sh: 55054 (3c) Sh: 55066 (20b) Sh: 55086 (20b) Sh: 3013 Sh: 654 ID # US3642J01700 US37390585 Name	Cai Date (Calibrated by Cartificate No.) 5 Apr De (METAS, No. 251-00557) 5 Apr De (METAS, No. 251-00557) 5 Apr De (METAS, No. 251-00557) 10 Aug-06 (METAS, No. 251-00557) 10 Aug-06 (METAS, No. 217-00502) 4 Apr De (METAS, No. 217-00503) 2 Jan-06 (SPEAG, No. ES3-3013_Jan06) 21 Jun-06 (SPEAG, No. ES3-3013_Jan06) 21 Jun-06 (SPEAG, No. DAE4-654_Jun05) Check Date (in house) 4 Aug-99 (SPEAG, in house check Nov-05) Function	Scheduled Celtristion Apr-07 Apr-07 Apr-07 Aug-07 Aug-07 Jun-07 Jun-07 Scheduled Check In house check: Nov-07 In house check: Nov-08

Certificate No: ET3-1788_Sep06

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service sulsse d'étalonnage

Servizio svizzoro di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multitateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx.y.z.

ConF DCP

diode compression point protation around probe axis

Polarization φ Polarization 9

8 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless
 Communications Devices: Measurement Techniques." December 2003.
- Communications Devices: Measurement Techniques", December 2003
 b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of CanvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1768_Sep06

Page 2 of 9

ET3DV6 SN:1788

September 19, 2006

Probe ET3DV6

SN:1788

Manufactured:

May 28, 2003

Last calibrated:

September 30, 2004

Recalibrated:

September 19, 2006

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1788_Sep06

Page 3 of 9

ET3DV6 SN:1788

September 19, 2006

DASY - Parameters of Probe: ET3DV6 SN:1788

Sensitivity in Free Space ^A			Diode C	Compression ^B
NormX	1.73 ± 10.1%	$\mu V/(V/m)^2$	DCP X	95 mV
NormY	1.67 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	101 mV
NormZ	1.70 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	93 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

		the second second second second	Control of the Contro
TSL	900 MHz	Typical SAR	gradient: 5 % per mm

Sensor Center to Phantom Surface Distance		3.7 mm	4.7 mm
SAR [%]	Without Correction Algorithm	7.9	4.3
SAR, [%]	With Correction Algorithm	0.1	0.3

TSL 1810 MHz Typical SAR gradient: 10 % per mm

Sensor Cente	r to Phantom Surface Distance	3.7 mm	4.7 mn
SAR ₆₄ [%]	Without Correction Algorithm	11.8	7.0
SAR. [%]	With Correction Algorithm	0.2	0.4

Sensor Offset

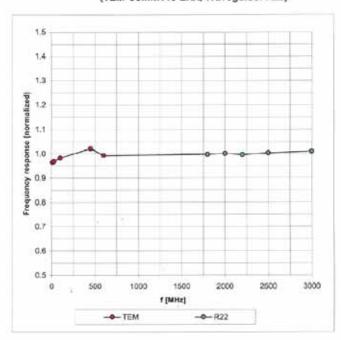
Probe Tip to Sensor Center 2.7 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Cortificate No: ET3-1788_Sep06

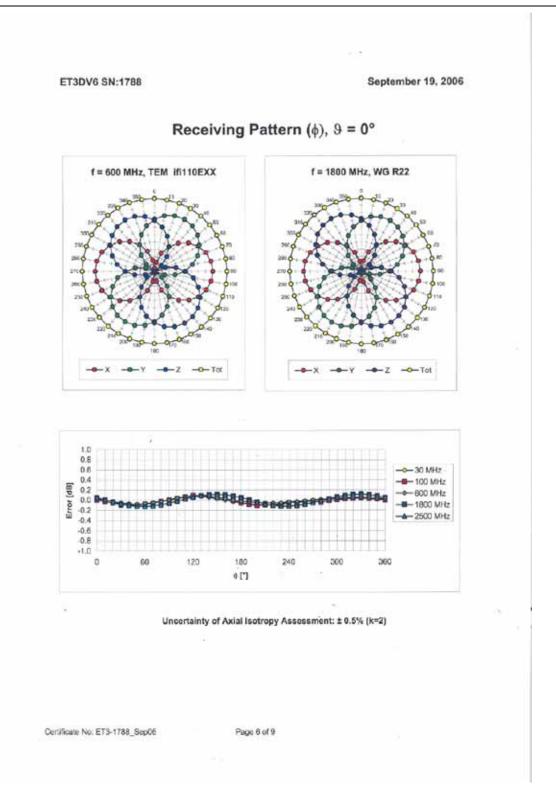
Page 4 of 9

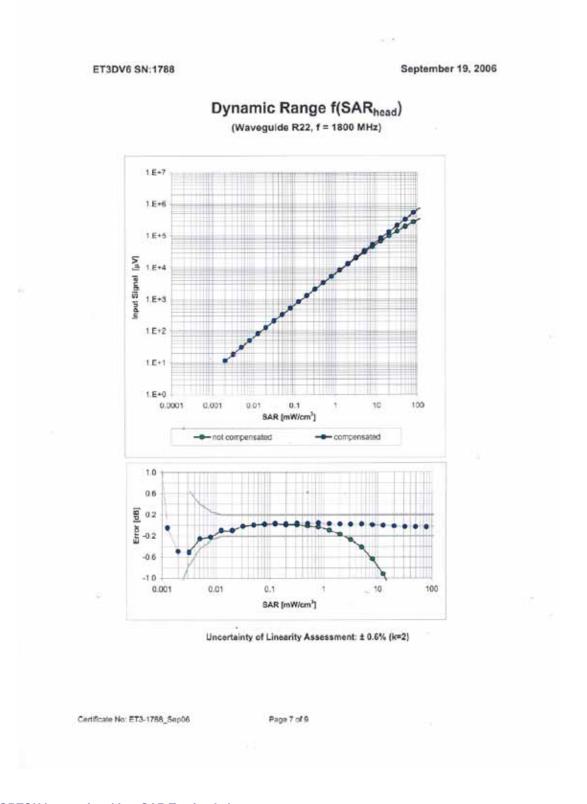
 $^{^{}A}$ The uncertainties of NormK,Y,Z do not affect the E^{2} -field uncertainty inside TSL (see Page 8).


Numerical linearization parameter; uncertainty not required.

September 19, 2006

Frequency Response of E-Field

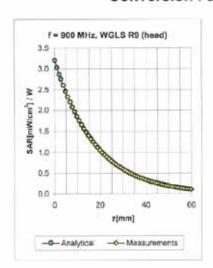

(TEM-Cell:ifi110 EXX, Waveguide: R22)

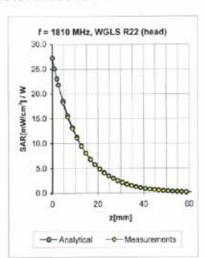


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ET3-1788_Sep06

Page 5 of 9





ET3DV6 SN:1788

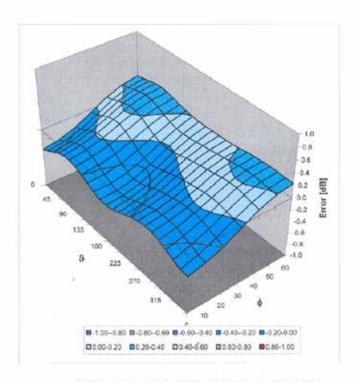
September 19, 2006

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Pormittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	±50/±100	Head	41.5 ± 5%	$0.97 \pm 5\%$	0.49	1.94	6.60 ± 11.0% (k=2)
1810	±50/±100	Head	$40.0 \pm 5\%$	1.40 ± 5%	0.48	2.74	5.30 ± 11.0% (k=2)
2000	±50/±100	Head	40.0 ± 5%	1.40 ± 5%	0.53	2.75	5.00 ± 11.0% (k=2)
2450	±50/±100	Head	$39.2\pm5\%$	$1.80\pm5\%$	0.68	1.96	4.66 ± 11.8% (k=2)
900	±50/±100	Body	55.0 ± 5%	1.05 ± 5%	0.45	2.12	6.33 ± 11.0% (k=2)
1810	±50/±100	Body	$53.3\pm5\%$	1.52 ± 5%	0.59	2.89	4.67 ± 11.0% (k=2)
2000	±50/±100	Body	53.3 ± 5%	1.52 ± 5%	0.56	2.79	4.50 ± 11.0% (k=2)
2450	±50/±100	Body	52.7 ± 5%	1.95 ± 5%	0.60	1.70	4.11 ± 11.8% (k=2)

Certificate No: ET3-1788_Sep06

Page 8 of 9


⁶ The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

ET3DV6 SN:1788

September 19, 2006

Deviation from Isotropy in HSL

Error (¢, 9), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ET3-1788_Sep06

Page 9 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suitse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton (Auden)

Certificate No: DAE3-577 Nov06

Accreditation No.: SCS 108

Object	DAE3 - SD 000 D	03 AA - SN: 577	
Calibration procedure(s)	QA CAL-06,v12 Calibration proces	dure for the data acquisition electr	onics (DAE)
Calibration date:	November 21, 200	06	
Condition of the calibrated item	In Tolerance		
Calibration Equipment used (MSTE	(1972년) 1월 2014년 (1974년) 45년 (1987년)		
Outromos Photodosido			
Fluice Process Calibrator Type 702	ID # SN: 6295803 SN: 0810278	Cal Date (Calibrated by, Certificate No.) 13-Oct-06 (Elcal AG, No: 5492)	Oct-07
Fluke Process Calibrator Type 702 Kelthlay Multimeter Type 2001	SN: 6295803 SN: 0810278	13-Oct-06 (Eleal AG, No: 5492) 03-Oct-06 (Eleal AG, No: 5478)	Oct-07 Oct-07
Primary Standards Fluis Process Calibrator Type 702 Kellhley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1	SN: 6295803 SN: 0810278	13-Oct-06 (Elcal AG, No: 5492)	Oct-07
Fluice Process Calibrator Type 702 Kelthley Multimeter Type 2001 Secondary Standards	SN: 6295803 SN: 0810278	13-Oct-06 (Elcal AG, No: 5492) 03-Oct-06 (Elcal AG, No: 5478) Check Date (in house)	Oct-07 Oct-07 Scheduled Check
Fluice Process Calibrator Type 702 Kelihley Multimeter Type 2001 Secondary Standards	SN: 6295803 SN: 0810278	13-Oct-06 (Elcal AG, No: 5492) 03-Oct-06 (Elcal AG, No: 5478) Check Date (in house)	Oct-07 Oct-07 Scheduled Check
Fluire Process Celibrator Type 702 Keithley Mullimeter Type 2001 Secondary Standards Calibrator Box V1.1	SN: 6295803 SN: 0810278	13-Oct-06 (Elcal AG, No: 5492) 03-Oct-06 (Elcal AG, No: 5478) Check Date (in house)	Oct-07 Oct-07 Scheduled Check
Fluire Process Celibrator Type 702 Kelthley Mullimeter Type 2001 Secondary Standards Calibrator Box V1.1	SN: 6295803 SN: 0810273 ID # SE UNS 006 AB 1002 Name	13-Oct-06 (Elcal AG, No: 5492) 03-Oct-06 (Elcal AG, No: 5478) Check Date (in house) 15-Jun-06 (SPEAG, in house check)	Oct-07 Oct-07 Scheduled Check In house check Jun-07
Fluice Process Calibrator Type 702 Kelihley Multimeter Type 2001 Secondary Standards	SN: 6295803 SN: 0810273 ID # SE UNS 006 AB 1002 Name	13-Oct-06 (Elcal AG, No: 5492) 03-Oct-06 (Elcal AG, No: 5478) Check Date (in house) 15-Jun-06 (SPEAG, in house check) Function Technician	Oct-07 Oct-07 Scheduled Check In house check Jun-07

FCC SAR Test Report

Test Report No : FA761327-1-2-01

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerlacher Kalibrierdienst
C Service culsse d'étalonnage
Servizio svizzere di taratura
S Swiss Celibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv

DAE Connector angle data acquisition electronics

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters contain technical information as a result from the performance test and require no uncertainty.
- DC Voltage Measurement Linearity; Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
- Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
- Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
- AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
- Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
- Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
- Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
- Low Battery Alarm Voltage: Typical value for information: Below this voltage, a battery alarm signal is generated.
- Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE3-577_Nov06

Page 2 of 5

DC Voltage Measurement

A/D - Converter Resolution nominal

High Rango: 1LSB =

Low Range: 1LSB = High Range: 1LSB = 6.1µV, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	×	Y	z
High Range	404.355 ± 0.1% (k=2)	403.806 ± 0.1% (k=2)	404.276 ± 0.1% (k=2)
Low Range	3.92854 ± 0.7% (k=2)	3.93862 ± 0.7% (k=2)	3.93591 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	268°±1°
---	---------

Certificate No: DAE3-577_Nov06

Page 3 of 5

Appendix

1. DC Voltage Linearity

High Range	Input (μV)	Reading (µV)	Error (%)
Channel X + Input	200000	199999.5	0.00
Channel X + Input	20000	20005.87	0.03
Channel X - Input	20000	-19998.71	-0.01
Channel Y + Input	200000	200000	0.00
Channel Y + Input	20000	20004.22	0.02
Channel Y - Input	20000	-20003.23	0.02
Channel Z + Input	200000	200000.6	0.00
Channel Z + Input	20000	20005.24	0.03
Channel Z - Input	20000	-20001.80	0.01

Low Range	Input (µV)	Reading (µV)	Error (%)
Channel X + Input	2000	1999.9	0.00
Channel X + Input	200	200.27	0.13
Channel X - Input	200	-200.73	0.36
Channel Y + Input	2000	2000.1	0.00
Channel Y + Input	200	199.22	-0.39
Channel Y - Input	200	-200,86	0.43
Channel Z + Input	2000	1999.9	0.00
Channel Z + input	200	199.28	-0.36
Channel Z - Input	200	-200.94	0.47

2. Common mode sensitivity

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	14.24	12.49
	- 200	-12.13	-12.92
Channel Y	200	-6.51	-7.06
	- 200	6.05	5.81
Channel Z	200	1.09	0.86
	- 200	-2.86	-2.63

Channel separation
 DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (μV)
Channel X	200		2.51	0.09
Channel Y	200	0.43	22.	3.37
Channel Z	200	-0.55	0.96	-

Certificate No: DAE3-577_Nov06

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15970	16306
Channel Y	15851	16305
Channel Z	16208	17068

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

locut 10MC

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)	
Channel X	-0.51	-1.55	0.47	0.50	
Channel Y	-2.06	-4.32	-0.65	0.60	
Channel Z	-1.63	-2.56	-0.15	0.35	

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)	
Channel X	0.2000	199.8	
Channel Y	0.2000	200.7	
Channel Z	0.2000	199.8	

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	-7.9	
Supply (- Vcc)	-7.6	

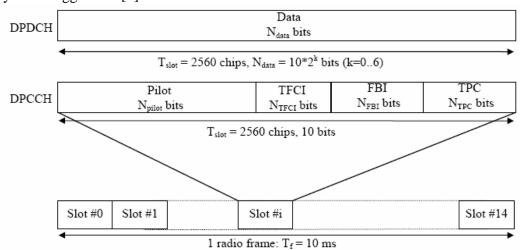
9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)	
Supply (+ Vcc)	+0.0	+6	+14	
Supply (- Vcc)	-0.01	-8	-9	

Certificate No: DAES-577_Nov08

Page 5 of 5

Appendix D - WCDMA Test Mode


1. Conducted Output Power

The EUT's WCDMA and HSDPA function is Release 5 version. RMC 384 Kbps is the main WCDMA test mode for both EMC and SAR reports. A detailed analysis of the output power for all WCDMA modes is provided in the table below. The EUT supports DPDCH1 and HSDPA with a various of data rates, such as 12.2Kbps, 64kbps, 144Kbps and 384Kbps.

	Symbol				Reference		Band II			Band V	
Mode	Rates	SF	K	Data	Channel Type	Ch 9262	Ch 9400	Ch 9538	Ch 4132	Ch 4182	Ch 4233
	(Kbps)				(Data Rates)	1852.4	1880.0	1907.6	826.4	836.4	846.6
	60	64	2	40	RMC 12.2 Kbps	23.17	23.26	22.57	24.94	24.96	24.36
DPDCH1	240	16	4	160	RMC 64 Kbps	22.40	23.24	23.15	24.94	24.95	24.37
DEDCITI	480	8	5	320	RMC 144 Kbps	22.41	23.26	23.16	24.96	24.95	24.39
	960	4	6	640	RMC 384 Kbps	23.34	23.27	23.16	24.98	24.96	24.40
HSDPA	60	64	2	40	RMC 12.2 Kbps	21.24	21.15	23.03	23.78	23.76	23.20
Data: Bits/Slot: SF: Spreading Factor: K: Number of bits per uplink DPDCH slot.											

Table 1 Conducted output power

Followed by FCC suggestions[1]:

Frame structure for uplink DPDCH/DPCCH

The parameter K in the figure determines the number of bits per uplink DPDCH slot. It is related to the spreading factor SF of the DPDCH as $SF = 256/2^k$. The DPDCH spreading factor may range from 256 down to 4. The spreading factor of the uplink DPCCH is always equal to 256, i.e. there are 10 bits per uplink DPCCH slot.

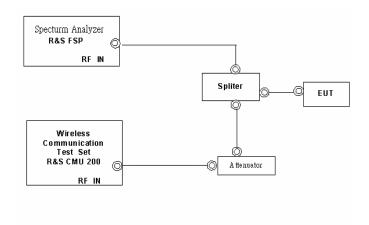
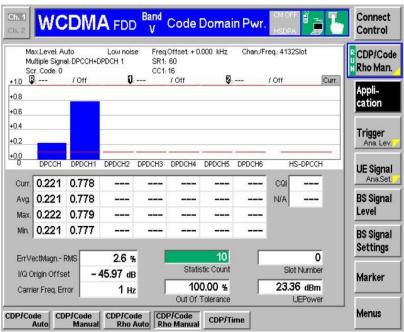
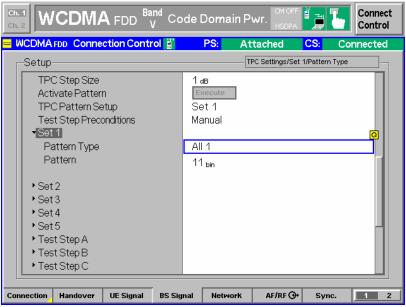

	Channel Bit Rate (kbps)	Channel Symbol Rate (ksps)	Spreading Factor	Spreading Code Number	Bits/Slot
DPCCH	15	15	256	0	10
	15	15	256	64	10
	30	30	128	32	20
	60	60	64	16	40
$DPDCH_1$	120	120	32	8	80
	240	240	16	4	160
	480	480	8	2	320
	960	960	4	1	640
DPDCH _n	960	960	4	1, 2, 3	640

Table 2 DPCCH and DPDCH

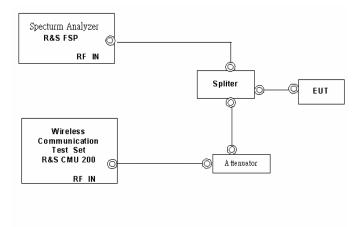
There is only one DPCCH per radio link. Data rates, channelization codes and spread factor information for DPCCH and DPDCH $_n$ are indicated in the following Table. Spreading Rate (SF) * Symbol Rate = 3.84 Mcps.

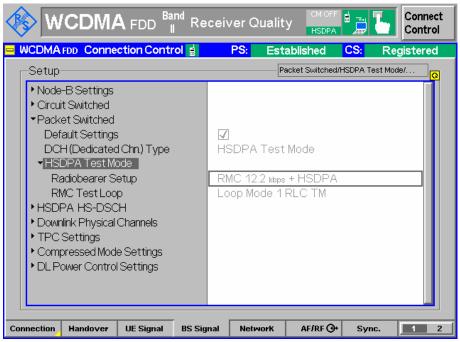

2. WCDMA Setup Configuration

- i. The EUT was connected to Spectrum Analyzer and Base Station via power splitter. Refer to the drawing of Setup Configuration.
- ii. The RF path losses was compensated into the measurements.
- iii. A call was established between EUT and Base Station with following setting
 - a. Data rates: Varied RMC for each measurements.
 - b. TPC with All Up
- iv. The transmitted maximum output power was recorded.



Setup Configuration


Single DPCCH with only one DPDCH at RMC 12.2Kbps (Symbol Rate 60 Kbps)


TPC with All "1" (Continuous transmitting)

3. HSDPA Setup Configuration

- a. The EUT was connected to Spectrum Analyzer and Base Station via power splitter. Refer to the drawing of Setup Configuration.
- b. The RF path losses was compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting:
 - i. Set RMC12.2Kbps with HSDPA mode.
 - ii. TPC with All Up with H-set.
- d. The transmitted maximum output power was recorded.

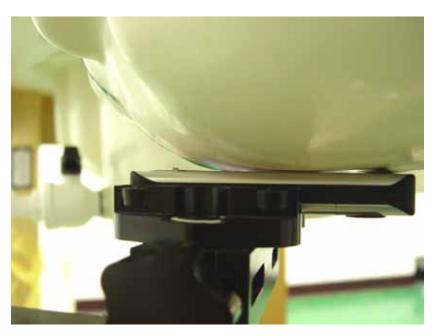
Setup Configuration

RMC 12.2Kbps with HSDPA function

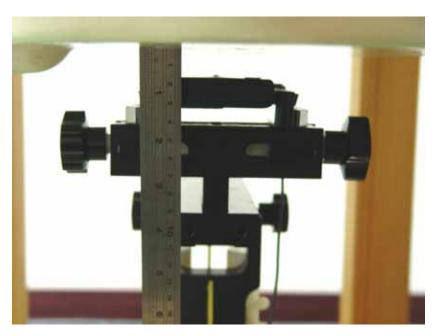
Reference:

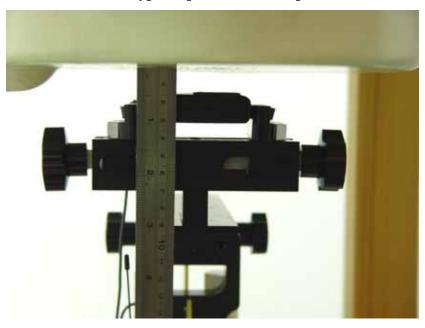
- [1.] SAR Measurement Procedures for 3G Devices CDMA 2000/Ev-Do/WCDMA/HSDPA June 2006 Laboratory Division Office of Engineering and Technology Federal Communications Commission
- [2.] TS 34.121 Universal Mobile Telecommunications System (UMTS); Terminal Conformance Specification, Radio Transmission and Reception (FDD)

Appendix E – Product Photo


Appendix F – Test Setup Photo

Right Cheek


Right Tilted


Left Cheek

Left Tilted

Keypad Up with 1.5cm Gap

Keypad Down with 1.5cm Gap